5-LIST-COLORING GRAPHS ON SURFACES

A Thesis
Presented to
The Academic Faculty
by
Luke Jamison Postle

In Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in
Algorithms, Combinatorics, and Optimization

School of Mathematics
Georgia Institute of Technology
December 2012

5-LIST-COLORING GRAPHS ON SURFACES

Approved by:

Dr. Robin Thomas, Advisor
School of Mathematics
Georgia Institute of Technology
Dr. Xingxing Yu
School of Mathematics
Georgia Institute of Technology

Dr. William T. Trotter
School of Mathematics
Georgia Institute of Technology

Dr. Zdenek Dvorak
Department of Computer Science Charles University

Dr. William Cook
School of Industrial and Systems
Engineering
Georgia Institute of Technology
Date Approved: August 15, 2012

To my parents, for educating me in what truly matters.

ACKNOWLEDGEMENTS

First off, I would like to thank my advisor Robin Thomas for all his encouragement and support during the writing of this thesis. I had the crazy idea just six months ago that I would do entirely new research for this thesis. Robin thankfully did not discourage this idea but harnessed and channeled my energy into something much greater than it would have ever been without him. He showed remarkable patience with me as well an unending curiosity to continue to tackle new problems as they arose. I would also like to thank Robin for all his years of guidance, for encouraging me to travel and to broaden my research collaborations, and for prodding me to tackle hard problems. Robin's constant professionalism has been an example to me to always strive to be better at what I love and for that I am grateful as well.

I would also like to acknowledge my colleagues who collaborated with me during my years at Georgia Tech. First, I would like to thank Reinhard Diestel for allowing me to visit him for two months in Hamburg, Germany. I would also like to thank Dan Kral and Zdenek Dvorak for accommodating me during my numerous trips to Prague to conduct research with them. I would especially like to acknowledge Zdenek for collaborating with me on coloring and list-coloring problems as the techniques I learned from him were an invaluable preparation for this thesis. I am also thankful to Xingxing Yu, Tom Trotter and Bill Cook for serving on my thesis committee and for their wonderful teaching skills. I am also grateful to Carsten Thomassen for his brilliant ideas which opened up the areas of research on which this thesis is based.

I would also like to thank Carl Yerger, Noah Streib, Arash Asadi, Nate Chenette and Daniel Dadush for collaborating with me on various projects over the years as well as being excellent friends. From the first summer I arrived at Tech, Carl, Nate,

Arash and Noah, as well as Noah's future wife Amanda, made me feel right at home. Since then I have never once regretted my decision about coming to Tech, nor the many games of catch we played in the subsequent years. Carl especially has proved a constant source of entertainment and friendship; he has made me a better person by encouraging the various administrative qualities which I so lack and with which he is generously endowed. I am also indebted to Daniel for his many discussions over the years, especially in regards to my thesis, which kept me on track in my academic work and without which I doubt I would have finished in time.

A further acknowledgement is warranted to all of the friends I have made at Tech since then and without whom my time there would not nearly been as fun. In particular I would like to thank my office mate Peter Whalen as well as Geehoon Hong, Robert Krone, Chun-hung Liu, Albert Bush and Steven Ehrlich for all of the cards games we have played as well as those we created. Of course, my time here would not have been what it was without Megan Hodge. I thank her for all her many conversations, encouragement and support. She taught me how to be a better person time and again. I could not have made it through the last few years without her.

I should also mention my unending gratitude to Bob Kinney for being my benefactor during my high school years and my friends Eric Rogstad, Rachel Turbiak and Chad Watkins who made me who I am today. Moreover, my life would be very different now if I had not been a participant in the Budapest Semester in Mathematics and been a student of Andras Gyarfas to whom I owe my love of combinatorics. I would also like to thank my undergraduate advisors, Jonathan Senning and Dale Pleticha, for their council and wisdom during my years of study at Gordon College as well as my friends there, Joshua Nasman and Bethany Joy Floch, for keeping me motivated even in the rough times.

Finally on a more personal note, I would like to thank my family, in particular my parents, siblings, and grandparents. I appreciate how every one of my siblings

- Michelle, Paul, and Alicia - have never questioned my pursuit of education but instead encouraged it since I was a child. I am especially grateful to my grandparents - Frank and Edith Kugler - for the many car rides during my high school years and wonderful discussions that I will never forget. Thank you for being invested in my life - I miss you poppy.

Of course, I would like to thank my parents for always talking to me, always being patient with me and always caring about me. Without them truly none of this would be possible. I would especially like to thank my father for encouraging my academic studies and for listening to many dull conversations about the mundane details of my life. He has always kept me on top of things and I do not know where I would be without him. My mother, meanwhile, has always provided the emotional encouragement and philosophical tinge to my life and without her love, I would not be what I am today.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
SUMMARY x
I INTRODUCTION 1
1.1 Graph Theoretic Preliminaries 1
1.2 Graphs on Surfaces 2
1.3 Coloring Graphs on Surfaces 6
1.4 List-Coloring Graphs on Surfaces 8
1.5 Extending Precolored Subgraphs 11
1.6 5-List-Coloring with Crossings Far Apart 15
1.7 Exponentially Many Colorings 15
1.8 Main Results 16
1.9 Outline of the Proof 20
II TWO PRECOLORED VERTICES 22
2.1 Introduction 22
2.2 Two with Lists of Size Two Theorem 23
2.3 Fans and Bellows 24
2.4 Critical Lemmas 30
2.5 Proof of the Two with Lists of Size Two Theorem 31
2.6 Accordions 36
2.6.1 Coloring Extensions 36
2.6.2 Governments 37
2.6.3 Accordions 38
2.7 Harmonicas 43
2.8 Orchestras 50
2.9 Reducing a Precolored Edge to a Government 64
2.10 Two Confederacies 73
2.11 Bottlenecks 86
III LINEAR BOUND FOR ONE CYCLE 88
3.1 Introduction 88
3.2 Critical Subgraphs 89
3.3 Critical Cycle-Canvases 91
3.3.1 Deficiency 92
3.4 Linear Bound for Cycles 94
3.4.1 Proper Critical Subgraphs 97
3.4.2 Dividing Vertices 99
3.4.3 Tripods 101
3.5 Exponentially Many Extensions of a Precoloring of a Cycle 110
3.6 Logarithmic Distance for Cycles 113
3.6.1 Critical Easels 115
3.7 Critical Path-Canvases 116
3.7.1 Deficiency 117
3.8 Linear Bound for Paths 122
3.9 Logarithmic Distance for Paths 124
3.10 Bottleneck Theorem for Two Paths 126
3.11 Steiner Trees 136
3.12 Bottleneck Theorem for Many Paths 137
IV TWO PRECOLORED TRIANGLES 139
4.1 Introduction 139
4.2 Coloring a Shortest Path 140
4.3 Planarizing a Prism-Canvas 145
4.4 Bands and Band Decompositions 146
4.5 Bands for Accordions 154
4.6 Bands for Harmonicas 163
4.7 Magic Colorings with Tetrahedral Bands 183
4.7.1 Magic 1 186
4.7.2 Magic 3 188
4.8 Magic Colorings with Octahedral Bands 193
4.9 Magic Colorings with Hexadecahedral Bands 197
4.10 Proof of the Two Precolored Triangles Theorem 203
V A GENERAL LINEAR BOUND 204
5.1 Introduction 204
5.2 A Linear Bound for the Cylinder 204
5.3 Easels for Cylinder-Canvases 214
5.4 Exponentially Many Extensions of Two Precolored Cycles 215
5.5 Steiner Frames 218
5.6 Hyperbolic Families of Graphs 220
5.6.1 Logarithmic Distance, Exponential Growth for Disc-Excisions 221
5.6.2 Linear Bound, Logarithmic Distance and Exponential Growth for Cylinder-Excisions 221
5.7 General Linear Bound for Hyperbolic Families 223
5.7.1 Finitely Many Members of a Hyperbolic Family on a Fixed Surface 224
5.7.2 Logarithmic Distance and Edge-Width 225
5.8 Applications to 5-List-Coloring 226
5.8.1 Finitely Many 6-List-Critical Graphs on a Fixed Surface 227
5.8.2 Extending Precolorings: Albertson's Conjecture on Surfaces 227
5.9 Applications to Exponentially Many 5-List-Colorings 230
5.10 Conclusion 232
VITA 241

SUMMARY

Thomassen proved that there are only finitely many 6-critical graphs embeddable on a fixed surface. He also showed that planar graphs are 5-list-colorable. This thesis develops new techniques to prove general theorems for 5 -list-coloring graphs embedded in a fixed surface. Indeed, a general paradigm is established which improves a number of previous results while resolving several open conjectures. In addition, the proofs are almost entirely self-contained.

In what follows, let Σ be a fixed surface, G be a graph embedded in Σ and L a list assignment such that, for every vertex v of $G, L(v)$ has size at least five. First, the thesis provides an independent proof while also improving the bound obtained by DeVos, Kawarabayashi and Mohar that says that if G has large edge-width, then G is 5 -list-colorable. The bound for edge-width is improved from exponential to logarithmic in Euler genus, which is best possible up to a multiplicative constant. Second, the thesis proves that there exist only finitely many 6-list-critical graphs embeddable in Σ, solving a conjecture of Thomassen from 1994. Indeed, it is shown that the number of vertices in a 6 -list-critical graph is at most linear in genus, which is best possible up to a multiplicative constant. As a corollary, there exists a linear-time algorithm for deciding 5 -list-colorability of graphs embeddable in Σ.

Furthermore, we prove that the number of L-colorings of an L-colorable graph embedded in Σ is exponential in the number of vertices of G, with a constant depending only on the Euler genus g of Σ. This resolves yet another conjecture of Thomassen from 2007. The thesis also proves that if X is a subset of the vertices of G that are pairwise distance $\Omega(\log g)$ apart and the edge-width of G is $\Omega(\log g)$, then any L-coloring of X extends to an L-coloring of G. For planar graphs, this was
conjectured by Albertson and recently proved by Dvorak, Lidicky, Mohar, and Postle. For regular coloring, this was proved by Albertson and Hutchinson. Other related generalizations are examined.

CHAPTER I

INTRODUCTION

In this chapter, we will provide the graph theoretic context of the results to follow. In Section 1.1, we give descriptions of the basic terminology and structures used for our results. In Section 1.2, we explain how graphs can be embedded on surfaces other than the plane. In Section 1.3, we present an overview of the history of coloring graphs on surfaces, especially in regards to 5 -coloring. In Section 1.4, we introduce list-coloring and begin to examine the history of 5 -list-coloring graphs on surfaces. In Section $1.5,1.6$ and 1.7 we review results about extending colorings of precolored subgraphs, 5-list-coloring graphs with crossings, and proving the existence of exponentially many 5 -list-colorings. In Section 1.8, we state the main results of this thesis. In Section 1.9, we provide an outline of the proof of the main results.

1.1 Graph Theoretic Preliminaries

We follow the exposition of Diestel in [16]. A graph is an ordered pair $(V(G), E(G))$ consisting of a nonempty set $V(G)$ of vertices and a set $E(G)$ of edges, which are two elements subsets of $V(G)$. Thus, we do not allow loops or multiple edges; that is, all graphs in this thesis are assumed to be simple.

If $e=\{u, v\}$ is an edge where $u, v \in V(G)$, then we write $e=u v$ and say that u and v are the ends of e. If u is an end of e then we say that e is incident with u and vice versa. If $u, v \in V(G)$ such that there exists $e \in E(G)$ with $e=u v$, then we say that u and v are adjacent and we denote this by writing $u \sim v$.

Two graphs G and H are isomorphic if there exists a bijection f between $V(G)$ and $V(H)$ such that any two vertices u and v in G are adjacent if and only if $f(u)$ and $f(v)$ are adjacent in H. If $v \in V(G)$, the neighborhood of v, denoted by $N(v)$, is
the set of all vertices in G adjacent to v. The degree of a vertex v , denoted by $d(v)$ is the size of its neighborhood.

Graphs are usually represented in a pictorial manner with vertices appearing as points and edges represented by lines connecting the two vertices associated with the edge. One class of graphs is the class of complete graphs which consist of graphs with vertex set V and an edge joining every pair of distinct vertices in V.

For a graph $G=(V, E)$, if $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ and for every edge $e^{\prime} \in E^{\prime}$ both ends of e^{\prime} are in V^{\prime}, then $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G. Given a graph $G=(V, E)$, if X is a subset of vertices, we denote by $G[X]$ the subgraph with vertex set X and edge set containing every edge of G with both ends contained in X. Then $G[X]$ is the graph induced by X.

A graph G is connected if there exists a path between any two vertices of G, and disconnected otherwise. A subgraph H of G is a connected component of G if H is connected and there does not exist an edge $e \notin E(H)$ with an end in $V(H)$. A vertex v of a connected graph G is a cutvertex if $G-v$ is disconnected.

We say that $\left(G_{1}, G_{2}\right)$ is a separation of G if G_{1}, G_{2} are edge-disjoint subgraphs of G whose union is G. We say $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|$ is the order of a separation $\left(G_{1}, G_{2}\right)$ of G. We say that a cutvertex v of G divides into two graphs G_{1}, G_{2} if $\left(G_{1}, G_{2}\right)$ is a separation of G such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$.

The distance between two vertices u and v of G, denoted by $d(u, v)$, is the the length of the shortest path between them. We let $N_{k}(v)=\{u \in V(G) \mid d(u, v)=k\}$, that is the vertices at distance k from v. We say that $B_{k}(v)=\{u \in V(G) \mid d(u, v) \leq k\}$, the set of vertices distance at most k from v, is the ball of radius k centered at v.

1.2 Graphs on Surfaces

A surface is defined to be a connected, compact, 2-dimensional manifold with empty boundary. We follow the exposition of Mohar and Thomassen [41] to describe how
we view graphs on surfaces and ask the reader to refer to this text for further details. Two surfaces are homeomorphic if there exists a bijective continuous mapping between them such that the inverse is also continuous. Let X be a topological space. An arc in X is the image of a continuous one-to-one function $f:[0,1] \rightarrow X$. We say a graph G is embedded in a topological space X if the vertices of G are distinct elements of X and every edge of G is an arc connecting in X the two vertices it joins in G, such that its interior is disjoint from other edges and vertices. An embedding of a graph G in topological space X is an isomorphism of G with a graph G^{\prime} embedded in X.

A topological space X is arcwise connected if any two elements of X are connected by an arc in X. The existence of an arc between two points of X determines an equivalence relation whose equivalence classes are called the arcwise connected components, or the regions of X. A face of $C \subseteq X$ is an arcwise connected component of $X \backslash C$. A 2-cell embedding is an embedding where every face is homeomorphic to an open disk.

If G is a graph embedded in the plane, then we say that G is a plane graph. In that case, there exists an infinite face of G. If G is connected, we say that boundary walk of the infinite face of G is the outer walk of G. We say an edge e of G is a chord of the outer walk of G if the edge does not lie on the boundary of the infinite face but both its ends do.

A curve in X is the image of a continuous one-to-one function $f: S_{1} \rightarrow X$ where S_{1} is the unit circle. A curve is two-sided if traversing along it preserves orientation and one-sided otherwise. A surface is nonorientable if there exists a one-sided curve in the surface. A surface is orientable if all curves are two-sided.

A useful method for constructing a surface is as follows. Let \mathcal{P} be a collection of pairwise disjoint regular polygons in the plane such that the sum of the number of edges in the collection of polygons is even, every edge has the same length and is oriented from one of its end, called the tail, to the other, called the head. Now
identify pairs of edges so that heads are identified with heads and tails with tails. Consequently, all points in the union of these polygons have open neighborhoods homeomorphic to the plane and hence their union is a surface. It can be shown - see [41] - that every surface is homeomorphic to a surface constructed from such a set \mathcal{P} where all the polygons are triangles.

All surfaces have been characterized by the classification theorem of surfaces. Before we state the theorem, some more definitions are in order. The most basic surface that is considered in the classification theorem of surfaces is the sphere, denoted S_{0}. The sphere can be constructed by letting \mathcal{P} be a collection of four equilateral triangles and identifying them to yield a regular tetrahedron.

Given a surface Σ, there exists a set of operations to yield a different, and in a sense we will define later, a more complicated surface. In particular, these operations are adding a handle, adding a twisted handle or adding a crosscap.

First let us define adding a handle. Let T_{1} and T_{2} be two disjoint triangles in S all of whose side lengths are the same. If Σ is orientable, then orient the edges of T_{1} and T_{2} so that the directions of T_{1} 's edges are the opposite of T_{2} 's when each is viewed in a clockwise direction. Then if we remove the interiors of T_{1} and T_{2} and identify the edges of T_{1} to the edges of T_{2}, this creates a new surface Σ^{\prime}. We say that S^{\prime} is obtained by adding a handle to Σ. Notice that we can only add a handle to an orientable surface.

Suppose that S is orientable and the clockwise orientations of T_{1} and T_{2} are the same. If we remove the interior of T_{1} and T_{2} and we identify the edges of T_{1} to the edges of T_{2} then the resulting surface, call it $\Sigma^{\prime \prime}$, is the result of adding a twisted handle to Σ. If S is nonorientable, then any handle added is a twisted handle. Finally, suppose that we have a simple closed disk, call it T. Suppose that we delete the interior of T from S and identify diametrically opposite points of T. This adds a crosscap to Σ. It can also be shown that adding two crosscaps is equivalent to
adding a twisted handle. We can now state the classification theorem of surfaces. It states that every surface is homeomorphic to either S_{g}, the surface obtained from the sphere by adding g handles, or N_{k}, the surface obtained from the sphere by adding k cross-caps.

Using this terminology, $S_{0}=N_{0}$ is the sphere, S_{1} is the torus, N_{1} is the projective plane and N_{2} is the Klein bottle. Define the Euler characteristic of a surface Σ to be $\chi(\Sigma)=2-2 h$ if $\Sigma=S_{h}$ and $\chi(\Sigma)=2-k$ if $\Sigma=N_{k}$. Also, define the Euler genus of surface S, denoted by $g(S)$, to be $g(\Sigma)=2-\chi(\Sigma)$. In this whenever we refer to the genus of a surface, we shall mean the Euler genus. We can now state Euler's formula for surfaces.

Theorem 1.2.1 ([41]). Let G be a graph which is 2 -cell embedded in a surface S. If G has n vertices, q edges and f faces in Σ, then

$$
n-q+f=\chi(\Sigma)
$$

Another important property of graphs embedded in surfaces is that curves in the surface may have different properties. A homotopy between two functions f and g from a space X to a space Y is a continuous map G from $X \times[0,1] \rightarrow Y$ such that $G(x, 0)=f(x)$ and $G(x, 1)=g(x)$. Two functions are homotopic if there is a homotopy between them. A contractible cycle of a graph embedded in a surface is a cycle in the graph which is the image of a closed curve homotopic to a a constant map. We call it contractible because it can be contracted to a point. However, on some surfaces there also exist cycles which are noncontractible.

One metric useful in the study of embedded graphs is the property of edge-width. The edge-width of a graph G embedded in a surface S, denoted by $e w(G)$, is the length of the smallest noncontractible cycle in G.

1.3 Coloring Graphs on Surfaces

Graph coloring is an area of study in graph theory that has received much attention. Indeed, mathematicians have long been interested in coloring maps. A natural question is to ask what is the fewest number of colors so that the regions or countries of a map that touch one another have different colors. For planar maps, it was long conjectured that four colors suffices. The Four-Color Theorem [7, 8, 44], proved in the 1970s, settled this conjecture in the affirmative.

Definition. Let X be a nonempty set. We say that a function $\phi: V(G) \rightarrow X$ is a coloring of G if for all $e=u v \in E(G), \phi(u) \neq \phi(v)$. We say that a coloring $\phi: V(G) \rightarrow X$ is a k-coloring if $|X|=k$. We say that a graph G is k-colorable if there exists a k-coloring of G. The chromatic number of G, denoted by $\chi(G)$, is the minimum k such that G is k-colorable.

Mathematicians have wondered what generalizations of the Four-Color Theorem might be true. A natural class of graphs to determine the coloring properties for is graphs embedded in a surface. A fundamental question in topological graph theory is as follows: Given a surface Σ and an integer $t>0$, which graphs embedded in Σ are t-colorable? Heawood proved that if Σ is not the sphere, then every graph in Σ is t-colorable as long as $t \geq H(\Sigma):=\lfloor(7+\sqrt{24 g+1}) / 2\rfloor$, where g is the Euler genus of Σ.

Ringel and Youngs [43] proved that the bound is best possible for all surfaces except the Klein bottle. In 1934, Franklin [31] proved that every graph embeddable in the Klein bottle requires only six colors, but Heawood's bound gives only seven. Dirac [17] and Albertson and Hutchinson [2] improved Heawood's result by showing that every graph in Σ is actually $(H(\Sigma)-1)$-colorable, unless it has a subgraph isomorphic to the complete graph on $H(\Sigma)$ vertices.

Thus the maximum chromatic number for graphs embeddable in a surface has been
found for every surface. Yet the modern view argues that most graphs embeddable in a surface have small chromatic number. To formalize this notion, we need a definition. We say that a graph G is t-critical if it is not $(t-1)$-colorable, but every proper subgraph of G is $(t-1)$-colorable. Using Euler's formula, Dirac [18] proved that for every $t \geq 8$ and every surface Σ there are only finitely many t-critical graphs that embed in Σ. By a result of Gallai [33], this can be extended to $t=7$. Indeed, we will see in a moment that this extends to $t=6$ by a deep result of Thomassen.

First however, let us mention a different approach used by Thomassen to formalize the notion that most graphs on a surface are 5-colorable. He was able to show that graphs with large edge-width, that is graphs in which local neighborhood of every vertex is planar, are 5-colorable. Thomassen proved the following.

Theorem 1.3.1. If G is a graph embedded in a surface Σ such that ew $(G) \geq 2^{\Omega(g(\Sigma))}$, then G is 5-colorable.

Yet we note that Theorem 1.3.1 is implied by a corresponding bound on the size of 6 -critical graphs embedded in a surface since k-colorability and having large edgewith are properties preserved by subgraphs. That is, if $H \subseteq G$, then $\chi(H) \leq \chi(G)$ and $e w(H) \geq e w(G)$. Nevertheless, we will improve the required lower bound on edge-width in Theorem 1.3.1 to $\Omega(\log g(\Sigma))$ in Chapter 5. Moreover such a logarithmic bound is best possible up to a multiplicative constant as we will demonstrate in Chapter 5 using Ramanujan graphs. Using deep and powerful new techniques, Thomassen was able to prove the following.

Theorem 1.3.2. For every surface Σ, there are finitely many 6 -critical graphs that embed in Σ.

Furthermore, Theorem 1.3.2 yields an algorithm for deciding whether a graph on a fixed surface is 5 -colorable.

Corollary 1.3.3. There exists a linear-time algorithm for deciding 5-colorability of graphs on a fixed surface.

This follows from a result of Eppstein [28, 29] which gives a linear-time algorithm for testing subgraph isomorphism on a fixed surface. Hence if the list of 6 -critical graphs embeddable on a surface is known, one need merely test whether a graph contains one of the graphs on the list. The list is known only for the projective plane [2], torus [45], and Klein bottle [13, 37].

Theorem 1.3.2 is best possible as it does not extend to $t \leq 5$ for surfaces other than the plane and $t \leq 4$ for the plane. Indeed, Thomassen [50], using a construction of Fisk [32], constructed infinitely many 5 -critical graphs that embed in the torus. One may also ask how large the 6 -critical graphs on a fixed surface can be. Theorem 1.3.2 implies an implicit bound on the number of vertices in a 6-critical graph embeddable in Σ in terms of the genus of Σ. However, Thomassen did not prove an explicit bound. Postle and Thomas [42] gave a new proof of Theorem 1.3.2 that also provides an explicit bound. They proved the following.

Theorem 1.3.4. The number of vertices of a 6-critical graph embedded in a surface Σ is $O(g(\Sigma))$.

Their bound is best possible up to a multiplicative constant as demonstrated by Hajos' construction on copies of K_{6}.

1.4 List-Coloring Graphs on Surfaces

There exists a generalization of coloring where the vertices do not have to be colored from the same palette of colors.

Definition. We say that L is a list-assignment for a graph G if $L(v)$ is a set of colors for every vertex v. We say L is a k-list-assignment if $|L(v)|=k$ for all $v \in V(G)$. We say that a graph G has an L-coloring if there exists a coloring ϕ such that $\phi(v) \in L(v)$
for all $v \in V(G)$. We say that a graph G is k-choosable, also called k-list-colorable, if for every k-list-assignment L for G, G has an L-coloring. The list chromatic number of G, denoted by $c h(G)$, is the minimum k such that G is k-list-colorable.

Note that $\chi(G) \leq c h(G)$ as a k-coloring is a k-list-coloring where all the lists are the same. In fact, Dirac's Theorem[17] has been generalized to list-coloring by Bohme, Mohar and Stiebitz [12] for most surfaces; the missing case, $g(\Sigma)=3$, was completed by Kral and Skrekovski [39].

Nevertheless, list-coloring differs from regular coloring. One notable example of this is that the Four Color Theorem does not generalize to list-coloring. Indeed Voigt [53] constructed a planar graph that is not 4-choosable.

Yet the list chromatic number of planar graphs is now well understood, thanks to Thomassen [46]. He was able to prove the following remarkable theorem with an outstandingly short proof.

Theorem 1.4.1. Every planar graph is 5-choosable.

Actually, Thomassen [46] proved a stronger theorem.
Theorem 1.4.2 (Thomassen). If G is a plane graph with outer cycle C and $P=p_{1} p_{2}$ is a path of length one in C and L is a list assignment with $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C),|L(v)| \geq 3$ for all $v \in V(C) \backslash V(P)$, and $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=1$ with $L\left(p_{1}\right) \neq L\left(p_{2}\right)$, then G is L-colorable.

Indeed, this theorem will be the starting point for this research. In Chapter 2, we will generalize this result in a number of different ways. To understand questions about list-coloring, it is helpful to define a similarly useful notion of being list-critical.

Definition. If L is list assignment for a graph G, then we say that G is L-critical if G does not have an L-coloring but every proper subgraph of G does. Similarly, we say that G is k-list-critical if G is not $(k-1)$-list-colorable but every proper subgraph of G is.

We should mention the following nice theorem of Gallai [33].
Theorem 1.4.3. Let G be an L-critical graph where L is a list assignment for G. Let H be the graph induced by the vertices v of G such that $d(v)=|L(v)|$. Then each block of H is a complete graph or an odd cycle.

Theorem 1.4.3 is the key trick to proving there are only finitely many 7-critical graphs embedded in a fixed surface. In fact using Theorem 1.4.3, Thomassen [50] gave a simple proof that there are only finitely many 7 -list-critical graphs on a fixed surface. Indeed, Thomassen proved the following stronger theorem.

Theorem 1.4.4. Let G be a graph embedded in a surface Σ. Let L be a list assignment of G and let S be a set of vertices in G such that $|L(v)| \geq 6$ for each $v \in V(G) \backslash S$. If G is L-critical, then $|V(G)| \leq 150(g(\Sigma)+|S|)$.

Naturally then, Thomassen conjectured (see Problem 5 of [50]) that Theorem 1.3.2 generalizes to list-coloring.

Conjecture 1.4.5. For every surface Σ, there are finitely many 6 -list-critical graphs that embed in Σ.

Note that Kawarabayashi and Mohar [38] announced without proof a resolution of Conjecture 1.4.5. Indeed, they claim a strengthening of Conjecture 1.4 .5 when there are precolored vertices as in Theorem 1.4.4, though not with a linear bound. We will nevertheless provide an independent proof of Conjecture 1.4.5 in Chapter 5. Our proof also gives a new proof of Theorem 1.3.2 as his techniques do not apply for list-coloring. In fact, we will also generalize the linear bound of Postle and Thomas to list-coloring.

Meanwhile, DeVos, Kawarabayashi, and Mohar [15] generalized Theorem 1.3.1 to list-coloring.

Theorem 1.4.6. If G is a graph embedded in a surface Σ such that ew $(G) \geq 2^{\Omega(g(\Sigma))}$, then G is 5-list-colorable.

Indeed in Chapter 5, we give an independent proof of Theorem 1.4.6 and improve the required lower bound to $\Omega(\log g(\Sigma))$ with a completely different proof. Moreover it should be noted that while a linear bound is implied by a linear bound for 6 -listcritical graphs, a logarithmic bound requires some additional ideas.

1.5 Extending Precolored Subgraphs

An important technique in Thomassen's proofs is to ask what colorings of a graph are possible when a certain subgraph has already been precolored. To that end if H is a subgraph of G and ϕ is a coloring of H and ϕ^{\prime} is a coloring of G, we say that ϕ extends to ϕ^{\prime} if $\phi^{\prime}(v)=\phi(v)$ for all $v \in V(H)$. Thomassen proved the following.

Theorem 1.5.1. Let G be a 2 -connected plane graph with no separating triangle and with outer cycle C. Let ϕ be a 5-coloring of $G[V(C)]$. Then G contains a connected subgraph H with at most $5^{|C|^{3}}$ vertices such that either
(i) ϕ cannot be extended to a 5-coloring of H, or,
(ii) ϕ can be extended to a 5-coloring of H such that each vertex of $G \backslash H$ which sees more than two colors of H either has degree at most 4, or, has degree 5 and is joined to two distinct vertices of H of the same color.

The coloring of H in (ii) can be extended to a 5-coloring of G.

Yerger [54] was able to improve Theorem 1.5 .1 by showing that there exists such an H with $|V(H)| \leq O\left(|C|^{3}\right)$. Postle and Thomas further improved Theorem 1.5.1 by proving that there exists such an H with $|V(H)| \leq O(|C|)$, which is best possible up to a multiplicative constant.

As for list-coloring, here is a very useful little theorem of Bohme et al. [12], originally shown by Thomassen for regular coloring [45], that characterizes when precolorings of cycles of length at most six do not extend. First let us say that if ϕ is a coloring of a subgraph of H of a graph G, then a vertex $u \in V(G) \backslash V(H)$ sees
a color c if there exists $v \in V(H) \cap N(u)$ such that $\phi(v)=c$. With this in mind, we let $S(u)=L(u) \backslash\{\phi(v) \mid v \in N(u) \cap V(H)\}$, the set of available colors of u.

Theorem 1.5.2. Let G be a plane graph, $C=c_{1} c_{2} \ldots c_{k}$ be a facial cycle of G such that $k \leq 6$, and L be a 5 -list-assignment. Then every proper precoloring ϕ of $G[V(C)]$ extends to an L-coloring of G unless one of the following conditions holds:
(i) $k \geq 5$ and there is a vertex $u \in V(G) \backslash V(G)$ such that v is adjacent to at least five vertices in C and u has no available colors, or,
(ii) $k=6$ and there is an edge $u_{1} u_{2}$ in $E(G \backslash H)$ such that u_{1}, u_{2} each have one available color and it is the same for both,
(iii) $k=6$ and there is a triangle $u_{1} u_{2} u_{3}$ in $G \backslash H$ such that u_{1}, u_{2}, u_{3} have the same set of available colors and that set has size two.

Meanwhile Dvorak, Lidicky, Mohar and Postle [27] generalized Theorem 1.5.1 to list-coloring with a quadratic bound. They also conjectured the existence of a linear bound. In Chapter 3, we prove just such a linear bound for list-coloring.

Thomassen then extended Theorem 1.5.1 to the case when the precolored subgraph has more than one component. He proved the following stronger version of Theorem 1.3.2.

Theorem 1.5.3. For all $g, q \geq 0$, there exists a function $f(g, q)$ such the following holds: Let G be a graph embedded in a surface Σ of Euler genus g and let S be a set of at most q vertices in G. If ϕ is a 5 -coloring of S, then ϕ extends to a 5-coloring of G unless there is a graph H with at most $f(g, q)$ vertices such that $S \subseteq H \subseteq G$ and the 5-coloring of S does not be extend to a 5-coloring of H.

In fact, Postle and Thomas [42] proved that f is linear. In Chapters 4 and 5, we generalize Theorem 1.5.3 to list-coloring. Indeed, we prove that f is linear, which is best possible up to a multiplicative constant.

Furthermore, Thomassen wondered though whether the dependence of f on the number of components in Theorem 1.5.3 could be dropped if certain conditions were satisfied. Specifically, Thomassen conjectured [50] that if all the components of S were just isolated vertices whose pairwise distance in the graph was large, then any precoloring of S always extends. Albertson [1] proved this in 1997. He then conjectured that this generalizes to list-coloring.

Conjecture 1.5.4. There exists D such that the following holds: If G is a plane graph with a 5 -list assignment L and $X \subset V(G)$ such that $d(u, v) \geq D$ for all $u \neq v \in X$, then any L-coloring of X extends to an L-coloring of G.

Dvorak, Lidicky, Mohar, and Postle [27] recently announced a proof of Albertson's conjecture. In Chapter 5, we will give a different proof of Albertson's conjecture more in line with the results of Axenovich, Hutchinson, and Lastrina [10].

Indeed, Thomassen [50] conjectured something more.

Problem 1.5.5. Let G be a planar graph and $W \subset V(G)$ such that $G[W]$ is bipartite and any two components of $G[W]$ have distance at least d from each other. Can any coloring of $G[W]$ such that each component is 2 -colored be extended to a 5 -coloring of G if d is large enough?

Thomassen proved Problem 1.5.5 when W consists of two components (see Theorem 7.3 of [50]). Albertson and Hutchinson [4] proved Problem 1.5.5. As for list coloring, Theorem 1.4.2 proves Problem 1.5.5 when W has one component and the question asks whether the coloring can be extended to an L-coloring of G where L is a 5 -list-assignment. In Chapter 5, we prove the list-coloring version when W has two components. We believe the results of Chapters 3 and 5 will also yield a proof when W has any number of components but for now this remains open. Note that a proof of the list-coloring vertsion of Problem 1.5.5 was announced without proof by

Kawarabayashi and Mohar in [38], where the distance d grows as a function of the number of components of W.

In addition, Albertson and Hutchinson [3] have generalized Albertson's result to other surfaces. They proved that if the graph is locally planar, then any precoloring of vertices far apart extends.

Theorem 1.5.6. Let G be a graph embedded in a surface $\Sigma \neq S_{0}$ such that ew $(G) \geq$ $208\left(2^{g(\Sigma}-1\right)$. If $X \subseteq V(G)$ such that $d(u, v) \geq 18$ for all $u \neq v \in X$, then any 5 -coloring of X extends to an 5-coloring of G.

In Chapter 5, we prove a similar generalization for list-coloring for surfaces when $e w(G) \geq \Omega(\log g)$ but the distance between vertices in X is also at least $\Omega(\log g)$. Note that such a generalization for surfaces when $e w(G) \geq 2^{\Omega(g)}$ and the distance between vertices in X grows as a function of X was announced by Kawarabayshi and Mohar in [38].

Meanwhile, Dean and Hutchinson [14] have proven that if G is a graph embedded in a surface Σ, L is a $H(\Sigma)$-list-assignment for $V(G)$ and $X \subset V(G)$ such that all vertices $u \neq v \in X$ have pairwise distance at least four, then any L-coloring of X extends to an L-coloring of G. They also asked the following:

Question 1.5.7. For which $k \geq 5$ does there exist $d_{k}>0$ such that their result holds when $H(\Sigma)$ is replaced by k ?

Of course, some additional proviso is necessary in Question 1.5.7 as there exists graphs that are not k-list-colorable for $k \leq H(\Sigma)$. Hence either G being L-colorable or the stronger assumption of large edge-width seems to be required.

In Chapter 5, we generalize Theorem 1.5.6 to list-coloring. We also improve the necessary lower bound on the edge-width to be $\Omega(\log g(\Sigma))$, which is best possible up to a multiplicative constant. This also answers Question 1.5.7 in the affirmative for all $k \geq 5$ with the proviso that G has edge-width $\Omega(\log g(\Sigma))$.

Albertson and Hutchinson [5] also prove a similar version of Problem 1.5.5 for surfaces. We believe our techniques can also generalize that result to list-coloring while improving their bound, but for now this remains open.

1.6 5-List-Coloring with Crossings Far Apart

Definition. We say a graph G is drawn in a surface Σ if G is embedded in Σ except that there are allowed to exist points in Σ where two - but only two - edges cross. We call such a point of Σ and the subsequent pair of edges of G, a crossing.

Dvorak, Lidicky and Mohar [26] proved that crossings far apart instead of precolored vertices also leads to 5 -list-colorability.

Theorem 1.6.1. If G can be drawn in the plane with crossings pairwise at distance at least 15, then G is 5 -list-colorable.

In Chapter 5, we provide an independent proof of Theorem 1.6.1. Indeed, we generalize Theorem 1.6.1 to other surfaces. Of course, Theorem 1.6.1 does not generalize verbatim as some condition is necessary to even guarantee that a graph drawn on a surface without crossings is 5 -list-colorable. A lower bound on the edge-width seems to be a natural condition that guarantees that a graph is 5 -list-colorable. Thus we will generalize Theorem 1.6.1 to other surfaces with addition requirement of having large edge-width. Indeed we will prove that edge-width logarithmic in the genus of the surface suffices, which is best possible.

1.7 Exponentially Many Colorings

Thomassen wondered whether a planar graph has many 5-list-colorings. He [51] proved the following.

Theorem 1.7.1. If G is a planar graph and L is a 5 -list assignment for G, then G has $2^{|V(G)| / 9}$ L-colorings.

Thomassen $[49,51]$ then conjectured that Theorem 1.7.1 may be generalized to other surfaces. Of course not every graph on other surfaces is 5 -list-colorable. Hence, Thomassen conjectured the following.

Conjecture 1.7.2. Let G be a graph embedded in a surface Σ and L is a 5 -listassignment for G. If G is L-colorable, then G has $2^{c|V(G)|} L$-colorings where c is a constant depending only on g, the genus of Σ.

Note that a proof of Conjecture 1.7.2 was announced without proof by Kawarabayashi and Mohar in [38]. We provide an independent proof of Conjecture 1.7.2 in Chapter 5. Indeed, we will show that precoloring a subset of the vertices still allows exponentially many 5-list-colorings where the constant depends only on the genus and the number of precolored vertices. In fact, we show that the dependence on genus and the number of precolored vertices can be removed from the exponent.

1.8 Main Results

Let us now state the main results of this thesis. First let us note the following theorem about extending the coloring of a precolored cycle to a list coloring of the whole graph.

Theorem 1.8.1. Let G be a 2-connected plane graph with outer cycle C and L a 5-list-assignment for G. Then G contains a connected subgraph H with at most $29|C|$ vertices such that for every L-coloring ϕ of C either
(i) ϕ cannot be extended to an L-coloring of H, or,
(ii) ϕ can be extended to an L-coloring of G.

This settles a conjecture of Dvorak et al. [27] in the affirmative. The fact that the bound is linear is crucial to proving many of the main results. Indeed the main results of Chapter 5 are first proved in a general setting about families of graphs satisfying a more abstract version of Theorem 1.8.1.

Another key ingredient of the proof is to extend Theorem 1.8.1 to two cycles. However, before this could be done, we found it necessary to prove a number of generalizations of Theorem 1.4.2. Here is one of the more elegant generalizations of Theorem 1.4.2, which we prove in Section 2.5.

Theorem 1.8.2. If G is a plane graph with outer cycle C and $p_{1}, p_{2} \in V(G)$ and L is a list assignment with $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C),|L(v)| \geq 3$ for all $v \in V(C) \backslash\left\{p_{1}, p_{2}\right\}$, and $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=2$, then G is L-colorable.

This settles a conjecture of Hutchinson [36] in the affirmative.
Applying the general theory developed in Chapter 5, we prove a number of new results. In Section 5.8.1, we settle Conjecture 1.4.5 in the affirmative. Indeed, mirroring Theorem 1.3.4, we prove a linear bound in terms of genus of the number of vertices of a 6 -list-critical graph.

Theorem 1.8.3. If G is a 6 -list-critical graph embedded in a surface Σ, then $|V(G)|=$ $O(g(\Sigma))$.

Indeed, Theorem 1.8.3 is best possible up to a multiplicative constant. Also it should be noted that Theorem 1.8.3 provides independent proofs of Theorems 1.3.2 and 1.3.4, though the constant in Theorem 1.3.4 may be better. As a corollary of Theorem 1.8.3, we can approximately determine the number of 6-list-critical graphs embeddable in a fixed surface.

Theorem 1.8.4. Let Σ be a surface. There exist only finitely many 6-list-critical graphs embeddable in Σ.

An immediate corollary of Theorem 1.8.3 is that we are now able to decide 5 -listcolorablity on a fixed surface in linear-time:

Theorem 1.8.5. There exists a linear-time algorithm to decide 5-list-colorability on a fixed surface.

In Section 5.8, we actually prove a stronger version of Theorem 1.8.3 that allows the precoloring of a set of vertices.

Theorem 1.8.6. Let G be a connected graph 2 -cell embedded in a surface $\Sigma, S \subseteq$ $V(G)$ and L a 5-list-assignment of G. Then there exists a subgraph H with $|V(H)|=$ $O(|S|+g(\Sigma))$ such that for every L-coloring ϕ of S either
(1) ϕ does not extend to an L-coloring of H, or
(2) ϕ extends to an L-coloring of G.

In addition, in Section 5.8.2, we use Theorem 1.8.6 to give an independent proof of Theorem 1.4.6 while improving the bound on the necessary edge-width from exponential in genus to logarithmic in genus. This also improves the best known lower bound for regular coloring which was linear in genus.

Theorem 1.8.7. If G is 2 -cell embedded in a surface Σ and ew $(G) \geq \Omega(\log g(\Sigma))$, then G is 5-list-colorable.

Indeed, Theorem 1.8.7 is best possible given the existence of Ramanujan graphs [40] which have girth $k, 2^{\Theta(k)}$ vertices and large fixed chromatic number (e.g. 6). Moreover in Section 5.8.2, using Theorem 1.8.6 we are also able to prove the following theorem about extending a precoloring of vertices pairwise far apart.

Theorem 1.8.8. Let G be 2-cell embedded in a surface Σ, ew $(G) \geq \Omega(\log g)$ and L be a 5-list-assignment for G. If $X \subset V(G)$ such that $d(u, v) \geq \Omega(\log g(\Sigma))$ for all $u \neq v \in X$, then every L-coloring of X extends to an L-coloring of G.

When Σ is the sphere, Theorem 1.8.8 reduces to Conjecture 1.5.4 and therefore provides an independent proof of that conjecture. Indeed, this is the generalization of that conjecture as developed by Albertson and Hutchinson, except that we have improved the necessary lower bound from exponential in genus to logarithmic in
genus, which is best possible up to a multiplicative constant. In fact, in Section 5.8.2, we are able to prove a stronger version of Theorem 1.8.8. Namely, we generalize to the case of precoloring cycles far apart.

Theorem 1.8.9. Let G be 2-cell embedded in a surface Σ, ew $(G) \geq \Omega(\log g)$ and L be a 5-list-assignment for G. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\}$ be a collection of disjoint cycles of G such that $d\left(C_{i}, C_{j}\right) \geq \Omega\left(\log \left(\left|C_{i}\right|+\left|C_{j}\right|+g(\Sigma)\right)\right)$ for all $C_{i} \neq C_{j} \in \mathcal{C}$ and the inherited embedding of $G_{i}=B_{\Omega\left(\log \left(\left|C_{i}\right|+g(\Sigma)\right)\right)}\left(C_{i}\right)$ is plane for all $C_{i} \in \mathcal{C}$. If ϕ is an L-coloring of the cycles in \mathcal{C} such that $\phi \upharpoonright C_{i}$ can be extended to an L-coloring of G_{i} for all $C_{i} \in \mathcal{C}$, then ϕ extends to an L-coloring of G.

Note that we do not require a strict upper bound on the size of the cycles, rather just that the pairwise distance between the cycles as well as the locally planar neighborhood of the cycles reflect their size. In Section 5.8.2, we provide an application of Theorem 1.8.9 for cycles of size four. We prove the following theorem.

Theorem 1.8.10. Let G be drawn in a surface Σ with a set of crossings X and L be a 5-list-assignment for G. Let G_{X} be the graph obtained by adding a vertex v_{x} at every crossing $x \in X$. If ew $\left(G_{X}\right) \geq \Omega(\log g(\Sigma))$ and $d\left(v_{x}, v_{x^{\prime}}\right) \geq \Omega(\log g(\Sigma))$ for all $v_{x} \neq v_{x^{\prime}} \in V\left(G_{X}\right) \backslash V(G)$, then G is L-colorable.

When Σ is the sphere, Theorem 1.8.10 reduces to Theorem 1.6.1 and hence provides an independent proof of that result. Finally in Section 5.9, we settle Conjecture 1.7.2 in the affirmative.

Theorem 1.8.11. For every surface Σ there exists a constant $c>0$ such that following holds: Let G be a graph embedded in Σ and L a 5-list-assignment for G. If G has an L-coloring, then G has at least $2^{c|V(G)|} L$-colorings of G.

Indeed, we prove a stronger version of Theorem 1.8.11 about extending a precoloring of a subset of the vertices.

Theorem 1.8.12. There exist constants $c, c^{\prime}>0$ such that following holds: Let G be a graph embedded in a surface $\Sigma, X \subseteq V(G)$ and L a 5-list-assignment for G. If ϕ is an L-coloring of $G[X]$ such that ϕ extends to an L-coloring of G, then ϕ extends to at least $2^{c|V(G)|-c^{\prime}(g(\Sigma)+|X|)} L$-colorings of G.

1.9 Outline of the Proof

In Chapter 2, we generalize Theorem 1.4.2 to the case where the two precolored vertices are not adjacent but have lists of size two. This resolves a conjecture of Hutchinson [36]. We then proceed to characterize the critical graphs when two non adjacent precolored vertices have lists of size one and two and then lists of size one. We then characterize the critical graphs for two precolored edges that are not incident. Thomassen [51] characterized these when the edges are incident with the same vertex, that is for paths of length two. Indeed, we show that if the two edges are far apart, then there is a proportionally long segment of the graph which has a particularly nice structure, called a bottleneck, that is one of two types, called accordions and harmonicas.

In Chapter 3, we prove a linear bound for Theorem 1.5.1 for list-coloring. We then generalize this in the manner of Theorem 1.4.2 to prove a linear bound in terms of the precolored path. Furthermore, we show that if there are many precolored paths, as opposed to just two precolored edges, then either a linear bound is obtained or there a long bottleneck as in Chapter 2. Furthermore, we expand the usefulness of such linear bounds by showing that these critical graphs have other nice properties. Namely, we show that all vertices have logarithmic distance from the precolored vertices and the balls around vertices grow exponentially in their radius. In addition, we prove that precolorings of a cycle have exponentially many extensions to the interior, less a linear factor in the size of the cycle.

In Chapter 4, we use the bottleneck theorem to prove the any coloring of two
precolored triangles that are far apart extends to the whole graph. Our strategy is as follows. We show there exists a long chain of separating triangles where the graph between any two consecutive triangles in the chain is one of three types, called tetrahedral, octahedral and hexadecahedral after their number of faces. We then develop a theory somewhat akin to that in Chapter 2, to show that if the chain is long enough then any coloring of the outer and inner triangle extends to the whole graph.

In Chapter 5, we generalize the main result of Chapter 4 to the case of two precolored cycles. We then extend the linear bound, logarithmic distance and exponential growth results from Chapter 3 to the case of two cycles. Next we proceed to develop an abstract theory for families of graphs satisfying such linear isoperimetric inequalities for the disc and cylinder, which we call hyperbolic families. We prove all of our main theorem hold in the setting of hyperbolic families. The theory of hyperbolic families has wider applications beyond 5-list-coloring as there exist other hyperbolic families of interest. The families of critical graphs of a number of other coloring problems are hyperbolic. Indeed, it follows that any coloring problem satisfying Theorem 1.8.1 leads to similar theorems as developed in this thesis. After developing the general theory of hyperbolic families, we then apply the theory to the family of 6-list-critical graphs to derive the main results for 5 -list-coloring. Finally, we apply the theory for a slightly different family to obtain the exponentially many 5 -list-colorings result.

CHAPTER II

TWO PRECOLORED VERTICES

2.1 Introduction

In this chapter, we prove generalizations of Theorem 1.4.2 of Thomassen, restated here for convenience.

Theorem 2.1.1 (Thomassen). If G is a plane graph with outer cycle C and $P=p_{1} p_{2}$ is a path of length one in C and L is a list assignment with $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C),|L(v)| \geq 3$ for all $v \in V(C) \backslash V(P)$, and $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=1$ with $L\left(p_{1}\right) \neq L\left(p_{2}\right)$, then G is L-colorable.

In Section 2.5, we will resolve a conjecture of Hutchinson [36] in the affirmative that Theorem 1.4.2 can be extended to the case where p_{1} and p_{2} are not required to be adjacent and both p_{1} and p_{2} have lists of size two. This is Theorem 1.8.2, which we restate here for convenience.

Theorem 2.1.2. If G is a plane graph with outer cycle C and $P=\left\{p_{1}, p_{2}\right\}$ and L is a list assignment with $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C),|L(v)| \geq 3$ for all $v \in V(C) \backslash V(P)$, and $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=2$, then G is L-colorable.

Note that Theorem 1.8.2 is a strict generalization of Theorem 1.4.2 as any minimum counterexample to that theorem yields a counterexample to Theorem 2.2.2. Indeed as we will in Chapter 3, Theorem 1.8.2 will imply a very useful characterization of when colorings of paths P with $|V(P)|>2$ as in Theorem 1.4.2 do not extend. Furthermore, we also generalize Hutchinson's results [36] about the case when one or both of p_{1}, p_{2} have a list of size one and G is an outerplane graph to case when G is plane while also providing independent proofs of said results.

In Section 2.6, we shall begin characterizing how the colorings of P in Theorem 1.4.2 extend to other paths of length one in the outer cycle. In Section 2.7, we will characterize the minimal non-colorable graphs when one of p_{1}, p_{2} is allowed to have a list of size one. In Section 2.8, we will characterize the minimal non-colorable graphs when both p_{1}, p_{2} are allowed to have lists of size one. Finally in Section 2.11, we will show that minimal non-colorable graphs when there are two precolored paths of length one far apart then there exists a a special structure of one of two types whose length is proportional to the distance between the edges.

2.2 Two with Lists of Size Two Theorem

In this section, we prove a generalization of this theorem. Let us define the graphs we will be investigating.

Definition (Canvas). We say that (G, S, L) is a canvas if G is a connected plane graph, S is a subgraph of the boundary of the infinite face of G, and L is a list assignment for the vertices of G such that $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C)$ where C is the boundary of the infinite face of $G,|L(v)| \geq 3$ for all $v \in V(G) \backslash V(S)$, and there exists a proper L-coloring of S.

If S is a path that is also a subwalk of the the outer walk of G, then we say that (G, S, L) is a path-canvas. If the outer walk of G is a cycle C and $S=C$, then we say that (G, S, L) is a cycle-canvas.

We say an L-coloring ϕ of S is non-extendable if there does not exist an L-coloring ϕ^{\prime} of G such that $\phi^{\prime}(v)=\phi(v)$ for all $v \in V(S)$. We say the canvas (G, S, L) is L critical if there does not an exist an L-coloring of G but for every edge $e \notin E(S)$ where both ends of e not in S, there exists an L-coloring of $G \backslash e$.

Hence, Thomassen's theorem restated in these terms is as follows.

Theorem 2.2.1 (Thomassen). If (G, P, L) is a path-canvas and $|V(P)| \leq 2$, then G is L-colorable.

We can also restate Theorem 1.8.2 in these terms.

Theorem 2.2.2 (Two with List of Size Two Theorem). If (G, S, L) is a canvas with $V(S)=\left\{v_{1}, v_{2}\right\}$ and $\left|L\left(v_{1}\right)\right|,\left|L\left(v_{2}\right)\right| \geq 2$, then G is L-colorable.

It should be noted that this theorem is not true when one allows three vertices with list of size two (e.g. an even fan). We actually prove a stronger statement. But first we need some preliminaries.

2.3 Fans and Bellows

A useful reduction is that found by Thomassen in his proof of 5-choosability.

Definition (Thomassen Reduction). Let $T=(G, S, L)$ be a canvas. Let C be the outer walk of G. Suppose that there exists $v \in V(C) \backslash V(S)$ such that $u v \in E(C)$ where $u \in V(S), u$ is the only neighbor of v belonging to S, v is not a cutvertex of G and v does not belong to a chord of C. Given a coloring ϕ of S, we may define a Thomassen reduction with respect to ϕ and v of T, denoted by $T(\phi, v)=\left(G^{\prime}, S, L^{\prime}\right)$, as follows. Let $G^{\prime}=G \backslash v$. Define a list assignment L^{\prime} as follows. Let $S(v)$ be a subset of size two of $L(v) \backslash \phi(u)$. Let $L^{\prime}(w)=L(w) \backslash S(v)$ for all w such that w is not in $V(C)$ and w is adjacent to v and let $L^{\prime}(w)=L(w)$ otherwise.

Proposition 2.3.1. Let $T(\phi, v)=\left(G^{\prime}, S, L^{\prime}\right)$ be a Thomassen reduction of $T=$ (G, S, L) with respect to ϕ and v. The following holds:
(1) $T(\phi, v)$ is a canvas.
(2) If G^{\prime} has an L^{\prime}-coloring extending ϕ, then G has an L-coloring extending ϕ.
(3) If T is L-critical, then G^{\prime} contains an L^{\prime}-critical subgraph $G^{\prime \prime}$ and hence there exists an $L^{\prime \prime}$-critical canvas $\left(G^{\prime \prime}, S, L^{\prime \prime}\right)$ where $L^{\prime \prime}(v)=\{\phi(v)\}$ for $v \in S$ and $L^{\prime \prime}(v)=L^{\prime}(v)$ otherwise.

Proof. If $x \in V\left(G^{\prime}\right)$ such that $\left|L^{\prime}(x)\right|<5$, then either $x \in C$ or $x \sim v$. In either case, x is in the outer walk of G^{\prime}. Note that if $x \in V\left(G^{\prime}\right)$ such that $L^{\prime}(x) \neq L(x)$, then $x \notin C$ and hence $|L(x)|=5,\left|L^{\prime}(x)\right| \geq 3$. Thus, if $x \in V\left(G^{\prime}\right)$ such that $\left|L^{\prime}(x)\right|<3$, then $x \in S$. This proves that (1).

Let ϕ be an L^{\prime}-coloring of G^{\prime}. Let $\phi(v)=S(v) \backslash \phi(w)$ where $w \notin S$ and $v w \in E(C)$. Now ϕ is an L-coloring of G. This proves (2).

If T is L-critical, then there does not exist an L-coloring of G. Hence by (2), there does not exist an L^{\prime}-coloring of G^{\prime} extending ϕ. Hence, there exists an $L^{\prime \prime}$-critical subcanvas and (3) follows.

Definition (Fans). We say a graph G is a fan if G consists of a cycle $C=v_{1} v_{2} \ldots v_{k}$ and edges $v_{1} v_{i}$ for all $i, 3 \leq i \leq k-1$. We say that v_{1} is the hinge of the fan and that the path $v_{2} v_{1} v_{k}$ is the base of the fan. We define the length of the fan to be $k-2$. We say a fan G is even if its length is even and odd if its length is odd.

Proposition 2.3.2. Let G be a fan with cycle $v_{1} v_{2} \ldots v_{k}$ where v_{1} is the hinge of the fan and let L be a list assignment for G such that $|L(v)| \geq 3$ for all $v \in V(G \backslash$ $\left.\left\{v_{1}, v_{2}, v_{k}\right\}\right)$. If ϕ is an L-coloring of P, then ϕ extends to an L-coloring of G unless there exist colors $c_{3} \ldots, c_{k-2}$ such that $c_{1} \neq c_{i}$ and $c_{i} \neq c_{i+1}$ for all $i, 2 \leq i \leq k-2$ and $L\left(v_{i}\right)=\left\{c_{1}, c_{i-1}, c_{i}\right\}$ for all $i, 3 \leq i \leq k-1$, where $c_{1}=\phi\left(v_{1}\right), c_{2}=\phi\left(v_{2}\right), \phi\left(v_{k}\right)=$ c_{k-1}.

Definition. Let $T=(G, P, L)$ be a path-canvas with $|V(P)|=3$. Suppose that G is a fan with cycle $C=v_{1} v_{2} \ldots v_{k}$ and hinge v_{1} where $P=v_{2} v_{1} v_{k}$. We say that T is a fan if there exists a non-extendable L-coloring of P.

We say a fan T is even if G is an even fan and odd if G is odd fan. We say an odd fan T is exceptional if there exist two non-extendable L-colorings of P which differ only in the color of the hinge. We say an even fan T is exceptional if there exist two non-extendable L-colorings of P which interchange the colors of the hinge and another vertex in the base.

Definition (Wheel). We say a graph G is a wheel if G is a cycle C and a vertex $v \notin V(C)$ such that v adjacent to every vertex of C. We say v is the center of the wheel.

Proposition 2.3.3. Let G be a wheel with cycle $v_{1} v_{2} \ldots v_{k}$ and center v and let L be a list assignment for G such that $|L(v)| \geq 3$ for all $v \in V\left(G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right)$. If ϕ is an L-coloring of $P=v_{1} v_{2} v_{3}$, then ϕ extends to an L-coloring of G unless $\phi\left(v_{1}\right) \neq \phi\left(v_{3}\right),\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{3}\right)\right\} \subset L(v)$ and $\left(G \backslash v_{2}, P^{\prime}, L\right)$ is an exceptional odd fan where $P^{\prime}=v_{1} v v_{3}$ with two non-extendable colorings, ϕ_{1}, ϕ_{2} extending ϕ, where $\left\{\phi_{1}(v), \phi_{2}(v)\right\}=L(v) \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{3}\right)\right\}$.

Definition (Turbofans). Let $T=(G, P, L)$ be a path-canvas with $|V(P)|=3$. Let $P=p_{1} p_{2} p_{3}$. Suppose that G is a wheel with center $v \notin V(P)$. We say that T is a turbofan if there exists a non-extendable L-coloring of P. We say that P is the base of T.

Definition (1-Sum). Let $T=(G, S, L)$ be a canvas. Let C be the facial walk of the infinite face of G. Suppose that $v \in C$ is a cutvertex of C. Thus v divides G into two graphs G_{1}, G_{2}. Let $V\left(S_{1}\right)=V\left(S \cap G_{1}\right) \cup\{v\}$ and $E\left(S_{1}\right)=E(S) \cap E\left(G_{1}\right)$ and similarly for S_{2}. Let $L_{1}(v), L_{2}(v) \subset L(v)$ such that $L_{1}(v) \cup L_{2}(v)=L(v)$ and let $L_{1}(x)=L(x), L_{2}(x)=L(x)$ otherwise. Let $T_{1}=\left(G_{1}, S_{1}, L_{1}\right)$ and $T_{2}=\left(G_{2}, S_{2}, L_{2}\right)$. We say that T is the 1 -sum of T_{1} and T_{2} along the vertex v.

Definition (2-Sum). Let $T=(G, S, L)$ be a canvas. Let C be the facial walk of the infinite face of G. Suppose that $u v$ is a chord of C. Thus $u v$ divides G into two graphs G_{1}, G_{2}. Let $V\left(S_{1}\right)=V\left(S \cap G_{1}\right) \cup\{u, v\}$ and $E\left(S_{1}\right)=\left(E(S) \cap E\left(G_{1}\right)\right) \cup\{u v\}$ and similarly for S_{2}. Let $T_{1}=\left(G_{1}, S_{1}, L\right)$ and $T_{2}=\left(G_{2}, S_{2}, L\right)$. We say that T is the 2-sum of T_{1} and T_{2} along the edge $u v$.

Definition (Bellows). Let $T=(G, P, L)$ be a canvas with $|V(P)|=3$. Let $P=$ $p_{1} p_{2} p_{3}$ and C be the outer walk of G. We say T is a bellows if either T is a fan, a
turbofan, or T is the 2-sum of two smaller bellows along the edge $p_{2} x$ for some vertex $x \in C \backslash P$ such that there exists a non-extendable L-coloring of P. We say that P is the base of T.

Thomassen [51, Theorem 3] proved the following.

Theorem 2.3.4 (Thomassen). If $T=(G, P, L)$ is a path-canvas with $|V(P)|=3$, then G has an L-coloring unless there exists a subgraph $G^{\prime} \subseteq G, P \subset G^{\prime}$, such that $T^{\prime}=\left(G^{\prime}, P, L\right)$ is a bellows.

We will also need two lemmas of Thomassen. The following can be found in [51, Lemma 1].

Lemma 2.3.5. If $T=(G, P, L)$ is a bellows that is not a fan, then there exists at most one proper L-coloring of P that does not extend to an L-coloring of $G \backslash P$.

The following can be found in [51, Lemma 4].

Lemma 2.3.6. If T is a bellows with $\left|L\left(p_{1}\right)\right|=1$ and $\left|L\left(p_{3}\right)\right|=3$, then there exists a color c in $L\left(p_{3}\right)$ such that any proper L-coloring ϕ of P with $\phi\left(p_{3}\right)=c$ can be extended to an L-coloring of G. If T is not an exceptional even fan (where p_{2} and p_{3} 's colors are interchanged), then there exist at least two such colors.

We will need a very similar lemma later on, which we state here for convenience.

Lemma 2.3.7. If T is a bellows with $\left|L\left(p_{3}\right)\right|=2$, then there exist at most two colors c in $L\left(p_{1}\right)$ such that there exists a proper L-coloring ϕ of $\left\{p_{1}, p_{2}\right\}$ with $\phi\left(p_{1}\right)=c$ that cannot be extended to an L-coloring of G. Moreover there exists at most one such color, unless T is an odd fan, $L\left(p_{3}\right) \subset L\left(p_{1}\right)$ and the two such colors are $L\left(p_{3}\right)$ (and the non-extendable colorings are from $L\left(p_{3}\right)$).

Proof. Let ϕ be a non-extendable L-coloring of $\left\{p_{1}, p_{2}\right\}$. By Theorem 1.4.2, it follows that $\phi\left(p_{2}\right) \in L\left(p_{3}\right)$. Let $L\left(p_{3}\right)=\left\{c_{1}, c_{2}\right\}$. Let $\phi_{1}\left(p_{3}\right)=c_{1}$ and $\phi_{1}\left(p_{2}\right)=c_{2}$; let
$\phi_{2}\left(p_{3}\right)=c_{2}$ and $\phi_{2}\left(p_{2}\right)=c_{1}$. By Theorem 1.4.2, there exists at most one color b_{i} in $L\left(p_{1}\right)$ such that ϕ_{i} extends to a non-extendable coloring of P. Thus there exist at most two such colors in $L\left(p_{1}\right)$, namely b_{1} and b_{2} satisfying the conclusion as desired.

Suppose b_{1} and b_{2} exist. We may assume without loss of generality that $L\left(p_{1}\right)=$ $\left\{b_{1}, b_{2}\right\}$. Let p_{3}^{\prime} such that $p_{3}^{\prime} p_{3} p_{2}$ is a triangle in G. If $p_{3}^{\prime}=p_{1}$, it follows that $L\left(p_{3}\right)=\left\{b_{1}, b_{2}\right\}$ and the lemma follows. So we may suppose that $p_{3}^{\prime} \neq p_{1}$. Consider $T^{\prime}=\left(G \backslash\left\{p_{3}\right\}, P^{\prime}, L^{\prime}\right)$ where $P^{\prime}=p_{1} p_{2} p_{3}^{\prime}, L^{\prime}\left(p_{3}^{\prime}\right)=L\left(p_{3}^{\prime}\right) \backslash L\left(p_{3}\right), L^{\prime}\left(p_{1}\right) \supseteq L\left(p_{1}\right)$ be a set of size three and $L^{\prime}(v)=L(v)$ for all $v \in G \backslash\left\{p_{3}, p_{3}^{\prime}\right\}$. Now T^{\prime} is a bellows with $\left|L^{\prime}\left(p_{3}\right)\right|=1$ and $\left|L^{\prime}\left(p_{1}\right)\right|=3$. By Lemma 2.3.6, there exist at least two colors c in $L^{\prime}\left(p_{1}\right)$ such that any proper L^{\prime}-coloring ϕ^{\prime} of P^{\prime} with $\phi^{\prime}\left(p_{3}\right)=c$ can be extended to an L^{\prime}-coloring of $G \backslash\left\{p_{1}\right\}$ unless T^{\prime} is an exceptional even fan. If T^{\prime} is not an exceptional fan, this implies that there exists a color c in $L\left(p_{1}\right)$ such that any proper L-coloring ϕ of $\left\{p_{1}, p_{2}\right\}$ with $\phi\left(p_{1}\right)=c$ can be extended to an L-coloring of G. Yet $c \in\left\{b_{1}, b_{2}\right\}$, a contradiction.

So T^{\prime} is an exceptional even fan. Indeed the colors of p_{1} and p_{2} must be interchanged its non-extendable L^{\prime}-colorings. Thus $L\left(p_{1}\right)=\left\{c_{1}, c_{2}\right\}=L\left(p_{3}\right)$ and the lemma follows.

Another useful lemma we will need, which has the same spirit as the above, is the following.

Lemma 2.3.8. If T is a bellows with $\left|L\left(p_{1}\right)\right|=1,\left|L\left(p_{3}\right)\right|=1$, then there exist at most two colors c in $L\left(p_{2}\right) \backslash\left(L\left(p_{1}\right) \cup L\left(p_{3}\right)\right)$ such that the proper L-coloring ϕ of P with $\phi\left(p_{1}\right)=L\left(p_{1}\right), \phi\left(p_{3}\right)=L\left(p_{3}\right)$ and $\phi\left(p_{2}\right)=c$ can not be extended to an L-coloring of G. If T is not an exceptional odd fan, then there exists at most one color.

Proof. We proceed by induction on the number of vertices of G. By Lemma 2.3.5, it follows that T is a fan. Let the outer cycle of G be labeled as $p_{1}, v_{1}, \ldots, v_{k}, p_{3}, p_{2}$. Clearly $k \geq 1$. Let $P^{\prime}=v_{1} p_{2} p_{3}$. Consider the bellows $T^{\prime}=\left(G \backslash\left\{p_{1}\right\}, P^{\prime}, L\right)$. By

Lemma 2.3.6, there exists a color c in $L\left(v_{1}\right)$ such that any proper L-coloring ϕ of P^{\prime} with $\phi\left(v_{1}\right)=c$ can be extended to an L-coloring of $G \backslash\left\{p_{1}\right\}$. Yet it follows that such a color c must be in $L\left(p_{1}\right)$. Hence there does not exist at least two such colors and by Lemma 2.3.6, T^{\prime} is an exceptional even fan whose non-extendable colorings interchange the colors of v_{1} and p_{2}. It follows that T is an exceptional odd fan and the two colors are colors in the non-extendable colorings of T^{\prime}.

We may now characterize the non-extendable L-colorings of a bellows.

Proposition 2.3.9. Let $T=(G, P, L)$ be a path-canvas with $|V(P)|=3$. Let $P=$ $p_{1} p_{2} p_{3}$ and C be the outer walk of G. Suppose that T is the sum of two bellows $T_{1}=\left(G_{1}, P_{1}, L\right)$ and $\left(G_{2}, P_{2}, L\right)$ along the edge $p_{2} x$ where $x \in V(C \backslash P)$. If ϕ is an L-coloring of P, then ϕ is non-extendable if and only if $L(x)$ has size three and can be denoted $\left\{\phi\left(p_{2}\right), c_{1}, c_{2}\right\}$ such that the coloring ϕ_{1} with $\phi_{1}\left(p_{1}\right)=\phi\left(p_{1}\right), \phi_{1}\left(p_{2}\right)=\phi\left(p_{2}\right)$ and $\phi_{1}(x)=c_{1}$ does not extend to G_{1} and the coloring ϕ_{2} with $\phi_{2}\left(p_{3}\right)=\phi\left(p_{3}\right), \phi_{2}\left(p_{2}\right)=$ $\phi\left(p_{2}\right)$ and $\phi_{2}(x)=c_{2}$ does not extend to G_{2}.

Proof. Suppose ϕ is non-extendable. We may assume without loss of generality that $L\left(p_{i}\right)=\phi\left(p_{i}\right)$ for all $i \in\{1,2,3\}$. First suppose that $\phi\left(p_{2}\right) \notin L(x)$ or $|L(x)| \geq 4$. By Theorem 1.4.2, there exists an L-coloring ϕ_{1} of G_{1} that extends $\phi \upharpoonleft P_{1} \cap P$. Let $L_{1}(x)=L(x) \backslash \phi_{1}(x)$ and $L_{1}(v)=L(v)$ for all $v \in G_{1} \backslash\{x\}$. By Theorem 1.4.2, there exists an L_{1}-coloring ϕ_{2} of G_{1} that extends $\phi \upharpoonleft P_{1} \cap P$. Let $L_{2}(x)=\left\{\phi_{1}(x), \phi_{2}(x), \phi\left(p_{2}\right)\right\}$ and $L_{2}(v)=L_{2}(v)$ for all $v \in G_{2} \backslash\{x\}$. By Theorem 1.4.2, there exists an L_{2}-coloring ϕ_{3} of G_{2}. Let $\phi^{\prime}=\phi_{3} \cup \phi_{j}$ where $j \in\{1,2\}$ and $\phi_{3}(x)=\phi_{j}(x)$. Now ϕ^{\prime} is an L-coloring of G that extends ϕ, a contradiction.

