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CHAPTER I
INTRODUCTION

This thesis contains a study of three toﬁics in point-set topology
which are vaguely suggested by the title. These three topics, while to
be sure related within topology, are not treated as being interrelated
within this work and accordingly each topic occupies a separate chapter
of the three chapters which follow.

In Chapter II, a number of conditions on a function from one top-
ological space to another are considered. Among these conditions are
those of a function or its inverse preserving openness, closedness, or
compactness of sets. Other conditions are having a closed graph and a
concept generalizing continuity, subcontinuity, which we introduce in
Section 2.

Some interesting results uncovered in Chapter II are the following:
{1) a function which is closed with closed point inverses, and a regular
space for its domain has a closed graph. (2) If a function maps into a
Hausdorff space, continuity ;f the function is equivalent to the require-
ment that the function be subcontinuous and have a closed graph. (3) The
usual net characterization of continuity for a function with values in
a Hausdorff space is still valid if it is required only that the image
of a convergent net be convergent {not necessarily to the "right" value).

In Chapter III various modes of convergence of nets of functions

will be considered. In particular three Ascoli type theorems and a Dini




type theorem are proved.

The first two Ascoli theorems are closely related to the topo-
logical-uniform and purely topolegical Ascoli theorems found in Kelley
[20, Chapter 7]. While the theorems in Kelley consider the question of
when a family of functions with a certain topelogy is compact, we con-
sider the question of when a net of functions has a subnet which con-
verges in a certain mode. This approach enables us to consider in this
connection modes of convergence which are not topological but are, from
a certain point of view;, very natural. In this respect our motivation
is very much the same as Cook and Fischer [ 7] with their convergence and
uni form convergence structures. Along these lines we should mention that
Poppe [ 28] has generalized the topological Ascoli theorems in Kelley (due
to Kelley and Morse) to the convergence space of Fischer.

The third Ascoli theorem is a uniform version. Another uniform
version appears, for instance; in Isbell [17, éo 51].

Finally in Chapter III, we characterize uniform convergence and
uniform convergence at a point {for nets of continuous functions with a
continuous limit) with some theorems which use extensions of the notion
of monotone convergence in the classical Dini theorem.

In Chapter 1V we study various self maps of a uniform space which
treat a base for the uniformity in a special way.

The contents of the first section of this chapter hobefully shed
additional light on the question, "If a self map of a uniform space is
nonexpansive relative to some base, is there a base (and if so of what
sort) such that the map is invariant relative to the latter base?"

The second section of this chapter consists of a few simpie




theorems concerning when the pointwise limit of self maps is nonexpansive,
jnvariant, or noncontractive relative to some base. A small application
to real variables is given.

The last section of Chapter IV offers a Banach contraction prin-
ciple for uniform space. OQOur main theorem of this section, in fact,
generalizes two theorems for contraction maps in a metric space. One is,
of course, Banach's contraction principle, and the other a sort of local-
ized extension of Banach's principle due to Edelstein [11].

For any concepts which we do not define or elaborate upon the
reader is referred to Kelley's book [20]. We will denote nets by a sym-
bol such as X, letting context distinguish between a net and a point
of the range of the net and suppressing explicit mention of the directed
set. A subnet of a net X, will be denoted by a symbol such as *Nb where
b is a member of the domain of *Nb and N 1is the appropriate function
from the domain of Xp into the domain of X,

Additive notation will be used for the upnion of sets and multipli-
cative notation for intersection. Thus if A and B are two sets
A+ B is their union and A - B their intersection. Moreover if
is a collection of sets ZAL is the union and I the intersection of
these sets.

Finally, in general, parentheses will be dropped from functional

notation, i.e., if f 1is a functionh and x a point in its domain; then

fx is the value of f at x.




CHAPTER I1I

RELATICNS AMONG CONTINUOUS AND VARIOUS

NON-CONT INUOUS FUNCTIONS

In this chapter a number of conditions on a function from one
topological space to another are considered. Among these conditions
are those of preserving closedness, openness, or compactness of a set,
Other conditions are having a c¢losed graph and a concept generalizing
continuity, subcontinuity, which we introduce in Section 2.

Some interesting results which are uncovered are the following:
(1) A function which is closed with closed point inverses and a regular
space for its domain has a closed graph. (2) If a function maps into
a Hausdorff space; continuity of the function is equivalent to the
requirement that the function be subcontinuous and have a closed graph.
(3) The usual net characterization of continuity for a function with
values in a Hausdorff space is still valid if it is required only that
the image of a convergent net be convergent {not necessarily to the
"right" value).

Also several theorems of Halfar [15]jI [16] are extended including
some sufficient conditions for continuity.

In general, spaces T¥" and "Y" in this chapter are topological
spaces and neo function is assumed to be continuous unless explicitly

stated to be so.




l. Functions with Closeq Graphs

(1,1) Definition: A function f : X Y has a closed graph (relative
to X xY) if and only if {(x,fx) : X € X} is closed in the product

topology of X xY.

Using a characterization of closed in terms of nets (See Kelley
[20, Chapter 2]) a function f : X =Y has a closed graph if and only
if the net (xa,fxa) converges to (p,q) in X xY implies that q = fp.
The following example shows that a function with a closed graph need not

be continuous.

(1.2) Example: Let D : Cl[O,l] + C[0,1] be the differentiation oper-
“ator, CY0,1] all continuously differentiable functions on [0,1], and
clo,1] all continuous functions on [0,1]. Let Cl[Osl] and C[0,1] be
given the sup-norm which in turn generates the topology of uniform con-
vergence. Since D 1is a linear operator, if D were continuous it
should map the bounded sequence {tny n 2.1} onto a bounded sequence.

However

n n-=1
[IDt7]] = [[nt™ “[| = n .

Thus D is not continuous

But now suppose (fnp Dfn)-* (f,g) in Cl[O,l] xC[0,1]. Then
fn-* f uniformly and Dfn 2 g uniformly. It then follows by a well-
known theorem (See Rudin {30, Theorem 7.17, p. 124]) that Df = g and

consequently D has a closéd graph.

Let Ea be a net of sets in a topological space X. A point p

in X belongs to lim sup Ea {1im inf Ea) if and only if Ea frequently




(resp., eventualiy) intersects each neighborhood of p. This generaliza-
tion of the 1im sup and lim inf of sets from sequences to nets has been

studied by Mrowka [26, p. 237].

{1.3) Lemma: If f : X Y is a function, Ya is a net in Y, and
. -1 . s
p e lim sup f [ya] then there is a net Xyp 1P % such that *Nb

converges ‘to p and fo-b is a subnet of Yy

Proof: Assume vy  is a net in Y and ‘b € lim sup f‘l[yajo Then for
each a and each neighborhood U of p there is an index N{a,U) 2 a
such that f-l[YN(ayu)] U #®. Now direct the neighborhoods U downward
by inclusion, give the pairs (a,U) the product direction, and choose
*\(a,U) in fwl[yN(a,U)] - U, thus obtaining a net xN(agU)° Finally
note that fo(

is a subnet of Y, and x converges

a,u) = "N(a,U)

N(a,U)
te p-

The following characterization of a function with a closed graph
appears in Kuratowski [22, Definition, p. 32] in a considerably

restricted form.

{1.4) Theorem: If f : X =Y 1is a function, then the following condi-
tions are equivalent:

(a) f has a closed graph

(b) ¥y, >q in Y implies lim sup f-l[ya] ja f-l[q]

(¢) y,»a in Y implies lim inf f'l[ya]cz f'l[q]

Proof: Assume (a) holds. Let Y, >q in Y and pe lim sup f_l[ya]q

By the previous lemma there is a net XNb in X such that p > P and




fxy, 15 @ subnet of y_ . Thus we have (bey fob) + (p,q). Since f
has a closed graph q = fp or pe fwl[q]o Consequently. (b) holds.
If (b) holds then, since lim inf fnl[ya]c: lim sup fnl[ya],
(¢) evidently holds.
Assume then (c) holds. Suppose (xa, fxa) -+ (p;q). Then
Y, = fxa + g and p e lim inf f-l[ya]° Consequently p € f'l[q] or
q = fp and (a) holds.

2. Subcontinuous and Inversely Subcontinuéus Functions

(2.1) Definition: The function f : X =Y is said to be subcontinuous

v . > . .
if and only if X, p in X implies there is a subset be of Xy

and a point q in Y such that fob * q. The function f 1is said

to be inversely subcontinuous if and only if fxa +qg in Y implies

there is a subnet x, of x_ and a p -in X such that *p P
that is, if and only if y, >d in Y and x_ ¢ f"’l—[ya] implies there
is a subnet *\b of X, and a p in X such that *Nb 2p.

Our concept of a subcontinuous function is a generalization of
a function whose range is compact, and similarly our concept of an
inversely subcontinuous function is a generalization of a function whose
domain is compact. In addition, a subcontinuous funétion is a general-
ization of a continuous function whence its name.

More generally, it is clear if f 3 X +Y 1is a function and each
peint p in X has a neighborhood U such that f{U] is contained
in a compact subset of Y, then f is subcontinuous. Likewise if

f ¢« XY is a function and each q im Y has a neighborhood V such

that f‘1[V] is contained in a compact subset of X; then f 1is




inversely subcontinuous.

There aré a couple more analogous pairs of facts about sub-
continuous and inversely subcontinuous functions with analogous prdofs
of these facts. This seems to indicate that probably each pair of
proofs could have been integrated into a single proof concerning a mul-
tiple-valued subcontinuous function., However such an approach did not seem
of particular interest in the present investiéationo

The following theorem says that subcontinuous functioﬁs which
map into a completely regular space are very close to being compact
preserving. Analogously inversely subcontinuous functions with a com-
pletely regular domain have an inverse which very nearly preservés com-
pactness. Unfortunately, nearly is often not good enough. However, the
subcontinuous functions (plain and inversely) have advantages over those
which preserve compactness in one direction or another as will bé pointed

out later.

(2.2) Theorem: Let f : X Y be a function.

(a) If f is inversely subcontinuous and X 1is completely reg-
ular then for each compact set Kc Y, f-l[K]- is compact (  denotes
closure).

(b) If f 1is subcontinuous and Y 1is completely regular then

for each compact set K< X, f{K]  is compact.

Proof: (a) Let K be a compact subset of Y. Let {za, aE A} be a
net in fml[l(]ma Let B be a uniformity for X, Direct B downward
by inclusion and let A x B have the product order. For each:'(a,b)e AxB

choose x, b) in b[za] ° fﬂl[K], Since K 1is compact, a subnet of
§ .




fx ) converges and thus a subnet x(Nc,Mc) of x(a,b) converges

{a;b
to say p. Clearly p e £ k)",

Now consider the net Zye which is a subnet of Z,e We proceed
to show Zye *>p. Let be B. There is a symmetric b1 € B such that

b. © b, € b. By the choice of the X(a,b)? it is clear that (ch,

1 1
x(Nc,Mc)) 1s eventually in b;. Since X(Ne Mc) > p, (X(Nc,Mc)’ p)

is eventually in b10 Thus (ZNcgp) is eventually in b and e < p.
Consequently f‘l[K]- is compact.

(b) The proof is entirely analogous to that of (a).

3. _Functions and Inverses Wh;ph Preserve Closedness
and Compactness

Let f : XY be a function. If f maps compact sets of X

onto compact sets of Y, f 1is said to be:-compact-preserving. If compact

sets of Y go onto compact.sets of X wunder f'l, f 1is called compact.
We point out that compact functions are usually required to be contin-
uous and the modifier "strong” is often attached if f 1is not onto.
Wﬁen closed sets of X are mapped onto closed sets of Y, f {is said
to be closed. Again the modifier "strong" is often applied if f 1is not
onto. Functions f : X *+Y whose inverse carries closed sets of Y
onto closed sets of X are sometimes called continuous.

Pursuing further the similarities noted in the previous section
we characterize compact and compact preserving functions in terms of

inverse subcontinuity and subcontinuity respectively.

(3.1) Theorem: Let f : X Y be a function.

(a) f is compact if and only if f|f‘1[1<] : £7K] K is
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inversely subcontinuous for each compact K< Y.
(b) f 1is compact preserving if and only if f|K : K » f(K]

is subcontinuous for each compact X c X.

Proof: (a) Assume f is compact. Let K be a compact subset of Y

and fxa a net in K which converges to gq in K. Then X s being

in the compact set f°1[K]9 has a subnet *Nb converging to some p

in f-l[K], Thus flfﬂl[K] : fnl[K] + K is inversely subcontinuous.
Now assume f|f=1[K] is inversely subcontinuous for each compact

KT Y. Let K be a compact subset of Y and let X, be a net in

f_l[K]v Then fx_ = has a subnet fx, converging to some q in K.

We thus may conclude *Nb has a subpet X Me converging to some p in

fml[K]o Therefore fﬂl[K] is compact.

(b) The proof is entirely analogous to that of (a).

The following theorem giving sufficient conditions that a function

be compact or compact preserving is deduced immediately from Thearem (3.1).

(3.2) Theorem: Let f : X Y be a function.
(a) If f 1is inversely subcontinuous and f-l[K] is closed
for each compact K& Y, then f is compact3
(b) If f is subcontinuous and f[K] 1is closed for each compact

K< X, then f 1is compact preserving.

Remark: From (3.6) it will then follow that f has a closed graph and
is subcontinuous (inversely subcontinuous) implies f is compact pre-

serving (resp., compact).
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(3.3) Corollary: Let f : X9 Y be a function.

(a) If Y is Hausdorff and f is both continuous and inversely
subcontinuous, then f is compact.

(b) If X is Hausdorff and f is both closed and subcontin-

uous, then f 1is compact preserving.

We turn now to gathering some more facts about functions with
closed graphs and their relation to other functions. In particular,
the following two theorems show that the closed graph property comple-

ments the two subcontinuities in interesting ways.

(3.4) Theorem: Let f : X >Y be a function. A sufficient condition
that f be continuous is that f have a closed graph and be subcon-

tinuous. If Y 1is Hausdorff the condition is also necessary.

Proof: (Sufficiency) Let xa be a net in X which converges to some
peint p. Suppose fxa does not converge to fp. Then fxa has a
subnet, say fx, , no subnet of which converges to fp (see Kelley [20,
item (c), p. 74]). However by subcontinuity some subnet of fXyp S3Y
foMc’ converges to some point gq. Thus we have (XNMC’ foMc) converges
to (pyq). But by the closed graph property of f, q = fp and we have
a contradiction.

