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SUMMARY

A perfegtly flat, tensioned sheet with a circular hole can under-
go out~of-plane deflection if the applied load exceeds a critical value.
Although the buckled sheet can support loads above the critical value,
the redistribution of the stresses in the sheet, especially around the
hole, can be expected to affect both the fatigue and the ultimate load
capacity.

This behavior of the plate is governed by a system of three non-
linear differential equations in the displacements w, v and w.

These are the von Karman equations in the displacement formulation. An
approximate solution for the displacements is obtained'using the Ritz
method. By making stationary the total potential of the plate with
respect to the constant coefficients in the agsumed expressions for the
displacements, two coupled matrix equations are derived with non-linear
terms in the coefficients, which are solved by a perturbation technique.

Stresses are evaluated at the plate faces as well as at the
midsurface of the plate for several locations of stress concentration
around the hole. The effect of the large transverse deflections is

evident from the redistribution of the stresses in the plate.



CHAPTER I
INTRODUCT ION

General

When a uniform uniaxial finite stress is applied to a plate
containing a hole, the stress at some point or points at the edge of
the hole will exceed the applied stress by a factor whiﬁh is called
the Stress Concentration Factor. (SCF for short). The earliest
investigation of this effect was reported by G. Kirsch three quarters
of a century ago, in 1898 (Ref. 1). Kirsch analysed the stress
distribution in an infinite linearly elastic plate with a centered
circular hole under uniaxial tension. Thirty one years later, in 1929,
R. C. J., Howland (Ref. 2) published his solution for the finite width
strip with a centered circular hole.

In both the above cases, as well as in the vast majority of the
subsequent investigations, the plate was assumed to remain flat, i.e.,
no transverse displacements were considered. There has been a number
of solutions, though, in which the material was asgumed to behave
differently from the linearly elastic one considered by Kirsch and
Howland. BSelected examples of analyses involving stress concentration
are given below, starting with the basic case of linearly elastic
material.

(1) The material is linearly elastic. The plane stress solu-

tion for an infinite plate (the Kirsch solution) yields a SCF of 3 in



tension and SCF of -1 in compression. This solution is valid so long
as 35 (8 = applied tensile stress) does not exceed the elastic limit

of the material. In the case of the finite width strip (the Howland

solution) the SCFs are higher than the mumbers cited above, and they

increase with the decrease in width {Ref. 2, p. Th).

(2) The material is non-linearly elastic with decreasing
stiffness. The plane strain solution for such materials yields S(Fs
lower than the ones from the Kirsch solution, and the SFCs decrease
with the inecrease in the applied tension S. This solution is due to
Adkins, Green and Shields (Ref. 3, p. 210),

(3) The material is linearly elastic up to a limit, beyond
which it becomes perfectly plastic., The tension SCF will be 3 until the
peak stress reaches the plastic limit. When the applied tension S
exceeds 1/3 of the plastic stress limit for the material, a stress
redistribution takes place, and it is found that the veak stress
remains constant and equal to the plastic limit. The stress in the rest
of the plate increases. In this manner the SCF can be reduced congider-
ably below 3.

(4) The material creeps non-linearly. Under a tensile stress of
long duration the material undergoes deformations which are functions of
the local stress history. The material at the highly stressed areas
will flow and the stress distribution tends to become more uniform,

This results in a reduction in the stress concentration factor (Ref. k,
p. 58).
An avenue of investigation different from the preceding examples

would be to allow geometric non-linearities, while retaining the



linearly elastic material. All the cases enumerated above have oﬁe
common feature, i.e., they are all variations of the basic two dimen-
sional problem. If the assumption that the plate remains flat under the
tension is discarded, and the plate is allowed to undergo finite,
moderately large transverse deflections, it becomes possible to investi-
gate a new practical aspect of the stress concentration problem. The
SCF will have the value corresponding to the flat plate until the applied
tensile stress reaches a sufficiently high value; at this value for

the tension the hole boundary becomes unstable and buckling occurs.

This buckling, which involves finite deflections, should cause a change
in the SCF at the midsurface of the plate as compared to the results of
the two-dimensional solution. Such a comparison will, however, be
incomplete if only membrane stresses are taken into account. The

finite deflections of the plate will give rise to bending stresses,
which will further modify the SCF when evaluated away from the midsur-

face of the plate.

Objective
The main objective of the investigation described in this

dissertation is to determine the stress distribution and the deflection
modes for a thin plate of large dimensions with a circular hole and
having a uniformly applied tension on two opposite edges (see Fig. 1).
For a sufficiently large stress local buckling will occur. This value
of the stress is determined at the first step of the solution of the
system of non-linear coupled equations to which the solution of the

problem at hand is reduced (see Chapter IV). This first step is



Figure 1. Circular Plate with Circular Hole



equivalent to the solution of an eigenvalue problem. The postbuckling
behavior of the plate (stress distribution and deflections) must be
determined by a solution of a non-linear problem based on the von Karman
plate theory. This thecory makes the following assumptions (Reference 5,
p. 463):

(1) The magnitude of the deflection w 1is of the same order
of megnitude as the thickness t of the plate, but very small compared

with the typical plate dimension L:
lw| =0o(t) ana |w| <L

(2) The slope of the surface of deflection is everywhere small:

ow dw
|§;{I << 1 and |$ << 1,

2

where X, and x, are the in-plane variables.

(3) The in-plane displacements u (radial displacement) and
v (ecircumferential displacement) are infinitesimal. In the strain-
displacement relations only non-linear terms in Bw/Bxl' and Ow/dx,
are retained. All cther non=linear terms are neglected.

(4) The strain components are small and Hooke's law for an
isotropic material holds.

(5) Every straight line originally normal to the plate mid-

surface remains, after deformation, straight, normal to the deflected

midsurface and of the same length as before the deformation (Kirchhoff's



hypothesis).,

The postbuckling behavior of the plate at the inner boundary
(i.e., the hole edge} will be described by reference to a load-deflec=
tion curve (see Figure 2). The deflection w will be a function of the

applied stress ©S:

w = w(r, 8; 8)

A nurber of such load=-deflection curves can be constructed for selected

points on the inner boundary.
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CHAFTER I1

GOVERNING EQUATIONS

General

The problem, as defined, will be solved by use of a displace=~
ment formulation. This means that there will have to be solved three
equations in the three unknown displacements u, v and w. The
gtress formulation of the problem would have yielded only two equations
in the unknowns w, the transverse displacement, and ¢, the Alry
stress function. But to use the stress formulation on a multiply
connected body, ¢ must satisfy the three generalized Michell condi-
tions for each internal boundary (Ref. 6, p. 425 and Ref. 7, p. 762).
In using the displacement formulation, no such conditions need be
considered.

Since the boundaries of the plate under consideration are
circular, a cylindrical coordinate system will be used throughout the
solution. The applied loads on the outer boundary will be derived from
the unisxially applied uniform stress 8 on two opposite edges of a
rectangular plate of infinite dimensions (Ref. 8, p. 80); see also

Figure 1.

Equilibrium Equations

The three equations which contain the three unknown displace-

ments u, v, and w are the twoe in-plane equations of equilibrium



and the equation of transverse equilibrium. As per Reference 5, p. 115

and Reference 9, p. 45-14, for instance, we have:

Radial eguilibrium -

Here Nr, Né e

shear loads per unit length; D = Et>/12(1-v7), where E is the

and N
r

are the radial, circumferential and

(19

(2)

(3)

Young modulus, v 1is the Poisscon ratio and + 1is the plate thickness.

The subscripts following the comma denote partial differentia-

tion with respect to the varisbles represented by the subscripts.

Stress-Strain Equations

The stresses .5 %4 and T are expressible in terms of the

strains as follows (Ref. 10, p. 161):
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Radial stress -

O.r = Ef(err Y GBB) (4)
Circumferential stress -
Og = E'(e89 + v err) (5)
Shear stress -
T = (l - v) E'ere (6)
uhere B - 1?12 and € ., €gg and €, are the radial,

circumferential and shear strains (i.e., the physical components of the

strain tensor).
Equations (&), (5) and (6) follow from the condition of plane

stress (UZZ = 0) and from the assumption that the plate material is
igsotropic and cobeys Hooke's law, which for any orthogonal coordinate

system is given by (Ref. 11, p. 40):

.. = e,. + A € 65, .
Os5 T2 W €55 ik 01 (1)

i,ik = 1,8,z

The o, and €ij are the physical stress and strain components,

1]

ile‘,
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e =% * %8 "% > "
and A and 4 are the Iamé congtants:
E
?n,_:—-——-—E—v-——-—-— ) B =
(1+v}(1-2v) 2(1+v)

Strain-Displacement Equations

The strains, in turn, are expressible in termms of the displace-
ments, First we write down the expression for the components of the

strain tensor in its most general form (Ref. 12, p. 81):

_1 i
sy = 3 (afs * Wyle * s v y) ®

where 1i, j, k = 1,2,3; the u; are the tensor components of the

displacement vector and ]j denotes the covariant derilvative with

respect to Jj. The relationship between covariant and simple deriva-

tives is given by:

where Fij is the Euclidean Christoffel symbol which in turn is

defined in terms of the metric tensor gﬂﬁ (see, e.g., Ref. 5, pp. 34
and 46).