So we may suppose that $\phi\left(p_{2}\right) \in L(x)$ and $|L(x)|=3$. Let $L(x)=\left\{\phi\left(p_{2}\right), c_{1}, c_{2}\right\}$. By Theorem 1.4.2, there exist L-colorings ϕ_{1} of G_{2} and ϕ_{2} of G_{1}. Yet $\phi_{1}(x) \neq \phi_{2}(x)$ as otherwise $\phi_{1} \cup \phi_{2}$ is an L-coloring of G, a contradiction. We may suppose without loss of generality that $\phi_{1}(x)=c_{1}$ and $\phi_{2}(x)=c_{2}$. But then $\phi_{1} \upharpoonleft P_{1}$ does not extend
to G_{1} and $\phi_{2} \upharpoonleft P_{2}$ does not extend to G_{2} and the proposition holds.
Similarly the converse holds as x must receive a color in any L-coloring of G and yet that color must either be c_{1}, which does not extend to G_{1}, or c_{2}, which does not extend to G_{2}.

2.4 Critical Lemmas

Definition. Let $T=(G, S, L)$ be a canvas and let C be the outer walk of G. We say a cutvertex v of G is essential if whenever v divides G into graphs $G_{1}, G_{2} \neq G$, where $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}, G_{1} \cup G_{2}=G$, then $S \cap\left(V\left(G_{i}\right) \backslash\{v\}\right) \neq \emptyset$ for all $i \in\{1,2\}$. We say a chord U of C is essential if for every division of G into graphs $G_{1}, G_{2} \neq G$, such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=V(U)$ and $G_{1} \cup G_{2}=G$, then $S \cap\left(V\left(G_{i}\right) \backslash V(U)\right) \neq \emptyset$ for all $i \in\{1,2\}$

Lemma 2.4.1. If $T=(G, S, L)$ is an L-critical canvas, then
(1) every cutvertex of G is essential, and
(2) every chord of the outer walk of G is essential, and
(3) there does not exist a vertex in the interior of a cycle of size at most four, and
(4) there exists at most one vertex in the interior of a cycle of size five.

Proof. Suppose v is a cutvertex of G that is not essential. Hence there exist graphs G_{1}, G_{2} such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$ and $V(S) \cap V\left(G_{2}\right) \subseteq\{v\}$. As T is L-critical, there exists an L-coloring ϕ of G_{1}. By Theorem 1.4.2, ϕ can be extended to G_{2}. Thus G has an L-coloring, a contradiction. This proves (1).

Suppose $U=u_{1} u_{2}$ is a chord of the outer walk of G that is not essential. Hence there exist graphs G_{1}, G_{2} such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and $V(S) \cap V\left(G_{2}\right) \subseteq$ $\left\{u_{1}, u_{2}\right\}$. As T is L-critical, there exists an L-coloring ϕ of G_{1}. By Theorem 1.4.2, ϕ can be extended to G_{2}. Thus G has an L-coloring, a contradiction. This proves (2).

Let C be a cycle of size at most five in G. Let $G_{1}=G \backslash(\operatorname{Int}(C) \backslash C)$ and $G_{2}=\operatorname{Int}(C)$. Suppose $\operatorname{Int}(C) \backslash C \neq \emptyset$. As T is L-critical, there exists an L-coloring ϕ of G_{1}. By Theorem 1.5.2, ϕ can be extended to an L-coloring of G_{2}, a contradiction, unless $|C|=5$ and there exists a vertex $v \in \operatorname{Int}(C) \backslash C$ adjacent to all of the vertices of C. (3) has thus been proved. In addition, by (3), there cannot be vertices in the interior of the triangles containing v in $C+v$ and hence there is at most one vertex in the interior of C. This proves (4).

2.5 Proof of the Two with Lists of Size Two Theorem

In this section, we prove Theorem 2.2.2. But first a definition.
Definition (Democratic Reduction). Let $T=(G, S, L)$ be a canvas and L_{0} be a set of two colors. Suppose that $P=p_{1} \ldots p_{k}$ is a path in C such that, for every vertex v in P, v is not the end of a chord of C or a cutvertex of C and $L_{0} \subset L(v)$. Let x be the vertex of C adjacent to p_{1} and y be the vertex of C adjacent to p_{k}. We define the democratic reduction of P with respect to L_{0} and centered at x, denoted as $T\left(P, L_{0}, x\right)$, as $\left(G \backslash P, S, L^{\prime}\right)$ where $L^{\prime}(w)=L(w) \backslash L_{0}$ if $w \in(N(P) \backslash\{y\}) \cup\{x\}$ and $L^{\prime}(w)=L(w)$ otherwise.

Indeed, we now prove a stronger version of Theorem 2.2.2.
Theorem 2.5.1. Let $T=(G, S, L)$ be a canvas where S has two components: a path P and an isolated vertex u with $|L(u)| \geq 2$. If $|V(P)| \geq 2$, suppose that G is 2-connected, that u is not adjacent to an internal vertex of P and that there does not exist a chord of the outer cycle of G with an end in P which separates a different vertex of P from u.

If $L(v)=L_{0}$ for all $v \in V(P)$ where $\left|L_{0}\right|=2$, then G has an L-coloring unless $L(u)=L_{0}$ and $G[V(P) \cup\{u\}]$ is an odd cycle.

Proof. Let $T=(G, S, L)$ be a counterexample such that $|V(G)|$ is minimized and subject to that $|V(P)|$ is maximized. Let C be the outer walk of G. Hence T is

L-critical. By Claim 2.4.1(2), all chords of C are essential. By Claim 2.4.1(1), all cutvertices of G are essential.

So we may assume there is no chord of C with an end in P. Let v_{1} and v_{2} be the two vertices (not necessarily distinct) of C adjacent to P.

Claim 2.5.2. G is 2-connected.

Proof. Suppose there is a cutvertex v of G. By assumption then, $|V(P)|=1$. Let $V(P)=\left\{u^{\prime}\right\}$. Now v divides G into two graphs G_{1} and G_{2}. As v is an essential cutvertex of G, we may suppose without loss of generality that $u \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ and $u^{\prime} \in V\left(G_{1}\right) \backslash V\left(G_{2}\right)$.

Consider the canvas $\left(G_{1}, S_{1}, L\right)$ where $S_{1}=P+v$. As $\left|V\left(G_{1}\right)\right|<|V(G)|$, there exists an L-coloring ϕ_{1} of G_{1} as T is a minimum counterexample. Let $L_{1}(v)=$ $L(v) \backslash\left\{\phi_{1}(v)\right\}$ and $L_{1}(x)=L(x)$ for all $x \in G_{1} \backslash\{v\}$. As $\left|V\left(G_{1}\right)\right|<|V(G)|$, there exists an L^{\prime}-coloring ϕ_{2} of G_{1} by the minimality of G. Note that $\phi_{1}(v) \neq \phi_{2}(v)$. Let $L_{2}(v)=\left\{\phi_{1}(v), \phi_{2}(v)\right\}$ and $L_{2}(x)=L(x)$ for all $x \in G_{2} \backslash\{v\}$. Consider the canvas $\left(G_{2}, S_{2}, L_{2}\right)$ where $S_{2}=P^{\prime}+u$ and P^{\prime} is a path with sole vertex v_{2}. As $\left|V\left(G_{2}\right)\right|<|V(G)|$, there exists an L_{2}-coloring ϕ of G_{2}. Let i be such that $\phi_{i}(v)=\phi(v)$. Therefore, $\phi \cup \phi_{i}$ is an L-coloring of G, contrary to the fact that T is a counterexample.

Claim 2.5.3. Either $v_{1} \neq u$ or $v_{2} \neq u$.

Proof. Suppose not. That is, $v_{1}=v_{2}=u$. If $L(u) \backslash L_{0} \neq \emptyset$, let $\phi(u) \in L(u) \backslash L_{0}$ and extend ϕ to a coloring of $G[V(P) \cup\{u\}]$. Let $L^{\prime}(v)=L(v) \backslash L_{0}$ for all $v \in$ $V(G) \backslash(V(P) \cup\{u\})$ and $L^{\prime}(u)=\{\phi(u)\}$. By Theorem 1.4.2, $G \backslash P$ has an L^{\prime}-coloring and thus G has an L-coloring, contrary to the fact that T is a counterexample. So we may suppose that $L(u)=L_{0}$. Thus by assumption $G[V(P) \cup\{u\}]$ is an even cycle. Let ϕ be an L-coloring of $G[V(P) \cup\{u\}]$. Let $L^{\prime}(v)=L(v) \backslash L_{0}$ for all
$v \in V(G) \backslash(V(P) \cup\{u\})$. By Theorem 1.4.2, $G \backslash(P+u)$ has an L^{\prime}-coloring and thus G has an L-coloring, contrary to the fact that T is a counterexample. \square

Thus $v_{1} \neq v_{2}$ as there is no cutvertex of G.
Claim 2.5.4. For all $i \in\{1,2\}$, if $v_{i} \neq u$, then v_{i} is the end of an essential chord of C.

Proof. As v_{1} and v_{2} are symmetric, it suffices to prove the claim for v_{1}. So suppose $v_{1} \neq u$ and v_{1} is not the end of an essential chord of C. First suppose that $\mid L\left(v_{1}\right) \backslash$ $L_{0} \mid \geq 2$. Let $G^{\prime}=G \backslash V(P), S^{\prime}=P^{\prime}+u$ where P^{\prime} is a path with sole vertex v_{1}. Furthermore, let $L^{\prime}\left(v_{1}\right)$ be a subset of size two of $L\left(v_{1}\right) \backslash L_{0}, L^{\prime}(x)=L(x) \backslash L_{0}$ for all $x \in N(P) \backslash\left\{v_{1}, v_{2}\right\}$ and $L^{\prime}(x)=L(x)$ otherwise. As $\left|V\left(G^{\prime}\right)\right|<|V(G)|, G^{\prime}$ has an L^{\prime}-coloring as T is a minimum counterexample. Thus G has an L-coloring, contrary to the fact that T is a counterexample.

So we may assume that $L\left(p_{1}\right) \subseteq L\left(v_{1}\right)$ and $\left|L\left(v_{1}\right)\right|=3$. Let P^{\prime} be the path obtained from P by adding v_{1}. Let $S^{\prime}=P^{\prime}+u, L^{\prime}\left(v_{1}\right)=L_{0}$ and $L^{\prime}(x)=L(x)$ for all $x \in V(G) \backslash\left\{v_{1}\right\}$. Consider the canvas $\left(G, S^{\prime}, L^{\prime}\right)$. As v_{1} is not the end of an essential chord of C and (G, S, L) was chosen so that $|V(P)|$ was maximized, we find that $G\left[V(P) \cup\left\{v_{1}, u\right\}\right]$ is an odd cycle and $L(u)=L_{0}$.

Now color G as follows. Let $\phi\left(v_{1}\right) \in L\left(v_{1}\right) \backslash L_{0}$. Extend ϕ to a coloring of $V(P) \cup\left\{v_{1}, u\right\}$. Let $L^{\prime}(x)=L(x) \backslash L_{0}$ for all $x \in V(G) \backslash\left(V(P) \cup\left\{v_{1}, u\right\}\right)$ and $L^{\prime}\left(v_{1}\right)=\phi\left(v_{1}\right)$. By Theorem 1.4.2, there exists an L^{\prime}-coloring of $G \backslash(P+u)$ and hence G has an L-coloring, contrary to the fact that T is a counterexample.

By Claim 2.5.3, we may assume without loss of generality that $v_{1} \neq u$. By Claim 2.5.4, v_{1} is the end of an essential chord of C. But this implies that $v_{2} \neq u$. By Claim 2.5.4, v_{2} is the end of an essential chord of C. As G is planar, it follows that $v_{1} v_{2}$ is a chord of C.

Claim 2.5.5. $|V(P)|=1$

Proof. Suppose not. Now $v_{1} v_{2}$ divides G into two graphs G_{1}, G_{2} where without loss of generality $V(P) \subset V\left(G_{1}\right)$ and $u \in V\left(G_{2}\right)$. Construct a new graph G^{\prime} with $V\left(G^{\prime}\right)=$ $V\left(G_{2}\right) \cup\{v\}$ and $E\left(G^{\prime}\right)=E\left(G_{2}\right) \cup\left\{v v_{1}, v v_{2}\right\}$. Let $L(v)=L_{0}$. Consider the canvas $\left(G^{\prime}, S, L\right)$ where $S=P^{\prime}+u$ and P^{\prime} is a path with sole vertex v. As $|V(P)| \geq$ $2,\left|V\left(G^{\prime}\right)\right|<|V(G)|$. So there exists an L-coloring ϕ of G^{\prime} as T is a minimum counterexample. Hence there exists an L-coloring ϕ of G_{2} where $\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right\} \neq$ $L\left(p_{1}\right)$. We extend ϕ to an L-coloring of $P \cup G_{2}$. Let $L^{\prime}(x)=L(x) \backslash L\left(p_{1}\right)$ for all $x \in V\left(G_{1}\right) \backslash\left(V(P) \cup\left\{v_{1}, v_{2}\right\}\right), L^{\prime}\left(v_{1}\right)=\phi\left(v_{1}\right)$ and $L^{\prime}\left(v_{2}\right)=\phi\left(v_{2}\right)$. By Theorem 1.4.2, there exists an L^{\prime}-coloring of $G_{1} \backslash P$. Thus G has an L-coloring, contrary to the fact that T is a counterexample.

So we may assume that $P=\{v\}$. Let $L_{0}=L(v)=\left\{c_{1}, c_{2}\right\}$.
Claim 2.5.6. For $i \in\{1,2\}, L_{0} \subset L\left(v_{i}\right)$ and $\left|L\left(v_{i}\right)\right|=3$
Proof. By symmetry it suffices to prove the claim for v_{1}. If $\left|L\left(v_{i}\right)\right|=3$, then $L_{0} \backslash$ $L\left(v_{1}\right) \neq \emptyset$ and so let $c \in L_{0} \backslash L\left(v_{1}\right)$. Otherwise we may suppose that $\left|L\left(v_{1}\right)\right| \geq 4$. In this case let $c \in L(v)$.

In either case, let $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash\{c\}, L^{\prime}\left(v_{2}\right)=L\left(v_{2}\right) \backslash\{c\}$ and $L^{\prime}(x)=L(x)$ otherwise. Consider the canvas $\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$ where $G^{\prime}=G \backslash\{v\}, S^{\prime}=P^{\prime}+u$ and P^{\prime} is a path with sole vertex v_{2}. As $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, there exists an L^{\prime}-coloring of G^{\prime} as T is a minimum counterexample. Thus G has an L-coloring, contrary to the fact that T is a counterexample.

Claim 2.5.7. $L\left(v_{1}\right)=L\left(v_{2}\right)$
Proof. Suppose not. As G is planar, either v_{1} is not the end of a chord of C separating v_{2} from u or v_{2} is not the end of a chord separating v_{1} from u. Assume without loss of generality that v_{1} is not in a chord of C separating v_{2} from u. This implies that v_{1} is not the end of a chord in C. Let v^{\prime} be the vertex in C distinct from v_{2} that is adjacent to v_{1}.

Let $c=L\left(v_{1}\right) \backslash L_{0}$. Let $G^{\prime}=G \backslash\left\{v, v_{1}\right\}, L^{\prime}(x)=L(x) \backslash\{c\}$ if $x \sim v_{1}$ and $L^{\prime}(x)=L(x)$ otherwise. Note that $\left|L^{\prime}\left(v_{2}\right)\right| \geq 3$ as $L\left(v_{1}\right) \neq L\left(v_{2}\right)$. First suppose that $u \neq v^{\prime}$. Hence $|L(u)|,\left|L\left(v^{\prime}\right)\right| \geq 2$. Let $S^{\prime}=P^{\prime}+u$ where P^{\prime} is a path with sole vertex v^{\prime}. Hence $\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$ is a canvas. As $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, there exists an L^{\prime}-coloring of G^{\prime} as T is a minimum counterexample. Thus there exists an L-coloring of G, contrary to the fact that T is a counterexample.

So we may suppose that $u=v^{\prime}$. Hence $|L(u)| \geq 1$. Now ($G^{\prime}, S^{\prime}, L^{\prime}$) is a canvas with $V\left(S^{\prime}\right)=\{u\}$. By Theorem 1.4.2, there exists an L^{\prime}-coloring of G. Thus there exists an L-coloring of G, contrary to the fact that T is a counterexample.

Let $c_{3}=c_{1}^{\prime}=c_{2}^{\prime}$. Let $P^{\prime}=v_{1} v_{2}$. Let $L_{1}\left(v_{1}\right)=L_{1}\left(v_{2}\right)=\left\{c_{1}, c_{3}\right\}$ and $L_{1}(x)=L(x)$ for all $x \in V(G) \backslash\left\{v, v_{1}, v_{2}\right\}$. Similarly let $L_{2}\left(v_{1}\right)=L_{2}\left(v_{2}\right)=\left\{c_{2}, c_{3}\right\}$ and $L_{2}(x)=$ $L(x)$ for all $x \in V(G) \backslash\left\{v, v_{1}, v_{2}\right\}$.

Claim 2.5.8. One of v_{1}, v_{2} is the end of an essential chord of C distinct from $v_{1} v_{2}$.

Proof. Suppose not. Consider the canvases $\left(G \backslash\{v\}, P^{\prime}+u, L_{1}\right)$ and $\left(G \backslash\{v\}, P^{\prime}+u, L_{2}\right)$ which satisfy the hypotheses of theorem. As $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, these canvases must satisfy the conclusion as T is a counterexample with a minimum number of vertices. Now either $L_{1}\left(v_{1}\right)$ or $L_{2}\left(v_{1}\right)$ is not equal to $L(u)$. So assume without loss of generality that $L_{1}\left(v_{1}\right) \neq L(u)=L_{1}(u)$. Thus there exists an L_{1}-coloring of $G \backslash v$. Hence there exists an L-coloring of G, contrary to the fact that T is a counterexample.

Suppose without loss of generality that v_{2} is the end of an essential chord of C distinct from $v_{1} v_{2}$. Choose such a chord $v_{2} u_{1}$ such that u_{1} is closest to v_{1} measured by the distance in $C \backslash\left\{v_{2}\right\}$. Now $v_{2} u_{1}$ divides G into two graphs G_{1} and G_{2} where we suppose without loss of generality that $v \in V\left(G_{1}\right)$ and $u \in V\left(G_{2}\right)$.

First suppose v_{1} is adjacent to u_{1}. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash\left\{c_{3}\right\}$ and $L^{\prime}(x)=L(x)$ otherwise. Consider the canvas $\left(G_{2}, S^{\prime}, L^{\prime}\right)$ where $S^{\prime}=P^{\prime}+u$ and P^{\prime} is a path with sole vertex u_{1}. As $\left|V\left(G_{2}\right)\right|<|V(G)|$, there exists an L^{\prime}-coloring ϕ of G_{2} as T is a
minimum counterexample. But then we may extend ϕ to v, v_{1} to obtain an L-coloring of G, contrary to the fact that T is a counterexample.

So we may suppose that v_{1} is not adjacent to u_{1}. Consider the canvas $T_{1}=$ $\left(G_{1}, P^{\prime}, L\right)$ where $P^{\prime}=v v_{2} u_{1}$. As u_{1} is not adjacent to v_{1}, T_{1} is not a fan. By Lemma 2.3.5, there is at most one coloring ϕ of P^{\prime} which does not extend to G_{1}. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash\left\{\phi\left(u_{1}\right)\right\}$ and $L^{\prime}(x)=L(x)$ otherwise. Consider the canvas $\left(G_{2}, S^{\prime}, L^{\prime}\right)$ where $S^{\prime}=P^{\prime}+u$ and P^{\prime} is a path with sole vertex u_{1}. As $\left|V\left(G_{2}\right)\right|<|V(G)|$, there exists an L^{\prime}-coloring ϕ^{\prime} of G^{\prime} as T is a minimum counterexample. Then we extend ϕ^{\prime} to v as $|L(v)| \geq 2$ and then to G_{1} as $\phi^{\prime}\left(u_{1}\right) \neq \phi\left(u_{1}\right)$. Thus we obtain an L-coloring of G, contrary to the fact that T is a counterexample.

2.6 Accordions

In this section, we will begin to characterize how the coloring of P in Theorem 1.4.2 extend to colorings of other paths of length one on the boundary of the outer walk. Indeed we will show that any L-coloring of P extends to at least two L-colorings of any other path P^{\prime} of length one unless a very specific structure occurs.

2.6.1 Coloring Extensions

Definition. Suppose $T=(G, P, L)$ is a path-canvas where $P=p_{1} p_{2}$ is a path of length one in C. Suppose we are given a collection \mathcal{C} of L-colorings of P. Let P^{\prime} be an edge of G with both ends in C. We let $\Phi_{G}\left(P^{\prime}, \mathcal{C}\right)$ denote the collection of proper colorings of P^{\prime} that can be extended to a proper coloring ϕ of G such that ϕ restricted to P is a coloring in \mathcal{C}. We will drop the subscript G when the graph is clear from context.

We may now restate Theorem 1.4.2 in these terms.

Theorem 2.6.1 (Thomassen). Let $T=(G, P, L)$ be a path-canvas with $|V(P)|=2$, \mathcal{C} a collection of proper L-colorings of P and P^{\prime} is an edge of G with both ends in C.
$\Phi\left(P^{\prime}, \mathcal{C}\right)$ is nonempty.

Note the following easy proposition.

Proposition 2.6.2. Let T, P, P^{\prime} be as in Theorem 2.6.1. If $U=u_{1} u_{2}$ is a chord of C separating P from P^{\prime}, then

$$
\Phi\left(P^{\prime}, \Phi(U, \mathcal{C})\right)=\Phi\left(P^{\prime}, \mathcal{C}\right)
$$

2.6.2 Governments

To explain the structure of extending larger sets of coloring, we focus on two special sets of colorings, defined as follows.

Definition (Government). Let $\mathcal{C}=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right\}, k \geq 2$, be a collection of disjoint proper colorings of a path $P=p_{1} p_{2}$ of length one. For $p \in P$, let $\mathcal{C}(p)$ denote the set $\{\phi(p) \mid \phi \in \mathcal{C}\}$.

We say \mathcal{C} is dictatorship if there exists $i \in\{1,2\}$ such that $\phi_{j}\left(p_{i}\right)$ is the same for all $1 \leq j \leq k$, in which case, we say p_{i} is the dictator of \mathcal{C}. We say \mathcal{C} is democracy if $k=2$ and $\phi_{1}\left(p_{1}\right)=\phi_{2}\left(p_{2}\right)$ and $\phi_{2}\left(p_{1}\right)=\phi_{1}\left(p_{2}\right)$. We say \mathcal{C} is a government if \mathcal{C} is a dictatorship or a democracy.

Here is a useful lemma about non-extendable colorings of bellows.

Lemma 2.6.3. Let $T=(G, P, L)$ be a bellows with base $P=p_{1} p_{2} p_{3}$. Suppose that $p_{1} \nsim p_{3}$. Let $\phi\left(p_{1}\right)=c$. Then there exist at most two colorings ϕ_{1}, ϕ_{2} of p_{2}, p_{3} extending ϕ that do not extend to an L-coloring of $G \backslash P$. Furthermore, $\mathcal{C}=\left\{\phi_{1}, \phi_{2}\right\}$ is a government. In addition, if \mathcal{C} is a democracy then T is an exceptional even fan. If \mathcal{C} is a dictatorship, then p_{3} is its dictator and T is an exceptional odd fan.

Proof. Follows from Proposition 2.3.9.

2.6.3 Accordions

Definition. We say a graph G is an accordion with ends P_{1}, P_{2}, which are distinct paths of length one, if G is a bellows with base $P_{1} \cup P_{2}$ or there exists a chord U of G that divides G into two accordions: G_{1} with ends P_{1}, U and G_{2} with ends P_{2}, U.

Definition (Accordion). Let $T=(G, S, L)$ be a canvas such that $S=P_{1} \cup P_{2}$ where P_{1}, P_{2} are distinct paths of length one. We say that T is an accordion with ends P_{1}, P_{2} if T is a bellows with base $P_{1} \cup P_{2}$, or T is the 2 -sum of two smaller accordions $T_{1}=\left(G_{1}, P_{1} \cup U, L\right)$ with ends P_{1}, U and $T_{2}=\left(G_{2}, P_{2} \cup U, L\right)$ with ends U, P_{2} along an edge $U=u_{1} u_{2}$ such that $\left|L\left(u_{1}\right)\right|,\left|L\left(u_{2}\right)\right| \leq 3$.

Definition (1-accordion). Let $T=(G, P, L)$ be a path-canvas with $|V(P)|=2$ and $|L(v)|=1$ for all $v \in V(P)$. Let $P^{\prime}=p_{1} p_{2}$ be an edge of the outer walk of G. We say T is a 1-accordion from P to P^{\prime} if G is an accordion whose ends are P and P^{\prime} and there exists exactly one L-coloring of G.

Proposition 2.6.4. If $T=(G, P, L)$ is a 1-accordion from P to P^{\prime} where P^{\prime} is an edge of C, then $|L(v)|=3$ for all $v \in V(C) \backslash V(P)$ where C is the outer walk of G.

Proof. Suppose not. Then there exists $v \in V(C) \backslash V(P)$ such that $|L(v)| \geq 4$. As T is a 1-accordion, then G has exactly one L-coloring ϕ of G by definition. Let $T^{\prime}=\left(G, P, L^{\prime}\right)$ where $L^{\prime}(v)=L(v) \backslash\{\phi(v)\}$ and $L^{\prime}(z)=L(z)$ otherwise. Now T^{\prime} is a canvas. By Theorem 1.4.2, there exists an L^{\prime}-coloring ϕ^{\prime} of G. Yet ϕ^{\prime} is an L-coloring of G and $\phi^{\prime}(v) \neq \phi(v)$, which contradicts the fact that ϕ was the only L-coloring of G.

Hence a 1-accordion is also an accordion.

Theorem 2.6.5 (Accordion). Let $T=(G, P, L)$ be a canvas, where P is a path of length one, and P^{\prime} be a path of length one distinct from P. If \mathcal{C} is a non-empty set of proper L-colorings of P such that if $|\mathcal{C}| \geq 2$ then \mathcal{C} contains a government, then
$\Phi\left(P^{\prime}, \mathcal{C}\right)$ does not contain a government if and only if T contains a subcanvas T^{\prime} such that T^{\prime} is a 1-accordion from P to P^{\prime} and $\mathcal{C}=\{\phi\}$, where ϕ is the unique proper coloring of P in T^{\prime}.

Proof. We proceed by induction on the number of vertices of G. As a 1-accordion has a unique L-coloring, one implication is clear. So let us prove the other. Suppose $\Phi\left(P^{\prime}, \mathcal{C}\right)$ does not contain a government. Following the proof of Lemma 2.4.1, we may assume that the canvas $\left(G, P \cup P^{\prime}, L\right)$ does not have non-essential chords, nonessential cutvertices or a vertex in the interior of a triangle or 4-cycle, as otherwise theorem follows by induction. Let C be the outer walk of G.

First suppose there is a cutvertex v of G. If v does not separate P from P^{\prime}, then we may delete a block of G not containing P, P^{\prime} and the theorem follows by induction and Theorem 1.4.2. So we may suppose v divides G into graphs G_{1}, G_{2} where $V(P) \subset V\left(G_{1}\right)$ and $V\left(P^{\prime}\right) \subset V\left(G_{2}\right)$. By Theorem 2.6.1, $\Phi(v, \mathcal{C})$ is nonempty. Let $c \in \Phi(v, \mathcal{C})$ and $u v$ be an edge of G_{2} incident with the infinite face of G. Let $\mathcal{C}^{\prime}=\left\{\left(c, c^{\prime}\right): c^{\prime} \in L(u) \backslash\{c\}\right\}$ be a set of colorings of $P^{\prime \prime}=u v$. If $P^{\prime}=P^{\prime \prime}$, the the theorem follows. Otherwise, apply induction to $\left(G_{2}, P^{\prime \prime}, L\right)$ with \mathcal{C}^{\prime} to find that $\Phi_{G_{2}}\left(P^{\prime}, \mathcal{C}^{\prime}\right)$ contains a government. But it follows that $\Phi_{G_{2}}\left(P^{\prime}, \mathcal{C}\right) \subseteq \Phi_{G}\left(P^{\prime}, \mathcal{C}\right)$ and hence $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a government, a contradiction.

Next suppose there is a chord $U=u_{1} u_{2}$ of C, the outer walk of G, separating G into G_{1}, G_{2} where $V(P) \subset V\left(G_{1}\right)$ and $V\left(P^{\prime}\right) \subset V\left(G_{2}\right)$. Let $T_{1}=\left(G_{1}, P, L\right)$ and $T_{2}=\left(G_{2}, U, L\right)$. By Theorem 2.6.1, $\Phi(U, \mathcal{C})$ is nonempty. By induction for T_{2}, $\left|\Phi\left(P^{\prime}, \Phi(U, \mathcal{C})\right)\right|$ does not contain a government if and only if T_{2} contains a 1-accordion T_{2}^{\prime} from U to $P^{\prime},|\Phi(U, \mathcal{C})|=1$ and $\Phi(U, \mathcal{C})=\left\{\phi^{\prime}\right\}$, where ϕ^{\prime} is the unique coloring of U in T_{2}^{\prime}. By induction for T_{1} then, T_{1} contains a 1-accordion T_{1}^{\prime} from P to $U, \mathcal{C}=\{\phi\}$ and $\Phi(U, \mathcal{C})=\left\{\phi^{\prime}\right\}$, where ϕ is the unique coloring of P in T_{1}^{\prime}. Thus T contains a 1-accordion T^{\prime} from P to P^{\prime}, the 1-sum of T_{1}^{\prime} and T_{2}^{\prime} and ϕ is the unique coloring of P in T^{\prime} as desired. So we may assume there is no chord of G separating P from P^{\prime}.

Suppose $P \cap P^{\prime} \neq \emptyset$. We may assume by induction that T is a bellows. Let $P=p_{1} p_{2}$ and $P^{\prime}=p_{2} p_{3}$. As there is no chord of C, G is either a triangle or a turbofan. Suppose G is a triangle. If \mathcal{C} contains a democracy, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a dictatorship as desired. Suppose \mathcal{C} contains a dictatorship \mathcal{C}^{\prime}. If p_{1} is the dictator of \mathcal{C}^{\prime}, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a dictatorship as desired unless $L\left(p_{3}\right)$ has size three and consists of the color of p_{1} in \mathcal{C} and the colors of p_{2} in \mathcal{C}. But then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a democracy as desired. If p_{2} is the dictator of \mathcal{C}^{\prime}, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a dictatorship with dictator p_{2} as desired.

So we may suppose that \mathcal{C} does not contain a government and hence $|\mathcal{C}|=1$ by assumption. Let $\mathcal{C}=\{\phi\}$. If $\left|L(v) \backslash\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right)\right\}\right| \geq 2$, then \mathcal{C} contains a dictatorship with dictator p_{2} as desired. So we may suppose that $|L(v)|=3$ and $\phi\left(p_{1}\right), \phi\left(p_{2}\right) \in L(v)$. But then T contains a 1 -accordion, a contradiction.

So we may suppose that G is a turbofan. By Lemma 2.3.5, there exists exactly one coloring ϕ of P that does not extend to an L-coloring of G. Let $\phi^{\prime} \in \mathcal{C}$. Now ϕ^{\prime} extends to at least two colorings of P. If more than one of these extends, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a dictatorship with dictator p_{2} as desired. It follows that $|L(v)|=3$, $\phi^{\prime}\left(p_{1}\right)=\phi\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right)=\phi\left(p_{2}\right)$ and $\phi\left(p_{2}\right), \phi\left(p_{3}\right) \in L(v)$. Thus $|\mathcal{C}|=1$ and T contains a 1-accordion whose unique coloring restricts on P to the unique coloring in \mathcal{C}.

So we may suppose that $P \cap P^{\prime}=\emptyset$. Let $P=p_{1} p_{2}$ and $P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$. Let v_{1}, v_{2} be the vertices of the infinite face not in P adjacent to p_{1}, p_{2} respectively. We claim that that either v_{1} or v_{2} is not in $V\left(P^{\prime}\right)$. Suppose not. Then G is precisely a four-cycle $p_{1} p_{2} v_{2} v_{1}$ and $V\left(P^{\prime}\right)=\left\{v_{1}, v_{2}\right\}$. We fix a coloring ϕ of P, remove $\phi\left(p_{1}\right)$ from $L\left(v_{1}\right)$ and $\phi\left(p_{2}\right)$ from $L\left(v_{2}\right)$. Thus we obtain all L^{\prime}-colorings of P^{\prime}, where $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}$ and $L^{\prime}\left(v_{2}\right)=L\left(v_{2}\right) \backslash\left\{\phi\left(p_{2}\right)\right\}$. But this set contains a government, a contradiction. This proves the claim. So we may suppose without loss of generality that $v_{1} \notin V\left(P^{\prime}\right)$.

Now consider the Thomassen reduction of $v_{1}, T_{1}=T\left(\Phi, v_{1}\right)$. If $\Phi_{G \backslash v_{1}}\left(P^{\prime}, \mathcal{C}\right)$ contains a government, then so does $\Phi_{G}\left(P^{\prime}, \mathcal{C}\right)$ as desired. Thus by induction T_{1}
contains a 1-accordion T_{1}^{\prime} from P to $P^{\prime},|\mathcal{C}|=1$ and $\mathcal{C}=\{\phi\}$ is the unique proper L-coloring of P in T_{1}^{\prime}. Similarly if $v_{2} \notin V\left(P^{\prime}\right)$, the Thomassen reduction of v_{2}, $T_{2}=T\left(\Phi, v_{2}\right)$, contains a 1-accordion T_{2}^{\prime} from P to P^{\prime} and ϕ is the unique proper L-coloring of P in T_{2}^{\prime}.

But now we may assume without loss of generality that $p_{1}, p_{1}^{\prime}, p_{2}^{\prime}, p_{2}$ appear in that order in the outer walk of G. We claim that there exists $x \sim p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$ or the theorem follows. First suppose $v_{2} \in V\left(P^{\prime}\right)$. Hence $v_{2}=p_{2}^{\prime}$. As T_{1}^{\prime} is a 1 accordion and there does not exist a chord of the outer walk of G, we find that there exists $x_{1} \sim v_{1}, p_{1}, p_{2}, p_{2}^{\prime}$. Let $G^{\prime}=G \backslash V(P)$. Let $L^{\prime}\left(x_{1}\right)=L\left(x_{1}\right) \backslash\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right)\right\}$, $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}, L^{\prime}\left(p_{2}^{\prime}\right)=L\left(p_{2}^{\prime}\right) \backslash\left\{\phi\left(p_{2}\right)\right\}$ and $L^{\prime}=L$ otherwise.

If $\left|L^{\prime}\left(p_{2}^{\prime}\right)\right|=2$, let $\phi\left(x_{1}\right) \in L^{\prime}\left(x_{1}\right) \backslash L^{\prime}\left(p_{2}^{\prime}\right)$; otherwise, let $\phi\left(x_{1}\right) \in L^{\prime}\left(x_{1}\right)$. Then let $\phi\left(v_{1}\right) \in L^{\prime}\left(v_{1}\right) \backslash\left\{\phi\left(x_{1}\right)\right\}$. Let $L^{\prime \prime}\left(p_{2}^{\prime}\right)=L^{\prime}\left(p_{2}^{\prime}\right) \cup\left\{\phi\left(x_{1}\right)\right\}$ and $L^{\prime \prime}=L^{\prime}$ otherwise. Let $C^{\prime}=\{\phi\}$ be a set of $L^{\prime \prime}$-colorings for $P^{\prime \prime}=x_{1} v_{1}$. By induction on $T^{\prime}=\left(G \backslash P, P^{\prime \prime}, L^{\prime \prime}\right)$, we find that either $\Phi\left(P^{\prime}, \mathcal{C}^{\prime}\right)$ contains a government or T^{\prime} contains a 1-accordion from $P^{\prime \prime}$ to P^{\prime}. If $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a government, then so does $\Phi\left(P^{\prime}, \mathcal{C}\right)$ and the theorem follows. So we may assume that T^{\prime} contains a 1-accordion from $P^{\prime \prime}$ to P^{\prime}. As there is no chord of the outer walk of G, it follows that x_{1} is adjacent to p_{1}^{\prime} and the claim follows with $x=x_{1}$.

So we may suppose that $v_{2} \notin V\left(P^{\prime}\right)$. By considering T_{1} and T_{2} we find that either the claim holds or there exists $x_{1}, x_{2} \in V(G)$ such that $x_{1} \sim v_{1}, p_{1}, p_{2}, v_{2}, x_{2}$ and $x_{2} \sim v_{1}, v_{2}, p_{1}^{\prime}, p_{2}^{\prime}$. Without loss of generality we may suppose that $\mathcal{C}\left(p_{1}\right)=\{1\}$, $\mathcal{C}\left(p_{2}\right)=\{2\}, L\left(v_{1}\right)=\{1,3,4\},, L\left(v_{2}\right)=\{2,3,5\}$ and $L\left(x_{1}\right)=\{1,2,3,4,5\}$. Thus in the unique coloring ϕ_{1} of T_{1}^{\prime}, we find that $\phi_{1}\left(x_{1}\right)=5$ and $\phi_{1}\left(v_{2}\right)=3$. But now $\left|L\left(x_{2}\right) \backslash\{3,4,5\}\right| \geq 2$ and hence $\left|L_{1}\left(x_{2}\right) \backslash\{3,5\}\right| \geq 2$. It follows that there exist at least two L_{1}-colorings of T_{1}^{\prime}, contradicting that T_{1}^{\prime} is a 1-accordion.

As $x \sim p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$, we find that $p_{1} x p_{1}^{\prime}$ and $p_{2} x p_{2}^{\prime}$ are bellows B_{1} and B_{2} respectively as otherwise we may delete $B_{1} \backslash\left\{p_{1} x p_{1}^{\prime}\right\}$ or $B_{2} \backslash\left\{p_{2} x p_{2}^{\prime}\right\}$ and apply induction.

Suppose without loss of generality that $\phi\left(p_{1}\right)=1$ and $\phi\left(p_{2}\right)=2$. If $\left|L\left(v_{1}\right) \backslash\{1\}\right| \geq$ 3 , then consider $T^{\prime}=\left(G \backslash\left\{p_{1} v_{1}\right\}, P, L^{\prime}\right)$ where $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash\{1\}$ and $L^{\prime}=L$. By induction, T^{\prime} contains a 1-accordion $T^{\prime \prime}$ from P to P^{\prime}. But then x is in $T^{\prime \prime}$ and yet $\left|L^{\prime}(x)\right|=5$, contradicting Proposition 2.6.4.

We claim that that B_{1} and B_{2} are fans. Suppose not. Suppose without loss of generality that B_{1} is not a fan. By Lemma 2.3.5, there exists a unique non-extendable coloring ϕ^{\prime} of B_{1}. Consider $T^{\prime}=\left(G \backslash\left(B_{1} \backslash\left\{p_{1} x p_{1}^{\prime}\right\}\right), P, L^{\prime}\right)$ where $L^{\prime}(x)=L(x) \backslash\left\{\phi^{\prime}(x)\right\}$ and $L^{\prime}=L$. By induction, T^{\prime} contains a 1-accordion $T^{\prime \prime}$ from P to P^{\prime}. But then x is in $T^{\prime \prime}$ and yet $\left|L^{\prime}(x)\right|=4$, contradicting Proposition 2.6.4. This proves the claim.

By Lemma 2.3.6, for $i \in\{1,2\}$ there exists at most two colors in $L\left(p_{i}^{\prime}\right)$ that extend to a coloring of $p_{i} x p_{i}^{\prime}$ that does not extend to a coloring of B_{i}. Suppose there is at most one such color c_{1} for $i=1$ and at most one such color c_{2} for $i=2$. Now let $L^{\prime}\left(p_{1}^{\prime}\right)=L\left(p_{1}\right) \backslash\left\{c_{1}\right\}$ and $L^{\prime}\left(p_{2}^{\prime}\right)=L\left(p_{2}\right) \backslash\left\{c_{2}\right\}$. But then every L^{\prime}-coloring of P^{\prime} is in $\Phi\left(P^{\prime}, \mathcal{C}\right)$ and yet the set of L^{\prime}-colorings of P^{\prime} contains a government as desired. This also shows that $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=3$.

So we may suppose without loss of generality that p_{1}^{\prime} has two colors c_{1}, c_{2} in $L\left(p_{1}^{\prime}\right)$ that do not extend to an L-coloring of B_{1}. By Lemma 2.3.6, it follows that $L\left(v_{1}\right) \backslash \phi\left(p_{1}\right)=\left\{c_{1}, c_{2}\right\}, c_{1}, c_{2} \in L(x)$ and the non-extendable colorings of p_{1}, x, p_{1}^{\prime} are $\phi\left(p_{1}\right), c_{1}, c_{2}$ and $\phi\left(p_{1}\right), c_{2}, c_{1}$.

We may assume without loss of generality that $L(x)=\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right), c_{1}, c_{2}, c_{3}\right\}$. Now let c_{3}^{\prime} be a color in $L\left(p_{2}^{\prime}\right)$ such that every L-coloring of p_{2}^{\prime}, x with p_{2}^{\prime} colored c_{3} extends to an L-coloring of B_{2}. Suppose $c_{3} \neq c_{3}^{\prime}$. But then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains the colorings (with p_{1}^{\prime} color first): $\left(c_{1}, c_{3}^{\prime}\right)$ and $\left(c_{2}, c_{3}^{\prime}\right)$, a dictatorship as desired. So we may assume that $c_{3}=c_{3}^{\prime}$ and hence there exist two colors $c_{1}^{\prime}, c_{2}^{\prime}$ in $L\left(p_{2}^{\prime}\right)$ that do not extend to an L-coloring of B_{2}. It follows then that $c_{1}^{\prime}, c_{2}^{\prime} \in L(x) \backslash\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right)\right\}$. Yet $c_{1}^{\prime}, c_{2}^{\prime} \neq c_{3}$. So we may assume without loss of generality that $c_{1}^{\prime}=c_{1}$ and $c_{2}^{\prime}=c_{2}$.

Now color x with c_{3}. It follows that the colorings c_{1}, c_{2} and c_{2}, c_{1} are in $\Phi\left(P^{\prime}, \mathcal{C}\right)$
and hence $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a democracy as desired.

2.7 Harmonicas

In this section, we will characterize how governments extend. Specifically, we will show that a government extends to two governments unless a very specific structure occurs. We will then show that this structure is the only obstruction to generalizing Theorem 2.2.2 to the case of one vertex with a list of size one and one with a list of size two.

Definition. Let \mathcal{C} be a collection of disjoint proper colorings of a path $P=p_{1} p_{2}$ of length one. We say \mathcal{C} is a confederacy if \mathcal{C} is not a government and yet \mathcal{C} is the union of two governments.

Definition (Harmonica). Let $T=(G, S, L)$ be a canvas such that $S=P \cup P^{\prime}$ where P, P^{\prime} are paths of length one. Let \mathcal{C} be a government for P. We say T is a harmonica from P to P^{\prime} with government \mathcal{C} if

- $G=P=P^{\prime}$, or
- \mathcal{C} is a dictatorship, $G=P \cup P^{\prime}, P \cap P^{\prime}=z$ where z is the dictator of \mathcal{C}, or
- \mathcal{C} is a dictatorship and there exists a triangle $z u_{1} u_{2}$ where $z \in V(P)$ is the dictator of \mathcal{C} in color $c, L\left(u_{1}\right)=L\left(u_{2}\right)=c \cup L_{0}$ where $\left|L_{0}\right|=2$ and the canvas $\left(G \backslash(P \backslash U), U \cup P^{\prime}, L\right)$ is a harmonica from $U=u_{1} u_{2}$ to P^{\prime} with democracy \mathcal{C}^{\prime} whose colors are L_{0}, or
- \mathcal{C} is a democracy, there exists $z \sim p_{1}, p_{2}$ such that $L(z)=L_{0} \cup\{c\}$ where L_{0} are the colors of \mathcal{C} and there exists $i \in\{1,2\}$ such that the canvas $\left(G \backslash p_{i}, U \cup P^{\prime}, L^{\prime}\right)$ is a harmonica with dictatorship $\mathcal{C}^{\prime}=\left\{\phi_{1}, \phi_{2}\right\}$ where $U=z p_{3-i}$ and $\phi_{1}(z)=$ $\phi_{2}(z)=c$ and $\left\{\phi_{1}\left(p_{3-i}\right), \phi_{2}\left(p_{3-i}\right)\right\}=L_{0}$.

Note that $\Phi_{T}\left(P^{\prime}, \mathcal{C}\right)$ is a government \mathcal{C}^{\prime}. We say a harmonica is even if \mathcal{C} and \mathcal{C}^{\prime} are both dictatorships or both democracies and odd otherwise.

Lemma 2.7.1. Let $T=(G, S, L)$ be a canvas. Suppose that $S=P \cup P^{\prime}$ where $P=p_{1} p_{2}$ is a path of length one and $P \neq P^{\prime}$. If T contains a harmonica $T_{1}=$ $\left(G_{1}, P+P^{\prime}, L\right)$ with dictatorship \mathcal{C} where p_{1} is the dictator of \mathcal{C}^{\prime}, then T does not contain
(1) an harmonica $T_{2}=\left(G_{2}, P \cup P^{\prime}, L\right)$ with democracy \mathcal{C}^{\prime}, or
(2) a harmonica $T_{2}=\left(G_{2}, P \cup P^{\prime}, L\right)$ with government \mathcal{C}^{\prime} such that p_{2} is the dictator of \mathcal{C}^{\prime}.

Proof. Let T_{1}, T_{2} be a counterexample such that $\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|$ is minimized.
First suppose that (i) holds. As T_{2} is a harmonica with a democracy, there exists $p \sim p_{1}, p_{2}$ such that $L_{0} \subset L(p)$ where $L_{0}=L_{2}\left(p_{1}\right)=L_{2}\left(p_{2}\right)$ and $\left|L_{0}\right|=2$. First suppose $p_{1} p$ is a chord of the outer walk of G. Then $T_{2}^{\prime}=\left(G_{2} \backslash p_{1}, p p_{1}+u, L_{2}^{\prime}\right)$ is an even harmonica, where $L_{2}^{\prime}(p)=L(p) \backslash L_{0}$ and $L_{2}^{\prime}(v)=L(v)$ otherwise. Thus $p_{2} \notin G_{1}$ and we may consider the canvases $T^{\prime}=\left(G \backslash p_{2}, p p_{1}+u, L\right), T_{1}, T_{2}^{\prime}$. Yet T_{2}^{\prime} has smaller length than T_{2} and satisfies (ii), contrary to the fact that T_{1}, T_{2} were chosen to minimize the sum of the sizes of the harmonicas. So we may assume that $p_{2} p$ is a chord of the outer walk of G. But then $T_{1}^{\prime}=\left(G_{1} \backslash p_{1}, p p_{2}+u, L_{1}\right)$ is a harmonica with democracy. We may then consider the canvases $T^{\prime}=\left(G \backslash p_{1}, p p_{2}+u, L\right), T_{1}^{\prime}, T_{2}^{\prime \prime}=\left(G_{2} \backslash p_{1}, p p_{2}+u, L_{2}^{\prime}\right)$. Yet T_{2}^{\prime} has smaller length than T_{2} and T_{1}^{\prime} has smaller length than T_{1}. Moreover, T_{1}^{\prime} satisfies (i), and hence $T_{2}^{\prime \prime}, T_{1}^{\prime}$ is a counterexample that contradicts the fact that T_{1}, T_{2} were chosen to minimize the sum of the sizes of the harmonicas.

Finally suppose that (ii) holds. As G is planar there exists $p \sim p_{1}, p_{2}$ and p in at least one of G_{1} or G_{2}. Suppose without loss of generality that $p \in V\left(G_{1}\right)$. Let $L_{1}^{\prime}\left(p_{2}\right)=L_{1}^{\prime}(p)=L_{1}(p) \backslash L_{1}\left(p_{1}\right)$. Thus $T_{1}^{\prime}=\left(G_{1} \backslash p_{1}, p p_{2}+u, L_{1}^{\prime}\right)$ is a harmonica with a democracy. Moreover, T_{1}^{\prime} has smaller length than T_{1}. But then T_{2}, T_{1}^{\prime} is a
counterexample that contradicts the fact that T_{1}, T_{2} were chosen to minimize the sum of the sizes of the harmonicas.

Theorem 2.7.2. Let $T=(G, P, L)$ be a canvas and P, P^{\prime} be paths of length one in C. Given a collection \mathcal{C} of proper colorings of P such that \mathcal{C} is a government or a confederacy, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy unless \mathcal{C} is a government and there exists a subgraph G^{\prime} of G such that $\left(G^{\prime}, P \cup P^{\prime}, L\right)$ is a harmonica from P to P^{\prime} with government \mathcal{C}.

Proof. Suppose that $T=(G, S, L)$ is a counterexample with $|V(G)|$ minimized and subject to the condition that \mathcal{C} is a government if possible. Following the proof of Lemma 2.4.1, we may suppose that T does not have non-essential chords, nonessential cutvertices or a vertex in the interior of a triangle or 4-cycle. Let C be the outer walk of G.

Claim 2.7.3. G is 2-connected.

Proof. Suppose not. Then there exists a curvertex v of G. We may assume by Lemma 2.4.1, that v is essential, which implies that v separates P from P^{\prime}. If $v \in$ $P \cup P^{\prime}$, then theorem follows from Bellows Coloring Lemmas?

So suppose v divides G into two graphs G_{1}, G_{2} such that without loss of generality $V\left(P^{\prime}\right) \subset V\left(G_{2}\right)$ and $V(P) \subset V\left(G_{1}\right)$. Consider the canvases $T_{1}=\left(G_{1}, S_{1}, L\right)$ and $T_{2}=\left(G_{2}, S_{2}, L\right)$ where $S_{1}=P \cup U$ and $S_{2}=U^{\prime} \cup P^{\prime}$ where U is an edge of the outer walk of G_{1} containing v and U^{\prime} is an edge of the outer walk of G_{2} containing v. If there exist two colorings ϕ_{1}, ϕ_{2} of T_{1} such $\phi_{1}(v) \neq \phi_{2}(v)$. But then there exists a confederacy $\mathcal{C}^{\prime \prime}$ for U^{\prime} such that every coloring in it extends back to T_{1}. As T is a minimum counterexample, it follows that $\Phi_{T_{2}}\left(P^{\prime}, \mathcal{C}^{\prime \prime}\right)$ has a confederacy, a contradiction.

Now as T is a minimum counterexample, either $\Phi_{T_{1}}(U, \mathcal{C})$ is a government and contains a harmonica T_{1}^{\prime} from P to U or $\Phi_{T_{1}}(U, \mathcal{C})$ has a confederacy $\mathcal{C}^{\prime \prime}$. The latter is a contradiction as then there would exist two colorings ϕ_{1}, ϕ_{2} of T_{1} such that $\phi_{1}(v) \neq \phi_{2}(v)$. It follows similarly then that T_{1}^{\prime} is an even harmonica if \mathcal{C} is a dictatorship and odd if \mathcal{C} is a democracy. But then as T is a minimum counterexample, it follows by considering $T_{2}^{\prime}=\left(G_{2} \cup U, U+P^{\prime}, L\right)$ that $\Phi_{T_{2}^{\prime}}\left(P^{\prime}, \mathcal{C}^{\prime \prime}\right)$ has a confederacy, a contradiction.

Claim 2.7.4. \mathcal{C} is a government.

Proof. Suppose not. Then $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a confederacy. As T is a minimum counterexample, there exists a harmonica T_{1} from P to P^{\prime} for \mathcal{C}_{1} and a harmonica T_{2} from P to P^{\prime} for \mathcal{C}_{2}. But this contradicts Lemma 2.7.1 unless $\mathcal{C}_{1}, \mathcal{C}_{2}$ are both dictatorship with the same dictator. It is not hard to see though that $\Phi\left(P^{\prime}, \mathcal{C}_{1}\right) \neq \Phi\left(P^{\prime}, \mathcal{C}_{2}\right)$ and hence that $\Phi\left(P^{\prime}, \mathcal{C}\right)$ has a confederacy, a contradiction.

Claim 2.7.5. There does not exist a chord of C.

Proof. Suppose there exists a chord U of C. We may assume U is essential, separating a vertex of P from a vertex of P^{\prime}. Now U divides G into graphs G_{1}, G_{2} where we may assume without loss of generality that $P \subseteq G_{1}$ and $P^{\prime} \subseteq G_{2}$. Consider the canvases $T_{1}=\left(G_{1}, P \cup U, L\right)$ and $T_{2}=\left(G_{2}, U \cup P^{\prime}, L\right)$. As T is a minimum counterexample, either $\Phi_{T_{1}}(U, \mathcal{C})$ contains a confederacy \mathcal{C}^{\prime} or there exists harmonica T_{1}^{\prime} from P to U with government \mathcal{C}. Suppose the former. But then as T is a minimum counterexample, $\Phi_{T_{2}}\left(P^{\prime}, \mathcal{C}^{\prime}\right)$ contains a confederacy and hence so does $\Phi\left(P^{\prime}, \mathcal{C}\right)$ a contradiction.

So we may suppose the latter. But then $\Phi_{T_{1}}(U, \mathcal{C})$ is a government \mathcal{C}^{\prime}. As T is a minimum counterexample, $\Phi_{T_{2}}\left(P^{\prime}, \mathcal{C}^{\prime}\right)$ contains or a confederacy or there exists a harmonica T_{2}^{\prime} from U to P^{\prime} with government \mathcal{C}^{\prime}. If the former holds, then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy, a contradiction. So suppose the latter. But then the 2-sum
of T_{1}^{\prime} and T_{2}^{\prime} with respect to U is harmonica from P to P^{\prime} with government \mathcal{C}, a contradiction.

Claim 2.7.6. $P \cap P^{\prime}=\emptyset$.

Proof. Suppose not. If $P=P^{\prime}$, then $\left(G, P \cup P^{\prime}, L\right)$ is a harmonica, a contradiction. So we may suppose that $P \neq P^{\prime}$. Let $z=P \cap P^{\prime}$. If there do not exist $\phi_{1}, \phi_{2} \in \mathcal{C}$ such that $\phi_{1}(z) \neq \phi_{2}(z)$, then \mathcal{C} and $\Phi\left(P^{\prime}, \mathcal{C}\right)$ are dictatorships with dictator z. But then $\left(P \cup P^{\prime}, P \cup P^{\prime}, L\right)$ is a harmonica, a contradiction.

So we may suppose there exists $\phi_{1}, \phi_{2} \in \mathcal{C}$ such that $\phi_{1}(z) \neq \phi_{2}(z)$. First suppose T is not a bellows with base $P \cup P^{\prime}$. We may assume by criticality that $G=P \cup P^{\prime}$. But then ϕ_{1} and ϕ_{2} extend to distinct governments of P^{\prime} and hence $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy, a contradiction.

So we may assume that T is a bellows with base $P \cup P^{\prime}$. By Claim 2.7.5, it follows that either G is a triangle or T is a turbofan. In the former case, it is not hard to see that either $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy or T is a harmonica, a contradiction. So suppose the latter.

By Lemma 2.3.5, there exists a unique L-coloring ϕ_{0} of $P \cup P^{\prime}$ that does not extend to an L-coloring of G. Let $i \in\{1,2\}$ such that $\phi_{i}(z) \neq \phi_{0}(z)$. Hence there is a dictatorship $\mathcal{C}_{1} \subseteq \Phi\left(P^{\prime}, C\right)$ such that $\phi(z)=\phi_{i}(z)$ for all $\phi \in \mathcal{C}_{1}$. Let $P^{\prime}=z z^{\prime}$. Suppose $L\left(z^{\prime}\right) \backslash\left\{\phi_{1}(z), \phi_{2}(z), \phi_{0}\left(z^{\prime}\right)\right\} \neq \emptyset$. Let c be a color in $L\left(z^{\prime}\right) \backslash\left\{\phi_{1}(z), \phi_{2}(z), \phi_{0}\left(z^{\prime}\right)\right\}$. Hence there exists a dictatorship $\mathcal{C}_{2} \subseteq \Phi\left(P^{\prime}, \mathcal{C}\right)$ such that $\phi\left(z^{\prime}\right)=c$ for all $\phi \in \mathcal{C}_{2}$. But then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains the confederacy $\mathcal{C}_{1} \cup \mathcal{C}_{2}$, a contradiction.

So we may assume that $L\left(z^{\prime}\right)=\left\{\phi_{0}\left(z^{\prime}\right), \phi_{1}(z), \phi_{2}(z)\right\}$ as $\left|L\left(z^{\prime}\right)\right| \geq 3$. Hence, $\phi_{0}\left(z^{\prime}\right) \neq \phi_{1}(z), \phi_{2}(z)$. Hence the democracy \mathcal{C}_{2} in colors $\phi_{1}(z), \phi_{2}(z)$ is in $\Phi\left(P^{\prime}, \mathcal{C}\right)$. But then $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains the confederacy $\mathcal{C}_{1} \cup \mathcal{C}_{2}$, a contradiction.

Claim 2.7.7. \mathcal{C} is a dictatorship.

Proof. Suppose not. Hence \mathcal{C} is a democracy. Let L_{0} be the colors of \mathcal{C}. Let $Q=$ $q_{1} \ldots q_{k}$ be a maximal path in C such that $E(Q) \cap E\left(P^{\prime}\right)=\emptyset, V(P) \subseteq V(Q)$, $L_{0} \subset L(v)$ for all $v \in V(Q)$. Suppose $q_{1} \notin V\left(P^{\prime}\right)$. Let $q_{1} v_{1} \in E(C) \backslash E(Q)$. Let $T^{\prime}=\left(G \backslash Q, v_{1}+P^{\prime}, L^{\prime}\right)$ be the democratic reduction of Q with democracy L_{0} centered around v_{1}. As Q is maximal and $q_{1} \notin V(Q), L_{0}$ is not a subset of $L\left(v_{1}\right)$ as otherwise $Q+v_{1}$ would also be path satisfying the above conditions, contradicting that Q is maximal. Hence $\left|L^{\prime}\left(v_{1}\right)\right| \geq 2$. Let $P^{\prime \prime}$ be a path of length one of C containing v_{1}. Thus the set of L^{\prime}-coloring of $P^{\prime \prime}$ contains a confederacy \mathcal{C}^{\prime}. As T is a minimum counterexample, it follows from considering $T^{\prime \prime}=\left(G \backslash Q, P^{\prime \prime} \cup P^{\prime}, L^{\prime}\right)$ that $\Phi_{T^{\prime \prime}}\left(P^{\prime}, \mathcal{C}^{\prime}\right)$ contains a confederacy and hence $\Phi_{T}\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy, a contradiction. So we may suppose that $q_{1} \in V\left(P^{\prime}\right)$. By symmetry, it follows that $q_{k} \in V\left(P^{\prime}\right)$.

Yet $P \cap P^{\prime}=\emptyset$ by Claim 2.7.6. So $q_{1}, q_{k} \notin V(P)$. Let $c_{1} \in L\left(q_{1}\right) \backslash L_{0}$ and $c_{2} \in$ $L\left(q_{2}\right) \backslash L_{0}$. Let $\mathcal{C}_{1}=\left\{\phi_{1}, \phi_{1}^{\prime}\right\}$ where $\phi_{1}\left(q_{1}\right)=\phi_{1}^{\prime}\left(q_{1}\right)=c_{1}$ and $\left\{\phi_{1}\left(q_{k}\right), \phi_{1}^{\prime}\left(q_{k}\right)\right\}=L_{0}$. Similarly, let $\mathcal{C}_{2}=\left\{\phi_{2}, \phi_{2}^{\prime}\right\}$ where $\phi_{2}\left(q_{k}\right)=\phi_{2}^{\prime}\left(q_{k}\right)=c_{2}$ and $\left\{\phi_{2}\left(q_{1}\right), \phi_{2}^{\prime}\left(q_{1}\right)\right\}=L_{0}$. Hence \mathcal{C}_{1} and \mathcal{C}_{2} are distinct governments of P^{\prime} and $\mathcal{C}^{\prime}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a confederacy. Moreover, for all $\phi \in \mathcal{C}^{\prime}, \phi \in \Phi\left(P^{\prime}, \mathcal{C}\right)$. To see this, simply extend ϕ to Q using the colors of L_{0}. Then if $\phi \in \mathcal{C}_{1}$, consider the democratic reduction T^{\prime} of $Q \backslash q_{1}$ centered around q_{1}. There exists a coloring of T^{\prime} by Theorem 1.4.2. Hence $\phi \in \Phi\left(P^{\prime}, \mathcal{C}\right)$. Similarly if $\phi \in \mathcal{C}_{2}$, consider the democratic reduction T^{\prime} of $Q \backslash q_{k}$ centered around q_{k}. There exists a coloring of T^{\prime} again by Theorem 1.4.2. Hence $\phi \in \Phi\left(P^{\prime}, \mathcal{C}\right)$.

Suppose without loss of generality that p_{1} is the dictator of \mathcal{C} in color c. Let v_{1}, v_{2} be the vertices of C adjacent to p_{1}. Now let $T_{1}=\left(G \backslash\left\{v_{1}\right\}, S, L_{1}\right), T_{2}=$ $\left(G \backslash\left\{v_{2}\right\}, S, L_{2}\right)$ be the Thomassen reductions of v_{1}, v_{2} respectively. If $\Phi_{T_{1}}\left(P^{\prime}, \mathcal{C}\right)$ contains a confederacy, then so does $\Phi_{T}\left(P^{\prime}, \mathcal{C}\right)$, a contradiction. So we may suppose, as T is a minimum counterexample, that T_{1} contains a harmonica from P to P^{\prime} with government \mathcal{C}. Similarly for T_{2}.

Thus there exists $v \notin C$ such that $v \sim p_{1}, v_{1}, v_{2}$. As T_{1} contains a harmonica, $L_{1}(v)=L_{1}\left(v_{2}\right)$. So it follows though that $c \in L\left(v_{2}\right)$, that $\left|L\left(v_{2}\right)\right|=3$. Similarly $c \in L\left(v_{1}\right)$ and $\left|L\left(v_{1}\right)\right|=3$. In addition, we now find that $L\left(v_{1}\right) \cap L\left(v_{2}\right)=\{c\}$ and $L(v)=L\left(v_{1}\right) \cup L\left(v_{2}\right)$. Consider the furthest chords $U_{1}=v u_{1}$ and $U_{2}=v u_{2}$ with one end in C and the other end v in the paths from v_{1} to P^{\prime} and v_{2} to P^{\prime}, respectively, avoiding p_{1}. We find by planarity that u_{1} is adjacent to u_{2} given the edges of the harmonicas. Hence $P^{\prime}=u_{1} u_{2}$.

On the other hand we claim that $L\left(v_{1}\right)=L\left(v_{2}\right)$. Let $\mathcal{C}_{i}=\Phi_{T_{i}}\left(P^{\prime}, \mathcal{C}\right)$. As \mathcal{C}_{i} is not a confederacy, \mathcal{C}_{i} is government as T is a minimal counterexample. Yet \mathcal{C}_{1} must be a dictatorship, as $\Phi_{T_{1}}\left(v u_{2}, \mathcal{C}\right)$ is either a democracy or a dictatorship with dictator u_{2}. Similarly \mathcal{C}_{2} must be a dictatorship. But then $\mathcal{C}_{1}, \mathcal{C}_{2}$ must have the same dictator in the same color as otherwise $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a confederacy in $\Phi\left(P^{\prime}, \mathcal{C}\right)$, a contradiction. Suppose without loss of generality that u_{1} is the dictator of \mathcal{C}_{1} and \mathcal{C}_{2}. But now it follows that $L\left(v_{2}\right) \backslash\{c\} \subset L\left(u_{1}\right)$ given the democracy on $v u_{2}$ in T_{1}. However, $L\left(v_{1}\right) \backslash\{c\} \subset L\left(u_{1}\right)$ given the democracy on $v_{1} v$ in T_{2}. Yet $\left|L\left(u_{1}\right)\right|=3$ as T_{1} and T_{2} are harmonicas, a contradiction to the fact that $L\left(v_{1}\right) \cap L\left(v_{2}\right)=\{c\}$.

Definition (Harmonica). Let $T=(G, S, L)$ be a canvas such that $S=P+u$ where P is a path of length at most one and $|L(u)|=2$. We say T is a harmonica from P to u if there exists a color c such that either

- $V(P)=\{p\},|L(p)|=1$ and there exists $p^{\prime} \sim p$ and $u^{\prime} \sim u$ such that $(G, P \cup$ $\left.P^{\prime}, L^{\prime}\right)$ is a harmonica with dictatorship \mathcal{C} where $P=p p^{\prime \prime}, \mathcal{C}$ is the set of L colorings of $P, P^{\prime}=u u^{\prime}, L^{\prime}(u)=L(u) \cup\{c\}$ and $L^{\prime}(w)=(w)$ otherwise, and $\Phi\left(P^{\prime}, \mathcal{C}\right)$ is a dictatorship with dictator u in color c.
- $P=p_{1} p_{2}, L\left(p_{1}\right)=L\left(p_{2}\right),\left|L\left(p_{1}\right)\right|=2$, and there exists $u^{\prime} \sim u$ such that $\left(G, P \cup P^{\prime}, L^{\prime}\right)$ is a harmonica with democracy \mathcal{C} where \mathcal{C} is the set of L-colorings
of $P, P^{\prime}=u u^{\prime}, L^{\prime}(u)=L(u) \cup\{c\}$ and $L^{\prime}(w)=(w)$ otherwise, and $\Phi\left(P^{\prime}, \mathcal{C}\right)$ is a dictatorship with dictator u in color c.

Following our earlier definition, we say such a harmonica is odd if $|V(P)|=2$ and even if $|V(P)|=1$.

Theorem 2.7.8. Let $T=(G, S, L)$ be a canvas, where $S=P+u$ and $P=p_{1} p_{2}$ is a path of length one and $|L(u)| \geq 2$. Let \mathcal{C} be the set of L-colorings of P. If $|\mathcal{C}| \geq 2$, then G is L-colorable unless there exists a canvas $T^{\prime}=\left(G^{\prime}, P+u, L\right)$ with $G^{\prime} \subseteq G$, $S^{\prime}=P+P^{\prime}$, unless \mathcal{C} is a government, $|L(u)|=2$ and T is a harmonica from P to u.

Proof. Follows from Theorem 2.7.2.

2. 8 Orchestras

In this section, we will characterize when governments on two distinct paths P, P^{\prime} of length one on the outer walk of a canvas do not extend to an L-coloring of the whole graph. In addition, this characterizes the obstructions to generalizing Theorem 2.2.2 to the case where both vertices have lists of size one. First we prove a useful coloring lemma which will be required for the proof.

Lemma 2.8.1. Let G be a plane graph as follows: $x \sim x^{\prime}, x \sim v_{1}, v_{2}, x^{\prime} \sim w_{1}, w_{2}$, there exists $u_{1}, u_{2} \sim x, x^{\prime}$ and $u_{1} x v_{1}, u_{2} x v_{2}, u_{1} x^{\prime} w_{1}, u_{2} 1 x^{\prime} w_{2}$ are the bases of bellows, or are edges because $u_{i}=v_{i}$ or $u_{i}=w_{i}$. Let $T=(G, S, L)$ be a canvas where $S=\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}$. If $|L(x)|,\left|L\left(x^{\prime}\right)\right| \geq 4$ and $|L(v)| \geq 2$ for all $v \in S$, then G has an L-coloring unless there exists $z \in\left\{x, x^{\prime}\right\}$ such that z is adjacent to all of S, $v_{1} z w_{1}$ and $v_{2} z w_{2}$ are the bases of exceptional odd fans, $L\left(v_{1}\right)=L\left(w_{1}\right)$ has size two, $L\left(v_{2}\right)=L\left(w_{2}\right)$ has size two, and $L(z)=L\left(v_{1}\right) \cup L\left(v_{2}\right)$.

Proof. Suppose not. Let T be a counterexample with a minimum number of vertices.
Claim 2.8.2. For all $i \in\{1,2\}, u_{i} \neq v_{i}, w_{i}$.

Proof. Suppose not. We may assume without loss of generality that $u_{1}=w_{1}$ and hence $x \sim w_{1}$. Consider the bellows T_{1} with base $v_{1} x w_{1}$. If there is only one color of w_{1} in $L\left(w_{1}\right)$ that extends to an L^{\prime}-coloring of $\left\{w_{1}, x\right\}$ that does not then extend to an L-coloring of T_{1}, color w_{1} with a different color, delete $T_{1} \backslash x$, and remover the color of w_{1} from $L(x)$ and $L\left(x^{\prime}\right)$. Now x, x^{\prime} have lists of size three, so we may find a coloring by Theorem 2.2.2.