(Necessity) Assuming f is continuous then evidently f is sub-
continuous. If (x_, fxa) » (p,q) then X, >p and thus fx, * fp.

a

Assuming Y 1is Hausdorff we conclude q = fp.

(3.5) Theorem: If the function f : X Y has a closed graph and is

inversely subcontinuous, then f 1is closed.
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Proof: Let C be a closed subset of X. Suppose f[C] 1is not closed.
Then there is a q in Y - f{C] and anet x. in C such that

fxa - q. Thus by inverse subcontinuity there is a subnet of X,s s3Y
*Nb’ which converges to seme p in X. Since C 1is closed, p e C,
Consequently we have (be, fob) converges to (p,q) but q # fp
since q § £f{C). This contradicts the closedness of the graph of f,

Theorem (3.4) tells us (among other things) that if f : X Y
is continuous with Y Hausdorff then f has a closed graph. The
Hausdorff requirement cannot be dropped in general for if i : X X
is the identity on X, +the graph of i 1is closed in X x X if and
only if X 1is Hausdorff. |

We can also see from (3.4) the dependency of the closed-graphness
of a function f : X + Y wupon the space Y in which f[X] is imbedded.
Let f : XY Dbe a function which has a closed graph and is not con-
tinuous. Let Y' be a compactification of Y. Then f : X >y* s
subcontinuous (ghowing also the dependency of subcontinuity on the space
in which the range is imbedded). Thus if f : X ﬂ'Y* had a closed
graph then f : X - Y*® would be continuous. But continuity does n;t
depend upon the space in which the range is imbedded and so f : X =Y
would be continuous contradicting our assumption.

Assuming the range is embedded in a Hausdorff space, the next
theorem says, roughly, that a function with a closed graph (in general)
handles compact sets somewhat less successfully than a continuous func-
tion, but the inverse of a function of the former sort is just as suc-

cessful as the inverse of a continuous function in this respect.
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(3.6) Theorem: Let the function f : X Y have a closed graph.

(a) If K 1is a compact subset of X, then f[K] is a closed
subset of Y.

(b) If K 1is a compact subset of Y, then f_l[K] is a

closed subset of X.

Proof: We prove only (b), the proof of (a) being entirely analogous.

Let K be a compact subset of Y. Suppose f-l[K] is not closed.
Then there ijs a p in X - f-l[K] and a net x_  in f-l[K] such that
x_ ~converges to p. The net fxa evidently has a subnet fob which
converges to some q in K. Thus we have (be, fob) converges to

(p, 9) so that p e f'l[q]c: f°1[K]. But this contradicts the choice

of p.

Remark: We note in passing that Theorem (3.6) also follows from an

exercise in Kelley [ 20, Ex. A, p. 203].

Having already discovered in (3.4) conditions under which a con-
tinuous function has a closed graph, we now proceed to investigate con-
ditions under which a closed function has a closed graph. The charac-
teristic function of the interval {0;1] mapping E, into {0,1} shows
us that a closed function does not always have a closed graph. In par-
ticular one should note that this function does not have closeqd point
inverses (i.e., inverse image of each point in the range is closed).

Let us call a function f : X Y locally closed if for every

neighborhood U of each peint p in X there is a neighborhood V of

p such that V< U and f[V] is closed in Y. It is not clear that
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a closed function is always lqcally closed but if the domain of a closed
function is regular then the functian is locally closed. Also if a func-
tion f : XY 1is such that- X 1is regular and locally compact and f
maps compact sets onto closed sets, then f 1is locally closed.

A locally closed function need not be closed as the following
example shows, Let X be the reals with the discrete topology, Y the
reals with the usual topology, and f : X > Y the identity function.
Then f is locally closed and in fact continuous but certainly not

closed.

(3.7) Theorem: If f : X +Y 4is a locally closed function then

y, *q in Y implies lim sup f-l[ya]zz f-l[q]-u

Proof: lLet y =+ q in Y and p € lim sup g1 y.]. Suppose p f'l[q",
————— a a

By Lemma (1.3) there is a net Xyp 1P X such that x, 2p and fx,

is a subnet of y_. Now X - f-l[q]- is a neighborhood of p' and thus there
is a neighborhood of p, U, such that U< X - f'l[q]- and f[U] is

closed in Y. But x is even-

Nb Nb
tually in f[U]. This means fxyp 15 eventually in the complement of

is eventually in U; so that fx

a neighborhood of gq, namely, Y - f{U]. We thus have a contradiction

to the fact that fob must converge to g, being a subnet of Ye

(3.8) Corollary: If f : X Y 1is a locally closed function and has

closed point inverses, then f has a closed graph.
Proof: The statement follows immediately from Theorem (1.4).

(3.9) Corollary: If the function f : X+ Y 45 closed with closed

point inverses and X is regular then f has a closed graph.
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(3.10) Corollary: If the function f : X * Y 1is closed and subcon-.

tinuous with closed point inverses and X is regular, then f is contin-

uous.
Proof: We have this result directly from (3.9) and Theorem (3.4).

The last corollary generalizes a theorem of Halfar's {16, Theorem
3] by replacing compactness of Y with subcontinuity of f. See also

in this connection Rhoda Manning [ 24, Thm.1.5].

{(3.11) Theorem: If f : XY is a function where X is regular and
locally compact, the following conditions are equivalents

(a) f maps compact sets onto closed sets and has closed point
inverses,

{b) f 1is locally closed and has closed point inverses.

{c) f has a closed graph.

Proof: We have already commented that (a) ipplies (b). By Corollary
(3.8), (b) implies (c). Thus it remains to éhow {c) implies (a).

Assuming f has a closed graph, Theorem (3.6) gives us that f
maps compact sets onto closed sets. Furthermore since points are compact,
the same theorem yields that f has closed point inverses. Consequently

{c) implies (a).

The following lemma which we prove in preparation for the next
theorem is well known (see for example Dugundji [ 10, Problem 10, p. 96])
but we include it for completeness. This lemma supports further the

feeling one gets that if one were going to define continuity of the
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inverse of a function for purposes of the present investigation, one

would say that the inverse is continuous when the function is closed,

(3.12) Lemma: The function f : X Y is closed if and only if for
each g in Y and for each open set U :Jf-l[q] there is an open

set V D {q} such that f-l[V] < U,

Proof: Assume the condition helds. Let C be a closed subset of X.
Suppose f[C] is not closed. Then there is a point q in Y - f[C]
which is an accumulation of f[C]. Since X - C is an open set con-
taining f-l[q], there is an open set V 2 fg} such that fﬁl[V] c X-C.
But this is a contradiction since V must intersect f[C].

Now assume f 1is closed. let gqe Y and U be an open set
containing f-l[q]o Then f[X - U] 1is a closed set which does not con-
tain q. Hence letting V=Y - f[X - U], V 1is an open set containing

g. Noting that

-1 -1 -1

£(v] =f7[Y] -t [f[x-Ul]]lcu
we have the desired condition.

The following theerem is essentially a special case of one to be
found in Berge’ [4, Theorem 3, p. 116]. However this fact is somewhat
disguised in Berge's terminology, and since the theorem is of interest
in the present study, it is included (after all, isn't one of a mathe-
matician's jobs to remove disguises?). The theorem extends a theorem of
Halfar's [ 15, Theorem 1] by removing the requirement that f be con-

tinuous. {See also Michael [25, Lemma 5.18, p. 172].)
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(3.13) Theorem: If f : X *Y 1is closed and has compact point inverses,

then f 4is compact.

Proof: Let K be a compact subset of Y. Let U. be an open cover of
f"l[K]n For each k in K, f-l[k] is compact and W 1is an open cover
o%“f;ltk]. Thus for each k in K there is a finite subcover of U,
say “U(k), which covers f_l[k]. Let U(k) = =U(k) (union). Then
U(k) is an open set containing f_l[k] so that there is an open set
V(k) containing k such that f'l[v(k)] c U(k).

Now {V(k) : k e K} is an open cover of K and thus there is a
finite subcover V(kl),..o, V(kn)' Consequently U(kl),nno,U(kn) is a
cover of f-l[K]° Finally ZElL(ki) :1=1,...,n} is a cover of f'l[K]
which is a finite subcover of Al. Therefore f-l[K] is compact.

4, Compact Functions, Combact Preserving Functions,
and ki Spaces

It is intuitively clear that a mapping f : X Y which is com-
pact or compact preserving will have no particular tendency to treat
other topological properties nicely unless the topologies of X or Y
or both are to a considerable extent dictated by the compact sets. 1In
this section we define some topological spaces which are, in a sense,
determined by their compact sets, and prove a couple of theorems con-

cerning these spaces and compact and compact preserving functions.

(4.1) Definition: Let X be a topological space and p & X.

X is said to have property k, at p if and only if for each

iﬁfinite subset A having p as an accumulation point, there is a
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compact subset, B, of A+ [p} such that pe€ B and p is an

accumulation point of B. X 1is a k1 space if it has property k1

at each of its points.

X has property k2 at p if and only if for each set A having p

as an accumulation point, there js a subset B of A and a compact
set K> B+ §{p} such that p is an accumulation point of B. We

call X a k., space if it has property k

o at each of its points.

2

X is a k3 space if and only if U 1s an open set in X pre-

cisely whenever U - K is open in K for each compact set K in X.

Halfar defines property k at a point in one of his papers

1

[16, Definition 2]. Property k, at a point is a slight variation of

2
a definition I believe is due to S. B. Myers. A definition differing

. slightly from that of a k3 space is discussed by Kelley in his book

[20, p. 230]. If X is Hausdorff the k, and kg

with those of Myers and Kellqy respectively.

definitions agree

It is immediate that X is k

2
Also it is not difficult to show that a k2 space is always a k3
space, but I do not know whether k, space and k., space are equiva-

2 3

lent concepts. It is easy to see that a locally compact or first count-

able space is a k2 space. Finally the following example shows that

X being k, at a point p does not necessitate X being k1 at p.

2

(4.2) Example: This example provides a k2 space which does not have
property k1 at any point.
Let F be the space of all functions mapping [0,1] into

[0,1] with the topology of point-wise convergence. Let A be the

1 at p implies X 1is k at p.
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collection of all finite subsets of [0,1] and w the set of positive
integers. For each a € A and ne p let fna be the function in F

defined by f _x = 1/n for x 1in a, faX = 1 otherwise. Letting

A be directed upward by inclusion, & have the usual order, and w x A

have the product order, ana,(n,a) E W X A} is a net in F.

It is easy to see that fna converges to the zero function, 0*,

and thus that 0% is an accumulation point of Efna : (n,a) e w x A}.
We proceed to show that F lacks property kl at 0% and it will then
be clear that F has property kl at no point.

Let P = ifna : (n,a) & w x AB and let B be any subset of P

which has 0" as an accumulation point. Then Z(n,a) s f__ ¢ B} must

na

be cofinal in ¢ x A for if for any (no,ao) there is no (nl,al) >

(n_,a ) such that f € B then there is no member of B in the
0’0 na,

neighborhood of 0" given by {f € F i |[fx| < ]L/no for x & 303 .

Now let f e B. For every k € u <choose f ¢ B such
Po0 "

3 fak : k¢ m}. Let

that nk > nk_1 and ak;j ak_la Consider Q

f € F be defined by fx =0 for x& Q, fx =1 otherwise. The

sequence fn a converges to f and f # 0* since Q 1is countable.
k'k .
Thus B + 0% is not closed and since F is Hausdorff it is consequently
not compact.
Therefore F does not have property k1 at 0%, but on the

other hand since by the Tychonoff Theorem F 1is compact, it is clearly

a k2 space.

The next theorem which we prove says that if a function f : X + Y

is compact and has a closed graph with Y being a k3 space then f is
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is closed. This theorem extends a theorem of Halfar [15, Theorem 2] by
requiring f have only a closed graph instead of being continuous and
by requiring that Y be only a k3 space instead of locally compact

Hausdorff.

(4.3) Theorem: Let f : X >Y be compact function and Y a k3 space.
A sufficient condition that f be closed is that f have a closed graph.

If X 1is regular Hausdorff, the condition is also necessary.

Proof: Assume f has a closed graph. Let C be a closed subset of

X. Since Y 1is a k., space it follows from the definition that to show

3
f{C] 1is closed we have only to show that the intersection of f[C] with
each compact set K in Y 1is closed in K,

Let K be a compact subset of Y. Then f-l[K] is compact,
and it fellows that C - f-l[K] is compact. By Theorem (3.6) we have

that f[C - f'l[K]] is closed. Finally since
flc - £71k]] = £[c] - K

f[C] « K is closed in Y and thus in K,
Now assume that X 1is regular Hausdorff.and f 1is closed. Then
f being compact, point inverses are closed. Thus by Corollary (3.9),

f has a closed graph.

Comparing Theorem (3.5) and the sufficiency portion of the one
immediately preceding, (4.3), we see that in the former theorem "f is
inversely subcontinuous" replaces "f is compact" and no requirements

are put on the space Y. The example which follows show that the
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requirement that Y be a k, space cannot be dropped in Theorem (4.3).
These observations illustrate that in some instances f being inversely
subcontinuous is effectively a stronger requirement than f being com-

pact.

(4.4) Example: We will display a function which is compact and has a
closed graph but which is not closed.

Let X be an uncountable set. Let 111 be the topology on X
consisting of all complements of countable sets (plus the empty set).
Let ?12 be the discrete topology on X.

First let us show that the only compact sets of (x,1il) are the
finite sets. Let A = {ai : 1 =1,2,...} be a countable, non-finite
set. Then §(X-A) + zai}‘z i=1,2,...} 1is an open cover of A which
obviously has no finite subcover. Thus no countable non-finite set is.
compact. Suppose an uncountable set B were compact. Then since each
countable set is closed, there would be countable, non-finite subsets of
B which were compact. This contradiction leaves us with only finite
subsets of (X,Til) being compact.

Let A be a countable set. Then A 1is not open but A « K for
any compact set K 1is open in K since K 1is finite and hence discrete

((X,‘ul) being T any accumulation point of a set B must have an

l’
infinite number of points of B in each neighborhood). Thus (x,'ul)
is clearly not a k3 space.

Now consider the identity map i : (X,112) > (x,‘Ui). The func-

tion i has a closed graph as we now show. Let (xa, ixa) + (p,q).

Then X, must eventually be the constant p in (x,'ul) and thus so
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must ixa = X If ixa converged to q # p then we would have contra-
diction to the evident fact that points are closed.