The strain tensor in terms of simple derivatives becomes:



1 ( k ) 1 s D
= = + + - -
1§ - 2 \M,3 U1 0 N3 2 Tei ng Y ¥ (9)
- (F%. w + 5. u -T°, uk u .+ uk.)
2 Nij Ts JiTs kj s,1 ki s 7,]
Since T, =T°. and uk = gkL u,, We can write e in
ij Ji 4’ ij
terms of the covariant displacement components only:
l( ki ) 1
= = + + -
€13 T3 \M,5 T M,1 T €& W s W3/ T3 rii fij gpL U (10)

1 S s kb s ki
"3 (2 Tig % =Dy & w39 v 8 ug “L,j)

grr =1 s gee = '13 s gZZ =1 (ll)
r
ro_ e _ % _1
FSB T ? rre Far r

o .
and all other g P and F;k are zero.
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- rr _
U—ung =u

V=u2jzm=%u2
(13)
0=y 6 =

&
|

_ i1 [ 33
i Jg Jg €53

i, J not summed.

Using Equations (21) and (13) with Equations (12), the physical

strain components become:

€ =U -2]=(U2 +V +w2)+-vv

rr

e =%(U+V) (f @ s 2, + VP

60 0

+ Uz) (1)

@Ka"w

Hrol""

50

2€r8 =

LB

U -V)+V
( ,0 T

el

(U,r U,e + V,r v,e + w’r w’e + (Uv)r)



Thus after substitution we get for .0 %o and e

_ ;( 2 1.2 2y 1 .2
Crr T V1,1 T3 ",r 3 Yo p * u3,r) I Y
iy 2r
1 ( 2 1 2 o )
= + + = + = +
e = T T Yo,8 T 2 \"1,0 2 Yo T Y30
2,1 2.1
+ + = 4 =
ket 2 Yo T r M Ys 1,8 %
Ir
) 2 1
29 "M TT U T LT U Y g re Yo,r U2,0

14

re’

(12)

+ -J-'(uu -u - u wof =y )
u3,r 36 r lu2,r l,r 2 r2 2u2,9

Here nu u, and 1.% are the tensor components of the dis-

1’ 2

placements. The physical components of sirains and displacements for

the cylindrical coordinate system are given by (Ref. 5, p. 111):
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According to von Karman's theory, out of all the non-linear
terms only the terms in W make non-negligible contribution. The
non-linear terms in U and V are therefore dropped from Equations (14),
and the von Karman strain-displacement relations in c¢ylindrical

coordinates are obtained:

._i( ) 22
Cgg ~ T \U TV o) TSV g (15)
er
=iL- - )+ +-J—'
2€r9 r (U,B v V,r r w,r W,B

The displacement components U, V and W are functions of
the three variables r, © and z. Adopting Kirchhoff's hypothesis
that every straight line originally perpendicular to the plate’s
midsurface remains so after deformation, the displacement vector
ﬁ(r,ﬁ,z) can be expressed as the sum of a midsurface displacement

vector u(r,0; z=0)} and a vector z(n - EZ) (see Appendix A):

U (r,6,2) = (r,0) +2 (3 -3) (16)

]
-~
o

H
]
=
S
Ci g

+
Falin
<l

|
&2
b

e v

Ay
L= A}
L« 1]

+
S
3



16

Therefore,

ahd the strain-displacement relationships are finally given by

(see also Ref. 12, p. 329):

2
€ =u_+t-w_ = zw
rr 5T 2 ,r ST
W w
-1 L2 (_42 + —JEE)
eee~r(u+v,9)+2r2w’9 2\ 2 (17)

u .
2€ g _,_9_+r(z) t2w We“2z(K)
r r r/ . T LT /o

The von Karman Plate Equations

in Cylindrical Coordinates

Substituting Equations (17) into Equations (4}, (5) and (6),

we gel the stress~displacement relationships:

(@, o+ v =) (18)

M

o =E'{u +E(u+v)+
r r r 2

E] >
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2
W
e {1 1580 42)
gy = E { - (u + v’e) twn o+ 2 > v (19)
W
-z[-—(w +—’-—-ee)+\)w ]}
r\,r T S TT

- Loy '{.3;( i )+ + 1

T 5 E T\ g V)tV IV Ve (20)

w

- z%(“’,re -_;g)} ’

The loads Nr’ N, and Nre are obtained by ilntegrating the

8

corresponding stresses over the plate thickness:

t/2 t/e
N:-:I O‘rdz 3 N8=I cgdz 3
-t/2 ~t/2
t/2
Nr9= J T dz .
-t/2

The results of the above integration are:

2

; v 1/ 2 Yo
R RRTICRRNRT I CARRC) I
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2

O R N )
= -~ + + -
Ng =E't [r utvg va 3 E + v ¥y (22)
- d=w 4 _J,_. ( - ) + + _J_-. ]
Ng="%FE¢ [ P \Bg V) FV  FTW Ve (23)

Now substituting Equations (21), (22) and (23) into Equations
(1), (2) and (3), the von Karman plate equations for the displacement

formulation in cylindrical coordinates are obtained:

u, l-v 60 . 1+v 3-v &
+ - — -] - ——
ru,rr u,r r * 2 r * 2 v,re 2 r (24)
w w
+ + 1=y w2 4 1y ,9 4 1=y v ,08
2T 4T Yy 2 ,re T 2 o r
w2
v Yo
2 2
T
_]_._'l'_\)u .+iﬂ 11.:.?..{.;':..?_ (1"0‘ + v _E)+Lie_ (25)
2 ,T9 2 r 2 ,TT T T T
+k2w W +l—+vw W }ﬂw E}_E,
2 T,rr 7,9 2 ,r ,rd 2 T,r r
1 -
t SV e Y es =0
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%; vh w = w,rr [u,r * % (u * v,e)] (26)

2
W
+-J-'w (W2+\J—'——e)
2 ,rr \ ,Tr 2
T
2
W W
PR (e, )
°or T r r2 )

This system of equations consists of one fourth-order and two
second order elliptic guasilinear partial differential equations,
Mathematically, the system can be solved by use of the modern theory
of elliptic partial differential equations together with non-linear
functional analysis on an appropriately selected Hilbert function space.
In the stress formulation, von Karman's equations have bheen treated
by M. S. Berger in Ref. 14, where the buckling load is determined by

finding the smallest eigenvalue of an associated linear problem. Of



great importance in the mathematical treatment is the fact that wvon
Karman's equations are derivable from a variational principle.
Another, more practical way to obtain solutions for the three
displacements is by use of energy methods. The following chapter
discusses the selected energy method of solution and its application

to the non-linear problem at hand.

20



CHAPTER III

PREPARATORY ANAIYSTS

Derivation of the Total Potential

Solution for each displacement component will be gought in the
form of the product of a power series in the radial varizble and a
trigonometric series in the circumferential variable. The constant,
but unknown, coefficients will be determined by means of the Ritz method,
To this purpose, the functional m of the total potential energy can,
for the given problem, be most conveniently expressed in terms of
cylindrical coordinates. From this functional m, the von Karman
Equations (24), (25) and (26) can be derived by setting the first
variation of équal to zero (8w = 0).