So suppose there are two such colors. By Lemma 2.3.7, $L\left(w_{1}\right)=L\left(v_{1}\right)$. Now remove $L\left(w_{1}\right)$ from $L(x)$. Thus x, v_{2}, w_{2} have lists of size two and x^{\prime} has a list of size four. This has a coloring by Theorem 2.7.8 unless $x v_{2} w_{2}$ is an exceptional odd fan and $L\left(w_{2}\right)=L\left(v_{2}\right)$. Applying the same argument symmetrically shows that $x w_{1} v_{1}$ is an exceptional odd fan and hence x is adjacent to all of S. Furthermore $L(x)=L\left(v_{1}\right) \cup L\left(v_{2}\right)$ where these have size two. So $|L(x)|=4$. But then the conclusion of the lemma holds, a contradiction. This proves the claim.

So we may suppose that $u_{1} \neq v_{1}, w_{1}$ and $u_{2} \neq v_{2}, w_{2}$. Thus $v_{1} x u_{1}$ is the base of a bellows T_{1} and $u_{1} x^{\prime} w_{1}$ is the base of a bellows T_{2}. Suppose there exists only one color of u_{1} in $L\left(u_{1}\right)$ that extends to an L^{\prime}-coloring of $\left\{u_{1}, x\right\}$ that does not then extend to an L-coloring of T_{1}. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right)$ and $L^{\prime}=L$ otherwise. Consider the canvas $T^{\prime}=\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$ where $G^{\prime}=G \backslash\left(T_{1} \backslash\left\{u_{1}, x\right\}\right)$ and $S^{\prime}=S \backslash\left\{v_{1}\right\} \cup\left\{u_{1}\right\}$. Now T^{\prime} satisfies the hypotheses of the lemma. As T is a minimum counterexample, it follows that either G^{\prime} has an L^{\prime}-coloring, a contradiction as then G has an L-coloring or there exists $z \in\left\{x, x^{\prime}\right\}$ such that z is adjacent to all of S, contradicting Claim 2.8.2 as then $u_{2}=w_{2}$ or $u_{2}=v_{2}$.

So we may assume there are two such non-extendable colors of u_{1} in $L\left(u_{1}\right)$. Thus by Lemma 2.3.7, $L\left(v_{1}\right) \subseteq L\left(u_{1}\right)$ where the two non-extendable colors are $L\left(v_{1}\right)$. Similarly, we may assume that $L\left(w_{1}\right) \subseteq L\left(u_{1}\right)$ where the two non-extendable colors are $L\left(w_{1}\right)$.

Suppose $L\left(v_{1}\right)=L\left(w_{1}\right)$. Now color u_{1} from $L\left(u_{1}\right) \backslash L\left(v_{1}\right)$, delete $T_{1} \cup T_{2} \backslash\left\{x, x^{\prime}\right\}$
and remove the color of u_{1} from $L(x)$ and $L\left(x^{\prime}\right)$. Then x, x^{\prime} have lists of size three and there exists a coloring by Theorem 2.2.2. But this extends to an L-coloring of G, a contradiction. So we may assume that $L\left(v_{1}\right) \neq L\left(w_{1}\right)$.

By symmetry of u_{1} and u_{2}, we may assume that $L\left(v_{2}\right), L\left(w_{2}\right) \subset L\left(u_{2}\right)$ and $L\left(v_{2}\right) \neq$ $L\left(w_{2}\right)$. Now color v_{1}, w_{1} with the same color from $L\left(w_{1}\right) \cap L\left(v_{1}\right)$ and remove that color from $L(x), L\left(x^{\prime}\right), L\left(u_{1}\right)$. This leaves x, x^{\prime}, u_{2} with lists L^{\prime} of size three and u_{1}, v_{2}, w_{2} with lists L^{\prime} of size two.

We claim this has a coloring as $L^{\prime}\left(v_{2}\right)=L\left(v_{2}\right) \neq L\left(w_{2}\right)=L^{\prime}\left(w_{2}\right)$. Color w_{2}, v_{2} with the same color from $L^{\prime}\left(w_{2}\right) \cap L^{\prime}\left(v_{2}\right)$; this must generate four lists of size two, as three two's and a three has a coloring. But this will color unless x, x^{\prime}, u_{1} or x, x^{\prime}, u_{2} have the same lists. Suppose the latter case. Color x and w_{2} with the same color not in $L^{\prime}\left(u_{1}\right)$. Then color v_{2}, u_{2}, x^{\prime} and finally u_{1}. So suppose the former case. Color x and w_{2} with the same color from $L^{\prime}\left(w_{2}\right) \backslash L^{\prime}\left(v_{2}\right)$, then color $u_{1}, x^{\prime}, u_{2}, v_{2}$.

Definition (Orchestra). Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas, where P, P^{\prime} are distinct paths of length at most one in C and they are disjoint if either is a path of length zero. We say T is a double bellows with sides P, P^{\prime} if there exists a vertex v adjacent to all vertices in $V(P) \cup V\left(P^{\prime}\right)$ and the inlets of $G\left[P \cup P^{\prime} \cup\{v\}\right]$ are the bases of bellows. We say that a double bellows T is a wheel bellows if G is a wheel. We say T if a defective double bellows if T is a wheel bellows less an edge from the center of the wheel v to a vertex in $P \cup P^{\prime}$.

We say T is an instrument with sides P, P^{\prime} if T is a bellows with base $P \cup P^{\prime}$, or T is double bellows or defective double bellows with sides P, P^{\prime}.

We say T is an instrumental orchestra with sides P, P^{\prime} if T is an instrument with sides P, P^{\prime}, or T is the 1-sum or 2-sum of two smaller instrumental orchestras $T_{1}=\left(G_{1}, P+U, L\right)$ and $T_{2}=\left(G_{2}, P^{\prime}+U, L\right)$, along the vertex or edge U, respectively where $|L(v)| \leq 4$ for all $v \in U$.

We say T is a special orchestra with sides P, P^{\prime} if there exists an edge $u u^{\prime}$ such
that T consists of an harmonica (possibly null) from P to u, the edge $u u^{\prime}$, and a harmonica (possibly null) from u^{\prime} to P^{\prime}, where $|L(u)|,\left|L\left(u^{\prime}\right)\right| \leq 3$.

We say T is an orchestra if T is an instrumental orchestra or a special orchestra.

Theorem 2.8.3. Let $T=\left(G, P_{1} \cup P_{2}, L\right)$ be a canvas, where P_{1}, P_{2} are disjoint edges of C. Let \mathcal{C}_{1} be a government for P_{1} and \mathcal{C}_{2} be a government for P_{2}. If there do not exist colorings $\phi_{1} \in \mathcal{C}_{1}, \phi_{2} \in \mathcal{C}_{2}$ such that $\phi_{1} \cup \phi_{2}$ extends to an L-coloring of G, then there exists an orchestra $T^{\prime}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}^{\prime}, L\right)$ with sides $P_{1}^{\prime}, P_{2}^{\prime}$ where G^{\prime} is a subgraph of G, and for all $i \in\{1,2\}, P_{i}^{\prime} \subseteq P_{i}$, and $P_{i}=P_{i}^{\prime}$ if \mathcal{C}_{1} is a democracy.

Moreover, if T^{\prime} cannot be found such that T^{\prime} is instrumental, then T^{\prime} is a special orchestra with cut-edge $u u^{\prime}$, the harmonica from P to u is even if \mathcal{C}_{1} is a dictatorship and odd otherwise and similarly the harmonica from P^{\prime} to u^{\prime} is even if \mathcal{C}_{2} is a dictatorship and odd otherwise.

Proof. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a counterexample with a minimum number of vertices. By proofs similar to that of Lemma 2.4.1, we may assume no vertices of G are in the interior of a triangle or 4 -cycle and there is at most one vertex in the interior of a 5 -cycle. Let C be the outer walk of G.

Claim 2.8.4. There does not exist a cutvertex v of G.

Proof. Suppose there exists a cutvertex v of G. Then v divides G into two graphs G_{1}, G_{2}. Suppose $P \cup P^{\prime} \subseteq G_{1}$. We now apply induction to $\left(G_{1}, P \cup P^{\prime}, L\right)$. If there exists an orchestra with sides P, P^{\prime}, the theorem follows. So we may assume that there exist $\phi_{1} \in \mathcal{C}_{1}, \phi_{2} \in C_{2}$ such that $\phi_{1} \cup \phi_{2}$ extends to an L-coloring of G_{1}. But then by Theorem 1.4.2, this extends to an L-coloring of G, a contradiction.

So we may assume that v separates P from P^{\prime}. Let $\phi_{1} \in \mathcal{C}$. By Theorem 1.4.2, ϕ_{1} extends to an L-coloring of G_{1}. Let $L_{1}(v)=L(v) \backslash\left\{\phi_{1}(v)\right\}$ and $L_{1}(x)=L_{1}(x)$ otherwise. First suppose that $T_{1}=\left(G_{1}, P+v, L_{1}\right)$ has an L-coloring ϕ_{2}. Then let $L_{2}(v)=\left\{\phi_{1}(v), \phi_{2}(v)\right\}$ and $L_{2}(x)=L(x)$ otherwise. But then $T_{2}=\left(G_{2}, P^{\prime}+v, L_{2}\right)$
does not have an L-coloring as T is a counterexample. By Theorem 2.7.8, there exists a harmonica $T_{2}^{\prime}=\left(G_{2}^{\prime}, P^{\prime}+v, L_{2}\right)$ from P^{\prime} to v. It follows from Theorem 1.4.2, however that for all $c \in L(v) \backslash L_{2}(v)$, there exists an L-coloring ϕ_{c} of G_{2} such that ϕ_{c} restricted to P^{\prime} is in \mathcal{C}^{\prime} and $\phi_{c}(v)=c$.

Let $T_{1}^{\prime}=\left(G_{1}, P+v, L_{1}^{\prime}\right)$ where $L_{1}^{\prime}(v)=L(v) \backslash L_{2}(v)$. Suppose that $|L(v)|=3$. Then as T is a minimum counterexample, T_{1}^{\prime} contains an orchestra $T_{1}^{\prime \prime}=\left(G_{1}^{\prime}, P+\right.$ $\left.v, L_{1}^{\prime}\right)$. If $T_{1}^{\prime \prime}$ is a special orchestra, then it follows that $\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$ is a special orchestra, a contradiction. If $T_{1}^{\prime \prime}$ is an instrumental orchestra, then $\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$ is an instrumental orchestra, a contradiction. So we may suppose that $|L(v)|=4$. By Theorem 2.7.8, T_{1}^{\prime} contains a harmonica $T_{1}^{\prime \prime}=\left(G_{1}^{\prime}, P+v, L_{1}^{\prime}\right)$ from P to v. Hence, $\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$ is an instrumental orchestra, a contradiction. Finally suppose $|L(v)|=5$. By Theorem 1.4.2, G_{1} has an L_{1}^{\prime}-coloring bu then G has an L-coloring, contrary to the fact that T is a counterexample.

So we may suppose that T_{1} does not have an L-coloring. By Theorem 2.7.8, T_{1} contains a harmonica $T_{1}^{\prime}=\left(G_{1}^{\prime}, P+v, L_{1}\right)$. Note then that $\left|L_{1}(v)\right|=2$ and hence $|L(v)|=3$. Let $T_{2}=\left(G_{2}, v+P^{\prime}, L_{2}\right)$ where $L_{2}(v)=L(v) \backslash L_{1}(v)$ and $L_{2}(x)=L(x)$ otherwise. Then as T is a minimum counterexample, T_{2} contains an orchestra $T_{2}^{\prime}=$ $\left(G_{2}^{\prime}, v+P^{\prime}, L_{2}\right)$. If T_{2}^{\prime} is a special orchestra, then $\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$ is a special orchestra, a contradiction. If T_{2}^{\prime} is an instrumental orchestra, then $\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$ is an instrumental orchestra, a contradiction.

Claim 2.8.5. There does not exist a chord U of C with both ends having lists of size less than five.

Proof. Suppose there is such a chord U. Thus U divides G into two graphs G_{1}, G_{2}. First suppose that $P \cup P^{\prime} \subset V\left(G_{1}\right)$. If there exists an orchestra with sides P, P^{\prime} in G_{1}, the theorem follows. So we may assume that there exist $\phi_{1} \in \mathcal{C}_{1}, \phi_{2} \in C_{2}$ such that $\phi_{1} \cup \phi_{2}$ extends to an L-coloring of G_{1}. But then by Theorem 1.4.2, this extends
to an L-coloring of G, a contradiction.
So we may assume without loss of generality that $V(P) \backslash V\left(G_{2}\right) \neq \emptyset$ and $V\left(P^{\prime}\right) \backslash$ $V\left(G_{1}\right) \neq \emptyset$. By Theorem 2.6.5, $\Phi_{G_{1}}\left(U, \mathcal{C}_{1}\right)$ has a government. Similarly $\Phi_{G_{2}}\left(U, \mathcal{C}_{2}\right)$ has a government. Consider $T_{1}=\left(G_{1}, P+U, L\right)$ with governments \mathcal{C}_{1} for P and $\Phi_{G_{2}}\left(U, \mathcal{C}_{2}\right)$ for U. As T is a minimum counterexample, T_{1} must contain an orchestra $T_{1}^{\prime}=\left(G_{1}^{\prime}, P+U, L\right)$. Similarly, $T_{2}=\left(G_{2}, U+P^{\prime}, L\right)$ must contain an orchestra $T_{2}^{\prime}=\left(G_{2}^{\prime}, P^{\prime}+U, L\right)$. If T_{1}^{\prime} and T_{2}^{\prime} are instrumental then T contains an instrumental orchestra $T=\left(G_{1}^{\prime} \cup G_{2}^{\prime}, P \cup P^{\prime}, L\right)$, a contradiction.

So we may assume without loss of generality that T_{1}^{\prime} is a special orchestra. Let T_{P} be the harmonica of T_{1}^{\prime} from P. If T_{P} is not empty, then as there is no cutvertex of G by Claim 2.8.4, it follows that there exists a chord U^{\prime} of C distinct from U separating P from U. But there is an instrumental orchestra $T_{1}^{\prime \prime}$ from U^{\prime} to P, namely that given by the harmonica. Applying the argument above to U^{\prime}, we obtain a contradiction unless the orchestra found between U^{\prime} and P^{\prime} is a special orchestra $T_{2}^{\prime \prime}$. But then the 2-sum of $T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$ is a special orchestra. So we may suppose that T_{P} is empty.

It follows that \mathcal{C} is a dictatorship and the dictator x of \mathcal{C} is adjacent to a vertex u in the the harmonica in T_{1}^{\prime} from U. Let U^{\prime} be the chord from said harmonica separating P_{1} from P_{2} and incident with u. But then $x \cup U^{\prime}$ is the base of a bellows as T is critical and u is not a cutvertex of G by Claim 2.8.4. Therefore T_{1} contains an instrumental orchestra, a contradiction.

Case 1: At least one of $\mathcal{C}_{1}, \mathcal{C}_{2}$ is a democracy.

Suppose that at least one of $\mathcal{C}_{1}, \mathcal{C}_{2}$ is a democracy. Without loss of generality, suppose that \mathcal{C}_{1} is a democracy. Let L_{0} be the two colors of the democracy. Choose a path $Q \supseteq P$ in $C \backslash P^{\prime}$ if \mathcal{C}^{\prime} is a democracy, and in $C \backslash\{u\}$ if \mathcal{C} is a dictatorship with dictator u, such that $L_{0} \subseteq L(x)$ and $|L(x)| \leq 4$ for all $x \in Q$, and subject to that $|V(Q)|$ is maximum. Let $Q=q_{1} \ldots q_{k}$.

Let $v_{1}, v_{2} \in V(C)$ such that $p_{1} v_{1}, p_{2} v_{2} \in E(C)$ and $w_{1}, w_{2} \in V(C)$ such that
$q_{1} w_{1}, q_{k} w_{2} \in E(C)$.
First suppose that $w_{1} \in V\left(P^{\prime}\right)$ if \mathcal{C}_{2} is a democracy or w_{1} is the dictator if \mathcal{C}_{2} is a dictatorship. Suppose \mathcal{C}_{2} is a dictatorship. So $P^{\prime}=u$. Thus $L(u)=\{c\}$. If $c \in L\left(p_{1}\right)$, color u with c and then color P^{\prime} using \mathcal{C}. Let $G^{\prime}=G \backslash\left(P^{\prime} \cup\{u\}\right)$ and remove the colors in $L\left(p_{1}\right)$ from vertices in $N\left(P^{\prime} \cup\{u\}\right)$. The resulting graph is a canvas that has two vertices with list of size two on the boundary. By the Theorem 2.2.2, there is an L^{\prime}-coloring of G^{\prime}, a contradiction.

So suppose that \mathcal{C}_{2} is a democracy. Let L_{0}^{\prime} be the colors of \mathcal{C}_{2}. If $L_{0}^{\prime} \cap L_{0}=\emptyset$, we may color the democratic reduction of Q centered around w_{1} by Theorem 1.4.2, a contradiction. If $\left|L_{0}^{\prime} \cap L_{0}\right|=1$, color w_{1} from $L_{0}^{\prime} \cap L_{0}$ and extend to Q and $P^{\prime} \backslash w_{1}$. We may then extend this coloring to a coloring of $G \backslash\left(Q \cup P^{\prime}\right)$ by Theorem 1.4.2. If $L_{0}=L_{0}^{\prime}$, we may color the democratic reduction of $Q \cup P^{\prime}$ by Theorem 1.4.2, a contradiction. So we may assume that $w_{1} \notin V\left(P^{\prime}\right)$ and by symmetry that $w_{2} \notin V\left(P^{\prime}\right)$.

Now we may add w_{1} to Q and get a larger path, which contradicts the choice of Q, unless $\left|L\left(w_{1}\right) \cap L_{0}\right| \leq 1$ or $\left|L\left(w_{1}\right)\right|=5$. Similarly we may add w_{2} to Q and get a larger path, which contradicts the choice of Q, unless $\left|L\left(w_{2}\right) \cap L_{0}\right| \leq 1$ or $\left|L\left(w_{2}\right)\right|=5$.

Consider the democratic reduction, $T_{1}=\left(G \backslash Q, w_{1}+P^{\prime}, L_{1}\right)$, of Q centered around w_{1}, and the democratic reduction, $T_{2}=\left(G \backslash Q, w_{1}+P^{\prime}, L_{2}\right)$, of Q centered around w_{2}. If $\left|L_{1}\left(w_{1}\right)\right| \geq 3$, then $G \backslash Q$ has an L_{1}-coloring by Theorem 1.4.2, a contradiction. Thus $\left|L_{1}\left(w_{1}\right)\right| \leq 4$ and hence $L\left(w_{1}\right) \cap L_{0} \mid \leq 1$. So we may assume that $\left|L\left(w_{1}\right)\right|=3$ and $\left|L_{1}\left(w_{1}\right)\right|=\left|L\left(w_{1}\right) \backslash L_{0}\right|=2$. Similarly, $\left|L\left(w_{2}\right)\right|=3$ and $\left|L_{2}\left(w_{2}\right)\right|=\left|L\left(w_{2}\right) \backslash L_{0}\right|=2$. Note that $|L(v)| \leq 4$ for all $v \in Q$ by the choice of Q.

By Theorem 2.7.8, there exists a harmonica $T_{1}^{\prime}=\left(G_{1}, w_{1}+P^{\prime}, L_{1}\right)$ from P^{\prime} to w_{1}. Let $x_{1}^{\prime}, u_{1}^{\prime} \in V\left(G_{1}\right)$ such that $w_{1} x_{1}^{\prime} u_{1}^{\prime}$ is a triangle. Note that $\left|L_{1}\left(x_{1}^{\prime}\right)\right|,\left|L_{1}\left(u_{1}^{\prime}\right)\right|=3$. By Claim 2.8.5, either $\left|L\left(x_{1}^{\prime}\right)\right|=5$ or $\left|L\left(u_{1}^{\prime}\right)\right|=5$. So assume without loss of generality that $\left|L\left(x_{1}^{\prime}\right)\right|=5$. But then $x_{1}^{\prime} \in N(Q)$ as $\left|L_{1}\left(x_{1}^{\prime}\right)\right|=\left|L\left(x_{1}^{\prime}\right) \backslash L_{0}\right|=3$. Suppose $u_{1}^{\prime} \in N(Q)$. But then either u_{1}^{\prime} or x_{1}^{\prime} is a cutvertex of the harmonica T_{1}^{\prime} and yet
is adjacent to w_{1}, which is impossible. So $u_{1}^{\prime} \notin N(Q)$ and hence $u_{1}^{\prime} \in V(C)$. As $u_{1}^{\prime} \notin N(Q), L\left(u_{1}^{\prime}\right)=L_{1}\left(u_{1}^{\prime}\right)$. Yet as T_{1}^{\prime} is a harmonica, $\left|L_{1}\left(u_{1}^{\prime}\right)\right|=3$. Furthermore, $L_{1}\left(u_{1}^{\prime}\right)=L_{1}\left(x_{1}^{\prime}\right)$. Yet, $L_{0} \cup L_{1}\left(x_{1}^{\prime}\right)=L\left(x_{1}^{\prime}\right)$ and so $L_{0} \cap L_{1}\left(x_{1}^{\prime}\right)=\emptyset$. It follows then that $L_{0} \cap L\left(u_{1}^{\prime}\right)=\emptyset$.

Let P_{1} be the path from v_{1} to w_{1} in C avoiding P and let P_{2} be the path from v_{2} to w_{2} in C avoiding P. Note that P_{1} and P_{2} are subpaths of Q and thus $|L(v)| \leq 4$ for all $v \in P_{1} \cup P_{2}$. Now consider the coloring ϕ with $\phi\left(w_{1}\right) \in L\left(w_{1}\right) \cap L_{0}$, where we note that this is nonempty as $\left|L\left(w_{1}\right) \backslash L_{0}\right|=2$ and $\left|L\left(w_{1}\right)\right|=3$. Extend ϕ to $Q \backslash V\left(P_{2}\right)$ using one of the colorings in \mathcal{C}. Now let $T_{2}=\left(G \backslash\left(P \cup P_{1}\right), v_{2}+P^{\prime}, L_{2}\right)$ where $L_{2}(x)=L(x) \backslash\left\{\phi(p): p \in P \cup P_{1}, p \sim x\right\}$. As $L_{0} \cap L\left(u_{1}^{\prime}\right)=\emptyset$, there is only one vertex not in P^{\prime} that has a list of size less than three and that is v_{2}, which has a list of size two. As G is not L-colorable, Theorem 2.7.8 implies that there exists a harmonica $T_{2}^{\prime}=\left(G_{2}, v_{2}+P^{\prime}, L_{2}\right)$ from P^{\prime} to v_{2}. Let $x_{2}, u_{2} \in G_{2}$ such that $v_{2} x_{2} u_{2}$ is a triangle. Using an identical argument as above, we find $u_{2} \in V(C) \backslash N\left(P \cup P_{1}\right), x_{2} \in$ $N\left(P \cup P_{1}\right) \backslash V(C)$. We find then that $L_{2}\left(x_{2}\right) \cup L_{0}=L\left(x_{2}\right)$ and hence $L_{2}\left(x_{2}\right) \cap L_{0}=\emptyset$. Yet $L_{2}\left(v_{2}\right) \subset L_{2}\left(x_{2}\right)$ and hence $L_{2}\left(v_{2}\right) \cap L_{0}=\emptyset$. As C has no chord whose ends have lists of size less than five by Claim 2.8.5, v_{2} has at most one neighbor in $P \cup P_{1}$, namely p_{2}. Thus, L_{0} is not a subset of $L\left(v_{2}\right)$, but this implies that $v_{2}=w_{2}$. Note that x_{2} has at least two neighbors in $P \cup P_{1}$.

Now we let $\phi^{\prime}\left(v_{2}\right) \in L\left(v_{2}\right) \cap L\left(p_{1}\right)$ and extend ϕ^{\prime} to P using \mathcal{C}. By Theorem 2.7.8, there exists a harmonica $T_{1}^{\prime \prime}=\left(G \backslash\left(P \cup\left\{v_{2}\right\}\right), v_{1}+P^{\prime}, L_{1}^{\prime}\right)$ from P^{\prime} to v_{1} where $L_{1}^{\prime}(x)=L(x) \backslash\left\{\phi^{\prime}(p): p \in P \cup\left\{v_{2}\right\}, p \sim x\right\}$. Let $x_{1}, u_{1} \in G_{1}$ such that $v_{1} x_{1} u_{1}$ is a triangle. Using an identical argument as above, we find $u_{1} \in V(C) \backslash N\left(P \cup\left\{v_{2}\right\}\right)$, $x_{2} \in N\left(P \cup\left\{v_{2}\right\}\right) \backslash V(C)$. But then we also find as above that $v_{1}=w_{1}$. Thus $P=Q$. As $v_{1}=w_{1}$, then x_{2} has two neighbors in $P \cup\left\{v_{1}\right\}$. Similarly, x_{1} has at least two neighbors in $P \cup\left\{v_{2}\right\}$. As G is planar, we find that $x_{1}=x_{2}=x$.

Thus x is adjacent to $v_{1}, v_{2}, u_{1}, u_{2}$. Moreover, x is adjacent to at least one of p_{1}, p_{2}.

But notice that x_{2} must have two neighbors with different colors in $P \cup\left\{v_{1}\right\}$ and yet p_{2} receives the same color as v_{1}; hence, $x=x_{2}$ is adjacent to p_{1}. Similarly x_{1} must have two neighbors with different colors in $P \cup\left\{v_{2}\right\}$ and yet p_{1} receives the same color as v_{2}; hence, $x=x_{1}$ is adjacent to p_{2}. Let u_{1}^{\prime} be the neighbor of x in the path from v_{1} to P^{\prime} closest to P^{\prime}, Similarly let u_{2}^{\prime} be the neighbor of x in the path from v_{2} to P^{\prime} closest to P^{\prime}. Given the harmonicas $T_{1}^{\prime \prime}$, we find that either u_{1}^{\prime} is in a chord of C whose ends have lists of size less than five (indeed, lists of size three), contradicting Claim 2.8.5, or $u_{1}^{\prime} \in V\left(P^{\prime}\right)$. Similarly we find that $u_{2}^{\prime} \in V\left(P^{\prime}\right)$. But then T is a double bellows with sides P, P^{\prime} as desired.

Case 2: \mathcal{C}_{1} and \mathcal{C}_{2} are dictatorships.
So we may assume that \mathcal{C}_{1} and \mathcal{C}_{2} are dictatorships. Let u_{1}, u_{2} be their dictators. Let v_{1}, v_{2} be the neighbors of u_{1} in C and w_{1}, w_{2} be the neighbors of u_{2} in C, where we may assume without loss of generality that v_{1} and w_{1} (and similarly v_{2} and w_{2}) are on the subwalk from u_{1} to u_{2} of C.

Claim 2.8.6. $d\left(u_{1}, u_{2}\right) \geq 3$.

Proof. Suppose u_{1} is adjacent to u_{2}. If $L\left(u_{1}\right)=L\left(u_{2}\right)$ is allowed, then the edge $u_{1} u_{2}$ is an orchestra. So we may suppose $L\left(u_{1}\right) \neq L\left(u_{2}\right)$. But then there exists an L coloring of G by Theorem 1.4.2. So we may suppose that $u_{1} \nsim u_{2}$. Similarly suppose $d\left(u_{1}, u_{2}\right)=2$. Thus there exists a vertex v adjacent to u_{1} and u_{2}. If $v \in V(C)$, then T is a bellows with base $u_{1} v u_{2}$. So suppose $v \notin V(C)$. Then $u_{1} v u_{2}$ is the base of two bellows and thus T is a double bellows. Either way, T is an orchestra, a contradiction.

Claim 2.8.7. $v_{1}, v_{2}, w_{1}, w_{2}$ have lists of size less than five.
Proof. Suppose not. So without loss of generality $\left|L\left(v_{1}\right)\right|=5$. Let G^{\prime} be obtained from G by deleting the edge $u_{1} v_{1}$. Let $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash L\left(u_{1}\right)$ and $L^{\prime}(v)=L(v)$ for all $v \in G \backslash v_{1}$. As T is a minimum counterexample, $T^{\prime}=\left(G^{\prime}, S, L^{\prime}\right)$ contains an orchestra
$T^{\prime \prime}=\left(G^{\prime \prime}, S, L^{\prime}\right)$. Show that $v_{1} \notin G^{\prime \prime}$ and hence that T contains an orchestra, a contradiction...

It also follows from Claim 2.8.5 that the Thomassen reductions T_{1}, T_{2} on v_{1} or v_{2} respectively are canvases. We now consider these in detail. Let P_{1} be the path from v_{1} to w_{1} in $C \backslash\left\{u_{1}, u_{2}\right\}$ and P_{2} be the path from v_{2} to w_{2} in $C \backslash\left\{u_{1}, u_{2}\right\}$. As G is 2-connected by Claim 2.8.4, $P_{1} \cap P_{2}=\emptyset$.

Claim 2.8.8. There exists a neighbor z_{1} of $v_{1},\left|L\left(z_{1}\right)\right|=5$, such that z_{1} is adjacent to a vertex with a list of size less than five in P_{2}.

Proof. As T is a minimum counterexample, $T_{1}=\left(G \backslash\left\{v_{1}\right\},\left\{u_{1}, u_{2}\right\}, L_{1}\right)$ contains an orchestra $T_{1}^{\prime}=\left(G^{\prime},\left\{u_{1}, u_{2}\right\}, L_{1}\right)$. Suppose T_{1}^{\prime} is a special orchestra. If the cut-edge of T_{1}^{\prime} is not incident with u_{1}, then u_{1} is in a triangle $u_{1} v_{2} z_{1}$ of T_{1}^{\prime}. Now z_{1} is not in $V(C)$ and hence $\left.\mid L\left(z_{1}\right)\right) \mid=5$. Yet $\left|L_{1}\left(z_{1}\right)\right|=3$; so z_{1} is adjacent to v_{1} and the claim follows. So we may suppose that T_{1}^{\prime} is an instrumental orchestra. Let F be the instrument of T_{1}^{\prime} that contains u_{1}. If F is a bellows, then let $z_{1} z_{2}$ be the edge in the base of F such that $z_{1}, z_{2} \neq u$. If F is a double bellows or a defective double bellows, let $z_{1} z_{2}$ be the side of F not containing u_{1}.

Suppose $u_{2} \notin\left\{z_{1}, z_{2}\right\}$. Now $\left|L_{1}\left(z_{1}\right)\right|,\left|L_{1}\left(z_{2}\right)\right|<5$ and yet v_{1} is not adjacent to both z_{1} and z_{2}. So we may assume that $z_{2} \in V(C)$. As there is no chord of C with lists of size less than five by Claim 2.8.5, it follows that $z_{2} \in P_{2}$ and $z_{1} \notin C$. Thus $z_{1} \sim v_{1}$ and the lemma follows. So we may suppose that $u_{2} \in\left\{z_{1}, z_{2}\right\}$. But now it follows that $d\left(u_{1}, u_{2}\right) \leq 2$, contradicting Claim 2.8.6.

Claim 2.8.9. There exists $x_{1},\left|L\left(x_{1}\right)\right|=5$ such that x_{1} is adjacent to v_{1}, v_{2}.

Proof. By symmetry, there exists a neighbor z_{2} of $v_{2},\left|L\left(z_{2}\right)\right|=5$, such that z_{2} is adjacent to a vertex with a list of size less than five in P_{1}. As G is planar, we choose z_{1}, z_{2} such that $z_{1}=z_{2}$. Call this vertex x_{1}. Now x_{1} is adjacent to v_{1} and v_{2}, and $\left|L\left(x_{1}\right)\right|=5$.

Note that $x_{1} \notin V(C)$ as otherwise $u_{1} v_{1} x_{1}$ is the base of a bellows F as v_{1} is a not a cutvertex by Claim 2.8.4. If F is fan, it must be that $u_{1} \sim x_{1}$ as there is no chord of C whose ends have lits of size less than five by Claim 2.8.5. But then we can delete u_{1} and remove its color from $L\left(v_{1}\right)$ and $L\left(x_{1}\right)$ and find a harmonica by Theorem 2.7.8. So T contains a special orchestra, a contradiction. So we may suppose that F is not a fan. But then we delete u_{1}, remove its color from $L\left(v_{1}\right)$ and remove the color c of x_{1} in the non-extendable coloring of F from $L\left(x_{1}\right)$ and find a harmonica by Theorem 2.7.8. So T contains a special orchestra, a contradiction.

By symmetry there exists $x_{2} \notin V(C),\left|L\left(x_{2}\right)\right|=5$ such that x_{2} is adjacent to w_{1}, w_{2}.

Claim 2.8.10. (1) Either there exists $i \in\{1,2\}$ such that the only edge uv with $u \in N\left(v_{i}\right),|L(u)|=5$ and $v \in P_{3-i},|L(v)|<5$, is $x_{1} v_{3-i}$, or,
(2) $N\left(x_{1}\right) \cap\left(P_{i} \backslash\left\{v_{i}\right\}\right) \neq \emptyset$ for all $i \in\{1,2\}$.

Proof. Suppose not. As (2) does not hold, we may assume without loss of generality that $N\left(x_{1}\right) \cap\left(P_{1} \backslash\left\{v_{1}\right\}\right)=\emptyset$. As (1) does not hold for $i=2$, there exists $u v$, $u \sim v_{2},|L(u)|=5$ and $v \in P_{1},|L(v)|<5$ such that either $u \neq x_{1}$ or $v \neq v_{1}$. As $N\left(x_{1}\right) \cap P=\left\{v_{1}\right\}$, it follows that $u \neq x_{1}$. As (1) does not hold for $i=1$, there exists $u^{\prime} v^{\prime}, u^{\prime} \sim v_{1},\left|L\left(u^{\prime}\right)\right|=5$ and $v^{\prime} \in P_{2},\left|L\left(v^{\prime}\right)\right|<5$ such that either $u^{\prime} \neq x_{1}$ or $v^{\prime} \neq v_{2}$. As G is planar, it follows that either $u=u^{\prime}$ or $v^{\prime}=v_{2}$. In either case, $u \sim v_{1}, v_{2}$ and hence x_{1} is in the interior of the 4 -cycle $u_{1} v_{1} u v_{2}$, a contradiction.

A symmetric claim holds for x_{2}, w_{1}, w_{2}.
Claim 2.8.11. $x_{1} \sim u_{1}$.

Proof. Suppose not. It follows that T_{1} contains a special orchestra T_{1}^{\prime} where the cutedge of T_{1}^{\prime} is $u_{1} v_{2}$, and similarly T_{2} contains a special orchestra T_{2}^{\prime} where the cut-edge of T_{2}^{\prime} is $u_{1} v_{1}$.

Suppose Claim 2.8.10(1) holds with $i=2$. It follows that T_{2} contains a special orchestra T_{2}^{\prime} where the cut-edge of T_{2}^{\prime} is $u_{1} v_{1}$. Let $v_{1} z_{1} z_{2}$ be the triangle in the harmonica of T_{2}^{\prime} which contains v_{1}. But then $z_{1} z_{2}$ is an edge such that - without loss of generality - $z_{1} \in N\left(v_{2}\right),\left|L\left(z_{1}\right)\right|=5$ and $z_{2} \in P_{1},\left|L\left(z_{2}\right)\right|=3$, contradicting that Claim 2.8.10(1) holds with $i=2$. So we may suppose that Claim 2.8.10(1) does not hold with $i=2$. By symmetry, Claim 2.8.10(1) does not hold with $i=1$ and hence Claim 2.8.10(1) does not hold.

So Claim 2.8.10(2) holds. As Claim 2.8.10(2) holds and there is no chord of C whose ends have lists of size less than five, it follows that $x_{1} \sim u_{2}$ and $v_{1} x_{1} u_{2}$ is the base of an even fan. Similarly, $v_{2} x_{1} u_{2}$ is the base of an even fan. Hence T contains a defective double bellows, a contradiction.

By symmetry, $x_{2} \sim u_{2}$. As $d\left(u_{1}, u_{2}\right) \geq 3$ by Claim 2.8.6, $\left\{v_{1}, x_{1}, v_{2}\right\} \cap\left\{w_{1}, x_{2}, w_{2}\right\}=$ \emptyset.

Claim 2.8.12. For all $i \in\{1,2\}$, if Claim 2.8.10(2) holds or Claim 2.8.10(1) holds with i, then either there exists a vertex in P_{3-i} adjacent to both x_{1} and x_{2}, or, there exists adjacent vertices z_{1}, z_{2} in P_{3-i} such that $z_{1} z_{2} x_{2} x_{1}$ is a 4-cycle.

Proof. By symmetry, it suffices to prove the claim for $i=2$. Let z_{1} be the neighbor of x_{1} in P_{1} closest to w_{1} in P_{1}. Now T_{2} contains an orchestra T_{2}^{\prime}. Suppose T_{2}^{\prime} is a special orchestra. It follows from an argument similar to that given in the proof of Claim 2.8.11 that $w_{1} u_{2}$ is the cut-edge of T_{2}^{\prime}. Let $w_{1} z_{1} z_{2}$ be the triangle in the harmonica of T_{2}^{\prime} which contains w_{1}. But then $z_{1} z_{2}$ is an edge such that - without loss of generality - $z_{1} \in N\left(v_{2}\right),\left|L\left(z_{1}\right)\right|=5$ and $z_{2} \in P_{1},\left|L\left(z_{2}\right)\right|=3$, and hence Claim 2.8.10(1) does not hold with $i=2$. So Claim 2.8.10(2) holds and it follows that $z_{1}=x_{1}$ and hence $w_{1} \sim x_{1}$. Therefore w_{1} is adjacent to both x_{1} and x_{2} as desired.

So we may suppose that T_{2}^{\prime} is an instrumental orchestra. Note that there does not
a cutvertex of T_{2}^{\prime} as then there would exists an edge $z_{1} z_{2}$ such that - without loss of generality $-z_{1} \in N\left(v_{2}\right),\left|L\left(z_{1}\right)\right|=5$ and $z_{2} \in P_{1},\left|L\left(z_{2}\right)\right|=3$, where $z_{1}, z_{2} \notin\left\{v_{1}, x_{1}\right\}$ contradicting that either Claim 2.8.10(2) holds or Claim 2.8.10(1) holds with $i=2$. Let F be the instrument in T_{2}^{\prime} with side $x_{1} z_{1}$ whose other side is closest to u_{2}. It follows since there is no such edge $z_{1} z_{2}$ as above that u_{2} is in F. If F is a bellows, then $z_{1}=w_{1}$ and the claim follows. If F is a double bellows, then $z_{1} \sim x_{2}$ and the claim follows.

So we may suppose that F is a defective double bellows. Yet x_{2} must be the center of the wheel. If $x_{2} \sim z_{1}$, the claim follows. So $x_{2} \nsim z_{1}$. But then there exists $z_{2} \in F$ such that $z_{1} z_{2} x_{2} x_{1}$ is a 4 -cycle. Yet z_{2} must be in P_{1} since $z_{1} \nsim u_{2}$ as $d\left(u_{1}, u_{2}\right) \geq 3$ by Claim 2.8.6.

An identical claim holds for the symmetric version of Claim 2.8.10.
Claim 2.8.13. For all $i \in\{1,2\}$, either there exists a vertex z_{i} in P_{i} adjacent to both x_{1} and x_{2}, or, there exists adjacent vertices z_{i}, z_{i} in P_{i} such that $z_{i} z_{i}^{\prime} x_{2} x_{1}$ is a 4-cycle.

Proof. If Claim 2.8.10(2) holds, then the claim follows by applying Claim 2.8.12 with $i=1$ and again with $i=2$. So we may suppose that Claim 2.8.10(1) holds. Without loss of generality suppose Claim 2.8.10(1) holds with $i=2$. By Claim 2.8.10, the claim holds for $i=1$. Moreover as Claim 2.8.10(1) holds with $i=2, z=v_{1}$ is adjacent to both x_{1} and x_{2}, or, there exists z_{1}, z_{2} in P_{i} such that $z_{1} z_{2} x_{2} x_{1}$ is a 4 -cycle where $z_{1}=v_{1}$.

Now it follows that (2) holds for the symmetric version of Claim 2.8.10 or that (1) holds with $i=1$. By the symmetric version of Claim 2.8.10(2), the claim holds for $i=2$. So claim holds for $i=1$ and 2 . This proves the claim.

Moreover, by these arguments, and symmetric arguments for P^{\prime}, we find that either $x \sim w_{1}$ or $x^{\prime} \sim v_{1}$ or there exists $z_{1} \neq v_{1}, w_{1}$ such that $z_{1} \in V(C)$ and
$z_{1} \sim x, x^{\prime}$. Similarly either $x \sim w_{2}$ or $x^{\prime} \sim v_{2}$ or there exists $z_{2} \neq v_{2}, w_{2}$ such that $z_{2} \in V(C)$ and $z_{2} \sim x, x^{\prime}$.

Define $L^{\prime}(z)=L(z) \backslash\left\{L(u): u \in\left\{u_{1}, u_{2}\right\}, u \sim z\right\}$. Thus $\left|L^{\prime}\left(w_{1}\right)\right|,\left|L^{\prime}\left(w_{2}\right)\right|,\left|L^{\prime}\left(v_{1}\right)\right|,\left|L^{\prime}\left(v_{2}\right)\right| \geq$ 2 and $\left|L^{\prime}\left(x_{1}\right)\right|,\left|L^{\prime}\left(x_{2}\right)\right| \geq 4$. Consider the canvas $\left(G \backslash\left\{u_{1}, u_{2}\right\}, S, L^{\prime}\right)$ where $S=$ $\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}$. By Lemma 2.8.1, this has an L^{\prime}-coloring of $G \backslash\left\{u_{1}, u_{2}\right\}$ unless there exists $z \in\left\{x_{1}, x_{2}\right\}$ such that z is adjacent to all of S and $\left|L^{\prime}(z)\right|=4$. But an L^{\prime} coloring of $G \backslash\left\{u_{1}, u_{2}\right\}$ extends to an L-coloring of G, a contradiction. So we may assume without loss of generality that x_{1} is adjacent to all of S and $\left|L^{\prime}\left(x_{1}\right)\right|=4$. But then x_{2} is in the interior of the 4 -cycle $u_{2} w_{1} x_{1} w_{2}$, a contradiction.

Theorem 2.8.14. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas where P, P^{\prime} are paths of length at most one. Suppose that if $P\left(\right.$ resp. $\left.P^{\prime}\right)$ has length one, then the set of L-colorings of $P\left(\right.$ resp $\left.P^{\prime}\right)$ is a democracy. If $P\left(\right.$ resp $\left.P^{\prime}\right)$ has length zero, then suppose that the vertex of P has a list of size at most two. Further suppose that
(1) if $|V(P)|=2, P^{\prime}=u^{\prime},\left|L\left(u^{\prime}\right)\right|=2$, then $d\left(P, u^{\prime}\right)>1$;
(2) if $P=u, P^{\prime}=u^{\prime}$ and $|L(u)|=\left|L\left(u^{\prime}\right)\right|=1$, then $d\left(u, u^{\prime}\right)>2$;
(3) if $|V(P)|=2, P^{\prime}=u^{\prime},\left|L\left(u^{\prime}\right)\right|=1$, then $d\left(P, P^{\prime}\right)>3$;
(4) if $|V(P)|=\left|V\left(P^{\prime}\right)\right|=2$ then $d\left(P, P^{\prime}\right)>4$.

If there does not exist an L-coloring of G, then there exists an essential chord of the outer walk C of G whose ends have lists of size less than five.

Proof. Note that (1) follows Theorem 2.7.8. The rest follow from Theorem 2.8.3 as an orchestra of the prescribed lengths yield chords whose ends have lists of size less than five as desired.

2.9 Reducing a Precolored Edge to a Government

In this section, we extend Theorem 2.8.14 to the case when $\left|\mathcal{C}_{1}\right|,\left|\mathcal{C}_{2}\right|=1$. First a definition that will be useful for the proof.

Definition (d-slicing). Let $d>0$. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas and let P be a path such that $d\left(P, P^{\prime}\right)>d$.

We say that a canvas $T^{\prime}=\left(G^{\prime}, P_{1} \cup P^{\prime}, L^{\prime}\right)$ is a d-slicing of T with respect to P if all of the following hold:
(i) There exists a path P_{0} with both ends on the outer walk of G that divides G into G_{1} and G^{\prime} where G_{1} includes P and G^{\prime} includes P^{\prime}.
(ii) P_{1} is a subpath of P_{0} of length at most one such that for all $v \in V\left(P_{1}\right), d(v, P) \leq$ $d-1$ and if $\left|V\left(P_{1}\right)\right|=2$, then the set of L^{\prime}-colorings of P_{1} contains a government.
(iii) For all $v \in V(G)$ with $d(v, P) \geq d, v \in V\left(G^{\prime}\right)$ and $L^{\prime}(v)=L(v)$.
(iv) If G^{\prime} has an L^{\prime}-coloring, then G has an L-coloring.

Note that a d-slicing of T with respect to P is a d^{\prime}-slicing of T with respect to P for all $d^{\prime} \geq d$ such that $d^{\prime}<d\left(P, P^{\prime}\right)$.

Theorem 2.9.1. Let $d=4$. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas where P is path of length one and P^{\prime} is a path of length at most one. Let $P=p_{1} p_{2}$ and suppose that $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{2}\right)\right|=1$. Suppose that
(1) if $P^{\prime}=u$ and $|L(u)|=2$, then $d(P, u)>d+1$;
(2) if $P^{\prime}=u$ and $|L(u)|=1$, then $d(P, u)>d+3$;
(3) if $P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$ and $L\left(p_{1}^{\prime}\right)=L\left(p_{2}^{\prime}\right),\left|L\left(p_{1}^{\prime}\right)\right|=2$, then $d\left(P, P^{\prime}\right)>d+4$;
(4) if $P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$ and $\left|L\left(p_{1}^{\prime}\right)\right|=\left|L\left(p_{2}^{\prime}\right)\right|=1$, then $d\left(P, P^{\prime}\right)>2 d+4$;

If there does not exist an L-coloring of G, then there exists an essential chord of the outer walk C of G whose ends have lists of size less than five.

Proof. Suppose not. Let $T=(G, S, L)$ be counterexample with a minimum number of edges where $S=P \cup P^{\prime}$. We may assume that T is L-critical; hence by Lemma 2.4.1, every cutvertex of G or chord of G is essential and there is no vertex in the interior of a 4 -cycle. Let $P=p_{1} p_{2}$ and $p_{1} v_{1}, p_{2} v_{2} \in E(C)$. As $d\left(P, P^{\prime}\right)>1, v_{1}, v_{2} \notin V\left(P^{\prime}\right)$. Let $L\left(p_{1}\right)=\left\{c_{1}\right\}$ and $L\left(p_{2}\right)=\left\{c_{2}\right\}$. Let $S(w)=L(w) \backslash\left\{c_{i} \mid w \sim p_{i}\right\}$.

The following claim is very useful.
Claim 2.9.2. There does not exist a d-slicing of T with respect to P.

Proof. Suppose not. Let $T^{\prime}=\left(G^{\prime}, P_{1} \cup P^{\prime}, L^{\prime}\right)$ be a d-slicing of T with respect to P. As T is a counterexample, there does not exist an L-coloring of G. Hence, by property (iv) of d-slicing, there does not exist an L^{\prime}-coloring of G^{\prime}.

First suppose there exists an essential chord of the outer walk C^{\prime} of G^{\prime} with both ends having lists of size less than five. Let U be such a chord of C^{\prime} closest to P^{\prime}. As T is a counterexample, U is not a chord of C. Hence there is an end, call it z of U such that $z \notin V(C)$. Thus $|L(z)|=5$ and yet $\left|L^{\prime}(z)\right|<5$. By property (iii) of d-slicing, $d(z, P) \leq d-1$. Hence $d(U, P) \leq d-1$. Note then that $d\left(P, P^{\prime}\right) \leq d(U, P)+1+d\left(U, P^{\prime}\right) \leq d+d\left(U, P^{\prime}\right)$.

Consider $T^{\prime \prime}=\left(G^{\prime \prime}, U \cup P^{\prime}, L^{\prime}\right)$ where U divides G^{\prime} into two graphs G_{1} and $G^{\prime \prime}$ where $G^{\prime \prime}$ is the one containing P^{\prime}. Note that by property (ii) of d-slicing, either P_{1} is one vertex or a path of length one and there exists a set of L-coloring of P_{1} that is a government. Either way, by Theorem 2.6.5, it follows that there exists a government \mathcal{C} for U such that every L-coloring $\phi \in \mathcal{C}$ extends to an L^{\prime}-coloring of G_{1}. As there does not exist an L^{\prime}-coloring of G^{\prime}, there does not exist an L^{\prime}-coloring ϕ of $G^{\prime \prime}$ with $\phi \upharpoonright U \in \mathcal{C}$. Further note that as U was chosen closest to P^{\prime}, there does not exist an
essential chord of the outer walk of $G^{\prime \prime}$ with both ends having list of size less than five.

Now if (1),(2), or (3) holds for T, apply Theorem 2.8 .14 to $T^{\prime \prime}$ to find that $d\left(U, P^{\prime}\right) \leq 1,3$, or 4 respectively. Hence $d\left(P, P^{\prime}\right) \leq d+1, d+3$, or $d+4$, respectively, a contradiction. If (4) holds for T, apply (2) or (3) to $T^{\prime \prime}$ to find that $d\left(U, P^{\prime}\right) \leq d+4$ and hence $d\left(P, P^{\prime}\right) \leq 2 d+4$, a contradiction.

So we may suppose there does not exist an essential chord of C^{\prime} with both ends having lists of size less than five. Note again that by property (ii) of d-slicing, either P_{1} is one vertex or a path of length one and there exists a set of L-coloring of P_{1} that is a government. Furthermore $d\left(P_{1}, P\right) \leq d-1$ by property (ii) of d-slicing. Note that $d\left(P, P^{\prime}\right) \leq d\left(P_{1}, P^{\prime}\right)+d$.

If (1),(2), or (3) holds for T, apply Theorem 2.8.14 to T^{\prime} to find that $d\left(P_{1}, P^{\prime}\right) \leq 1$, 3 , or 4 respectively. Hence $d\left(P, P^{\prime}\right) \leq d+1, d+3$, or $d+4$, respectively, a contradiction. If (4) holds for T, apply (2) or (3) to T^{\prime} to find that $d\left(U, P^{\prime}\right) \leq d+4$ and hence $d\left(P, P^{\prime}\right) \leq 2 d+4$, a contradiction.

Claim 2.9.3. There does not exists a chord U of C with an end v such that $d(v, P) \leq$ $d-1$.

Proof. Suppose not. Now U divides G into two graphs G_{1}, G_{2} with $P \cap\left(G_{2} \backslash U\right)=\emptyset$ and $P^{\prime} \cap\left(G_{1} \backslash U\right)=\emptyset$. Now there must be an end of U with a list of size five as otherwise T is not a counterexample. It now follows from Theorem 2.6.5 that there exists a government \mathcal{C}^{\prime} for U such that every L-coloring $\phi \in \mathcal{C}$ extends to an L-coloring of G_{1}.

Consider $T^{\prime}=\left(G_{2}, U \cup P^{\prime}, L^{\prime}\right)$. If (1),(2), or (3) holds for T, apply Theorem 2.8.14 to T^{\prime} to find that $d\left(U, P^{\prime}\right) \leq 1,3$, or 4 respectively. Hence $d\left(P, P^{\prime}\right) \leq d+1, d+3$, or $d+4$, respectively, a contradiction. If (4) holds for T, apply (2) or (3) to $T^{\prime \prime}$ to find that $d\left(U, P^{\prime}\right) \leq d+4$ and hence $d\left(P, P^{\prime}\right) \leq 2 d+4$, a contradiction.

Claim 2.9.4. For $i \in\{1,2\},\left|S\left(v_{i}\right)\right|=2$.

Proof. Suppose not. Suppose without loss of generality that $\left|L\left(v_{1}\right)\right| \geq 4$ or $c_{1} \notin L\left(v_{1}\right)$. Let $G^{\prime}=G \backslash p_{1}$ and let $L^{\prime}(v)=L(v) \backslash\left\{c_{1}\right\}$ for all $v \in N\left(p_{1}\right)$ and $L^{\prime}=L$ otherwise. Now $T^{\prime}=\left(G^{\prime}, p_{2}+P^{\prime}, L^{\prime}\right)$ is a canvas as there is no chord of C incident with p_{1} whose other end has a list of size less than five. Yet T^{\prime} is a 2 -slicing of T with respect to P, contradicting Claim 2.9.2.

Claim 2.9.5. There does not exist a cutvertex v of G.

Proof. Suppose there does. As T is critical, v is essential. Thus v divides G into two graphs G_{1}, G_{2} where $V(P) \cap\left(V\left(G_{2}\right) \backslash\{v\}\right)=\emptyset$ and $V\left(P^{\prime}\right) \cap\left(V\left(G_{1}\right) \backslash\{v\}\right)=\emptyset$. Suppose $v \in V(P)$. But then $\left(G \backslash(P \backslash v), v+P^{\prime}, L\right)$ is a 1-slicing of T with respect to P, contradicting Claim 2.9.2.

So we may suppose that $v \notin V(P) \cup V\left(P^{\prime}\right)$. For $i \in\{1,2\}$, let $L_{i}(v)$ be the set of all colors c in $L(v)$ such that coloring v with c does not extend to an L-coloring of G_{i}. As T is critical, $\left|L_{1}(v)\right|+\left|L_{2}(v)\right| \geq|L(v)| \geq 3$. Yet by Theorem 1.4.2, $\left|L_{i}(v)\right| \geq 1$ for all $i \in\{1,2\}$. Let $T_{1}=\left(G_{1}, P+v, L_{1}\right)$ where $L_{1}(v)$ is as above and $L_{1}=L$ otherwise. Similarly let $T_{2}=\left(G_{2}, v+P^{\prime}, L_{2}\right)$ where $L_{2}(v)$ is as above and $L_{2}=L$ otherwise.

Suppose $\left|L_{1}(v)\right|=2$. By (1) applied to T_{1}, it follows that $d(v, P) \leq 3 \leq d+1$. Yet $d\left(P, P^{\prime}\right) \leq d(v, P)+d\left(v, P^{\prime}\right)$. If (1) holds for T_{2}, apply Theorem 2.8.14 to $T^{\prime \prime}$ to find that there exists an essential chord whose ends have lists of size less than five, a contradiction. If (2) or (3) holds for T_{2}, apply Theorem 2.8 .14 to find that $d\left(v, P^{\prime}\right) \leq 2$ or 3 respectively. Hence $d\left(P, P^{\prime}\right) \leq d+3$, or $d+4$, respectively, a contradiction. If (4) holds for T, apply (2) to $T^{\prime \prime}$ to find that $d\left(v, P^{\prime}\right) \leq d+3$ and hence $d\left(P, P^{\prime}\right) \leq 2 d+3$, a contradiction.

So we may suppose that $\left|L_{1}(v)\right|=1$. By (2) applied to T_{1}, it follows that $d(v, P) \leq$ $d+3$. Hence $\left|L_{2}(v)\right|=2$. If (1) or (2) holds for T, then by Theorem 2.8.14 applied to T_{2}, there exists an essential chord of the outer walk of G_{2} whose ends have lists of size
less than five, a contradiction. If (3) holds for T, then by Theorem 2.8.14 applied to $T_{2}, d\left(v, P^{\prime}\right) \leq 1$ and hence $d\left(P, P^{\prime}\right) \leq d+4$, a contradiction. If (4) holds for T, then it follows from (1) applied to T_{2} that $d\left(v, P^{\prime}\right) \leq d+1$ and hence $d\left(P, P^{\prime}\right) \leq 2 d+4$, a contradiction.

As there does not exist a chord of C with both ends having size less than five, we may consider the Thomassen reductions $T_{1}=\left(G_{1}, S, L_{1}\right)$ and $T_{2}=\left(G_{2}, S, L_{2}\right)$ for v_{1}, v_{2} respectively.

Claim 2.9.6. For $i \in\{1,2\}$, there exists $x_{i} \notin V(C)$ such that $x_{i} \sim p_{1}, p_{2}, v_{i}, c_{1}, c_{2} \in$ $L\left(x_{i}\right)$ and $S\left(v_{i}\right) \subseteq S\left(x_{i}\right)$.

Proof. By symmetry it suffices to prove the claim for $i=1$. So consider T_{1}. As T is a minimum counterexample, there exists a chord of the outer walk C_{1} of G_{1} whose ends have lists in L_{1} of size at most four. As T is a counterexample, such a chord of C_{1} is not also a chord of C.

Let $U=u_{1} u_{2}$ be the furthest such chord of C_{1} from P where $u_{1} \notin V(C)$. Now U divides G into two graphs H_{1}, H_{2} where we may assume without loss of generality that $P \cap\left(H_{2} \backslash U\right)=\emptyset$. As U is not a chord of C and $\left|L_{1}\left(u_{1}\right)\right|<5$, we find that u_{1} is adjacent to v_{1}.

Suppose $\Phi_{T_{1}}(U, \mathcal{C})$ contains a government \mathcal{C}^{\prime}. Now $d(v, P) \leq 3 \leq d$ for all $v \in U$. But then $T^{\prime \prime}=\left(G^{\prime \prime}, U \cup P^{\prime}, L_{1}\right)$ is a d-slicing of T with respect to P, contradicting Claim 2.9.2.

So we may suppose that $\Phi_{T_{1}}(U, \mathcal{C})$ does not contain a government. By Theorem 2.6.5, $\left|\Phi_{T_{1}}\left(U, \mathcal{C}_{1}\right)\right|=1$ and there exists a 1-accordion T_{1}^{\prime} in T_{1} from P to U. As p_{1} is not in a chord of C by Claim 2.9.3, there exists $x_{1} \sim p_{2}$ such that $x_{1} p_{2}$ is a chord of C_{1} and $\left|L_{1}\left(x_{1}\right)\right|=3$. Yet $x_{1} p_{2}$ is not a chord of C. Hence $x_{1} \sim v_{1}$ and $L\left(x_{1}\right)$ is the disjoint of $L_{1}\left(x_{1}\right)$ and $S\left(v_{1}\right)$. As there is no vertex inside of the 4 -cycle $p_{1} v_{1} x_{1} p_{2}$, we find given the 1-accordion T_{1}^{\prime} that $p_{1} \sim x_{1}$. Hence, $c_{1}, c_{2} \in L_{1}\left(x_{1}\right)$ and
thus $S\left(v_{1}\right) \subseteq S\left(x_{1}\right)$. This proves the claim.

As G is planar, it follows that $x_{1}=x_{2}$. Call this vertex x. Hence $c_{1}, c_{2} \in L(x)$ and $S\left(v_{1}\right), S\left(v_{2}\right) \subseteq S(x)$.

Claim 2.9.7. $\left|S\left(v_{1}\right) \cap S\left(v_{2}\right)\right|=1$.

Proof. Suppose not. As $S\left(v_{1}\right), S\left(v_{2}\right)$ are lists of size two and both are a subset of $S(x)$, a list of size three, we find that $\left|S\left(v_{1}\right) \cap S\left(v_{2}\right)\right| \geq 1$. So we may assume that $S\left(v_{1}\right)=S\left(v_{2}\right)$ Let $S(x) \backslash S\left(v_{1}\right)=\{c\}$. Let $T^{\prime}=\left(G \backslash P, x+P^{\prime}, L^{\prime}\right)$ where $L^{\prime}(x)=\{c\}$, $L^{\prime}\left(v_{1}\right)=S\left(v_{1}\right) \cup\{c\}, L^{\prime}\left(v_{2}\right)=S\left(v_{2}\right) \cup\{c\}$ and $L^{\prime}=L$ otherwise. Now $d(x, P) \leq 1 \leq d$. It follows that T^{\prime} is a 2 -slicing of T with respect to P, contradicting Claim 2.9.2.

So we may assume that $S\left(v_{1}\right)=\left\{c_{3}, c_{4}\right\}, S\left(v_{2}\right)=\left\{c_{3}, c_{5}\right\}$, and $S(x)=\left\{c_{3}, c_{4}, c_{5}\right\}$. For $i \in\{1,2\}$, let $s_{i} \in S \backslash P$ such that s_{i} is closest to $v_{i} C \backslash P$; let P_{i} be the path in C from v_{i} to s_{i} avoiding P; let u_{i} be the neighbor of x in P_{i} closest to s_{i}, as measured in P_{i}. Let W_{1} be the bellows with base $p_{1} x u_{1}$ and W_{2} be the bellows with base $p_{2} x u_{2}$. Note that these are the bases of bellows as T is L-critical. Further note that as $d \geq 3$, neither u_{1} nor u_{2} is in a chord of C.

Claim 2.9.8. For all $i \in\{1,2\}$, then there are at least two colors in $S(x)$ that extend to a L-coloring of the base of W_{i} that does not extend to an L-coloring of W_{i}.

Proof. Suppose not. We may assume without loss of generality that there exists at most one such color c for W_{1}. Let $L^{\prime}(x)=L(x) \backslash\left\{c, c_{1}\right\}$ if c exists and $L^{\prime}(x)=$ $L(x) \backslash\left\{c_{1}\right\}$ otherwise. Let $L^{\prime}(w)=L(w)$ for all $w \in G \backslash\{x\}$. Let $G^{\prime}=G \backslash\left(W_{1} \backslash\{x\}\right)$ and $S^{\prime}=S \backslash\left\{p_{1}\right\}$. Now $T^{\prime}=\left(G^{\prime}, p_{2}+P^{\prime}, L^{\prime}\right)$ is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

It follows that for all $i \in\{1,2\}, W_{i}$ is an exceptional odd fan or an exceptional even fan. Hence, $c_{3}, c_{4} \in L(v)$ for all $v \in W_{1} \backslash\left\{x, u_{1}\right\}$ and $c_{3}, c_{5} \in L(v)$ for all $v \in W_{2} \backslash\left\{x, u_{2}\right\}$.

If W_{1} is an exceptional odd fan, then there exists $c_{6} \in L\left(u_{1}\right)$ such that the only non-extendable L-colorings of p_{1}, x, u_{1} to W_{1} are c_{1}, c_{3}, c_{6} and c_{1}, c_{4}, c_{6} and hence $c_{6} \neq c_{3}, c_{4}$. Similarly if W_{2} is an exceptional odd fan, then there exists $c_{7} \in L\left(u_{2}\right)$ such that the only non-extendable L-colorings of p_{2}, x, u_{2} to W_{2} are c_{2}, c_{3}, c_{7} and c_{2}, c_{5}, c_{7} and hence $c_{7} \neq c_{3}, c_{5}$.

If W_{1} is an exceptional even fan, then the only non-extendable L-colorings of p_{1}, x, u_{1} to W_{1} are c_{1}, c_{3}, c_{4} and c_{1}, c_{4}, c_{3}. If W_{2} is an exceptional even fan, then the only non-extendable L-colorings of p_{2}, x, u_{2} to W_{2} are c_{1}, c_{3}, c_{5} and c_{1}, c_{5}, c_{3}.

Here are some useful claims before we break our analysis into cases.
Claim 2.9.9. For $i \in\{1,2\},\left|L\left(u_{i}\right)\right|=3$.

Proof. Suppose not. Suppose without loss of generality that $\left|L\left(u_{1}\right)\right| \geq 4$. Thus $u_{1} \neq v_{1}$.

First suppose W_{1} is odd. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash\left\{c_{6}\right\}, L^{\prime}(x)=L(x) \backslash\left\{c_{1}\right\}$. Let $G^{\prime}=G \backslash\left(W_{1} \backslash\left\{x, u_{1}\right\}\right)$. Now $T^{\prime}=\left(G^{\prime}, p_{2}+P^{\prime}, L^{\prime}\right)$ is a 3-slicing of T with respect to P, contradicting Claim 2.9.2.

So we may suppose that W_{1} is even. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash\left\{c_{3}\right\}, L^{\prime}(x)=\left\{c_{4}\right\}$, $L^{\prime}\left(v_{2}\right)=\left\{c_{3}, c_{4}, c_{5}\right\}$. Let $G^{\prime}=G \backslash\left(P \cup\left(W_{1} \backslash\left\{x, u_{1}\right\}\right)\right)$. Now $T^{\prime}=\left(G^{\prime}, x+P^{\prime}, L^{\prime}\right)$ is a 3-slicing of T with respect to P, contradicting Claim 2.9.2.

Claim 2.9.10. If W_{i} is odd, then $L\left(u_{i}\right) \backslash\left\{c_{5+i}\right\}=S\left(v_{i}\right)$ or $\left\{c_{4}, c_{5}\right\}$.

Proof. Suppose not. Suppose without loss of generality that W_{1} is odd and yet $L\left(u_{1}\right) \backslash\left\{c_{6}\right\} \neq\left\{c_{3}, c_{4}\right\}$ or $\left\{c_{4}, c_{5}\right\}$. Let $G^{\prime}=G \backslash\left(W_{1} \backslash\{x\}\right) \backslash p_{2}$. First suppose $c_{4} \in L\left(u_{1}\right) \backslash\left\{c_{6}\right\}$. Let $L^{\prime}\left(v_{2}\right)=L^{\prime}(x)=\left\{c_{3}, c_{5}\right\}$ and $L^{\prime}(w)=L(w) \backslash\left(L\left(u_{1}\right) \backslash\left\{c_{6}\right\}\right)$ for all $w \in N\left(u_{1}\right) \cap V\left(G^{\prime}\right)$ where $w \neq x$, and $L^{\prime}=L$ otherwise. Now $T^{\prime}=\left(G^{\prime}, x+P^{\prime}, L^{\prime}\right)$ is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

So we may suppose that $c_{4} \notin L\left(u_{1}\right)$. Let $L^{\prime}\left(v_{2}\right)=S\left(v_{2}\right) \cup\left\{c_{4}\right\}, L^{\prime}(x)=\left\{c_{4}\right\}$, $L^{\prime}(w)=L(w) \backslash\left(L\left(u_{1}\right) \backslash\left\{c_{6}\right\}\right)$ for all $w \in N\left(u_{1}\right) \cap V\left(G^{\prime}\right)$ where $w \neq x$, and $L^{\prime}=L$
otherwise. Now $T^{\prime}=\left(G^{\prime}, x+P^{\prime}, L^{\prime}\right)$ is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

Case 1: W_{1} and W_{2} are odd.

Let $T^{\prime}=\left(G^{\prime}, u_{1}+P^{\prime}, L^{\prime}\right)$ be the democratic reduction of x, u_{2} in $\left(G \backslash\left(P \cup W_{1} \cup\right.\right.$ $\left.\left.W_{2} \backslash\left\{u_{1}, x, u_{2}\right\}\right),\left\{u_{1}, x, u_{2}\right\} \cup P^{\prime}, S\right)$ with respect to $L\left(u_{2}\right) \backslash\left\{c_{6}\right\}$ and centered around u_{1}. If every L^{\prime}-coloring of G^{\prime} extends to an L-coloring of G, then T^{\prime} is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

But then it follows that $L\left(u_{1}\right) \backslash\left(L\left(u_{2}\right) \backslash\left\{c_{7}\right\}=c_{6}\right.$. That is, $L\left(u_{1}\right) \backslash\left\{c_{6}\right\}=$ $L\left(u_{2}\right) \backslash\left\{c_{7}\right\}$. This implies that either $v_{1} \neq u_{1}$ or $v_{2} \neq u_{2}$. Suppose without loss of generality that $v_{1} \neq u_{1}$. Hence, by Claim 2.9.10, $L\left(u_{1}\right) \backslash\left\{c_{6}\right\}=\left\{c_{3}, c_{4}\right\}$ or $\left\{c_{4}, c_{5}\right\}$. But this implies then that $v_{2} \neq u_{2}$. Hence, by Claim 2.9.10, $L\left(u_{2}\right) \backslash\left\{c_{7}\right\}=\left\{c_{3}, c_{5}\right\}$ or $\left\{c_{4}, c_{5}\right\}$. It now follows that $L\left(u_{1}\right) \backslash\left\{c_{6}\right\}=L\left(u_{2}\right) \backslash\left\{c_{7}\right\}=\left\{c_{4}, c_{5}\right\}$.

Let $y u_{1} \in V(C)$ where $y \notin W_{1}$. Let $T^{\prime}=\left(G^{\prime}, y+P^{\prime}, L^{\prime}\right)$ be the democratic reduction of u_{1}, x, u_{2} in $\left(G \backslash\left(P \cup W_{1} \cup W_{2} \backslash\left\{u_{1}, x, u_{2}\right\}\right),\left\{v_{1}, x, u_{2}\right\} \cup P^{\prime}, S\right)$ with respect to $\left\{c_{4}, c_{5}\right\}$ and centered around y. Now T^{\prime} is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

Case 2: One of W_{1}, W_{2} is even and the other odd.