The inverse of i carries compact (finite) subsets of (X, Til)
onto compact (finite subsets of (X,112), and i 1is consequently com-
pact. Finally, since U, is a strictly larger topology than 111, i

is not closed,

{4.5) Theorem: Let f : X+ Y where X and Y are Hausdorff and

X has property k2 at a point p. If f 1is compact preserving and

has closed point inverses, then f 1is continuous at p.

Proof: Suppose f 1is not continuous at p. Then there is a neighborhood

*

V" of fp such that for each neighborhood U of p there exists a

point x; in U with the property that fx; ¢ v*. The collection

U
A =ExU : U is a neighborhood of p} has p as an accumulation point.
Thus A has a subset B and a compact set K DB + i{pl such that p
is an accumulation point of B.

Consider the function f|K :+ K 2 Y., f|K 1is strongly closed
since Y is Hausdorff. As (f|K)"[p] = £[p] * K, f£|K has closed
point inverses. The range of f|K is compact and thus f|K is subcon-
tinuous. Finally, with the observation that K being compact Hausdorff
is regular, we may conclude from Corollary (3.10) that f|K is contin-
uous.

However if we choose a net X, in B <K such that X, *>p

then fxa is never in the neighborhood v of fp. This contradiction

proves the theorem.




23

The last theorem, (4.5), is a generalization of two theorems of
Halfar [ 16, Theorems 2 and 5]. Halfar's Theorem 5 is the same as our
theorem (4.5) except that Halfar requires X to have property kl at
p instead of k, at p. Our example (4.2) shows then that Halfar's
theorem 5 is not as strong as our (4.5) and in particular does not apply

to all locally compact spaces.

9. Another Characterization of Continuity

In this section of the chapter we give a second characterization
of continuity (The first occurred in Theorem (3.4)). This characteriza-

tion was discovered while pursuing the question "How much must the usual
net characterization of continuity (see Kelley [ 20, Theorem 1, p. 86])
be relaxed in order that something less than continuity be achieved?"
One reasonable answer to this question is the subcontinuity condition
(see Section 2). The principal theorem of this section seems to suggest

this answer.

(5.1) Theorem: Let f : x‘-»y where Y 1is Hausdorff. The following
conditions are equivalent:

{(a) The function f 1is continuous.

(b) If x, *p in X, then there is a q in Y such that
fx. ¥ q.

a

(c) If x, *p in X, then there is a subnet x

Nb of xa such

that fob > fp.
(d) For each p in X there is a q in Y such that x, *p :

implies there is a subnet XNb of X, such that fob + g.
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Note that (b), probably the most interesting equivalence, says
that the usual net characterization of continuity is still valid even if
it is not required that the image of a convergent net converge to the
"right" value. In order to prove part (b) we will use the following
lemmas which we state separately since they may be of interest in other

applications of nets.

(5.2) Lemma: Let (A, >a) and (B, >h) be disjoint directed sets
which are isomorphic {that is, there is a 1 -1 function h from

A onto B such that ¢y >a ¢, if and only if hul >b ha Then there

2)'
is a directed set (C, >c) such that A and B are cofinal subsets of

C and C = A + B.

Proof: let C = A+ B and define >, as follows: If ERCE: A
then Yl >C Y2 if and only if Yl >a Yz,* and similarly if Yy Y2 e B,
If Yl ¢ A and Y2 ¢ B then Yl >c Y2 if and only hvl >b Y2 and

Y5 2, Yl if and only if Yo 2y HYl.

In brief then, we order C by leaving the order on A and B
the same and identifying points in A with their images in B.

The reflexivity of >c is inherited from >a and >b‘ We check
only the following three cases in the proof of the transitivity of >C
(leaving the rest to the reader): given elements Yl >c Y2 and
Yo >e Yas (1) Yir Yor Y€ A (or B) (2) Y;» Y3€ A and Y, e B,
and (3) Yl, Yo e A and Y3 e B. In the first case transitivity is
inherited. 1In the second case HYl >b Y2 >b HY3 so that Yl >a Ya. In
the third case hYl >b HY2 since h is an isomorphism and HY2 >b Y3
by definition. Thus HYl ?b YS so that Yl >c Y3.

Next we show that each two element subset of C has an upper
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bound. Let Y, and Y, ¢ C. If Y, and Y, both belong to A (or B).
the desired result is obvious from inheritance. Hence assume Y& £ A,

¥. € B. Then there is a Y3 € B such that Y3 >b Y2, YS >b hYl. Thus

2
Ys >c Y2 and Y3 >c Y, by definition.
We now have that (C, > ) is a directed set. Finally it is

clear that A and B are cofinal in C.

(5.3) Lemma: Let X be a topological space and fx,, ae A} and
[Zb’ be B} nets in X with disjoint directed sets which are isomorphic.
Then there is a net é“c’ cE C'S in X such that X, and z, are sub-

nets and W, +p if and only if X »p and zy, ¥ p.

Proof: Let C be the directed set constructed in the previous lemma
and define W, = X, if ce A, W, T 2, if ¢ € B, The assertions of

the lemma are then clear.

Proof of Theorem (5.1): Since each of conditions (b), (c¢), (d) are

clearly implied by continuity, we have only to show that each of these
conditions impiies continuity.

Assume condition (b) holds. Let x, *p. Then fx +q for some
q in Y. Suppose q # f(p). Let z, be a net which is constantly p
and whose directed set is disjoint and isomorphic to that of xa. Then
by Lemma {5.3) there is a net w, such that xa and z, are subnets
and w, ¥ pe Howevér fxa > q and fzb + fp. Since Y is Hausdorff,
fwc cannot convergeé, and we have a contradiction.

Assume condition (d) holds. We will show condition {c)} holds.

let pe X and gq be the corresponding point assured by the condition.
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We wish to show that gq = fp. But this is evident for if X, is a net
constantly p then x_ ¥p and thus fx > fp. Since Y is Hausdorff
q = fp.

Finally we show condition (c) implies continuity. Suppose condi-
tion (c) holds and f is not continuous. Then there is a p in X and
an open neighborhood v* of fp such that for each neighborhood U of
p there exists a point Xy € U such that fo ¢ v¥. Now the function

x,, defined on the set of neighborhoods of p directed downward by inclu-

U
sion is a net converging to p. On the other hand, it is clear that for

no subnet Xb of X is it true that fob = fp. This contradiction

shows that condition (c) implies continuity.

(5.4) Corollary to (5.1) {(b) Let f : XY where (Y,1) is a

Hausdorff uniform space. If f{ maps convergent nets onto Cauchy nets

then f 1is continuous.

Proof: Let (h, Y¥, 1/") be the Hausdorff completion of (Y, "/ ) where

h is a uniform isomorphism of Y into Y*. Note hof maps convergent
nets onto Cauchy nets. Since Y* is complete, Cauchy nets are conver-
gerit. Hence heof ﬁaps convergent nets onto convergent nets. Thus by
(5.1), (b), hof is continuous. But then so is f since h is a homeo-

morphism.
The preceding corollary has been announced by Yu-Lee Lee [23].

6. Open Functions and Continuity of their Inverses

In a previous section we commented that saying that the many-valued

inverse function of a clesed function is continuous seemed quite appropriate.
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Cn the other hand, one feels intuitively that openness of a function
should be related to continuity of the inverse (in some sense). In this
section we find a sense and a setting in which this is indeed the case

for the set-valued inverse function.

(6.1) Definition: A function f : X > Y 1is open if and only if U is

open in X implies f[U] is open in VY.

(6.2) Theorem: If f : X > Y is a function, the following conditions

are equivalent:
(a) The function f 1is open.
(b) Y, 79 in Y implies f'l[q] ¢ lim inf f'l[ya].

(c) Yy, *a in Y implies f_l[q]tz lim sup f-l[ya].

Proof: Assume (a) holds. Let Yy, a9 and p be in fﬂl[q]. Suppose

p 4 lim inf f-l[ya]. Then there is an open set U containing p such

that frequently f-l[ya] *U=¢ . Thus y, 1is frequently outside f[ u].

But this is absurd since f[U] 4is a neighborhood of q. Thus (b) holds.
Clearly if (b) holds then (c) holds. Hence assume {c) holds.

Suppose f is not ﬁpen. Then there is an open set U in X and a

" net y, in Y - f{U] such that Y, * a4 for some q in f{U]. Thus

f‘l[q] € lim sup f_l[ya]. Let pe f'l[q] « U, Then U 1is a neighbor-

hood of p and thus f“l[ya] « U is frequently nonempty. But this

means y_ is frequently in f[U] 1in contradiction to our choice.

Consequently (a) holds.

If Ea is a net of sets in a topological space X such that

lim inf Ea = lim sup Ea = E {see paragraph preceding Lemma (1.3) for
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definition) then we say that the limit of Ea exists and write lim Ea==E.

Having made this definition the following theorem then follows from the

previous theorem and Theorem (1.4).

(6.3} Theorem: The function f : X * Y is open and has a closed graph

if and only if y_ ¥+ q in Y implies lim f"l[y ] = f'l[q].
a a

Proof: By the theorems cited in the paragraph preceding (6.3), f is

open and has a closed graph if and only if Y, +q in Y implies

£70a) < 2im inf £y ] clim sup £y, ] c £ [q] .
Thus the theorem holds.

Remark: A theorem similar to the preceding one is given in Whyburn [ 31,

Theorem (4.32), p. 130] for metric spaces.

Now let X be a locally bicompact space (i.e., a space which has
a basis of open sets with compact closures). Let 2x be the collection

of all nonempty closed subsets of X. Consider all sets of the form

[Ul,...,Un; vl,...,vm]

=§AE2X:A-Ui;¢¢ and A-V =¢ for i=l,...,n and 5=1,.0.,m}

1

These sets form a base for a topology for 2X which Mréwka calls

where the U, and Vj are open and have compact closure in X.

the 1lbc topology. Mrowka proves in his paper [ 26, Theorem 4] that for
a locally bicompact space X, convergence in 2x relative to the lbc

topology is the same as the convergence of sets previously described
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(i.e. when 1lim inf = 1im sup). Since by Theorem (3.6), if f : X > Y
has a closed graph then f-l[y] is closed for each y in Y, the fol-

lowing theorem follows from the preceding comments and Theorem {6.3).

(6.4) Theorem: Let f : X+ Y be a function and X be locally
bicompact. Let F be fhe set-valued function on Y defined by Fy =
f'l[y]. Let 2° have the lbc topology. If f is open and has a closed
graph then F : Y > 2x is continuous. Conversely if f has closed
peint inverses and F : Y + 2x is continuous then f is open and has

a closed graph.

(6.5) Theorem: Let f be an open continuous function mapping a

locally bicompact space X onto a Hausdorff space Y. Let
-1
£ =Zf [y]:er}

and let £ have the relativized l.b.c. topology. Then Y and £ are

topologically equivalent.

Proof: By Theorem (3.4), since f is continuous and Y is Hausdorff,
f has a closed graph. Thus by the previous theorem F : Y ¥ B defined.
by Fy = f-l[y]; is continuous. Thus it remains only to show that Fl
is continuous.

Let f-l[ya] converge to f-l[q] in £. Then lim sup f-l[ya] =
f'l[q]. By Lemma (1.3), if p € lim sup fol[ya] there is a net %
in X such that *Nb +p in X and fob is a subnet of Yo Now

f 1is continuous and thus fob converges to fp = q. But

-1, -1 . -1 . -1
F o (f [fob]) = fxg, Since f [fob] is a subnet of f [ya], it




follows by Theorem (5.1) that IF"-1 is continuous.

Remark: Theorems similar to the previous two theorems may be found

in a paper of E, Michael [25] (see in particular Theorem 5.10.2).
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CHAPTER III
CONCERNING CERTAIN FUNCTIONAL CONVERGENCES

In this chapter various modes of convergence of nets of functions
will be investigated. 1In particular three Ascoli type theorems and a
Dini type theorem are proved.

The first two Ascoli theorems are closely related to the
topological -uniform and pure topological Ascoli theorems found in Kelley
[ 20, Chapter 7]. While the theorems in Kelley consider the question of
when a family of functions with a certain topology is compact, we con-
sider the question of when a net of functions has a subnet which con-
verges in a certain mode. This approath enables us to consider in this
connection modes of convergence which are not topolegical but are, from
a certain point of view, very natural. 1In this respect our motivation
is very much the same as Cook and Fischer [ 7] with their convergence and

uniform convergence structures. Also along these lines we should mention

that Poppe [26] has generalized the topological Ascoli theorems in Kelley

(due to Kelley and Morse) to the convergence space of Fischer,

The third Ascoli theorem is a uniform version. Another uniform
version appears, for instance, in Isbell [17, p. 51].

Finally we characterize uniform convergence and uniform conver-
gence at a point (for nets of continuous functions with a continuous
limit) with some theorems which use extensions of the notion of monotone

convergence in the ¢lassical Dini theorem.
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7. Pseudo Even Continuity and Quite Continuous Convergence

In this section all spaces "X" and "Y" are topological spaces

and "p" some point in X,

(7.1) Definition: Let F be a family of functions from X dinto Y

and p belong to X, The family F 1is evenly continuous at p if and

only if for each q in Y and each neighborhood V of g there are
neighborhoods U of p and W of gq such that f[U] is a subset of
V whenever fp is in W and f 1is in F.

The family F 1is evenly continuous if it is evenly continuous at

each point of X,

The preceding concept is used in the purely topological Ascoli
theorem in Kelley [20, p. 234ff.]. We introduce the following concept
for nets which is weaker than requiring a net to be evenly continuous

(see Example (8.16)) but serves the same sort of purpose.

(7.2) Definition: Let fa : X ¥Y be a net of functions. The net fa

is said to be pseudo evenly continuous at p if and only if for each

net (f

Nb? xb), where f

Np 1S @ subnet of fa’ X, ~converges to p,

and f converges to gq, it i1s true that bexb' converges to Q.

NbP

The net fa is pseudo evenly continuous if it is pseudo evenly

continuous at each point of X.

(7.3) Theorem: A family of functions, F, is evenly continuous at

p if and only if each net fa in F 1is pseudo evenly continuous at

p-
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Proof: Assume F 1is evenly continuous and let fa be a net in F. Let
(be, xb) be a net such that fy;, is a subnet of f_, fg,p converges
to q, and X, converges to p. Let V be any neighborhood of gq.