The Strain Energy of the Plste

The total potential energy of the plate consists of the strain
energy of the plate, U, and of the potential energy Q of the applied

boundary load, i.e.,

n=U+Q (1)

The strain energy of the plate 1s obtained by integrating the

strain energy density UO over the plate wvolume :
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U= III U & (2)

As mentioned in Chapter I, the plate material is Hockesan
isotropic. Now a Hookean material is defined by the condition that its
strain energy density is & quadratic function of the strain components.
When the Hookean material is alsgo isotropie, its strain energy density
will depend only on the magnitude of the principal strains (Ref., 10,

pp. 121 and 124):

_ 3 ..
UO - 2bij ei Sj b i, 4 = l) 2’ 3 (3)
The tensor bij is the material constants tensor:
A+ 2u A A
b= A At 2 A s
A A A+ 2

A and W being the leme constants. Equation (3), written in full,

reads:
) SA(e e, €y tule] te, te (3a)

It is necessary to express the strain energy density UO in
terms of the strain components referred to an orthogonal coordinate

system, e.g., the eylindrical one.
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To this end we write Equation (3a) in terms of the strain

invariants Il and Iez

1 2
v =ia2+u(B-21,) (1)

Substituting the expressions for the inveriants

= + + = + +
)56 T8 T e = Tt Sy
and
= + +
I, = €6, + €8 6361
2 2 2
= + + - - -
erreee eBBezz ezzerr ere eBz ezr
into Equation (4), we get:
1 2
Uo 2 A (err * eBB * ezz) (5)

Equation {5) must be now reduced to the plane stress state. Since
Ub is already given in termg of the strain components, it is more
expedient to reduce Equation (5) to the plane strain state, and then
apply the analogy principle by replacing the material constants A , p

for the plane strain case by the material constants lc’ uc for the



2l

plane stress case (Reference 13, p. 37-2). Setting in Equation (5)

1 A =u o " T
2 "o ’ T
1-2v, 2(1 + vo)
W 1+ 2y
v_ o= and E E N
+
a 1+w a (1 + v)2
we obtain for Rc and LI
. - -J.n: l v -
g B 5 Z A THRTTS

The final expression for the strain energy density Uo for the

plane stress case therefore is (see also Reference 10, p. 161):



=__|-l'__r 2 _ 2]
Ub l-v Lerr * 698 taw err 699 * 2(1-v) er9 (6)

Tt is convenient to perform the integration in Equation (2)
in two steps: first, integrate over the plate thickness +3 second,

integrate over the doubly connected area of the plate:

U= fﬂf [ {i:iUbdZ] aA = JAI T dA (7)

Using Equations (17) of Chapter II, Equation (6) for U, can be

rewritten in terms of the displacements and the varisble =z:

Z
+ +
Uo = T [F Foz * ¥z 2 ]

where Fl’ F2 and F3 represent different groupings of terms in the
displacements only. Integration of the above expression over the plate

thickness yields:

t/2

T = I Udz = =25 [F t+SF t3]
-t/2

We note that the strain energy per unit area T consists of two parts:
the first, linear in t, is the membrane strain energy per wit area,
which shall be denoted M; the second, cubic in t, is the bending

straln energy per unit area, which shall be dencted B.



We can now write:

or

where

+

+

+
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3
_ut :
T=33" 0y 2
T=Ly+lp (8)
2
t
2
S(arvg) +Bu (urvy)
= lu + +=—u u +
r2 V,G r ,r V,G (9)
2
STTORE
~lu - v +
2 Lr \,8 v,r
S CRRT CARR
’ P ) al
(WQ +_v__w2)
u,r .y 2 7,8
r
1 ee
(1-v) [—(u -v)+v]_:.§..__.:._
r ' ,8 R r
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and
w w 2
B=W2 +(..:_I.‘.+_2..e_e) (10)
, rr 2
T r
W W
povw (ST Da9)
iy 2
r
2
.o V.8
+ 2(1-v) —45--—-:-2—-)
r r
and also
pt3 Et2

D = =
6(1-v)  12(1-v)°

The strain energy of the plate now becomes, using Equations (7) and (8),

U = fg j;f M dA + g» IAJB dA (11)
or
U=T, + U

From Equation (1), the total potential m can be written as

m=y, U+ 0 (12)
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The Potential of the External ILoads

The potential of the applied external loads is given by
Q=- i (Nru + N&ev) ds (13)

The integration is performed along the ocuter boundary of the plate,
i.e., around the circle with radius b, so ds = hd8 (see Figure 1).
Note that for the given problem ﬁr =0 and ﬁ}e on the inner boundary
at r = a,

The losds ﬁr and ﬁr are identical to the loads in an

8

infinite plate due to a uniaxial uniform tension S[Ibs/ine] (Ref. 8,

p. 80):

ﬁé = % St (l - Eg) [1 + (l - 3 Eg) cos 29] {14)
r r
ST P
r r

At the outer boundary r =b, therefore, putting « = s> the loads

o'l

{14) become:

5 % St (1 - a2) [1 + (1 - 3a2) cos 29]

=

- % St (1 - ag)(l + 3a2) sin 28 |

ro
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We can now write for the potential Q:

o-=- % Stb (1 - ae) Jeﬂ {u [1 + (1 - 3a2) cos 26] (15)
0

- v (1 + 3a2) sin 28 } e

The displacements wu and v 1in the above integral will be of the
form discusged in the section which follows, with b substituted for

r in the radial variable.

Selection of Displacement Functions

Approximation functions for the displacement components wu, v

and w are selected to be of the form:

_ i m
u=ah ¢ cos 2(n-1}9 (16)
v = b'jhgq pp sin qu (17)
w = ckh?L pf cos 2(4-1}8 {18)

where ass bj and ¢, are the constant but unknown coefficients whose
values will bhe determined by means of the Ritz method. p is the

radial variable, i.e., a linear function in =r. The symbols th

are introduced for the purpose of defining the coefficients a;, bj
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and ¢ as single-indexed quantities. The more obvious expression for

u, e.g., would be

— m -
u=a p cos 2{n-1)0

where summsation is performed over m and n. Here the coefficients

a n are double-indexed, 1i.e., they form an m x n matrix., When writing
the matrix equations for the first variation of the total potential,

it will be clear that the coefficients a0 muest form a column matrix,
i.e., they represent a vector in the appropriate vector-gpace. Instead
of converting later the double array & into the single array a; >

it is more consistent to start with the gingle array ai « The relatione

ship between the two arrays is given below:

a = a,h s 1 not summed.

There is no summation over 1 3in +the sbove relation because of the
unique relationship between 1 , on one side, and m and n , on the

other side. Thig relationship is as follows:
i =m + M(n-1) (19)

where M is the upper limit of the range of variation of m (i.e.,
n=1,2,3, ..., M), The index n has the range of variation between
land N (i.e. n=1,2,3, ..., N). The relation (19) merely column-lists

the two dimensional array & n into the one-dimensional array as.
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For every pair (m, n), given within their corresponding ranges of
variation, there is one, and only one, i which satisfies Equation (19}.
Also, for any value of i between 1 and the product M x N, there is

a unique set of values for (m, n). Assume, for example, that
m=1,2,3,4 and n = 1,2,3,4,5. The array on the next page shows the
correspondence between i and {m, n). Selecting from it the pair

(3, 2) for (m,n), we read for 1 the number 7; therefore,

3

p” cos 2(2-1)8 = p° cos 28 ,

The wu displacement must be symmetric, and the v displace-
ment must be anti-symmetric with respect to the axes € =0 and
8 = g . The function for the w displacement is taken symmetric with
respect to the same axes. While an anti-symmetric mode for w with
respect to these axes is possible, it will correspond t¢ a higher
energy level of the system, and thus to a higher c¢ritical tensile load,
than for the symmetric mode. A substitution in Equations (16), (17}

and (18) shows that these conditions are satisfied:



32

A Numerical Example of Equation (19)

Hounad At A nag A uongd ~ o onat

I I - -a R o te s AN e i oy | O o Oy
mlmﬁwllllllm




u(p3;d) = ulp; -9) and  u(p;8) = u(p; m-8) ;
v(p;8) = -v(p; -8) and  v(p38) = -v(p; m-0) 3
w(p3;8) = w(p; -0) and  w(p;8) = w(p; m-8) .

Determination of the Radial and the Circumferential Variables

33

From the last paragraph it is evident that our choice for the

trigonometric series was appropriate. Setting the angle 8 as the

circumferential variable satisfies the required conditions for symmetry

or anti-symmetry.

o

The symbols hBY have the value of 1 for all values and

combinations of values of the indices &, B and Y. In Equations (16),

(17) and (18) the summation is performed over the index @ only.

If we rewrite Equations (16), (17) and (18) in the form:

u=a;u

v = b, v
J

wEow

where

u- =h__p cos 2(n-1)8

(20)

(21)

(22)

(23)
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W = h;q_pp sin 298 (2k)
k k f
w =h, p cos o(4-1)8 (25)

it becomes clear why there is no summstion over m and n, p and ¢,
and f and 4 in Equations (16), (17) and (18) or Equations (23}, (24)
and (25), but there must be summstion over i, j and k in Equations
(20), (21) and (22}. Following the numerical exemple of Table 1, we
have:

19 20

u + a 1 R

1 2
= + + ...t
u=a,u a, U 29 0

The displacement w must at least satisfy the geometric
boundary conditions at the inner and outer boundaries. At the inner
boundary (at r = a) there are no geometric conditions to satisfy; the
inner boundary is free to deflect and rotate., At the ocuter boundary
{ at r = b), there is assumed to be negligible effect from the buckling
which occurg at the inner boundary: this buckling is a local phenomenon
only and it should not affect the regions of the plate that are distant
from the inner coundary. Therefore, at » = b the plate may be assumed

to remain flat and undeflected:

w(ir =) =0 and w {(r=b) =0,

3

The truthfulness of this assumption depends on the ratio o = a/b,
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The smaller the ratioc « is, the better our assumption will be. The
closer the ratio @ gets to one, the less valid the above assumption
becomes: the combination of a non-small ¢ and our assumption of a
clamped ocuter boundary will result in an additional restraining effect
which will lead to an increase of the buckling load.