We may suppose without loss of generality that W_{1} is even and W_{2} is odd. As W_{1} is an exceptional even fan, $c_{3}, c_{4} \in L\left(u_{1}\right)$ and the only non-extendable L-colorings of p_{1}, x, u_{1} to W_{1} are c_{1}, c_{3}, c_{4} and c_{1}, c_{4}, c_{3}. As W_{2} is odd, $L\left(u_{2}\right) \backslash\left\{c_{7}\right\}=\left\{c_{3}, c_{5}\right\}$ or $\left\{c_{4}, c_{5}\right\}$ by Claim 2.9.10.

So we may assume that $S\left(v_{1}\right) \subset L\left(u_{1}\right)$. Suppose $c_{5} \notin L\left(u_{1}\right)$. Let $T^{\prime}=\left(G^{\prime}, u_{1}+\right.$ $\left.P^{\prime}, L^{\prime}\right)$ be the democratic reduction of x, u_{2} in $\left(G \backslash\left(P \cup W_{1} \cup W_{2} \backslash\left\{u_{1}, x, u_{2}\right\}\right)\right),\left\{u_{1}, x, u_{2}\right\} \cup$ $\left.P^{\prime}, S^{\prime}\right)$ with respect to $L\left(u_{2}\right) \backslash\left\{c_{7}\right\}$ and centered around u_{1} where $S^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash S(x)$ and $S^{\prime}=S$ otherwise. Now T^{\prime} is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

So we may assume that $L\left(u_{1}\right)=\left\{c_{3}, c_{4}, c_{5}\right\}$. Let $y u_{1} \in V(C)$ where $y \notin W_{1}$. Let
$T^{\prime}=\left(G^{\prime}, y+P^{\prime}, L^{\prime}\right)$ be the democratic reduction of u_{1}, x, u_{2} in $\left(G \backslash\left(P \cup W_{1} \cup W_{2} \backslash\right.\right.$ $\left.\left.\left\{u_{1}, x, u_{2}\right\}\right),\left\{v_{1}, x, u_{2}\right\} \cup P^{\prime}, S\right)$ with respect to $L\left(u_{2}\right) \backslash\left\{c_{7}\right\}$ and centered around y. Now T^{\prime} is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

Case 3: W_{1} and W_{2} are even.
As W_{1} is an exceptional even fan, $c_{3}, c_{4} \in L\left(u_{1}\right)$ and the only non-extendable L colorings of p_{1}, x, u_{1} to W_{1} are c_{1}, c_{3}, c_{4} and c_{1}, c_{4}, c_{3}. Similarly as W_{2} is an exceptional even fan, $c_{3}, c_{5} \in L\left(u_{2}\right)$ and the only non-extendable L-colorings of p_{2}, x, u_{2} to W_{2} are c_{2}, c_{3}, c_{5} and c_{2}, c_{5}, c_{3}.

Suppose that $c_{4} \in L\left(u_{2}\right)$. Let $T^{\prime}=\left(G^{\prime}, u_{1}+P^{\prime}, L^{\prime}\right)$ be the democratic reduction of x, u_{2} in $\left.\left(G \backslash\left(P \cup W_{1} \cup W_{2} \backslash\left\{u_{1}, x, u_{2}\right\}\right)\right),\left\{u_{1}, x, u_{2}\right\} \cup P^{\prime}, S\right)$ with respect to $\left\{c_{3}, c_{4}\right\}$ and centered around u_{1}. Now T^{\prime} is a 4 -slicing of T with respect to P, contradicting Claim 2.9.2.

So we may suppose that $c_{4} \notin L\left(u_{2}\right)$. Let $G^{\prime}=G \backslash\left(P \cup W_{1} \cup W_{2} \backslash\left\{u_{1}, u_{2}\right\}\right)$. Let $L^{\prime}\left(u_{1}\right)=L\left(u_{1}\right) \backslash S\left(v_{1}\right), L^{\prime}(w)=L(w) \backslash\left\{c_{4}\right\}$ for all $w \in V\left(G^{\prime}\right) \cap N(x)$. Let $T^{\prime}=\left(G^{\prime}, u_{1}+P^{\prime}, L^{\prime}\right)$. Now T^{\prime} is a 3 -slicing of T with respect to P, contradicting Claim 2.9.2.

Theorem 2.9.11 (Two Precolored Edges). Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas where $P \cup P^{\prime}$ are paths of length one and $d\left(P, P^{\prime}\right) \geq 14$. If there does not exist an L coloring, then there exists an essential chord of the outer walk of G whose ends are not in $V(P) \cup V\left(P^{\prime}\right)$ but have lists of size less than five.

Proof. Let C be the outer walk of G. If there exists an essential chord of C incident with a vertex of P, let P_{1} be the essential chord incident with a vertex of P closest to P^{\prime}, and let $P_{1}=P$ otherwise. Define P_{2} similarly for P^{\prime}. Apply Theorem 2.9.1 to the canvas $T^{\prime}=\left(G^{\prime}, P_{1} \cup P_{2}, L\right)$ between P_{1} and P_{2}. As $d\left(P_{1}, P_{2}\right) \geq 12$ since $d\left(P, P^{\prime}\right) \geq 14$, there exists a chord U of the outer walk of G^{\prime} whose ends have lists of
size less than five. Now U is also a chord of the outer walk of G. Furthermore, U is not incident with a vertex of P or P^{\prime} given how P_{1} and P_{2} were chosen.

2.10 Two Confederacies

In this section, we will further characterize the structure of orchestras which start with two confederacies. This will allow us to prove that orchestras contain either a harmonica or accordion whose length is proportional to that of the orchestra.

Definition. Let \mathcal{C} be a collection of disjoint proper colorings of a path $P=p_{1} p_{2}$ of length one. We say \mathcal{C} is an alliance if either
(1) $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ such that $\mathcal{C}_{1}, \mathcal{C}_{2}$ are dictatorships, $\left|\mathcal{C}\left(p_{1}\right)\right|,\left|\mathcal{C}\left(p_{2}\right)\right| \leq 3$ and for all $i \in\{1,2\}$, if z is the dictator of \mathcal{C}_{i}, then $\mathcal{C}_{i}(z) \cap \mathcal{C}_{3-i}(z)=\emptyset$, or,
(2) $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}$ where \mathcal{C}_{1} is a dictatorship with dictator p_{1}, \mathcal{C}_{2} is a dictatorship with dictator p_{2} and \mathcal{C}_{3} is a democracy with colors $\mathcal{C}_{1}\left(p_{1}\right) \cup \mathcal{C}_{2}\left(p_{2}\right)$ and $\mathcal{C}_{2}\left(p_{1}\right) \cap$ $\mathcal{C}_{1}\left(p_{2}\right)=\emptyset$.

If (1) holds for \mathcal{C}, we say \mathcal{C} is an alliance of the first kind and if (2) holds for \mathcal{C} that \mathcal{C} is an alliance of the second kind.

Lemma 2.10.1. Let $T=(G, P, L)$ be a bellows with base $P=p_{1} p_{2} p_{3}$ and let \mathcal{C} be a confederacy for $p_{1} p_{2}$. If $\left|L\left(p_{3}\right)\right| \geq 4$, then $\Phi\left(p_{2} p_{3}, \mathcal{C}\right)$ contains an alliance.

Proof. By Theorem 2.7.2, we may assume that T is a turbofan or $p_{1} \sim p_{3}$. Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ be a confederacy where $\mathcal{C}_{1}, \mathcal{C}_{2}$ are distinct governments. Suppose that T is a turbofan. By Lemma 2.3.5, there exists a unique coloring of P that does not extend to an L-coloring of G. Let $L^{\prime}\left(p_{3}\right)=L\left(p_{3}\right) \backslash\left\{\phi\left(p_{3}\right)\right\}$. Let $c_{1}, c_{2} \in \mathcal{C}\left(p_{2}\right)$. Let \mathcal{C}_{i}^{\prime} be the set of all colorings ϕ of p_{2}, p_{3} such that $\phi\left(p_{2}\right)=c_{i}$ and $\phi\left(p_{3}\right) \in L^{\prime}\left(p_{3}\right)$. Hence $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are dictatorships with dictator p_{2} such that $\mathcal{C}_{1}^{\prime}\left(p_{2}\right) \neq \mathcal{C}_{2}^{\prime}\left(p_{2}\right)$. Thus $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ is an alliance as desired.

So we may suppose that $p_{1} \sim p_{3}$. Suppose that \mathcal{C}_{1} is a democracy and $\mathcal{C}_{1}\left(p_{1}\right)=$ $\left\{c_{1}, c_{2}\right\}$. Let $L^{\prime}\left(p_{3}\right)$ be a subset of $L\left(p_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}$ of size two. For $i \in\{1,2\}$, let \mathcal{C}_{i}^{\prime} be all colorings ϕ of p_{2}, p_{3} such that $\phi\left(p_{2}\right)=c_{i}$ and $\phi\left(p_{3}\right) \in L^{\prime}\left(p_{3}\right)$. Hence $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are dictatorships with dictator p_{2} such that $\mathcal{C}_{1}^{\prime}\left(p_{2}\right) \neq \mathcal{C}_{2}^{\prime}\left(p_{2}\right)$. Thus $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ is an alliance as desired. So we may suppose that neither C_{1} nor by symmetry \mathcal{C}_{2} is a democracy.

Hence \mathcal{C}_{1} and \mathcal{C}_{2} are dictatorships. Suppose that the dictator of \mathcal{C}_{1} is p_{1}. Let $L^{\prime}\left(p_{3}\right)$ be a subset of $L\left(p_{3}\right) \backslash \mathcal{C}_{1}\left(p_{1}\right)$ of size three. Let $c_{1}, c_{2} \in \mathcal{C}_{1}\left(p_{2}\right)$. For $i \in\{1,2\}$, let \mathcal{C}_{i}^{\prime} be all colorings ϕ of p_{2}, p_{3} such that $\phi\left(p_{2}\right)=c_{i}$ and $\phi\left(p_{3}\right) \in L^{\prime}\left(p_{3}\right)$. Hence $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are dictatorships with dictator p_{2} such that $\mathcal{C}_{1}^{\prime}\left(p_{2}\right) \neq \mathcal{C}_{2}^{\prime}\left(p_{2}\right)$. Thus $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ is an alliance as desired.

So we may suppose that p_{2} is the dictator of C_{1} and by symmetry also of \mathcal{C}_{2}. Let $L^{\prime}\left(p_{3}\right)$ be a subset of $L\left(p_{3}\right)$ of size three. Let $c_{1}=\mathcal{C}_{1}\left(p_{2}\right)$ and $c_{2}=\mathcal{C}_{2}\left(p_{2}\right)$. For $i \in\{1,2\}$, let \mathcal{C}_{i}^{\prime} be all colorings ϕ of p_{2}, p_{3} such that $\phi\left(p_{2}\right)=c_{i}$ and $\phi\left(p_{3}\right) \in L^{\prime}\left(p_{3}\right)$. Now $\left|\mathcal{C}_{i}^{\prime}\right| \geq 2$ for $i=1,2$. Hence $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are dictatorships with dictator p_{2} such that $\mathcal{C}_{1}^{\prime}\left(p_{2}\right) \neq \mathcal{C}_{2}^{\prime}\left(p_{2}\right)$. Let $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$. Now by Theorem 1.4.2, all colorings in \mathcal{C}^{\prime} are in $\Phi\left(P^{\prime}, \mathcal{C}\right)$. Hence \mathcal{C}^{\prime} is an alliance as desired.

Lemma 2.10.2. Let $T=(G, P, L)$ be a bellows with base $P=p_{1} p_{2} p_{3}$. If \mathcal{C} is an alliance for $p_{1} p_{2}$ and \mathcal{C}^{\prime} is a confederacy for $p_{2} p_{3}$ such that $\left|\mathcal{C}\left(p_{2}\right) \cup \mathcal{C}^{\prime}\left(p_{2}\right)\right| \leq 3$, then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G.

Proof. Note that $\left|\mathcal{C}\left(p_{2}\right)\right|,\left|\mathcal{C}\left(p_{3}\right)\right| \geq 2$. Hence as $\left|\mathcal{C}\left(p_{2}\right) \cup \mathcal{C}^{\prime}\left(p_{2}\right)\right| \leq 3, \mathcal{C}\left(p_{2}\right) \cap \mathcal{C}^{\prime}\left(p_{2}\right) \neq \emptyset$.
We claim that there exists $c \in \mathcal{C}\left(p_{2}\right) \cap \mathcal{C}^{\prime}\left(p_{2}\right)$ such that there exists two colorings ϕ in \mathcal{C} or two colorings ϕ in \mathcal{C}^{\prime} with $\phi\left(p_{2}\right)=c$. Suppose $\left|\mathcal{C}\left(p_{2}\right)\right|=2$. Hence \mathcal{C} is an alliance of the first kind. Now for all $c \in \mathcal{C}\left(p_{2}\right)$ there exist two colorings $\phi \in \mathcal{C}$ such that $\phi\left(p_{2}\right)=c$ as \mathcal{C} is an alliance. Thus the claim follows with $c \in \mathcal{C}\left(p_{2}\right) \cap \mathcal{C}^{\prime}\left(p_{2}\right)$.

So we may suppose that $\left|\mathcal{C}\left(p_{2}\right)\right|=3$. But then there is one $c_{0} \in \mathcal{C}\left(p_{2}\right)$ such that there exist two colorings $\phi \in \mathcal{C}$ with $\phi\left(p_{2}\right)=c$ as \mathcal{C} is an alliance. Hence we may
assume that $c_{0} \notin \mathcal{C}^{\prime}\left(p_{2}\right)$ as otherwise the claim follows with $c=c_{0}$. So $\left|\mathcal{C}^{\prime}\left(p_{2}\right)\right|=2$ as $\left|\mathcal{C}\left(p_{2}\right) \cup \mathcal{C}^{\prime}\left(p_{2}\right)\right| \leq 3$. But then there exists $c \in \mathcal{C}^{\prime}\left(p_{2}\right)$ such that there exist two colorings $\phi \in \mathcal{C}^{\prime}$ with $\phi\left(p_{2}\right)=c$ as \mathcal{C} is a confederacy. As c is also in $\mathcal{C}\left(p_{2}\right)$, this proves the claim.

Let $L^{\prime}\left(p_{2}\right)=\{c\}, L^{\prime}\left(p_{1}\right)=\left\{\phi\left(p_{1}\right) \mid \phi \in \mathcal{C}, \phi\left(p_{2}\right)=c\right\} \cup\{c\}$ and $L^{\prime}\left(p_{3}\right)=\left\{\phi\left(p_{3}\right) \mid \phi \in\right.$ $\left.\mathcal{C}^{\prime}, \phi\left(p_{2}\right)=c\right\} \cup\{c\}$. As $c \in \mathcal{C}\left(p_{2}\right) \cap \mathcal{C}^{\prime}\left(p_{2}\right),\left|L^{\prime}\left(p_{1}\right)\right|,\left|L^{\prime}\left(p_{3}\right)\right| \geq 2$. Furthermore, by the claim above either $\left|L^{\prime}\left(p_{1}\right)\right| \geq 3$ or $\left|L^{\prime}\left(p_{3}\right)\right| \geq 3$. Hence by Theorem 1.4.2, there exists an L^{\prime}-coloring of G. But this implies there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G as desired.

Lemma 2.10.3. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a double bellows, \mathcal{C} be a democracy for P and \mathcal{C}^{\prime} be a democracy for P^{\prime}. Then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G.

Proof. Let x be the center of T. Let $P=p_{1} p_{2}, P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$ such that $T_{1}=\left(G_{1}, p_{1} x p_{1}^{\prime}, L\right)$ is a bellows with base $p_{1} x p_{1}^{\prime}, T_{2}=\left(G_{2}, p_{2} x p_{2}^{\prime}, L\right)$ is a bellows with base $p_{2} x p_{2}^{\prime}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$. Let L_{1} be the colors of the democracy \mathcal{C} and L_{2} be the colors of the democracy \mathcal{C}^{\prime}. Suppose that neither T_{1} nor T_{2} is a turbofan. Hence G is a wheel. Let $c \in L(x) \backslash L_{1} \cup L_{2}$. Now let $L^{\prime}(w)=L(w) \backslash\{c\}$ for all $w \in G \backslash\left(\{x\} \cup V(P) \cup V\left(P^{\prime}\right)\right)$, $L^{\prime}\left(p_{1}\right)=L^{\prime}\left(p_{2}\right)=L_{1}$ and $L^{\prime}\left(p_{1}^{\prime}\right)=L^{\prime}\left(p_{2}^{\prime}\right)=L_{2}$. Now $\left|L^{\prime}(w)\right| \geq 2$ for all $w \in G \backslash\{x\}$. Hence by Theorem 1.4.3, either there exists an L^{\prime}-coloring and the lemma follows or $L^{\prime}(w)=L^{\prime}(v)$ for all $w, v \in G \backslash\{x\}$ and G is an odd wheel. But then there exists a vertex $v \in G \backslash\left(\{x\} \cup V\left(P_{1}\right) \cup V\left(P_{2}\right)\right.$. Yet $|L(v)|=3$. So by repeating the argument above with $c \in L(x) \backslash L(v)$, it follows that there exist an L-coloring as desired.

Lemma 2.10.4. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a double bellows, \mathcal{C} be a dictatorship for $P=p_{1} p_{2}$ with dictator p_{1} and \mathcal{C}^{\prime} be a democracy for $P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$. Let $L^{\prime}\left(p_{2}\right)=$ $\mathcal{C}\left(p_{2}\right) \cup \mathcal{C}\left(p_{1}\right)$ and x be the center of the double bellows. If there do not exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, then all of the following hold:
(1) $\mathcal{C}\left(p_{1}\right) \cap \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)=\emptyset$ and $\mathcal{C}\left(p_{1}\right), \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right) \subset L(x)$.
(2) $p_{1} x p_{1}^{\prime}, p_{1} x p_{2}^{\prime}$ are the bases of exceptional odd fans of length at least three and there exists $c \in \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)$ such that the non-extendable colorings are $\phi\left(p_{1}\right) \in \mathcal{C}\left(p_{1}\right)$, $\phi(x) \in L(x) \backslash\left(\mathcal{C}\left(p_{1}\right) \cup \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)\right)$ and $\phi\left(p_{i}^{\prime}\right)=c$ for all $i \in\{1,2\}$.

Proof. Let $T_{1}=\left(G_{1}, p_{1} x p_{1}^{\prime}, L^{\prime}\right)$ be the bellows with base $p_{1} x p_{1}^{\prime}, T_{2}=\left(G_{2}, p_{1} x p_{2}^{\prime}, L^{\prime}\right)$ the bellows with base $p_{1} x p_{2}^{\prime}$ where $L^{\prime}\left(p_{1}\right)=\mathcal{C}\left(p_{1}\right), L^{\prime}\left(p_{2}\right)=\mathcal{C}\left(p_{2}\right) \cup \mathcal{C}\left(p_{1}\right), L^{\prime}\left(p_{1}^{\prime}\right)=$ $\mathcal{C}^{\prime}\left(p_{1}^{\prime}\right), L^{\prime}\left(p_{2}^{\prime}\right)=\mathcal{C}\left(p_{2}^{\prime}\right)$ and $L^{\prime}=L$ otherwise. We may assume that $p_{1} \nsim p_{1}^{\prime}, p_{2}^{\prime}$ as otherwise G is a wheel and yet $p_{1} \cup P^{\prime}$ either has two colorings or a coloring with only two colors; hence by Lemma 2.3.5, there exists an L^{\prime}-coloring of G, a contradiction.

We claim that if T_{1} is not an exceptional even fan then T_{2} is an exceptional odd fan where the non-extendable colors of x are $L(x) \backslash\left(\mathcal{C}\left(p_{1}\right) \cup \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)\right.$. To see this, note that by Lemma 2.3.6, there exists $c \in L^{\prime}\left(p_{1}^{\prime}\right)$ such that any L^{\prime}-coloring ϕ of $G \backslash\left(G_{1} \backslash\left\{p_{1}, x, p_{1}^{\prime}\right\}\right)$ with $\phi\left(p_{1}^{\prime}\right)=c$ can be extended to an L^{\prime}-coloring of G. But there does not exist an L^{\prime}-coloring of G. So color p_{1}^{\prime} with c, then color p_{2}^{\prime} from $L^{\prime}\left(p_{2}\right) \backslash\{c\}$. By Lemma 2.3.8, this coloring extends to an L^{\prime}-coloring of G_{2} unless T_{2} is an exceptional odd fan with non-extendable colors $L(x) \backslash\left(\mathcal{C}\left(p_{1}\right) \cup \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)\right.$. This proves the claim. In addition, as this is a set of size at most two, we find that $\mathcal{C}\left(p_{1}\right), \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right) \subset L(x)$ and $\mathcal{C}\left(p_{1}\right) \cap \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)=\emptyset$ also follow from the claim.

Thus if T_{1} is not an exceptional even fan, then T_{2} is an exceptional odd fan by the claim. But then so is T_{1} by the claim and the lemma follows. So we may suppose that T_{1} is an exceptional even fan and by symmetry so is T_{2}. But then the non-extendable colorings of x to T_{1} and to T_{2} are $\mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)$. Hence color x from $L(x) \backslash\left(\mathcal{C}\left(p_{1}\right) \cup \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)\right)$, then color $p_{1}^{\prime}, p_{2}^{\prime}$. This extends to a L^{\prime}-coloring of G as x was colored with an extendable color of T_{1} and T_{2}, a contradiction.

Lemma 2.10.5. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a double bellows, \mathcal{C} be a confederacy for $P=p_{1} p_{2}$ such that \mathcal{C} is the union of two dictatorships and \mathcal{C}^{\prime} be a confederacy for
$P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$ such that \mathcal{C}^{\prime} is the union of two dictatorships. Suppose $\left|L\left(p_{1}^{\prime}\right)\right|,\left|L\left(p_{2}^{\prime}\right)\right| \geq 3$. If there do not exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, then $\mathcal{C}, \mathcal{C}^{\prime}$ are not alliances and $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains an alliance.

Proof. Suppose not. Let x be the center of T. Let T_{1} be the bellows with base $p_{1} x p_{1}^{\prime}$ and T_{2} be the bellows with base $p_{1} x p_{2}^{\prime}$. Let T_{1}^{\prime} be the bellows with base $p_{2} x p_{1}^{\prime}$ and T_{2}^{\prime} be the bellows with base $p_{2} x p_{2}^{\prime}$. We may assume without loss of generality that $p_{1}, p_{1}^{\prime}, p_{2}^{\prime}, p_{2}$ appear in that order in the outer walk C of G. Let $\mathcal{C} \supseteq \mathcal{C}_{1} \cup \mathcal{C}_{2}$ where $\mathcal{C}_{1}, \mathcal{C}_{2}$ are distinct dictatorships with distinct dictators if possible and let $\mathcal{C}^{\prime} \supseteq \mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ where $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are distinct dictatorships with distinct dictators if possible.

Claim 2.10.6. If $z_{1} \in V(P)$ is the dictator of a dictatorship $\mathcal{C}_{3} \subset \mathcal{C}$ and $z_{2} \in V\left(P^{\prime}\right)$ is the dictator of a dictatorship $\mathcal{C}_{4} \subset \mathcal{C}^{\prime}$ such that $z_{1} \nsim z_{2}$, then one of the bellows with base $z_{1} x z_{2}$ is an exceptional odd fan. Furthermore, if only one of the bellows B_{1} and B_{2} with base $z_{1} x z_{2}$, say B_{1}, is an exceptional odd fan then $L(x)$ is the disjoint union of $\mathcal{C}_{3}\left(z_{1}\right), \mathcal{C}_{4}\left(z_{2}\right)$, the two non-extendable colors of B_{1} and the one non-extendable color of B_{2}.

Proof. Let $B_{1} \neq B_{2}$ be the two bellows with base $z_{1} x z_{2}$. We may suppose that neither B_{1} nor B_{2} is an exceptional odd fan. Hence by Lemma 2.3.6, for all $i \in\{1,2\}$, there exists at most one color c_{i} so that coloring x with c_{i} does not extend to a coloring of B_{i}. Let $c_{3} \in L(x) \backslash\left(\mathcal{C}_{3}\left(z_{1}\right) \cup \mathcal{C}_{4}\left(z_{2}\right) \cup\left\{c_{1}, c_{2}\right\}\right)$. Now the coloring of z_{1}, x, z_{2} with colors $\mathcal{C}_{3}\left(z_{1}\right), c_{3}, \mathcal{C}_{4}\left(z_{2}\right)$ respectively extends to colorings of B_{1} and B_{2}, a contradiction.

Similarly suppose B_{1} is an exceptional odd fan and B_{2} is not an exceptional odd fan. It must be that $L(x)=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ where c_{1}, c_{2} are the non-extendable colors of x in $B_{1}, \mathcal{C}_{3}\left(z_{1}\right)=\left\{c_{3}\right\}, \mathcal{C}_{4}\left(z_{2}\right)=\left\{c_{4}\right\}$ and c_{5} is the non-extendable color of B_{2}.

Claim 2.10.7. Suppose that p_{1}^{\prime} is the dictator of \mathcal{C}_{1}^{\prime} and p_{2}^{\prime} is the dictator of \mathcal{C}_{2}^{\prime}. Further suppose that p_{1} is the dictator of \mathcal{C}_{1} and $p_{1} \nsim p_{1}^{\prime}$.

Let $L(x)=\{1,2,3,4,5\}$. Then all of the following hold up to permutation of the colors of $L(x)$:
(1) T_{1}, T_{2} are both exceptional even fans or both exceptional odd fans and $\mathcal{C}_{1}\left(p_{1}\right)=$ \{1\};
(2) if T_{1}, T_{2} are both even, then $\mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)=\{2,3\}, \mathcal{C}^{\prime}\left(p_{2}^{\prime}\right)=\{4,5\}$, the colors of the non-extendable democracy of $x p_{1}^{\prime}$ in T_{1} are 2,3 and, for $x p_{2}^{\prime}$ in T_{2} are 4,5;
(3) if T_{1}, T_{2} are both odd, then $\mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)=\{2,3\}, \mathcal{C}^{\prime}\left(p_{2}^{\prime}\right)=\{4,5\}, \mathcal{C}_{1}^{\prime}\left(p_{1}^{\prime}\right)=\{2\}$, $\mathcal{C}_{2}^{\prime}\left(p_{2}^{\prime}\right)=\{4\}$ the non-extendable dictatorship for T_{1} has colors 3,4 for x and for T_{2} has color 2,5 for x;
(4) p_{2} is the dictator of \mathcal{C}_{2}.

Proof. We may assume without loss of generality that $\mathcal{C}_{1}\left(p_{1}\right)=\{1\}$. By Claim 2.10.6, one of the bellows with base $p_{1} x p_{1}^{\prime}$ is odd and one of the bellows with base $p_{1} x p_{2}^{\prime}$ is odd. This implies that T_{1}, T_{2} are either both even or both odd. This proves (1).

Suppose T_{1}, T_{2} are both even. Thus $T_{1}+p_{2}^{\prime}$ is odd and $T_{2}+p_{1}^{\prime}$ is odd. Hence $T_{1}+p_{2}^{\prime}$ must be an odd exceptional fan by Claim 2.10 .6 applied to \mathcal{C}_{1} and \mathcal{C}_{2}^{\prime}. Thus T_{1}, T_{2} are exceptional even fans and thus their non-extendable colorings are democracies $\mathcal{C}_{3}, \mathcal{C}_{4}$ by Lemma 2.6.3. Hence $\mathcal{C}_{2}\left(p_{1}^{\prime}\right)=\mathcal{C}_{3}\left(p_{1}^{\prime}\right)$ has size two and $\mathcal{C}_{1}\left(p_{2}^{\prime}\right)=\mathcal{C}_{4}\left(p_{1}^{\prime}\right)$ has size two. Let $\mathcal{C}_{2}\left(p_{1}^{\prime}\right)=\{2,3\}$. We may assume without loss of generality that $\mathcal{C}_{2}\left(p_{2}^{\prime}\right)=\{4\}$. But then 4,5 is a non-extendable coloring of T_{2} and hence $\mathcal{C}_{4}\left(p_{1}^{\prime}\right)=\mathcal{C}_{1}\left(p_{2}^{\prime}\right)=\{4,5\}$. It follows that $\mathcal{C}_{1}\left(p_{1}^{\prime}\right) \subset\{2,3\}$. This proves (2).

Suppose T_{1}, T_{2} are both odd. Hence T_{1}, T_{2} are exceptional odd fans by Claim 2.10.6 applied to \mathcal{C}_{1} and \mathcal{C}_{1}^{\prime}. Thus their non-extendable colorings are dictatorships $\mathcal{C}_{3}, \mathcal{C}_{4}$ with dictators $p_{1}^{\prime}, p_{2}^{\prime}$ respectively by Lemma 2.6.3. We may assume without loss of generality that $\mathcal{C}_{3}\left(p_{1}^{\prime}\right)=\mathcal{C}_{1}\left(p_{1}^{\prime}\right)=\{2\}$ and $\mathcal{C}_{3}(x)=\{3,4\}$. But then $5 \in \mathcal{C}_{4}(x)$ and $\mathcal{C}_{1}\left(p_{2}^{\prime}\right)=\{5\} \cup \mathcal{C}_{2}\left(p_{2}^{\prime}\right)$. Suppose without loss of generality that $\mathcal{C}_{4}\left(p_{2}^{\prime}\right)=\mathcal{C}_{2}\left(p_{2}^{\prime}\right)=\{4\}$.

But then $2 \in \mathcal{C}_{4}(x)$ as $2 \notin C_{3}(x)$. Thus $\mathcal{C}_{4}\left(p_{2}^{\prime}\right)=\{4,5\}$ and $\mathcal{C}_{4}(x)=\{2,5\}$. This proves (3).

Finally, we prove (4). Suppose that p_{2} is not the dictator of \mathcal{C}_{2}. But then p_{1} is the dictator of \mathcal{C}_{2}. It follows from (2) or (3) that $\mathcal{C}_{2}\left(p_{1}\right)=L(x) \backslash\left(\mathcal{C}^{\prime}\left(p_{1}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(p_{2}^{\prime}\right)\right)=\mathcal{C}_{1}\left(p_{1}\right)$, a contradiction.

Claim 2.10.8. Suppose that p_{1}^{\prime} is the dictator of \mathcal{C}_{1}^{\prime} and p_{2}^{\prime} is the dictator of \mathcal{C}_{2}^{\prime}. Then there exists $i, j \in\{1,2\}$ such that $p_{i} \sim p_{i}^{\prime}$ and p_{i} is the dictator of \mathcal{C}_{j}.

Proof. Suppose without loss of generality that p_{1} is the dictator of \mathcal{C}_{1}. Suppose $p_{1} \nsim p_{1}^{\prime}$. By Claim 2.10.7(1), T_{1}, T_{2} are either both exceptional even fans or both exceptional odd fans. By Claim 2.10.7(5), p_{2} is the dictator of \mathcal{C}_{2}. If $p_{2} \sim p_{2}^{\prime}$ the claim follows with $i=j=2$. So we may suppose $p_{2} \nsim p_{2}^{\prime}$. By Claim 2.10.7(1) $T_{1}^{\prime}, T_{2}^{\prime}$ are either both even or both odd. Yet T_{1}^{\prime} and T_{1} have different parity.

Without loss of generality we may suppose that $T_{1}^{\prime}, T_{2}^{\prime}$ are odd and T_{1}, T_{2} even. By Claim 2.10.7(3) and (4), it follows that $\left|\mathcal{C}_{2}\left(p_{1}\right) \cap \mathcal{C}_{2}^{\prime}\left(p_{1}^{\prime}\right)\right|=1$ and $\mathcal{C}_{1}\left(p_{2}\right)=\mathcal{C}_{1}^{\prime}\left(p_{2}^{\prime}\right)$ and $L(x)=\mathcal{C}_{2}\left(p_{1}\right) \cup \mathcal{C}_{2}^{\prime}\left(p_{1}^{\prime}\right) \cup \mathcal{C}_{1}\left(p_{2}\right)$. Now color p_{1}, p_{1}^{\prime} from $\mathcal{C}_{2}\left(p_{1}\right) \cap \mathcal{C}_{2}^{\prime}\left(p_{1}^{\prime}\right)$, color $T_{2}^{\prime} \backslash\{x\}$ from $\mathcal{C}_{2}\left(p_{1}\right)$. Color $T_{1} \backslash\{x\}$ from $\mathcal{C}_{2}\left(p_{1}\right)$ and x from $\mathcal{C}_{2}^{\prime}\left(p_{1}^{\prime}\right) \backslash \mathcal{C}_{2}\left(p_{1}\right)$. Hence there exists an L-coloring ϕ of G with $\phi \upharpoonright P \in \mathcal{C}$ and $\phi \upharpoonright P^{\prime} \in \mathcal{C}^{\prime}$, a contradiction.

Claim 2.10.9. \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime} have the same dictator.

Proof. Suppose not. We may assume without loss of generality that p_{1}^{\prime} is the dictator for \mathcal{C}_{1}^{\prime} and p_{2}^{\prime} is the dictator for \mathcal{C}_{2}^{\prime}. By Claim 2.10.8, we may suppose without loss of generality that $p_{2} \sim p_{2}^{\prime}$ and p_{2} is the dictator of \mathcal{C}_{2}. Suppose p_{1} is the dictator of \mathcal{C}_{1}. Now T_{1}, T_{2} are even. By Claim 2.10.7, we may suppose without loss of generality that $\mathcal{C}_{1}\left(p_{1}\right)=\{1\}, \mathcal{C}_{1}\left(p_{2}\right)=\{4,5\}, \mathcal{C}^{\prime}\left(p_{1}^{\prime}\right)=\{2,3\}$ and $\mathcal{C}^{\prime}\left(p_{2}^{\prime}\right)=\{4,5\}$. Symmetrically, we find that without loss of generality $\mathcal{C}^{\prime}\left(p_{2}\right)=\{4,5\}, \mathcal{C}^{\prime}\left(p_{1}\right)=\{1,2\}$ and $\mathcal{C}_{1}^{\prime}\left(p_{1}^{\prime}\right)=\{3\}$.

Unfortunately, there does now not have to exist a coloring of G from extending colorings in \mathcal{C} and \mathcal{C}^{\prime}. But we have determined that \mathcal{C} and \mathcal{C}^{\prime} are not alliances. Indeed,
it is not hard to see that any other L-coloring of P^{\prime} does extend to an L-coloring of G. That is $\Phi\left(P^{\prime}, \mathcal{C}\right)$ is the set of all L-coloring of P^{\prime} not in \mathcal{C}^{\prime}. Thus we may assume that $L\left(p_{1}^{\prime}\right)=\{2,3, x\}$ and $L\left(p_{2}^{\prime}\right)=\{4,5, y\}$ as otherwise $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains an alliance, a contradiction. Now $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains a dictatorship with dictator p_{1} in color x and a dictatorship with dictator p_{2} in color y.

Suppose $y \neq 2$. Then $\Phi\left(P, \mathcal{C}^{\prime}\right)$ contains a dictatorship with dictator p_{1} in color 2. Hence $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains an alliance as there are two disjoint dictatorships with dictator p_{1}, one in color x and one in color 2 , a contradiction. So we may suppose $y=2$. Similarly suppose $x \neq 4$. Then $\Phi\left(P, \mathcal{C}^{\prime}\right)$ contains a dictatorship with dictator p_{1} in color 2. Hence $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains an alliance as there are two disjoint dictatorships with dictator p_{2}, one in color y and one in color 4 , a contradiction. So we may suppose $x=4$. But now $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains the alliance of the second kind: $\{(4,2),(4,5),(3,5),(2,4)\}$, a contradiction.

So we may suppose that p_{2} is the dictator of \mathcal{C}_{1}. But then there exists $i \in\{1,2\}$ such $\mathcal{C}_{i}\left(p_{2}\right) \cap \mathcal{C}_{2}\left(p_{2}^{\prime}\right)=\emptyset$. But then there exists an L-coloring of G by Theorem 1.4.2, a contradiction.

So we may assume that \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime} have the same dictator z. Suppose without loss of generality that p_{1}^{\prime} is the dictator of \mathcal{C}_{1} and \mathcal{C}_{2}. Note that in the proof of Claim 2.10.9, the symmetry of P and P^{\prime} is only broken in the case that \mathcal{C}_{1} and \mathcal{C}_{2} do not have the same dictator. It follows then by symmetry that \mathcal{C}_{1} and \mathcal{C}_{2} have the same dictator z^{\prime}.

Suppose $z \sim z^{\prime}$. We may assume without loss of generality that $\mathcal{C}_{1}(z) \neq \mathcal{C}_{2}\left(z^{\prime}\right)$. But then there exists an L-coloring of G by Theorem 1.4.2, a contradiction.

So we may suppose that $z \nsim z^{\prime}$. Let T_{3}, T_{4} be the distinct bellows with base $z x z^{\prime}$. By Claim 2.10.6, at least one of T_{3}, T_{4} is an odd exceptional fan. Suppose without loss of generality that T_{3} is an odd exceptional fan. Let $x_{1}=V(P) \backslash\{z\}$ and $x_{2}=V\left(P^{\prime}\right) \backslash\left\{z^{\prime}\right\}$. If T_{4} is an even fan of length two, then at least one of x_{1}, x_{2} is
in T_{3}. Thus there exists $y \in\left\{x_{1}, x_{2}\right\}$ such that the bellows T_{i} containing y is not an even of length two, and hence contains a vertex $y^{\prime} \neq z, z^{\prime}, y, x$ in its outer walk.

Suppose without loss of generality that $y=x_{1}$. Given y^{\prime}, it follows that $\mathcal{C}_{1}(y) \cap$ $\mathcal{C}_{2}(y) \neq \emptyset$. Let $c \in \mathcal{C}_{1}(y) \cap \mathcal{C}_{2}(y)$. Now let $\mathcal{C}_{3}=\left\{\phi_{1}, \phi_{2}\right\}$ where $\phi_{1}(y)=\phi_{2}(y)=c$ and $\phi_{1}(z) \in \mathcal{C}_{1}(z)$ and $\phi_{2}(z) \in \mathcal{C}_{2}(z)$. So \mathcal{C}_{3} is a dictatorship with dictator y. But now $\mathcal{C}_{1} \cup \mathcal{C}_{3}$ have distinct dictators and therefore contradict the choice of $\mathcal{C}_{1}, \mathcal{C}_{2}$.

Lemma 2.10.10. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a double bellows or a defective double bellows, \mathcal{C} be a confederacy for P and \mathcal{C}^{\prime} be a confederacy for P^{\prime}. If there do not exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, then $\mathcal{C}, \mathcal{C}^{\prime}$ are not alliances and $\Phi\left(P^{\prime}, C\right)$ contains an alliance.

Proof. We may assume without loss of generality that T is a double bellows. Let x be the center of T. Let $P=p_{1} p_{2}, P^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$ such that $T_{1}=\left(G_{1}, p_{1} x p_{1}^{\prime}, L\right)$ is a bellows with base $p_{1} x p_{1}^{\prime}, T_{2}=\left(G_{2}, p_{2} x p_{2}^{\prime}, L\right)$ is a bellows with base $p_{2} x p_{2}^{\prime}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$. By Lemma 2.10.3, we may assume that \mathcal{C} does not contain a democracy. Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ where $\mathcal{C}_{1}, \mathcal{C}_{2}$ are dictatorships.

Suppose \mathcal{C}^{\prime} contains a democracy $\mathcal{C}^{\prime \prime}$. Suppose without loss of generality that p_{1} is the dictator of \mathcal{C}_{1}. By Lemma 2.10.4 applied to \mathcal{C}_{1} and $\mathcal{C}^{\prime \prime}$, we find that T_{1} is an odd fan and T_{2} is an even fan. Applying Lemma 2.10.4 then to \mathcal{C}_{2} and $\mathcal{C}^{\prime \prime}$, we find that p_{1} is also the dictator of \mathcal{C}_{2}. But then $\mathcal{C}_{1}\left(p_{1}\right) \cap \mathcal{C}_{2}\left(p_{1}\right)=\emptyset$. Yet the only non-extendable colorings ϕ of T_{1} require $\phi\left(p_{1}\right) \in \mathcal{C}_{1}\left(p_{1}\right)$, a contradiction.

So we may assume that \mathcal{C}^{\prime} does not contain a democracy. Hence \mathcal{C} is an alliance of the first kind. Let $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ where $\mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are dictatorships. But then by Lemma 2.10.5, $\Phi\left(P^{\prime}, \mathcal{C}\right)$ contains an alliance as desired.

Lemma 2.10.11. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a 2-connected instrumental orchestra with sides $P \cup P^{\prime}$ where P, P^{\prime} are paths of length one such that $d\left(P, P^{\prime}\right) \geq 3$. Let \mathcal{C} be
a confederacy for P and \mathcal{C}^{\prime} be a confederacy for P^{\prime}. If there do not exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, then T contains an accordion as a subcanvas.

Proof. First suppose that one of the instruments of T is a double bellows or defective double bellows. Let $W=\left(G^{\prime}, P_{1} \cup P_{2}, L\right)$ be such an instrument where P_{1}, P_{2} are the sides of W. As $d\left(P, P^{\prime}\right) \geq 3$, we may assume without loss of generality that $P_{2} \cap\left(P \cup P^{\prime}\right)=\emptyset$ and that P_{2} separates P_{1} from P^{\prime}. By Theorem 2.7.2, $\Phi\left(P_{1}, \mathcal{C}\right)$ contains a confederacy \mathcal{C}_{1} and $\Phi\left(P_{2}, \mathcal{C}^{\prime}\right)$ contains a confederacy \mathcal{C}_{2}. If there exist $\phi \in \mathcal{C}_{1}$ and $\phi^{\prime} \in \mathcal{C}_{2}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G^{\prime}, then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, a contradiction.

By Lemma 2.10.10 applied to W with \mathcal{C}_{1} and \mathcal{C}_{2}, it follows that $\Phi\left(P_{2}, \mathcal{C}_{1}\right)$ contains an alliance \mathcal{C}_{1}^{\prime}. Now let $W^{\prime} \neq W$ be the other instrument of T with side P_{2}. Suppose $W^{\prime}=\left(G^{\prime \prime}, P_{2} \cup P_{3}, L\right)$ is a double bellows or defective double bellows where P_{2}, P_{3} are the sides of W^{\prime}. By Theorem 2.7.8, $\Phi\left(P_{3}, \mathcal{C}^{\prime}\right)$ contains a confederacy \mathcal{C}_{2}^{\prime}. By Lemma 2.10 .10 applied to W with \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime}, we find that there exist $\phi \in \mathcal{C}_{1}^{\prime}$ and $\phi^{\prime} \in \mathcal{C}_{2}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of $G^{\prime \prime}$, then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, a contradiction.

So we may suppose that W^{\prime} is a bellows. By Theorem 2.7.2, $\Phi\left(P_{3}, \mathcal{C}^{\prime}\right)$ contains a confederacy \mathcal{C}_{2}^{\prime} such that $\left|\mathcal{C}_{2}^{\prime}(z) \cup \mathcal{C}_{1}^{\prime}(z)\right| \leq 3$ where $\{z\}=V\left(P_{2}\right) \cap V\left(P_{3}\right)$, since $z \notin V(P) \cup V\left(P^{\prime}\right)$. By Lemma 2.10.2 applied to W with \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime}, we find that there exist $\phi \in \mathcal{C}_{1}^{\prime}$ and $\phi^{\prime} \in \mathcal{C}_{2}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of $G^{\prime \prime}$, then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, a contradiction.

So we may assume that all the instruments in T are bellows. Let \mathcal{C} be the outer walk of G. As T is not an accordion, there exists a vertex $v \in V(C) \backslash\left(V(P) \cup V\left(P^{\prime}\right)\right)$ such that $|L(v)| \geq 4$. Let $W=\left(G^{\prime}, P_{1} \cup P_{2}, L\right)$ be a bellows of T such that P_{1}, P_{2} are the sides of W and $v \in V\left(P_{2}\right) \backslash V\left(P_{1}\right)$. We may suppose without loss of generality that P_{2} separates a vertex of P_{1} from P^{\prime}. By Theorem 2.7.2, $\Phi\left(P_{1}, \mathcal{C}\right)$ contains a
confederacy \mathcal{C}_{1}. By Lemma 2.10.1, $\Phi_{W}\left(P_{2}, \mathcal{C}_{1}\right)$ contains an alliance \mathcal{C}_{1}^{\prime}.
Now let $W^{\prime} \neq W$ be the other instrument of T with side P_{2}. Now $W^{\prime}=\left(G^{\prime \prime}, P_{2} \cup\right.$ $\left.P_{3}, L\right)$ is a bellows where P_{2}, P_{3} are the sides of W^{\prime}. By Theorem 2.7.2, $\Phi\left(P_{3}, \mathcal{C}^{\prime}\right)$ contains a confederacy \mathcal{C}_{2}^{\prime} such that $\left|\mathcal{C}_{2}^{\prime}(z) \cup \mathcal{C}_{1}^{\prime}(z)\right| \leq 3$ where $\{z\}=V\left(P_{2}\right) \cap V\left(P_{3}\right)$, since $z \notin V(P) \cup V\left(P^{\prime}\right)$. By Lemma 2.10.2 applied to W with \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime}, we find that there exist $\phi \in \mathcal{C}_{1}^{\prime}$ and $\phi^{\prime} \in \mathcal{C}_{2}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of $G^{\prime \prime}$, then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, a contradiction.

Definition (Bottleneck). Let $T=(G, S, L)$ be a canvas and C be the outer walk of G. Suppose there exists chords U_{1}, U_{2} of C with no end in S such that U_{1} divides G into two graphs G_{1}, G_{1}^{\prime} and U_{2} divides G into G_{2}, G_{2}^{\prime} where $G_{1} \cap S=G_{2} \cap S$. Let $G^{\prime}=G \backslash\left(G_{1} \backslash U_{1}\right) \backslash\left(G_{2} \backslash U_{2}\right)$. If the canvas $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ contains an accordion or a harmonica, call it $T^{\prime \prime}$, we say that $T^{\prime \prime}$ is a bottleneck of T.

Theorem 2.10.12 (Two Confederacies). Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a canvas with P, P^{\prime} distinct edges of C with $d\left(P, P^{\prime}\right) \geq 6, \mathcal{C}$ be a confederacy for P and \mathcal{C}^{\prime} be a confederacy for P^{\prime}. If there do not exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, then there exists a bottleneck $\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d_{G^{\prime}}\left(U_{1}, U_{2}\right) \geq d_{G}\left(P, P^{\prime}\right) / 2-3$.

Proof. Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}, \mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{2}^{\prime}$ where $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{1}^{\prime}, \mathcal{C}_{2}^{\prime}$ are governments. We may assume that T is a counterexample with a minimum number of vertices. By Theorem 2.8.3 applied to T with \mathcal{C}_{1} and \mathcal{C}_{1}^{\prime}, there exists an orchestra $T^{\prime}=\left(G^{\prime}, P_{1} \cup P_{2}, L\right)$ with sides $P_{1}^{\prime}, P_{2}^{\prime}$ where G^{\prime} is a subgraph of G, and $P_{1} \subseteq P$, and $P_{1}=P$ if \mathcal{C}_{1} is a democracy, and similarly $P_{2} \subseteq P^{\prime}$, and $P_{2}=P^{\prime}$ is \mathcal{C}_{2} is a democracy.

First suppose T^{\prime} is a special orchestra. But then this implies that there exists a bottleneck $\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d_{G^{\prime}}\left(U_{1}, U_{2}\right) \geq d_{G}\left(P, P^{\prime}\right) / 2-3$ as desired.

So we may suppose that T^{\prime} is an instrumental orchestra. As T is a minimum counterexample it follows that either T is a 2-connected instrumental orchestra or that
there exists an essential cutvertex v of G. Suppose the former. By Lemma 2.10.11, T contains an accordion as desired. But then it follows that there exists a bottleneck $\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d_{G^{\prime}}\left(U_{1}, U_{2}\right) \geq d_{G}\left(P, P^{\prime}\right)-5 \geq d_{G}\left(P, P^{\prime}\right) / 2-3$ as $d\left(P, P^{\prime}\right) \geq$ 4.

So we may suppose there exists an essential cutvertex v of G. Thus v divides G into two graphs G_{1}, G_{2} such that $P \cap\left(G_{2} \backslash\{v\}\right)=\emptyset$ and $P^{\prime} \cap\left(G_{1} \backslash\{v\}\right)=\emptyset$. Let $L^{\prime}(w)=\mathcal{C}(w)$ for $w \in V(P), L^{\prime}(w)=\mathcal{C}^{\prime}(w)$ for $w \in V\left(P^{\prime}\right)$ and $L^{\prime}=L$ otherwise. First suppose $v \in V(P) \cup V\left(P^{\prime}\right)$. Suppose then without loss of generality that $v \in P$. By Theorem 2.7.2 applied to $\left(G_{2}, P^{\prime}+v, L^{\prime}\right)$, we find that there exists an L^{\prime}-coloring of G_{2}, but this can be extended to an L^{\prime}-coloring of G by Theorem 1.4.2, a contradiction.

So we may assume that $v \notin V(P) \cup V\left(P^{\prime}\right)$. But then by Theorem 2.7.2, there exists at most one color $c \in L(v)$ such that there does not exist a coloring ϕ of G_{1} with $\phi \upharpoonright \in \mathcal{C}$ and $\phi(v)=c$. Similarly there exists at most one color $c^{\prime} \in L(v)$ such that there does not exist a coloring ϕ of G_{1} with $\phi \upharpoonright \in \mathcal{C}$ and $\phi(v)=c$. Yet $|L(v)| \geq 3$ and hence there exists $c^{\prime \prime} \neq c, c^{\prime}$ with $c^{\prime \prime} \in L(v)$. But then there exist $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of G, a contradiction.

Corollary 2.10.13. Let $T=\left(G, P \cup P^{\prime}, L\right)$ be a critical orchestra with sides P, P^{\prime} where P, P^{\prime} are paths of length one. Let \mathcal{C}_{1} be a government for P and \mathcal{C}_{2} be government for P^{\prime}. If there do not exist colorings $\phi_{1} \in \mathcal{C}_{1}, \phi_{2} \in \mathcal{\mathcal { C } _ { 2 }}$ such that $\phi_{1} \cup \phi_{2}$ extends to an L-coloring of G, then there exist at most four vertices in $V(C) \backslash\left(V(P) \cup V\left(P^{\prime}\right)\right)$, where C is the outer walk of G, with lists of size at least four.

Proof. Let C be the outer walk of G. It follows by definition that $|L(v)|<5$ for all $v \in V(C) \backslash\left(V(P) \cup V\left(P^{\prime}\right)\right)$. Let $X=\left\{v \in V(C) \backslash\left(V(P) \cup V\left(P^{\prime}\right)\right)| | L(v) \mid=4\right.$. Suppose to a contradiction that $|X| \geq 5$. If T is a special orchestra then $|X|=0$ by definition. So we may suppose that T is instrumental. For all $x \in X$, it follows by definition that there exist two instruments W_{1}, W_{2} such that $x \in W_{1} \cap W_{2}$ and indeed that x is in a side of both W_{1} and W_{2}.

First suppose there exists $x \in X$ such that x is a cutvertex of G. As T is critical, x is an essential curtvertex. Consider the canvases T_{P} from P to x and $T_{P^{\prime}}$ from P^{\prime} to x. By Theorem 2.7.8, there exists at least two colorings ϕ_{1}, ϕ_{2} of T_{P} such that $\phi_{1}, \phi_{2} \in \mathcal{C}$ and $\phi_{1}(x) \neq \phi_{2}(x)$. Furthermore by Theorem 2.7.8, there exists a third coloring ϕ_{3} of T_{P} such that $\phi_{3} \in \mathcal{C}$ and $\phi_{3}(x) \neq \phi_{1}(x), \phi_{2}(x)$ unless T_{P} contains a harmonica from P to u. Suppose ϕ_{3} exists. Let $L^{\prime}(x)=\left\{\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)\right\}$ and $L^{\prime}=L$ otherwise. By Theorem 1.4.2, there exists an L^{\prime}-coloring ϕ of $T_{P^{\prime}}$ with $\phi \upharpoonright P^{\prime} \in \mathcal{C}^{\prime}$. But then ϕ extends to an L-coloring ϕ of T with $\phi \upharpoonright P \in \mathcal{C}$, a contradiction.

So we may suppose that T_{P} contains a harmonica from P to u. As T is critical, it follows that T_{P} is a harmonica from P tu u. By symmetry $T_{P^{\prime}}$ is a harmonica from P^{\prime} to u. But then $X=\{x\}$ by the definition of harmonica, a contradiction. So we may suppose that no vertex in X is a cutvertex of G. Thus every vertex in X is in a chord of C.

Next we claim that that there exist two disjoint chords U_{1}, U_{2} of C such that $U_{1} \cap X, U_{2} \cap X \neq \emptyset$. Suppose not. Thus all chords of C with an end in X must intersect. As all chords of C are essential, it follows from the planarity of G that these chords all have a common end u. But then there exist at least three distinct chords $U_{1}=u x_{1}, U_{2}=u x_{2}, U_{3}=u x_{3}$ where $u \in U_{1} \cap U_{2} \cap U_{3}$ and $x_{1}, x_{2}, x_{3} \in X$. We may suppose without loss of generality that U_{1} separates x_{2} from P and U_{3} separates x_{2} from P^{\prime}. Hence $u_{1} x_{2} u_{3}$ is the base of a bellows containing x_{2} as T is critical, a contradiction as $\left|L\left(x_{2}\right)\right|=4$. This proves the claim.

Choose disjoint chords U_{1}, U_{2} such that U_{1} is closest to P and U_{2} closest to P^{\prime}. By Theorem 2.7.2, both $\Phi\left(U_{1}, \mathcal{C}_{1}\right), \Phi\left(U_{2}, \mathcal{C}_{2}\right)$ contain a confederacy. Given how U_{1}, U_{2} were chosen and as $|X| \geq 5$, there exists a vertex $x \in X \backslash\left(U_{1} \cup U_{2}\right)$ such that x is in the instrumental orchestra T^{\prime} between U_{1} and U_{2}. It follows from the proof of Lemma 2.10.11, that $d\left(U_{1}, U_{2}\right) \leq 2$ and that T^{\prime} contains a double bellows W with U_{3}, U_{4} such that $U_{3} \cap U_{1} \neq \emptyset$ and $U_{4} \cap U_{2} \neq \emptyset$. But then $U_{1} \cup U_{3}$ and $U_{2} \cup U_{4}$ are the
bases of bellows. It follows then as $|L(x)|=4$, that $x \in U_{3} \backslash U_{1}$ or $x \in U_{4} \backslash U_{2}$.
Suppose without loss of generality that $x \in U_{3} \backslash U_{1}$. By Lemma 2.10.1, $\Phi\left(U_{3}, \mathcal{C}_{1}\right)$ contains an alliance. Meanwhile $\Phi\left(U_{4}, \mathcal{C}_{2}\right)$ contains a confederacy. By Lemma 2.10.11 applied to W, there exist $\phi_{1} \in \Phi\left(U_{3}, \mathcal{C}_{1}\right), \phi_{2} \in \Phi\left(U_{4}, \mathcal{C}_{2}\right)$ such that $\phi_{1} \cup \phi_{2}$ extends to an L-coloring of W, a contradiction.

2.11 Bottlenecks

We conclude this chapter by proving the most substantial theorem which shows that in a canvas, if the coloring of two edges far apart does not extend to a coloring of the whole graph, then there exists a proportionally long bottleneck. We will generalize this theorem to longer paths as well as collection of more than two paths in Chapter 3. We will also use this theorem as the basis of the proofs in Chapter 4.

Theorem 2.11.1 (Bottleneck Theorem: Two Edges). If $T=\left(G, P \cup P^{\prime}, L\right)$ is a canvas with P, P^{\prime} distinct edges of C with $d\left(P, P^{\prime}\right) \geq 14$, then either there exists an L-coloring of G, or there exists a bottleneck $\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d_{G^{\prime}}\left(U_{1}, U_{2}\right) \geq$ $d_{G}\left(P, P^{\prime}\right) / 6-22$.

Proof. Suppose there does not exist an L-coloring of G. Let $d=\left(P, P^{\prime}\right)$. By Theorem 2.9.11, there exists an essential chord U_{0} of C such that $d\left(U_{0}, P\right) \leq 13$. Now we may assume that $d \geq 132$ as otherwise U_{0} is the desired bottleneck.

Similarly, there exists an essential chord U_{6} of C such that $d\left(U_{6}, P\right) \geq d-14$. We claim that there exists essential chords $U_{1}, U_{2}, U_{3}, U_{4}, U_{5}$ of C such that $i d / 6-$ $7 \leq d\left(U_{i}, P\right) \leq i d / 6+7$. Suppose not. Let W_{i} be the essential chord of C with $d\left(W_{i}, P\right)<i d / 6-7$ and there does not exist another such chord separating a vertex of W_{i} from P^{\prime}. Similarly let W_{i}^{\prime} be the essential chord of C with $d\left(W_{i}^{\prime}, P\right)>i d / 6+7$ and there does not exist another such chord separating a vertex of W_{i} from P^{\prime}. But then $d\left(W_{i}, W_{i}^{\prime}\right) \geq 14$. By Theorem 2.9.11, there exists an essential chord U_{i} of C separating a vertex of W_{i} from a vertex of W_{i}^{\prime}. Given how W_{i} was chosen, it
follows that $d\left(U_{i}, P\right) \geq i d / 6-7$. Similarly given how W_{i}^{\prime} was chosen, it follows that $d\left(U_{i}, P\right) \leq i d / 6+7$. This proves the claim. Note that as $d / 6-22 \geq 0$ as $d \geq 132$, it follows that all of the chords $\left\{U_{i} \mid 0 \leq i \leq 6\right\}$ are disjoint.

Let $\mathcal{C}_{0}=\{\phi\}$ where ϕ is an L-coloring of P and $\mathcal{C}_{6}=\left\{\phi^{\prime}\right\}$ where ϕ^{\prime} is an L coloring of P^{\prime}. By Theorem 2.6.5, $\Phi\left(U_{1}, \mathcal{C}_{0}\right)$ has a government or $T\left[P, U_{1}\right]$ is an accordion but then $T\left[U_{0}, U_{1}\right]$ is a bottleneck with $d\left(U_{0}, U_{1}\right) \geq d / 6-21$. So we may suppose that $\Phi\left(U_{1}, \mathcal{C}_{0}\right)$ has a government \mathcal{C}_{1}. Similarly, if $\Phi\left(U_{5}, \mathcal{C}_{6}\right)$ does not have a government, then $T\left[U_{5}, P^{\prime}\right]$ is an accordion but then $T\left[U_{5}, U_{6}\right]$ is a bottleneck with $d\left(U_{5}, U_{6}\right) \geq d / 6-22$. So we may suppose that $\Phi\left(U_{5}, \mathcal{C}_{6}\right)$ has a government \mathcal{C}_{5}.

By Theorem 2.7.2, $\Phi\left(U_{2}, \mathcal{C}_{1}\right)$ contains a confederacy unless there exists a harmonica from U_{1} to U_{2}. But then $T\left[U_{1}, U_{2}\right]$ is a bottleneck with $d\left(U_{1}, U_{2}\right) \geq d / 6-15$ as desired. So we may suppose that $\Phi\left(U_{2}, \mathcal{C}_{1}\right)$ contains a confederacy \mathcal{C}_{2}. Similarly we may suppose that $\Phi\left(U_{4}, \mathcal{C}_{5}\right)$ contains a confederacy \mathcal{C}_{4}.

Now $d\left(U_{2}, U_{4}\right) \geq d / 3-15$. As $d / 3-15 \geq 6$ since $d \geq 132$, it follows from Theorem 2.10.12 that $T\left[U_{2}, U_{4}\right]$ contains a bottleneck $T\left[U_{2}^{\prime}, U_{4}^{\prime}\right]$ with $d\left(U_{2}^{\prime}, U_{4}^{\prime}\right) \geq$ $(d / 3-15) / 2-3 \geq d / 6-22$ as desired.

CHAPTER III

LINEAR BOUND FOR ONE CYCLE

3.1 Introduction

In this chapter, we prove the following theorem which settles a conjecture of Dvorak et al [27].

Theorem 3.1.1. Let G be a 2-connected plane graph with outer cycle C and L a 5-list-assignment for G. Then G contains a connected subgraph H with at most $29|C|$ vertices such that for every L-coloring ϕ of C either
(i) ϕ cannot be extended to an L-coloring of H, or,
(ii) ϕ can be extended to an L-coloring of G.

Indeed, it will be necessary to prove a stronger version of Theorem 1.8.1 which bounds the the number of vertices in terms of the sum of the sizes of large faces. Another clever aspect to the proof is to incorporate the counting of neighbors of C into the stronger formula. This allows the finding of reducible configurations close to the boundary in a manner similar to the discharging method's use of Euler's formula.

In Section 3.2, we define a more general notion of criticality for graphs and canvases which will be useful for proving Theorem 1.8.1. In Section 3.3, we prove a structure theorem for said critical cycle-canvases. In Section 3.4, we prove Theorem 1.8.1.

In addition in this chapter we will prove a number of generalizations of Theorem 1.8.1. In Section 3.4, we prove that there exists a graph as in Theorem 1.8.1 with the stronger property that for every f of H every L-coloring of the boundary of f extends to the subgraph of G contained in the interior of f. In Section 3.5, we prove
that if the constant in Theorem 1.8.1 is modified, then outcome (ii) can be upgraded to say that there exist $2^{c|G \backslash C|}$ extensions of ϕ for some constant c.

In Section 3.6, we show that such a linear bound implies that every vertex in H of Theorem 1.8.1 has at most logarithmic distance from C. This idea will be very crucial to the proofs in Chapter 5 and is a main reason why linear bounds are so fruitful. Logarithmic distance also implies that vertices in H exhibit exponential growth, that is, the size of the ball around a vertex grows exponentially with the radius of the ball.

In Section 3.7, 3,8 and 3.9, we extend Theorem 1.8.1, which is actually about cyclecanvases, to the more general case of path-canvases. We prove a structure theorem for critical path-canvases in Section 3.7, a linear bound in Section 3.8, and logarithmic distance and exponential growth in Section 3.9.

In Sections 3.10, 3.11 and 3.12, we extend Theorem 2.11 .1 to given a canvas with any number of precolored paths of any length, then there exists a long bottleneck or the size of the canvas is linear in the number of precolored vertices.

3.2 Critical Subgraphs

Definition (T-critical). Let G be a graph, $T \subseteq G$ a (not necessarily induced) subgraph of G and L a list assignment to the vertices of $V(G)$. For an L-coloring ϕ of T, we say that ϕ extends to an L-coloring of G if there exists an L-coloring ψ of G such that $\phi(v)=\psi(v)$ for all $v \in V(T)$. The graph G is T-critical with respect to the list assignment L if $G \neq T$ and for every proper subgraph $G^{\prime} \subset G$ such that $T \subseteq G^{\prime}$, there exists a coloring of T that extends to an L-coloring of G^{\prime}, but does not extend to an L-coloring of G. If the list assignment is clear from the context, we shorten this and say that G is T-critical.

We say a canvas (G, S, L) is critical if G is S-critical with respect to the list assignment L.

Definition. Let G be a graph and $T \subset V(G)$. For $S \subseteq G$, a graph $G^{\prime} \subseteq G$ is an
S-component with respect to T of G if S is a proper subgraph of $G^{\prime}, T \cap G^{\prime} \subseteq S$ and all edges of G incident with vertices of $V\left(G^{\prime}\right) \backslash V(S)$ belong to G^{\prime}.

For example, if G is a plane graph with T contained in the boundary of its outer face and S is a cycle in G, then the subgraph of G drawn inside the closed disk bounded by S, which we denote by $\operatorname{Int}_{S}(G)$, is an S-component of G with respect to T. Here is a useful lemma.

Lemma 3.2.1. Let G be a T-critical graph with respect to a list assignment Let G^{\prime} be an S-component of G with respect to T, for some $S \subseteq G$. Then G^{\prime} is S-critical. Proof. Since G is T-critical, every isolated vertex of G belongs to T, and thus every isolated vertex of G^{\prime} belongs to S. Suppose for a contradiction that G^{\prime} is not S critical. Then, there exists an edge $e \in E\left(G^{\prime}\right) \cap E(S)$ such that every L-coloring of S that extends to $G^{\prime} \backslash e$ also extends to G^{\prime}. Note that $e \notin E(T)$. Since G is T-critical, there exists a coloring Φ of T that extends to an L-coloring ϕ of $G \backslash e$, but does not extend to an L-coloring of G. However, by the choice of e, the restriction of ϕ to S extends to an L-coloring ϕ^{\prime} of G^{\prime}. Let $\phi^{\prime \prime}$ be the coloring that matches ϕ^{\prime} on $V\left(G^{\prime}\right)$ and ϕ on $V(G) \cap V\left(G^{\prime}\right)$. Observe that $\phi^{\prime \prime}$ is an L-coloring of G extending Φ, which is a contradiction.

Lemma 3.2.1 has two useful corollaries. To state them, however, we need the following definitions.

Definition. Let $T=(G, S, L)$ be a canvas and $S^{\prime} \subset V(G)$. If G^{\prime} is a S^{\prime}-component with respect to S, then we let $T\left[G^{\prime}, S^{\prime}\right]$ denote the canvas $\left(G^{\prime}, S^{\prime}, L\right)$.

Definition. Let $T=(G, P, L)$ be a path-canvas and C be the outer walk of G. We say a path P^{\prime} in G is a span if the ends of P^{\prime} have lists of size less than five and the only internal vertices of P^{\prime} with lists of size less than five are in P. Let $\delta\left(P^{\prime}\right)$ be the path from the ends of P^{\prime} in C that does not traverse a vertex of $P \backslash P^{\prime}$. We define the exterior of P^{\prime}, denoted by $\operatorname{Ext}\left(P^{\prime}\right)$ as the set of vertices in $\delta\left(P^{\prime}\right) \cup \operatorname{Int}\left(P^{\prime} \cup \delta\left(P^{\prime}\right)\right)$.

Definition. Let $T=(G, S, L)$ be a cycle-canvas or path-canvas. If C^{\prime} is a cycle in G, we let $T\left[C^{\prime}\right]$ denote the cycle-canvas $\left(\operatorname{Int}\left(C^{\prime}\right), C^{\prime}, L\right)$. If T is a path-canvas and P^{\prime} is a span of G, then we let $T\left[P^{\prime}\right]$ denote the path-canvas $\left(P^{\prime} \cup \operatorname{Ext}\left(P^{\prime}\right), P^{\prime} \cup \delta\left(P^{\prime}\right), P^{\prime}, L\right)$.

Corollary 3.2.2. Let $T=(G, S, L)$ be a critical canvas. If C^{\prime} is a cycle in G such that $\operatorname{Int}\left(C^{\prime}\right) \neq C^{\prime}$, then $T\left[C^{\prime}\right]$ is a critical cycle-canvas.

Proof. $G^{\prime}=\operatorname{Int}\left(C^{\prime}\right)$ is a C^{\prime}-component of G. As G is S-critical, G^{\prime} is C^{\prime}-critical.

Corollary 3.2.3. Let (G, P, L) be a critical path-canvas. If P is a span of T, then $T[P]$ is a critical path-canvas.

Proof. $G^{\prime}=P^{\prime} \cup E x t\left(P^{\prime}\right)$ is a P^{\prime}-component of G. As G is S-critical, G^{\prime} is P^{\prime}-critical.

Another useful fact is the following.

Proposition 3.2.4. Let $T=(G, S, L)$ be a canvas such that there exists a proper L-coloring of S that does not extend to G. Then there exists a S-critical subgraph G^{\prime} of G such that $S \subseteq G^{\prime}$.

Definition. Let $T=(G, S, L)$ be a canvas and $G^{\prime} \subseteq G$ such that $S \subseteq G^{\prime}$ and G^{\prime} is connected. We define the subcanvas of T induced by G^{\prime} to be $\left(G^{\prime}, S, L\right)$.

Thus in Proposition 3.2.4, the subcanvas of T induced by G^{\prime} is critical.

Corollary 3.2.5. Let $T=(G, S, L)$ be a canvas such that there exists a proper L coloring of S that does not extend to G. Then T contains a critical subcanvas.

3.3 Critical Cycle-Canvases

The following theorem is an easy consequence of Theorem 1.4.2.

Theorem 3.3.1. (Cycle Chord or Tripod Theorem)

$$
\text { If } T=(G, C, L) \text { is critical cycle-canvas, then either }
$$

(1) C has a chord in G, or
(2) there exists a vertex of G with at least three neighbors on C, and at most one of the internal faces of $G[v \cup V(C)]$ is nonempty.

Proof. Suppose C does not have a chord. Let X be the set of vertices with at least three neighbors on C. Let $V\left(G^{\prime}\right)=C \cup X$ and $E\left(G^{\prime}\right)=E(G[C \cup X])-E(G[X])$.