By definition there is a neighborhood U of p and a neighborhood W

of gq such that f[U] is a subset of V whenever fp is in W. Since

x, 1is eventually in U and bep is eventually in W, it is true that

b
eventually bexb is in V. Therefore bexb converges to q and fa
is pseudo evenly continuous at p.

Now assume each net in F 1is pseudo evenly continuous at p.
Suppose F 1is not evenly continuous at p. Then there isa q in Y
and a neighborhood V' of g such that for every pair (U, W), where
U is a neighborhood of p and W is a neighborhood of g, there is

a function fUw in F such that f is in W and a point X in

uwP
U such that fiux, is not in vr.
Letting each of the neighborhoods U and the neighborhoods W
be directed downward by inclusion and giving the pairs (U, W) the
product order, fUW is a net in F. Moreover fUWp converges to g
and Xyu converges to p. Thus by definition fUWKUW converges to

g. But then f is eventually in v* which is a contradiction.

uw oW
Therefore F is evenly continuous at p.

The preceding theorem and the definition of pseudo evenly con-
tinuous are suggested by a problem in Kelley [20, Problem L, p. 241].
Similarly the following definition and theorem (7.7) are closely related

to another problem in Kelley [20, Problem M, p. 2417.

(7.4) Definition: Let f,ot X>Y be a net of functions. We say that
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fa converges continuously to f at p if and only if whenever xa is

a net in X converging to p, faxa converges to fp.

The net fa converges guite continuously to f at p if and

only if each subnet of fa converges continuously to f at p.

Finally fa converges continuously {quite continuously) to f
if and only if fa converges continuously (quite continuously) to f

at each point of X,

(7.5) Lemma: Let f, £+ X*>Y be functions. The net f_  converges
to f quite continuously at p if and only if for each neighborhood V
of fp there is a neighborhood U of p and an 3 such that a 2 a,

implies fa[U] <V,

Proof: Assume the condition holds. Let be be a subnet of fa, X, > p,
and V be a neighborhood of fp. There is then a neighborhood U of
p such that be[Uﬂ is eventually contained in V. Since x_ is even-

tually in U, it follows that f is eventually in V. Therefore

Nb*b
fa converges quite continuously to f at p.

Now assume fa converges quite continuously to f at p. Sup-
pose the condition does not hold. Then there is a neighborhood v¥ of
fp such that for every pair (a, U), where a is an index of f_ and
U is a neighborhood of p, there is an index N(a, U) > a and a point
X(a,U) © U such that fN(a,U)x(a,U) ¢ v¥. since fN(a,U) is a subnet
of fa and x(a,U) »p, it fellows that fN(a,U)x(a,U) < fp. Thus
fN(a,U)x(a,U) is eventually in v® which is a contradiction. Therefore

the condition holds.
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(7.6) Theorem: Let fa’ £f1X>Y where Y is regular, If fa con-

verges quite continuously to f at p then f 1is continuous at p.

Proof: Let V be a closed neighborhood of fp. By Lemma (7.5) there

a neighborhood U of p such fa[U] is eventually contained in V.
Thus for each x in U fx is in V since it is the limit of the net
fax which is eventually in the closed set V. Therefore f is contin-

uous.,

(7.7) Definition: Let F be a family of functions from X to Y and

J be a topology for F. The topology .3 1is said to be jointly contin-
uous if and only if the function P : F x X 2 Y defined by P(f,x) = fx

is continuous relative to the product topology on F x X.

(7.8) Theorem: let F be a family of functions from X to Y and
da topology for F. The topology 3 1is jointly continuous if and
only if f_  is a net in F which B-converges to f implies f, con-

verges quite continuously to f.

Proof: Assume & is jointly continuous. Let f_ be a net in F
which 3-converges to f. Let fy, be a subnet of f and x con-
verge to p. Then (be, xb) converges to {f, p) in the product top-
ology of F x X. Since by definition the map P :-FxX »Y defined by
P(gyx) = gx is continuous, it follows that bexb converges to fp in
Y. Therefore fa converges quite continuously to f.

Conversely assume Jd-convergence of a net implies quite contin-

uous convergence of the net. We wish to show the function P is con-

tinuous. Let (fa, xa) be a net in F x X converging to (f, p). Then
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fa J-converges to f and hence fa converges to f quite continu-

ously, Thus P(fa, xa) = f x_ converges to fp = P(f, p). Therefore

4 1is jointly continuous.

(7.9) Theorem: Let F be a family of functions from X to Y and

C be the compact open topology for F. Let f,feF. If f con-

verges to f quite continuously then fa Cf-converges to f. Conversely
if X is regular, locally compact, f 1is continuous, and fa C -con-

verges to f then fa converges to f quite continuously.

-

Proof: Assume fa converges to f quite continuously. Let

W(K,V) = igs F: g(K]c V% be a neighborhood of f where K is com-
pact and V is open, If f_ is not eventually in W(K,V}, there
exists for each a an index Na > a and point X, in K such that

fNaxa ¢ V. There is a subnet p Of Xy which converges to some p

in K. Thus f - fp so that £ is eventually in V.

NMb *Mb NMb *Mb

Consequently we have a contradiction.
Now assume X is regular locally compact, f 1is continuous,

and fa (?-convergeé to f. Let be be a subnet of fa and x 9'p.'

b
let V be a neighborhood of fp. There is a compact neighborhood U

of p such that f[Ul< V., Thus f is eventually in W(U, V), or

Nb

be[U] is eventually contained in V. Since x_ 1is eventually contained

b

in Y, f is eventually contained in V. Therefore fa converges

Nb™b

quite continuously to f.

As corollaries to Theorems (7.8) and (7.9) we have the following:
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(7.10) Corollary: The compact open topology is smaller than each jointly

continuous topology.

(7.11) Corollary: If F is a family of continuous functions from X
to Y where X 1is locally compact regular, then the compact open
topology for F 1is jointly continuous.

We also have from Theorem (7.9) that if F is a family of con-
tinuous functions from X into Y where X 1is regular locally compact,
then quite continucus convergence of a net fa in F to a member of
F 1is a topological convergence. 1In fact, in this case the convergence
is that of the compact-open topology. If X 1is not locally compact
then Arens [2, section 5] shows that in general no smallest jointly
continuous topology exists. Thus quite continuous convergence is in
general not a topological convergence. This follows since by Theorem
(7.8), if there were a topology 4 which induced quite continuous con-
vergence, it would be jointly continuous and moreover smaller than any
other jointly continuous topology.

The following theorem gives the simple relation which exists
between quite continuous convergence and pseudo even continuity (Defini-
tion (7.2)) and provides the key to our Ascoli type theorem. The proof

is so straight-forward it is omitted.

(7.12) Theorem: Let f,+ X>Y be a net of functions, and f : X >Y
be a function. (a) If fa converges to f point-wise at p and fa
is pseudo evenly continuous at p then fa converges quite continucusly

to f at p. (b) Conversely, if Y is Hausdorff and fa converges
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gquite continuously to f at p, then fa converges to f point-wise

at p and fa is pseudo evenly continuous.

(7.13) Definition: A net in a topological space is said to be subcom-
werinition P supcom
pact if and only if each subnet has a cluster point.

Note in particular that a net which is contained in a compact

set 1s subcompact.

(7.14) Theorem (Ascoli): Let ifa, ae A}- be a net of functions from

X into Y where Y "is Hausdorff. Then there exists a subnet of fa
which converges quite continuously to some function f : X =>Y if and
only if there is a subnet be of fa which is pseudo evenly continuocus

and for each x in X, bex is subcompact.

Proof: Assume be is pseudo evenly continuous and bex is subcompact

for each x in X. Let f be a universal subnet of f in YX
NMc Nb

{see Kelley [20, p. 81] or Gaal [14]). Since it is clear from defini-

tion that each subnet of a pseudo evenly continucus net is pseudo evenly

continuous, fNMc is pseudo evenly continuous. For each x, fNMcx’

being the image undex the xth projection of fNMc’ is a universal

subnet. Thus since fNMCX has a cluster point, say fx, fNMcx con-

verges to fx. Consequently we have that fNMc converges pointwise to

a function f. Therefore by (7.12) fume converges gquite continuously

to f.

Conversely assume that a subnet be of fa converges quite con-

tinuously to f. Then by (7.12) f is pseudo evenly continuous and

Nb

for each x in X bex converges. Thus bex is subcompact for each
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x in X.

(7.15) Corollary: Let ifa, ace A} be a pseudo evenly continuous net
of functions from X into a Hausdorff space Y and suppose for each

x in X, {fx:ace At has a compact closure. Then there is a subnet
be, and a function f : X =Y such that be converges quite contin-
uously to f.

8. Pseudo Equicontinuity and Uniform Convergence at a Foint

Throughout this section X is a topological space, (Y,’V) a

uniform space, and p some point in X.

(8.1) Definition: A net of functions fo: X > (v, V) is said to be

pseudo equicontinuous at p if and only if for each V in V/ there is

a neighborhood U of p and an a, such that xe U and a 2> a,

implies (fax, fap) e V.

(8.2) Definition: A family of functions, F, from X to (Y,V )

is equicontinuous at _p if and only if for each V in V' there is a

neighborhood U of p such that xe U implies {fx, fp) e V for all

feF.

(8.3) Theorem: A family F of functions from X to (Y,“V ) 1is equi-
continuous at p if and only if each net in F 1is pseudo equicontinuous

at p.

Proof: Clearly if F 1is equicontinuous at p then each net in F |is

pseudo equicontinuous at p.
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Thus assume each net in F is pseudo equicontinuous at p. Sup-
pose F is not equicontinuous at p. Then there is a V¥ in 'V such
that for every neighborhood U of p there is a function fU e F and

a point x; & U such that (foU, fUp) does not belong to V¥,
But ﬁfU, U a neighborhood of p}t is a net in F and conse-

guently pseudo eduicontinuous at p. Thus there is a neighborhood Ul

of p such that x ¢ Ul’ U C_C.U2 implies

ufu .y fu.uP
UprUy Uy U7 Uy

contradiction to the choice of fUl~U2 and xUl_UQ.

of p and a neighborhood U2

(fo, fUp) e V¥, In particular then (f Y e V¥ oin

Therefore F 1is

equicontinuous at p.

(8.4) Theorem: If £, n2 1t is a sequence of functions from X
to (Y, V') which is pseudo equicontinuous at p and each of which is

continuous at p, then ff :n> 1} is equicontinuous at p.

Proof: Let V e ‘1L Since fn is pseudo equicontinuous there is an

integer N and neighborhood U, of p such that xe U, and n > N

B N

implies (fnx, fnp) e V. Since each f_  is continuous, then there is a
neighborhood U of p such that xe U implies (fnx, fnp) e V for

n
n=1,...,N-1, Letting U=T1 fUn n=1,...,N% (intersection) then xe U
- s

o

implies (f x, f p) € V for all n > 1. Therefore “f 1n> 1ﬁ is equi-
continuous at p.

Thus far we see that a net is pseudo equicontinuous at a point if,
roughly, the final segments of the net come closer and closer to being
equicontinuous at the point. Moreover under certain conditions appropriate
pseudo equicontinuity at a point gives us equicontinuity at the peoint.

The next theorem tells us that when pseudo equicontinuity at
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point is defined the concepts of pseudo equicontinuity of a
net‘at” a point and pseudo even continuity of a net at a point

coincide in the presence of pointwise convergence of the net.

(8.5) Theorem: Let 2 X > (Y,°Y) be a net of functions and f:X >V,
(a) If fa is pseudo equicontinuous at p then fé is pseudo
evenly continuous at p.
(b) 1If fa is pseudo evenly continuous at p and fa converges

to f pointwise then fa is pseudo equicontinuous at p.

Proof: (a) Assume fa is pseudo equicontinuous at p. Let be be
a subnet of fa, bep ¥ q, and X, +p. Let V[q] where V eV be a

neighborhood of q. There is a symmetric V, e V' such that Vyev,cv

By pseudeo equicontinuity at p there is a neighborhood U of p such
that for x in U, (bex, bep) is eventually in V,. Also clearly

x, is eventually in U and (bep, q) is eventually in V.. Thus

b 1°
(bexb, q) 1is eventually in V. Therefore fa is pseudo evenly contin-

uous at p.
(b} Assume fa is pseudo evenly continuous at p. and fap > fp.
Suppose fa is not pseudo equicontinuous at p. Then there is a V* eV
such that for each neighborhood U of p and each a there exists an
#*
index N(a,U) > a and a point X(a,U) such that (fN(a,U)x(a,U)’fN(a,U)p)¢v .

Now notice that f is a subnet of fa p—~> fp, and

N(a,U} ’ fN(a,U)
- p. ¥ fp.
x(a,U) p. Hence fN(a,U)x(a,U) fp

There is a symmetric V, & V' such that VoV, C v¥®. Since

(fN(a’U)Ps fp) and (fN(a,U)x(a,U)’fp) are eventually in Vl’ it follows

that (f fN(a U)p) is eventually in v¥. This contradiction
b

N(a,U)*(a,u)’

proves that fa is pseudo equicontinuous at p.
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(B8i6)} Definition: Let £, X (Y,V') be a net of functions and

f : X+Y. The net fa converges to f uniformly at p 1if and only

if for each V e ‘V there is a neighborhood U of p and an index a,

gsuch that xe& U and a a, implies (fax, fx) € V.

(8.7) Theorem: Let £+ X > (Y, V) be a net of functions and
f s+ X+Y. Then fa converges quite continuously to f at p if and
only if fa converges to f wuniformly at p and f 1is continuous

at po.

Proof: Assume f_ = converges to f quite continuously at p. By (7.6),
since Y 1is completely regular f is continuous at p.
Let V e‘V. There is a symmetric v, e V' such that VeV, eV,

By (7.5) there is a neighborhood U, of p and an a such that xe U

1
and a > a implies f xc¢ Vl[fp], that is, (fax, fp) e V,- Since f
is continuous at p there is a neighborhood U2 of p such that xe U2

implies (fx, fp) ¢ V Thus if xe U - U, and a > a then

1° 1 2
(fax, fx) € V. Therefore fa converges to f uniformly at p.

Assume fa converges to f wuniformly at p and f 1is contin-
uous at p. We show that the condition of Lemma (7.5) is satisfied and
thus fa converges to f quite continugusly at p.

Let V[fp] where V e/ is symmetric be a neighborhood of fp.