The boundary conditions stated above can be most easily and
immediately satisfied if the outer boundary is dencted by p =0
and Equation (18) contains powers of p no lower than quadratic.
The desire to achieve this simplicity therefore leads to the following
choice for the radial variable p:

p =1 - (26)

In terms of this variable, the outer boundary will be at p =0, and
the inner boundary at p =1 -a/b or p =1 - &, Thus:
It f+1
LA hfL p cos 2(4-1)6 {(27)
where k, £, 4 = 1,2,3, ..., .

The expressions for the u and ¥ displacement should include
constant terms with respect to p, as will be shown in the following
section. Equations (16} and {17) now become:

i m-1

w=a; b p cos 2(n-1)8 | (28)

i, m, n=1,2,3, ... , .
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p-1

v=b, b pY " sin 2¢0 (29)

J P

j& P) q= l’ 2’ 3, RN

Derivation of In-~Plane Displacements

In the load-deflection curve conceptually shown in Figure 2,
the branching point on the § axXis corresponds to the onset of buckling,
with the plate still maintaining its flat shape. This point on the
curve represents the smallest tengile buckling load, S, obtainable
from the solution of the associated eigenvalue problem (see Chapter
IV). The values of the in-plane displacements u and v included in
the sclution of this eigenvalue problem should be identical to the
values cbtained for uo and v() from the solution of the problem of
the tensioned infinite plate referred to above (Reference 8, p. 80).
Later, while solving the non-linear problem, the selected functions for
u and v must have the capability of representing the.flat plate

Te) o
expressions 1u and v as & limiting case. Conversely, the structure

o] o
of the u and v equations can indicate or confirm the choice made
for radial and circumferential variables. To derive these expressions,

we write the inverse of Equations (k),(5) and (6) of Chapter II:
= L -
€ e = F (cr vce) (30)

°6 = 5 (% - ) (31)
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= =1 (32)

where ¢° indicates the two-dimensional (flat plate) strain. Here

cr, ce and T are the stress components for the infinite plate

{Reference 8, p. 80):

o = % g (1 - i; [1 + (l -3 i;) cos 29] (33)
ge=%s[(1+f-.-§)-(1+3%)cosee] (34)
r Ir
T=-%s(l—§;)(l+3§-'§)sin29 (35)
r r
The strains sgr, ege amd ege can be obtained from Fquations (17)

of Chapter IT by dropping the terms in w:

o o
=1

rr ,T

QO =1 (up + v° ) (36)

G , 8

2 e, = z (uo - vo) + v°
r8 r \,b® T

Combining Equations (30), (31) and (32) with Equations (33), (34),

(35) and (36) yields a system of three partial differential equations in
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uo, vo and their first derivatives with respect to the variables =r
and 6:

o 3 a2 a.2 a
w = 2= {(1_\,) - (1+v) 5+ [(1+v) - L 5+ 3(2+v) —g] cos 280 (37)
s T r r r

-

(@) = £ {(2v) + (1) S () - 2 4 3(1m) a”] cos 268}
, 2k r’ 2 ;E

(2, =v") + v° = - 5 [(1+v) + 2(1+v) EE ~ 3(1+v) ah] sin 28
,8 ,T LE 2 R

]

Integrating the above equations and evaluating the constants of

integration as necessary, we get:

W =52 {aw) Zv () & (38)

BIs

3
+ [(1+v) 3:- +h 2. (1) a—3 cos 29}
i r

3
WP = 2_: [(lﬂ,) E + 2(1-v) %+ (1+v) :—3 sin 26 (39)
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Substituting in Equations (38) and (39) for r from Equation (26),

i.e., T =1b(l-p), we get:

W = % % (1-p) + (1) T%E' (ko)

+ 553 (1-p) + he E%E - (l+v)a3 (1:2)3] cog 29}

v° = - %% 153(1_p) + 2(1-v)o E%E + (1+v)a3 (1::)3] sin 26 (41)

The terms in 1/(1-p) and l/(l-p)3 in the above equations can
he expanded in power series in p, since the condition necessary and
sufficient for the expansion to exist, |p| < 1l, 1is always satisfied.

The physical meaning of this condition, which can be rewritten as

|1-%|<1 or ~#0 ,

is that the plate must be finite (i.e., b can never be infinitely large)

and the hole must be present (i.e., a # 0).



Using the relations:

I
1 - 2 . 2 i-1
l-p'- 1l+p +p F ciennennee = p
i=1l

1 321+3p+6p2+10p3+...=
(1-p) {1

into Equations (LO) and (41), we obtain for u° and v

I

ELEE @) - (32 - amiel « e ), o
i=2

ii’

'l.l

+ (2 (1) +ha) - (22 (143%) - 20)

I
+) [b - 5 ()03 (241)(202) ] oF ] cos 26}

i=2

P = 2 {2 ()« 209)e] - [ (13 - 2(1v)e] 0

I
+z [2(1'\’)a * %(1+")“3 (i+l)(i+2)] pi} sin 28

i=2

(k2)

(43)
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Tt is easily observed that the sbove Equations (42) and (L3)
are completely contained in Equations (28) and (29), including the terms
constant with respect to p. The congiderations behind the structuring

of Equations (28) and (29) are, therefore, completely justified.
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CHAPTER IV
SOLUTION

General

The Ritz method is used to solve the non=linear post buckling
problem as stated in Chapter I. The unknown displacements u, v and
w are assumed to be of a specific form, satisfying at least the
geometric boundary conditions, and containing constant but unknown
coefficients. The total potential m of the plate-load system is
constructed using the assumed expressions for the displacements. This
potential 7T 1is then made stationary with respect to the unknown

coefficients, i.e., the first variation 6&m is equated to zero:

b o= 2 ba. + 2L 5. + S be, = 0 (1)
da,, i b, 7 Bck k
d
Since the wvariations 5ai, 6bj and 6ck are arbitrary, the three sets

of partial derivatives of 7 must vanish independently:

on an dm
oo, oo am 2T-o (2)
Bai Bbj Bck

i=1,2,..,I" 3=1,2,...,0 k=1,2,...,K

It is convenient to lump together the firgt two of the above equations,

since they involve derivatives w.r.t.the coefficients of the in-plane
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displacements., Thus Equation (2) becomes:

=0 and = =0 (3)
Say 9y
where a; now includes both the a and bj of Equations (2),

with the index i1 npow extended to include the J additional bj

coefficients.

Using Equation (12) of Chapter III with Equation {3), we

get:
3 3 3 a0
T ) UM . UB . — o
8a, ©Ba, da. Oa,
i i i i
and (&)
3e, 3o, e ¥y °
From Equations (10) and (15) of Chapter III it can be seen
that

BUb =9)
‘a—&r'—'o and S0 >
i %k

BUM
gg; + 55: = 0 (5)
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21
+
ot
él)

These two equations, as will be shown in the following discussion, are
essentially a pair of matrix equations. ZEach equation is a system of
I (Bquation (5)) or K (Equation (6)) separate equations, but each

system can be treated as one matrix equatiocn.

Derivation of the System of Matrix Equations

Let us first treat Equation (5). The partial derivative of the

membrane energy (see Chapter III, Equations (9) and (1)) is given by:

)

QU
Wi} =%2 [H] {ai} * %?D {(Cklck2)i} (7)

where [H] isan I x I matrix {ai} isz the column vector of the

ay unknown coefficilents; and {(cklck2)i} is a column matrix of order
I., each term of which contains second order products of ¢y together
with definite integrals. The terms of the matrix [H] consist of
definite intergrals only. See Appendix B for the general expression

of all the matriees under consideration.

The second term in Equation (5) can be written, using
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Equation (15) of Chapter III, as follows:

B2 =~ 3 o0t o) ®)
1l

where {Gi} is a column matrix of order I whose terms are all definite

integrals; S is the applied stress. Substituting now Equations (7)

and (8) into Equation (5), we obtain:
3
[#] {as} + 2 oae) J = 55 1o} ©

Now we can proceed with Equation (6). Using Equation {11)

of Chapter III, we can write:

|
o

JIETRTIESS

_1i_1§_13 [M("”‘i) ]{%} * ib?D {(ck1°k2°k3)k} ¥ % [B]{ck} -0 (20

where [B] is a K x K matrix whose terms are definite integrals;
{Ck} is the column vector of the ck unknown coefficients;
{(cklckECKS) } is a column matrix of order k, each term of which

k
contains third order products of ¢y together with definite integrals;
and [M(ai)] is a K x K matrix whose terms contain definite integrals

and are linear in the coefficients By
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Equations (9) and (10) are a system of two coupled non-linear
matrix equations. This system may be solved by iteration, provided a
set of initial values for the ai and the ck coefficients is avail-

able {see Ref. 15, p. 213), or by successive approximation.