We claim that if f is face of G^{\prime} such that f is incident with at most one vertex of f, then f does not include a vertex or edge of G. Suppose not. Let C^{\prime} be the boundary of f. As C has no chords and every edge with one end in X and the other in C is in $E\left(G^{\prime}\right)$, it follows that C^{\prime} has no chords. As T is critical, there exists an L-coloring ϕ of $G \backslash \operatorname{Int}\left(C^{\prime}\right)$ which does not extend to G. Hence, there exists an L-coloring ϕ of C^{\prime} which does not extend to $\operatorname{Int}(C)$. Let $G^{\prime}=\operatorname{Int}(C) \cup\left(C^{\prime} \backslash C\right), S^{\prime}=C^{\prime} \backslash C$, $L^{\prime}(v)=\phi(v)$ for $v \in S$ and $L^{\prime}(v)=L(v) \backslash\{\phi(x): x \in C \cap N(v)\}$. Consider the canvas $T^{\prime}=\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$. By Theorem 1.4.2, there exists an L^{\prime}-coloring of T^{\prime} and hence an L-coloring of G which extends ϕ, a contradiction. This proves the claim.

As T is critical, $G \neq C$. As C has no chords, it follows from the claim above that $X \neq \emptyset$.Let \mathcal{F} be the internal faces of G^{\prime} incident with at least two elements of X. Consider the tree whose vertices are $X \cup \mathcal{F}$ where a vertex $x \in X$ is adjacent to $f \in \mathcal{F}$ is x is incident with f. Let v be a leaf of T. By construction, $v \in X$. Hence at most one of the internal faces of $G[v \cup V(C)]$ is incident with another vertex of X. Yet all other faces of $G[v \cup V(C)]$ are incident with only one element of X, namely v, and so by the claim above, these faces are empty as desired.

3.3.1 Deficiency

Definition. If G is a plane, we let $\mathcal{F}(G)$ denote the set of finite faces of G. We define the deficiency of a cycle-canvas $T=(G, C, L)$ as

$$
\operatorname{def}(T)=|V(C)|-3-\sum_{f \in \mathcal{F}(T)}(|f|-3)
$$

Definition. If f is a face of a graph G, let δf denote the facial walk of f and $G[f]$ denote the $\operatorname{Int}(\delta f)$. If $T=(G, S, L)$ is a canvas and f is a face of G, let $T[f]$ denote the canvas $T[\delta f]$, that is, $(G[f], \delta f, L)$.

Lemma 3.3.2. If T is a cycle-canvas and $T\left[G^{\prime}\right]$ is a subcanvas such that G^{\prime} is 2connected, then

$$
\operatorname{def}(T)=\operatorname{def}\left(T\left[G^{\prime}\right]\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} \operatorname{def}(T[f])
$$

Proof.

$$
\operatorname{def}\left(T\left[G^{\prime}\right]\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} \operatorname{def}(T[f])=|V(C)|-3-\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3)-\sum_{f^{\prime} \in \mathcal{F}(G[f])}\left(\left|f^{\prime}\right|-3\right)
$$

Every face of G is a face of exactly one $T[f], \sum_{f \in \mathcal{F}\left(G^{\prime}\right)} \sum_{f^{\prime} \in \mathcal{F}(G[f])}\left(\left|f^{\prime}\right|-3\right)=$ $\sum_{f \in \mathcal{F}(G)}(|f|-3)$. Hence,

$$
|V(C)|-3-\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3)-\sum_{f \in \mathcal{F}(G)}(|f|-3) .
$$

As the middle terms cancel, this is just $|V(C)|-3-\sum_{f \in \mathcal{F}(G)}(|f|-3)=\operatorname{def}(T)$ as desired.

Theorem 3.3.3. (Cycle Sum of Faces Theorem)

$$
\text { If } T=(G, C, L) \text { is a critical cycle-canvas, then } \operatorname{def}(T) \geq 1 .
$$

Proof. We proceed by induction on the number of vertices of G. Note that if T is a cycle-canvas and $G=C$, then $\operatorname{def}(C)=0$. Apply Theorem 3.3.1.

Suppose (1) holds; that is there is a chord U of C. Let C_{1}, C_{2} be cycles such that $C_{1} \cap C_{2}=U$ and $C_{1} \cup C_{2}=C \cup U$. Hence $\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|=|V(C)|+2$. Let $T_{1}=T\left[C_{1}\right]=\left(G_{1}, C_{1}, L\right)$ and $T_{2}=T\left[C_{2}\right]=\left(G_{2}, C_{2}, L\right)$. If $f \in \mathcal{F}(G)$, then $f \in \mathcal{F}\left(G_{1}\right) \cup \mathcal{F}\left(G_{2}\right)$. Thus by Lemma 3.3.2, $\operatorname{def}(T)=\operatorname{def}\left(T_{1}\right)+\operatorname{def}\left(T_{2}\right)+1$.

By Theorem 3.2.2, T_{1} and T_{2} are critical cycle-canvases (or empty). By induction, $\operatorname{def}\left(T_{i}\right) \geq 1$ if $\operatorname{Int}\left(C_{i}\right) \neq C_{i}$. As noted before, $\operatorname{def}\left(T_{i}\right)=0$ if $\operatorname{Int}\left(C_{i}\right)=\emptyset$. In either case, $\operatorname{def}\left(T_{i}\right) \geq 0$. Thus $\operatorname{def}(T) \geq 0+0+1 \geq 1$ as desired.

So we may suppose that (2) holds; that is, there exists $v \notin V(C)$ such that v is adjacent to at least three vertices of C and at most one of the faces of $C \cup v$ is nonempty. First suppose that all the faces are empty, that is to say that $V(G)=$ $V(C) \cup v$. Now v must have degree at least 5 as G is C-critical. Thus, $\operatorname{def}(T) \geq 2$ as desired.

Let $G^{\prime}=C \cup v$. So we may suppose that only one of the faces of $\mathcal{F}(G)$ is nonempty. Let C^{\prime} be the boundary of the non-empty face. Now, $|V(C)|-\left|V\left(C^{\prime}\right)\right| \geq$ $\sum f \in \mathcal{F}(G) \backslash \mathcal{F}\left(G^{\prime}\right)(|f|-3)$. That is, $\operatorname{def}(T) \geq \operatorname{def}\left(T\left[C^{\prime}\right]\right)$. Yet by induction, $\operatorname{def}\left(T\left[C^{\prime}\right]\right) \geq 1$ as $\operatorname{Int}\left(C^{\prime}\right) \neq C^{\prime}$. Thus $\operatorname{def}(T) \geq 1$ as desired.

Corollary 3.3.4. (Cycle Bounded Face Theorem)
Let (G, C, L) be a critical cycle-canvas. If f is an internal face of G, then $|f|<$ $|V(C)|$.

Proof. By Theorem 3.3.3, $|V(C)|-3-\sum_{f \in \mathcal{F}(G)}(|f|-3) \geq 1$. Thus $|V(C)|-4 \geq$ $\sum_{f \in \mathcal{F}(G)}(|f|-3)$. As the terms on the right side are always positive, $|V(C)|-4 \geq$ $|f|-3$ for any internal face f of G. Thus $|f|<|V(C)|$.

3.4 Linear Bound for Cycles

To prove the linear bound for cycles, we shall prove a stronger statement instead. First a few definitions.

Definition. Let $T=(G, C, L)$ be a cycle-canvas. We define $v(T)=|V(G \backslash C)|$. We also define the quasi-boundary of T, denoted by $Q(T)$, as $\{v \notin V(C): \exists f \in \mathcal{F}(G), v \in$ $\delta f, \delta f \cap V(C) \neq \emptyset\}$. We let $q(T)=|Q(T)|$.

Fix $\epsilon, \alpha>0$. Let $s(T)=\epsilon v(T)+\alpha q(T), d(T)=\operatorname{def}(T)-s(T)$.

Proposition 3.4.1. Let T be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, S, L\right)$ be a subcanvas. The following hold:

- $v(T)=v\left(T^{\prime}\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} v(T[f])$,
- $q(T) \leq q\left(T^{\prime}\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} q(T[f])$,
- $s(T) \leq s\left(T^{\prime}\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} s(T[f])$,
- If G^{\prime} is 2-connected, then $d(T) \geq d\left(T^{\prime}\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} d(T[f])$.

Proof. The first follows as every vertex of $V(G \backslash C)$ is in exactly one of $V\left(G^{\prime} \backslash\right.$ $C),\left\{V(T[f] \backslash \delta f): f \in \mathcal{F}\left(G^{\prime}\right)\right\}$ and every vertex in one of those sets is in $V(G \backslash C)$.

The second follows from the claim that $Q(T) \subseteq Q\left(T\left[G^{\prime}\right]\right) \cup \bigcup_{f \in \mathcal{F}\left(G^{\prime}\right)} Q(T[f])$. To see this claim, suppose that $v \in Q(T)$. Now $v \in Q(T)$ if and only if there exists a path from v to a vertex u in C which is internally disjoint from G. If $v \in G^{\prime}$, then P does not cross G^{\prime} and yet $u \in V\left(C^{\prime}\right)$; hence, $v \in Q\left(T\left[G^{\prime}\right]\right)$. So we may assume that $v \in \delta f$ for some $f \in \mathcal{F}\left(G^{\prime}\right)$. Yet, it must be that $u \in \delta f$ and that P does not cross the graph $\delta f \cup \operatorname{Int}(\delta f)$; hence, $v \in Q(T[f])$.

The third follows from the first two. The fourth follows from the third and Lemma 3.3.2.

Corollary 3.4.2. Let $T=(G, C, L)$ be a cycle canvas. If U is a chord of C and C_{1}, C_{2} cycles such that $C_{1} \cap C_{2}=U$ and $C_{1} \cup C_{2}=C+U$, then

$$
d(T) \geq d\left(T\left[C_{1}\right]\right)+d\left(T\left[C_{2}\right]\right)+1
$$

If v is a vertex with two neighbors $u_{1}, u_{2} \in V(C)$ and C_{1}, C_{2} cycles such that $C_{1} \cap C_{2}=u_{1} v u_{2}$ and $C_{1} \cup C_{2}=C+u_{1} v u_{2}$, then

$$
d(T) \geq d\left(T\left[C_{1}\right]\right)=d\left(T\left[C_{2}\right]\right)-1-(\alpha+\epsilon)
$$

Proposition 3.4.3. Let $T=(G, C, L)$ be a 2-connected cycle-canvas.
(i) If $G=C$, then $d(T)=0$.
(ii) If $v(T)=0$, then $d(T)=|E(G) \backslash E(C)|$.
(iii) If $v(T)=1$, then $d(T)=|E(G) \backslash E(C)|-3-(\alpha+\epsilon)$.

Proof. (i) If $G=C$, then $v(T)=q(T)=s(T)=0$. As $\operatorname{def}(T)=0, d(T)=0-0=0$.
(ii) If $v(T)=0$, then $q(T)=0$. Thus $s(T)=0$. As $v(T)=0$, $\operatorname{def}(T)=$ $|E(G) \backslash E(C)|$ by Lemma 3.3.4. So $d(T)=|E(G) \backslash E(C)|$ as desired.
(iii) If $v(T)=1$, then $q(T)=1$. Thus $s(T)=\alpha+\epsilon$. Let $v \in V(G) \backslash V(C)$. As G is 2-connected, $\operatorname{deg}(v) \geq 2$. Thus $\operatorname{def}(T)=|E(G) \backslash E(C)|-3$. Combining, $d(T)=|E(G) \backslash E(C)|-3-(\alpha+\epsilon)$ as desired.

Corollary 3.4.4. Let $T=(G, C, L)$ be a 2 -connected cycle-canvas. If $v(T) \leq 1$, then $d(T) \geq 3-(\alpha+\epsilon)$ unless
(i) $v(T)=0$ and $|E(G) \backslash E(C)| \leq 2$, or
(ii) $v(T)=1$ and $|E(G) \backslash E(C)| \leq 5$.

We are now ready to state our generalization of the linear bound for cycles.

Theorem 3.4.5. Let $\epsilon, \alpha, \gamma>0$ satisfying the following:
(1) $\epsilon \leq \alpha$,
(2) $8(\alpha+\epsilon) \leq \gamma$,
(3) $\gamma \leq 1 / 2+(\alpha+\epsilon)$.

If $T=(G, C, L)$ is a critical cycle-canvas and $v(T) \geq 2$, then $d(T) \geq 3-\gamma$.

Proof. Let $T=(G, C, L)$ be a counterexample such that $|E(G)|$ is minimized.
Let us note that as G is C-critical there does not exist a cutvertex or a separating edge, triangle, or 4-cycle in G. Furthermore, $\operatorname{deg}(v) \geq 5$ for all $v \in V(G) \backslash V(C)$.

Claim 3.4.6. $v(T) \geq 4$

Proof. Suppose not. Suppose $v(T)=2$. But then $|E(G) \backslash E(C)| \geq 9$. Hence, $\operatorname{def}(T) \geq 3$ while $s(T)=2(\alpha+\epsilon)$. Hence $d(T) \geq 3-2(\alpha+\epsilon)$ which is at least $3-\gamma$ by inequality (2), contrary to the fact that T is a counterexample. So we may suppose that $v(T)=3$. But then $|E(G) \backslash E(C)| \geq 12$. Hence, $\operatorname{def}(T) \geq 3$ while $s(T)=3(\alpha+\epsilon)$. Hence $d(T) \geq 3-3(\alpha+\epsilon)$ which is at least $3-\gamma$ by inequality (2), contrary to the fact that T is a counterexample.

3.4.1 Proper Critical Subgraphs

Here is a remarkably useful lemma.

Claim 3.4.7. Suppose $T_{0}=\left(G_{0}, C_{0}, L_{0}\right)$ is a critical cycle-canvas with $\left|E\left(G_{0}\right)\right| \leq$ $|E(G)|$ and $v\left(T_{0}\right) \geq 2$. If G_{0} contains a proper C_{0}-critical subgraph G^{\prime}, then $d\left(T_{0}\right) \geq$ $4-\gamma$. Furthermore, if $\left|E\left(G_{0}\right) \backslash E\left(G^{\prime}\right)\right|,\left|E\left(G^{\prime}\right) \backslash E(C)\right| \geq 2$, then $d\left(T_{0}\right) \geq 4-2(\alpha+\epsilon)$.

Proof. Given Proposition 3.4.3 and the fact that T is a minimum counterexample, it follows that $d\left(T_{0}[f]\right) \geq 0$ for all $f \in \mathcal{F}\left(G^{\prime}\right)$. Moreover as G^{\prime} is a proper subgraph, there exists at least one f such that $\operatorname{Int}(f) \neq \emptyset$. For such an $f, d(T[f]) \geq 1$. Furthermore, if $\left|E\left(G_{0}\right) \backslash E\left(G^{\prime}\right)\right| \geq 2$, either there exist two such f 's or $d(T[f]) \geq 2-(\alpha+\epsilon)$.

Now $d\left(T_{0}\right) \geq d\left(T\left[G^{\prime}\right]\right)+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} d\left(T_{0}[f]\right)$ by Proposition 3.4.1. As noted above though, $\sum_{f \in \mathcal{F}\left(G^{\prime}\right)} d\left(T_{0}[f]\right) \geq 1$ and is at least $2-(\alpha+\epsilon)$ if $\left|E\left(G_{0}\right) \backslash E\left(G^{\prime}\right)\right| \geq 2$.

So suppose $v\left(T_{0}\left[G^{\prime}\right]\right)>1$. Then $d\left(T_{0}\left[G^{\prime}\right]\right) \geq 3-\gamma$ as T is a minimum counterexample. Hence $d\left(T_{0}\right) \geq 4-\gamma$ if $\left|E\left(G_{0}\right) \backslash E\left(G^{\prime}\right)\right|=1$ and $d\left(T_{0}\right) \geq 5-(\alpha+\epsilon)-\gamma$, which is at least $4-2(\alpha+\epsilon)$ by inequality (2), as desired.

So we may assume that $v\left(T_{0}\left[G^{\prime}\right]\right) \leq 1$. Suppose $v\left(T_{0}\left(G^{\prime}\right)\right)=1$. Then there exists $f \in \mathcal{F}\left(G^{\prime}\right)$ such that $v\left(T_{0}[f]\right) \geq 1$. If $v\left(T_{0}[f]\right) \geq 2$, then $d\left(T_{0}[f]\right) \geq 3-\gamma$ as T is a minimum counterexample. If $v\left(T_{0}[f]\right)=1$, then $d\left(T_{0}[f]\right) \geq 2-(\alpha+\epsilon)$ by Proposition 3.4.3. In either case, $d\left(T_{0}[f]\right) \geq 2-(\alpha+\epsilon)$. As above, $d\left(T_{0}\right) \geq$ $d\left(T_{0}\left[G^{\prime}\right]\right)+d(T[f]) \geq 2(2-(\alpha+\epsilon))=4-2(\alpha+\epsilon)$, which is at least $4-\gamma$ by inequality (2), and the lemma follows as desired.

So suppose $v\left(T_{0}\left[G^{\prime}\right]\right)=0$. As $G^{\prime} \neq C^{\prime}, d\left(T_{0}\left[G^{\prime}\right]\right) \geq\left|E\left(G^{\prime}\right) \backslash E(C)\right|$ by Proposition 3.4.3. As $v\left(T_{0}\right) \geq 2$, either there exists $f \in \mathcal{F}\left(G^{\prime}\right)$ such that $v(T[f]) \geq 2$ or there exists $f_{1}, f_{2} \in \mathcal{F}\left(G^{\prime}\right)$ such that $v\left(T_{0}\left[f_{1}\right]\right), v\left(T_{0}\left[f_{1}\right]\right) \geq 1$. Suppose the first case. Then $d\left(T_{0}[f]\right) \geq 3-\gamma$ as T is a minimum counterexample. Hence $d\left(T_{0}\right) \geq$ $\left|E\left(G^{\prime}\right) \backslash E(C)\right|+3-\gamma$ as desired. Thus if $\left|E\left(G^{\prime}\right) \backslash E(C)\right|=1$, then $d\left(T_{0}\right) \geq 4-\gamma$ as desired, and if $\left|E\left(G^{\prime}\right) \backslash E(C)\right| \geq 2$, then $d\left(T_{0}\right) \geq 5-\gamma$ which is at least $4-2(\alpha+\epsilon)$ by inequality (3). So suppose the latter. Then $d\left(T_{0}\left[f_{1}\right]\right), d\left(T_{0}\left[f_{2}\right]\right) \geq 2-\epsilon-\alpha$ and $d\left(T_{0}\right) \geq 1+2(2-\epsilon)=5-2(\epsilon+\alpha)$, as desired.

Claim 3.4.8. There does not exist a proper C-critical subgraph G^{\prime} of G.

Proof. Follows from Claim 3.4.7.

This implies that we may assume that C is precolored as follows. There exists a proper coloring ϕ of C that does not extend to G as G is C-critical. However, ϕ must extend to every proper subgraph H of G, as otherwise H contains a critical subgraph and hence G contains a proper critical subgraph contradicting Claim 3.4.8. In this sense, G is critical for every coloring of C that does not extend to G. For the rest of the proof, we fix a coloring ϕ of C which does not extend to G.

For $v \notin V(C)$, we let $S(v)=L(v) \backslash\{\phi(u) \mid u \in N(v) \cap V(C)\}$.
Claim 3.4.9. There does not exist a chord of C.

Proof. Suppose there exists a chord e of C. Let $G^{\prime}=C \cup e$. As $v(T) \neq 0, G^{\prime}$ is a proper subgraph of G. Yet G^{\prime} is critical, contradicting Claim 3.4.8.

3.4.2 Dividing Vertices

Definition. Suppose $T_{0}=\left(G_{0}, C_{0}, L_{0}\right)$ is a cycle-canvas. Let $v \notin V\left(C_{0}\right)$ be a vertex and suppose there exist two distinct faces $f_{1}, f_{2} \in \mathcal{F}\left(G_{0}\right)$ such that $v \in \delta f_{i}$ and $\delta f_{i} \cap V\left(C_{0}\right) \neq \emptyset$ for $i \in\{1,2\}$. Let $u_{i} \in \delta f_{i} \cap V\left(C_{0}\right)$. Consider cycles C_{1}, C_{2} where $C_{1} \cap C_{2}=u_{1} v u_{2}$ and $C_{1} \cup C_{2}=C_{0} \cup u_{1} v u_{2}$; note that we might have added the edges $u_{1} v, u_{2} v$. If for all $i \in\{1,2\},\left|E\left(T\left[C_{i}\right]\right) \backslash E\left(C_{i}\right)\right| \geq 2$, then we say that v is a dividing vertex. If for all $i \in\{1,2\}$, if $v\left(T\left[C_{i}\right]\right) \geq 1$, we say v is a strong dividing vertex. If v is a dividing vertex and the edges $u_{1} v, u_{2} v$ are in G, then we say that v is true dividing vertex.

Claim 3.4.10. Suppose $T_{0}=\left(G_{0}, C_{0}, L_{0}\right)$ is a critical cycle-canvas with $\left|E\left(G_{0}\right)\right| \leq$ $|E(G)|$ and $v\left(T_{0}\right) \geq 2$. If G_{0} contains a true dividing vertex v, then $d\left(T_{0}\right) \geq 3-3(\alpha+$ $\epsilon)$.

Proof. Let $G^{\prime}=C \cup\left\{u_{1} v, u_{2} v\right\}$. Let C_{1}, C_{2} be the two facial cycles of G^{\prime}. Thus $|V(C)|+4=\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|$. Now $\operatorname{def}\left(T\left[G^{\prime}\right]\right)=|V(C)|-3-\left(\mid V\left(C_{1}\right)-3\right)-$ $\left(\mid V\left(C_{2}\right)-3\right)=-1$. Moreover, $s\left(T\left[G^{\prime}\right]\right)=\alpha+\epsilon$ and hence, $d\left(T\left[G^{\prime}\right]\right)=-1-(\alpha+\epsilon)$.

Note that $T\left[C_{1}\right], T\left[C_{2}\right]$ are critical cycle-canvases. If $v\left(T\left[C_{1}\right]\right)=0$, then $\mid E\left(T\left[C_{1}\right]\right) \backslash$ $E\left(C_{1}\right) \mid \geq 2$ by the definition of dividing; hence, $d\left(T\left[C_{1}\right]\right) \geq 2$ by Proposition 3.4.3. If $v\left(T\left[C_{1}\right]\right)=1$, then $d\left(T\left[C_{1}\right]\right) \geq 2-(\alpha+\epsilon)$ by Proposition 3.4.3. If $v\left(T\left[C_{1}\right]\right) \geq 2$, then $d\left(T\left[C_{1}\right]\right) \geq 3-\gamma$ as T is a minimum counterexample. In any case, $d\left(T\left[C_{1}\right]\right) \geq 2-(\alpha+\epsilon)$ as $\gamma \leq 1+(\alpha+\epsilon)$ by inequality (3). Similarly, $d\left(T\left[C_{2}\right]\right) \geq 2-(\alpha+\epsilon)$.

By Lemma 3.4.1, $d(T) \geq d\left(T\left[G^{\prime}\right]\right)+d\left(T\left[C_{1}\right]\right)+d\left(T\left[C_{2}\right]\right) \geq(-1-(\alpha+\epsilon))+2(2-$ $(\alpha+\epsilon))=3-3(\alpha+\epsilon)$.

Claim 3.4.11. Suppose $T_{0}=\left(G_{0}, C_{0}, L_{0}\right)$ is a critical cycle-canvas with $\left|E\left(G_{0}\right)\right| \leq$ $|E(G)|$ and $v\left(T_{0}\right) \geq 2$. If G_{0} contains a strong dividing vertex v, then $d\left(T_{0}\right) \geq$
$3-3(\alpha+\epsilon)$.

Proof. If v is true, then the claim follows from Claim 3.4.10. So we may suppose that v is not adjacent to u_{1}. Note that $v\left(T\left[C_{1}\right]\right) \geq 1$ as v is strong. If $v\left(T\left[C_{1}\right]\right)=1$, then that vertex is a true dividing vertex and the claim follows from Claim 3.4.10. So we may assume that $v\left(T\left[C_{1}\right]\right) \geq 2$ and similarly that $v\left(T\left[C_{2}\right]\right) \geq 2$.

Let $G^{\prime}=C \cup\left\{u_{1} v, u_{2} v\right\}$. Let C_{1}, C_{2} be the two facial cycles of G^{\prime}. Thus $|V(C)|+$ $4=\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|$. Now $\operatorname{def}\left(T\left[G^{\prime}\right]\right)=|V(C)|-3-\left(\mid V\left(C_{1}\right)-3\right)-\left(\mid V\left(C_{2}\right)-3\right)=-1$. Moreover, $s\left(T\left[G^{\prime}\right]\right)=\alpha+\epsilon$ and hence, $d\left(T\left[G^{\prime}\right]\right)=-1-(\alpha+\epsilon)$.

So suppose that v is adjacent to u_{2}. Note that $T\left[C_{1}\right], T\left[C_{2}\right]$ are critical cyclecanvases. As $v\left(T\left[C_{1}\right]\right) \geq 2, d\left(T\left[C_{1}\right]\right) \geq 3-\gamma$ as T is a minimum counterexample. Similarly, $d\left(T\left[C_{2}\right]\right) \geq 3-\gamma$. By Lemma 3.4.1, $d\left(T+\left\{u_{1} v\right\}\right) \geq d\left(T\left[G^{\prime}\right]\right)+d\left(T\left[C_{1}\right]\right)+$ $d\left(T\left[C_{2}\right]\right)$. Yet, $d(T)=d\left(T+\left\{u_{1} v\right\}\right)-1$. Hence, $d(T) \geq(-1-\epsilon-\alpha)+2(3-\gamma)-1=$ $4-(\alpha+\epsilon)-2 \gamma$. This is at least $3-3(\alpha+\epsilon)$ as $2 \gamma \leq 1+2(\alpha+\epsilon)$ by inequality (3).

So we may suppose that v is not adjacent to u_{2}. For every $c \in L(v)$, let $\phi_{c}(v)=c$ and $\phi_{c}(x)=\phi(x)$ for all $x \in C$. For every $c \in L(v), \phi_{c}$ does not extend to an L coloring of either $\operatorname{Int}\left(C_{1}\right)$ or $\operatorname{Int}\left(C_{2}\right)$. Thus there exists $\mathcal{C} \subset L(v)$ with $|\mathcal{C}|=3$ and $i \in\{1,2\}$ such that ϕ_{c} does not extend to an L-coloring of $\operatorname{Int}\left(C_{i}\right)$ for all $c \in \mathcal{C}$. Suppose without loss of generality that $i=1$. Let $C_{1}^{\prime}=C_{1} \cup\left\{u_{1} u_{2}\right\} \backslash\left\{u_{1} v, u_{2} v\right\}$. We claim that C_{1}^{\prime} has a proper coloring that does not extend in. If $\phi\left(u_{1}\right)=\phi\left(u_{2}\right)$, change $\phi\left(u_{1}\right)$ to a new color in $L_{0}\left(u_{1}\right)$ and $L_{0}(x)$ for $x \in N\left(u_{1}\right)$. Change $L_{0}(v)$ to $\mathcal{C} \cup\left\{\phi\left(u_{1}\right), \phi\left(u_{2}\right)\right\}$. Now ϕ is a coloring of C_{1}^{\prime} which does not extend to an L_{0} coloring of $\operatorname{Int}\left(C_{1}\right)$. Thus it contains a critical subcanvas. Using Claim 3.4.7 if necessary and as $v\left(T\left[C_{1}^{\prime}\right]\right) \geq 2, d\left(T\left[C_{1}^{\prime}\right]\right) \geq 3-\gamma$ by the minimality of T. Similarly as $v\left(T\left[C_{2}\right]\right) \geq 2$, $d\left(T\left[C_{2}\right]\right) \geq 3-\gamma$.

Let us now count deficiencies. By Lemma 3.4.1, $\operatorname{def}\left(T+\left\{u_{1} v, u_{2} v\right\}\right)=\operatorname{def}\left(T\left[G^{\prime}\right]\right)+$ $\operatorname{def}\left(T\left[C_{1}\right]\right)+\operatorname{def}\left(T\left[C_{2}\right]\right)$. Yet, $\operatorname{def}(T)=\operatorname{def}\left(T+\left\{u_{1} v, u_{2} v\right\}\right)-2$. Furthermore, $\operatorname{def}\left(T\left[C_{1}\right]\right)=\operatorname{def}\left(T\left[C_{1}^{\prime}\right]\right)+1$. Hence, $\operatorname{def}(T)=\operatorname{def}\left(T\left[C_{1}\right]\right)+\operatorname{def}\left(T\left[C_{2}\right]\right)-3=$
$\operatorname{def}\left(T\left[C_{1}^{\prime}\right]\right)+\operatorname{def}\left(T\left[C_{2}\right]\right)-2$.
Next we count the function s. We claim that $s(T) \leq s\left(T\left[C_{1}^{\prime}\right]\right)+s\left(T\left[C_{2}\right]\right)$. This follows as every vertex of $G \backslash C$ is either in $G_{1}^{\prime} \backslash C_{1}^{\prime}$ or $G_{2} \backslash C_{2}$. Moreover every vertex of $Q(T)$ is either in $Q\left(T\left[C_{1}^{\prime}\right]\right)$ or $Q\left(T\left[C_{2}\right]\right)$.

Finally putting it all together, we find that

$$
d(T) \geq d\left(T\left[C_{1}^{\prime}\right]\right)+d\left(T\left[C_{2}\right]\right)-2 \geq 2(3-\gamma)-2=4-2 \gamma
$$

This is at least $3-3(\alpha+\epsilon)$ as $2 \gamma \leq 1+3(\alpha+\epsilon)$ by inequality (3).

Claim 3.4.12. G does not have a true dividing vertex or strong dividing vertex.

Proof. This follows from Claims 3.4.10 and 3.4.11, and as $3(\epsilon+\alpha) \leq \gamma$ by inequality (2).

3.4.3 Tripods

Definition. Let $T_{0}=\left(G_{0}, C_{0}, L_{0}\right)$ be a cycle-canvas. We say a vertex $v \notin V\left(C_{0}\right)$ is a quadpod if at most one face of $G_{0}\left[C_{0} \cup v\right]$ is non-empty and $\left|N(v) \cap V\left(C_{0}\right)\right| \geq 4$. We say a vertex $v \notin V\left(C_{0}\right)$ is a tripod if exactly one face of $G_{0}\left[C_{0} \cup v\right]$ is non-empty and $\left|N(v) \cap V\left(C_{0}\right)\right|=3$. Letting $C_{0}=c_{1} c_{2} \ldots c_{k}$, we then say that a vertex $v \notin V(C)$ is a tripod for c_{i} if v is a tripod, $v \sim c_{i}, c_{i} \in V(C)$, and the faces of $G_{0}\left[C_{0} \cup v\right]$ incident with c_{i} are empty.

If v is a tripod or quadpod, we let $C_{0}[v]$ denote the boundary of the non-empty face of $G_{0}\left[C_{0} \cup v\right]$. We let $W\left(T_{0}\right)$ denote the set of all quadpods of T_{0}. We let $X\left(T_{0}\right)$ denote the set of all tripods of T_{0}. If $X^{\prime} \subseteq X\left(T_{0}\right)$, we let $C_{0}\left[X^{\prime}\right]$ denote the boundary of the non-empty face of $G_{0}\left[C_{0} \cup X^{\prime}\right]$.

Let $X_{1}=X(T), X_{2}=X\left(T\left[C\left[X_{1}\right]\right]\right)$ and $X_{3}=X\left(T\left[C\left[X_{1}\right]\left[X_{2}\right]\right]\right)$. Let $W_{1}=W(T)$, $W_{2}=W\left(T\left[C\left[X_{1}\right]\right]\right)$ and $W_{3}=W\left(T\left[C\left[X_{1}\right]\left[X_{2}\right]\right]\right)$.

Claim 3.4.13. $W_{1}=\emptyset$ and $X_{1} \neq \emptyset$.

Proof. By Claim 3.4.9, there does not exist a chord of C. Suppose there exists a quadpod v of C. But then v is a true dividing vertex of G, contradicting Claim 3.4.12. Hence $W_{1}=\emptyset$. By Theorem 3.3.1, it follows that $X_{1} \neq \emptyset$.

Claim 3.4.14. $C\left[X_{1}\right]$ does not have a chord.

Proof. Suppose not. Let $v_{1} v_{2}$ be a chord of $C\left[X_{1}\right]$. As C has no chord by Claim 3.4.9, we may assume without loss of generality that $v_{1} \notin V(C)$. Thus v_{1} is a tripod of C. Hence v_{2} is also a tripod, as otherwise v_{1} is not a tripod. But then v_{2} is a true dividing vertex for $C\left[v_{1}\right]$. As $v(T) \geq 3$ by Claim 3.4.6, $v\left(T\left[C\left[v_{1}\right]\right]\right) \geq 2$. Therefore by Claim 3.4.10, $d\left(T\left[C\left[v_{1}\right]\right]\right) \geq 3-3(\alpha+\epsilon)$. Yet $d(T) \geq d\left(T\left[C\left[v_{1}\right]\right]\right)-(\alpha+\epsilon)$. Thus, $d(T) \geq 3-4(\alpha+\epsilon)$, a contradiction as $4(\alpha+\epsilon) \leq \gamma$ by inequality (2).

Claim 3.4.15. $C\left[X_{1}\right]$ does not have a true or strong dividing vertex.

Proof. Suppose not. Let v be a true or strong dividing vertex of $C\left[X_{1}\right]$. Let u_{1}, u_{2} be as in the definition of true or strong dividing vertex. Let $U=\left\{u_{1}, u_{2}\right\} \backslash C$. Hence $|U| \leq 2$ and v is a true or strong dividing vertex of $C[U]$. Yet, $v(T[C[U]]) \geq$ $v(T)-|U| \geq 2$ as $v(T) \geq 4$ by Claim 3.4.6. Therefore by Claims 3.4.10 and 3.4.11, $d(T[C[U]]) \geq 3-3(\alpha+\epsilon)$. Yet $d(T) \geq d(T[C[U]])-2(\alpha+\epsilon)$. Thus, $d(T) \geq 3-5(\alpha+\epsilon)$, a contradiction as $5(\alpha+\epsilon) \leq \gamma$ by inequality (2).

Claim 3.4.16. $W_{2}=\emptyset$ and $X_{2} \neq \emptyset$. Furthermore for all $x_{2} \in X_{2}$, if x_{2} is a tripod for $v \in C\left[X_{1}\right]$, then $v \in V(C)$.

Proof. By Claim 3.4.14, there does not exist a chord of $C\left[X_{1}\right]$. Suppose there exists a quadpod v of $C\left[X_{1}\right]$. But then v is a true dividing vertex of $C\left[X_{1}\right]$, contradicting Claim 3.4.15. Hence $W_{2}=\emptyset$. By Theorem 3.3.1, it follows that $X_{2} \neq \emptyset$.

Let $x_{2} \in X_{2}$. Now x_{2} is tripod for some v in $C\left[X_{1}\right]$. If $v \in X_{1}$, then $d\left(x_{1}\right)=4$, a contradiction. So $v \in V(C)$ as desired.

Claim 3.4.17. $C\left[X_{1}\right]\left[X_{2}\right]$ does not have a chord and hence $X_{3} \cup W_{3} \neq \emptyset$.

Proof. Suppose not. Let $v_{1} v_{2}$ be a chord of $C\left[X_{1}\right]\left[X_{2}\right]$. As $C\left[X_{1}\right]$ has no chord by Claim 3.4.14, we may assume without loss of generality that $v_{1} \notin V(C) \cup X_{1}$. Thus $v_{1} \in X_{2}$. Hence $v_{2} \in X_{2}$ as otherwise v_{1} is not a tripod of $C\left[X_{1}\right]$, a contradiction. Let $U=\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right) \cap X_{1}$. Let $C^{\prime}=C[U]\left[v_{1}, v_{2}\right]$. Let $T^{\prime}=T\left[C^{\prime}\right]$. As $d\left(v_{1}\right) \geq 5$, $v\left(T^{\prime}\right) \geq 1$. Suppose $v\left(T^{\prime}\right) \geq 2$. By Claim 3.4.7, $d\left(T^{\prime}\right) \geq 4-\gamma$. Yet $d(T) \geq$ $d\left(T^{\prime}\right)-6(\alpha+\epsilon)$. Thus, $d(T) \geq 3-\gamma$, a contradiction as $6(\alpha+\epsilon) \leq 1$ by inequalities (2) and (3).

So we may suppose that $v\left(T^{\prime}\right)=1$. But then $d\left(T^{\prime}\right) \geq 3-(\alpha+\epsilon)$ by Proposition 3.4.3. Hence, $d(T) \geq 3-7(\alpha+\epsilon)$, a contradiction as $7(\alpha+\epsilon) \leq \gamma$ by inequality (2).

Claim 3.4.18. If $z \in X_{3} \cup W_{3}$ and $v \in C\left[X_{1}\right]\left[X_{2}\right] \cap N(z)$ such that the faces of $G\left[V(C) \cup X_{1} \cup X_{2} \cup z\right]$ incident with v are empty, then $v \in V(C)$.

Proof. Suppose not. As $z \notin X_{2} \cup W_{2}, z$ is adjacent to a vertex $x_{2} \in X_{2}$.
As $x_{2} \notin X_{1}, x_{2}$ is adjacent to a vertex $x_{1} \in X_{1}$. As noted above, x_{2} is a tripod in $C\left[X_{1}\right]$ for vertex of C.

If $v \in X_{2}$, then $d(v)=4$, a contradiction. So we may assume that $v \in X_{1}$. Let u_{1}, u_{2} be the other neighbors of z in $C\left[X_{1}\right]\left[X_{2}\right]$ such that the cyclic orientation of $N(z)$ is $u_{1} v u_{2} \ldots$

For $i \in\{1,2\}$, if $u_{i} \in X_{2}$ and $\left|N\left(u_{i}\right) \cap X_{1}\right|=2$, then $x_{1} \in N\left(u_{i}\right) \cap X_{1}$ as otherwise there exists a vertex of degree four, a contradiciton. Note that if $u_{i} \in X_{1}$, then u_{i} is not adjacent to x_{1} by Claim 3.4.14.

If $u_{1} \in X_{2}$ and $N\left(x_{2}\right) \cap X_{1}=\{v\}$, let $\phi\left(u_{1}\right) \in S\left(u_{1}\right) \backslash S(v)$. If $u_{1} \in X_{2}$ and $N\left(x_{2}\right) \cap X_{1}=\left\{v, u_{1}^{\prime}\right\}$, let $\phi\left(u_{1}^{\prime}\right) \in S\left(u_{1}^{\prime}\right)$ and $\phi\left(u_{1}\right) \in S\left(u_{1}\right) \backslash\left(S(v) \cup\left\{\phi\left(u_{1}^{\prime}\right)\right\}\right)$. Choose ϕ similarly if $u_{2} \in X_{2}$.

Let $C^{\prime}=C\left[v, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right]$ and $T^{\prime}=\left(G^{\prime}, C^{\prime}, L\right)=T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash v z$. We claim that $G^{\prime} \backslash v z$ has a C^{\prime}-critical subgraph. This follows because if ϕ extends to an L-coloring of $G^{\prime} \backslash v z$ then ϕ could be extended to an L-coloring of G^{\prime} and hence of G, a contradiction.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. We claim that $v\left(T^{\prime}\right) \geq 2$. Suppose not. Then $v\left(T^{\prime}\right)=1$ and hence $N(z) \subseteq V\left(C^{\prime}\right)$. But now if $u_{1} \in X_{2}$, then $d\left(u_{1}\right)=4$, a contradiction. So $u_{1} \in X_{1}$ and similarly $u_{2} \in X_{1}$. But then $d(v)=4$, a contradiction. This proves the claim that $v\left(T^{\prime}\right) \geq 2$.

By Claim 3.4.7, we find that $d\left(T^{\prime}\right) \geq 4-\gamma$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+5(\alpha+\epsilon)$, $\operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)$ and hence $d(T) \geq d\left(T^{\prime}\right)-5(\alpha+\epsilon)$. Thus $d(T) \geq 4-\gamma-5(\alpha+\epsilon)$, which is at least $3-\gamma$ as $5(\alpha+\epsilon) \leq 1$ by inequalities (2) and (3), a contradiction.

Claim 3.4.19. $W_{3}=\emptyset$ and $X_{3} \neq \emptyset$. Furthermore if $x_{3} \in X_{3}$, then $N\left(x_{3}\right) \cap\left(X_{1} \cup\right.$ $\left.X_{2}\right)=\left\{x_{2}\right\}$ where $x_{2} \in X_{2}, x_{3}$ is not a tripod for x_{2} and $N\left(x_{2}\right) \cap X_{1}=\left\{x_{1}\right\}$ and x_{2} is not a tripod for x_{1}.

Proof. Let $z \in W_{3} \cup X_{3}$. Let the neighbors of z in $C\left[X_{1}\right]\left[X_{2}\right]$ have cyclic orientation $u_{1} \ldots u_{k}$. By Claim 3.4.18, $u_{i} \in V(C)$ for all i such that $2 \leq i \leq k-1$. As $z \notin X_{1}$, it follows that $k \leq 4$.

Suppose that $\left|N(z) \cap X_{2}\right| \geq 2$. Thus $u_{1}, u_{k} \in X_{2}$. It follows that $\left|N\left(u_{1}\right) \cap X_{1}\right|=$ $\left|N\left(u_{k}\right) \cap X_{1}\right|=1$. Let $N\left(u_{1}\right) \cap X_{1}=\left\{u_{1}^{\prime}\right\}$ and $N\left(u_{k}\right) \cap X_{1}=\left\{u_{k}^{\prime}\right\}$. Choose $\phi\left(u_{1}\right) \in$ $S\left(u_{1}\right)$ and $\phi\left(u_{k}\right) \in S\left(u_{k}\right)$ such that either $\phi\left(u_{1}\right)=\phi\left(u_{k}\right)$ or at least one of $\phi\left(u_{1}\right), \phi\left(u_{k}\right)$ is not in $S(z)$. Now choose $\phi\left(u_{1}^{\prime}\right) \in S\left(u_{1}^{\prime}\right) \backslash\left\{\phi\left(u_{1}\right)\right\}$ and $\phi\left(u_{k}^{\prime}\right) \in S\left(u_{k}^{\prime}\right) \backslash\left\{\phi\left(u_{k}\right)\right\}$.

Let $C^{\prime}=C\left[u_{1}, u_{1}^{\prime}, u_{k}, u_{k}^{\prime}\right]$ and $T^{\prime}=\left(G^{\prime}, C^{\prime}, L\right)=T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash v z$ where $v \in\left\{u_{1}, u_{k}\right\}$ and, if $\phi\left(u_{1}\right) \neq \phi\left(u_{k}\right)$, then $\phi(v) \notin S(z)$. We claim that $G^{\prime} \backslash v z$ has a C^{\prime}-critical subgraph. This follows because if ϕ extends to an L-coloring of $G^{\prime} \backslash v z$ then ϕ could be extended to an L-coloring of G^{\prime} and hence of G, a contradiction.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. Now $v\left(T^{\prime}\right) \geq 2$ as otherwise
$d\left(u_{1}\right)=4$, a contradiction. By Claim 3.4.7, we find that $d\left(T^{\prime}\right) \geq 4-\gamma$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+4(\alpha+\epsilon), \operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)$ and hence $d(T) \geq d\left(T^{\prime}\right)-4(\alpha+\epsilon)$. Thus $d(T) \geq 4-\gamma-4(\alpha+\epsilon)$, which is at least $3-\gamma$ as $4(\alpha+\epsilon) \leq 1$ by inequalities (2) and (3), a contradiction.

So we may assume that $\left|N(z) \cap X_{2}\right| \leq 1$. As $z \notin X_{2},\left|N(z) \cap X_{2}\right| \geq k-2$. Thus $k=3$ and $\left|N(z) \cap X_{2}\right|=1$. This shows that $W_{3}=\emptyset$; by Theorem 3.3.1, it follows that $X_{3} \neq \emptyset$. We may assume without loss of generality that $u_{1} \in X_{2}$ and hence $u_{k} \notin X_{2}$. Let $x_{2}=u_{1}$. Hence $N(z) \cap X_{2}=\left\{x_{2}\right\}$. It follows that $\left|N\left(x_{2}\right) \cap X_{1}\right|=1$ as otherwise there would be a vertex of degree four, a contradiction. But then by Claim 3.4.16, x_{2} is not a tripod for x_{1}. Thus the claim is proved if $u_{k} \in V(C)$.

So we may suppose that $u_{k} \in X_{1}$. But then the same argument as above produces a contradiction as we may still choose $\phi\left(u_{1}\right), \phi\left(u_{k}\right)$ such that either $\phi\left(u_{1}\right)=\phi\left(u_{k}\right)$ or at least one of $\phi\left(u_{1}\right), \phi\left(u_{k}\right)$ is not in $S(z)$, since $\left|S\left(u_{1}\right)\right|+\left|S\left(u_{k}\right)\right|=3+2>4=|S(z)|$.

By Claim 3.4.19, there exists $x_{1} \in X_{1}, x_{2} \in X_{2}, x_{3} \in X_{3}$ such that $N\left(x_{3}\right) \cap\left(X_{1} \cup\right.$ $\left.X_{2}\right)=\left\{x_{2}\right\}, N\left(x_{2}\right) \cap X_{1}=\left\{x_{1}\right\}, x_{3}$ is not a tripod for x_{2} in $C\left[X_{1}\right]\left[X_{2}\right]$ and x_{2} is not a tripod for x_{1} in $C\left[X_{1}\right]$.

Claim 3.4.20. $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=6, \operatorname{deg}\left(x_{3}\right) \in\{5,6\}$ and there exists adjacent vertices $z_{1}, z_{2} \notin V(C)$ such that $z_{1} \sim x_{1}, x_{2}$ and $z_{2} \sim x_{2}, x_{3}$.

Proof. We claim that $\left|N_{G \backslash C}\left(x_{1}\right) \backslash Q(T)\right| \leq 1$. Suppose not. As $v(T) \geq 3$ by Claim 3.4.6, $v(T[C[v]]) \geq 2$. By the minimality of $T, d\left(T\left[C\left[x_{1}\right]\right]\right) \geq 3-\gamma$. Yet, $q(T) \leq q\left(T\left[C\left[x_{1}\right]\right]\right)-1$ and $v(T)=v\left(T\left[C\left[x_{1}\right]\right)+1\right.$. Thus $s(T) \leq s\left(T\left[C\left[x_{1}\right]\right]\right)+\epsilon-\alpha$. As $\operatorname{def}(T)=\operatorname{def}\left(T\left[C\left[x_{1}\right]\right]\right)$, we find that $d(T) \geq d\left(T\left[C\left[x_{1}\right]\right]\right)+\alpha-\epsilon \geq(3-\gamma)+(\alpha-\epsilon)$. As $\alpha \geq \epsilon$ by inequality (1), $d(T) \geq 3-\gamma$, a contradiction.

As G is C-critical, $\operatorname{deg}\left(x_{1}\right) \geq 5$. So suppose $\operatorname{deg}\left(x_{1}\right) \geq 7$. As shown above, $\left|N_{G \backslash C}\left(x_{1}\right) \backslash Q(T)\right| \leq 1$. Thus $\left|N_{G \backslash C}\left(x_{1}\right) \cap Q(T)\right| \geq 3$ as $\operatorname{deg}(v) \geq 7$. Without loss of
generality we may suppose that x_{1} is tripod for c_{2} and that the cyclic orientation of $N(v) \cap(Q(T) \cup V(C))$ is $c_{1} c_{2} c_{3} q_{1} \ldots q \ldots q_{2}$ where $c_{1}, c_{2}, c_{3} \in V(C)$ and $q, q_{1}, q_{2} \in Q(T)$. Thus q is a dividing vertex of $C\left[x_{1}\right]$. Given the presence of q_{1} and q_{2}, q is a strong dividing vertex of $C\left[x_{1}\right]$, a contradiction as in Claim 3.4.15.

Suppose $\operatorname{deg}\left(x_{1}\right)=5$. Note that $N\left(x_{2}\right) \cap X_{1}=\left\{x_{1}\right\}$. Let $C^{\prime}=C\left[x_{1}\right]\left[x_{2}\right]$ and $T^{\prime}=\left(G^{\prime}, C^{\prime}, L\right)=T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash x_{1} z$ where $z \notin V(C) \cup\left\{x_{2}\right\}$. We claim that $G^{\prime} \backslash x_{1} z$ has a C^{\prime}-critical subgraph. To see this, choose $\phi\left(x_{2}\right) \in S\left(x_{2}\right) \backslash S\left(x_{1}\right)$. This set is nonempty as $\left|S\left(x_{2}\right)\right|=3,\left|S\left(x_{1}\right)\right|=2$. Now if ϕ extends to an L-coloring of G^{\prime} then ϕ could be extended to an L-coloring of G, a contradiction, as x_{1} would see at most four colors.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. Note that $v\left(T^{\prime}\right) \geq 2$ as x_{2} has degree at least five and thus has at least two neighbors in $\operatorname{Int}\left(C^{\prime}\right) \backslash V\left(C^{\prime}\right)$. By Claim 3.4.7, $d\left(T^{\prime}\right) \geq 4-\gamma$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+2(\alpha+\epsilon), \operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)$ and hence $d(T) \geq d\left(T^{\prime}\right)-2(\alpha+\epsilon)$. Thus $d(T) \geq 4-\gamma-2(\alpha+\epsilon)$, which is at least $3-\gamma$ as $2(\alpha+\epsilon) \leq 1$ by inequalities (2) and (3).

Similar arguments show that $\operatorname{deg}\left(x_{2}\right)=6, \operatorname{deg}\left(x_{3}\right) \in\{5,6\}$ and that $\mid N_{G \backslash C\left[X_{1}\right]}\left(x_{2}\right) \backslash$ $Q\left(T\left[X_{1}\right]\right) \mid \leq 1$. Moreover, $|Q(T)|=\left|Q\left(T\left[C\left[x_{1}\right]\right]\right)\right|=\mid Q\left(T\left[C\left[x_{1}\right]\left[x_{2}\right]\right) \mid\right.$. Let z_{1}, z_{2} be such that $N\left(x_{2}\right) \backslash\left(C \cup\left\{x_{1}, x_{3}\right\}\right)=\left\{z_{1}, z_{2}\right\}$ and the cyclic orientation around x_{2} is $x_{1} z_{1} z_{2} x_{3} \ldots$ As $\left|Q\left(T\left[C\left[X_{1}\right]\right]\right)\right| \leq|Q(T)|$, we find that $z_{1} \sim x_{1}$. Similarly as $\mid Q\left(T\left[C\left[x_{1}\right]\left[x_{2}\right]\right)\left|\leq|Q(T)|\right.\right.$, we find that $z_{2} \sim x_{3}$ as desired

Let $\phi\left(x_{1}\right) \in S\left(x_{1}\right)$ and $C_{1}=C\left[x_{1}\right]$. Let $S_{1}(z)=S(z) \backslash\left\{\phi\left(x_{1}\right)\right\}$ if $x_{1} \sim z$ and $S_{1}=S$ otherwise. We may assume by Claim3.4.7 that $T_{1}=T\left[C_{1}\right]$ is ϕ-critical.

Claim 3.4.21. If $z \in N_{G \backslash C_{1}}\left(x_{2}\right)$, then $S_{1}\left(x_{2}\right) \subseteq S_{1}(z)$.

Proof. Suppose that $S_{1}\left(x_{2}\right) \backslash S_{1}(z) \neq \emptyset$. Let $C^{\prime}=C\left[x_{1}\right]\left[x_{2}\right]$ and $T^{\prime}=\left(G^{\prime}, C^{\prime}, L\right)=$ $T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash x_{2} z$. We claim that $G^{\prime} \backslash x_{2} z$ has a C^{\prime}-critical subgraph. To see this, Choose $\phi\left(x_{2}\right) \in S\left(x_{2}\right) \backslash S(z)$. Now if ϕ extends to an L-coloring of G^{\prime} then ϕ
could be extended to an L-coloring of G, a contradiction, as x_{2} and z could not have the same color.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. Note that $v\left(T^{\prime}\right) \geq 2$ as z has degree at least five and thus has at least two neighbors in $\operatorname{Int}\left(C^{\prime}\right) \backslash V\left(C^{\prime}\right)$. By Claim 3.4.7, $d\left(T^{\prime}\right) \geq 4-\gamma$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+2(\alpha+\epsilon), \operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)$ and hence $d(T) \geq d\left(T^{\prime}\right)-2(\alpha+\epsilon)$. Thus $d(T) \geq 4-\gamma-2(\alpha+\epsilon)$, which is at least $3-\gamma$ as $2(\alpha+\epsilon) \leq 1$ by inequalities (2) and (3), a contradiction.

Claim 3.4.22. If $z \in N_{G \backslash C_{1}}\left(x_{3}\right)$ and $z \neq x_{2}$, then $S_{1}\left(x_{3}\right) \subseteq S_{1}(z)$.
Proof. This follows in the same manner as Claim 3.4.21.
Claim 3.4.23. $N\left(z_{1}\right) \cap V\left(C_{1}\right)=x_{1}$.

Proof. Note that $z_{1} \sim x_{1}$. Suppose that $\left|N\left(z_{1}\right) \cap V\left(C_{1}\right)\right| \geq 2$. But then as $\operatorname{deg}\left(x_{1}\right)=6$, z_{1} is a true dividing vertex of C_{1}, a contradiction as in Claim 3.4.15.

Claim 3.4.24. $\operatorname{deg}\left(x_{3}\right)=6$.

Proof. Suppose not. By Claim 3.4.20, $\operatorname{deg}\left(x_{3}\right)=5$. By Claim 3.4.21, $S_{1}\left(x_{2}\right) \subset S_{1}\left(x_{3}\right)$ and hence $L\left(z_{2}\right) \backslash\left(S_{1}\left(x_{2}\right) \cup S_{1}\left(x_{3}\right)\right)=L\left(z_{2}\right) \backslash S_{1}\left(x_{3}\right)$. Yet, $\left|L\left(z_{2}\right) \backslash S_{1}\left(x_{3}\right)\right| \geq 2$ as $\left|L\left(z_{2}\right)\right|=5,\left|S_{1}\left(x_{3}\right)\right|=3$. Let $C^{\prime}=C_{1}\left[x_{2}\right]\left[x_{3}\right] \backslash\left\{x_{2} x_{3}\right\} \cup\left\{x_{2} z_{2}, x_{3} z_{2}\right\}$ and $T^{\prime}=$ $\left(G^{\prime}, C^{\prime}, L\right)=T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash\left\{x_{2} z_{1}, x_{3} z_{3}\right\}$ where $z_{3} \notin V\left(C_{2}\right) \cup\left\{x_{2}\right\}$.

We claim that $G^{\prime} \backslash\left\{x_{2} z_{1}, x_{3} z_{3}\right\}$ has a C^{\prime}-critical subgraph. To see this, choose $\phi\left(z_{2}\right) \in L\left(z_{2}\right) \backslash S_{1}\left(x_{3}\right)$. If ϕ extends to an L-coloring of G^{\prime}, then ϕ could be extended to an L-coloring of G as x_{2} would see at most one color (that of z_{1}) and hence ϕ could be extended to x_{2} as $\left|S_{1}\left(x_{2}\right)\right|=2$, but then ϕ could be extended to x_{3} as x_{3} would see at most two colors (that of x_{2} and z_{3}) and $\left|S_{1}\left(x_{3}\right)\right|=3$. But this contradicts that T is a counterexample.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. Note that $v\left(T^{\prime}\right) \geq 2$ given z_{1} and z_{3}. Moreover, $\left|E\left(G^{\prime}\right) \backslash E\left(G^{\prime \prime}\right)\right| \geq 2$. In addition, we claim that $\left|E\left(G^{\prime \prime}\right) \backslash E\left(C^{\prime}\right)\right| \geq 2$.

Suppose not. Then there would exist a chord of C^{\prime}, which would imply that z_{2} is adjacent to a vertex in C. But then z_{2} is a true dividing vertex of $C\left[x_{1}\right]\left[x_{2}\right]$. So by Claim 3.4.10, $d\left(T\left[C\left[x_{1}\right]\left[x_{2}\right]\right) \geq 3-3(\alpha+\epsilon)\right.$. Hence $d(T) \geq 3-5(\alpha+\epsilon)$ which is at least $3-\gamma$ as $5(\alpha+\epsilon) \leq \gamma$ by inequality (2), a contradiction. This proves the claim that $\left|E\left(G^{\prime \prime}\right) \backslash E\left(C^{\prime}\right)\right| \geq 2$.

By Claim 3.4.7, we find that $d\left(T^{\prime}\right) \geq 4-2(\alpha+\epsilon)$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+4(\alpha+\epsilon)$, $\operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)-1$ and hence $d(T) \geq d\left(T^{\prime}\right)-1-4(\alpha+\epsilon)$. Thus $d(T) \geq 3-6(\alpha+\epsilon)$, which is at least $3-\gamma$ as $6(\alpha+\epsilon) \leq \gamma$ by inequality (2), a contradiction.

Let $C^{\prime}=C_{1}\left[x_{2}\right]\left[x_{3}\right] \backslash\left\{x_{1} x_{2}, x_{2} x_{3}\right\} \cup\left\{x_{1} z_{1}, z_{1} z_{2}, z_{2} x_{3}\right\}$ and $T^{\prime}=\left(G^{\prime}, C^{\prime}, L\right)=$ $T\left[C^{\prime}\right]$. Consider $G^{\prime} \backslash\left\{x_{3} z_{3}, x_{3} z_{4}\right\}$ where $z_{3} \neq z_{4} \notin V(C) \cup\left\{x_{2}, z_{2}\right\}$. We claim that $G^{\prime} \backslash\left\{x_{3} z_{4}, x_{3} z_{4}\right\}$ has a C^{\prime}-critical subgraph. To see this, choose $\phi\left(z_{2}\right) \in L\left(z_{2}\right) \backslash S_{1}\left(x_{3}\right)$ and $\phi\left(z_{1}\right) \in S_{1}\left(z_{1}\right) \backslash\left(S_{1}\left(x_{2}\right) \cup\left\{\phi\left(z_{2}\right)\right\}\right)$. If ϕ extends to an L-coloring of G^{\prime}, then ϕ could be extended to an L-coloring of G as x_{3} would see at most two colors(that of z_{3} and z_{4}) and hence ϕ could be extended to x_{3} as $\left|S_{1}\left(x_{3}\right)\right|=4$, but then ϕ could be extended to x_{2} as x_{2} would see at most one color (that of x_{3}) and $\left|S_{1}\left(x_{2}\right)\right|=2$. But this contradicts that T is a counterexample.

Thus G^{\prime} contains a proper C^{\prime}-critical subgraph $G^{\prime \prime}$. Note that $v\left(T^{\prime}\right) \geq 2$ as given z_{3}, z_{4}. Moreover, $\left|E\left(G^{\prime}\right) \backslash E\left(G^{\prime \prime}\right)\right| \geq 2$. In addition, we claim that $\left|E\left(G^{\prime \prime}\right) \backslash E\left(C^{\prime}\right)\right| \geq 2$. Suppose not. Then there would exist a chord of C^{\prime}, which would imply that z_{2} or z_{3} is adjacent to a vertex in C. But then z_{1} or z_{2} is a true dividing vertex of $C\left[x_{1}\right]\left[x_{2}\right]$. So by Claim 3.4.10, $d\left(T\left[C\left[x_{1}\right]\left[x_{2}\right]\right) \geq 3-3(\alpha+\epsilon)\right.$. Hence $d(T) \geq 3-5(\alpha+\epsilon)$ which is at least $3-\gamma$ as $5(\alpha+\epsilon) \leq \gamma$ by inequality (2), a contradiction. This proves the claim that $\left|E\left(G^{\prime \prime}\right) \backslash E\left(C^{\prime}\right)\right| \geq 2$.

By Claim 3.4.7, we find that $d\left(T^{\prime}\right) \geq 4-2(\alpha+\epsilon)$. Moreover, $s(T) \leq s\left(T^{\prime}\right)+5(\alpha+\epsilon)$, $\operatorname{def}(T)=\operatorname{def}\left(T^{\prime}\right)-1$ and hence $d(T) \geq d\left(T^{\prime}\right)-1-5(\alpha+\epsilon)$. Thus $d(T) \geq 3-5(\alpha+\epsilon)$, which is at least $3-\gamma$ as $7(\alpha+\epsilon) \leq \gamma$ by inequality (2), a contradiction.

Let us state Theorem 3.4.5 with explicit constants while omitting quasi-boundary from the formula.

Theorem 3.4.25. If (G, C, L) is a critical cycle-canvas, then $|V(G) \backslash V(C)| / 28+$ $\sum_{f \in \mathcal{F}(G)}(|f|-3) \leq|V(C)|-3$.

Proof. Let $\epsilon=\alpha=1 / 28$ and $\gamma=4 / 7$. Then apply Theorem 3.4.5.
We may now prove Theorem 1.8 .1 which we restate in terms of critical cyclecanvases.

Theorem 3.4.26. If (G, C, L) is a critical cycle-canvas, then $|V(G)| \leq 29|V(C)|$.

Proof. $|V(G) \backslash V(C)| \leq 28|V(C)|$ by Corollary 3.4.25. Hence, $|V(G)|=\mid V(G) \backslash$ $V(C)|+|V(C)| \leq 29| V(C) \mid$.

Definition. Let $T=(G, C, L)$ be a cycle-canvas. Let $G^{\prime} \subseteq G$ such that for every face $f \in \mathcal{F}\left(G^{\prime}\right)$, every L-coloring of the boundary walk of f extends to an L-coloring of the interior of f. We say $T^{\prime}=\left(G^{\prime}, C, L\right)$ is an easel for T.

Given that the linear bound is proved in terms of deficiency, which works well for applying induction to a subgraph and its faces, we may actually prove a stronger theorem about easels which we will use in Chapter 5.

Theorem 3.4.27. If $T=(G, C, L)$ is a cycle-canvas, then there exists an easel $T^{\prime}=\left(G^{\prime}, C, L\right)$ for T such that $\left|V\left(G^{\prime} \backslash C\right)\right| \leq 28 \operatorname{def}\left(T^{\prime}\right)$.

Proof. We proceed by induction on the number of vertices of G. We may suppose that T contains a critical subcanvas $T_{0}=\left(G_{0}, C, L\right)$, as otherwise the lemma follows with $T^{\prime}=T$. By Theorem 3.4.25, $\left|V\left(G_{0} \backslash C\right)\right| \leq 28 \operatorname{def}\left(T_{0}\right)$. For every face $f \in \mathcal{F}\left(G_{0}\right)$, there exists by induction an easel $T_{f}^{\prime}=\left(G_{f}^{\prime}, C_{f}, L\right)$ for $T_{f}=\left(G_{f}, C_{f}, L\right)$ such that $\left|V\left(G_{f}^{\prime} \backslash C_{f}\right)\right| \leq 28 \operatorname{def}\left(T_{f}^{\prime}\right)$.

Let $G^{\prime}=G_{0} \cup \bigcup_{f \in \mathcal{F}\left(G_{0}\right)} G_{f}^{\prime}$ and let $T^{\prime}=\left(G^{\prime}, C, L\right)$. Now for every face $f \in \mathcal{F}\left(G^{\prime}\right)$, every L-coloring of the boundary walk of f extends to an L-coloring of the interior of f. Moreover by Lemma 3.3.2, $\operatorname{def}\left(T_{0}\right)+\sum_{f \in \mathcal{F}\left(G_{0}\right)}=\operatorname{def}\left(T^{\prime}\right)$. Yet $\left|V\left(G_{0} \backslash C\right)\right|+$ $\sum_{f \in \mathcal{F}\left(G_{0}\right.}\left|V\left(G_{f} \backslash C_{f}\right)\right|=\left|V\left(G^{\prime} \backslash C\right)\right|$. Hence $\left|V\left(G^{\prime} \backslash C\right)\right| \leq 28 \operatorname{def}\left(T^{\prime}\right)$ and the theorem is proved.

Let $T=(G, C, L)$ be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ be an easel for T. As $\left|V\left(G^{\prime} \backslash C\right)\right| \geq 0$, Theorem 3.4.27 also implies that $\operatorname{def}(T) \geq 0$ and hence the size of any face $f \in \mathcal{F}\left(G^{\prime}\right)$ is at most $|C|$. Note that G^{\prime} could be equal to C though if every L-coloring of C extends to an L-coloring of G. Suppose that $T^{\prime \prime}=\left(G^{\prime \prime}, C, L\right)$ is an easel for T^{\prime}. It follows that $T^{\prime \prime}$ is also an easel for T^{\prime}. Therefore it is of interest to consider minimal easels for T. To that end, we make the following defintion.

Definition. Let $T=(G, C, L)$ be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ an easel for T. We say that T^{\prime} is a critical easel for T if there does not exist $T^{\prime \prime}=\left(G^{\prime \prime}, C, L\right)$ such that $G^{\prime \prime} \subsetneq G^{\prime}$ such that $T^{\prime \prime}$ is an easel for T^{\prime}, and hence also an easel for T as noted above.

Thus Theorem 3.4.27 says that every critical easel $T^{\prime}=\left(G^{\prime}, C, L\right)$ of $T=(G, C, L)$ satisfies $\left|V\left(G^{\prime} \backslash C\right)\right| \leq 28 \operatorname{def}\left(T^{\prime}\right)$.

3.5 Exponentially Many Extensions of a Precoloring of a Cycle

Thomassen [51] proved that planar graphs have exponentially many 5-list-colorings from a given 5-list-assignment. Indeed, he proved a stronger statement, restated here in terms of path-canvases.

Theorem 3.5.1. [Theorem 4 in [51]] Let $T=(G, P, L)$ be a path-canvas. Let r be the number of vertices of C, the outer walk of G, such that $|L(v)|=3$. If T is not a bellows, then G has at least $2^{|V(G \backslash P)| / 9-r / 3}$ distinct L-colorings unless $|V(P)|=3$ and there exists $v \in V(G),|L(v)|=4$ and v is adjacent to all the vertices of P.

Corollary 3.5.2. Let $T=(G, C, L)$ be a cycle-canvas such that $|C| \leq 4$. Let ϕ be an L-coloring of $G[V(C)]$, then $\log E(\phi) \geq|V(G \backslash C)| / 9$, where $E(\phi)$ is the number of extensions of ϕ to G, unless $|C|=4$ and there exists a vertex not in $V(C)$ adjacent to all the vertices of C.

Proof. Let $v \in C$. Let $G^{\prime}=G \backslash\{v\}, P=C \backslash\{v\}$ and $L^{\prime}(w)=L(w) \backslash\{\phi(v)\}$ for all $w \in N(v)$. Apply Theorem 3.5.1 to $\left(G^{\prime}, P, L^{\prime}\right)$. Note that there does not exist a vertex $x \in V\left(G^{\prime}\right)$ such that $\left|L^{\prime}(v)\right|=3$. Hence $r=0$ and it follows that there are $2^{|V(G \backslash C)| / 9}$ distinct L-colorings of G unless $|V(P)|=3$ and there exists $x \in V(G)$ with $\left|L^{\prime}(x)\right|=4$ and x adjacent to all vertices of P. But then $|C|=4$ and there exists a vertex adjacent to all the vertices of C.

Lemma 3.5.3. If $T=(G, C, L)$ is a cycle-canvas and ϕ is an L-coloring of C that extends to an L-coloring of G, then $\log E(\phi) \geq(|V(G \backslash C)|-29(|C|-3)) / 9$, where $E(\phi)$ is the number of extensions of ϕ to G.

Proof. We proceed by induction on the number of vertices of G. As $\epsilon \leq 1 / 9$, we may assume that $|C| \geq 5$ by Corollary 3.5.2. It also follows from Corollary 3.5.2, that there does not exist a vertex-cut in G of size at most three as otherwise the lemma follows by induction. Thus there is no separating triangle in G. Similarly if there exists a separating 4 -cycle C^{\prime} in G, then there must exist a vertex in the interior of C^{\prime} adjacent to all the vertices of C^{\prime} as otherwise the theorem follows by induction.

First suppose there exists $v \in V(G)$ such that v has at least three neighbors on C. Suppose that v has at least four neighbors on C. Let $G^{\prime}=G[V(C) \cup\{v\}]$ and $T^{\prime}=\left(G^{\prime}, C, L\right)$. As ϕ extends to an L-coloring of G, we can extend ϕ to v. For all $f \in$ $\mathcal{F}\left(G^{\prime}\right)$, it follows by induction that $\log E_{T_{f}}(\phi) \geq\left(\left|V\left(G_{f} \backslash C_{f}\right)\right|-29\left(\left|C_{f}\right|-3\right)\right) / 9$ for all $f \in \mathcal{F}\left(G^{\prime}\right)$. Thus $\log E(\phi) \geq \sum_{f \in \mathcal{F}\left(G^{\prime}\right)} \log E_{T_{f}}(\phi) \geq((|V(G \backslash C)|-1)-29(|C|-4)) / 9$ as $\operatorname{def}\left(T^{\prime}\right) \geq 1$. The lemma follows.