There is a symmetric V. ¢V such that Vi oV, € V. There is a neigh-

1 1
borhood Ul of p and an index a, such that x ¢ Ul and a 2 a,
implies (fax, fx) e V,. Fipally there is a neighborhood U, of p
such that x e U2 implies (fx, fp) ¢ Vl° Thus if x € U1 . U2 and

a2 a  then (fax, fp) € V or fxe V[ fp]. Therefore the condition
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of {7.9) is satisfied.

Remark: The concept of uniform convergence at a point for real-valued
sequences of functions has been used to characterize pseudo-compact

spaces., See for instance Bagley [3] or Iseki [18].

(8.8) Example: We now give an example which shows thét a sequence of
functions fn : X Y may converge uniformly at each point of X but
still not converge uniformly on some neighborhood of each point of X.

Let X be the space of all real-valued sequences which converge
to 0. For x = (xy5 Xg50-2) in X define 2(X) = sup ilxnl :n 1} .
The function £ is a norm on X.

Now define a sequence of functions fn : X X as follows: for

Clearly fn converges

each n > 1 let fn§ = (0’0"°°’xn’xn+l’°°°)°

to 0= (0,0,...) pointwise on X.

First we show that fn converges to O uniformly at each point
of X. Let e>0 and X & X be given. Let U= SXEX 3 &(?-;6)
< e/2}. There is an N such that n > N implies k(fn;;) < e/2.

Hence if X e U and -n > N then
(fnx).g &(fnxo) + %(fnx - fnxo)
< t(fnxo) + &% - xo) <e .,

Therefore fn converges to O uniformly at §;.

Now we show that it is false that fn converges to 0 uniformly
on a neighborhood of each point. Suppose it is true that fn convergeé

to 0 uniformly on a neighborhood of 0, say, the neighborhood
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U=fxe x:2(x) <di.

Then for each e > 0 there is a N, such that n 2 Ne implies
&(fn§) <e for xe U.
But consider e =d/4 and X = (xl, x2,...) where X: = d/2

for i1 <N +1 and x, =0 for i >N 4+ 1. Note that ;* g U,
= i d/4

d/4

Note further that £(fN / i*) = d/2 > d/4. This contradiction shows
d/4

that fn does not converge to O uniformly on a neighborhood of 0.

(8.9) Theorem: Let fa s X+ (Y,V) be a net of functions and
f: X2>Y., 1If fa converges to f wuniformly at each peoint of X then

fa converges to f wuniformly on compacta.

Proof: Let K be a compact subset of X and V e‘V., For every x
in K there is an open neighborhood Ux of x and an index a, such
that ze U and a2 a  implies (faz, fz) £ V. Since i:Ux : X € KE
is an open cover of K there is a finite subcover Ux ,,.,Ux . There
1 n
is an index a* such that a > a, for i =1,...,n. Now let a > a*
i
and ye K. Then ye U for some i and thus (fay, fy) € V. There-
i

fore fa converges to f uniformly on compacta.
(8.10) Example: This example shows that a net may converge uniformly
on compacta but not converge uniformly at each point of the domain.

Let X be an uncountable set with the topology of countable
complements as in example (4.4). Only finite sets are compact in X and

thus to say a net of functions converges uniformly on compacta is the

same as saying the net converges pointwise.
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Since no finite sets are open, each point of X 1is an accumu-
lation point of X. Let pe X and {x, ace A} be a net in X - §p}
which converges to p. We may assume X, # X, for aZb since X is
a T, space. Define a net of functions £, from X into 50, 1} as

. - 3 - = 3 “.5 .
follows: fx =1 if x¢ fx :ba} and fx=0 if xedx :b>af.

Clearly fa converges to 1 pointwise. On the other hand it is

clear that fa does not converge to f wuniformly at p.

Having now shown that for a net fa : X > (Y, V) the concepts
of uniform convergence'on a neighborhood of each point, uniform conver-
gence at each peint, and uniform convergence on compacta on occasion
differ, we find in the next theorem that if X is locally compact, these

concepts coincide.

(8.11) Theorem: Let foe X > (Y, ) be a net of functions and f : X >Y.

If X 1is locally compact the following assertions are equivalent:

(a) fa converges to f uniformly on some neighborhood of each
point of X,

(b) fa converges to f wuniformly at each point of X.

{c) fa converges to f wuniformly on compacta.

Proof: Clearly (a) implies (b). By Theorem (8.9) (b) implies (c). Since
a neighborhood of each point of X is assumed to be compact, (c) implies

(a).

(8,12) Theorem: If fa s X %»(Y,VU() is a pseudo equicontinuous (pseudo
evenly continuous) net of functions the following assertions are equiva-

lent.
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(a) f_ converges to f pointwise.
(b) f_. converges to f gquite continuously.
(¢) f_. converges to f uniformly at each point of X.

(d) f_ converges to f uniformly on compacta.

Proof: Since each of conditions (a) through (d) implies pointwise con-
vergence, by Theorem (8.5) the overall hypotheses of pseudo evenly con-
tinuous or pseudo equicontinuous are equivalent. Condition (d) surely
implies (a) and by (8.9) condition (c) implies (d). Further by (8.7)

condition (b) implies (c¢). Finally by (7.12) condition (a) implies (b).

(8.13) Theorem: If fo+ X > (Y,V) converges to f uniformly at
p, of the following conditions (a) and (d) are equivalent and (b) and

(¢) are equivalent. 1If in addition Y 1is Hausdorff all are equivalent.

(a) f 1is continuous at p.
(b) fa is pseudo evenly continﬁous at p.
(c) f_ 1is pseudo equicontinuous at p.

(d) fa converges to f quite continuously at p.

Proof: By remarks in (8.12) conditions (b) and (c¢) are equivalent. By
(8.7) condition (a) holds if and only if (d) holds. Finally by (7.12)

conditions (b) and (d) are equivalent if Y 1is Hausdorff.

(8.14) Theorem (Ascoli): Let ifa, ae A} be a net of functions from

X into (Y,V ). Then there exists a continuous function f : X > Y
and a subnet of fa which converges to f uniformly at each point of : |

X if and only if there is a subnet of fa’ f which is pseudo equi-

Nb?

continuous and for each x in X, f, x is subcompact.

Nb
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Proof: Assume be is a subnet of fa which is pseudo equicontinuous
and for each x, bex is subcompact. Let fNMC be a universal subnet
of be, Since for each x, fNMcx has a cluster point and is a uni-

versal net, fNMC converges pointwise to some function f : X >Y.
But fNMc is alsolpseudo equicontinuous so that by {8.12) and (8.13)
fNMC converges to f uniformly at each point of X and f 1is contin-
uous.,

Assume a subnet of fa’ be, converges to a continuocus func-
tion f wuniformly at each point of X. Evidently for each x, bex
is convergent and thus subcompact. By (8.13) f, 1is pseudo equicon-

tinuous.

(8.15) Corollary: Let {fa, ae A} be a pseudo equicontinucus net of
functions and suppose that for each x in X Efax tace A} has a com~-
pact closure. Then there is a subnet be and a continuous function

f such that be converges to f uniformly at each point of X,

Let us remark before closing this section that it is easily shown
that if a net fa convefges to f uniformly at p and each fa is
continuous at p then f 1is continuous at p. Finally we give the

following simple example.

(8.16) Example: This example provides a sequence which is pseudo equi-
continuous (and thus pseudo evenly continuous) but is neither evenly

continuocus or equicontinuous,
Define fnx =1/n for x in [0, 1) and fnx = 2/n for x in
[1, 2]. Then {fn tn > 1} is neither equicontinuous or evenly contin-

uous since no fn is continuous. On the other hand since fn converges
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uniformly to the continuous function 0, by (8.13) fn is pseudo equi-

continuous.

9, Pseudo Uniform Equicontinuity and Uniform Convergence

In this section (X, W) and (Y, /) will be uniform spaces,
f, a net of functions from (X, L) to (Y,Y), and f a function

from (X, W) to (Y, °V ).

(9.1) Definition: A family f of functions from (X, U) to (Y,V)

is uniformly equicontinuous if and only if for each V e ) there 1is

a Ue L such that (x, y) ¢ U implies {(fx, fy) e V for every

feF.

_ (9.2) Definition: A net fa is pseudo uniformly equicontinuous if and
only if for each Ve "V there is a U e ‘L and an index a, such that

(x, y) € U and a > a, implies (fax, fay) e V.

(9.3) Theorem: A family F of functions from (X, W) to (Y,V )
is uniformly equicontinuous if and only if each net in F 1is pseudo

uniformly eqguicontinuous.

Proof: If F 1is uniformly equicontinuous then surely each net in F
is pseudo uniformly equicontinuous.

Hence assume each net in F 1is pseudo uniformly equicontinuous.
Suppose F is not uniformly equicontinuous. Then there is a V¥ ¢ Vv
such that for each U e ‘U there a pair (xU, yU) e U and a function

"
f, such that (foU, nyU) EVE,
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But fU is a net in F with directed set U directed downward

by inclusion. Thus there is a Uy, U,ce U such that (x, y) e U and

U C:U2 implies (fo, ny) e V¥, Consequently in particular

(f X s Fioutt Yoo ) E v* 4n contradiction to the choice of
U1 U2 U1 U2 U1 U2 Ul U2

these objects. Therefore F 1is uniformly equicentinuocus,

(9.4} Theorem: If fa is pseudo uniformly equicontinuous and fa con-

verges to f point-wise then f 1is uniformly continuous.

Proof: Let V be any closed member of A, There isa Ue U and an
index a_ such that (x, y) e U and a > a_ implies (fax, fay) e V.
Since (fax, fay) = (fx, fy) and V 1is closed, (fx, fy) e V for

(x, y) € U. Therefore f 1is uniformly continuous.

(9.5) Theorem: Let fconverge uniformly to f. Then f is uni-
formly continuous if andionly if fa is: ‘pseude uniformly equicontin-

uous,

Proof: 1If fa is pseudo uniformly equicontinuous then by Theorem (9.4}

f 1is uniformly continuous.
Hence assume f is uniformly continuous. Let Ve ®, There

is a symmetric V, e % such that VjoVy oV, CV. Thereisa Ue .

such that (x, y) € U implies (fx, fy) € V.. There is an index a

1
such that a > a_ implies (fax, fx) ¢ vV, for all x in X.

Thus if {x, y) e U and a > a, then (fax, fx}, (fx, fy), and
(fy, fy)e V) so that (f_x, fay) ¢ V. Therefore f_  is pseudo uni-

formly equicontinuous.
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(9.6) Definition: A uniform space (X, W) is said to be totally
bounded if and only if for each U e ‘U, there is a finite set of points

of X, Xp9eeesX such that

o

z iU[xi] : i-= l,..a,n} =X .

(9.7) Theorem: Let fa be a pseude uniformly equicontinuous net and
(X, W) be totally bounded. Then f, converges to f uniformly if and

only if fa converges to f pointwise.

Proof: Assume fa converges to f pointwise. Let V e‘lV., There is

-3 symmetric V, eV such that Vi eV, eV, & V. There isa U ¢ U

and an index a, such that (x, y) € Uy and a2 a

(fax, fay) E Vl. Since by Theorem (9.4) f is uniformly continuous,

implies

there is a U, e ‘U such that (x, y) ¢ U, implies (fx, fy) e V

Let U be a symmetric member of UL such that U C:U1 . U2.

X is totally bounded there is a finite set of points of X say

10

Then as

Xy yesesX  Such that U[xl],noo,U[xn] covers X.
For a sufficiéntly large, say greater than ags (faxi,fxi) £ V1

for 1 =1,...,n. Let a, be such that a, 2 3, and a, 2 a,. Now

2 1

Then x & U[xi] for some i or (x,xi)e u.

2

let xe X and a > a5

), (f.x

Thus (fax, £ % 2%10

fxi), and (fxi, fx) all belong to V., so

1

that (fax, fx) ¢ V. Therefore fa converges to f wuniformly.

(9.8) Theorem (Ascoli): Let fé:(X, W) >(Y,V) be a net of func-
tions and (X, 7l ) be totally bounded. Then there is a uniformly con-
tinuous function f and a subnet of fa which converges uniformly to

t if and only if there is a subnet of fa, f which is pseudo

Nb?
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uniformly equicontinuous and for each x in X, bex is subcompact.

Proof: Assume be is a pseudo uniformly equicontinuous subnet of fa

and for each x in X, bex is subcompact. Let fNMc be a universal

b* Since by assumption fNMcx has a cluster point for

each x in X, it follows that fNMc converges point-wise to a func-

subnet of fN

tion f, As fNMc is evidenfly pseudo uniformly equicontinuous, by (9.4)
we conclude f is uniformly continuous and by (9.7), fMNc converges
to f wuniformly.

Conversely assume a subnet be of f converges uniformly to a
uniformly continuous function f. Then f , x is evidently subcompact,

Nb

and by (9.5) be is pseudo uniformly equicontinuous.

We close this section with the remark that it is well-known and
easily shown that the limit of a uniformly convergent net of uniformly

continuous functions is uniformly continuous.

10. Extensions of Monotone Convergence and Dini's Theorem

A more or less classical version of Dini's theorem would state
that if fn is a sequence of continuous functions from a closed, bounded
subset of the reals to the reals which converges pointwise to a continuous

function and is such that 1 X > fnx for each x, then fn converges

1:n+
uniformly. An examination of the proof reveals that one does not need
the sequence fnx increasing but the important point seems to be, call-
ing the limit function f, that fn+1x be closer to fx than fnx for

each n. We are led to the following generalizations of monotone conver-
gence in a uniform space.

In this section X 1is a topological space, (Y,°/ ) a uniform
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space, fa a net of functions from X to Y, f a function from X

to Y, and ® a base for V.

(10.1) Definition: Let 5 be base for ‘I and f_ converge to f

pointwise,

(a) The net fa converges to f monotonely relative to [B

(fa +f (m,B)) 4if and only if for each V in B and each x in X

#

(f,x, fx) e V and a" > a implies (fa*x, £x) £ V.

{(b) The net fa converges to f eventually monotonely relative
to B (fa + f(em,®)) if and only if for each V in B there is an

index N{V) such that x in X, a 2 3, > N{v) and (fa x, fx) e V
2

implies (fa x, fx) ¢ V.
1

(c) The net fE| converges to f eventually monotonely at each

point relative to ® (fa > f (emp, B)), 1if and only if for each V in

% and each p in X there is an index N(V, p) and a neighborhood
U of p such that a > a, > N(V, p), xe U and (faQX, fx) e V
implies (f_ x, fx) & V.
4
Note that if V_ = i, y) ¢ |x -yl <el and B =3Ve=e>0}

then in the classical Dini Theorem fn converges to f monotonely

relative to 65

(10.2) Theorem: If X is compact then £, > f(em, B) if and only if

£, f(emp, B).