Initial Values for {ai} and {ck}

The system of equations to be solved is the one given by
Equations (9) and (10) which, with a slight modification, are given

below:

[H] {ai} *3 {(leckz)i} - %ﬁ% {Gi} (11)
([M(ai)] * e [B]) {gk} * {(cklck2ck3)k} =0 (12)

1067

Among all possible soluticns for ay and s there is the trivial

solution of zerc transverse displacement w, or in other words,

{a = {0} -

In this case, Equation (12) becomes identically zero, while Equation
(11} yields a solution for {ai} which is none other than the flat
plate displacement u’ and v , as given in Equations (%2) and (43)
of Chapter III.

Begides the trivial sclution of nc transverse displacements,
there is the solution, though non-definite, of infinitesimally small

transverse displacements, i.e., of infinitesimally small {ck} . In
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this case, the term {(cklck2) } in Equation (11) is negligible in
comparison to the remaining two terms, and also the term,{(ckckgckB) }
in Equation (12) is negligible in comparison to the term in {ck}

The Equations (11) and (12) are now reduced to the following:

[H] {o } {G]} (13)
([ep] + 3D {s -0 ()

The coupled, non-linear system of Equations (11) and (12)

is now reduced to two equations of which the first, Equation (13), is

independent of the second, Equation {14).

Equation (13) yields a solution of {ai} in terms of the applied

stress 3:

(-3

or

-5 ) (15)

Substituting for {ai} from the above equation into Equation {(14)
results in:

52 [0 ] + 5 [5]) i) -
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or

([rap ]« B[] 4 =0 (36)

Sb2t

Equation (16) represents the eigenvalue problem, mention of

which wag made in the previous chapters. The mairices [M] and [B]

are real symmetric matrices (see Appendix B), and therefore Hermitian.
Since [B] is also a positive definite matrix, all the eigenvalues

W will be real (see Ref. 16, p. 75), where

w =22 (17)

Ea )
koo

Equation (16) evolves as follows:

([niap] - o [ s - o
(o] [ap] - 0[] {ef =

or

(- (D ) - »

where [I] is the identity matrix and

(1] - (] [ay)]

Of significance to us is the largest positive value for «
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which we will denote by @

2D 2 D
1] = ’ S R oem— —
° g% S A

[o]

Modifying:
2% 1 _, D
So Tw T2 T l0 2 (19)

o at at

For given material and geometry, the largest positive value
for w (i.e., UJO) will correspond to the smallest positive value
for A(i.e., lo), or S(i.e., SO). Table 1 and Table 2 of Chapter V
list values for lo (based on one specific set of terms for uw and
v, see Chapter V), for various combinations and number of terms
selected to represent the transverse displacement w, as given by
Equation (27) of Chapter III.

The eigenvector corresponding to the eigenvalue UJO is
selected as the starting point for the sclution of the non-linear,

coupled system of Equations (11) and (12):

o
Eigenvalue w = Eigenvector {ck} (20)

The method of computation of the eigenvalues is described

in Chapter V.
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Alternatives for the Non-Linear Solution

Systems of non-linear algebraic equations may be sclved by means
of iteration processes, as shown, for exasmple, in Ref, 15, These
processes result in a point by point determination of the curve shown
in Figure 2: each get of iterations produces one point, provided
convergence is cobtained.

It may be possible to reduce large systemsg of equations toc a
small number of matrix equations, so as to expedite the solution process
by iterating for the matrix unknowns. Equations (11) and (12) represent
two such matrix equations, where the scalar unknowns Ay and S
appear in separate matrices. Tt might be peinted out, however, that it
may be more difficult to obtain convergence for the matrix unknowns
than for the scalar unknowns. It may, in fact, be even impossible to
obtain convergence at all for the matrix unknowns.

A different approach to the solution of Equations (11) and (12)
is to use a successive approxXimation technique. As for the iteration
procedure, the analysis must be developed point by point as successively
laprger values of load are used to determine the functional dependence
of the load on the transverse deflection (i.e., the curve depicted in
Figure 2). Both the iteration process and the succeséive approximation
approach are described in detail below.

A more efficient way seems to be a perturbation method. If
applicable, it would lead to a functional dependence between load and
trangverse deflection and thus eliminate the point by point determina-

tion of the curve in Figure 2.
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An Tteration Process

The eigenvector {%k} as obtained from the computer solution
of the eigenvalue problem is normalized w.r.t. the component of largest
r
absolute value. The order of magnifude of tgk} can be further reduced,

if necessary for the iteration process. For example:

{ékli= 0.01 {Sk}

The applied stress 8 , or the applied stress factor A , is
set at a slightly larger value than SO s Or ho » Obtained from the

uncoupled, linear solution:

S: = 1.01 8 or At A, = 1,01 A, {21)

51

Equation (11} becomes

1 1

IARER RN TCR N

or

Gl -7 @ S-S e

1

1 2
The vector {a.} is used in Equation {12) to abtain {cg} :
Y1 1
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edp] + £ ® ED {3, +3{Gadada) ) o

&) 0] 5O E) {(Gdidy), @

Enough iterations with Equations (22) and (23) are performed until the

results for {ck} and {ai} converge.
1 1

Having cbtained the vector {ck}l corresponding to Sl’
a pair of coordinates (Sl, wl) results, which represents a point on
the load-deflection curve in Figure 2. Any number of such pairs
(Sn, wh) can be obtained <for the construction of various leoad-deflec-
tion curves at different locations on the plate., The evaluation of
each pair (Sn, wn) is based on the previously evaluated pair

(s Equation (21) becomes:

=1’ p-1) -
S: 8 =1.018 or A: A =1.01 kA (2k4)
n n n n-~1
Also, the vector {ck} is used as the initial value (together with
n-1

1
the vector {a.} obtained from Equation (22) in which A_  and {ck}
i n nel

n
have been used) for the evaluation of {ck} :
n

&) = {ed | (25)

n n-1



53

A Buccessive Approximation Approaéh

The successive approximation approach is gimilar to the itera-

tion approach. It proceeds as follows:

1. The system of Equations (11} is linearized and solved for the
ai's in terms of the applied load S. This corresponds to the plane

stress solution of the problem.

2, The results of Step 1 are inserted in the linearized wversion of

Equations (12) to generate an eigenvalue problem.

3. The eigenvalue and appropriately scaled eigenvector of Step 2 are
then used in Equations (11) to obtain values of a; vwhich reflect the

effect of lateral deflection.

The equations used in Steps 1, 2 and 3 are given as Equations

(26, (28) and (30) below:

i, oM _pe =0 (26)
Ji 1 d
where
3
P = %}5 ; (27)
Mmik agl) cﬁl) + e Bmk cél) =0 (28)

where



and

H.. a€2) - PG, + z g c(l) c(l) =0

Jgi i

where

The results of the successive approximation analysis are given in

Chapter V,

oj 2 7Jpg P q

s £3
P ==
o) oD ¢

A Perturbation Approach

54

(29)

(30)

(32)

The theoretical development of a perturbation method, as applied

to the non-linear system of Equations (11) and (12), is given in

Appendix D of this dissertation.
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CHAPTER V
RESULTS

General

All the mumerical resunlts given in this chapter were obtained
by means of the UNIVAC 1108 computer. Several programs were prepared
for the computation of the following phases:

1. Evaluation of the matrices. The elements of each matrix
are given as definite integrals (see Appendix B). The integration
over the variables p and 0 was performed exactly (gee Appendic C)
before the computation, so there was no need for numerical integration,
and no accuracy was lost.

2. Inversion of matrices. The inverses of the square matrices
[H] and [B] were evaluated hy means of an algorithm based on the
method of direct operation on rows (Ref. 17, p. 119).

3. BSolution of the associated eigenvalue problem. A speclal
program based on the QR Transformation Method (see Ref. 18) was
utilized in solving Egquation (18) of Chapter IV. This program computes

all the roots (i.e., all the eigenvalues) of the equation

Det (X -2 I) =0

and all the corresponding eigenvectors.
The QR Transformation Method is necessary here hecause the

matrix [X] is non-symmetric. J.G.F. Francis (Ref. 18) developed
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this method in analogy to the IR Transformation Method, due to H.
Ruthishauser. 7The QR method is a two step method: first, unitary
transformations are developed and applied to the original matrix so
that it is rendered into Upper-Hessenberg form; second, successive QR
transformations are applied to this matrix so as to force the diagonal
elements to converge to the eigenvalues and the sub-diagonal elements

to converge to zero.