So we may assume that v has exactly three neighbors on C. Let $S(v)=\in L(v) \backslash$ $\{\phi(u) \mid u \in N(v) \cap C\}$. Hence $|S(v)| \geq 2$. Let $c_{1}, c_{2} \in S(v)$. For $i \in\{1,2\}$, let
$\phi_{i}(v)=c_{i}$ and $\phi_{i}(u)=\phi(u)$ for all $u \in V(C)$. If both ϕ_{1} and ϕ_{2} extend to L colorings of ϕ, it follows by induction applied to the faces of $G[V(C) \cup\{v\}]$ that $\log E\left(\phi_{i}\right) \geq((|V(G \backslash C)|-1)-29(|V(C)|-3)) / 9$. Yet $E(\phi) \geq E\left(\phi_{1}\right)+E\left(\phi_{2}\right)$ and hence $\log E(\phi) \geq(|V(G \backslash C)|-29(|V(C)|-3)) / 9$ and the lemma follows.

So we may suppose that ϕ_{1} does not extend to an L-coloring of G. Hence there exists $f \in \mathcal{F}\left(G^{\prime}\right)$ such that T_{f} contains a critical subcanvas $T_{f}^{\prime}=\left(G_{f}, C_{f}, L\right)$. By Lemma 3.4.26, $\left|V\left(G_{f} \backslash C_{f}\right)\right| \leq 28 \operatorname{def}\left(T_{f}\right)$. Let $G^{\prime}=G\left[V\left(G_{f}\right) \cup V(C)\right]$. Thus $\mid V\left(G^{\prime} \backslash\right.$ $C)|=| V\left(G^{\prime} \backslash C_{f} \mid+1, \operatorname{def}\left(T_{f}\right) \leq \operatorname{def}\left(T^{\prime}\right)\right.$. Hence $\left|V\left(G^{\prime} \backslash C\right)\right| \leq 29 \operatorname{def}\left(T^{\prime}\right)$.

As ϕ extends to an L-coloring of G, ϕ extends to an L-coloring of G^{\prime}. For all $f \in \mathcal{F}\left(G^{\prime}\right)$, it follows by induction that $\log E_{T_{f}}(\phi) \geq\left(\left|V\left(G_{f} \backslash C_{f}\right)\right|-29\left(\left|C_{f}\right|-3\right)\right) / 9$ for all $f \in \mathcal{F}\left(G^{\prime}\right)$. Thus $\log E(\phi) \geq \sum_{f \in \mathcal{F}\left(G^{\prime}\right)} \log E_{T_{f}}(\phi) \geq\left(\left(|V(G \backslash C)|-\mid V\left(G^{\prime} \backslash\right.\right.\right.$ $\left.C) \mid)-29\left(|C|-3-\operatorname{def}\left(T^{\prime}\right)\right)\right) / 9$. The lemma follows.

Suppose there exists $v \in V(G)$ such that v has two neighbors $u_{1}, u_{2} \in V(C)$ and $d_{C}\left(u_{1}, u_{2}\right) \geq 3$. Consider the cycles C_{1}, C_{2} such that $C_{1} \cap C_{2}=u_{1} v u_{2}$ and $C_{1} \cup C_{2}=C \cup v$. Note that $\left|C_{1}\right|+\left|C_{2}\right|=|C|+4$. Let $T_{1}=\left(G_{1}, C_{1}, L_{1}\right)$ where $G_{1}=\operatorname{Int}\left(C_{1}\right)$ and $T_{2}=\left(G_{2}, C_{2}, L\right)$ where $G_{2}=\operatorname{Int}\left(C_{2}\right)$. Now extend ϕ to v and apply induction to T_{1} and T_{2}. By induction, $\log E_{T_{i}}(\phi) \geq\left(\left|V\left(G_{i} \backslash C_{i}\right)\right|-29\left(\left|C_{i}\right|-3\right)\right) / 9$ for all $i \in\{1,2\}$. Hence, $\left.\log E(\phi) \geq(|V(G \backslash C)|-1)-29\left(\left|C_{1}\right|+\left|C_{2}\right|-6\right)\right) / 9$ and the lemma follows as $\left|C_{1}\right|+\left|C_{2}\right|-6 \geq|C|-4$.

Finally we may suppose there does not exist $v \in V(G) \backslash V(C)$ such that v has at least three neighbors in C. Let $G^{\prime}=G \backslash C$ and $L^{\prime}(v)=L(v) \backslash\{\phi(u) \mid u \in N(v) \cap C\}$ for all $v \in V\left(G^{\prime}\right)$. By Theorem 3.5.1, there exist $2^{\left|V\left(G^{\prime}\right)\right| / 9-|S| / 3}$ distinct L-colorings of G extending ϕ where $S=\left\{v \in V\left(G^{\prime}\right)| | L^{\prime}(v) \mid=3\right\}$.

Let $v \in S$. Then v has at least two neighbors on C as $\left|L^{\prime}(v)\right|=3$. Thus v has exactly two neighbors u_{1}, u_{2} on C. But then $d_{C}\left(u_{1}, u_{2}\right) \leq 2$. Thus there exists a cycle C^{\prime} of size at most four containing the vertices u_{1}, u_{2}, v and perhaps another vertex on C. But note then that there does not exists a vertex in the interior of C^{\prime} as otherwise
$\left|C^{\prime}\right|=4$ and there exists a vertex adjacent to all the vertices of C^{\prime}, and hence adjacent to all three vertices on C, a contradiction. It now follows that $|S| \leq|C|$. Therefore $\log E(\phi) \geq\left|V\left(G^{\prime}\right)\right| / 9-|S| / 3 \geq|V(G \backslash C)| / 9-|C| / 3$. As $|C| / 3 \leq 29(|C|-3) / 9$ since $|C| \geq 4$, the lemma follows.

3.6 Logarithmic Distance for Cycles

Lemma 3.6.1. If $T=(G, S, L)$ is a critical canvas such that for all $v \in V(G)$, if $|L(v)|<5$, then $v \in S$, then $|V(G)| \leq 29|V(S)|$.

Proof. Note that $|S| \geq 3$ by Theorem 1.4.2. Let W be the outer walk of G. Delete all instances from W of vertices not in S and remove all instances from W but for one for vertices in S. The result W^{\prime} is a cycle on the vertices of S. Now add a new vertex between every two consecutive vertices in W^{\prime} unless there is already an edge between those vertices that lies in the same place in the walk W. Then add edges along the new walk so as to form a cycle C. Let G^{\prime} be the graph with vertex set $V(C) \cup V(G)$ and edge set $E(G) \cup E(C)$. For every $v \in V(C) \backslash V(S)$, let $L(v)$ be any set of five colors. Now $\left(G^{\prime}, C^{\prime}, L\right)$ is a critical cycle-canvas. By Theorem 3.4.25, $\left|V\left(G^{\prime}\right) \backslash V\left(C^{\prime}\right)\right| / 28+\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3) \leq\left|V\left(C^{\prime}\right)\right|-3$.

Moreover, every $v \in V(C) \backslash V(S)$ is incident with a different face in $\mathcal{F}\left(G^{\prime}\right)$ and these faces have size at least four because a vertex was not added if its two consecutive vertices already had an edge in the walk W. Hence, $\sum_{f \in \mathcal{F}\left(G^{\prime}\right)}(|f|-3) \geq|V(C)|-$ $|V(S)|$. Thus, $|V(G) \backslash V(S)| / 28=\left|V\left(G^{\prime}\right) \backslash V\left(C^{\prime}\right)\right| / 28 \leq|V(S)|-3$. Hence, $|V(G)| \leq$ $29|V(S)|$ as desired.

Theorem 3.6.2. Let $T=(G, S, L)$ be a critical canvas and C be its outer walk. If X is a separation of G into two graphs G_{1}, G_{2} where $S \cup V(C) \subseteq G_{1}$, then $\left|V\left(G_{2}\right)\right| \leq$ $29|X|$.

Proof. Let G^{\prime} be the union of X and all components of $G \backslash X$ that do not contain a vertex in S. Let X^{\prime} be all vertices in G^{\prime} with that are in $S \cup V(C)$ or have a neighbor
in $V(G) \backslash V\left(G^{\prime}\right)$. Clearly, $X^{\prime} \subseteq X$ as $S \cup V(C) \subseteq G_{1}$. Note the vertices of X^{\prime} lie on the outer face of G^{\prime} as they are either in S or have a path to a vertex of S through $G \backslash G^{\prime}$ and yet the vertices of S lie on the outer face of G. Hence $T^{\prime}=\left(G^{\prime}, X^{\prime}, L\right)$ is a canvas. Furthermore as T is critical, T^{\prime} is critical by Lemma 3.2.1 as G^{\prime} is an X^{\prime}-component of G with respect to S. Yet every vertex in G^{\prime} is either in $S \cup V(C)$ or has a list of size five. Thus every vertex in $V\left(G^{\prime}\right) \backslash X^{\prime}$ has a list of size five. By Theorem 3.6.1, $\left|V\left(G^{\prime}\right)\right| \leq 29\left|X^{\prime}\right|$. Hence $\left|V\left(G_{2}\right)\right| \leq\left|V\left(G^{\prime}\right)\right| \leq 29\left|X^{\prime}\right| \leq 29|X|$ as desired.

Theorem 3.6.3. If $T=(G, C, L)$ is a critical cycle-canvas, $v_{0} \in V(G)$ and $X \subseteq$ $V(G)$ such that X separates v from C, then $d\left(v_{0}, X\right) \leq 58 \log |X|$ for all $v \in V\left(G_{2}\right) \backslash$ X.

Proof. We proceed by induction on the size of X. Let G_{1}, G_{2} be graphs such that $X=V\left(G_{1}\right) \cap V\left(G_{2}\right), C \subseteq G_{1}$ and $v_{0} \in V\left(G_{2}\right)$. By Theorem 1.4.2, $|X| \geq 2$ as T is critical. Thus, we may assume that $d\left(v_{0}, X\right)>58$, as otherwise the theorem follows.

Let $X_{i}=\left\{v \in V\left(G_{2}\right) \mid d(v, X)=i\right\}$ and let $H_{i}=G\left[\bigcup_{j \geq i} X_{j}\right]$. As $\left|V\left(G_{2}\right)\right| \leq$ $29|V(X)|$ by Theorem 3.6.2, there exists $i, 1 \leq i \leq 58$ such that $\left|X_{i}\right| \leq|X| / 2$. As $d\left(v_{0}, X\right)>58, X_{i}$ separates v_{0} from C. By induction on $X_{i}, d\left(v_{0}, X_{i}\right) \leq 58 \log \left|X_{i}\right| \leq$ $58 \log |X|-58$. Yet $d(v, X) \leq 58$ for all $v \in X_{i}$ and hence $d\left(v_{0}, X\right) \leq 58 \log \mathcal{C}$ as desired.

Theorem 3.6.4. [Logarithmic Distance for Cycle-Canvases] If $T=(G, C, L)$ is a critical cycle-canvas, then $d(v, C) \leq 58 \log |C|$ for all $v \in V(G)$.

Proof. Follows from Theorem 3.6.3 with $X=C$.

Theorem 3.6.5. [Exponential Growth for Cycle-Canvases] If $T=(G, C, L)$ is a critical cycle-canvas and $v_{0} \in V(G) \backslash V(C)$, then for all $k \leq d\left(v_{0}, C\right),\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 58}$. Proof. Let $k \leq d\left(v_{0}, C\right)$. Now $N_{k}\left(v_{0}\right)$ separates v_{0} from C. By Theorem 3.6.3, $k=d\left(v_{0}, N_{k}\left(v_{0}\right)\right) \leq 58 \log \left|N_{k}\left(v_{0}\right)\right|$. Hence $\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 58}$ as desired.

3.6.1 Critical Easels

We use similar proofs to derive logarithmic distance and exponential growth for critical easels.

Theorem 3.6.6. Let $T=(G, C, L)$ be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ be a critical easel for T. If X is a separation of G^{\prime} into two graphs G_{1}, G_{2} where $C \subseteq G_{1}$, then $\left|V\left(G_{2}\right)\right| \leq 29|X|$.

Proof. Suppose not. Let G_{0} be the union of X and all components of $G^{\prime} \backslash X$ that do not contain a vertex in C. Let X^{\prime} be all vertices in G_{0} with that are in C or have a neighbor in $V\left(G^{\prime}\right) \backslash V\left(G_{0}\right)$. Clearly, $X^{\prime} \subseteq X$ as $C \subseteq G_{1}$. Note the vertices of X^{\prime} lie on the outer face of G_{0} as they are either in C or have a path to a vertex of C through $G^{\prime} \backslash G_{0}$ and yet the vertices of C lie on the outer face of G^{\prime}.

Let W be the outer walk of G_{0}. Delete all instances from W^{\prime} of vertices not in X^{\prime} and remove all instances from W but for one for vertices in X^{\prime}. The result W^{\prime} is a cycle on the vertices of X^{\prime}. Now add a new vertex between every two consecutive vertices in X^{\prime} unless there is already an edge between those vertices that lies in the same place in the walk W. Then add edges along the new walk so as to form a cycle C_{0}. Let G_{0}^{\prime} be the graph with vertex set $V\left(C_{0}\right) \cup V\left(G_{0}\right)$ and edge set $E\left(G_{0}\right) \cup E\left(C_{0}\right)$. For every $v \in V\left(C_{0}\right) \backslash V\left(X^{\prime}\right)$, let $L(v)$ be any set of five colors. Now $T_{0}=\left(G_{0}, C_{0}, L\right)$ is a cycle-canvas. By Theorem 3.4.27, there exists an easel $T_{0}^{\prime}=\left(G_{0}^{\prime}, C_{0}, L\right)$ for T_{0} such that $d_{0}\left(T_{0}^{\prime}\right) \geq 0$, that is $\left|V\left(G_{0}^{\prime}\right) \backslash V\left(C_{0}\right)\right| / 28+\sum_{f \in \mathcal{F}\left(G_{0}^{\prime}\right)}(|f|-3) \leq\left|V\left(C_{0}\right)\right|-3$.

Moreover, every $v \in V\left(C_{0}\right) \backslash X^{\prime}$ is incident with a different face in $\mathcal{F}\left(G_{0}^{\prime}\right)$ and these faces have size at least four because a vertex was not added if its two consecutive vertices already had an edge in the walk W. Hence, $\sum_{f \in \mathcal{F}\left(G_{0}^{\prime}\right)}(|f|-3) \geq\left|V\left(C_{0}\right)\right|-\left|X^{\prime}\right|$. Thus, $\left|V\left(G_{0}\right) \backslash X^{\prime}\right| / 28=\left|V\left(G_{0}^{\prime}\right) \backslash V\left(C_{0}\right)\right| / 28 \leq\left|X^{\prime}\right|-3$. Thus $G_{0}^{\prime} \backslash\left(C_{0} \backslash X^{\prime}\right)$ is a proper subgraph of $G_{0} \backslash\left(C_{0} \backslash X^{\prime}\right)$.

Let $G^{\prime \prime}=G^{\prime} \backslash\left(G_{0} \backslash G_{0}^{\prime}\right)$. It follows that $T^{\prime \prime}=\left(G^{\prime \prime}, C, L\right)$ is an easel for T^{\prime}.

Moreover, $G^{\prime \prime}$ is a proper subgraph of G^{\prime}, contradicting that T^{\prime} is a critical easel.

Theorem 3.6.7. Let $T=(G, C, L)$ be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ be a critical easel for T. If $v_{0} \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that X separates v from C, then $d_{G^{\prime}}\left(v_{0}, X\right) \leq 58 \log |X|$ for all $v \in V\left(G_{2}\right) \backslash X$.

Proof. See proof of Theorem 3.6.3.

Theorem 3.6.8. [Logarithmic Distance for Critical Easels] If $T=(G, C, L)$ is a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ is a critical easel for T, then $d(v, C) \leq 58 \log |C|$ for all $v \in V\left(G^{\prime}\right)$.

Proof. Follows from Theorem 3.6.7 with $X=C$.

Theorem 3.6.9. [Exponential Growth for Critical Easels] Let $T=(G, C, L)$ be a cycle-canvas and $T^{\prime}=\left(G^{\prime}, C, L\right)$ be a critical easel for T. If $v_{0} \in V\left(G^{\prime}\right) \backslash V(C)$, then for all $k \leq d\left(v_{0}, C\right),\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 58}$.

Proof. Let $k \leq d\left(v_{0}, C\right)$. Now $N_{k}\left(v_{0}\right)$ separates v_{0} from C. By Theorem 3.6.7, $k=d\left(v_{0}, N_{k}\left(v_{0}\right)\right) \leq 58 \log \left|N_{k}\left(v_{0}\right)\right|$. Hence $\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 58}$ as desired.

3.7 Critical Path-Canvases

We note that Theorem 2.3.4 can be restated in terms of criticality.

Theorem 3.7.1. If $T=(G, P, L)$ is a critical path-canvas with $|V(P)|=3$, then T is a bellows.

We prove that something akin to Theorem 3.3.1 amazingly holds for critical pathcanvases.

Theorem 3.7.2. (Path Chord or Tripod Theorem)
If (G, P, L) is a critical path-canvas, C is the outer walk of G, then either
(1) there is an edge of G that is not an edge of P but has both ends in P, or
(2) there is a chord of C with one end in the interior of P and the other end has list of size three but is not in P, or
(3) there are two distinct chords of C whose common end has a list of size four but is not in P and whose other ends are in the interior of P, (and the cycle made by the chords and the subpath of P connecting their ends has empty interior)
(4) there exists a vertex v with list of size five with at least three neighbors on P and all of the internal faces of $G[v \cup V(P)]$ is empty.

Proof. Suppose none of the above hold. We now claim that every L-coloring of P extends to an L-coloring of G, contrary to the fact that T is critical. To see this, fix an L-coloring ϕ of P. Let $L^{\prime}(v)=L(v) \backslash\{\phi(x): x \in V(P), x \sim v\}$ for all $v \notin V(P)$.

Let v_{1}, v_{2} (not necessarily distinct) be the vertices of the infinite face adjacent to the ends of P. Note then that $\left|L^{\prime}(v)\right| \geq 3$ for all $v \neq v_{1}, v_{2}$. This follows because if $|L(v)|=3$, then v does not have a neighbor in P as (2) does not hold, and if $|L(v)|=4$, then v does not have two neighbors in P as (3) does not hold. If $|L(v)|=5$, then v has at most two neighbors in P as otherwise (4) holds by the proof of Theorem 3.3.1. Thus, $\left|L^{\prime}(v)\right| \geq|L(v)|-2 \geq 3$.

Let $G^{\prime}=G \backslash P, S^{\prime}=\left\{v_{1}, v_{2}\right\}$ and $T^{\prime}=\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$. Suppose $v_{1}=v_{2}$, then $\left|L^{\prime}\left(v_{1}\right)\right| \geq 1$. By Theorem 1.4.2 applied to T^{\prime}, there exists an L^{\prime}-coloring of G^{\prime} and hence ϕ extends to an L-coloring of G as desired. So we may assume that $v_{1} \neq v_{2}$. In this case, $\left|L^{\prime}\left(v_{1}\right)\right|,\left|L^{\prime}\left(v_{2}\right)\right| \geq 2$. By Theorem 2.2.2 applied to T^{\prime}, G^{\prime} has an L^{\prime}-coloring and hence ϕ extends to an L-coloring of G as desired.

3.7.1 Deficiency

Definition. (Inlets)
Let (G, P, L) be a path-canvas and C be the outer walk of G. Suppose that the path P appears only once as a subwalk of C. Decompose the subwalk $C-P$ into the
sequence of subwalks between vertices with lists of size less than five that are not in the interior of P. We call any such subwalk in the sequence which has length at least two an inlet. If i is an inlet, we let $|i|$ denote the length of the subwalk plus one. We let $\mathcal{I}(T)$ denote the set of inlets of T.

Definition. We define the deficiency of a path-canvas T as

$$
\operatorname{def}(T)=|V(P)|-3-\sum_{f \in \mathcal{F}(T)}(|f|-3)-\sum_{i \in \mathcal{I}(T)}(|i|-3)
$$

Theorem 3.7.3. (Path Sum of Faces Theorem) If $T=(G, P, L)$ is a critical path-canvas, then $\operatorname{def}(T) \geq 0$.

Proof. We proceed by induction on the number of vertices of G. First we claim that G is 2-connected. Suppose not. Then there exists a cutvertex v of G. As v is essential we find that $v \in V(P)$. Thus v divides G into two graphs G_{1}, G_{2} and P into two paths P_{1}, P_{2} with $P_{1} \subset V\left(G_{1}\right)$ and $P_{2} \subset V\left(G_{2}\right)$. Let $T_{i}=\left(G_{i}, P_{i}, L\right)$. If $G_{i} \neq P_{i}$, then T_{i} is P_{i}-critical. Thus $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|=|V(P)|+1$. Moreover, $\sum_{f \in F\left(T_{1}\right)}(|f|-3)+\sum_{f \in \mathcal{F}\left(T_{2}\right)}(|f|-3)=\sum_{f \in \mathcal{F}(T)}(|f|-3)$. Therefore, we need only deduce how the inlets of T_{1}, T_{2} and T relate. Basically, the inlets of T are just the union of the inlets of T_{1} and T_{2}, except that there could be a new inlet at v of size three, or there is an inlet of T_{1} or T_{2} incident with v which then gets lengthened by one, or there is an inlet in both T_{1} and T_{2} incident with v and they are then combined. In all cases, we find that $\sum_{i \in \mathcal{I}(T)}(|i|-3) \leq \sum_{i \in \mathcal{I}\left(T_{1}\right)}(|i|-3)+\sum_{i \in \mathcal{I}\left(T_{2}\right)}(|i|-3)+2$. Combining all these formula shows that $\operatorname{def}(T) \geq \operatorname{def}\left(T_{1}\right)+\operatorname{def}\left(T_{2}\right) \geq 0+0=0$ as desired.

Apply Theorem 3.7.2. Suppose (1) holds; that is, P has a chord in G. If the chord is actually an edge between the two ends of P, we may apply Theorem 3.3.3, to find that $\operatorname{def}(T) \geq 0$. So we may assume the chord is not between the ends of P. Let P^{\prime}
be the resulting inlet and C^{\prime} be the cycle made by the chord. Consider the resulting path and cycle-canvases. Now $|V(P)|=\left|V\left(P^{\prime}\right)\right|+\left|V\left(C^{\prime}\right)\right|-2$. As $\mathcal{F}(T) \subseteq \mathcal{F}\left(T\left[P^{\prime}\right]\right) \cup$ $\mathcal{F}\left(T\left[C^{\prime}\right]\right)$ and $\mathcal{I}(T) \subseteq \mathcal{I}\left(T\left[P^{\prime}\right]\right)$, we find that $\operatorname{def}(T)=\operatorname{def}\left(T\left[P^{\prime}\right]\right)+\operatorname{def}\left(T\left[C^{\prime}\right]\right)+1$.

By Theorem 3.3.3, $\operatorname{def}\left(T\left[C^{\prime}\right]\right) \geq 1$ if $\operatorname{Int}\left(C^{\prime}\right) \neq \emptyset$ and $\operatorname{def}\left(T\left[C^{\prime}\right]\right)=0$ if $\operatorname{Int}\left(C^{\prime}\right)=$ Ø. Similarly if $P^{\prime}=G^{\prime}$ then $\operatorname{def}\left(T\left[P^{\prime}\right]\right)=0$ and if $P^{\prime} \neq G^{\prime}$, then $\operatorname{def}\left(T\left[P^{\prime}\right]\right) \geq 0$ by induction. In either case then $\operatorname{def}\left(T\left[C^{\prime}\right]\right), \operatorname{def}\left(T\left[P^{\prime}\right]\right) \geq 0$ and hence $\operatorname{def}(T) \geq$ $0+0+1=1$ as desired.

Suppose (2) or (3) holds; that is there is a chord U of C where one end is an internal vertex of P and the other end a vertex not in P with list of size less than five. Let C_{1}, C_{2} be cycles such that $C_{1} \cap C_{2}=U$ and $C_{1} \cup C_{2}=C \cup U$; let P_{1} and P_{2} be paths such that $P_{1} \cap P_{2}=U$ and $P_{1} \cup P_{2}=P \cup U$ and $P_{1} \subset C_{1}, P_{2} \subset C_{2}$. Hence $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|=|V(P)|+3$.

By Theorem 3.2.3, $T\left[P_{1}\right]$ and $T\left[P_{2}\right]$ are critical path-canvases (or empty). As $\mathcal{F}(T) \subseteq \mathcal{F}\left(T\left[P_{1}\right]\right) \cup \mathcal{F}\left(T\left[P_{2}\right]\right)$ and $\mathcal{I}(T) \subseteq \mathcal{I}\left(T\left[P_{1}\right]\right) \cup \mathcal{I}\left(T\left[P_{2}\right]\right)$. Thus $\operatorname{def}(T)=$ $\operatorname{def}\left(T\left[P_{1}\right]\right)+\operatorname{def}\left(T\left[P_{2}\right]\right)$. By induction, $\operatorname{def}\left(T\left[P_{k}\right]\right) \geq 0$ for $k \in\{1,2\}$ even if $G_{k}=P_{k}$. So we find that $\operatorname{def}(T) \geq 0$ as desired.

So we may suppose that (4) holds; that is, there exists v with list of size five such that v is adjacent to at least three vertices of C and all of the internal faces of $P \cup v$ are empty. Let P^{\prime} be the new path. Consider the canvas $T\left[P^{\prime}\right]=\left(G^{\prime}, P^{\prime}, L\right)$. Note that $\mathcal{I}(T) \subseteq \mathcal{I}\left(T\left[P^{\prime}\right]\right)$. Now, $|V(P)|-\left|V\left(P^{\prime}\right)\right| \geq \sum_{f \in \mathcal{F}(T) \backslash \mathcal{F}\left(T\left[P^{\prime}\right]\right)}(|f|-3)$. Thus $\operatorname{def}(T) \geq \operatorname{def}\left(T\left[P^{\prime}\right]\right)$. If $P^{\prime} \neq G^{\prime}$, then by induction $\operatorname{def}\left(T\left[P^{\prime}\right]\right) \geq 0$ and so $\operatorname{def}(T) \geq 0$ as desired. So we may suppose that $P^{\prime}=G^{\prime}$. In this case, $\operatorname{def}\left(T\left[P^{\prime}\right]\right)=0$. Nevertheless as $P^{\prime}=G$ though, v has at least five neighbors on the boundary and so $|V(P)|-\left|V\left(P^{\prime}\right)\right| \geq \sum_{f \in \mathcal{F}(T) \backslash \mathcal{F}\left(T\left[P^{\prime}\right]\right)}(|f|-3)+2$ and so $\operatorname{de} f(T) \geq \operatorname{def}\left(T\left[P^{\prime}\right]\right)+2$. As $\operatorname{def}\left(T\left[P^{\prime}\right]\right)=0, \operatorname{def}(T) \geq 2$ as desired.

Corollary 3.7.4. (Path Bounded Face Theorem)

Let $T=(G, P, L)$ be a critical path-canvas. If f is an internal face of G, then
$|f| \leq|V(P)|$, and if i is an inlet, then $|i| \leq|V(P)|$.

Proof. By Theorem 3.7.3, $|V(P)|-3-\sum_{f \in \mathcal{F}(T)}(|f|-3)-\sum_{i \in \mathcal{I}(T)}(|i|-3) \geq 0$. As the terms on the right side are always positive, $|V(P)|-3 \geq|f|-3$ for any internal face f of G. Thus $|f| \leq|V(P)|$. Similarly $|V(P)|-3 \geq|i|-3$ for any inlet i. Thus $|i| \leq|V(P)|$.

Lemma 3.7.5. Let $T=(G, P, L)$ be a critical path-canvas. If i is an inlet with $|i| \geq|V(P)|-1$, then $|i|=|V(P)|-1$ and either G is P plus a bellows whose base is the first three or last three vertices of P, or, G is P plus an edge between two vertices of P which have distance two in P.

Proof. We proceed by induction on the number of vertices of G. By Theorem 1.4.2, $|V(P)| \geq 3$. If $|V(P)|=3$, then G is a bellows by Theorem 2.3.4 and the lemma follows. So we may assume that $|V(P)| \geq 4$. Apply Theorem 3.7.2 to T.

Suppose (1) holds. Then there is an edge e of G not in P but with both ends in P. Consider $P+e$ which has precisely one inlet, call it i with path P^{\prime}. If the two ends do not have distance at most two in P, then $|i|=\left|V\left(P^{\prime}\right)\right| \leq|V(P)|-2$. If $\operatorname{Ext}\left(P^{\prime}\right)=\emptyset$, then the lemma follows immediately. Otherwise, by induction on $T\left[P^{\prime}\right]$, every inlet has size at most $\left|V\left(P^{\prime}\right)\right|-1 \leq|V(P)|-3$ and the lemma follows. So we may suppose that the ends have distance two in P and hence $\left|V\left(P^{\prime}\right)\right|=|V(P)|-1$. If $\operatorname{Ext}\left(P^{\prime}\right)=\neq \emptyset$, then by induction, every inlet has size at most $\left|V\left(P^{\prime}\right)\right|-1=|V(P)|-2$ and the lemma follows. So we may suppose that $\operatorname{Ext}\left(P^{\prime}\right)=\emptyset$ and hence $G=P+e$ and the lemma follows.

Suppose (2) or (3) holds. That is, there is a chord of C, the outer cycle of G, with one end an internal vertex of P and the other v not in P but with a list of size less than five. Let P_{1}, P_{2} be the resulting paths. Thus $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|=|V(P)|+3$. As both P_{1}, P_{2} have at least three vertices, $\left|V\left(P_{1}\right)\right|,\left|V\left(P_{2}\right)\right| \leq|V(P)|$. If both have size at most $|V(P)|-1$, then the lemma follows unless one, say P_{1}, has size $|V(P)|-1$
and empty exterior. In that case, the other, say P_{2}, has size 4 and it is not hard to see that what remains must be a bellows with base $P_{2} \backslash v$.

So we may assume without loss of generality that $\left|V\left(P_{1}\right)\right|=|V(P)|$. It follows from Theorem 1.4.2 that v must be incident with an edge in $\operatorname{Ext}\left(P_{1}\right)$ (besides the chord). Yet by induction on P_{1}, either G is $P_{1}+e$ where e is an edge with both ends in P distance two, or G is a bellows whose base is the first or last three vertices of P_{1}. In the first case, v must be incident with e and hence the last three vertices must be the base of a bellows. In the latter case, again the last three vertices must be the base of a bellows.

Suppose (4) holds. That is, there is a vertex v with list of size five and at least three neighbors on P and all of the internal faces of $G[P \cup v]$ are empty. Let i be the inlet of $G[P \cup v]$ and P^{\prime} its path. If v has at least five neighbors on P, then $|i|=\left|V\left(P^{\prime}\right)\right| \leq|V(P)|-2$. Thus the lemma holds immediately if $\operatorname{Ext}\left(P^{\prime}\right)=\emptyset$ and by induction otherwise. If v has four neighbors on P, then $|i|=\left|V\left(P^{\prime}\right)\right|=|V(P)|-1$. If $\operatorname{Ext}\left(P^{\prime}\right) \neq \emptyset$, the lemma follows by induction. Yet if $\operatorname{Ext}\left(P^{\prime}\right)=\emptyset$, then v has degree four but a list of size five and hence G is not P-critical, a contradiction.

So we may assume that v has three neighbors on P. Moreover by a similar argument it follows that these vertices are consecutive in P and that $|i|=\left|V\left(P^{\prime}\right)\right|=$ $|V(P)|$. By induction applied to P^{\prime}, we find that either there is an edge with both ends in P or a bellows whose base if the first or last three vertices of P. Yet as v has degree three and a list of size five, v must be incident with at least two other edges. So we may assume there is a bellows whose base is the first or last three vertices of P. Indeed, v must be in the base of that bellows. Moreover, v must be incident with two vertices, so the bellows is actually a fan. It is easy to see then that v must be a tripod for either the second or second to last vertex of P and thus T is P plus a bellows on the first or last three vertices of P.

3.8 Linear Bound for Paths

Definition. Let $T=(G, P, L)$ be a path-canvas. We say a vertex $v \in V(G)$ is superfluous if $v \notin V(P)$ and there exists a span P^{\prime} in $G,\left|V\left(P^{\prime}\right)\right|=3$ such that $v \in \operatorname{Ext}\left(P^{\prime}\right)$. We say a vertex is substantial if it is not superfluous. We define the truncation of G, denoted by G^{*}, to be the subgraph of G induced by the substantial vertices of G. We define the truncated outer walk, denoted by C^{*}, to be the outer walk of G^{*}.

Note that if $|V(P)|=3$, then $V\left(G^{*}\right)=V(P)$ trivially. We will proceed to show that the number of vertices in G^{*} is linear in the size of P. That is, the number of vertices not in long fans on the boundary is linear in the size of P. Such a linear bound for critical path-canvases will be instrumental for characterizing the structure of canvases when S is not just one component. We shall first prove that $\left|V\left(C^{*}\right)\right|$ is linear in $|V(P)|$.

Let $\bar{C}=\{v \in V(C) \| L(v) \mid<5\}$. We say that a chord of \bar{C} involving an internal vertex u in P and a vertex not in P is a short chord, if u is adjacent to an end vertex of P. Let $R(T)=V\left(C^{*} \backslash P\right)$ and $r(T)=|R(T)|$.

Theorem 3.8.1. Let $\epsilon \leq 1 / 19$ and $\gamma=2 \epsilon$. If $T=(G, P, L)$ is a critical path-canvas with no short chord and $|V(P)| \geq 4$, then $\epsilon r(T) \leq|V(P)|-3-\gamma$.

Proof. We proceed by induction on the number of vertices. First we claim that if $|V(P)|=4$, that $r(T) \leq 3$. We may assume that P is induced as otherwise $r(T)=0$ and the claim follows. Now if there exists $v \notin V(P)$ such that v is adjacent to all vertices of P, then $r(T)=1$ and the theorem follows. So now we may suppose without loss of generality that $P=p_{1} p_{2} p_{3} p_{4}$ and there does not exist a vertex adjacent to all of p_{2}, p_{3}, p_{4}. Let $u \neq p_{3}$ such that $u p_{4}$ is an edge in the outer walk C of G.

Now we may assume that $|V(P)| \geq 5$ as $3 \epsilon+\gamma \leq 1$. Let ϕ be a non-extendable coloring of P. Consider $T^{\prime}=\left(G \backslash\left\{p_{2}, p_{3}, p_{4}\right\},\left\{p_{1}, u\right\}, L^{\prime}\right)$ where $L^{\prime}(v)=L(v) \backslash$
$\left\{\phi\left(p_{i}\right) \mid i \in\{2,3,4\}, v \sim p_{i}\right\}$. Now $\left|L^{\prime}(u)\right| \geq 2$. By Theorem 2.7.8, there exists a harmonica $T^{\prime \prime}$ from p_{1} to u where $T^{\prime \prime}=\left(G^{\prime},\left\{p_{1}, u\right\}, L^{\prime}\right)$ and $G^{\prime} \subseteq G \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$. As $T^{\prime \prime}$ is a harmonica, $\left|L^{\prime}(v)\right|=3$ for all $v \in G^{\prime} \backslash\left\{p_{1}, u\right\}$. But this implies that $\left|V\left(G^{\prime}\right) \backslash V(C)\right| \leq 2$, because there can be one vertex in G^{\prime} adjacent to p_{2}, p_{3} and another one adjacent to p_{3}, p_{4}. However, we now find that $r(T) \leq 3$ and the claim follows.

Apply Theorem 3.7.2. Suppose (1) holds. That is, $G=C$; then $V\left(C^{*} \backslash P\right)=\emptyset$ and the formula follows.

Let $P=p_{1} \ldots p_{k}$. Suppose (2) or (3) holds. That is, \bar{C} has a chord $U=p_{i} v$ where $p_{i} \in V(P)$. By assumption U is not a short chord; that is, $3 \leq i \leq k-2$. Let $v_{1}, v_{2} \in \bar{C}$ be neighbors of p_{i} such that v_{1} is closest to p_{1} and v_{2} is closest to p_{k}. Let $P_{1}=p_{1} \ldots p_{i} v_{1}$ and $P_{2}=v_{2} p_{i} \ldots p_{k}$. Now $|V(P)|+3=\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|$. Moreover, as v_{1} chosen closest to $p_{1}, T\left[P_{1}\right]$ has no short chord. By induction, $\operatorname{tr}\left(T\left[P_{1}\right]\right) \leq$ $\left|V\left(P_{1}\right)\right|-3-\gamma$. Similarly, $\operatorname{\epsilon r}\left(T\left[P_{2}\right]\right) \leq\left|V\left(P_{2}\right)\right|-3-\gamma$.

Yet $r(T) \leq r\left(T\left[P_{1}\right]\right)+r\left(T\left[P_{2}\right]\right)+2$. Hence $\epsilon r(T) \leq\left|V\left(P_{1}\right)\right|-3+\left|V\left(P_{2}\right)\right|-3-$ $2 \gamma+2 \epsilon=|V(P)|-3-\gamma+(2 \epsilon-\gamma)$. As $\gamma \geq 2 \epsilon$, the formula holds as desired.

So we may suppose that (4) holds. That is, T has a tripod. If T has a tripod for p_{i} where $3 \leq i \leq k-2$, we apply induction to $P[v]$. We find that $\epsilon r(T) \leq|V(P)|-3-\gamma$ as desired. So we may assume that T has no tripod for $p_{i}, 3 \leq i \leq k-2$.

Let ϕ be a coloring of P. Let $P_{\text {Int }}=P \backslash\left\{p_{1}, p_{k}\right\}$ and $L^{\prime}(v)=L(v) \backslash\{\phi(p): p \in$ $\left.V\left(P_{\text {Int }}\right), p \sim v\right\}$ for all $v \in V(G) \backslash V(P)$. As T has no tripod for $p_{i}, 3 \leq i \leq k-2$ and no short chord, then $T^{\prime}=\left(G \backslash P_{\text {Int }},\left\{p_{1}, p_{k}\right\}, L^{\prime}\right)$ is a canvas. By Theorem 2.8.3, T^{\prime} contains an orchestra $T^{\prime \prime}$ from p_{1} to p_{k}. Let C^{\prime} be the walk in $T^{\prime \prime}$ from p_{1} to p_{k} which is not a subwalk of the outer walk in T.

Suppose $T^{\prime \prime}=\left(G^{\prime \prime},\left\{p_{1}, p_{k}\right\}, L^{\prime}\right)$ is a special orchestra with cut-edge $u_{1} u_{2}$, where u_{1} separates p_{1} from u_{2}. Thus there are harmonicas from p_{1} to u_{1} and from p_{2} to u_{2}. As there are at least $d_{G^{\prime \prime}}\left(p_{1}, p_{k}\right) / 2$ vertices in $V\left(G^{\prime \prime}\right) \backslash V(C)$ such that $\left|L^{\prime}(v)\right|=3$, we
find that $d_{G^{\prime \prime}}\left(p_{1}, p_{k}\right) \leq 2(k-1)$. However, $r(T) \leq d_{G^{\prime \prime}}\left(p_{1}, p_{k}\right)$ unless $u_{1}, u_{2} \notin V(C)$. In that case, we find that $r(T) \leq d_{G^{\prime \prime}}\left(p_{1}, p_{k}\right)+3$ by applying the claim about the case when $|V(P)|=4$ to the inlet I of $P \cup G^{\prime \prime}$ of size four with $u_{1}, u_{2} \in V(I)$. Thus $r(T) \leq 2 k+1$. Hence, $\operatorname{\epsilon r}(T) \leq \epsilon(2 k+1)$. Now this will be at most $k-3-\gamma$ as desired as long as $3+2 \epsilon+\gamma \leq(1-2 \epsilon) k$. Yet $k=|V(P)| \geq 5$ and hence it is sufficient to require that $12 \epsilon+\gamma \leq 2$.

So we may suppose that $T^{\prime \prime}$ is an instrumental orchestra. By Lemma 2.10.13, there are at most four vertices with list of size at least four in C^{\prime}. Hence, $\left|V\left(C^{\prime}\right)\right| \leq$ $3|V(P)|+3$, because we have to account for cutvertices and cutedges in $T^{\prime \prime}$ which were already on the boundary of C. But then $\left|V\left(C^{*} \backslash P\right)\right| \leq 2\left|V\left(C^{\prime}\right)\right|$ as every vertex in $V\left(C^{*} \backslash P\right) \backslash V\left(C^{\prime}\right)$ would have to be the center of a double bellow or defective double bellows or the hinge of a bellows. Thus $\left|V\left(C^{*} \backslash P\right)\right| \leq 6|V(P)|+6$. So $\epsilon R(T) \leq 6 \epsilon|V(P)|+6 \epsilon$. Now this will be at most $|V(P)|-3-\gamma$ as desired as long as $3+6 \epsilon+\gamma \leq(1-6 \epsilon)|V(P)|$. Yet $|V(P)| \geq 5$ and hence it is sufficient to require that $36 \epsilon+\gamma \leq 2$.

Corollary 3.8.2. If T is a critical path-canvas, then $\left|V\left(C^{*}\right)\right| \leq 20|V(P)|$.
Theorem 3.8.3. If T is a critical path-canvas, then $\left|V\left(G^{*}\right)\right| \leq 580|V(P)|$.
Proof. By Corollary 3.8.2, $\left|V\left(C^{*}\right)\right| \leq 33|V(P)|$. But then $T\left[C^{*}\right]$ is a critical cyclecanvas. By the linear bound for critical cycle-canvases, $\left|V\left(G^{*}\right)\right| \leq 29\left|V\left(C^{*}\right)\right| \leq$ 580|V(P)|.

3.9 Logarithmic Distance for Paths

Definition. Let $T=(G, S, L)$ be a canvas. Let γ be a closed curve in the plane such that γ intersects G only at vertices of G. We say that γ is a slicer of T if there is no vertex of S in the interior of the disk whose boundary is γ. Let C be the outer walk of G. Let k be the number of times C and γ cross (as opposed to intersect). Define the dimension of γ to be $k / 2$.

If γ is a slicer of T, we define a canvas $T_{\gamma}=\left(G^{\prime}, S^{\prime}, L\right)$ as follows. Let G^{\prime} be the graph obtained by intersecting G with the closed disk bounded by γ. Let S^{\prime} be the graph obtained by intersecting G with γ. We say that T_{γ} is a slice and define its dimension to be the minimum of the dimension of γ^{\prime} over all slicers γ^{\prime} of T such $T_{\gamma}=T_{\gamma^{\prime}}$. We also say that S^{\prime} is the boundary of the slice.

Note that if T^{\prime} is a slice of a critical canvas T, then T^{\prime} is also critical by Lemma 3.2.1.

Lemma 3.9.1. Let $T=(G, S, L)$ be a critical canvas. Suppose there exists a path P in the outer walk of G such that $S \subseteq P$ and for all $v \in V(P) \backslash V(S),|L(v)|=5$, then $|V(G)| \leq 1160|V(S)|$.

Proof. For every two consecutive vertices of S in P, add a new vertex adjacent to only those two vertices. Let P^{\prime} be the path on the new vertices and the vertices of S. Let G^{\prime} be the graph with vertex set $V\left(P^{\prime}\right) \cup V(G)$ and edge set $E\left(P^{\prime}\right) \cup E(C)$. For every $v \in V\left(P^{\prime}\right) \backslash V(S)$, let $L(v)$ be any set of five colors. Now $\left(G^{\prime}, P^{\prime}, L\right)$ is a critical path-canvas. By Theorem 3.8.3, $\left|V\left(G^{\prime}\right)\right| \leq 580\left|V\left(P^{\prime}\right)\right|$. Hence, $|V(G)| \leq 1160|V(S)|$ as desired.

Corollary 3.9.2. Let $T=(G, S, L)$ be a critical canvas. If $T^{\prime}=\left(G^{\prime}, S^{\prime}, L\right)$ is a slice of T of dimension at most one, then $\left|V\left(G^{\prime}\right)\right| \leq 1160\left|V\left(S^{\prime}\right)\right|$.

Theorem 3.9.3. Let $T=(G, P, L)$ is a critical path-canvas and $X \subseteq V(G)$ separate G into two graphs G_{1}, G_{2} such that $G_{2} \cap P \subseteq X$, then $\left|V\left(G_{2}\right)\right| \leq 1160|X|$.

Proof. Let G^{\prime} be the union of X and all components of $G \backslash X$ that do not contain a vertex in P. Let X^{\prime} be all vertices in G^{\prime} that are in $S \cup V(C)$ or have a neighbor in $V(G) \backslash V\left(G^{\prime}\right)$. Clearly, $X^{\prime} \subseteq X$ as $S \cup V(C) \subseteq G_{1}$. Note the vertices of X^{\prime} lie on the outer face of G^{\prime} as they are either in P or have a path to a vertex of P through $G \backslash G^{\prime}$ and yet the vertices of P lie on the outer face of G. It follows that $T^{\prime}=\left(G^{\prime}, X^{\prime}, L\right)$ is a slice of T of dimension one. Furthermore T^{\prime} is critical. By

Theorem 3.9.2, $\left|V\left(G^{\prime}\right)\right| \leq 1160\left|X^{\prime}\right|$. Hence $\left|V\left(G_{2}\right)\right| \leq\left|V\left(G^{\prime}\right)\right| \leq 1160\left|X^{\prime}\right| \leq 1160|X|$ as desired.

Theorem 3.9.4. If $T=(G, P, L)$ is a critical path-canvas, $v_{0} \in V(G)$ and $X \subseteq V(G)$ such that X separates v from P, then $d\left(v_{0}, X\right) \leq 2320 \log |X|$.

Proof. We proceed by induction on the size of X. Let G_{1}, G_{2} be graphs such that $X=V\left(G_{1}\right) \cap V\left(G_{2}\right), C \subseteq G_{1}$ and $v_{0} \in V\left(G_{2}\right)$. By Theorem 1.4.2, $|X| \geq 2$ as T is critical. Thus, we may assume that $d\left(v_{0}, X\right)>2320$, as otherwise the theorem follows.

Let $X_{i}=\left\{v \in V\left(G_{2}\right) \mid d(v, X)=i\right\}$ and let $H_{i}=G\left[\bigcup_{j \geq i} X_{j}\right]$. As $\left|V\left(G_{2}\right)\right| \leq$ $1914|V(X)|$ by Theorem 3.9.3, there exists $i, 1 \leq i \leq 320$ such that $\left|X_{i}\right| \leq|X| / 2$. As $d\left(v_{0}, X\right)>2320, X_{i}$ separates v_{0} from C. By induction on $X_{i}, d\left(v_{0}, X_{i}\right) \leq$ $1160 \log \left|X_{i}\right| \leq 1160 \log |X|-1160$. Yet $d(v, X) \leq 1160$ for all $v \in X_{i}$ and hence $d\left(v_{0}, X\right) \leq 1160 \log \mathcal{C}$ as desired.

Theorem 3.9.5. [Logarithmic Distance for Path-Canvases] If $T=(G, P, L)$ is a critical path-canvas, then $d(v, P) \leq 2320 \log |P|$ for all $v \in V(G)$.

Proof. Follows from Theorem 3.6.3 with $X=P$.

Theorem 3.9.6. [Exponential Growth for Path-Canvases] If $T=(G, P, L)$ is a critical path-canvas and $v_{0} \in V(G) \backslash V(P)$, then for all $k \leq d\left(v_{0}, P\right),\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 2320}$.

Proof. Let $k \leq d\left(v_{0}, P\right)$. Now $N_{k}\left(v_{0}\right)$ separates v_{0} from C. By Theorem 3.9.4, $k=d\left(v_{0}, N_{k}\left(v_{0}\right)\right) \leq 58 \log \left|N_{k}\left(v_{0}\right)\right|$. Hence $\left|N_{k}\left(v_{0}\right)\right| \geq 2^{k / 2320}$ as desired.

3.10 Bottleneck Theorem for Two Paths

Definition. Let $T=(G, S, L)$ be a critical canvas. We say a vertex $v \in S$ is relaxed if there exist two L-coloring ϕ_{1}, ϕ_{2} of S such that ϕ_{1}, ϕ_{2} do not extend to G, $\phi_{1}(v) \neq \phi_{2}(v)$ and $\phi_{1}(w)=\phi_{2}(w)$ for all $w \in S \backslash\{v\}$.

Theorem 3.10.1. If $T=\left(G, P_{1} \cup P_{2}, L\right)$ is a connected critical canvas, where P_{1}, P_{2} are disjoint paths of the outer walk C of G such that $d\left(\operatorname{Int}\left(P_{1}\right), \operatorname{Int}\left(P_{2}\right)\right) \geq$ $\Omega\left(\left|P_{1}\right| \log \left|P_{1}\right|+\left|P_{2}\right| \log \left|P_{2}\right|\right)$, then there exists an essential chord of C whose ends have lists of size less than five and are not in $P_{1} \cup P_{2}$. (If $\left|P_{1}\right|$ or $\left|P_{2}\right|$ at most two, then measure distance to P_{1} or P_{2} respectively).

Proof. Let us proceed by induction on $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|$. Suppose without loss of generality that $\left|V\left(P_{1}\right)\right| \geq\left|V\left(P_{2}\right)\right|$. We may assume that $\left|V\left(P_{1}\right)\right| \geq 3$ as otherwise the theorem follows from Theorem 2.11.1.

We now prove a stronger statement. For $i \in\{1,2\}$, let R_{i} be the set of relaxed vertices of $\operatorname{Int}\left(P_{i}\right)$ and $S_{i}=\operatorname{Int}\left(P_{i}\right) \backslash R_{i}$. If $|V(P)|=2$, let $d_{r}(T)=\min \left\{d\left(R_{1}, P_{2}\right)+\right.$ $\left.1, d\left(S_{1}, P_{2}\right)\right\}$. If $|V(P)| \geq 3$, let $d_{r}(T)=\min \left\{d\left(R_{1}, R_{2}\right)+2, d\left(R_{1}, S_{2}\right)+1, d\left(S_{1}, R_{2}\right)+\right.$ 1, $\left.d\left(S_{1}, S_{2}\right)\right\}$.

Let $f\left(m_{1}, m_{2}\right)=2320\left(m_{1} \log m_{1}+m_{2} \log m_{2}\right)$.
We now prove that

$$
d_{r}(T) \leq f\left(\left|V\left(P_{1}\right)\right|,\left|V\left(P_{2}\right)\right|\right)+4
$$

Let $T=\left(G, P_{1} \cup P_{2}, L\right)$ be a counterexample to the formula above with a minimum number of vertices where $\left|V\left(P_{1}\right)\right| \geq\left|V\left(P_{2}\right)\right|$ without loss of generality. Let $k_{1}=$ $\left|V\left(P_{1}\right)\right|$ and $k_{2}=\left|V\left(P_{2}\right)\right|$. Hence $d\left(P_{1}, P_{2}\right)>f\left(k_{1}, k_{2}\right)$. Let C be the outer walk of G.

Claim 3.10.2. For $i \in\{1,2\}$, there does not exist $G_{i} \subseteq G$ such that $G_{i} \cap P_{3-i}=\emptyset$ and $\left(G_{i}, P_{i}, L\right)$ is a critical canvas.

Proof. Suppose not. Now $k_{i} \geq 3$ by Theorem 1.4.2. Furthermore, either P_{3-i} is contained in $\operatorname{Ext}(I)$ where I is an inlet of G_{i}, or, there exists an edge e in G_{i} which is an essential chord U of T whose ends both have lists of size less than five. Suppose the latter. As T is a counterexample, e must be incident with a vertex of P_{i}. Thus
$d\left(U, P_{i}\right) \leq 1$. By induction, it follows that $d\left(P_{3-i}, U\right) \leq f\left(k_{3-i}, 2\right)$; hence $d\left(P_{1}, P_{2}\right) \leq$ $f\left(k_{3-i}, 2\right)+2 \leq f\left(k_{3-i}, k_{i}\right)$ as $k_{i} \geq 3$, a contradiction.

So suppose the former. By Lemma 3.7.5, $|I|<\left|V\left(P_{i}\right)\right|$. Apply induction to the canvas between I and P_{3-i}. Thus $d\left(I, P_{3-i}\right) \leq f\left(|I|, k_{3-i}\right)$. By Theorem 3.9.5, $d\left(v, P_{i}\right) \leq 2320 \log k_{i}$. Hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

Hence there does not exist an edge e not in P_{i} with both ends of e in P_{i}. Let $P_{1}=$ $p_{1} p_{2} \ldots p_{k_{1}}$. Let v_{1}, v_{2} be the vertices of C adjacent to P_{1} where $p_{1} v_{1}, p_{k_{1}} v_{2} \in E(C)$.

Claim 3.10.3. $N\left(v_{1}\right)=\left\{p_{1}\right\}, N\left(v_{2}\right)=\left\{p_{k_{1}}\right\}$, and neither v_{1} nor v_{2} is in a chord of C or is a cutvertex of G (and hence $v_{1} \neq v_{2}$).

Proof. It suffices by symmetry to prove the claim for v_{1}. Suppose v_{1} is a cutvertex of G. As T is critical, v is an essential cutvertex. By induction applied to the canvas between v and P_{2}, we find that $d\left(v_{1}, P_{2}\right) \leq f\left(1, k_{2}\right)$ and hence $d\left(P_{1}, P_{2}\right) \leq f\left(1, k_{2}\right)+1$, a contradiction.

Similarly if v_{1} is in a chord $U=v_{1} v$ of C, U is an essential chord of C. Suppose that $v \neq p_{2}$. If $v \notin P_{1}$, let $P_{1}^{\prime}=U$ and let P_{1}^{\prime} be the union of U and the path from v to p_{k} otherwise. Note that $\left|V\left(P_{1}^{\prime}\right)\right| \leq k_{1}-1$ as $v \neq p_{2}$. Apply induction to the canvas between P_{1}^{\prime} and P_{2} to find that $d\left(U, P_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$ and hence $d\left(P_{1}, P_{2}\right) \leq f\left(2, k_{2}\right)+2$, a contradiction.

So we may suppose that $v=p_{2}$. Let $U^{\prime}=p_{2} u_{1}$ be the chord of C with u_{1} on the path from v_{1} to P^{\prime} and u_{1} closest to P^{\prime}. As T is critical, $p_{1} p_{2} u_{1}$ is the base of a bellows W. Let $P_{1}^{\prime}=u_{1} p_{2} p_{3} \ldots p_{k_{1}}$. Consider the canvas $T^{\prime}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}, L\right)$ from P_{1}^{\prime} to P_{2}. Now T^{\prime} is critical. As T is a minimum counterexample, $d_{r}(T) \leq f\left(k_{1}, k_{2}\right)+4$.

We claim that $R\left(P_{1}\right) \backslash\left\{p_{2}\right\} \subseteq R\left(P_{1}^{\prime}\right) \backslash\left\{p_{2}\right\}$. To see this, let $u \in R\left(P_{1}\right) \backslash\left\{p_{2}\right\}$. Thus there exist two L-colorings ϕ_{1}, ϕ_{2} of $P_{1} \cup P_{2}$ that do not extend to an L-coloring of G such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise. By Theorem 1.4.2, ϕ_{1} extends to an L-coloring ϕ of W. Let $\phi_{1}\left(u_{1}\right)=\phi_{2}\left(u_{1}\right)=\phi\left(u_{1}\right)$. As $\phi_{1}=\phi_{2}(w)$ for all $w \neq u$. Now
ϕ_{1}, ϕ_{2} are L-colorings of $P_{1}^{\prime} \cup P_{2}$ that do not extend to an L-coloring of $G \backslash\}$ such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise. Thus u is relaxed for T^{\prime}. So $u \in R\left(P_{1}^{\prime}\right) \backslash\left\{p_{2}\right\}$ as claimed.

If $R\left(P_{1}\right) \subseteq R\left(P_{1}^{\prime}\right)$, then it follows that $d_{r}(T) \leq d_{r}(T)$ and hence $d_{r}(T) \leq f\left(k_{1}, k_{2}\right)+$ 4 , a contradiction. By the claim of the last paragraph then, we may assume that p_{2} is relaxed in T and yet p_{2} is not relaxed in T^{\prime}. Thus there exist two L-colorings ϕ_{1}, ϕ_{2} of $P_{1} \cup P_{2}$ that do not extend to an L-coloring of G such that $\phi_{1}\left(p_{2}\right) \neq \phi_{2}\left(p_{2}\right)$ and $\phi_{1}=\phi_{2}$ otherwise. Yet ϕ_{1} extends to an L-coloring ϕ_{1}^{\prime} of W by Theorem 1.4.2. If $\phi_{1}^{\prime}\left(u_{1}\right) \neq \phi_{2}\left(p_{2}\right)$, then as argued above, it follows that p_{2} is relaxed, a contradiction. So $\phi_{1}^{\prime}\left(u_{1}\right)=\phi_{2}\left(p_{2}\right)$. Similarly, we find that ϕ_{2} extends to an L-coloring ϕ_{2}^{\prime} of W and $\phi_{2}^{\prime}\left(u_{1}\right)=\phi_{1}\left(p_{2}\right)$.

Thus $\phi_{1}\left(p_{2}\right), \phi_{2}\left(p_{2}\right) \in L\left(u_{1}\right)$. Note that $\phi_{1}\left(p_{3}\right) \neq \phi_{1}\left(p_{2}\right), \phi_{2}\left(p_{2}\right)$. Consider in T^{\prime}, the democratic reduction $T^{\prime \prime}=\left(G^{\prime \prime}, P_{1}^{\prime \prime} \cup P_{2}, L^{\prime \prime}\right)$ of p_{2}, u_{1} with respect to $\left\{\phi_{1}\left(p_{2}\right), \phi_{2}\left(p_{2}\right)\right\}$ centered around p_{3}. Now there exists a critical subcanvas T_{0} of $T^{\prime \prime}$.

Suppose that T_{0} is connected. First suppose there exists a chord of T_{0} whose ends have lists from $L^{\prime \prime}$ of size less than three and are not in $P_{1}^{\prime \prime} \cup P_{2}$. Let U_{0} be such a chord closest to P_{2}. Now U_{0} is not a chord of C as T is a counterexample. Hence at least one of its ends is adjacent to either p_{2} or u_{1}. Thus $d\left(P_{1}, U_{0}\right) \leq 2$. Yet by induction, $d\left(U_{0}, P_{2}\right) \leq f\left(2, k_{2}\right)$ and hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction. So we may suppose there is no such chord. By induction, $d\left(P_{1}^{\prime \prime}, P_{2}\right) \leq f\left(k_{1}-2, k_{2}\right)$, a contradiction.

So we may suppose that T_{0} is not connected. Now it follows from Claim 3.10.2 that the component of T_{0} containing P_{2} is just P_{2}. But then there exists an inlet I, $|I|<\left|P_{1}^{\prime}\right|$ of the component of T_{0} containing P_{1}^{\prime} separating $P_{1}^{\prime \prime}$ from P_{2} in $T^{\prime \prime}$. Hence there exists a path $P_{0},\left|V\left(P_{0}\right)\right| \leq k_{1}-1$ vertices with $d\left(v, P_{1}\right) \leq \log k_{1}$ for all vertices $v \in V\left(P_{0}\right)$. By induction $d\left(P_{0}, P_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$ and hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

Consider the Thomassen reductions $T_{1}=\left(G_{1}, P_{1} \cup P_{2}, L_{1}\right)$ and $T_{2}=\left(G_{2}, P_{1} \cup\right.$ P_{2}, L_{2}), of v_{1} and v_{2} respectively. As T is critical, there exist critical subcanvases $T_{1}^{\prime}=\left(G_{1}^{\prime}, P_{1} \cup P_{2}, L_{1}\right)$ and $T_{2}^{\prime}=\left(G_{2}^{\prime}, P_{1} \cup P_{2}, L_{2}\right)$ of T_{1} and T_{2}, respectively.

Claim 3.10.4. For $i \in\{1,2\}, T_{i}^{\prime}$ is disconnected.

Proof. Suppose not. Suppose without loss of generality that T_{1}^{\prime} is connected. As T is a minimum counterexample, it follows that there exists an essential chord $U=u_{1} u_{2}$ of T_{1}^{\prime} whose ends have lists of size less than five and are not in $P_{1} \cup P_{2}$. We may assume that U is such a chord closest to P_{2}. As T is a counterexample, U is not a chord of C. So we may suppose without loss of generality that $u_{1} \notin V(C)$. Yet $\left|L_{1}\left(u_{1}\right)\right|<5$. Thus u_{1} is adjacent to v_{1}.

Consider the subcanvas $T_{1}^{\prime \prime}$ of T_{1}^{\prime} from U to P_{2}. Moreover, $T_{1}^{\prime \prime}$ is critical. As U was chosen closest to P_{2}, there does not exist an essential chord U^{\prime} of $T_{1}^{\prime \prime}$ whose ends have lists of size less than five and are not in $P_{1} \cup P_{2}$. But then as T is a minimum counterexample, we find that $d\left(U, P_{2}\right) \leq f\left(2, k_{2}\right)$. Yet $d\left(U, P_{1}\right) \leq 2$ as u_{1} is adjacent to v_{1}. Hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

It now follows that that the component G_{0} of G_{i}^{\prime} containing P_{2} is just P_{2}. Suppose not. Then $G_{0} \cap P_{1}=\emptyset$ and $\left(G_{0}, P_{2}, L\right)$ is a critical canvas. It follows from Claim 3.10.2 that there exists a vertex $u \in G_{0}$ such that $L(u) \neq L_{1}(u)$. Thus u is adjacent to v_{1}. So $d\left(u, P_{1}\right) \leq 2$ and yet $d\left(u, P_{2}\right) \leq 2320 \log \left|P_{2}\right|$ by Theorem 3.9.5. Hence, $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

We prove the following useful claim.

Claim 3.10.5. For all i where $2 \leq k_{1}-1$, there does not exist a vertex v adjacent to p_{i-1}, p_{i}, p_{i+1}.

Proof. Suppose not. By Claim 3.10.3 that $v \notin V(C)$ and hence $|L(v)|=5$.
Let P_{1}^{\prime} be the path obtained from P_{1} by replacing p_{i} with v. Now $\left|P_{1}^{\prime}\right|=k_{1}$. Consider the canvas $T^{\prime}=\left(G \backslash\left\{p_{i}\right\}, P_{1}^{\prime} \cup P_{2}, L\right)$ between P_{1}^{\prime} and P_{2}. Now T^{\prime} is critical.

As T is a counterexample, there cannot exist a chord of the outer walk of T^{\prime} whose ends have lists of size less than five and are not in $P_{1}^{\prime} \cup P_{2}$. Thus as T is a minimum counterexample to the formula above, we find that $d_{r}\left(T^{\prime}\right) \leq f\left(k_{1}, k_{2}\right)+4$.

Now we claim that v is relaxed in T^{\prime}. Let ϕ be an L-coloring of $P_{1} \cup P_{2}$ that does not extend to an L-coloring of G. Let $S(v)=L(v) \backslash\left\{\phi\left(p_{i-1}\right), \phi\left(p_{i}\right), \phi\left(p_{i+1}\right)\right\}$. Note then that $|S(v)| \geq 2$ as $|L(v)|=5$. Let $c_{1}, c_{2} \in S(v)$. For $i \in\{1,2\}$, let $\phi_{i}(v)=c_{i}$ and $\phi_{i}=\phi$ otherwise. Hence ϕ_{1}, ϕ_{2} are L-colorings of $P_{1}^{\prime} \cup P_{2}$ that do not extend to an L-coloring of $G \backslash\left\{p_{i}\right\}$ such that $\phi_{1}(v) \neq \phi_{2}(v)$ but $\phi_{1}=\phi_{2}$ otherwise. So v is relaxed as claimed.

Next we claim that $R\left(P_{1}\right) \subseteq R\left(P_{1}^{\prime}\right) \backslash\{v\}$. To see this, let $u \in R\left(P_{1}\right)$. Thus there exist two L-colorings ϕ_{1}, ϕ_{2} of $P_{1} \cup P_{2}$ that do not extend to an L-coloring of G such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise.

Suppose $u \neq p_{i}$. Let $S(v)=L(v) \backslash\left\{\phi_{1}\left(p_{i-1}\right), \phi_{2}\left(p_{i-1}\right), \phi_{1}\left(p_{i}\right), \phi_{2}\left(p_{i}\right), \phi_{1}\left(p_{i+1}\right), \phi_{2}\left(p_{i+1}\right)\right\}$. As $\phi_{1}=\phi_{2}(w)$ for all $w \neq u$, we find that $|S(v)| \geq 1$ as $|L(v)|=5$. Let $c \in S(v)$ and $\phi_{1}(v)=\phi_{2}(v)=c$. Now ϕ_{1}, ϕ_{2} are L-colorings of $P_{1}^{\prime} \cup P_{2}$ that do not extend to an L-coloring of $G \backslash\left\{p_{i}\right\}$ such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise. Thus u is relaxed for T^{\prime}. So $u \in R\left(P_{1}^{\prime}\right) \backslash\{v\}$ as claimed.

Suppose $u=p_{i}$. If $\phi_{1}\left(p_{i-1}\right)=\phi_{1}\left(p_{i+1}\right)$, let G^{\prime} be obtained from G by deleting p_{i} and identifying p_{i-1} and p_{i+1} to a single vertex. If $\phi_{1}\left(p_{i-1}\right) \neq \phi_{1}\left(p_{i+1}\right)$, let G^{\prime} be obtained from G by deleting p_{i} and adding an edge between p_{i-1} and p_{i+1}. Let P_{1}^{\prime} be the resulting path on $P_{1} \backslash\left\{p_{i}\right\}$. Consider $T^{\prime}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}, L\right)$. Now there does not exist an L^{\prime}-coloring of G that extends ϕ_{1}.

Hence T^{\prime} contains a critical subcanvas $T^{\prime \prime}$. If $T^{\prime \prime}$ is connected, then $d\left(P_{1}, P_{2}\right) \leq$ $d\left(P_{1}^{\prime}, P_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$, a contradiction. If $T^{\prime \prime}$ is not connected, then there exists $G_{1} \subseteq G$ such that $G_{1} \cap P_{2}=\emptyset$ and $\left(G_{1}, P_{1}, L\right)$ is a critical canvas, contradicting Claim 3.10.2. Thus $R\left(P_{1}\right) \subset R\left(P_{1}^{\prime}\right) \backslash\{v\}$ as claimed.

But now it follows that $d_{r}(T) \leq d_{r}\left(T^{\prime}\right)$ and hence $d_{r}(T) \leq f\left(k_{1}, k_{2}\right)+4$, contrary
to the fact that T was a counterexample to this formula.

Claim 3.10.6. For $i \in\{1,2\}, T_{i}^{\prime}$ is a bellows with base $p_{1} p_{2} p_{3}$ or base $p_{k_{1}-2} p_{k_{1}-1} p_{k_{1}}$. Proof. Suppose not. It suffices to prove the claim for T_{1}^{\prime}. If there exists a chord of T_{1}^{\prime} which separates P_{1} from P_{2} in T_{1}, then we obtain a contradiction as in Claim 3.10.4. So we may assume that there is an inlet I of T_{1}^{\prime} which separates P_{1} from P_{2}. Suppose $|I| \leq k_{1}-2$. Consequently, there is a path P_{1}^{\prime} in G with size at most $k_{1}-1$ that separates P_{1} from P_{2} such that $d\left(v, P_{1}\right) \leq 2320 \log k_{1}$ for all $v \in V\left(P_{1}^{\prime}\right)$. As T is a counterexample, there does not exist an essential chord whose ends have lists of size less than five and are not in $P_{1} \cup P_{2}$. By induction, it follows that $d\left(P_{1}^{\prime}, P_{2}\right) \leq$ $f\left(\left|V\left(P_{1}^{\prime}\right)\right|, k_{2}\right)$ and hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$ as $\left|V\left(P_{1}^{\prime}\right)\right| \leq k_{1}-1$, a contradiction.

So we may assume that $|I| \geq k_{1}-1$. By Lemma 3.7.5, $|I|=k_{1}-1$ and T_{1}^{\prime} is a bellows whose base is the first or last three vertices of P_{1}.

Claim 3.10.7. $k_{1}=3$.

Proof. Suppose not. Hence $k_{1} \geq 4$. By Claim 3.10.6, T_{1}^{\prime} is a bellows with base $p_{i-1} p_{i} p_{i+1}$ for $i \in\left\{2, k_{1}-2\right\}$. By Claim 3.10.5 there does not exist a vertex v of P_{1} adjacent to p_{i-1}, p_{i}, p_{i+1}. Thus there exists a chord $U=p_{i} v$ of T_{1}^{\prime} where $v \notin V\left(P_{1}\right)$. By Claim 3.10.3, $v \notin V(C)$. Yet $\left|L_{i}(v)\right|=3$ as T_{1}^{\prime} is a bellows. Thus v is adjacent to v_{1}.

Consider the path P^{\prime} from v to p_{i+1} in outer walk of T_{1}^{\prime} avoiding p_{i}; let v^{\prime} be the closest vertex of P^{\prime} to p_{i+1}, as measured in P^{\prime}, such that v^{\prime} is adjacent to v_{1}. Note that $v^{\prime} \notin V(C)$ by Claim 3.10.3. Let $v^{\prime \prime}$ be the neighbor of v^{\prime} in P^{\prime} closer to $p_{k_{1}}$. Given how v^{\prime} was chosen, it follows that $v^{\prime \prime} \in V(C)$. Now $P_{1}^{\prime \prime}=v_{1} v v^{\prime \prime}$ is a path on three vertices separating P_{1} from P_{2}. Moreover, $d\left(P_{1}^{\prime \prime}, P_{1}\right) \leq 1$ and $d\left(P_{1}^{\prime \prime}, P_{2}\right) \leq f\left(3, k_{2}\right)$ by induction. Hence $d\left(P_{1}, P_{2}\right) \leq f\left(k_{1}, k_{2}\right)$ as $k_{1} \geq 4$, a contradiction.