Proof: Obviously f_ » f(em, ®) implies £, > f (emp,®).

Hence assume f_ > f (emp, B). Let Ve ®. Then for each p
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in X there is an index N(p) and an open neighborhood U(p) of p

such that a, > a, 2 N{p), x e U(p), and (fa x, fx) € V implies
2

(fa x, fx) € V. Since {U(p) s pE X} is an open cover of X, there {
1 -

is a finite subcover U(pl),.o.,U(pn). Also there is a® such that |

a¥* > N(pi) for 1 = 1l,..0500

Now suppose x ¢ X, 2y > 2, > a* and (fa x, fx) € V. Then
2
XE€ U(pi) for some i and thus (fa x, fx)eV. Therefore £, > f(em, B).
1

(10.3) Theorem: Let fa be a net of continuous functions and f a

continuous function. The following conditions are equivalent:

(a) fa —*+f uniformly at each point of X.
() £, =>f (emp, /)

(¢) £, >f (emp, B )

Proof: Condition (a) implies (b). Let VeV and p e X. There is an
a, and a neighborhood U of p such that xe& U and a > a, implies
(fax, fx) &€ V. It is then clear that (b) follows,

Obviously (b) implies (c).

Aséuming (c) holds we now show that (a) holds. Let V& 8 and

peX. There isa V, ¢ 8 and a symmetric V, ¢ V' such that v, e v,

and V, ©V, oV, cV. There is a N(v) and a neighborhood U, of p

such that x& U, a, > a, > N(V) and (f_ x, fx) e V implies
1 1 =72+ 32
There is an a_ such that 2 > a_ implies (fap,fp)e v,

(f. x, £x) e V

a1 1°

Now choose an index a® such that a® > a, and a* > N(V,).

Then there is also a neighborhood U2 of p such that x¢e U

implies (fa*x, fa*p) eV, and (fx, fp) ¢ Vi. Now if xe U - U,

2

then (f ,x, f ,p), (f ,p, fp), and (fp, fx) € V, and thus
- a a a
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(f ,x, fx) € V. But then if a > a® since a* > N(V), (f.x, fx) e V
a* - - a

for x e U1 o U2. Therefore fa + f wuniformly at each point of X.

(10.4) Corollary: If in addition to the hypothesis of (10.3), X 1s
compact, then the following conditions are equivalent:

(a) f, ¥ f uniformly

(b) f_ & (em, V)

(¢) f,>f (em, B ).

Proof: By Theorem (8.11) condition (a) is equivalent to f, > f uniformly
at each point. Thus by Theorems (10.2) and (10.3) condition {a) is equiva-

lent to (b) and (c).
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CHAPTER 1V
CONTRACTION AND RELATED SELF MAPS OF A UNIFORM SPACE

In this chapter various self maps of a uniform space which treat
a base for the uniformity in a special way are studied.

It is hoped that its contents of section 1l shed additional
light on the question, "If a self map of a uniform space is nonexpan-
sive relative to some base, is there a base (and if so what sort) such
that the map is invariant relative to the latter base,"

Section 12 consists of a few simple theorems concerning when the
pointwise limit of self maps is nonexpansive, invariant, or noncontrac-
tive relative to some base. A small application to real variables is
given.

The last section of this chapter offers a Banach contraction prin-
¢iple for uniform space., Our main theorem of this section in fact gen-
eralizes two theorems for contraction maps in a metric space. One is,
of course, Banach's contraction principle; and the other a sort of

localized extension of Banach's principle due to Edelstein [11].

ll. Nonexpansive Maps Which are Invarjant

Our principal theorem of this section, (11.5), is very much along
the lines of a theorem of Rhodes [29, Corollary 1, p. 402] and a theorem
of Brown and Comfort [5, Theorem 2.1]. 1In addition to the fact that our
theorem is valid in non-Hausdorff spaces, the main points of interest

are the method of proof (reducing the uniform situation to a pseudometric
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situation and applying a similar theorem for pseudometrics) and the
structure of the base relative to which the nonexpansive map is invariant

(base induced by a family of pseudometrics).

(11.1) Definition: Let (X, d) be a pseudometric space and f : X ¥ X,

{(a) f 4is said to be inon-contractiveg Einvariant} {non-exgansivég

under d if and only if for x, y in X jd(fx, fy) 2 d(x,y)}
fd(fx, fy) = d(x, y)} {d(fx, fy) € d(x,y)} . (b) f 1is said to be

e~noncontractive e-invariant g=nonexpansive under d if and only

if for e> 0 and x,y in X, fd(fx, fy) < e implies d{fx,fy) » d(x,y)}
fd(x,y) < e implies d(x,y) = d{fx, fy)} fd(x,y) < e implies d{fx, fy)

< d(x, y)} .

Notes Freudenthal and Hurewicz [ 13] proved that a nonexpansive map of

a totally bounded metric space onto itself is invariant. Edrei [12] sup-
plemented this result with a localized version which states that an e-
nonexpansive map of a totally bounded metric space onto itself is e-invar-

iant.

(11.2) Definition: Let (X,4L) be a uniform space, O a base for U,

and f ¢+ X ¥ ¥X. The function f 1is said to be {fB —noncontractive}

ﬂB-invarianp}-ﬁB-nonexpansive} if and only if for (x, y) in X x X
and U in ® ?(x,y) e U if (fx, fy) e U} {(x,y) e U if and only if

(fx, fy) e U} {(x,y) e U only if (fx, fy) e UY.

Notes: Rhodes proved that if f is & -nonexpansive map of a totally
bounded Hausdorff uniform space onto itself, there is a base (B' such

that f 1is (B'~invariant. Brown and Comfort by restricting the basis
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(open and ample) were able to prove that Rhodes' conclusion may be
strengthened to "f is (B-invariant" {(i.e., invariant relative to the
original base @).

First we extend the previocusly mentioned theorems for metric spaces

to pseudometric spaces:

(11.3) Theorem: Let (X, d) be a totally bounded pseudometric space
and f map X onto X,
(a) If f is nonexpansive then f 1is invariant

(b) If f is e-nonexpansive then f is e-invariant.

Proof: Consider the metric space (X', d') associated with (X, d) where
X' = %{x}- : X E X} and d*( §x}, iyg— Y =d(x,y). Since X is
totally bounded it is clear that X' 1is also. There is a function

f' 1 X' # X' associated with f defined by f'{x} = {fxj . This
function f' 4is well defined since if d{(x,y) = O then d(fx, fy) <

d(x, y) = 0 in either case (a) or (b). If (a) holds or if (b) holds and

d(x,y) < e then
d'(frgx}”, f'iy3") = d(fx, fy) <dlx, y) = d' (37, §y37).

Thus f' is nonexpansive or e-nonexpansive if (a) or (b) holds,
respectively. Since it is clear that f' is onto, then, by Freudenthal's
or Edrei‘s result we have f' is invariant or f' 1is e-invariant,
respectively, But it then follows by the above inequality that f is

invariant if (a) holds or f is e-invariant if (b) holds.

Remark: Edrei's theorem actually includes Freudenthal‘®s: Let f be non~

expansive onto map on a totally bounded metric space of diameter less
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than e. Then f is e-nonexpansive and thus by Edrei's theorem f
is e-invariant. But in view of the choice of e this means f 1is

invariant.

(11.4) Theorem: Let (X,°U) be a uniform space, @B a base for U,
and f mep X 4into X. If f is B-nonexpansive then f is 1/2
nonexpansive under each member of a family of uniformly continuous

pseudometrics which generates U,

Lemma: If f is @-nonexpansive then f is (B'-nonexpansive where

@' = 5u - (vh s ue B is symmetric.

Proof of Lemma: Let Ue 8. Then (x, y) ¢ vt implies (y,x) e U

which in turn implies (fy, fx) ¢ U which fipally implies (fx,fy) ¢ ul,

Thus (x,y) & U - (U-l) implies (fx, fy) € U and (fx, fy) e vl or

(fx, fy) e U - (U-l) completing the proof of our lemma.

Proof of Theorem (11.4): We now assume without loss of generality that

f is (B-nonexpansive where @ is symmetric.
Let Ue B. Let U =XxX, U =0U, and inductively choose

U e B such that U:+ < U for each positive integer n. (Recall

n+l 1
V3 =VoVoV, etc.). The sequence iUn, n2 03 satisfies the hypothe-
sis of a lemma in Kelley [ 20, Lemma 12, p. 185], and thus there is a

pseudometric d on X such that
u c:i(x y) & dix,y) < 2~n% U
n ’ * » n=1

for n > 1. It then follows that d 1is uniformly continuocus (see Kelley

[20, Theorem 11, p. 183]) and {(x,y) : d(x,y) < 1743 cU.
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We now show that f is 1/2-nonexpansive under d. The pseudo-

metric d is defined by

n
d(x, y) = inf 5 Y alxxi) E X =x X =y,

1=0

and X, € X for 1<1i<n }

where g(x,y) = 277 if (x,y) ¢ U_y -V, and glx;y} = 0 if (x,y)¢€ U,
for every n 2 0.
If g(x,y) =2 and n ) 2, then (x,y) e U _;- Hence
(£x, fy) e U | and thus g(fx, fy) < 27", 1f g(x,y) = O then
(x,y) € U, for every n > O. Hence (fx, fy) ¢ U, for every n >0
and thus g(fx, fy) = 0. Therefore if g{(x,y) < 1/4 then g(fx,fy)<g(xy).
Now suppose d(x,y) < 1/2, Let e be given such that 0 < e <

(1/2) = d(x,y). Then there is a sequence X ,...,X with x_= x,
o

n+l 0

X4 - Y such that

n
E: g(:n(:l...p xi+l) < d(x,y) +e < 1/2

i=o
Thus g(xi, xi+l) < 1/4 for each i so that g(fx19 fxi+l) < g(xi,xi+1).

Consequently

n n
d(fx, fy) < E: g(fxig fxi+l) < E:g(xig xi+1) < d(x,y) + e

i=o i=o

Therefore d(fx, fy) < d(x, y) for d(x, y) < 1/2.

Taking one such pseudometric d for each U in 5, we obtain

the desired family of pseudometrics.
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(11.5) Theorem: Let (X, W) be a totally bounded uniform space, B
be a base for b, and f map X onto X. If f is B-nonexpansive,
then f is 1/2-invariant under a family Q of uniformly continuous
pseudometrics which generates U, Consequently if ' consists of all

finite intersections of sets of the form V (=Z(x,y) £ X xX 1 p(x,y) <e} )

p,€

where 0< e<1/2 and pe Q then f is @ -invariant.

Proof: By Theorem (11.4), f 1is 1/2-nonexpansive under a family Q of
uniformly continuous pseudometrics which generates “U. Since (X,U) is
totally bounded, (X, d) 1is totally bounded for every d in Q. Thus by
Theorem (11.3)} it follows that f is 1/2-invariant under each d in Q.

12, Nets of Self Maps Whose Pointwise Limits Are Nonexpansive,
Invariant, or Noncontractive

(12.1) Definition: Let (X,%L) be a uniform space and B a base
for ‘U.

® is ample if and only if Ue ® and (x,y) ¢ U implies there
isa We @ such that (x, y) e W and W < U.

B is coample if and only if Ue ® and (x, y) £ U implies

there is a We B such that (x, y) § ¥ and W° DU

Note: Ampleness of a base is a generalization of each member of the
base being closed in the product topology of X x X. Likewise coample-

ness of a base is a generalization of each member of the base being open.

(12.2) Definition: Let f, be a net of functions from (x, W) into

(X, U). The net £, 1is said to be guasi {&-nonexpansive} {B-invariant}

i@-noncontracti've} if and only if for each U in ® and x, y in X
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there is an index a® such that for a > a* f(x,y) € U only if
(fax, fay) £ U} Zﬁxgy) e U if and only if (fax, fay) g U} iyx,y) e U

if (fax., fay) £ U}g

(12.3) Theorem: Let £ be a net of self maps of (X, W) converging
peintwise to f.

(a) 1f f, 1s quasi B -nonexpansive and ¥ is ample then f
is @-nonexpansive.

(b) If ® is open and f is (B-nonexpansive then fa is quasi
®-nonexpansive.

(¢} Thus if B is open and ample then f 1is (B-nonexpansive

if and only if f, is quasi @B-nonexpansive.

Proof: (a) Let Ue ® and (x,y) e U. There is a We B such that
(x;y) ¢ W and W~ c U. Also there is an index a“ such that a > a*
implies (fax, fay) ¢ W, Thus since (fax, fay) > (fx, fy), (fx, fy)eW-,
Therefore (fx, fy) €¢ U, and f is @®-nonexpansive. _

(b) Let Ue® and (x,y) ¢ U. Then (fx, fy) ¢ U and since
(fax, fay) =>(fx, fy) there is an a" such that a > a” implies

(fax, fay) ¢ U. Therefore f_ 1is quasi B-nonexpansive.

(12.4) Theorems Let fa be a net of self maps of X converging point-
wise to f. |

(a) If fa is quasi (®-noncontractive and (B is coample, then
f is (B-noncontractive.

(b) If ® 1is closed and f is (B-noncontractiye, then f_ is

quasi ®-noncontractive.
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(¢) Thus if B is closed and coample, then f is [@-noncon-

tractive if and only if f  is quasi (®-noncontractive.

Proof: (a) Let Ue B and (x,y) 4 U. Then there isa We B such

*  such that

that (x,y) ¢4 W and WO D U, Also there is an index a
a>a" implies (fax_, fay) § W. Thus since (fax, fay) > (fx, fy),
(fx, fy) § WY Therefore (fx, fy) 4 U and f is ®B-noncontractive.
(b) Let Ue & and {x, y) §U. Then (fx, fy) ¢ U and since
(fax, fay) > (fx, fy) there is an a® such that a 2 a¥ implies

(fax, fay) ¢ U. Therefore f, 1is quasi B-noncontractive.

(12,5} Corollary: Let fa be a net of self maps of X converging
pointwise to f. If fa is quasi @®-invariant and & is ample and

coample, then f is ®B-invariant.

Proof: Since quasi @®B-invariant implies quasi @@-nonexpansive, by (12.3)
f is @-nonexpansive. Similarly by (12.4) f is ®B-noncontractive.

Thus f is (B-nonexpansive.