The Associated Eigenvalue Problem

Table 1 below shows the smallest tensile load parameter A
for various combinations of terms for the w function as given by
Equation (18) of Chapter III, The smallest tensile load $ is related

to A as follows (see Equation (19) of Chapter IV):

The evalustion of Table 1 was based on an inner-to-outer

radii ratio of:

a
b 10

and the following representation of u and v: u had 20 power terms

and 2 trigonometric terms (of which the first is 1 and the second is

cos 28); v had 20 power terms and 1 trigonometric term (i.e., sin 28).
In Table 2, the A were evaluated based on the same ratio

o = i% » but with different w and v vrepresentation: both for u



Table 1., Values for A with @ = 1/10 and 20 x 2 Terms for u

and 20 x 1 Terms for v
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Terms for w

Matrix Size

Smallest Positive A

f=2,3

4L = 1,2

f =2,3,h

4 =1,2,3

r= 2935h35

1 = 13293’h

= 2)33h)5:6
4 =1,2,3,4

f= 293)h;5’6
4 = 1)2;3:h35
= 2:3:h95:6
1= la2s3sh:5a6
T =2,3,4,5,6,7
4 =1,2,3,4,5

£ =2,3,4,5,6,7
1= l,2,3,h,5,6
= 2,3,&,5,6,7
L= 1)233;]4‘95,6

h x k4

9x9

16 x 16

20 x 20

25 x 25

30 x 30

30 x 30

36 x 36

42 x 42

No Positive Value for A

One Very Large
Positive Value for A

A =149.12
A= h5,16
A= 42,32
o= L1,7h
A= 41,64
A= h1,22
A= 41,17




58

Table 2. Values of A with « = 1/10

and 10x2 Terms for u and 10x)l Terms for v

Terms for w Matrix Size Smallest Positive A

f=2,3 h x4 No Positive Value for A
L=1,2

£ =2,3,4 9 x9 One Very Large

4 =1,2,3 Positive Value for A
£ =2,3,4,5 16 x 16 A = 47,90

i = 192:3su

f =2,3,4,5,6 20 x 20 A= 43.85

4 =1,2,3,4

f =2,3,4,5,6 25 x 25 A = 41,09

4= 132)33h:5

f = 2,3,4,5,6 30 % 30 A = k0,59

L= 19293:h35:6
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and v, 10 power terms were taken.

The results obtained for the eigenvalue problem depend uwpon the
results obtained earlier for the prebuckle stress distribution. It is
appropriate, therefore, to include here some of the stress distribution
results which illustrate the effect of the various types of functional

representations used.
Table 3 below shows the effect of ratio @ = a/b on the plane
stress solution. The exact values of the compressive and tensile

stress concentration factors are respectively:

SCFC = = 1,00 and SCFt = 3.00 .

Table 3. Effect of @ = a/b on the Plane Stress State

with 10 x 2 Terms for u and 10 x 1 Terms

for v. i
a = afb 8CF SCF,

1/2 -1.0001 3.0001

1/4 -1,0050 3.0056

1/6 -1.0254 3.0372

1/10 -1.0383 3.0601
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Tables 4 and 5 which follow show the effect of the number of

terms taken for u and v on the plane stress solution, for « = 1/10

and «

= 1/20.
Table 4, Effect of Number of Terms for u and v
on the Plane Stress State, with o = 1/10
u s Vv SCFC SCFt
1I0x2 , 10x1 -1.0383 3.0601
I2x2 , 12x1 -1.0277 3.0355
15x2 , 15x1 -1.0123 33,0144
20x2 , 20x1 ~1.0043 3.0048
Table 5. Effect of Number of Terms for u and v
on the Plane Stress State, with « = 1/20
u , v SCF | BCF,
1Is5x2 , 15 x1 -1.0416 3.0649
20x2 , 20x1 -1.0282 3.0359
25 x2 , 25x1 -1.0211 3.0245
3vx2 , Wvx1l -1.0125 3.0142
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An examination of Tables 1 and 2 reveals that, as would be
expected, the eigenvalues decrease as more terms are taken for w. A
comparison of Tables 1 and 2 may appear, however, to be inconsistent
with expectation in that the corresponding values of Table 2 are lower
than those of Table 1, i.e., the computations involving the smaller
total number of terms for u, v and w give lower eigenvalues. This
apparent inconsistency can be resolved, however, when it is recognized
that the prebuckle stress state associated with the "poorer” plane
stress solution likely invelves an inplane distribution which simply has
lower buckling loads.

Note, however, that the difference in the corresponding results
for the two tables is relatively small, This indicates that the use of
u and v terms beyond those of Table 2 do not centribute sgignificant
improvement. The additional terms, in fact, become a computaticnal
liability in the extended nonlinear problem. The numerical errors
associated with an inereasing number of terms has been documented by
Mikhlin (Ref. 19, p. 229).

Comparing the values for X} 1in either Table 1 or Table 2 with
those ¢btained by G. C. Backer (Ref. 20, p. 54), we observe that Backer's

valuegs are consistently lower:

A from Table 2 A from Ref. 20, p. S5k
47.90 43,74
41.09 Lo.79

40.59 39.83
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This can be attributed to the fact that the plate in Ref, 20 is infinite,
while in the present case the plate is finite and clamped at the outer
boundary; i.e., a higher wvalue of the c¢ritical buckling load would be
expected for the finite plate due to the constraining effect of the
clamped boundary. A smaller value for & should bring these results
into closer agreement. However, to obtain good plane stress representa-
tion with a smaller « , a larger number of terms for u and v is
necessary, and this leads to the computational difficulties mentioned
above.

Tables 6 and 7 list the normalized eigenvectors corresponding

to eigenvalues in Tables 1 and 2, respectively.

Solution to the Non-Linear Problem

A solution to the non-linear problem was obtained at the
immediate wicinity of the buckling load So , using the successive
approximation method described in the last section of Chapter IV. The
results of this solution are presented in Figures 3 to 5. In obtaining
these results, the eigenvalue A = 47.90 from Table 2 together with its
corresponding eigenvector from Table 7 were used. The number of terms

representing the displacements were as follows:

Terms in p Teyms in @ Total
u 10 2 20
v 10 1 10



Table 6. FEigenvectors Corresponding to Eigenvalues in Table 1

Q
Values for c.K

A= hg, 12 ho,32

1 0.076160 -0.019325
2 -0.4889%62 0.192353
3 1,0 -0.673795
b -0.647623 1.0

5 -0.020849 -0.533210
6 0.120016 -0,005208
7 -0.213896 0.044261
8 0.092098 ~-0.135165
9 -0.000623 0.155589
10 -0.014273 -0.072973
11 -0,006752 -0.002092
12 0.01875%3 -0,005586
13 -0,012589 0.012545
14 0.024182 -0.020927
15 -0,019150 0.014735
16 0.007108 ~0.,010255
17 0.050169
18 -0, 087010
13 0.094509
20 -0,038001
21 -0.0104h72
22 0.049162
23 -0.,099056
ol 0.095959
25 -0,034998




Table 7. ZEigenvectors Corresponding to Eigenvelues in Table 2

Values for 8k

A= 47.90 41.09
1 0.076434L -0.019482
2 -0,489620 0.192813
3 1.0 =0.67h1h1

I -0.647019 1.0

5 -0.018670 -0.533235
6 0.106928 -0.009158
7 -0,190332 0.079025
8 0.079124 -0.239732
9 =0.000549 0.284831
10 -0.016005 -0.129258
11 -0.001475 -0.001036
12 0.014901 -0.013078
13 -0,012499 0.028210
14 0.023914 ~-0.032130
15 -0.,018366 0.016446
16 0.,006435 ~0,010799
17 0.042646
18 -0.090789
19 0.097185
20 -0,0389%05
21 ~0.010720
290 0.050998
23 -0.103340
24 0.099238
25 -0.036499
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The geometry of the plate for which soclutions were developed is defined

by the ratio values of

a1 t__1
) and 2~ 100 °

The material was defined by a Young modulus of E = 10.3 x 106 psi
and g Polisson ratio of v = 0.3333. These two ratios, which involve
three geometric parameters, b, a and t , allow for the full
mmerical gsolution of the problem under investigation in terms of one
of the above parameters.
Figure 3 shows the mode of the transverse deflections around the
hole boundary. Because of the double symmetry, only one gquarter of the
hole periphery is shown.
The stress concentration factors for a flat infinite tensioned
sheet with a circular hole are -1.C in compression and 3.0 in tension.
In our case, for the selected dimensions of % = i%-, the factors have i
the values of -1.038 and 3.060. Figures 4 and 5 indicate the mammer in ‘
which these factors change, as functions of the transverse deflection
at the respective location.
As noted earlier, the results obtained here are a first approxi-
mation, and they account for transverse deflections in the immediate
vicinity of the buckling leoad. Naturally, the compufational process
could be extended tec obtain results which would be valid for loads
greater than the buckling locad. Clearly, the developﬁent of the load-
transverse deflection behavior would, by this successive approximation

appreoach or by the iteration method, inveolve considerable data processing
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and computer time. For this reason only the results presented in
Figures 3 to 5 were obtained in the present work. Only the immediate
posthuckling trend hag been established here. For a more conmplete
description of the postbuckling behavior, a more efficient computational
scheme must be developed. Future work on the possibility of developing
an efficient and effective perturbation procedure may, for example,
prove worthwhile. TIf such a scheme can be developed, it would appear
to possess the possibility of eliminating the point by point computing
feature of the methods examined in this dissertation. This might be
accomplished by expanding the lead S and the displacement coefficients
ai and c.k in terms of a convenient perturbation parameter. A suit-
able such parameter might, for example, be one of the transverse dis-

placement coefficients {see Appendix D).