Thus by Claim 3.10.6, T_{1}^{\prime} and T_{2}^{\prime} are bellows with base $P_{1}=p_{1} p_{2} p_{3}$. By Claim 3.10.5, there does not exist $v \notin V(C)$ such that $v \sim p_{1}, p_{2}, p_{3}$. Hence for $i \in\{1,2\}, T_{i}^{\prime}$ is
not a turbofan and thus there exists a chord of T_{i}^{\prime}. For $i \in\{1,2\}$, let $U_{i}=p_{2} x_{i}$ be a chord of T_{i}^{\prime}. By Claim 3.10.3, $x_{i} \notin V(C)$. Thus x_{i} is adjacent to v_{i}. Furthermore as there are no vertices in the interior of the 4 -cycles $p_{2} x_{1} v_{1} p_{1}$ and $p_{2} x_{2} v_{2} p_{3}$, we find that $x_{1} \sim p_{1}$ and $x_{2} \sim p_{3}$.

By Claim 3.10.5, we find that $x_{1} \neq x_{2}$. Indeed, it follows that U_{i} is the only chord of T_{i}^{\prime} for $i \in\{1,2\}$. So consider the bellows $T_{1}^{\prime \prime}$ in T_{1}^{\prime} with base $x_{1} p_{2} p_{3}$. Now $T_{1}^{\prime \prime}$ must be a turbofan and hence x_{2} is the center of its wheel. That is, $x_{2} \sim x_{1}$ and $x_{1} x_{2} p_{3}$ is the base of an even fan. Let $x_{3} \neq p_{2}$ such that $x_{3} \sim x_{1}, x_{2}$. By symmetry there also exists a turbofan $T_{2}^{\prime \prime}$ in T_{2}^{\prime} with base $x_{2} p_{2} p_{1}$ where x_{1} is the center of its wheel and $x_{2} x_{1} p_{1}$ is the base of an even fan. Moreover, x_{3} is in both $T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$.

If x_{3} is not adjacent to v_{1}, then the edge in the outer walk of $T_{1}^{\prime \prime}$ incident with x_{3} but not with x_{1} is a chord whose ends have lists of size less than five but are not in $P_{1} \cup P_{2}$, contrary to the fact that T is a counterexample. So $x_{3} \sim v_{1}$ and by symmetry $x_{3} \sim v_{2}$.

Now let ϕ be an L-coloring of P_{1} that does not extend to an L-coloring of G. Let $S\left(x_{1}\right)=L\left(x_{1}\right) \backslash\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right)\right\}$ and let $S\left(x_{2}\right)=L\left(x_{2}\right) \backslash\left\{\phi\left(p_{2}\right), \phi\left(p_{3}\right)\right\}$. Given $T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$, we may assume that $\left|S\left(x_{1}\right)\right|,\left|S\left(x_{2}\right)\right|=3$.

Suppose $S\left(x_{1}\right) \neq S\left(x_{2}\right)$. Hence $\left|S\left(x_{1}\right) \cap S\left(x_{2}\right)\right| \leq 2$. Let $G^{\prime}=G \backslash\left(P \cup\left\{x_{1}, x_{2}\right\}\right) \cup$ $\left\{z_{1}, z_{2}\right\}$ where $z_{1} \sim z_{2}, x_{3}, v_{1}$ and $z_{2} \sim z_{1}, x_{3}, v_{2}$. Let $L^{\prime}\left(z_{1}\right)=\left\{c_{1}\right\}$ and $L^{\prime}\left(z_{2}\right)=$ $\left\{c_{2}\right\}$ where c_{1}, c_{2} are brand new colors, that is not in $\bigcup_{v \in V(G)} L(v)$. Let $L^{\prime}\left(v_{1}\right)=$ $\left(L\left(v_{1}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}\right) \cup c_{1}$ and $L^{\prime}\left(v_{2}\right)=\left(L\left(v_{2}\right) \backslash\left\{\phi\left(p_{3}\right)\right\}\right) \cup c_{2}$. Finally let $L^{\prime}\left(x_{3}\right)=$ $\left(L\left(x_{3}\right) \backslash\left(S\left(x_{1}\right) \cap S\left(x_{2}\right)\right)\right) \cup\left\{c_{1}, c_{2}\right\}$ and $L^{\prime}=L$ otherwise. Now $T^{\prime}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}, L^{\prime}\right)$ with $P_{1}^{\prime}=z_{1} z_{2}$ is a canvas and there does not exist an L^{\prime}-coloring of G^{\prime} as there does not exist an L-coloring of G. Thus T^{\prime} contains a connected critical subcanvas $T^{\prime \prime}$. Yet as T is counterexample, there does not exist a chord of G^{\prime} whose ends have lists of size less than five and are not in $P_{1}^{\prime} \cup P_{2}$. By induction $d\left(P_{1}^{\prime}, P_{2}\right) \leq f\left(2, k_{2}\right)$. But then $d\left(P_{1}, P_{2}\right) \leq f\left(3, k_{2}\right)$, a contradiction.

So we may assume that $S\left(x_{1}\right)=S\left(x_{2}\right)$. Let $G^{\prime}=G \backslash\left(P \cup\left\{x_{1}, x_{2}\right\}\right) \cup\left\{v_{1} v_{2}\right\}$. Let $L^{\prime}\left(v_{1}\right)=L\left(v_{1}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}, L^{\prime}\left(v_{2}\right)=L\left(v_{2}\right) \backslash\left\{\phi\left(p_{3}\right)\right\}$ and $L^{\prime}=L$ otherwise. Now $T^{\prime}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}, L^{\prime}\right)$ with $P_{1}^{\prime}=v_{1} v_{2}$ is a canvas and there does not exist an L^{\prime} coloring of G^{\prime} as there does not exist an L-coloring of G. Thus T^{\prime} contains a connected critical subcanvas $T^{\prime \prime}$. Yet as T is counterexample, there does not exist a chord of G^{\prime} whose ends have lists of size less than five and are not in $P_{1}^{\prime} \cup P_{2}$. By induction $d\left(P_{1}^{\prime}, P_{2}\right) \leq f\left(2, k_{2}\right)$. But then $d\left(P_{1}, P_{2}\right) \leq f\left(3, k_{2}\right)$, a contradiction.

Theorem 3.10.8. If $T=\left(G, P \cup P^{\prime}, L\right)$ is a connected critical canvas, where P, P^{\prime} are disjoint paths of C such that there is no chord of the outer walk of G whose ends have lists of size less than five and are not in $P \cup P^{\prime}$, then $|V(G)|=O\left(|P|+\left|P^{\prime}\right|\right)$.

Proof. Let $d=d\left(P, P^{\prime}\right)$ and P_{0} be a shortest path from P to $P^{\prime} . P_{0}$ creates up to two paths P_{1}, P_{2}, whose lengths are at most $O\left(d+|P|+\left|P^{\prime}\right|\right)$. Moreover $G=\operatorname{Ext}\left(P_{1}\right) \cup$ $\operatorname{Ext}\left(P_{2}\right)$. Yet $\left(\operatorname{Ext}\left(P_{1}\right), P_{1}, L\right)$ and $\left(\operatorname{Ext}\left(P_{2}\right), P_{2}, L\right)$ are critical path-canvases. By Theorem 3.8.3, $\left|V\left(\operatorname{Ext}\left(P_{1}\right)\right)\right|=O\left(\left|P_{1}\right|\right)$ and $\left|V\left(\operatorname{Ext}\left(P_{2}\right)\right)\right|=O\left(\left|P_{2}\right|\right)$. Hence $|V(G)|=$ $O\left(d+|P|+\left|P^{\prime}\right|\right)$.

If $d \leq O\left(|P|+|P|^{\prime}\right)$, then $|V(G)|=O\left(|P|+\left|P^{\prime}\right|\right)$ as desired. So suppose $d \geq$ $\Omega\left(|P|+\left|P^{\prime}\right|\right)$. Hence $|V(G)| \leq c d$ for some constant c. There must exist a distance $i_{1}, i_{2}, 1 \leq i_{1}, i_{2} \leq d / 4$ such that $\left|N_{i_{1}}\left(P_{1}\right)\right|,\left|N_{i_{2}}\left(P_{2}\right)\right| \leq 4 c$. Thus there exists a slice $T^{\prime}=\left(G^{\prime}, P_{3} \cup P_{4}, L\right)$ of dimension two where $P_{3} \subseteq N_{i_{1}}\left(P_{1}\right)$ and $P_{4} \subset N_{i_{2}}\left(P_{2}\right)$. Thus $d\left(P_{3}, P_{4}\right) \geq d / 2$. By Theorem 3.10.1 applied to T^{\prime}, we find that $d / 2 \leq d\left(P_{3}, P_{4}\right) \leq$ $f(4 c, 4 c)$ and hence $d \leq 2 f(4 c, 4 c)$. Thus $|V(G)| \leq c 2 f(4 c, 4 c))$, a constant, as desired.

Theorem 3.10.9. If $T=\left(G, P \cup P^{\prime}, L\right)$ is a connected critical canvas, where P, P^{\prime} are disjoint paths of C there is no chord of the outer walk of G whose ends have lists of size less than five and are not in $P \cup P^{\prime}$, then $d\left(P, P^{\prime}\right) \leq O\left(\log \left(|P|+\left|P^{\prime}\right|\right)\right)$.

Proof. There must exist a distance $i, 1 \leq i \leq 2 c$ where c is the constant in Theorem 3.10.8, such that either there are at most $\left|P_{1}\right| / 2$ vertices at distance i from P_{1} or there are at most $\left|P_{2}\right| / 2$ vertices at distance i from P_{2}. The corollary then follows by induction.

Theorem 3.10.10. [Logarithmic Distance Bottleneck Theorem: Two Paths] If $T=$ $\left(G, P \cup P^{\prime}, L\right)$ is a connected critical canvas, where P, P^{\prime} are disjoint paths of C such that there is no bottleneck $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d\left(U_{1}, U_{2}\right) \geq d$, then $d\left(P, P^{\prime}\right) \leq O\left(\log \left(|P|+\left|P^{\prime}\right|\right)\right)+6 d$.

Proof. Suppose not. By Theorem 3.10.9, there exists a chord of the outer walk of G whose ends have lists of size less than five and are not in $P \cup P^{\prime}$. Let U_{1} be the closest such chord to P_{1} and U_{2} be the closest such chord to P_{2}. It follows from Theorem 3.10.9 that $d\left(P_{1}, U_{1}\right) \leq O(\log |P|)$ and $d\left(P_{2}, U_{2}\right) \leq O\left(\log \left|P^{\prime}\right|\right)$. Thus $d\left(U_{1}, U_{2}\right) \geq d\left(P, P^{\prime}\right)-O\left(\log \left(|P|+\left|P^{\prime}\right|\right)\right)$. Yet by Theorem 2.11.1, $d\left(U_{1}, U_{2}\right) \leq 6 d+22$ and the theorem follows.

Using Theorem 3.8.3, we also obtain a bound on $|V(G)|$ when there is no bottleneck with sides at distance at least d as follow.

Theorem 3.10.11. If $T=\left(G, P \cup P^{\prime}, L\right)$ is a connected critical canvas, where P, P^{\prime} are disjoint paths of C such that there is no bottleneck $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d\left(U_{1}, U_{2}\right) \geq d$, then $|V(G)| \leq O\left(|P|+\left|P^{\prime}\right|\right)+12 d$.

Theorem 3.10.12. [Exponential Growth Theorem: Two Paths] If $T=\left(G, P \cup P^{\prime}, L\right)$ is a connected critical canvas, where P, P^{\prime} are disjoint paths of C such that no bottleneck $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d\left(U_{1}, U_{2}\right) \geq d$, and $v_{0} \in V(G) \backslash V\left(P \cup P^{\prime}\right)$, then for all $k \leq d\left(v_{0}, P \cup P^{\prime}\right),\left|N_{k}\left(v_{0}\right)\right| \geq 2^{\Omega(k-6 d)}$.

Proof. Let $k \leq d\left(v_{0}, P \cup P^{\prime}\right)$. Now $N_{k}\left(v_{0}\right)$ separates v_{0} from C. By Theorem 3.9.4, $k=d\left(v_{0}, N_{k}\left(v_{0}\right)\right) \leq O\left(\log \left|N_{k}\left(v_{0}\right)\right|\right)+6 d$. Hence $\left|N_{k}\left(v_{0}\right)\right| \geq 2^{\Omega(k-6 d)}$ as desired.

3.11 Steiner Trees

Definition. Let G be a graph and $S \subset V(G)$. We say $T \subseteq G$ is a Steiner tree for S if T is a tree with a minimum number of edges such that $S \subset V(T)$. We let T^{*} denote the tree formed from T by supressing degree two vertices not in S. If $e \in E\left(T^{*}\right)$, we let $\psi(e)$ denote the path in T between the endpoints of e and we let $\operatorname{mid}(e)$ denote a mid-point of that path. We say that the path $\psi(e)$ is a seam of the tree T.

Lemma 3.11.1. Let $T=(G, S, L)$ be a canvas. If H is a Steiner tree of G for S and we let $B(e)$ denote $N_{|e| / 4-1}(\operatorname{mid}(e))$ for every seam e of H, then
(1) for all seams e of $H, B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$, and
(2) for all distinct seams e, f of $H, B(e) \cap B(f)=\emptyset$.

Proof.

Claim 3.11.2. There cannot exist a path from an internal vertex v in a seam e of H to a vertex in $H \backslash e$ that is shorter than mimimum of the length of the paths from v to the endpoints of e.

Proof. Otherwise, we could add such a path and delete whichever path from v to an endpoint of e that leaves H a tree.

We now prove (1). Let e be a seam of T. It follows from the claim above that $N_{|e| / 2-1}(\operatorname{mid}(e)) \cap(T \backslash \psi(e)=\emptyset$. Hence, $B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$.

We now prove (2). Let e and f be distinct seams of H. Suppose $B(e) \cap B(f) \neq \emptyset$. Suppose without loss of generality that $|e| \geq|f|$. But now there exists a path of length at most $|e| / 4+|f| / 4-2 \leq|e| / 2-2$ between $\operatorname{mid}(e)$ and $\operatorname{mid}(f)$ which is a vertex of $H \backslash e$, contradicting the claim above.

3.12 Bottleneck Theorem for Many Paths

Theorem 3.12.1. [Linear Bottleneck Theorem: Many Paths] If $T=(G, S, L)$ is a connected critical canvas, where S is the union of disjoint paths of C such that there is no bottleneck $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d\left(U_{1}, U_{2}\right) \geq d$, then $|V(G)|=O(d|S|)$.

Proof. Let T be a Steiner tree of G for S. It follows by applying Theorem 3.8.3 to all of the canvases made by T that

$$
|V(G)| \leq 957(2|E(T)|)
$$

. Yet, the number of seams of H is at most $2|S|$, as branch points are only necessary to span vertices in S.

As T^{*} was formed by supressing vertices of degree two in $T,\left|V(T) \backslash V\left(T^{*}\right)\right|=$ $\left|E(T) \backslash E\left(T^{*}\right)\right|$. Thus,

$$
|V(G)| \leq 580\left(4|S|+2\left|V(T) \backslash V\left(T^{*}\right)\right|\right)
$$

Let \mathcal{E} be the set of all seams e of $T, \phi(e) \backslash V\left(T^{*}\right) \neq \emptyset$. Hence, for all $e \in \mathcal{E}$, $\operatorname{mid}(e)$ exists. For all $e \in \mathcal{E}$, let $B(e)=N_{|e| / 4-1}(\operatorname{mid}(e))$. By Lemma 3.11 .1 (i), $B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$. It follows from Lemma 3.10.12 that $|B(e)| \geq 2^{c(|e| / 4-1-6 d)}$ for some constant c. Hence,

$$
|V(G)| \geq \sum_{e \in \mathcal{E}} 2^{c(|e| / 4-1-6 d)} \geq|\mathcal{E}| 2^{c\left(\sum_{e \in \mathcal{E}}(|e| / 4|\mathcal{E}|)-1-6 d\right)}
$$

where the last inequality follows from the concavity of the exponential function. Yet $\left|V(H) \backslash V\left(H^{*}\right)\right| \leq \sum_{e \in \mathcal{E}}|e|$. Combining, we find that

$$
|\mathcal{E}| 2^{(c / 4)\left(\sum_{e \in \mathcal{E}}|e|\right) /|\mathcal{E}|} / 2^{c(1+6 d)} \leq|V(G)| \leq|V(G)| \leq 1160\left(2|S|+\sum_{e \in \mathcal{E}}|e|\right) .
$$

We may suppose that $\sum_{e \in \mathcal{E}}|e| \geq 2|S|$ as otherwise $|V(G)| \leq 4640|S|$ as desired. Hence, $|V(G)| \leq 2320 \sum_{e \in \mathcal{E}}|e|$. Letting $x=\sum_{e \in \mathcal{E}} /|\mathcal{E}|$, the average size of a seam in $|\mathcal{E}|$, we find that

$$
2^{(c / 4) x} \leq 2320\left(2^{c(1+6 d)}\right) x
$$

Let $c^{\prime}=23202^{c(1+6 d)}$. Hence, $x \leq \max \left\{4 \log \left(4 c^{\prime} / c\right) / c, 4 / c\right\}$, call this constant c_{0}. Note that $c_{0}=O(d)$. Hence,

$$
|V(G)| \leq 2320 c_{0}|\mathcal{E}| \leq 4640 c_{0}|S|
$$

as $|\mathcal{E}| \leq\left|E\left(H^{*}\right)\right|$. The theorem now follows with constant $\max \left\{4640 c_{0}, 4640\right\}=$ $O(d)$.

Corollary 3.12.2 (Logarithmic Distance Bottleneck Theorem: Many Vertices). There exists $D>0$ such that the following holds: If $T=(G, S, L)$ is a canvas, where S is the union of disjoint vertices $v_{1}, v_{2} \ldots$ such that $d\left(v_{i}, v_{j}\right) \geq D$ and no bottleneck $T^{\prime}=\left(G^{\prime}, U_{1} \cup U_{2}, L\right)$ of T where $d\left(U_{1}, U_{2}\right) \geq d$, then G has an L-coloring.

Proof. Suppose not. Then there exists $S^{\prime} \subseteq S$ and $G^{\prime} \subseteq G$ such that $\left(G^{\prime}, S^{\prime}, L\right)$ is a connected critical canvas. It follows from Theorem 3.10.12, that $\left|B_{D / 2}(v)\right| \geq 2^{\Omega(D)}$ for all $v \in V(S)$. Hence $\left|V\left(G^{\prime}\right)\right| \geq|S| 2^{\Omega(D)}$, contradicting Theorem 3.12.1 for large enough D.

CHAPTER IV

TWO PRECOLORED TRIANGLES

4.1 Introduction

In this chapter, we will prove the following theorem.

Theorem 4.1.1. [Two Precolored Triangles Theorem]
There exists d such that following holds:
Let G be a planar graph and T_{1} and T_{2} triangles in G such that $d\left(T_{1}, T_{2}\right) \geq d$. Let L be a list assignment of G such that $|L(v)| \geq 5$ for all $v \in V(G)$. If ϕ is an L-coloring of $T_{1} \cup T_{2}$, then ϕ extends to an L-coloring of G.

In Section 4.2 and 4.3, we develop a technique to color and delete a shortest path between T_{1} and T_{2} so that the resulting graph is a canvas (G, S, L) such that S is the union of two paths P_{1}, P_{2} corresponding to T_{1}, T_{2} respectively. In Section 4.4, we show that if a minimum counterexample to Theorem 4.1.1 does not have a long chain of triangles separating T_{1} from T_{2} where the graphs between any two consecutive triangles are one of three types then the canvas has a local L-coloring near each P_{i}. This then allows us to invoke Theorem 2.11.1 to produce a long bottleneck of the canvas.

In Sections 4.5 and 4.6, we show that a long bottleneck yields a similarly long chain of triangles separating T_{1} from T_{2} where the graphs between any two consecutive triangles just so happen to be the three types defined in Section 4.4. In Sections 4.7, 4.8 and 4.9 we develop a theory of sets of colorings, somewhat akin to that in Chapter 2, to prove that for long enough chains of triangles involving these three types of graphs any coloring of the inner and outer triangle extends to the whole graph. Finally in Section 4.10, we combine all of these results to prove Theorem 4.1.1.

4.2 Coloring a Shortest Path

Definition. Let G be a planar graph and $p_{0}, p_{n} \in V(G)$ where $d\left(p_{0}, p_{n}\right)=n$. Let $P=p_{0} p_{1} \ldots p_{n}$ be a shortest path between p_{0} and p_{n} in G. We say a vertex $v \in$ $V(G \backslash P)$ is a mate of $p_{i} \in P$ if $v \sim p_{i-1}, p_{i}, p_{i+1}$ and $1 \leq i \leq n-1$. We say a vertex $p \in P$ is doubled if p has a mate. We say a vertex $p \in P$ is tripled if p has two distinct mates.

We say a vertex $p \in P$ is quadrupled if p has three distinct mates. We will prove that in a planar graph there cannot be a quadrupled vertex.

We say a path P from p_{0} to p_{n} is an arrow from p_{0} to p_{n} if $P=p_{0} p_{1} \ldots p_{n}$ is a shortest path between p_{0} and p_{n} and the following property holds: for all i, $2 \leq i \leq n-1$, if p_{i} is tripled, then p_{i-1} is not doubled.

Proposition 4.2.1. Let G be a planar graph and p_{0}, p_{n} be vertices of G. Let P be a shortest path from p_{0} to p_{n}, then no internal vertex of P is quadrupled.

Proof. Suppose a vertex p_{i} of P is quadrupled. That is, p_{i} has three mates x_{1}, x_{2}, x_{3}. But that means each of x_{1}, x_{2}, x_{3} is adjacent to all of p_{i-1}, p_{i}, p_{i+1}. Thus $G\left[\left\{x_{1}, x_{2}, x_{3}\right.\right.$, $\left.p_{i-1}, p_{i}, p_{i+1}\right\}$] contains $K_{3,3}$ as a subgraph, a contradiction since G is planar.

Lemma 4.2.2. Let $n>0, G$ be a planar graph and p_{0}, p_{n-1}, p_{n} be vertices of G such that $d\left(p_{n}, p_{0}\right)=n, d\left(p_{n-1}, p_{0}\right)=n-1, p_{n-1} \sim p_{n}$. There exists an arrow $P=p_{0} \ldots p_{n-1} p_{n}$ from p_{0} to p_{n}.

Proof. We proceed by induction on $n=d\left(p_{n}, p_{0}\right)$. If $n=1$, then $p_{n-1}=p_{0}$ as $d\left(p_{n-1}, p_{0}\right)=0$. Hence $P=p_{0} p_{1}$ is an arrow from p_{0} to p_{1} as desired. So suppose $n \geq 2$. By induction, there exists an arrow $P^{\prime}=p_{0} \ldots p_{n-2} p_{n-1}$ from p_{0} to p_{n-1}. Now $P^{\prime}+p_{n}$ is an arrow from p_{0} to p_{n} as desired unless p_{n-1} is tripled and p_{n-2} is doubled. Let $p_{n-1}^{\prime}, p_{n-1}^{\prime \prime}$ be the mates of p_{n-1} and p_{n-2}^{\prime} be a mate of p_{n-2} in P^{\prime}.

By induction, there exists an arrow $P^{\prime \prime}=p_{0} \ldots p_{n-2}^{\prime} p_{n-1}$. Hence $P^{\prime \prime}+p_{n}$ is an arrow as desired unless p_{n-1} is tripled and p_{n-2}^{\prime} is doubled in $P^{\prime \prime}$. Yet the mates of p_{n-1} in $P^{\prime \prime}$ must be $p_{n-1}^{\prime}, p_{n-1}^{\prime \prime}$ as otherwise G contains a $K_{3,3}$ subdivision with branch points p_{n-2}, p_{n-1}, p_{n} and $p_{n-1}^{\prime}, p_{n-1}^{\prime \prime}, p_{n-1}^{\prime \prime \prime}$ where $p_{n-1}^{\prime \prime \prime}$ is a mate of p_{n-1} in $P^{\prime \prime}$ distinct from $p_{n-1}^{\prime}, p_{n-1}^{\prime \prime}$, a contradiction to the assumption that G is planar. But then G contains a K_{5} subdivision with branch points $p_{n-1}, p_{n-1}^{\prime}, p_{n-1}^{\prime \prime}, p_{n-2}$ and p_{n-2}^{\prime}.

Definition. Let G be a graph and L a list assignment for G. Let $S \subset V(G)$. We say a coloring ϕ of S is bichromatic if for all $v \in V(G \backslash S), \mid\{c \in L(v): \exists p \in V(S)$ such that $\phi(p)=c\} \mid \leq 2$.

Lemma 4.2.3. Let G be a planar graph and p_{0}, p_{n} be vertices of G such that $d\left(p_{0}, p_{n}\right)=$ n. Let P be an arrow from p_{0} to p_{n}. Suppose that $|L(v)|=5$ for all $v \in V(G) \backslash$ $\left\{p_{0}, p_{n-1}, p_{n}\right\}$ and that $\left|L\left(p_{0}\right)\right|=3$.
(1) If $\left|L\left(p_{n-1}\right)\right|=3$ and $\left|L\left(p_{n}\right)\right|=5$, then there exists a bichromatic L-coloring of P.
(2) If $\left|L\left(p_{n-1}\right)\right|=5$ and $\left|L\left(p_{n}\right)\right|=3$, then there exists a bichromatic L-coloring of P.

Proof. We proceed by induction on n. If $n \leq 1$, then there is surely a bichromatic L-coloring of P. Notice that we need only consider how a coloring of P affects the mates of vertices of P.

Consider p_{n-1}. By Proposition 4.2.1, p_{n-1} is not quadrupled. We now consider three cases.

- Case 1: p_{n-1} has no mate

Proof of (1)/(2): Apply induction using (2) to $P \backslash p_{n}$. There exists a bichromatic L-coloring of $P \backslash p_{n}$. Extend this coloring to p_{n}. As p_{n-1} has no mate, this coloring is bichromatic.

- Case 2: p_{n-1} has one mate v

That is p_{n-1} is doubled.
Proof of (1): Apply induction using (2) to $P \backslash p_{n}$. There exists a bichromatic L-coloring ϕ of $P \backslash p_{n}$. Now we need only color p_{n} so that v sees at most two colors from its list. We may suppose then that $\phi\left(p_{n-2}\right), \phi\left(p_{n-1}\right) \in L(v)$. But then either $\phi\left(p_{n-2}\right) \in L\left(p_{n}\right)$ or $L\left(p_{n}\right) \backslash L(v) \neq \emptyset$. Color p_{n} with such a color. Thus v will see at most two colors and ϕ is bichromatic.

Proof of (2): Apply induction successively three times using (1) to $P \backslash p_{n}$. Thus there exists three bichromatic L-colorings $\phi_{1}, \phi_{2}, \phi_{3}$ of $P \backslash p_{n}$ such that $\phi_{i}\left(p_{n-2}\right) \neq \phi_{j}\left(p_{n-2}\right)$ for all $i \neq j \in\{1,2,3\}$. Let $c_{i}=\phi_{i}\left(p_{n-2}\right)$. Let $\mathcal{C}=$ $\left\{c_{1}, c_{2}, c_{3}\right\}$.

If there exists i, such that $\phi_{i}\left(p_{n-1}\right) \notin L(v)$, then we may extend this coloring to p_{n} and it will be bichromatic as desired. So we may assume that for all i, $\phi_{i}\left(p_{n-1}\right) \in L(v)$.

Similarly, we may assume that $c_{i} \in L(v)$ for all i. Now if there exists i such that $c_{i} \in L\left(p_{n}\right)$, let $\phi_{i}\left(p_{n}\right)=c_{i}$ and then ϕ_{i} is bichromatic. So we may assume that $L\left(p_{n}\right) \cap \mathcal{C}=\emptyset$. As $\mathcal{C} \subset L(v)$, we find that $L\left(p_{n}\right) \backslash L(v) \neq \emptyset$. Now let $\phi_{1}\left(p_{n}\right) \in L\left(p_{n}\right) \backslash L(v)$ and it follows that ϕ_{1} is bichromatic.

- Case 3: p_{n-1} has two mates v_{1}, v_{2}

As P is an arrow, p_{n-2} has no mate. Apply induction using (ii) three times to $P \backslash\left\{p_{n-1}, p_{n}\right\}$ to find three colorings $\phi_{1}, \phi_{2}, \phi_{3}$ such that $\phi_{i}\left(p_{n-2}\right) \neq \phi_{j}\left(p_{n-2}\right)$ for all $i \neq j \in\{1,2,3\}$. Let $c_{i}=\phi_{i}\left(p_{n-2}\right)$. Let $\mathcal{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$. It suffices to show that we may extend one of these coloring to p_{n-1}, p_{n} such that neither v_{1} nor v_{2} sees more than two colors from its list.

Note that we may assume $L\left(v_{1}\right) \neq L\left(v_{2}\right)$ as otherwise we may proceed as if p_{n-1} had only one mate.

Proof of (1):
If there exists i such that $c_{i} \notin L\left(v_{1}\right), L\left(v_{2}\right)$, then we extend ϕ_{i} to p_{n-1} and p_{n}. Clearly ϕ_{i} is bichromatic in this case. So we may assume that $\mathcal{C} \subset L\left(v_{1}\right) \cup L\left(v_{2}\right)$. If there exists i such that $c_{i} \in L\left(v_{1}\right) \backslash L\left(v_{2}\right)$, then we let $\phi_{i}\left(p_{n}\right)=c_{i}$ if $L\left(p_{n}\right)=$ $L\left(v_{1}\right)$ and let $\phi_{i}\left(p_{n}\right) \in L\left(p_{n}\right) \backslash L\left(v_{1}\right)$ otherwise. We then extend ϕ_{i} to p_{n-1}. Now ϕ_{i} is bichromatic as p_{n-2} receives a color not in $L\left(v_{2}\right)$ and p_{n} receives either the same color as p_{n-2} or a color not in $L\left(v_{1}\right)$. So we may assume using symmetry that $\mathcal{C} \subset L\left(v_{1}\right) \cap L\left(v_{2}\right)$.

If $L\left(p_{n}\right) \backslash\left(L\left(v_{1}\right) \cup L\left(v_{2}\right)\right)$, extend ϕ_{1} to p_{n} using such a color and then to p_{n-1}. Now ϕ_{1} is bichromatic as p_{n} receives a color not in $L\left(v_{1}\right)$ or $L\left(v_{2}\right)$. So we may assume that $L\left(p_{n}\right) \subseteq L\left(v_{1}\right) \cup L\left(v_{2}\right)$.

If there exists i such that $c_{i} \in L\left(p_{n}\right)$, let $\phi_{i}\left(p_{n}\right)=c_{i}$ and then extend to p_{n-1}. Now ϕ_{i} is bichromatic as p_{n} and p_{n-2} receive the same color. So we may assume that $L\left(p_{n}\right) \cap \mathcal{C}=\emptyset$.

But then,

$$
L\left(p_{n}\right) \subseteq L\left(p_{n}\right) \backslash \mathcal{C} \subseteq\left(L\left(v_{1}\right) \cup L\left(v_{2}\right)\right) \backslash \mathcal{C} \subseteq\left(L\left(v_{1}\right) \backslash \mathcal{C}\right) \cup\left(L\left(v_{2}\right) \backslash \mathcal{C}\right)
$$

However as $\mathcal{C} \subset L\left(v_{1}\right), L\left(v_{2}\right)$ and $|\mathcal{C}|=3,\left|L\left(v_{1}\right) \backslash \mathcal{C}\right|=\left|L\left(v_{2}\right) \backslash \mathcal{C}\right|=2$. Thus, $\left|L\left(p_{n}\right)\right| \leq 4$, a contradiction.

Proof of (2):

As $L\left(v_{1}\right) \neq L\left(v_{2}\right)$, we may assume without loss of generality that $L\left(p_{n-1}\right) \backslash$ $L\left(v_{2}\right) \neq \emptyset$. Yet we may also assume that $L\left(p_{n-1}\right) \subseteq L\left(v_{1}\right) \cup L\left(v_{2}\right)$. Suppose not and let $c \in L\left(p_{n-1}\right) \backslash\left(L\left(v_{1}\right) \cup L\left(v_{2}\right)\right)$. There exists i such that $c_{i} \neq c$. Let $\phi_{i}\left(p_{n-1}\right)=c$ and extend to p_{n}. Now ϕ_{i} is bichromatic as p_{n-1} receives a color not in $L\left(v_{1}\right)$ or $L\left(v_{2}\right)$.

If there exists i such that $c_{i} \in L\left(p_{n}\right)$, let $\phi_{i}\left(p_{n}\right)=c_{i}$ and then extend to $p_{n_{1}}$. Now ϕ_{i} is bichromatic as p_{n} and p_{n-2} receive the same color. So we may assume that $L\left(p_{n}\right) \cap \mathcal{C}=\emptyset$.

Let $c \in L\left(p_{n-1}\right) \backslash L\left(v_{2}\right)$. As $L\left(p_{n}\right) \cap \mathcal{C}=\emptyset$,

$$
\left|\left(L\left(p_{n}\right) \backslash\{c\}\right) \cup(\mathcal{C} \backslash\{c\})\right| \geq 5
$$

which is larger than $\left|L\left(v_{1}\right) \backslash\{c\}\right|=4$ as $c \in L\left(v_{1}\right)$. Thus either there exists i such that $c_{i} \notin L\left(v_{1}\right)$ or $L\left(p_{n}\right) \backslash L\left(v_{1}\right) \neq \emptyset$.

In the former case, let $\phi_{i}\left(p_{n-1}\right)=c$ and extend to p_{n}. Now extend ϕ_{i} to p_{n}. As p_{n-2} receives a color not in $L\left(v_{1}\right)$ and p_{n-1} receives a color not in $L\left(v_{2}\right), \phi_{i}$ is bichromatic.

In the latter case, there exists i such that $c_{i} \neq c$. Let $\phi_{i}\left(p_{n-1}\right)=c$ and $\phi_{i}\left(p_{n}\right) \in$ $L\left(p_{n}\right) \backslash L\left(v_{1}\right)$. As p_{n} receives a color not in $L\left(v_{1}\right)$ and p_{n-1} receives a color not in $L\left(v_{2}\right), \phi_{i}$ is bichromatic.

Here is a definition which will be useful later.

Definition. Let P be an arrow from u to v of a plane graph G and $p \in P \backslash\{u, v\}$. Let p_{T} be the neighbor of p in P closest to v and p_{B} be the neighbor of p in P closest to u. We say that a neighbor z of p not in $V(P)$ is to the right of p if the vertices p_{T}, z, p_{B} appear in that order in the clockwise cyclic order of p and we say z is to the left if they appear in the order p_{B}, z, p_{T}. Similarly, we say z is a right mate of p if z is a mate of p that is to the right of p and we say z is left mate if z is a mate of p that is to the left of p. Furthermore, we say that an edge $e \notin E(P)$ incident with p is to the left if its other end z is to the left of p and to the right otherwise.

4.3 Planarizing a Prism-Canvas

We may now apply the technique of the preceding section to graphs embedded in the cylinder.

Definition. (Cylinder Cycle-Canvas, Prism-Canvas)
We say that $T=\left(G, C_{1}, C_{2}, L\right)$ is a cylinder cycle-canvas if G is a plane graph, C_{1} is the outer facial cycle of G, C_{2} is a facial cycle in G distinct from C_{1} and L is a list assignment for G such that $|L(v)| \geq 5$ for all $v \in V\left(G \backslash\left(C_{1} \cup C_{2}\right)\right),|L(v)| \geq 1$ for all $v \in V\left(C_{1}\right) \cup V\left(C_{2}\right), C_{1} \cup C_{2}$ has an L-coloring. We say T is a prism-canvas if $\left|C_{1}\right|=\left|C_{2}\right|=3$.

Definition. (Planarization)
Suppose that $d\left(C_{1}, C_{2}\right) \geq 3$. Let $P=p_{0} p_{1} \ldots p_{d-1} p_{d}$ be a shortest path between C_{1} and C_{2} where $p_{0} \in V\left(C_{1}\right)$ and $p_{d} \in V\left(C_{2}\right)$ such that $\left|N\left(p_{1}\right) \cap V\left(C_{1}\right)\right| \leq 2$ and $\left|N\left(p_{d-1}\right) \cap V\left(C_{2}\right)\right| \leq 2$, and $P^{\prime}=P \backslash\left\{p_{0}, p_{d}\right\}$ is an arrow from p_{1} to p_{d-1}.

We now define the planarization of $T=\left(G, C_{1}, C_{2}, L\right)$ with respect to P to be the canvas $\left(G_{0}, S, L^{\prime}\right)$ as follows: First let $G^{\prime}=G \backslash P^{\prime}$. Next fix a bicoloring ϕ of P^{\prime} for $G \backslash\left(C_{1} \cup C_{2}\right)$ from the lists L where ϕ can be extended to an L-coloring of $C_{1} \cup C_{2}$. Let $L^{\prime}(v)=L(v) \backslash\left\{\phi(u): u \sim v, u \in P^{\prime}\right\}$ for all $v \in G^{\prime} \backslash\left(C_{1} \cup C_{2}\right)$. Finally if p_{1} has one neighbor in C_{1}, cut C_{1} at p_{0} (i.e. split p_{0} into two vertices) and let P_{1} be the path between the vertices created by the split of p_{0} using vertices of C_{1}; otherwise, let P_{1} be the path between the two neighbors of p_{1} in the homotopically non-trivial way and delete the homotopically trivial part. Let P_{2} be defined in the same way for p_{d} and C_{2}. Let $L^{\prime}(v)=L(v)$ for all $v \in P_{1} \cup P_{2}$. Let G_{0} be the resulting graph, C its outer cycle and $S=P_{1} \cup P_{2}$. We say that Γ^{*} is a planarization of T is the planarization of T with respect to some such path P.

However there can be many choices of P and hence many planarizations of T. We will need to choose P such that the planarization maximizes certain structures.

Hence the following definitions.

Definition. Let (G, S, L) be a canvas. Let $U=u_{1} u_{2}$ be an essential chord of the outer walk C of G such that $\left|L\left(u_{1}\right)\right|,\left|L\left(u_{2}\right)\right|<5$. Let $G_{1} \cap G_{2}=U$ and $G_{1} \cup G_{2}=C \cup U$. We say that U is a stopping chord if there exists $i \in\{1,2\}$ such that there does not exist a vertex $z \in V\left(G_{i}\right)$ such $|L(z)|=3$ and $z \sim u_{1}, u_{2}$ and neither u_{1} nor u_{2} is in a chord of C with a vertex in $V\left(G_{i}\right) \backslash U$ whose ends have lists of size three. We say that U is a blocking chord if there exists $i, j \in\{1,2\}$ such that $\left|L\left(u_{i}\right)\right| \geq 4$, and, either $\mid L\left(u_{3-i} \mid \geq 4\right.$ or u_{3-i} has at most one neighbor with a list of size three in G_{j}. We say that U is a cut-edge if u_{1}, u_{2} are essential cutvertices of G.

Note that there does not exist a stopping chord, blocking chord, or cut-edge in the middle of a canvas containing an accordion or harmonica.

Definition. Let Γ be a cylinder canvas. Let Γ^{*} be a planarization of Γ and let $P=p_{0} p_{1} \ldots p_{d}$ where Γ^{*} is the planarization of Γ with respect to P. We say a cutedge $u_{1} u_{2}$ of Γ^{*} is dividing if u_{1} has neighbors $p_{1}, p_{1}^{\prime} \in V(P)$ such that u_{1} is to the left of p_{1} and to the right of p_{1}^{\prime} and similarly u_{2} has neighbors $p_{2}, p_{2}^{\prime} \in V(P)$ such that u_{2} is to the left of p_{2} and to the right of p_{2}^{\prime}.

We say Γ^{*} is good if over all such planarizations, Γ^{*} maximizes $\left|N_{C_{1}}\left(p_{1}\right)\right|+$ $\left|N_{C_{2}}\left(p_{d-1}\right)\right|$, and subject to that Γ^{*} maximizes the combined total of stopping chords, blocking chords and dividing cut-edges of Γ^{*}.

The maximization above for an optimal planarization will prove useful precisely because accordions and harmonicas do not have stopping chords, blocking chords or cut-edges.

4.4 Bands and Band Decompositions

Recall that our goal is to prove the following:

Theorem 4.4.1 (Two Precolored Triangles Theorem). There exists d such that following holds:

Let G be a planar graph and T_{1} and T_{2} triangles in G such that $d\left(T_{1}, T_{2}\right) \geq d$. If L is a list assignment of G such that $|L(v)| \geq 5$ for all $v \in V(G)$ and ϕ is a proper coloring of $T_{1} \cup T_{2}$, then ϕ extends to an L-coloring of G.

We will make certain assumptions about a minimum counterexample to Theorem 4.1.1. The following definition will prove useful in that regard.

Definition. (Nearly Triangulated)
Let $T=\left(G, C_{1}, C_{2}, L\right)$ be a cylinder cycle-canvas. We say T is nearly triangulated if for every face f in G such that f is not bounded by C_{1} or C_{2} or a triangle, and every two nonadjacent vertices $u, v \in \delta f, f$ is bounded by a cycle and $d_{G+\{u v\}}\left(C_{1}, C_{2}\right)<$ $d_{G}\left(C_{1}, C_{2}\right)$.

Proposition 4.4.2. Let $T=\left(G, C_{1}, C_{2}, L\right)$ be a nearly triangulated prism-canvas. If there is no vertex cut of size at most two separating C_{1} and C_{2}, then G is a triangulation.

Proof. Suppose not. Then there exists a face f not bounded by a triangle or C_{1}, C_{2}. As there is no cutvertex G, f is bounded by a cycle. Let u, v be two nonconsecutive vertices of f. As there is no vertex cut of size two, u is not adjacent to v. Yet as T is nearly triangulated, $d_{G+\{u v\}}\left(C_{1}, C_{2}\right)<d_{G}\left(C_{1}, C_{2}\right)$. Yet we note that there cannot exist two paths P_{1}, P_{2} in $G+\{u v\}$ from C_{1} to C_{2} with length less than $d=d_{G}\left(C_{1}, C_{2}\right)$ where u is closer to C_{1} in P_{1} and v is closer to C_{1} in P_{2}. As f is bounded by a cycle, it follows that there exists vertices $u_{1}, u_{2}, v_{2}, v_{1}$ that appear in f in that order such that $u_{1} \sim u_{2}, v_{1} \sim v_{2}$, and u_{1} is closer to C_{1} in every shortest path from C_{1} to C_{2} in $G+\left\{u_{1} v_{2}\right\}$ and u_{2} is closer to C_{2} in every shortest path from C_{1} to C_{2} in $G+\left\{u_{2} v_{1}\right\}$. Hence $d\left(u_{1}, C_{1}\right)+d\left(v_{2}, C_{2}\right)+1<d$ and $d\left(u_{2}, C_{2}\right)+d\left(v_{1}, C_{1}\right)+1<d$. But then either

$$
d \leq d\left(u_{1}, C_{1}\right)+d\left(u_{2}, C_{2}\right)+1<d \text { or } d \leq d\left(v_{1}, C_{1}\right)+d\left(v_{2}, C_{2}\right)+1<d, \text { a contradiction. }
$$

Definition. (Bands and Band Decompositions)
We say that a triple $\left(G, T_{1}, T_{2}\right)$ is a prismatic graph if G is a plane graph with two distinguished facial triangles $T_{1} \neq T_{2}$ where T_{1} bounds the infinite face of G. Recall that if C is a cycle in a plane graph G, then $\operatorname{Int}(C)$ denotes the closed disk containing with boundary C. If T_{3}, T_{4} are separating triangles in G, each separating a vertex in T_{1} from a vertex in T_{2} and $\operatorname{Int}\left(T_{3}\right) \supseteq \operatorname{Int}\left(T_{4}\right)$, then we let $G\left[T_{3}, T_{4}\right]$ denote the prismatic graph $\left(\left(G \cap \operatorname{Int}\left(T_{3}\right) \backslash \operatorname{Int}\left(T_{4}\right)\right) \cup T_{4}, T_{3}, T_{4}\right)$. We say a prismatic graph $\left(G, T_{1}, T_{2}\right)$ is a band if there does not exist a triangle T in G separating a vertex in T_{1} from a vertex in T_{2}.

We say that $\Gamma=\left(G, C_{1}, C_{2}, L\right)$ is a band if Γ is a prism-canvas and the prismatic graph $\left(G, C_{1}, C_{2}\right)$ is a band.

Note that every prismatic graph $\left(G, C_{1}, C_{2}\right)$ has a unique decomposition into bands. Namely, letting $T_{0}=C_{1}$ and $T_{m}=C_{2}$, consider the sequence of all triangles separating a vertex in C_{1} from a vertex in $C_{2}: \operatorname{Int}\left(T_{0}\right) \supset \operatorname{Int}\left(T_{1}\right) \supset \operatorname{Int}\left(T_{2}\right) \ldots \supset$ $\operatorname{Int}\left(T_{m-1}\right) \supset C_{2}=T_{m}$. Let $B_{i}=\left(G \backslash\left(\operatorname{Ext}\left(T_{i-1}\right) \cup \operatorname{Int}\left(T_{i}\right)\right) \cup T_{i}, T_{i-1}, T_{i}\right)$. As the sequence contained all such triangles, B_{i} is a band. We define the band decomposition of the prismatic graph $\left(G, C_{1}, C_{2}\right)$ to be the sequence of bands, $B_{1} B_{2} \ldots B_{m}$ produced above.

Thus if $\Gamma=\left(G, C_{1}, C_{2}, L\right)$ is a prism-canvas, we define the band decomposition of Γ, denoted $\mathcal{B}(\Gamma)=B_{1} \ldots B_{m}$, where $B_{i}=\left(G_{i}, T_{i}, T_{i-1}, L\right)$ is the canvas - that is also a band - corresponding to the band $\left(G_{i}, T_{i-1}, T_{i}\right)$ in the band decomposition of the prismatic graph (G, C_{1}, C_{2}) above.

Definition. (Types of Bands)
Let $B=\left(G, T_{1}, T_{2}, L\right)$ be a band. We say B is tetrahedral if $G=K_{4}$.

We say B is octahedral if $T_{1} \cap T_{2}=\emptyset$ and every vertex of T_{1} has two neighbors in T_{2} and vice versa.

We say B is hexadecahedral if $T_{1} \cap T_{2}=\emptyset$ and $G \backslash\left(T_{1} \cup T_{2}\right)=C_{4}=c_{1} c_{2} c_{3} c_{4}, c_{1}, c_{3}$ have two neighbors each in both of T_{1} and T_{2}, c_{2} has a neighbor in T_{1} and two in T_{2} while c_{4} has two neighbors in T_{1} and one in T_{2}.

Here are some useful lemmas to note.

Lemma 4.4.3. If $\Gamma=\left(G, T_{1} \cup T_{2}, L\right)$ is a critical prism-canvas with $T_{1} \cap T_{2} \neq \emptyset$, then every band in the band decomposition of Γ is tetrahedral.

Proof. Proceed by induction on vertices of G. If $\left|T_{1} \cap T_{2}\right|=2$, then given that Γ is critical and that T is a triangulation, $G=K_{4}$ and Γ is a tetrahedral band. So we may suppose that $\left|T_{1} \cap T_{2}\right|=1$. By minimum counterexample (i.e. criticality), one of the outcomes of Theorem 1.5.2 holds. Of course G could be the graph induced by the walk and hence G is C plus some additional chords. But then as a Γ is a neartriangulation, we can find a tetrahedral band in the band decomposition of Γ and the lemma follows by induction. If (i) holds, that is, there is exactly one vertex v in the interior, then v is adjacent to all vertices of $T_{1} \cup T_{2}$. So we again find a tetrahedral band in the band decomposition and the lemma follows by induction. Thus either case (ii) or (iii) holds, that is, there are either two or three pairwise adjacent vertices. But there too, we can find a tetrahedral band in the band decomposition and the lemma follows by induction.

Lemma 4.4.4. If Γ is a prism-canvas with $T_{1} \cap T_{2}=\emptyset, G=T_{1} \cup T_{2}$ and G is a triangulation, then either every band in the band decomposition of Γ is tetrahedral or Γ is an octahedral band.

Proof. If there exists $i \in\{1,2\}$ and a vertex $v \in T_{i}$ such that v has three neighbors in T_{3-i}, then there is a tetrahedral band in the band decomposition. Yet then in what
remains, the two triangles share the vertex v and so by Lemma 4.4.3, every band in the band decomposition of Γ is tetrahedral.

So we may suppose that every vertex in T_{i} has at most two neighbors in T_{3-i} for all $i \in\{1,2\}$. But then as G is a triangulation, there are six edges of G not in $E\left(T_{1}\right) \cup E\left(T_{2}\right)$. So every vertex of G must have two neighbors in the other triangle. It follows that Γ is an octahedral band.

We are almost prepared to invoke Theorem 3.10.10 to start characterizing the bands in the band decomposition. However, we need one more lemma to handle the case when the coloring of one of the paths of the planarization does not extend locally.

Lemma 4.4.5. Let $\Gamma=\left(G, C_{1}, C_{2}, L\right)$ be a critical prism-canvas such that $d\left(C_{1}, C_{2}\right) \geq$ 4. Let $\Gamma^{*}=\left(G^{*}, P_{1} \cup P_{2}, L^{*}\right)$ be a planarization of Γ with respect to an arrow P. For all $i \in\{1,2\}$, if $G^{*} \backslash P_{3-i}$ is not L^{*}-colorable, then the band that contains C_{i} is either tetrahedral, octahedral, or hexadecahedral.

Proof. It suffices by symmetry to prove the statement for $i=1$. So we may suppose that $G^{*} \backslash P_{2}$ is not L^{*}-colorable and hence that there is a critical subcanvas Γ^{\prime} of Γ^{*} containing P_{1} but not P_{2}. Let p_{1} be the end of the arrow P adjacent to C_{1} and p_{2} be its neighbor in P not in C_{1}.

Note that by the definition of optimal planarization, the vertices of P adjacent to C_{1} and C_{2} are chosen to maximize their number of neighbors in C_{1}, C_{2} respectively. Let $T_{1}=v_{1} v_{2} v_{3}$. Apply Theorem 3.7.2 to Γ^{\prime}. Now (1) does not hold as by the construction of Γ^{*} there does not exist an edge of Γ^{*} with both ends in P_{1} but not in P_{1}.

Suppose (4) holds. That is, there exists a tripod v in T^{\prime}. But then there exists a separating triangle T_{0} with vertices $\left(T_{1} \backslash\left\{v_{i}\right\}\right) \cup\{v\}$ where v is a tripod for v_{i} and the band $G\left[C_{1}, T_{0}\right]$ is tetrahedral as desired.

Suppose (3) holds. Hence $\left|V\left(P_{1}\right)\right|=4$ and there exists a vertex $v \notin P_{1}$ adjacent
to the two vertices in the interior of P_{1} such that $\left|L^{\prime}(v)\right|=4$. Suppose without loss of generality that $P_{1}=v_{1} v_{2} v_{3} v_{1}$. Hence $v \sim v_{2}, v_{3}$. As $\left|L^{\prime}(v)\right|=4, v$ is also adjacent to a vertex z in P. Note that $N\left(p_{1}\right) \cap V\left(C_{1}\right)=v_{1}$.

Suppose $z=p_{1}$. Hence z is adjacent to v_{1}. Now one of the 4 -cycles $v_{1} z v v_{2}$ and $v_{1} z v v_{3}$ does not separate C_{1} from C_{2}. Suppose without loss of generality that $C^{\prime}=v_{1} z v v_{2}$ does not separate C_{1} from C_{2}. As Γ is critical, there does not exist a vertex in the interior of C^{\prime}. As Γ^{\prime} is a critical path-canvas, we find that $v_{1} \sim v$. But then $T_{0}=v_{1} v v_{3}$ is a separating triangle and the band $G\left[C_{1}, T_{0}\right]$ is tetrahedral as desired.

So we may suppose that $z \neq p_{1}$. But then given v, we find that P was not chosen so that its end p_{1} adjacent to C_{1} had a maximum number of neighbors in C_{1}, a contradiction.

So we may suppose that (2) holds. We claim that $\left|V\left(P_{1}\right)\right| \neq 4$. Suppose not. Thus p_{1} has only one neighbor in C_{1}. We may suppose without loss of generality that v_{1} is the neighbor of p_{1} in C_{1}. As (2) holds, there exists a vertex $v \notin P_{1}$ adjacent to a vertex in the interior of P_{1} such that $\left|L^{\prime}(v)\right|=3$. Hence $P_{1}=v_{1} v_{2} v_{3} v_{1}$. Suppose without loss of generality that $v \sim v_{2}$.

As $\left|L^{\prime}(v)\right|=3$, then v must be adjacent to p_{1}, p_{2}. If $v \sim v_{3}$, then given v, we find that P was not chosen so that its end p_{1} adjacent to C_{1} had a maximum number of neighbors in C_{1}, a contradiction. So we may assume that $v \nsim v_{3}$.

Suppose $v p_{1} v_{1} v_{3} v_{2}$ is a cycle that does not separate C_{1} from C_{2}. Suppose there exist a vertex v^{\prime} in the interior of the 5 -cycle. As Γ is critical, $v^{\prime} \sim v_{1}, v_{2}, v_{3}$ and hence $v_{1} v^{\prime} v_{3}$ is a separating triangle. But then the band incident with C_{1} is tetrahedral as desired. So there does not exist a vertex in the interior of the 5 -cycle. Now as Γ^{\prime} is critical, it follows that v is adjacent to at least one of v_{1}, v_{3}. If v is adjacent to both, then there exists a separating triangle involving v and two vertices of T_{0}; hence C_{1} is incident with a tetrahedral band as desired. So we may suppose that v
is adjacent to only one of v_{1}, v_{2}. Hence $\left|N(v) \cap T_{1}\right|=2$, but then we find that P was not chosen so that its end p_{1} adjacent to C_{1} had a maximum number of neighbors in C_{1}, a contradiction.

So we may suppose that $v p_{1} v_{1} v_{3} v_{2}$ is a cycle separating C_{1} from C_{2}. But then $v p_{1} v_{1} v_{2}$ is a 4 -cycle that does not separate C_{1} from C_{2}. As T is critical, there does not exist a vertex in its interior. Yet v is not adjacent to v_{1}, as then, since there exists a shortest path from C_{1} to C_{2} through v, v contradicts the choice of p_{1} for the end of the arrow P adjacent to C_{1}.

So we may suppose that Γ^{\prime} is a bellows with base $v_{2} v_{3} v_{1}$. If Γ^{\prime} is a turbofan, then As Γ^{\prime} is critical, there exists $v^{\prime} \sim v_{1}, v_{2}, v_{3}$ and hence $v_{2} v^{\prime} v_{1}$ is a separating triangle. But then the band incident with C_{1} is tetrahedral as desired. $v \nsim v_{3}$, there exists $v^{\prime} \notin P_{1}$ such that $v^{\prime} \sim v_{3}$ and $\left|L^{\prime}\left(v^{\prime}\right)\right|=3$. By symmetry of v_{2}, v_{3} it follows that $v^{\prime} p_{1} v_{1} v_{3}$ is a 4 -cycle that does not separate C_{1} from C_{2}. Furthermore, there does not exist in the interior of that cycle and yet $v^{\prime} \nsim v_{1}$. But then now every coloring of $P_{1} \backslash\left\{v_{1}\right\}$ and hence of P_{1} extends to an L-coloring of Γ^{\prime} by Theorem 1.4.2, a contradiction to the fact that Γ^{\prime} is critical.

So we can assume that $\left|V\left(P_{1}\right)\right|=3$. We may assume without loss of generality that $P_{1}=v_{1} v_{2} v_{3}$ and there exist a short chord $v_{2} w_{3}$ of Γ^{\prime}. As $L^{\prime}\left(w_{3}\right)=3, w_{3}$ is adjacent to $p_{1} \cdot p_{2}$. We may assume without loss of generality $v_{3} v_{2} w_{3} p_{1}$ is a 4 -cycle that does not separate C_{1} from C_{2}. Hence there is no vertex in its interior. As Γ^{\prime} is a bellows, it follows that $w_{3} \sim v_{3}$. Apply Theorem 3.7.2 to the canvas obtained to the bellows in Γ^{\prime} with base $P_{1}^{\prime}=v_{1} v_{2} w_{3}$. Again (1) clearly does not hold. So suppose (2) holds. That is, there is then a tripod w_{1}. But then $w_{1} \sim v_{1}, v_{2}, w_{3}, p_{1}$. Hence $w_{1} w_{3} p_{1}$ is a separating triangle T_{0} and the band $G\left[C_{1}, T_{0}\right]$ is octahedral as desired. So (3) holds. That is, there exists a short chord $v_{2} w_{1}$. But then $w_{1} \sim v_{1}, p_{1}, p_{2}$ where we note that w_{1} is not adjacent to $p_{i}, i \geq 3$ as then $w_{1} p_{3} p_{4} \ldots$ is a shorter path from T_{1} to T_{2}.

Now there cannot be another chord $v_{2} w_{2}$ as then w_{2} is only adjacent to p_{2} and thus has a list of size four, which cannot happen in a bellows. Thus $w_{1} v_{2} w_{3}$ is the base of a turbofan. So there is a tripod $w_{2}, w_{2} \sim v_{2}, w_{1}, w_{3}$. Now $w_{1} w_{2} w_{3}$ is the base of an even fan as $w_{1} v_{2} w_{3}$ is the base of a turbofan. Hence there exist vertices x_{3}, x_{1} where $x_{3} \sim w_{3}, w_{2}, p_{2}, p_{3}$ and $x_{1} \sim w_{1}, w_{2}, p_{2}, p_{3}$. But then there cannot exist another vertex x_{2} in the turbo fan, otherwise x_{2} has a list of size at least four as x_{2} is not adjacent to p_{4}, because then $w_{2} x_{2} p_{4}$ is a shorter path from T_{1} to T_{2}. So $x_{1} \sim x_{3}$. But then $x_{1} p_{2} x_{3}$ is a separating triangle T_{0} and the band $G\left[C_{1}, T_{0}\right]$ is hexadecahedral as desired.

Lemma 4.4.6. Let $d_{0}>0$. There exists $c_{0}>0$ such that the following holds: If $\Gamma=\left(G, T_{1}, T_{2}, L\right)$ is a counterexample to Theorem 4.1.1 with a minimum number of vertices and subject to that a maximum number of edges, then there exist triangles T_{1}^{\prime} and T_{2}^{\prime} of G each separating C_{1} from C_{2} such that either
(1) Γ is nearly triangulated and every planarization Γ^{*} of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ contains a long bottleneck $\Gamma_{1}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}^{\prime}, L\right)$ where $d\left(T_{1}, T_{2}\right)-2 d_{0}-c_{0} \leq 6 d\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$, or,
(2) $d\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \geq d_{0}$ and every band in the band decomposition of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ is a subgraph of a tetrahedral, octahedral or hexadecahedral band.

Proof. Suppose (1) does not hold. First suppose that Γ is not nearly triangulated.
Suppose there exists a face f that is not bounded by a cycle. Hence there exists a cutvertex v of G separating T_{1} from T_{2}. For $i \in\{1,2\}$, let T_{i}^{\prime} be furthest triangle from T_{i} such that T_{i}^{\prime} separates T_{i} from v and every band in the band decomposition of $\Gamma\left[T_{i}, T_{i}^{\prime}\right]$ is the subgraph of a tetrahedral, octahedral or hexadecahedral band. As (2) does not hold, $d\left(T_{i}, T_{i}^{\prime}\right) \leq d_{0}$.

Let $\Gamma_{i}^{\prime}=\Gamma\left[T_{i}^{\prime}, v\right]$. Now there does not exist a vertex in Γ_{i} adjacent to all vertices of T_{i}^{\prime} as then T_{i}^{\prime} would not be the furthest triangle. Given how T_{1}, T_{2} were chosen, it follows from Lemma 4.4.5 that for all $i \in\{1,2\}$ and for any planarization Γ_{i}^{*} of
Γ_{i}^{\prime}, any L-coloring of T_{i}^{\prime} extends to an L-coloring of $\Gamma_{i}^{*} \backslash\{v\}$. Indeed more is then true, any L-coloring of T_{i}^{\prime} extends to an L^{\prime}-coloring of G where $L^{\prime}(w)=L(w)$ for all $w \in \Gamma_{i}^{\prime} \backslash\{v\}$ and $\left|L^{\prime}(v)\right| \geq 3$. But now it follows that any L-coloring of $T_{1}^{\prime} \cup T_{2}^{\prime}$ extends to an L-coloring of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$, a contradiction to the fact that Γ is a counterexample.

So we may suppose there exists a face f with two nonadjacent vertices u, v where $d_{G+\{u v\}}\left(T_{1}, T_{2}\right) \geq d_{G}\left(T_{1}, T_{2}\right)$. But then $\left(G+\{u v\}, T_{1}, T_{2}, L\right)$ is also counterexample to Theorem 4.1.1 with same number of vertices but more edges, a contradiction.

So we may suppose that Γ is nearly triangulated. For $i \in\{1,2\}$, let T_{i}^{\prime} be furthest triangle from T_{i} such that T_{i}^{\prime} separates T_{1} from T_{2} and every band in the band decomposition of $\Gamma\left[T_{i}, T_{i}^{\prime}\right]$ is the subgraph of a tetrahedral, octahedral or hexadecahedral band. As (2) does not hold, $d\left(T_{i}, T_{i}^{\prime}\right) \leq d_{0}$. Let $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]=\left(G_{0}, P_{1} \cup P_{2}, L\right)$. Applying Theorem 3.10.11 to $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$, we find that $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ contains a long bottleneck as $d\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq O(\log (4+4))=c_{0}$.

We may now invoke Theorem 3.10.10 on the planarization of the prism-canvas to obtain a long harmonica or accordion as a subcanvas. Such a bottleneck will give rise to a sequence of separating triangles in the original graph. Indeed in the next section, we will show that every vertex in the middle of a long accordion is in a separating triangle and hence by the lemmas above that there is a prism-canvas in the middle where every band in its band decomposition is tetrahedral or octahedral. Similarly, in the section after that, we will show that every vertex in the middle of a long harmonica is in a separating triangle or the interior of a hexadecahedral band.

4.5 Bands for Accordions

Our goal in this section is to classify the types of bands which can occur given a long accordion in the planarization. Of course, it is not immediately clear that separating triangles are even generated or that the distance between two nearest separating triangles (and hence the size of the band) is even small. But we will show that this
does indeed occur using the fact that the path P was a good planarizer! In this way, we will prove the following lemma:

Lemma 4.5.1. Let $\Gamma=\left(G_{0}, C_{1}, C_{2}, L\right)$ be a cylinder-canvas, Γ^{*} be an optimal planarization of Γ. Suppose there exists a bottleneck $\Gamma_{1}=\left(G, P_{1} \cup P_{2}, L\right)$ of Γ^{*} such that Γ_{1} is an accordion and $d\left(P_{1}, P_{2}\right) \geq 34$. Then there exists triangles T_{1} and T_{2} each separating C_{1} from C_{2} such that $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}, P_{2}\right)-34$ and every band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$ is tetrahedral or octahedral.

Now we will not be working with Γ_{1} to prove this lemma but rather the vertices in the middle of Γ_{1}. We make this notion more precise with the following definition.

Definition. Suppose that $\Gamma_{1}=\left(G, P_{1} \cup P_{2}, L\right)$ is a bottleneck of a a canvas Γ with $d\left(P_{1}, P_{2}\right) \geq 32$. Let $U_{1}, U_{2}, \ldots U_{m}$ be a maximum collection of chords of the outer walk of Γ_{1} whose ends have lists of size three and are not cutvertices of Γ_{1}. Let Γ_{2} be the bottleneck of Γ_{1} between U_{5} and U_{m-4}. We say that Γ_{2} is a shortening of Γ_{1}.

Lemma 4.5.2. If $\Gamma_{2}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}^{\prime}, L\right)$ is a shortening of a bottleneck $\Gamma_{1}=\left(G, P_{1} \cup\right.$ $\left.P_{2}, L\right)$, then $d\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq d\left(P_{1}, P_{2}\right)-32$.

Proof. Let $U_{1}, U_{2}, \ldots U_{m}$ be a maximum collection of chords of the outer walk of Γ_{1} as in the definition of shortening where Γ_{2} is the bottleneck between U_{5} and U_{m-4}. As Γ_{1} is an accordion or harmonica, it follows that $d\left(U_{i}, U_{i+1}\right) \leq 2$ for all i where $1 \leq i \leq m-1$. Similarly $d\left(U_{1}, P_{1}\right) \leq 2$ and $d\left(U_{m}, P_{2}\right) \leq 2$. Hence $d\left(U_{5}, P_{1}\right) \leq 15$ and $d\left(U_{m-4}, P_{2}\right) \leq 15$. Hence $d\left(U_{1}, U_{2}\right) \leq d\left(P_{1}, P_{2}\right)-32$ as desired.

We will need the following very useful lemma.

Lemma 4.5.3. Suppose that $\Gamma_{2}=\left(G, P_{1} \cup P_{2}, L\right)$ is the shortening of a bottleneck $\Gamma_{1}=\left(G^{\prime}, P_{1}^{\prime} \cup P_{2}^{\prime}, L\right)$ of an optimal planarization Γ^{*} of a cylinder-canvas Γ with respect to the path P. Suppose that Γ_{0}^{*} is a planarization of Γ with respect to a path P^{\prime} such
that for $V\left(P^{\prime}\right) \backslash V(P) \subseteq V(G)$. Then there does not exist a stopping chord, blocking chord, or dividing cut-edge U of Γ_{0}^{*} such that $U \cap V(G) \neq \emptyset$.

Proof. Suppose not. Hence there exists a stopping chord, blocking chord, or dividing cut-edge of Γ_{0}^{*}, call it U_{0}, such that $U_{0} \cap V(G) \neq \emptyset$.

Claim 4.5.4. If U is a blocking chord, stopping chord, or dividing cut-edge of Γ^{*}, then U is not contained in $G^{\prime} \backslash\left(P_{1}^{\prime} \cup P_{2}^{\prime}\right)$.

Proof. Suppose not. Let $U=u_{1} u_{2}$. Suppose U is a stopping chord. Suppose without loss of generality that there does not exist a vertex $z \in V\left(G_{1}\right)$ with a list of size three adjacent to both u_{1}, u_{2} and neither u_{1} nor u_{2} are in a chord of G_{1} whose ends have lists of size three. Yet as Γ is a harmonica or accordion, there exists a bellows W incident with the chord U. If U is not a fan, then Γ is an accordion. Hence Γ is 2-connected and the other side of W is a chord where both ends have lists of size three, a contradiction. So we may suppose that U is a fan. But then we may assume without loss of generality that W is a triangle and hence $z \in W \backslash U$ is in a triangle with u_{1}, u_{2}, a contradiction.

Suppose U is a blocking chord. Without loss of generality we may suppose that $\left|L\left(u_{1}\right)\right| \geq 4$. Hence u_{1} is not contained in the harmonica or accordion. Thus Γ_{2} contains a harmonica, u_{2} is a cutvertex of the harmonica, and $\left|L\left(u_{2}\right)\right|=3$. But then u_{2} has two neighbors with lists of size three in both G_{1}, G_{2} where $G_{1} \cap G_{2}=U$ and $G_{1} \cup G_{2}=G^{\prime} \cup U$, a contradiction to the fact that U is a blocking chord.

So suppose U is a dividing cut-edge. But then u_{1}, u_{2} are cutvertices of G^{\prime}. Thus Γ_{2} contains a harmonica and hence u_{1}, u_{2} are cutvertices of the harmonica. Yet $u_{1} \sim u_{2}$, a contradiction.

Claim 4.5.5. Every blocking chord, stopping chord, or dividing cut-edge of Γ^{*} is a blocking chord, stopping chord, or dividing cut-edge of Γ_{0}^{*}, respectively.

Proof. Suppose not. Let $U=u_{1} u_{2}$ be a blocking chord, stopping chord, or dividing cut-edge of Γ^{*}. By Claim 4.5.4, there exists $i \in\{1,2\}$ such that $u_{i} \notin V\left(G^{\prime}\right) \backslash\left(V\left(P_{1}^{\prime}\right) \cup\right.$ $\left.V\left(P_{2}^{\prime}\right)\right)$. We claim that $d\left(u_{i}, G\right) \geq 4$. Suppose not. As Γ_{2} is a shortening of Γ_{1}, there exist chords $U_{i}=v_{i} v_{i}^{\prime}$ for $1 \leq i \leq 4$ whose ends have lists of size three, are not cutvertices of Γ_{1}, and separate u_{i} from G in Γ^{*}. But then U_{i} is a chord of Γ^{*} and we may assume without loss of generality that v_{i} has two neighbors in P through the top and v_{i}^{\prime} has two neighbors in P though the bottom. But then it follows, as P is a shortest path from C_{1} to C_{2}, that the neighbors of v_{4}, v_{4}^{\prime} on P closest to C_{2} are not adjacent to the neighbors of v_{1}, v_{1}^{\prime} on P closest to C_{1}. Hence there does not exist a neighbor of u_{i} adjacent to a neighbor of a vertex in G, a contradiction. This proves the claim.