(12.6) Theorem: Let f, be a net of continuous self maps of X which
converges pointwise to a function f which sends X onto X. If fé1

is quasi @-invariant and © is coample then f is (B -invariant.

(& = §u « ueB})

Proof: Since each £, is continuous,if (x,y) € U implies (fax, fay) el
then (x,y) € U implies (fax, fay) € U . Thus by Theorem (12.3) since
£ is quasi B nonexpansive, f is (B -nonexpansive.

By Theorem {11.4) f 1is {B-noncontractive and thus in particular
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f is open. It then follows that the mapping {f, f) defined by

(£,£)(x,y) = (fx,fy) 1is open. Now suppose (x,y) § U where Ue B,

Note (f,f)[X x X - U] is open and a subset of X x X - U, But then

a neighborhood of ({fx, fy) misses U and thus (fx, fy) § U. Hence
f is ® -noncontractive.

Therefore f is B -invariant.
We close this section with an application of Theorem (12.3).

(12.7) Theorem: Let fn be a sequence of functions with continuous

first derivatives mapping an interval [a, b] into itself. If £

converges pointwise to a function f and
lim sup {sup i]f%x| P X E [a,b]g , N2 %} <1
then |fx - fy| < |x = y| for x, y in [a, b].

Proof: For each e >0 let V_=§(x,y) : x, ye [a,b] and |x-y|<e}.
Let ® = ive s e 0}. It is easy to see that B is an ample base for
the usual uniformity on [a, b].

Let V_ e B and (x,y) e Vg (x # y). There is an N such that

n 2> N implies
sup Elfét[ : te [a, bJS <eflx-y|

Thus by the mean value theorem

n

nl < e/ ix -yl

|£.x - £ yl/|x -yl = |£} 2

for n > N. Consequently (fnx, fny) £ Ve for n > N. Hence fn is
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quasi @-nonexpansive and so by Theorem (12.3) f is (@-nonexpansive.
But this means that |fx - fy| < |x - y| for x, ye [a, b] which is

what we were to prove.

13. A Banach's Contraction Principle for Uniform Space

Let us first mention some other extensions of Banach's principle
to spaces more general than a metric space. In the ensuing discussion

we will mean by a uniform space exactly that which we mean throughout

this chapter, namely, a set X together with a collection of subsets

of X x X which satisfy certain properties as are given in Kelley [ 20,
p. 176]. By a gauge space we will mean a set X together with a collec-
tion of pseudometrics on X. Each uniform space has a gauge space asso-
ciated with it, the collection of pseudpmetrics being all uniformly
continuous pseudometrics on X (see Kelley [20, pp. 184-190]). Finally-

by a generalized metric space we will mean a set together with a function

d which has the usual properties of a metric except that d takes on
values in a certain partially ordered group instead of the reals (see
Kalisch [19]). Kalisch associates a generalized metric space with each
uniform space. This generalized metric space is itself constructed from
the associated gauge space (or it could be constructed from a generating
subfamily of pseudometrics).

Deleanu (9] has found that the classical Banach contraction prin-
ciple in a metric space makes equally good sense in a generalized metric
space and moreover can be proved in an analogous way. He applies his
theorem to prove an existence and uniqueness theorem for locally-convex-

vector-space-valued integral equations. Albrecht and Karrer [1] have




65

theorems which assure a unique fixed point for a function in a gener-
alized metric space under conditions somewhat more general than those of
Deleanu. More recently Naimpally [27] has rediscovered the Banach con-
traction principle for generalized metric spaces.

Colojoar¥ [6] gives a Banach contraction principle for a gauge
space which except for a small innovation is a straightforward adaptation
of the metric Banach theorem both in statement and in proof. Our theorem
(13.13) is somewhat similar to Colojoari3‘s.

Davis [8] in a space somewhat more general than a uniform space
defines a contraction map (a rather more difficult trick than in the
preceding cases) and proves a fixed point theorem for such a map on a
well-chained, sequentially complete space. Davis® definition of a con-
traction map helped inspire ours.

Finally Knill [21] with a definition of contraction map different
from Davis® proves a fixed point theorem for a sequentially complete,
well-chained uniform space.

Now we come to the question of what our theorem has to offer that
the theorems we have just mentioned do not. With regard to all but Davis®
theorem and Knill's theorem, the answer is that their theorems apply in
a uniform space only with those bases for the uniformity which are gen-
erated by generalize@ metrics or families of pseudometrics. In the
cases of Davis and‘of Knill, Banach's contractien principle is, strictly
speaking, not generalized since the space must be well-chained.

Moreover our proof gives insight into a connection which exists
between a contraction map in uniform space in our sense and a contrac-
tion map in a gauge space {or generalized metric space. See comments at

the last of the first paragraph of this section.). The sense in which
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we mean contraction map in a gauge space is the more or less evident
onej namely, that for each member of the collection of pseudometrics or
at least a generating subfamily the map in question is a contraction map
in the sense of the classical Banach theorem.

Having, perhaps, justified the existence of our theorem, we

proceed with its development.

(13.1) Definition: Let (X,“l) be a uniform space, ® a base for

W, and f : X >X. Then f is said to be z/s (B-contractive if and

only if r and s are positive integers with r < s and for each Uo

in [ there isa U} in B such that U 2V, U = v, and

(f,){u ] cu,.
Remark: An Tr/s [B-contractive map may be thought of as being somewhat

like a map f in a metric space (X, d) which satisfies d(fx, fy) <

(x/s) » d(x, y) for all x,y in X.

Another Remark: It is easy to show that a map f is an r/s map rela-

tive to some base (B in the sense of Davis (8, p. 982] (i.e., if
(£f,£){V°] c V' for each V in B) if f is an r/s B-contractive

map in our sense.

Before proceeding further let us outline our plan of attack for
arriving at the main theorem of this section, Theorem (13.14)., The lemmas
and definitions (not the theorems) numbered (13.1) to (13.9) put us in
a position to state and prove Lemma (13.10) which says that a certain
(contracting) condition on a map f in a uniform space is equivalent to

a condition on f 1in the associated gauge space. We then prove a gauge
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space.Banach contraction theorem, Theorem (13.13), whose hypotheses are
slightly weaker than the condition mentioned in the preceding sentence.

Qur main theorem then follows immediately.

(13.2) Lemma: Let f be an r/s @-contractive map.
(a) If r<r'<s"'<s, then f is r'/s' @®-contractive.
(b) If m is a positive integer then f is mr/ms (B-contractive
(¢) f" is r"/s" ®-contractive for each positive integer n

where f" is the nth iterate of f.

Proof: Let U e ® . Then there isa U ¢ B such that u, U,
Uz DUT and (f,f)[Uo] € U;. For part (a) we then note that

Uz' :uz DUT DUT' and thus f is r'/s' B-contractive. For part

{b) we note that (Uz)m D(Ui)m and thus f is mr/ms ®-contractive.
For part (c} we proceed by induction on n, noting the asser-

tion is clear for n = 1. Assume it is true for n < k. Let Uo e B.

There is a U, ¢ B such that U DU urk usk and  (£5, £)[U ]eU
1 o "1 Yo 21 ’ ol <M1

s r S
There is a U, e ® such that U DU, U DU; and (f,f)[Ul] < Uy,

1

Thus U DU,

T Sk sk+l
RO LR

k+l k

I I T Sk
Uy = (U, ) D(y

and
(fk+1,fk+l)[Uo] c (£,0)[v]1CU,.

Therefore fk+l is rk+1/sk+1 % -contractive.
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Remark: Davis [ 8] has lemmas which are similar to the preceding and

the following lemma.

(13.3) Lemma: Let f be r/s ®-contractive and t > 1 be an
o
integer. Then there is an n > 1 and a base [B' = i_Ur s Ue B}

such that f' is 1/t (R -contractive.

n
Proof: Choose n so that tr" < s”. Let @' =§UT : ueB} By

Lemma (13.2) " is r/s” ®-contractive. Further since r"<tr'<s"
-— 3

fn

n
is rn/trn B-contractive. Now let Uz e B®'. Then there is a
n trn
T
Ule B such thzt Uo :>U1 . UO:JU

n
I I
(Note Uo :>U1 ).

o and (£7, fO[U ] cu).

Observe that (f,f)[U] =G(f) o U o G(f)'1 and G(f)'1 o G(f) > 4
where G(f) is the graph of f, Uc X x X and 4 = {(x, X) 1+ xE X}.

Thus
n n
oo (", f")[uo]}r

=[6(f o U_ o (") o [G(£"Y) o U o (£ o...0

[G(f o U o G(fn)’l] (=" times)
o
n ) .
Dol o Uy 0 G(£MHT = (67, MU ] .

Therefore £ 1is 1/t @ -contractive.

(13.4) Definitiont Let (X, ) be a uniform space, @ a base for “Y

and f : X >X. B is said to be an /s inclusive base for f if and

only if for each (x,y) ¢ X x X and for each Ue (B there is a U e B
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such that U0 SU and (x,y) ¢ Uo and there is a sequence Uo"”’Un

U and (f’f)[ui]cui-i-l for

19

i=050..yn=1 and Unr:: U.

. S
in 8 such that U DU, 1A

The following two theorems give situations in which a contractive
map automatically has an inclusive base to go with it. Such situations
are of interest since the hypotheses of our contraction principle require

both a contractive map'and-’an"ini:*lusive“basen

(13.5) Theorem: Let (X, W) be a uniform space and £ a family of
pseudometrics which generates U, Suppose d(fx, fy) < (1/t) d{x,y) for
(x, y)in X xX and d in & where t > 2 is an iﬁteger. Let
be the base for W generated by 63., Then f 1is I/t R -contractive and

B is an 1/t inclusive base for f{.

Proof: @ consists of all finite intersections of sets of the form

Vd,e = i(x,y) e X x X & d(x,y) < e} where de 0° and e > 0. Let

U, =10 {vdiye; i= 1,.“9n3 e @B Consider u =m ivdi,(l/t)e; i =1,.,.,n3.
If (x,y) & U, then di(fx, fy) < (1/t) e, and thus (fx, fy) ¢ u;.

Since also clearly Uo DU1 and UQDU]:t it follows that f is 1/t

B -contractive.

‘To show that B is 1/t inclusive for f, let

U=1 {vdi,ei : = l,...,n}

belong to ® and (x,y) € X x X. There is a positive number e > O
such that (x,y) eIl Evd et 1= l,a...,n} and a positive integer m
i? ;

such that (1/t)" e <e, for i=1,...,n. Define
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Uk=HEVdig(1/t)ke : l=l,aoa,n3 fOI‘ k":o’oeo,ma

Then U DU, , s and (£,0[U]C U, for k= 0,...,m1.

Moreover U < U. Therefore ® is 1/t inclusive for f.

UkDU

(13.6) - Theorem: If (X,”WL) is well-chained (i.e., for each

(x,y) ¢ X x X and for each Ue AL there is a positive integer n
such that (x,y) ¢ U") and f is 1/t B-contractive then

B =50":n21,Ue By 1isa 1/t inclusive base for f and f s

1/t @'-contractive,

Proof: To show that f is 1/t @®'-contractive, let Uge B°. There

t
1’ 1’

Ug >U°, Ug ‘D(UT)t and (see Lemma (13.3))

and (f,f)[Uo]CU Thus

is a Uls B such that UODU uo:au 10

(£,0[U]] = 6(£) o ulo 6(f)
C G(f) o u, o G(f)’l o G(f) o U o.ool o G(f)‘1 (n times)
= {50013 cyl .

Now to see that @' is a 1/t inclusive base for f, let

u" e ®' and (x,y) ¢ X x X. There is a positive integer m such that

m k
nt nt
() e U™ . Let v =U for k = 0,...,m. Then (x,y)e V,

t -
vp::vpﬂ, vp:;(vp+l) and (f,f)[urp]c:wp+1 for p = 0,.0.,m.

(13.7) Llemma: Let f be an r/s (®-contraction and ® an r/s inclu-
sive base for f.

(a) If r<r'<s'<s then f is r'/s' @B-contractive and
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B an r'/s' inclusive base for f.
(b) If m is a positive integer then f is mr/ms @B-contrac-
tive and & is an mr/ms inclusive base for f.

n

(¢) If n is a positive integer f" is r"/s" (B-contractive

and 8 an r"/s" inclusive base for f'.

Proof: In view of Lemma (13.2), (a) and (b) are clear.
We proceed then to prove (c). By Lemma (13.2), f" is r"/s"

@ -contractive. Let (x,y) e X xX and Ue B. Since B 1is an 1/s

inclusive base for f and f is r/s B-contractive, there is a Uo e @

and a positive integer of the form kn such that (x,y) ¢ Uo, UO s 3 0 I8

. . s
and there is a sequence Uo’”"’Ukn in B such that U': :)Ui+1 Ui - Ui+
(f,f)[Ui] CU.,y» and U U
Consider the segquence ivi, i= 03..n,k} defined by V0 = Uo
and Vi = Uin for i =1,...;k. OCne may see that

(" eMIv ] < ™) c (82, ) )
C ... C (f,f)[Un_l] cu =V .

similarly (£,£)[Vv,] cV for i = 1,...,k-1. Now notice that

i+l
n n n-1 n-2 n-2
_ S\T _ ST Sy ST
VZ = Ui '_‘J(Ul)‘.:' = (U:;) o (U2)
n-1 n n
5 T s _ .S
i T DUn—l '_DUn = Vl “

n n
Likewise Vi :)Vi_*_1 for i = 1,...,k-1. Therefore ® is an r'/s"

. . n
inclusive base for f .

1’
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(13.8) Lemma: Let f be r/s B-contractive and ® an 1/s inclusive
base for f. Then there is a positive integer n and a base

rh n ‘ .
B = f_U : Ue B} such that f is 1/3 ®'-contractive and £' is

a 1/3 inclusive base for f .

Proof: By Lemma (13.3) there is a positive integer n such that £

is 1/3 (@B*-contractive. Recall n 1is chosen so that r? < 3" < ",

. n n . .
" s r /3r @°'-contractive and B' is an

Thus by Lemma (13.7) f
r"/3r" inclusive base for f'.
n
Let (x,y) e X xX and U' € ®*. There is U, in B such

that U DU, (x,y) ¢ Uys and a sequence U ;...;U ~ in B such that

I S
-
Ui P Ui U5 2Pl : K

Consider the sequence iuin’ i= O,.o.,k} . It is true that

n N n rhn In
..(x,y)e Uocui’ U, @0, and U U, Further

Urn Ur rn-l . rn-l N 3rn
= >
in ( in) - (Uin-i-l) e DUin+n :)Un(i-i-l) ’
n .n Urn n
Moreover (f , f)[ in] c n(i41) by an argument in Lemma (13.3). There-

fore @' 1is a -1/3 inclusive base for f".