Conclugions

The postbuckling behavior at the edge of a circular opening in
a large rectangular unidirecticnally tensloned sheet was investigated.
The non-linear von Karman theory was used in the analysis. The local
character of the buckling phenomenon made pessible the replacement
of the rectangular outer boundary with a circular one, adequately
remote from the hole boundary. The process of solution required that
an assocliate eigenvalue problem be solved firgt. Thils yielded values
for the critical load, which were found to be compatible with values
obtained in previous investigation, The lowest tensile buckling load
parameter obtained was lo = 40,59, The approximetion series for

the u, v or w displacements involved the product of a power series
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in the radial variable p and a trigonometric series in the angle 8 .

The flat gtate of an infinite rectangular sheet with a hole
can be best represented by the configuration in Figure 1 if the ratio
« of the inner to outer radii is made small. However, the smaller «
is, the more terms have to be included in the geries representation of
the in-plane displacements u and v , and this raises problems of
computer accuracy and error accumulation.

For the numerical solution, best results are obtained when the
two series, whose product represents the transverse deflection w ,

have the same number of terms.

Recommendaticns for Fubture Research

The postbuckling behavior was determined herein for the eigen-
value associated with AO = 47,90, Tt is recommended that future work
be done to determine the postbuckling behavior associated with lower
values for A, e.g., lo = 40.59 or lo = 41.09. This should provide
a somewhat improved estimate of the actual postbuckling response at the
hole boundary.

The perturbation approach, as discussed elsewhere in this
chapter, should be developed and a computational scheme worked out, so
that the lengthy point by point determination of the load-deflection
curve can be avoided. The choice of a proper perturbation parameter
must be given due considerstion, since the existence of the Taylor
expansion in terms of the perturbation parameter depends on the nature
of this parameter.

Results of the kind obtained in this dissertation could be
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indepehdently obtained by preparing and solving a finite element model
of the plate under congideration. Comparing the results would indicate
the relative efficiency and accuracy of the analytic and finite element
solutions.

Of great importance would be to perform a series of experiments
with large tensioned sheets having a central circular hole, and compare
the experimental and the analytical results for the transverse
deflection, the stress distribution around the hole and the effect of

the postbuckling bending on the stress concentration factors.
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AFPENDIX A

APPLICATION OF KIRCHHOFF'S HYPOTHESIS TO THE

NON-LINEAR PIATE PROBLEM

Iet 50 be the location radius before the deformation of a

point P® at distance z from the midsurface;

TLet 5; be the location radius before the deformation of the
point Pg which is the normal projection of the point P° onto the
midsurface:

Tet r and ;P be the location radii after the deformation of

PO

and P;, respectively; i.e., poing P° moves to position P and
point P; moves to position Pp ,

With these definitions, the following equations hold:

r -1 ={(r,8,z) (A-1)
r -7 =u(r,8; z =0) (a-2)
P P
where U and 1 are the displacement vectors EUE and PPPP

{see Figure Al). The Kirchhoff hypothesis is expressed by:

r = T, * zn (A-3)

where n is the unit vector normal to the deformed midsurface at



T2

0 PO Midsurface before
P P deformation

Figure Al. Kirchhoff's Hypothesis
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Pp' Algso, from Figure Al it is obvious that

=0 =0 - -
r —rp+z,]z (A-}4}

Substituting Equations (A-3) and (A-4) into Equation (A-2) and then

subtracting Equation (A-2) from Equation (A~1l), we get:

¥r,8,2) - i(r,8) = (i - 7)) (a-5)

The vector n 1s a unit vector defined by

lEh

(2-6)

=1
]
=

where N is given by the wvector product

ﬁ=_§1‘2x_gen . (A'T)

The vector fp is given by

ro= vy +vfyrwi . (A-8)

The derivatives of fp will be:



Th

dr
P _ o4 I o+
dr (1 + u,r)Jr v,rJB v

(2-9)

J
y Tz

ar
T = (g - Mt rruty OF vw o,

Taking the vector product and retaining only terms of the lowest order

results in:

N = - ] = + i -
N ™ _J W,B Jg tri, {A-10)

The first two terms are negligible in comparison to the third in the

above equation, based on the assumption in Chapter I that

W
W o << 1l and —-;E << 1. Consequently we have
2
|5 =r
and.
- - Yo - -
n=-w_ Jj =223 +3 . (A-11)
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APPENDTX B

EXPRESSIONS FOR THE MATRICES

USED IN CHAPTER IV

Hxi Hxi
H . H .
¥i ¥i

2 m_m
I I {u i[l(vm + v, +mxmi) X1
§=0 p=l-0¢
x i 1-v } *
ae
%o %o 3(1p) J ¥
2 v D.
X J 1 X j 1=y (73
uy (—-—-— v —( +
J.f {,Bpl-p Yo V.8 o \p
=0 p=1l-v
w=au =a,p cos 2(n-1)8 , then
=-1y =28 L)
b e 5 p *% ¢

5
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jus]
I

ae DT et (2 e 2 B )

8=0 p=1-c

5 I

R e A

vi
6=0 p=1-&
- vy 9 l-p} do @8
X _ du . _ ov
S R
x ¥
¥, 1 =1,2,3,..., 1’.

x denotes the gpecific value of 1 with respect te which the

derivative B/aai is taken.

¥y J = 1,2,3500.5 J.

y denotes the specific value of J with respect to which the

derivative B/Bbj is taken.

HXi is a square I'x 1T’ symmetric matrix,

Hyj is a square J X J symmetric matrix.
H . = H, H . =H, .
yi jx and XJj 1y

m s gi = 1,2,3,..., M.

I;. a P- = 132,3300-, P.



@ .
{G}={ Gy l Gy }

o =(1-02) I2ﬂ|:1+(1-3d2)00329]uxd9 .

X
0
¥

o (1) f[(l+3oz) in 28] s .

{%1%2} .

{“1{1“1{2} - {(QlclckQ)x ‘ (cklckz)y}

2 O 2
(aasa) = § | o[+ w?)]
%1%2/ " e (1 )2+W,p
w2
x( )2 8
+ 1 - R
usp [ P W:p 1-p

1-v X }
tE—n W W dpdé
1-p 7,8 ",p ,© g
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=0 p=lew (1-p)

- [ e | we}dpde
Py

v
l-p v sP

e
{9‘}={ai | b, }

[(a) | = [M(a.)]T :

2m 0 2
" - _ z .2 .z K
Mo = J I { gl(:L P) Yop w}:p 1-p ",0 V.8
8=0 p=l-0¢
1 (z K Zz k }
+ = + a
2 g3 Wsp W,e W,e W,p) g
=-u (u + v )
g 3P 1-p »0 ?
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z,k = 1,2,3,..., K
z denotes the specific value of k with respect to

which the derivative a/ack is taken.

is & square K x K symmetric matrix.

o 0
_ j z .k ( z .k z _k )
= ~{1-p) w W + v +
I { ( P) 3PP [of1] w:p W,pp sPP wap
6=0 p=l-
1 [ z _k ( z K z k )
1-p W,p W:p v W’pp ’99 nge W,pp

<+

k
2(1=-v Z W ]
(1-v) ¥ 08 ¥ 0

k

1
w
s

(1-p)

+ - 2(1-v)

Z 2
+
7 [“,p “%ee ¥ o8
k z .o

Z
(W,pB Ve Vo W,pe)]

1 [ Z k z _k ]}
- —_— W + 2{1=v dp ae
(]_..p)3 , 89 W,ee ( ) W)e w39 P



{%l%ecks} .

en 0 -
(%1%201«:3)Z = .[ .[ {' “Tp [(l'p) “'?p * _f.i_&]