(13.9) Definition: Let (X, d) be a pseudometric space and f : X > X.
Let ¢ be a positive number and X < 1. Then f 1is said to be (e, )

locally uniformly contractive if and only if d{p, q) < ¢ implies

d(fp, fq) < Ad(p, q).
Remark: The preceding definition is due to Edelstein [11].

(13.10) Lemma: Let (X, W) be a uniform space, ¥ a base for ‘U,

(f,_f)[Ui] C Uy and U EU for i =0,....krl.
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and f a self-map of X. If f is a 1/3 @-contractive map and ®
is a 1/3 inclusive base for f, then there is a symmetric base &
for ‘UL such that f is a 1/3 ®B'-contractive map and @' is a 1/3

inclusive base for f.

Proof: Let @' = {U - (Wl :ve 8} . Note that @' 1is a symmetric
base for “U.

We first show that f is 1/3 @ -contractive. Let U- (™ e .
There is a U e 8 such that U :U?
that u~t :>(Ul'1)3 and (f,f)[u'l] cu

and (f,f)[U] cu

-1
l a

1 Observe then

Hence

3, 1

-1.3 _13 -
(U1°U1 ) cul (U1 yCcu-u

and

(£,0[v * U] c(5,000] - (5,01 T cu - .

Theref‘ore f is 1/3 @@'-contractive,

It remains now to show that @' is a 1/3 inclusive base for
f. Let (x,y)e XxX and U - (U—l) e @'. There is a Uo e B such
that U 2U, (x,y) ¢ U,» and there is a sequence U ,...,U in ®

3

such that U, DU/, and (f,f)[Ui]CUi_i_ for i = 0,...,n-1 with

1 1
Un < U. Also there is a Vo in ® such that Vo DUO, (y,x) € Vo,
3
and there is a sequence V_,..., V in B such that V, DVi,» and

(fyf)[Vi] C Vi, Wwith v cU. |
As above note that the sequence V_ - (Vo-l) peeey Vo (Vm—l) has
: el el 193 RPN
the properties V, (‘u’i ) D[v (Vi-l-l)] R (f,f)[Vi (Vi) ] C
1

- . (y -1 . (y-l
s41)s and Voo (V) U« (UTT). Also note that

i+l

Vg = (v
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-]_)

-1
. i . o)
(x,y) € Vo (Vo since {x,y) & UOC:Vo and that Vo (Vo )

=1
u, -~ U7
Since f is 1/3 @'-contractive there isa V_ ., in @

i -1 . -1 3 .
such that (f,f)[vm (wm )]cwm+1 and V_ (vm )'.:)Vm+1. Since

(£,0[v_ - (v"Hl e (5,00, - (L HI < v " WH

+ < Ul° Similarly we may choose Vm+1"°"vm+n in

- I 3
B’ such that Ve D Vopiere GOV SV, and Vo0 ©

we may choose Vm

-1 .
Uiy © (Ui+l) for i = 1,...,n-1l. Thus

-1 =1
Vm+n c:uln (un ) < U - (U7)

Therefore @' is a 1/3 inclusive base for f.

(13.11) Lemma: Let (X,L) be a uniform space, P be the gauge for
W, and f be a self map of X. Then the following conditions are
equivalent:

(a) There is a symmetric base B for U and a positive integer
n such that f° is 1/3 B-contractive and B is a 1/3 inclusive
base for f.

(b) There is a positive integer m and a positive number X\ < 1
such that for every (x,y) in X x X the collection pxy described
as follows generates WU ny consists of all members d of P such

m

that for some positive number ey f 1is (ed, A) uniformly locally

contractive relative to d and d{x,y) < ey

Proof: Assume (b) holds. Let EB be the collection of all intersections

of sets of the form
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Vd,e = i(x,y) E X xX ¢ d(x,y) < e}

where de 2 iny : (x,y) € X x X} and e < e,. Then ® is clearly

a symmetric base for ‘U.

Choose a positive integer k such that Ak < 1/3. Let V)€ B

where
V =1 ivdi,ei 1 1= 1,”.,n3.

Consider V1 e B where

vy =1 {vdi,ei/3:i=1,“.,n} .

Then Vo o V1 »

3

vopn{vj ti= L0} DV,

j083/3

and

] :i=1,cc.ontc v, .

(™, v e m§ ™, vy A

e.
i*ti

Thus £°° is 1/3 @B-contractive.
It remains then to show & is a 1/3 inclusive base for f.

Let (x,y) e X xX and Ue B. There is an entourage V of the form

V=o ivdi’e : i = 1,...,n3

in B such that Vc U and d, e Py for i = 1l,...4n. For

i=1,...,n there is an e, such that di(x,y) < ey <ey . There is
i

then a positive integer of the form £k such that X‘t'k e, < e for

i
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i=1,.00.,n. Let

Uj =1 Evdi,ijke'i 1 1= l,a..,nz

for j = 0y..., 4. Then by choice of k it follows that Uj DU?H,

Uj DUj+1 and (f'“k, f'“k)[uj] < uj+1 for 3 = Oye..,0-1.

Finally by choice of 1, Up =V < U, Therefore @ is a 1/3
inclusive base for fmk° Hence condition (a} holds.

Now assume {a) holds. It suffices to show that given (x¥, y*)
in X xX and U in @, there is a uniformly continuous pseudometric
d such that f" is (172, 1/2) uniformly locally contractive relative
to d, d(x*, y*) < 1/2 and there is a positive number e such that
Vd,e c U,

This will be shown. Using 1/3 inclusiveness of lB, there is

a U, in B such that (x*, y*)e U and there is a sequence

1
U ,o00,U. in ® such that U, D US> (" £")[u.] cu for
1°°°° "k 17 Cidle ’ i i+l
i = 1,nno,k-l With Uk C- Un
Using 1/3 @®-contractiveness of f", there are sets U, in ®
= s 3 .
i = k+l,... such that for i = k,... UiDUiﬂ, UiDUiH, and

n

n
(£, f )[Ui] S U4y

Letting U =X x X, iUi’ i> 03 is a sequence of symmetric
subsets of X x X satisfying a lemma in Kelley's book [ 20, Theorem 12,

n

p. 185]. Moreover (f", f“)[ui] Cu,, for i1,

Thus by this lemma there exists a pseudometric d such that

Ui € Vg,0mi © U
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for i1 > 1. It then follows by a theorem in Kelley [ 20, Theorem 11,

p. 183] that d is uniformly continuous. Furthermore
Vd,2_(k+1) L UkC1 u.

It remains then to show that f" is (1/2), 1/2) uniformly locally
contractive relative to d and d{x¥, y") < 1/2. Recall from the

lemma that d 1is defined by

n
d(x,y) = inf {Z g(xi’ xi+1) T X - x’ xn+l - y 3

i=o
and x, e X for 1<1¢ n‘B

where g(x,y) = o™t

if (x,y)e U _, - U, and glx,y) =0 if
(x,y) € U; for every i3 0.

If g(x,y) = 2”5 for some i > 2 then (x,y) ¢ U, _, which

1
implies that (f"x, f'y) is a member of U;» This in turn implies

that

o(f"x, ) < 27 = (1/2) g(x,y).

.In the event g(x,y) = 0 then (x,y) € U, for i3> 0. Asa result

(£"x, fMy) e Uiy for 120 so that

g(fnxs fnY) = 0= (1/2) g(x, Y) s

Let d{x,y) be less than 1/2, Let e > O be given such that

e < (1/2) - d(x, y). Then there exist points Xysross X in X such

n+l
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that X, = X X and

n#l C Y5

n
E: g(xiy xi+l) < di{x,y) +e < 1/2 .
i=o

Thus g(xi, X, ,,) <1/4 for 1 = 0,...;,n so that

1+1
n n
g%, £x4,) < (1/2) olxg; x4) -

for i1 =0,...;n. Consequently

n
d(£"x, ) < Z ol x5 £Mx,,)
i=o
n
< (1/2) ) alx5x ) < (1/2)d(xy) +(e/2) .
i=o

We then have d(f"x, f"y) < (1/2) d(x,y) for d(x,y) < 1/2. There-

fore f" is {1/2, 1/2) uniformly locally contractive.

Finally since (x", y") ¢ Uy then g(x*, y*) < 1/4 and thus
d(x*, y") <a(x*, y" < 1/4 < 172,

(13.12) Lemma: Let X be a set and f a self map of X. If for
some positive integer k fk has the unique fixed point =z, then f

alsc has the unique fixed point z.
Proof: Note that

f fz= ff'z = fz .
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Since z 1is unique and fz is a fixed point of fk it follows that
fz = z and thus z 1is a fixed point of f. If w is a fixed point of

z' so that =z

f, then w 1is also a fixed point of fk and hence w

is the unique fixed point of f.

(13.13) Lemma: Let X be a topological space and f a self map of
X. If for some positive integer k +there isa 2z in X such that
lim Efnkxg n 2 l} = z for every x in X, then lim anx, n > 1} =z

for every x in X,

Proof: For every integer i such that 1 i<k -1 lim i?nk+1

Hence if U 1is a neighborhood of 2z, there is an integer Ni such that

n >N, implies 5ty e U Let N=supfN. ¢+ 1 <1<k -1} and

M

(N + 1)k. For each positive integer m the representation

m nmk + i where 0 < im <k -1 is unique. Thus if m > M then

n, 2N and hence ¥™ e U, Therefore 1im ifmx, m> 1% =z

(13.14) Theorem: Let (X, ‘W) be a sequentially complete Hausdorff
uniform space, P be the gauge for ‘b, and f a self map of X. For
each positive integer m and each ({x,y) e X x X let ng denote the
collection consisting of all pseudometrics d in P such that for
some positive number €4 and some positive number Xd <1 " is

(ed, Ag) uniformly locally contractive relative to d and d{x,y) < ey
If for some positive m, P:y generates ‘U for every (x,y) in X x X

then f has a unique fixed point z and 1lim Efnx, n> 1% = z for

every X in X,

Proof: We will show that f" has a unique fixed point z and

x;npl % =z,
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1im {fnmx, nx 1t =2z for every x in X, and the conclusion of the

theorem will then follow by Lemmas (13.12) and (13.13).

m

let xe X, g=f, and d e ﬁt gx° Then d{gx, g2x) <
9

n+l

de(x, gx) and in general for n > 1, d{g"x, ¢" "x) < xg d(x, gx).

Hence for each pair of positive integers n and p

p-1
+ + +i+1
d(g™, 9"Px) < | (g™, ")

i=o

p-1
< Z xgh d(x, gx) < [rg /(1 -2 )] dix, gx) .
i=o0

Since the last term in this inequality converges to. zero as n tends
to infinity, it follows that Egnxs n > 13 is a Cauchy sequence relative

. m
to d for every d in szgxo

m

As Px,gx

generates ‘U, we then have that ignx, n> 13 is
Cauchy relative to ‘U. Since (X,”W) 1is sequentially complete there
is a point z in X such that ilim a"x, n > lg = 2, Moreover, (X, U)

being Hausdorff, z is the unique limit of this sequence. Thus
. n . n+l
gz = g{lim Eg Xy N2 13 ) = lim zg X; N2 I% =z

and 2z 1is a fixed point of g.
It remains to be shown that z 1is the only fixed point of g.
Suppose gw = w and w f 2z, Since (X,’LL) is Hausdorff and Pﬁz

m

generates ‘U, there is a d in Py, Such that d{w, z) > 0. Thus

d(w, z) = d(gw, gz) = xdd(w9 z) < d{w, z)
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which is a contradiction.

(13.15) Theorem: Let (X,”Ll) be a sequentially complete Hausdorff

uniform space,  a base for WU, and f a self map of X. If there
* - I3 - m

are positive integers m, r, and $ such that f is an /s

8 -contraction map and B is an r/s inclusive base for f', then

f has a unique fixed point z and lim ifnx, n > 1} = z for every

x in X,

Proof: By Lemma {13.8) there is a positive integer k and a base @'

such that ™ ig 1/3 (B'-contractive and ®B' is a 1/3 inclusive

base for £, By Lemma (13.10) we may assume ' is symmetric. It
then follows by Lemma (13.11) that the hypotheses of Theorem (13.14) are

satisfied. Hence the conclusion holds.

(13.16) Corollary (Banach): Let (X, d) be a complete metric space

and f a self map of X. If there is a positive number X < 1 such
that d{fx, fy) < » d(x, y) for every x, y in X, then f has a

unique fixed point z and lim {fnx, n > 1} = z for every x in X.

Proof: There is a positive integer m such that A" < 1/3. Let

8=5Ve:e>03 where Ve={(x, v) e X x X : d(x, y)<e}, Then
f° is a 1/3 B-contractive map and ® is a 1/3 inclusive base for
m

f'. The uniformity induced by d is clearly sequentially complete and

Hausdorff. Hence by Theorem (13.15), the corollary is true.

(13.17) Corollary (Edelstein): Let (X, d} be complete eo-chainable

metric space and f a mapping of X into X which is (eo, z)
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uniformly locally contractive. Then there is a unique fixed point of

f, z; and lim ifnx, n213=z for every x in X,

Proof: Let B = {vz : n is a positive integer and e < eo-go There
exists a positive integer m such that AT < 1/3. Hence for e < e,
)30 Thus

m m
(£", f )[Ve] c vy and of course V_ :)(‘U’e/3

/3
(V" 2", MV IE"

= 6(f™ o v, 0 6(fM™ ... 6(M o v_ o G(FM™
D6 o (V)" o (M = (67, £M[v ]

(Recall the argument in Lemma (13.3)) and clearly vg D(v2/3)3n There-

fore f' is 1/3 ®-contractive.
Let {x;y) € X x X and v: e B. Since (X, d) 1is e _-chainable,
there is a positive integer k such that (x,y) € Vl; . Also there is
t [¢]
a positive integer £ such that (1/3) e, < e/k. Define
- vk : : o 3 m .m
Ui = V(l/3)1e° for i =1l;..., 4o Then U:.L DUi+l and (f, f )[Ui]

< Ui+1 as above. Finally note

k k n
Up = V c Vv V. CvV .,
1 (_1/3)‘590 e/k — e e
Thus ® 4is a 1/3 inclusive base for f'. Therefore by Theorem (13.15),

the conclusion follows.
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