8=0) p=1-c

W
0, "8

z 2w2pw
- [
»6 1l-p

(1-p)3

]}d‘pde
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APPENDIX C

INTEGRALS USED IN EVALIUATING

THE MATRIX LIEMENTS IN CHAPIER IV

m
J' K -
I:-J-de--log (l-x) - z -
k=1
|x] <1
n m-1
I 2S dx=mlog(l-x)+—}-c——+z s
(1-x)° 1-x K
k=1
x| <1

x 1l P
j——-——-——-dx =-5m (m=1) log {lex) + ———

(1-::)3 2{1-x) 2

m=1 -2
mx m! m-l!
© 2(1-x) '2 2k x
k-1

x| <1
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on T When n = 2
L, I cos 28 cos 2(n-1)9 49 =
0 0 when n # 2
en m when g = 1
5. I gin 28 sin 296 A6 =
0 O whenq>1
2n
6. J cos 2{(n-1)8 cos 2(4~1)8 cos 2 (Lt - 1)8 as
0
ﬂ -l 4= .
5 whenn - 1= 22 ﬁﬂ, or n-1=4+ Lz 2

il

m when alse L =1 or Lz =1

I

2n when also 4 =1 and LZ =1

0 otherwlse

2m
7. I cos 290 cos 2(4-1)6 cos 2 (LZ - 1)8 a8
0

when q = |4 - Lz| or q=4+ Lz -2

n A

= | m whenalso 4 =1 or Lz =1

0 otherwise




am
8. I cos
O
n
2
= | n
0
am
. J cos
0

3
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2(n-1)8 sin 2(4-1)0 sin 2(&2-1)9 ae

when n - 1 = IL-LZ| and n-17#4+ LZ -2

or n-1F%# IL-Lﬁl and n-1l=4+4 -2

]

when n=1 and 4 42 1

n
'_I

when L =1 or LZ

or otherwise

298 sin 2(4-1)8 sin E(Lz-l)e ae

when q = |4 - Lzl and q ¥4 + t, -2
or a # |4 - &Zl and g =4 + Lz -2
when 4 =1 or Lz =1

or otherwise



APFENDIX D
A PERTURBATION APPROACH

The non-linear equations to be solved are Equations (11) and

(12) of Chapter IV, which are given below in tensorial notation:

+= g e e =Pag, D-1
Hy1 23 72 85pq % g 5 (0-1)
M a + e B +3h e. e c_ =90 {D-2)
mik %1 %k mk %k 7 2 mpan “p %q “n
where
3 2
- 8t7 =_l_(3)
P =300 and e =Ty -

The load P and the coefficients ag and & may be expressed
in the form of the Taylor expansions in terms of a perturbation parameter

e

P=P +eP + 2 L (p-3)
aj_ = a§0)+ [ agl) + 82 aiz) Foueen (D'L")
o = cé°)+ € cél) + g2 cie) + ..., (D~5)

Let us associate the perturbation parameter € with the transverse

deflection of the plate, and in fact identify it with the first



coefficient cl s

Thig choice for €

QK:
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i.e

€ = ¢ (D—6)

implies the following conditions on P, a; and

P(-e) = P(e) (D-7)
ay(- €)= a,(e) (p-8)
o (- ) = - o (o) (p-9)

The physical meaning of these conditions is that up and down transverse

displacements are equivalent so far as the in-plane load and displace~

ment distributions are concerned {conditions (D-7) and (D-8)), and that

the sign reversal of one transverse displacement coefficient {in this

case cl) must involve the sign reversal of all remaining transverse

displacement coefficients, in order for the total transverse displace-

ment to switch from an up deflection to a down deflection while preserv-

ing its absolute value {condition (D-9)).

Coupling the conditions (D-7), (D-8) and (D-9) to Equations

{D-3), (D-4) and (D=5}, we get:

2 L
P o+ P, te P+ ... (D-10)

=a{® 4 e® B My L (D-11)



(D-12)

Equation (D-12) is always true for k = 2, It can be valid

also for the value k = 1 if we keep in mind that

3x0+€5x0+....

]

= +
cl x 1l €

which is the same as

c£l) =1 c§3) = c£5) = vews =0

Obviously, expressions (D-13)} and {D-6) are identical.

(D-13)

(D-1k}

Substituting now the expressions for P, a; and e from

Equations (D-10), (D-11) and (D-12) into the original non-linear
Equations (D-1) and (D-2), and then gathering the terms with the
power in the perturbation parameter €, we obtain:

e [H.. ago) - P G.]
Ji i o J

bl |

MERCING)

+ e® [H,_ 22y _p oo 4
ji i Jpa P

g

...I.
[y
=
—
——
£
]
|.d
[rp]
+
M=

(90 ]

same

(D-15)
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A, ol ren, o] 0-16)

mik 1

[ (6 ) ) 3y oY

mik i

+2n o1 (1) c(1)]
2 mpgn P q n

(o) ( (2) {3) (b)) (1) (5)
° Ck5)+ai % T8y °k)+33mk%

N ACIRCINCO RIS

o (WY)

Since the magnitude of the parameter € is arbitrary,
Eguations (D-15} and (D-16) require that each expression in square
brackets be equal to zero. If we retain terms of up to the, say,
fifth power in € and neglect the remaining terms, +the Equations
(D-15) and (D~16) will yield a sequence of three pairs of linear
algebraic equations in the unknowns P, ay and S (with the
exception of cl). |

The first pair of equatiocns is:

g, a9 - p =0

. G.
ji i o 3

(e o < 2,060 -

(D-17)
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This system of equations is equivalent to the eigenvalue scolution
described in Chapter IV (see Equations {13) and (14) of Chapter IV).

The solution is performed in three steps.

(o)

1. The unknowns ay are expressed in terms of P0 from

the first equation:

-1

alo) o p (H.. G.) (D-18)
i o NJiT)
2. This expression for ago) is used in the second equation:
-1 e ) (1)
F r— = -
(Mmik B51% Y F P/ % T (p-19)

(1)

3. The K x K matrix premltiplying S iz made singular by
solving for the eigenvalues of Po‘ The solution relevant to our
problem is the least positive eigenvalue of Po together with its
corresponding eigenvector, normalized w.r.t. the first component, i.e.,
if clgl) are the elgenvector components, we will have cil) = 1.

The second pair of equations derived from Equations {D-15)

and {D-17) is:

(2) 1 (1) (1) _
g2y m P Gy ¥ 580y ey =0
D ) 9 P o
1 (1) (1) (1) _
+ -—2- hmpq_n CP Cq cn = 0
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me steps of the soluiion of this system of equations are as

follows:
1., Express a§2) in terms of P2 from the first equation:
(2) _ ( -1y 1,1 (1) (1
o =B Gy 65) - 5 M 80 % 2
or
(2) _ L,
a;” =P, A, - S A (D-21)
2. Bubstitute for a£2) into the second equation:
(3) ( _1,A
Yo % +Mmik -5 A (D-22)
1 (1) (1) (1) _
+ 3 hmpqn cp cq e, = 0

where Y is the singunlar X x X matrix from Equation (D - 19):

M (O) +eB

Ymk mik mk

3. Recalling from Equation (D-14)} that CiB) = 0, the above

Equation (D-22) becomes:

YITI.CY CC(V3) * P2 ( III.lk Al l)) % ’ c.l'(il)

Lly JD @y,
2 'mpan % Sq n



or

(3) - _
Y o YE,F - Fo= 0 , @=2,3, .,.,k (D-23)

4, The matrix L is now of X x (K-1) size, and it can be
further reduced into a sqguare (K-1) x (X~1) or @ x &« matrix by separating

the first equation implied in the m Equations (D-23):

Yoy c§3) + P, Fy - Fi =0 (D-2k)
v, o3 i p oo =0 (D-25)
Bx ~« 2°B g -7

B=2,3, oc-o,Ko

(3)

5. The unknowns e, gre expressed in terms of P2 from

Equation (D-25):

(3) o -1 ( ’ )
cy = Ygo \Fg = F, Ty (D-26}
The mattix Yﬂa is of one order lower than the singular matrix Ymk'
If the matrix Ymk has K different eigenvalues - which is the case
in the problem considered in this dissertation - the (K-1) x (K-1)

matrix YBG will always be non-singular and, therefore, invertible.
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6. Equation (D-26) is inserted into Equation {D-24):

—l( ‘- ) !
Y:La* YBCY FB PEFB + PQF]. Fl o .,

Pz(Fl'YlaYéiFB) =T - YlaYéiFé

or

Hence

P, = Ql/Ql (D=27)

7. The value of P from Equation (D~27) is used in

2
2)

Equations (D-21) and (D-26) to obtain the values for ag and ¢

(3)
o

respectively.
The third pair of equations, or for that matter, any subsequent
pair of equations derived from the Equations (D-15) and (D-17), can be

solved in a similar mahner for the unknowns:

PJ+ ’ agh) 1 cés) ~ third pair
P6 s a£6) s 0(7) fourth pair

agen-2) s Q(En-l) nth pair .
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