Thus $d\left(u_{i}, P^{\prime} \backslash P\right) \geq 4$. So $d\left(U, P^{\prime} \backslash P\right) \geq 3$. As $d\left(U, P^{\prime} \backslash P\right) \geq 2$ this implies that u_{1}, u_{2} are in Γ_{0}^{*} and have the same lists in Γ_{0}^{*} as in Γ^{*}. Thus U is a chord of Γ_{0}^{*}. Furthermore as $d\left(U, P^{\prime} \backslash P\right) \geq 3$, the neighbors of u_{1}, u_{2} in Γ^{*} and the same as those in Γ_{0}^{*}. Indeed, their neighbors have the same lists in Γ_{0}^{*} as in Γ^{*}.

It now follows that if U is a blocking chord of Γ^{*}, then U is a blocking chord of Γ_{0}^{*} as desired. Similarly if U is a dividing cut-edge of Γ^{*}, then U is also a dividing cut-edge of Γ_{0}^{*}.

Finally note that for $i \in\{1,2\}$ if u_{i} in a chord U^{\prime} of the outer walk of Γ_{0}^{*} with both ends having lists of size less than three, then U^{\prime} is also a chord of the outer walk of Γ^{*} whose both ends have a list of size three. It now follows that if U is a stopping chord of Γ^{*}, then U is a stopping chord of Γ_{0}^{*}.

By Claim 4.5.4, U_{0} is not a blocking chord, stopping chord, or cutvertex of Γ^{*}. But now it follows that from Claim 4.5.5 that Γ_{0}^{*} has a strictly larger sum of blocking chords, stopping chords, and dividing cut-edges than Γ^{*}, a contradiction to the assumption that Γ^{*} is an optimal planarization.

We will prove Lemma 4.5 . 1 by a sequence of lemmas. These lemmas require a common hypothesis which we state here.

Hypothesis 4.5.6. $\Gamma=\left(G_{0}, C_{1}, C_{2}, L\right)$ is a critical nearly triangulated cylindercanvas and Γ^{*} is an optimal planarization of Γ with respect to the path $P=p_{1} \ldots p_{d}$ where $d=d\left(C_{1}, C_{2}\right)-1$. There exists a bottleneck Γ_{1} of Γ^{*} with ends $P_{1}^{\prime}, P_{2}^{\prime}$ which is an accordion and $d\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq 34$. Let $\Gamma_{2}=\left(G, P_{1} \cup P_{2}, L\right)$ be a shortening of Γ_{1} and C be the outer walk of G.

We will need to label various parts of the accordion Γ_{2}. To that end, let C be the outer walk of G. Let $U_{1}, U_{2}, \ldots U_{m-1}$ be the chords of C. Let $U_{0}=P_{1}$ and $U_{m}=P_{2}$, and $W_{1}, W_{2}, \ldots W_{m}$ be the resulting bellows of the accordion. We will assume that no three of the U 's intersect in a vertex as then we could just omit the middle chord, combining two bellows of the accordion. That is, $U_{i} \cap U_{i+2}=\emptyset$ for all $i, 0 \leq i \leq m-2$.

As the W_{i} 's are bellows, $\left|U_{i} \cap U_{i+1}\right|=1$ for all $i, 0 \leq i \leq m-1$. Let $x_{i+1}=U_{i} \cap U_{i+1}$, $x_{0}=U_{0} \backslash U_{1}$ and $x_{m+1}=U_{m} \backslash U_{m-1}$. Let $X=\bigcup_{i} x_{i}$.

We will say that an edge e in $E(G) \backslash E(P)$ incident with a vertex v in the interior of P is through the bottom if e is to the left of v. Similarly we say e is through the top if e is to the right of v. Similarly we say that two vertices are adjacent through the bottom (resp. top) if the edge incident with both of them is through the bottom (resp. top).

Let $b_{L}=\min \left\{k \mid p_{k}\right.$ has a neighbor through the bottom in $\left.\Gamma_{2}\right\}, b_{R}=\max \left\{k \mid p_{k}\right.$ has a neighbor through the top in $\left.\Gamma_{2}\right\}$ and let t_{L}, t_{R} be similarly defined for neighbors through the top. Let $k_{L}=\max \left\{b_{L}, t_{L}\right\}$ and $k_{R}=\min \left\{b_{R}, t_{R}\right\}$. Let $P^{*}=\left\{p_{k} \mid k_{L} \leq\right.$ $\left.k \leq k_{R}\right\}$.

Let P_{B} be the minimal path in the outer walk of Γ_{2} containing all the vertices which are adjacent to vertices of P^{*} through the bottom and similarly let P_{T} be the minimal path in the outer walk of Γ_{2} containing all the vertices which are adjacent to vertices of P^{*} through the top.

Note that if $x_{i} \in P_{B}\left(P_{T}\right.$ respectively $)$, then $x_{i+1} \in P_{T}\left(P_{B}\right.$ respectively). Moreover, as there are no cut vertices, $P_{T} \cap P_{B}=\emptyset$.

Lemma 4.5.7. Assume Hypothesis 4.5.6. For every vertex $v \in V(C), N_{G_{0}}(v) \cap P$ is a path of length one or two and hence $\left|N_{G_{0}}(v) \cap P\right|=2$ or 3 .

Proof. As all vertices in C have a list of size three, v has at least two neighbors in P. Moreover, as there are no cutvertices of G, v is adjacent to vertices of P either through the top or through the bottom. Yet there cannot be two neighbors of v in P with distance at least three in P, as then P is not shortest. Hence the neighbors of v lie on a subpath of P of length at most two. Given that Γ is nearly triangulated, it follows that v is adjacent to all vertices on that subpath of P as desired.

Lemma 4.5.8. Assume Hypothesis 4.5.6. For every vertex $p \in P^{*}, N_{G_{0}}(p) \cap P_{B}$ and $N_{G_{0}}(p) \cap P_{T}$ are paths of length zero or one.

Proof. By symmetry, it suffices to prove the lemma for $N(p) \cap P_{B}$. If p has at least two neighbors in P_{B}, then p has exactly two neighbors in P_{B} and they are adjacent, as otherwise, there is a vertex in P_{B} with at most one neighbor in P, contrary to the fact that Γ_{1} is an accordion. The lemma now follows if p has a neighbor in P_{B}. So suppose not. Consider the face f of Γ incident with p and vertices in P_{B}. It is not hard to see that there must be a vertex v of P_{B} incident with f such that adding the edge $p v$ does not decrease the distance from C_{1} to C_{2} in Γ. Yet p is not adjacent to v and so this contradicts that Γ is nearly triangulated.

Lemma 4.5.9. Assume Hypothesis 4.5.6. For all $i, 1 \leq i \leq m$, W_{i} is a fan of length at most three.

Proof. Suppose not. First suppose that the outer cycle of W_{i} has length at least six. That is, there is a path $x_{i-1} v_{1} v_{2} v_{3} \ldots x_{i+1}$ in C not containing x_{i}. Thus x_{i-1} has a neighbor u on P and x_{i+1} has a neighbor u^{\prime} on P such that $d_{P}\left(u, u^{\prime}\right) \geq 5$ and yet
$u x_{i-1} x_{i} x_{i+1} u^{\prime}$ is a path of length four in G. Thus P is not shortest, a contradiction. But then if W_{i} is a fan, it is fan of length at most three as desired.

So we may suppose W_{i} is a turbofan of length three. Suppose without loss of generality that $x_{i-1} \sim p_{j-2}, p_{j-1}$. Thus $x_{i+1} \sim p_{j+1}, p_{j+2}$. Notice that $N\left(x_{i}\right) \cap P \subseteq$ $\left\{p_{j-1}, p_{j}, p_{j+1}\right\}$. Yet as Γ is critical, there cannot be more than three vertices in the interior of a disc bounded by 6 -walk. Thus either $x_{i} \sim p_{j-1}, p_{j}$ or p_{j}, p_{j+1} as otherwise $u_{1}, u_{2}, u_{3}, p_{j}$ are in the interior of the disc bounded by the 6 -walk $p_{j-1} x_{i-1} x_{i} x_{i+1} p_{j+1} x_{i}$.

Let $W_{i} \backslash X=\left\{u_{1}, u_{2}, u_{3}\right\}$ where $u_{1} \sim x_{i-1}, u_{2} \sim x_{i+1}$ and $u_{3} \sim x_{i-1}, x_{i}, x_{i+1}$. Thus $u_{1} \sim p_{j-1}, p_{j}$ and $u_{2} \sim p_{j}, p_{j+1}$.

Now consider the path P^{\prime} obtained from P by replacing the vertices p_{j-1}, p_{j}, p_{j+1} with the vertices x_{i-1}, u_{3}, x_{i+1}. As Γ_{1} is also an accordion, p_{k} is not tripled for all k, $j-3 \leq k \leq j+3$. Yet in $P^{\prime}, x_{i-1}, x_{i+1}$ are not doubled and x_{i} is not tripled given W_{i}. Furthermore if p_{j-2} is tripled in P^{\prime}, then p_{j-3} is not doubled. Similarly if p_{j+2} is tripled in P^{\prime}, then p_{j+3} is not doubled. It now follows that P^{\prime} is an arrow in the same direction as P.

Let $\Gamma_{P^{\prime}}$ be the planarization of Γ with respect to P^{\prime}. If $x_{i} \sim p_{j-1}, p_{j}$, then $U=p_{j-1} x_{i}$ is a stopping chord of $\Gamma_{P^{\prime}}$ given that neither p_{j-1} nor x_{i} are in a chord in G_{2} where $C_{2} \subset G_{2}$ whose other end is a list of size three. But this contradicts Lemma 4.5.3. Similarly, if $x_{i} \sim p_{j}, p_{j+1}$, then $U=p_{j+1} x_{i}$ is a stopping chord of $\Gamma_{P^{\prime}}$ given no chord in G_{1} where $C_{1} \subset G_{1}$. But this contradicts Lemma 4.5.3.

Lemma 4.5.10. Assume Hypothesis 4.5.6. For all $x_{i}, 1 \leq i \leq m$, either the edge $x_{i} x_{i-1}$ is in a separating triangle or the edge $x_{i} x_{i+1}$ is in a separating triangle.

Proof. Let p_{j} be the neighbor of x_{i-1} in P with j smallest and p_{k} be the neighbor of x_{i+1} in P with k largest. As mentioned before, $k-j \leq 4$ given the path $p_{j} x_{i-1} x_{i} x_{i+1} p_{k}$. Of course, $k-j \geq 2$ as x_{i-1} and x_{i+1} have at least two neighbors on P. Note that by Lemma 4.5.7, $x_{i-1} \sim p_{j+1}$ and $x_{i+1} \sim p_{k-1}$.

Note that $N\left(x_{i}\right) \cap P \subseteq\left\{p_{h}: k-3 \leq h \leq j+3\right\}$ given the paths $p_{k} x_{i+1} x_{i}$ and $p_{j} x_{i-1} x_{i}$.

If $k-j=4$, then $N\left(x_{i}\right) \cap P \subseteq\left\{p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Thus either p_{j+1} or p_{j+3} is a neighbor of x_{i}. In the former case, $x_{i-1} x_{i} p_{j+1}$ is a separating triangle. In the latter case, $x_{i} x_{i+1} p_{j+3}$ is a separating triangle.

If $k-j=3$, then $N\left(x_{i}\right) \subseteq\left\{p_{j}, p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Let $p_{l} \sim x_{i}$ where $l, j \leq l \leq j+3$. If $l=j$ or $j+1$, then $x_{i-1} x_{i} p_{l}$ is a separating triangle. If $l=j+2$ or $j+3$, then $x_{i-1} x_{i} p_{l}$ is a separating triangle.

If $k-j=2$, then $N\left(x_{i}\right) \subseteq\left\{p_{j-1}, p_{j}, p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Yet $N\left(x_{i}\right) \cap P$ is path of length at most two by Lemma 4.5.7, so one of p_{j}, p_{j+1}, p_{j+2} is in $N\left(x_{i}\right) \cap P$. Let $p_{l} \sim x_{i}$ where $l, j \leq l \leq j+3$. If $l=j$ or $j+1$, then $x_{i-1} x_{i} p_{l}$ is a separating triangle. If $l=j+1$ or $j+2$, then $x_{i-1} x_{i} p_{l}$ is a separating triangle.

Lemma 4.5.11. Assume Hypothesis 4.5.6. If W_{i} is a fan of length one or two and $v \in W_{i} \backslash X$, then the edge $v x_{i}$ is in a separating triangle.

Proof. Let p_{j} be the neighbor of x_{i-1} in P with j smallest and p_{k} be the neighbor of x_{i+1} in P with k largest. As mentioned before, $k-j \leq 4$ given the path $p_{j} x_{i-1} x_{i} x_{i+1} p_{k}$. Of course, $k-j \geq 2$ as x_{i-1} and x_{i+1} have at least two neighbors on P.

Note that $N\left(x_{i}\right) \cap P \subseteq\left\{p_{h}: k-3 \leq h \leq j+3\right\}$ given the paths $p_{k} x_{i+1} x_{i}$ and $p_{j} x_{i-1} x_{i}$.

If $k-j=4$, then $N\left(x_{i}\right) \cap P \subseteq\left\{p_{j+1}, p_{j+2}, p_{j+3}\right\}$. In this case $N(v) \cap P \supseteq$ $\left\{p_{j+1}, p_{j+2}\right\}$ or $\left\{p_{j+2}, p_{j+3}\right\}$. Thus v, x_{i} is in a separating triangle as desired.

If $k-j=3$, then $N\left(x_{i}\right) \subseteq\left\{p_{j}, p_{j+1}, p_{j+2}, p_{j+3}\right.$. Yet $N(v) \cap P=\left\{p_{j+1}, p_{j+2}\right\}$. As $N\left(x_{i}\right) \cap P$ is a path of length one or two by Lemma 4.5.7, either p_{j+1} or p_{j+2} is a neighbor of x_{i} and hence $v x_{i}$ is in a separating triangle as desired.

Lemma 4.5.12. Assume Hypothesis 4.5.6. For all vertices $p \in P^{*}$, there exists i, $1 \leq i \leq m$, such that $W_{i} \cap N(p) \cap P_{B}, W_{i} \cap N(p) \cap P_{T} \neq \emptyset$.

Proof. Let $p_{j} \in P^{*}$. By Lemma 4.5.8, p has a neighbor in P_{B} and a neighbor in P_{T}. By Lemma 4.5.7, $N(v) \cap P_{B}$ and $N(v) \cap P_{T}$ are paths of length at least one. If there does not exist i as desired, then there exists i such that $U_{i}=x_{i} x_{i+1}$ that separates $N\left(p_{j}\right) \cap B$ from $N\left(p_{j}\right) \cap P_{T}$. As $x_{i} \nsim p_{j}$, we find that x_{i} has a neighbor p_{k} with $k \leq j-2$. Similarly as $x_{i+1} \nsim p_{j}, x_{i}$ has a neighbor $p_{k^{\prime}}$ such that $k^{\prime} \geq j+2$. Yet then $p_{k} x_{i} x_{i+1} p_{k^{\prime}}$ shows that P was not a shortest path, a contradiction.

Corollary 4.5.13. Assume Hypothesis 4.5.6. For all $p \in P^{*}, p$ is in a separating triangle.

Proof. If there is an edge between $N(p) \cap P_{B}$ and $N(p) \cap P_{T}$, then p is in a separating triangle. And yet these intersect the same bellows W_{i} by Lemma 4.5.12. However, by Lemma 4.5.9, W_{i} is a fan and hence all vertices of $W_{i} \cap P_{B}$ and $W_{i} \cap P_{T}$ are adjacent and the corollary follows.

It now follows from the lemmas above that every vertex in Γ_{2} is in a separating triangle in G_{0}. Let $V^{\prime}=V(G) \cup P^{*}$. Let T_{1} be the outermost separating triangle of G_{0} with $V\left(T_{1}\right) \subseteq V^{\prime}$ and T_{2} be the innermost separating triangle of G_{0} with $V\left(T_{2}\right) \subseteq V^{\prime}$.

Lemma 4.5.14. Assume Hypothesis 4.5.6. If $v \in \Gamma\left[T_{1}, T_{2}\right]$, then $v \in \Gamma_{2} \cup P^{*}$.

Proof. Let H be the subgraph of $\Gamma\left[T_{1}, T_{2}\right]$ induced by $V\left(\Gamma_{2}\right) \cup P^{*}$. It follows from Lemmas 4.5.7 and 4.5.8, that every face of H has size at most four. So by criticality there is no vertex in the interior of these faces and hence $V\left(\Gamma\left[T_{1}, T_{2}\right]\right)=V(H)$.

Corollary 4.5.15. Assume Hypothesis 4.5.6. If $v \in \Gamma\left[T_{1}, T_{2}\right]$, then v is in T_{1}, T_{2} or a triangle separating a vertex of T_{1} from a vertex of T_{2}.

Proof. By Lemmas 4.5.10, 4.5.11 and 4.5.13, every vertex in $P^{*} \cup \Gamma_{2}$ is in a separating triangle in Γ. As triangles cannot cross, it follows that every vertex in $\Gamma\left[T_{1}, T_{2}\right]$ is in T_{1}, T_{2} or a triangle separating a vertex of T_{1} from a vertex of T_{2}.

Lemma 4.5.16. Assume Hypothesis 4.5.6. If B is a band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$, then B is tetrahedral or octahedral.

Proof. Let $B=\left(G_{B}, T_{3}, T_{4}, L\right)$ be a band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$. If $G=T_{3} \cup T_{4}$, then B is tetrahedral or octahedral by Lemma 4.4.4. So we may suppose that $G \neq T_{3} \cup T_{4}$. But then $G_{B} \backslash T_{3} \cup T_{4}$ must contain a vertex which is not in a separating triangle, contradicting Corollary 4.5.15.

Proof of Lemma 4.5.1. We may assume Hypothesis 4.5.6. By Lemma 4.5.16, every band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$ is tetrahedral or octahedral. Furthermore, $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}, P_{2}\right)-2$ where $\Gamma_{2}=\left(G, P_{1} \cup P_{2}, L\right)$. As Γ_{2} is a shortening of Γ_{1}, it follows from Lemma 4.5.2 that $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}^{\prime}, P_{2}^{\prime}\right)-34$ where $P_{1}^{\prime}, P_{2}^{\prime}$ are the ends of Γ_{1}.

4.6 Bands for Harmonicas

Our goal in this section is to prove the following:

Lemma 4.6.1. Let $\Gamma=\left(G_{0}, C_{1}, C_{2}, L\right)$ be a cylinder-canvas, Γ^{*} be an optimal planarization of Γ. Suppose there exists a bottleneck $\Gamma_{1}=\left(G, P_{1} \cup P_{2}, L\right)$ of Γ^{*} such that Γ_{1} is a harmonica and $d\left(P_{1}, P_{2}\right) \geq 34$. Then there exists triangles T_{1} and T_{2} of G_{0} each separating C_{1} from C_{2} such that $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}, P_{2}\right)-32$ and every band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$ is tetrahedral, octahedral or hexadecahedral.

We will prove Lemma 4.6 .1 by a sequence of lemmas. These lemmas require a common hypothesis which we state here.

Hypothesis 4.6.2. $\Gamma=\left(G_{0}, C_{1}, C_{2}, L\right)$ is a critical nearly triangulated cylindercanvas and Γ^{*} is an optimal planarization of Γ with respect to the path $P=p_{1} \ldots p_{d}$ where $d=d\left(C_{1}, C_{2}\right)-1$. There exists a bottleneck Γ_{1} of Γ^{*} with sides $P_{1}^{\prime}, P_{2}^{\prime}$ which is a harmonica and $d\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq 34$. Let $\Gamma_{2}=\left(G, P_{1} \cup P_{2}, L\right)$ be a shortening of Γ_{1} and C be the outer walk of G.

Suppose Hypothesis 4.6.2 holds. We will need to label various parts of the harmonica Γ_{2}. To that end, let $Y=\left\{y_{1}, y_{2}, \ldots\right\}$ be the cutvertices of Γ_{1} that are also in Γ_{2} and F^{i} be the subcanvas between y_{i-1} and y_{i}. Let F_{j}^{i} be the j th fan of F^{i}. Let x_{j}^{i} be the hinge of F_{j}^{i} and let $x_{0}^{i}=y_{i-1}$ and $x_{l_{i}}^{i}=y_{i}$ where l_{i} is the number of fans of F^{i}. Let $X=\bigcup_{i} X^{i}$. (Hinges are the middle vertices of bases of the fans) We say F^{i} is a diamond if it is a fan of length one (in this case, neither is more a hinge than the other; so we will say neither is a hinge). Another set of important vertices is $Z^{i}=N(Y) \cap F^{i} \backslash X^{i}$. Let $Z=\bigcup_{i} Z^{i}$.

We will say that an edge e in $E(G) \backslash E(P)$ incident with a vertex in the interior of P is through the bottom if the end not in P lies to the left of the end in P. Similarly we say e is through the top if the end not in P lies to the right of the end in P. Similarly we say that two vertices are adjacent through the bottom (resp. top) if the edge incident with both of them is through the bottom (resp. top).

Let N_{B} denote the set of vertices p in P with a neighbor v such that v in $P_{B} \backslash Y$, or v in Y and v is adjacent to p through the bottom. Similarly, let N_{T} denote the set of vertices p in P with a neighbor v such that $v \in P_{T} \backslash Y$, or v in Y and v is adjacent to p through the top. Let $b_{L}=\min \left\{k \mid p_{k} \in N_{B}\right\}, b_{R}=\max \left\{k \mid p_{k} \in N_{B}\right\}$, $t_{L}=\left\{\min k \mid p_{k} \in N_{T}\right\}$ and $t_{R}=\max \left\{k \mid p_{k} \in N_{T}\right\}$. Let $k_{L}=\max \left\{b_{L}, t_{L}\right\}$ and $k_{R}=\min \left\{b_{R}, t_{R}\right\}$. Let $P^{*}=\left\{p_{k} \mid k_{L} \leq k \leq k_{R}\right\}$. Let C be the outerwalk of Γ_{2}.
(Improve) Let P_{B} be the bottom path of C, that is the the path of C that contains the vertices of C who are adjacent to P through the bottom and similarly let P_{T} be the top path of C.

Note that if $x_{i} \in P_{B}\left(P_{T}\right.$ respectively $)$, then $x_{i+1} \in P_{T}\left(P_{B}\right.$ respectively). Moreover, $P_{T} \cap P_{B}=Y$.

We are now ready to start proving lemmas about the vertices in Γ_{2}.

Lemma 4.6.3. Suppose Hypothesis 4.6.2 holds. For every vertex $v \in V(C) \backslash Y$, $N(v) \cap P$ is a path of length one or two and hence $|N(v) \cap P|=2$ or 3.

Proof. As all vertices in C have a list of size three, v has at least two neighbors in P. Moreover, as v is not a cutvertex of G, v reaches these neighbors by only one homotopy type, top or bottom. Yet there cannot be two neighbors of v in P with distance at least three in P, as then P is not shortest. Hence the neighbors of v lie on a subpath of P of length at most two. Given that G is nearly-triangulated, it follows that v is adjacent to all vertices on that subpath of P as desired.

Lemma 4.6.4. Assume Hypothesis 4.6.2. Suppose F^{i} is not a diamond. If $x \in X^{i} \backslash Y$, then x is in a separating triangle.

Proof. Suppose without loss of generality that $x \in P_{T}$. As F^{i} is not a diamond, x has at least two neighbors in $P_{B} \backslash Y$ each with two neighbors in P. Let w_{1} be the neighbor of x in $P_{B} \backslash Y$ closest to P_{1} and w_{2} be the neighbor of x in $P_{B} \backslash Y$ closest to P_{2}.

Let p_{j} be the neighbor of w_{1} in P with j smallest and p_{k} be the neighbor of w_{2} in P with k largest. As mentioned before, $k-j \leq 4$ given the path $p_{j} w_{1} x w_{2} p_{k}$. Of course, $k-j \geq 2$ as w_{1} and w_{2} have at least two neighbors on P. Note that by Lemma 4.6.3, $w_{1} \sim p_{j+1}$ and $w_{2} \sim p_{k-1}$.

Note that $N(x) \cap P \subseteq\left\{p_{h}: k-3 \leq h \leq j+3\right\}$ given the paths $p_{k} w_{2} x$ and $p_{j} w_{1} x$.
If $k-j=4$, then $N(x) \cap P \subseteq\left\{p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Thus either p_{j+1} or p_{j+3} is a neighbor of x. In the former case, $w_{1} x p_{j+1}$ is a separating triangle. In the latter case, $x w_{2} p_{j+3}$ is a separating triangle.

If $k-j=3$, then $N(x) \subseteq\left\{p_{j}, p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Let $p_{l} \sim x$ where $j \leq l \leq j+3$. If $l=j$ or $j+1$, then $w_{1} x p_{l}$ is a separating triangle. If $l=j+2$ or $j+3$, then $w_{2} x p_{l}$ is a separating triangle.

If $k-j=2$, then $N(x) \subseteq\left\{p_{j-1}, p_{j}, p_{j+1}, p_{j+2}, p_{j+3}\right\}$. Yet $N(x) \cap P$ is path of length at most two by Lemma 4.6.3, so one of p_{j}, p_{j+1}, p_{j+2} is in $N(x) \cap P$. Let $p_{l} \sim x$ where $j \leq l \leq j+3$. If $l=j$ or $j+1$, then $w_{1} x p_{l}$ is a separating triangle. If $l=j+1$ or $j+2$, then $w_{2} x p_{l}$ is a separating triangle.

Lemma 4.6.5. Assume Hypothesis 4.6.2. Suppose F^{i} is not a diamond. If $v \in$ $F_{j}^{i} \backslash\left(X^{i} \cup Z^{i}\right)$, then the edge $v x_{j}$ is in a separating triangle.

Proof. As $v \in F_{j}^{i} \backslash X^{i}, x_{j}$ has two neighbors w_{1}, w_{2} in F_{j}^{i} such that $w_{1} v w_{2}$ is a path in F_{j}^{i}. As $v \notin Z^{i}, w_{1}, w_{2} \notin Y$. As F_{j}^{i} is a fan, $w_{1}, w_{2} \sim x_{i}$. Let p_{h} be the neighbor of w_{1} in P with h smallest and p_{k} be the neighbor of w_{2} in P with k largest. As mentioned before, $k-h \leq 4$ given the path $p_{h} w_{1} x w_{2} p_{k}$. Given that v has two neighbors in P, $k-h \geq 3$.

If $k-h=4$, then $N\left(x_{j}\right) \cap P \subseteq\left\{p_{h+1}, p_{h+2}, p_{h+3}\right\}$. Thus by Lemma 4.6.3, $p_{h+2} \sim x_{j}$. Yet $v \sim p_{h+2}$ and thus $v x_{j} p_{h+2}$ is a separating triangle.

If $k-h=3$, then $N\left(x_{j}\right) \subseteq\left\{p_{h}, p_{h+1}, p_{h+2}, p_{h+3}\right\}$. Thus by Lemma 4.6.3, either $x_{j} \sim p_{h+1}$ or $x_{j} \sim p_{h+2}$. Yet $v \sim p_{h+1}, p_{h+2}$. So $v x_{j}$ is a separating triangle.

Let Y_{2} denote the set of vertices in Y with at least two neighbors through one side (top or bottom).

Lemma 4.6.6. Assume Hypothesis 4.6.2. If $y \in Y_{2}$, then y is in a separating triangle.

Proof. Let $y_{i} \in Y_{2}$. Suppose without loss of generality that y_{i} has two neighbors on P where the edges go from P_{B} to P. Let p_{j}, p_{k} be two such neighbors of Y where we may assume $k>j$ and there does not exists $h, k>h>j$ such that p_{h} is a neighbor of Y through the bottom. First suppose $k=j+1$. Let $x_{1} \in N\left(y_{i}\right) \cap P_{T} \cap F^{i-1}$ and $x_{2} \in N\left(y_{i}\right) \cap P_{T} \cap F^{i}$. Let $p_{h_{1}}$ be the neighbor of x_{1} in P with h_{1} smallest and let $p_{h_{2}}$ be the neighbor of x_{2} in P with h_{2} largest. By Lemma 4.6.3, $x_{1} \sim p_{h_{1}+1}$ and $x_{2} \sim p_{h_{2}-1}$. Hence $h_{2} \geq h_{1}+2$.

If x_{1} or x_{2} is adjacent to p_{j} or p_{j+1}, then y is in a separating triangle as desired. Nevertheless, given the path $p_{h_{1}} x_{1} y_{i} p_{j+1}$, we find that $h_{1} \geq j-2$ and hence $h_{2} \geq j$. But then as x_{2} is not adjacent to p_{j} or p_{j+1}, it follows that $h_{2} \geq j+3$. Similarly given the path $p_{h_{2}} x_{2} y_{i} p_{j}$, we find that $h_{2} \leq j+3$ and hence $h_{1} \leq j+1$. As x_{1} is not
adjacent to p_{j} or p_{j+1}, it follows that $h_{1} \leq j-2$. Thus $h_{2} \geq h_{1}+5$. Yet given the path $x_{1} y_{i} x_{2}$, we find that $h_{2} \leq h_{1}+4$ as P is a shortest path, a contradiction.

So we may assume that $k \geq j+2$. As G is a nearly triangulated, y must be adjacent to p_{j+1} through the top. But then $p_{j} p_{j+1} y_{i}$ is a separating triangle as desired.

Let Y_{1} denote the vertices in Y with one neighbor in P through each side (top and bottom) such that these neighbors are adjacent.

Lemma 4.6.7. Assume Hypothesis 4.6.2. If $y \in Y_{1}$, then y is in a separating triangle.

Proof. Let $y_{i} \in Y_{1}$. Suppose without loss of generality that the neighbor of y_{i} on top is p_{j-1} and the neighbor of y on bottom is p_{j}. Then $p_{j-1} p_{j} y_{i}$ is a separating triangle.

Let Y_{1}^{*} denote the set of vertices in Y with one neighbor in P through each such that these neighbors are not adjacent.

Lemma 4.6.8. Assume Hypothesis 4.6.2. If $y \in Y_{1}^{*}$, then y is in a separating triangle or in the interior of a hexadecahedral band (as well as p_{j}, z_{1}, z_{4}).

Proof. Let $y_{i} \in Y_{1}^{*}$. Without loss of generality let p_{j-1} be the neighbor of y_{i} on the bottom and p_{j+1} be the neighbor of y_{i} on top. Let $z_{1} z_{2} y_{i}$ be the triangle in F^{i-1} and $z_{3} z_{4} y_{i}$ be the triangle in F^{i}. We may suppose without loss of generality that $z_{1}, z_{3} \in P_{T}$ and $z_{2}, z_{4} \in P_{B}$. It follows that $N\left(z_{2}\right) \cap P=\left\{p_{j-2}, p_{j-1}\right\}$ as otherwise P is not a shortest path. Similarly $N\left(z_{3}\right) \cap P=\left\{p_{j+1}, p_{j+2}\right\}$. If $z_{1} \sim p_{j-1}$, then $z_{1} p_{j-1} y_{i}$ is a separating triangle as desired. Yet $z_{1} \nsim p_{j-3}$ given the path $z_{1} y_{i} p_{j+1}$. But then by Lemma 4.6.3, it follows that $N\left(z_{1}\right) \cap P=\left\{p_{j}, p_{j+1}\right\}$. Similarly $N\left(z_{4}\right) \cap P=\left\{p_{j-1}, p_{j}\right\}$.

Meanwhile there exists $u_{1} \in F^{i-1}$ such that $u_{1} \neq y_{i}$ and $u_{1} z_{1} z_{2}$ is a triangle. Similarly there exists $u_{2} \in F^{i}$ such that $u_{2} \neq y_{i}$ and $u_{2} z_{3} z_{4}$ is a triangle. Now $N\left(u_{1}\right) \cap$ $P \subseteq\left\{p_{j-2}, p_{j-1}, p_{j}\right\}$ given the path $u_{1} z_{1} p_{j+1}$. Similarly $N\left(u_{2}\right) \cap P \subseteq\left\{p_{j}, p_{j+1}, p_{j+2}\right\}$ given the path $u_{2} z_{4} p_{j-1}$.

We claim that $u_{1} \sim p_{j-1}$. Suppose not. As u_{1} has two neighbors on $P, u_{1} \sim$ p_{j-2}, p_{j}. Given z_{2} and y_{i}, u_{1} must be adjacent to p_{j} through the top. But then if u_{1} is adjacent to p_{j-2} through the top, then u_{1} would be adjacent to p_{j-1} as G is nearly triangulated. So we may assume that u_{1} is adjacent to p_{j-2} through the bottom. Now consider the path $P^{\prime}=P \backslash\left\{p_{j-1}, p_{j}\right\} \cup\left\{z_{2}, z_{1}\right\}$. Note then that z_{1} has only one mate y_{i} in P^{\prime}, p_{j+1} has no mate in P^{\prime}, and as p_{j-1} is not a mate of z_{2} since $p_{j-1} \nsucc z_{1}, z_{2}$ has at most one mate in P^{\prime}, namely u_{1}. Given that neither u_{1} nor p_{j-1} is a mate of p_{j-2} in P^{\prime}, we find that p_{j-2} has no mate in P^{\prime}. Combining these observations, we find that P^{\prime} is an arrow.

However, the edge $p_{j-1} p_{j}$ is a 2-separation of the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Moreover, we claim that $U=p_{j-1} p_{j}$ is a stopping chord of $\Gamma_{P^{\prime}}$ in the direction of C. Suppose not. Thus either p_{j} is adjacent vertex v with two neighbors in $P \backslash\left\{p_{k}: k \geq j-1\right\}$ such that one of those neighbors is through the top, or, p_{j-1} has a vertex with two such neighbors such that one is through the bottom. Suppose the former. Then P is not a shortest path, given v. So suppose the latter. Yet $v \neq u_{1}$ as p_{j-1} is not adjacent to u_{1}. Furthermore, u_{1} is in a triangle $u_{1} w_{1} w_{2}$ in F^{i-2} where $w_{1} \in P_{T} \backslash Y$ and $w_{2} \in P_{B} \backslash Y$. It follows that $w_{1} \sim p_{j-2}$ and hence $v=w_{1}$. But $w_{1} \in P_{T}$ and hence does not have a neighbor on P through the bottom, a contradiction. This proves the claim.

So U is a stopping chord of $\Gamma_{P^{\prime}}$ contradicting Lemma 4.5.3.
By an identical argument, we can show that $u_{2} \sim p_{j+1}$. Now given z_{2} and y_{i}, u_{1} must be adjacent to p_{j-1} through the top. Similarly given z_{3} and y_{i}, u_{2} must be adjacent to p_{j+1} through the bottom. Thus $p_{j-1} p_{j} z_{1} u_{1}$ is a 4 -cycle that does not separate C from C^{\prime}. Thus there are no vertices in its interior. Yet as G is nearly triangulated, one of the edges $p_{j-1} z_{1}$ and $p_{j} u_{1}$ must be present. Yet z_{1} is not adjacent to p_{j-1} and hence p_{j} is adjacent to u_{1}. A similar argument shows that p_{j} is adjacent to u_{2}. Now $T_{1}=p_{j-1} u_{1} z_{2}$ and $T_{2}=p_{j+1} u_{2} z_{3}$ are separating triangles. Indeed, $G\left[T_{1}, T_{2}\right]$
is a band. The internal vertices of that band are $p_{j} z_{1} y_{i} z_{4}$ and it is not hard to check the adjacencies to see that the band is hexadecahedral as desired.

Let P_{2}^{*} denote the set of vertices in P^{*} with a neighbor in Γ_{2} through top and bottom. Let $P_{1}^{*}=P^{*} \backslash P_{2}^{*}$.

Lemma 4.6.9. Assume Hypothesis 4.6.2. If $p \in P_{2}^{*}$, then either p is in a separating triangle or p is in the interior of a hexadecahedral band (with y as in Lemma 4.6.8).

Proof. Suppose not. Then note that the neighbors of p in Γ_{2} through the top must form a subpath as otherwise, the vertex in the middle is in Y and thus p is adjacent to it through the other side and hence p is in a separating triangle. Now if p has a neighbor on top and a neighbor on bottom that are adjacent then p is in a separating triangle as desired. So we may assume without loss of generality that the neighbors of p in Γ_{2} through the top are closer to C than p 's neighbors on the bottom and that the neighbors through the bottom are closer to C^{\prime} than then neighbors on top.

Let u_{1} be the neighbor through the top closest to C^{\prime} along P_{T} and u_{2} be the neighbor through the bottom closest to C along P_{B}. Let u_{1}^{\prime} be the neighbor of u_{1} in P_{T} closer to C^{\prime}. If $u_{1}^{\prime} \notin Y$, then consider the vertex $z_{1} \in \Gamma_{2}$, that is in a triangle $z_{1} u_{1} u_{1}^{\prime}$. Clearly, $z_{1} \in P_{B} \backslash Y$. But then $p^{\prime} z_{1} u_{1}^{\prime} p^{\prime \prime}$ yields a shorter path than P, where p^{\prime} is the neighbor of z_{1} on P closest to C and $p^{\prime \prime}$ is the neighbor of u_{1}^{\prime} on P closest to C^{\prime}. So we may suppose that u_{1}^{\prime} in Y.

Let u_{2}^{\prime} be the neighbor of u_{2} in P_{B} closer to C. Similarly we find that $u_{2}^{\prime} \in Y$. If $u_{1}^{\prime} \neq u_{2}^{\prime}$, then there exists $z_{1} \in P_{B} \backslash Y$ and $z_{2} \in P_{T} \backslash Y$ such that z_{1} is adjacent to z_{2} and $z_{1} z_{2}$ is a chord of Γ_{2} separating u_{1} from u_{2}. But then $p^{\prime} z_{1} z_{2} p^{\prime \prime}$ yields a shorter path than P, where p^{\prime} is the neighbor of z_{1} on P closest to C and $p^{\prime \prime}$ is the neighbor of z_{2} on P closest to C^{\prime}. So we may suppose $u_{1}^{\prime}=u_{2}^{\prime}$, call it y.

Let us call p, p_{j}, so that $p_{j-1} p_{j} p_{j+1}$ is a subpath of P with p_{j-1} closest to C. Now y is not adjacent to p_{j} as we chose u_{1} closest to C^{\prime} and u_{2} closest to C. Let u_{3} such
that $u_{1} u_{3} y$ is a triangle in Γ_{2} and u_{4} such that $u_{2} u_{4} y$ is triangle in Γ_{2}. Now u_{4} is not adjacent to p_{j} as u_{1} was chosen closest to C. Thus there exists $k_{4} \geq j+2$ such that $u_{4} \sim p_{k_{4}}$. But this implies there does not exist $k \leq j-2$ such that $y \sim p_{k}$ as otherwise $p_{k} y u_{4} p_{k_{4}}$ is a shortcut for P. Similarly, there exists $k_{3} \leq j-2$ such that $u_{3} \sim p_{k_{3}}$ and hence there does not exist $k \geq j+2$ such that $y \sim p_{k}$.

As y has at least two neighbors on P, we find that $y \sim p_{j-1}, p_{j+1}$. Indeed, y must be adjacent to p_{j+1} through the top as $u_{1} \sim p_{j-1}, p_{j}$ through the top, and to p_{j-1} through the bottom as $u_{2} \sim p_{j} p_{j+1}$ through the bottom. But then $u_{1} p_{j} p_{j+1} y$ is a 4 cycle which does not separate C from C^{\prime} and hence there are no vertices in its interior. As G is nearly triangulated and $y \nsim p_{j}$, we find that $u_{1} \sim p_{j+1}$. Similarly there are no vertices in the interior of $u_{2} p_{j} p_{j-1} y$ and hence $u_{2} \sim p_{j-1}$. Now if $u_{1} \sim p_{j-1}$ and $u_{2} \sim p_{j+1}$, then p_{j} has degree four, a contradiction.

So we may assume without loss of generality that $u_{2} \nsim p_{j+1}$. Now if $u_{1} \nsim p_{j-1}$, then it is not hard to see that y cannot be in separating triangle; thus, by Lemma 4.6.8, it follows that p_{j} is in the interior of the same hexadecahedral band as y and the lemma follows. So we may assume that $u_{1} \sim p_{j-1}$.

Consider $P^{\prime}=\left(P \backslash\left\{p_{j}\right\}\right) \cup\{y\}$. Now P^{\prime} is also a shortest path from C to C^{\prime}. Furthermore, y has exactly one mate for P^{\prime}, namely, u_{1}, p_{j-1} has exactly one mate for P^{\prime}, namely u_{3}, and p_{j+1} has exactly one mate for P^{\prime}, namely u_{4}.

Suppose P is an arrow from C to C^{\prime}. Then P^{\prime} is an arrow from C to C^{\prime} unless p_{j+2} has two mates, call them $p_{j+2}^{\prime}, p_{j+2}^{\prime \prime}$. Now given that u_{4} is not a mate of p_{j+2} for P^{\prime}, either p_{j+2}^{\prime} or $p_{j+2}^{\prime \prime}$ is in a separating triangle with p_{j+1} and p_{j+2}. We may suppose without loss of generality that $p_{j+2}^{\prime} p_{j+2} p_{j+1}$ is a separating triangle. Hence the edge $p_{j+2}^{\prime} p_{j+2}$ is through the top and the edge $p_{j+2}^{\prime} p_{j+1}$ is through the bottom. Thus $p_{j+2}^{\prime} \in Y$. As Γ_{1} is a harmonica, p_{j+2}^{\prime} must be adjacent to u_{4}. Yet as Γ_{1} is a harmonica, F^{i} must be an even fan where $y_{i-1}=y$ and $y_{i}=p_{j+2}^{\prime}$. Thus p_{j+2}^{\prime} is adjacent to u_{2}, a contradiction to the fact that P is a shortest path given the path
$p_{j-1} u_{2} p_{j+2}^{\prime} p_{j+3}$. Hence if P is an arrow from C to C^{\prime}, P^{\prime} is an arrow from C to C^{\prime}.
Suppose P is an arrow from C^{\prime} to C. Then P^{\prime} is an arrow from C^{\prime} to C unless p_{j-2} has two mates, call them $p_{j-2}^{\prime}, p_{j-2}^{\prime \prime}$. Now given that u_{3} is not a mate of p_{j-2} for P^{\prime}, either p_{j-2}^{\prime} or $p_{j-2}^{\prime \prime}$ is in a separating triangle with p_{j-1} and p_{j-2}. We may suppose without loss of generality that $p_{j-2}^{\prime} p_{j-2} p_{j-1}$ is a separating triangle. Hence the edge $p_{j-2}^{\prime} p_{j-2}$ is through the bottom and the edge $p_{j-2}^{\prime} p_{j-1}$ is through the top. Thus $p_{j-2}^{\prime} \in Y$. As Γ_{1} is a harmonica, p_{j-2}^{\prime} must be adjacent to u_{1}, a contradiction to the fact that P is a shortest path given the path $p_{j-3} p_{j-2}^{\prime} u_{1} p_{j+1}$. Hence if P is an arrow from C^{\prime} to C, P^{\prime} is an arrow from C^{\prime} to C.

So we may suppose that P^{\prime} is an arrow in the same direction as P. Consider the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Now $U=u_{1} p_{j}$ is a dividing cut-edge in $\Gamma_{P^{\prime}}$, contradicting Lemma 4.5.3.

It now follows from the lemmas above that every vertex in Γ_{2} is in a separating triangle in G_{0}. Let $V^{\prime}=V(G) \cup P^{*}$. Let T_{1} be the outermost separating triangle of G_{0} with $V\left(T_{1}\right) \subseteq V^{\prime}$ and T_{2} be the innermost separating triangle of G_{0} with $V\left(T_{2}\right) \subseteq V^{\prime}$.

Let H be $G\left[V\left(\Gamma_{2}\right) \cup V\left(P^{*}\right)\right] \backslash\left\{e=u v \mid u, v \in V\left(\Gamma_{2}\right), e \notin E\left(\Gamma_{2}\right)\right\}$. Let $H^{\prime}=H \backslash\{e=$ $\left.u v \mid u \in Y, v \in P^{*}\right\}$. Let \mathcal{F} be the set of faces of H^{\prime} incident with vertices in Y that are not triangles. Let \mathcal{F}_{i} be faces in \mathcal{F} with size i.

Proposition 4.6.10. Assume Hypothesis 4.6.2. If $v \in \Gamma\left[T_{1}, T_{2}\right] \backslash\left(\Gamma_{2} \cup P^{*}\right)$, then v is in the interior of a face f in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$.

Proof. A vertex not in H must be in the interior of a face of H of size at least five. All faces of H not incident with a vertex in Y are triangles as G is a near-triangulation. Moreover, faces in H incident with a vertex in Y have size at most six.

Proposition 4.6.11. If $v \in P_{1}^{*}$, then v is incident with a face f in \mathcal{F}_{6} and the edges of the boundary of f incident with v are in P.

Proof. As $v \in P_{1}^{*}, v$ does not have a neighbor in Γ_{2} through either top or bottom. But then, on that side it must be incident with a face f in H of size at least four. Thus, but then f must be incident with a vertex in Y. If f has size less than six, then v has a neighbor in Γ_{2}. Thus f has size six and the edges of the boundary of f incident with v are in P.

Now we may characterize the vertices in Y in a different more useful way. Namely, let $Y_{a, b}$ denote the set of vertices y in Y such that the two faces of H^{\prime} that are incident with y but are not triangles have sizes a and b where $a \geq b$. Thus by the above Propositions, we may characterize the vertices of P_{1}^{*} and $\Gamma\left[T_{1}, T_{2}\right] \backslash\left(\Gamma_{2} \cup P^{*}\right)$ by what $Y_{a, b}$ the vertex of y in those propositions belongs to.

Let $P_{a, b}$ be the vertices of P_{1}^{*} such that there exists y in $Y_{a, b}$ where p and y are both incident with a face of size six in H^{\prime} as in Proposition 4.6.11. Hence $P_{a, b}=\emptyset$ if $a \leq 5$. We define $W_{a, b}$ as the vertices of $\Gamma\left[T_{1}, T_{2}\right] \backslash\left(V\left(\Gamma_{2}\right) \cup V\left(P^{*}\right)\right)$ in the interior of a non-triangular face of H^{\prime} incident with a vertex $y \in Y_{a, b}$.

Lemma 4.6.12. Assume Hypothesis 4.6.2. If $a \leq 5$, then $W_{a, 4}=\emptyset$.

Proof. Suppose not. Then there exists a vertex $w \in W_{a, 4}, a \leq 5$. Yet w must be in a face f of size at least five. Hence $a=5$. But then the cutvertex y incident with f can have at most one neighbor in P, contradicting that Γ_{2} is a harmonica.

Lemma 4.6.13. Assume Hypothesis 4.6.2. All vertices in $W_{5,5}$ are in a separating triangle.

Proof. Let $w \in W_{5,5}$. Thus w is in a face f_{1} of size five. Let y be the cutvertex incident with f. As y has two neighbors in P, y must be incident with two edges in the interior of f_{2}, the other face of size five in H^{\prime} incident with y. Let p_{j}, p_{j+1} be these neighbors. Now if p_{j} or p_{j+1} is incident with f_{1}, then w is in a separating triangle as desired. Let p_{k} and p_{k+1} be the vertices of P incident with f_{1}. So we may suppose
without loss of generality that $k \geq j+2$. Let u be such that $u p_{k+1}$ is an edge incident with f_{1} and $u \neq p_{k}$. By Lemma 4.6.3, $u \sim p_{k+2}$. But then $p_{j} y u p_{k+2}$ shows that P is not a shortest path from C_{1} to C_{2}, a contradiction.

Lemma 4.6.14. Assume Hypothesis 4.6.2. All vertices in $\bigcup_{b \geq 4}\left(W_{6, b} \cup P_{6, b}\right)$ are in a separating triangle.

Proof. Suppose not. Let z be such a vertex not in a separating triangle. If $z \in P_{1}^{*}$, let $y \in Y$ be the cutvertex opposite z as in Lemma 4.6.11; otherwise let $y \in Y$ be the cutvertex incident with the face of H^{\prime} containing z in its interior as in Lemma 4.6.10.

Recall that $P=p_{1} \ldots p_{d}$ is a shortest path from C to C^{\prime}. Let f_{1}, f_{2} be the two non-triangular faces of H^{\prime} incident with y. We may suppose without loss of generality that f_{1} is on top and f_{2} is on bottom, that $\left|f_{1}\right|=6$, and f_{1} is a face for z as in Lemmas 4.6.11 and 4.6.10. Let $u_{1} u_{2} y$ and $u_{3} u_{4} y$ be the triangles of Γ_{2} incident with y. We may assume without loss of generality that $u_{1}, u_{3} \in P_{T} \backslash Y$ and hence $u_{2}, u_{4} \in P_{B} \backslash Y$. Let p_{j-1}, p_{j}, p_{j+1} be the vertices of P incident with f_{1} such that the boundary of f_{1} is $p_{j-1} p_{j} p_{j+1} u_{3} y u_{1}$. Thus $N\left(u_{1}\right) \cap P=\left\{p_{j-2}, p_{j-1}\right\}$ and $N\left(u_{3}\right) \cap P=\left\{p_{j+1}, p_{j+2}\right\}$ as otherwise P is not shortest. Therefore, we may assume that if $z \in P$, then $z=p_{j}$.

Claim 4.6.15. $\left|f_{2}\right| \neq 4$.
Proof. Suppose not. Now y is incident with at most one edge that lies in f_{2}. Yet y has at least two neighbors on P; thus y is incident with at least one edge that lies in f_{1}. Suppose that $y p_{j}$ is such an edge. But then y is adjacent to p_{j-1}, p_{j+1} through edges in f_{1} as G is nearly triangulated. Thus there is no vertex in the interior of f_{1} or f_{2}. Moreover, one of u_{2}, u_{4} is adjacent to p_{j} as P is a shortest path. Thus, $y p_{j}$ is in a separating triangle, a contradiction as $z=p_{j}$.

So we may assume that $y p_{j}$ is not an edge that lies in f_{1}. Without loss of generality, we may suppose that $y p_{j+1}$ is an edge that lies in f_{1}. Suppose there is no vertex in
the interior of f_{1}; hence $z=p_{j}$. Yet as p_{j} is not adjacent to u_{1} and G is nearly traingulated, the edge $p_{j-1} y$ must lie in f_{1}. But then as G is nearly triangulated and $y p_{j}$ is not an edge that lies in $f_{1}, y p_{j}$ must be an edge and hence it must lie in f_{2}. Thus $y p_{j} p_{j+1}$ is a separating triangle, contradicting that $z=p_{j}$.

So we may assume there exists a vertex v in the interior of f_{1}. Hence $N(v)=$ $\left\{p_{j-1}, p_{j}, p_{j+1}, y, u_{1}\right\}$. Yet y must have another neighbor in P. Thus either p_{j} is in f_{2} and the edge $y p_{j}$ lies in f_{2} or p_{j-1} is in f_{2} and the edge $y p_{j-1}$ lies in f_{2}. Suppose the former. Then $y v p_{j}$ is a separating triangle, contradicting that $z \in\left\{v, p_{j}\right\}$. So we may suppose the latter that $y p_{j-1}$ is an edge that lies in f_{2}.

Suppose P is an arrow from C to C^{\prime}. Consider $P^{\prime}=\left(P \backslash\left\{p_{j}\right\}\right) \cup\{y\}$. Now P^{\prime} is also a shortest path from C to C^{\prime}. Furthermore, y has exactly one mate for P^{\prime}, namely, v, and p_{j-1} has exactly two mates for P^{\prime}, namely u_{1}, u_{2}. Moreover, p_{j+1} has one mate for P^{\prime}, namely u_{3}. In addition, p_{j-2} has no mate for P^{\prime} given u_{1}, u_{2}. Now P^{\prime} is an arrow from C to C^{\prime} unless p_{j+2} has two mates, call them $p_{j+2}^{\prime}, p_{j+2}^{\prime \prime}$. Now either p_{j+2}^{\prime} or $p_{j+2}^{\prime \prime}$ is in a separating triangle with p_{j+1} and p_{j+2}. We may suppose without loss of generality that $p_{j+2}^{\prime} p_{j+2} p_{j+1}$ is a separating triangle. Hence the edge $p_{j+2}^{\prime} p_{j+2}$ is through the top and the edge $p_{j+2}^{\prime} p_{j+1}$ is through the bottom because $u_{3} \sim p_{j+1}, p_{j+2}$. Thus $p j+2^{\prime} \in Y$. As Γ_{1} is a harmonica, p_{j+2}^{\prime} must be adjacent to u_{3}. Yet as Γ_{1} is a harmonica, F^{i} must be an even fan where $y_{i-1}=y$ and $y_{i}=p_{j+2}^{\prime}$. Thus p_{j+2}^{\prime} is adjacent to u_{4}, a contradiction to the fact that P is a shortest path given the path $p_{j-1} u_{4} p_{j+2}^{\prime} p_{j+3}$.

So we may suppose that P^{\prime} is an arrow from C to C^{\prime}. Consider the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Now $U=v p_{j}$ is a dividing cut-edge of $\Gamma_{P^{\prime}}$, contradicting Lemma 4.5.3.

Finally we may assume that P is an arrow from C^{\prime} to C. Consider $P^{\prime \prime}=(P \backslash$ $\left.\left\{p_{j}, p_{j+1}\right\}\right) \cup\left\{u_{4}, u_{3}\right\}$. Now $P^{\prime \prime}$ is also a shortest path from C to C^{\prime}. Furthermore, u_{4} has exactly one mate for $P^{\prime \prime}$, namely, y. Moreover, neither p_{j-1} nor p_{j-2} has a
mate for $P^{\prime \prime}$. Note that p_{j+1} is not adjacent to u_{4} as then p_{j} has degree four, a contradiction. Thus p_{j+1} is not a mate of u_{3} for $P^{\prime \prime}$. So u_{3} has at most one mate for $P^{\prime \prime}$.

Now $P^{\prime \prime}$ is an arrow from C^{\prime} to C unless p_{j+2} has two mates, call them $p_{j+2}^{\prime}, p_{j+2}^{\prime \prime}$ and p_{j+3} has at least one mate, call it p_{j+3}^{\prime}. Now either p_{j+2}^{\prime} or $p_{j+2}^{\prime \prime}$ is in a separating triangle with u_{3} and p_{j+2}. We may suppose without loss of generality that $p_{j+2}^{\prime} p_{j+2} u_{3}$ is a separating triangle. Hence the edge $p_{j+2}^{\prime} p_{j+2}$ is through the bottom and the edge $p_{j+2}^{\prime \prime} p_{j+2}$ is through the top. Thus the edge $p_{j+2}^{\prime} p_{j+3}$ is through the bottom as otherwise $p_{j+2}^{\prime \prime}$ is in the interior of the 4 -cycle $p_{j+2}^{\prime} p_{j+3} p_{j+2} u_{3}$ which does not separate C from C^{\prime}, a contradiction.

As p_{j+3} has a mate for $P^{\prime \prime}, p_{j+2}^{\prime \prime} p_{j+3}$ cannot be through the top and so must be through the bottom. Hence $p_{j+2}^{\prime \prime} \in Y$. But then $p_{j+2}^{\prime \prime}$ is adjacent to u_{3} and $p_{j+2^{\prime}}$ as Γ_{1} is a harmonica. Thus F^{i} is an even fan where $y_{i-1}=y$ and $y_{i}=p_{j+2}^{\prime \prime}$. It now follows that there exists $u_{5} \in \Gamma_{1}$ adjacent to all of $u_{3}, u_{4}, p_{j+2}^{\prime}$. Moreover as $u_{5} \in P_{B} \backslash Y$ and hence $N\left(u_{5}\right) \cap P$ is a path of length one or two. Yet $N\left(u_{5}\right) \cap P \subseteq\left\{p_{j}, p_{j+1}, p_{j+2}\right\}$. Hence $u_{5} \sim p_{j+1}$. But then $u_{5} \sim p_{j}$, as otherwise p_{j} has a degree at most four, a contradiction.

Note the 4 -cycle $u_{5} p_{j+2}^{\prime} p_{j+2} p_{j+1}$ that does not separate C from C^{\prime}. As G is nearly triangulated, it follows that either $u_{5} \sim p_{j+1}$ or $p_{j+2}^{\prime} \sim p_{j+1}$. Suppose $u_{5} \sim p_{j+1}$. Let $P^{\prime \prime \prime}=P \backslash\left\{p_{j+1}\right\} \cup\left\{u_{5}\right\}$. Now p_{j-1} has no mates for $P^{\prime \prime \prime}$. Furthermore, p_{j} has exactly one mate for $P^{\prime \prime}$, namely, $u_{4} ; u_{5}$ has exactly one mate, namely $p_{j+1} ; p_{j+2}$ has exactly one mate, namely p_{j+2}^{\prime}. Hence $P^{\prime \prime \prime}$ is an arrow from C^{\prime} to C. Yet $U=u_{3} p_{j+2}^{\prime \prime}$ is a dividing cut-edge of $\Gamma_{P^{\prime \prime \prime}}$, contradicting Lemma 4.5.3.

So we may suppose that $p_{j+2}^{\prime} \sim p_{j+1}$. Let $P^{\prime \prime \prime}=P \backslash\left\{p_{j+2}\right\} \cup\left\{p_{j+2}^{\prime}\right\}$. Now p_{j} has exactly one mate for $P^{\prime \prime \prime}$, namely, $v ; p_{j+1}$ has no mate; p_{j+2}^{\prime} has exactly one mate, namely p_{j+2}. In addition, p_{j+3} has no mate for $P^{\prime \prime \prime}$. Hence $P^{\prime \prime \prime}$ is an arrow from C^{\prime} to C. Yet $U=y u_{3}$ is a dividing cut-edge of $\Gamma_{P^{\prime \prime \prime}}$, contradicting Lemma 4.5.3.

So we may suppose that $P^{\prime \prime}$ is an arrow from C^{\prime} to C. So consider the planarization $\Gamma_{P^{\prime \prime}}$ of Γ with respect to $P^{\prime \prime}$. Now v has a list of size at least four in $\Gamma_{P^{\prime \prime}}$ and y has a list of size at least three. Yet $v y$ is a chord of the infinite face of $\Gamma_{P^{\prime \prime}}$ and y has only three neighbors in $\Gamma_{P^{\prime \prime}}$ with a list of size three. Hence, $U=v y$ is a blocking chord of $\Gamma_{P^{\prime \prime}}$, contradicting Lemma 4.5.3.

Claim 4.6.16. $\left|f_{2}\right| \neq 5$.

Proof. Suppose not. We may assume without loss of generality that the boundary of f_{2} is $p_{j-1} p_{j} u_{4} y u_{2}$ and that $N\left(u_{2}\right) \cap P=\left\{p_{j-2}, p_{j-1}\right\}$ and that $N\left(u_{4}\right) \cap P \supseteq\left\{p_{j}, p_{j+1}\right\}$. Note that p_{j} is not adjacent to u_{1}, u_{2}, u_{3}. In addition, $u_{2} \nsim u_{4}$ as otherwise $u_{2} u_{4} p_{j} p_{j-1}$ is a 4 -cycle that does not separate C from C^{\prime}, but then as G is nearly triangulated either $u_{2} \sim p_{j}$ or $u_{4} \sim p_{j+1}$, contradicting that $\left|f_{2}\right|=5$.

First suppose there exists a vertex v in the interior of f_{2}. As y has at least two neighbors in P, y is incident with two edges that lie in f_{1}. Hence there is no vertex in the interior of f_{1}. As G is nearly triangulated, it follows that $y \sim p_{j-1}, p_{j}, p_{j+1}$. Hence $p_{j} v y$ is a separating triangle, a contradiction as $z \in\left\{v, p_{j}\right\}$.

So we may assume there does not exist a vertex in the interior of f_{2}. As G is nearly triangulated and $u_{2} \nsim p_{j}$, the edge $p_{j-1} y$ lies in f_{2}. Suppose $y \nsim p_{j}$. Thus $y \sim p_{j+1}$ as y has two neighbors in P. Hence $y p_{j+1}$ lies in f_{1} and there is at most one vertex in the interior of f_{1}. But then p_{j} has degree at most four, a contradiction. So we may assume that $y \sim p_{j}$. If $y p_{j}$ lies in f_{1}, then $p_{j} \sim u_{1}$ as G is nearly traingulated, a contradiction. So we may suppose that $y p_{j}$ lies in f_{2}.

As P is a shortest path, p_{j-1} is not adjacent to either u_{3} or p_{j+1}. Thus if there does not exist a vertex in the interior of f_{1}, then $u_{1} \sim p_{j}$ as G is nearly triangulated, contradicting that $\left|f_{1}\right|=6$. So we may suppose there exists a vertex in the interior of f_{1}. Now condition on the interior of f_{1} using Theorem 1.5.2. Suppose case (i) holds. That is, there exists exactly one vertex v in the interior of f_{1}. As G is nearly
triangulated, it follows that v is adjacent to all of $p_{j-1}, p_{j}, p_{j+1}, u_{1}, u_{3}, y$. Hence $p_{j} v y$ is a separating triangle, a contradiction as $z \in\left\{v, p_{j}\right\}$.

So there are at least two vertices in the interior. We claim now that u_{4} is not adjacent to p_{j+2}. Suppose it is. As $u_{4} \in P_{B} \backslash Y$, the edge $u_{4} p_{j+2}$ must go through the bottom. Hence the 7 -walk $C_{0}=p_{j-1} y u_{4} p_{j+2} u_{3} y u_{1}$ does not separate C from C^{\prime}. As case (ii) or (iii) holds for f_{1}, every L-coloring of the boundary of C_{0} extends to its interior, a contradiction. This proves the claim that u_{4} is not adjacent to p_{j+2}.

So suppose case (ii) holds. That is, there exist two adjacent vertices v_{1}, v_{2} in the interior of f_{1} such that v_{1}, v_{2} are each adjacent to four vertices in the boundary of f_{1}. Suppose v_{1}, v_{2} are both adjacent to p_{j}. It follows that v_{1}, v_{2} are both adjacent to y. Hence $p_{j} v_{1} y$ and $p_{j} v_{2} y$ are separating triangles, a contradiction as $z \in\left\{v_{1}, v_{2}, p_{j}\right\}$. So we may suppose without loss of generality that v_{1} is adjacent to p_{j-1}, p_{j}, p_{j+1} and v_{2} is adjacent to u_{1}, y, u_{3}. There are two cases to consider: v_{1} is adjacent to u_{1} and v_{2} is adjacent to p_{j+1}, or, v_{1} is adjacent to u_{3} and v_{2} is adjacent to p_{j-1}.

Suppose that v_{1} is adjacent to u_{1} and v_{2} is adjacent to p_{j+1}. Consider $P^{\prime}=$ $\left(P \backslash p_{j}\right) \cup v_{1}$. Now P^{\prime} is also a shortest path from C to C^{\prime}. Furthermore, v_{1} has exactly one mate for P^{\prime}, namely, p_{j}, and p_{j-1} has exactly one mate for P^{\prime}, namely u_{1}. Moreover, p_{j+1} has no mate for P^{\prime}. In addition, p_{j-2} has no mate for P^{\prime} given u_{1}, u_{2}. Thus P^{\prime} is an arrow in the same direction as P^{\prime}. So consider the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Now v_{2} has a list of size at least three in $\Gamma_{P^{\prime}}$ and y has a list of size at least four. Yet $v_{2} y$ is a chord of the infinite face of $\Gamma_{P^{\prime}}$ and v_{2} has only two neighbors in $\Gamma_{P^{\prime}}$ with a list of size three. Hence, $U=v_{2} y$ is a blocking chord of $\Gamma_{P^{\prime}}$, contradicting Lemma 4.5.3.

So we may suppose that v_{1} is adjacent to u_{3} and v_{2} is adjacent to p_{j-1}. Consider $P^{\prime}=\left(P \backslash p_{j}\right) \cup v_{1}$. Now P^{\prime} is also a shortest path from C to C^{\prime}. Furthermore, v_{1} has exactly one mate for P^{\prime}, namely, p_{j}, and p_{j+1} has exactly one mate for P^{\prime}, namely u_{3}. Moreover, p_{j-1} has no mate for P^{\prime}. Suppose P^{\prime} is an arrow in the same direction
as P. So consider the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Now v_{2} has a list of size at least three in $\Gamma_{P^{\prime}}$ and y has a list of size at least four. Yet $v_{2} y$ is a chord of the infinite face of $\Gamma_{P^{\prime}}$ and v_{2} has only two neighbors in $\Gamma_{P^{\prime}}$ with a list of size three. Hence, $U=v_{2} y$ is a blocking chord of $\Gamma_{P^{\prime}}$, contradicting Lemma 4.5.3.

So we may suppose that P^{\prime} is not an arrow in the same direction as P. But this implies that P is an arrow from C to C^{\prime} and that p_{j+2} is tripled for P^{\prime}. That is, there exist two mates, call them $p_{j+2}^{\prime}, p_{j+2}^{\prime \prime}$, of p_{j+2} for P^{\prime}. We may suppose without loss of generality that $p_{j+1} p_{j+2} p_{j+2}^{\prime}$ is a separating triangle. Thus $p_{j+2}^{\prime} \in Y$ and as Γ_{1} is a harmonica, y is adjacent to u_{3} and u_{4}. Hence $p_{j+2}^{\prime \prime} \notin Y$ and the edge $p_{j+2}^{\prime \prime} p_{j+3}$ is through the bottom. As $p_{j+2}^{\prime \prime}$ has degree at least five, the edge $p_{j+2}^{\prime} p_{j+3}$ must be through the top. So consider $P^{\prime \prime}=P \backslash\left\{p_{j}, p_{j+1}\right\} \cup\left\{y, u_{3}\right\}$. Now $P^{\prime \prime}$ is also a shortest path from C to C^{\prime}. Furthermore, p_{j-2} has no mate for $P^{\prime \prime} ; p_{j-1}$ has two mates, namely $u_{1}, u_{2} ; y$ has one mate, namely $v_{2} ; u_{3}$ has no mate as $u_{4} \nsim p_{j+2} ; p_{j+2}$ has one mate, namely $p_{j+2}^{\prime} ; p_{j+3}$ has no mate.

Hence $P^{\prime \prime}$ is an arrow from C to C^{\prime}. So consider the planarization $\Gamma_{P^{\prime \prime}}$ of Γ with respect to $P^{\prime \prime}$. Yet $U=v_{1} v_{2}$ is a dividing cut-edge of $\Gamma_{P^{\prime \prime}}$, contradicting Lemma 4.5.3.

So we may assume that case (iii) holds. That is, there exist three pairwise adjacent vertices v_{1}, v_{2}, v_{3} in the interior of f_{1} such that v_{1}, v_{2}, v_{3} are each adjacent to three vertices in the boundary of f_{1}. Now we may suppose without loss of generality that either $v_{1} \sim p_{j-1}, p_{j}, p_{j+1}, v_{2} \sim p_{j-1}, u_{1}, y$ and $v_{3} \sim y, u_{3}, p_{j+1}$, or, $v_{1} \sim u_{1}, y, u_{3}$, $v_{2} \sim u_{1}, p_{j-1}, p_{j}$ and $v_{3} \sim p_{j}, p_{j+1}, u_{3}$. Suppose the former. Consider $P^{\prime}=\left(P \backslash p_{j}\right) \cup v_{1}$. Now P^{\prime} is also shortest path from C to C^{\prime}. Furthermore, v_{1} has exactly one mate for P^{\prime}, namely, p_{j}. Moreover, neither p_{j-1} nor p_{j+1} has a mate for P^{\prime}. Hence P^{\prime} is an arrow in the same direction as P. So consider the planarization $\Gamma_{P^{\prime}}$ of Γ with respect to P^{\prime}. Now v_{2} has a list of size at least three in $\Gamma_{P^{\prime}}$ and y has a list of size at least four. Yet $U=v_{2} y$ is a chord of the infinite face of $\Gamma_{P^{\prime}}$ and v_{2} has only two neighbors in $\Gamma_{P^{\prime}}$ with a list of size three. Hence, $v_{2} y$ is a blocking chord of $\Gamma_{P^{\prime}}$, contradicting

Lemma 4.5.3.

So we may suppose the latter case that $v_{1} \sim u_{1}, y, u_{3}, v_{2} \sim u_{1}, p_{j-1}, p_{j}$ and $v_{3} \sim$ p_{j}, p_{j+1}, u_{3}. Consider $P^{\prime \prime}=P \backslash\left\{p_{j}, p_{j+1}\right\} \cup\left\{y, u_{3}\right\}$. Now $P^{\prime \prime}$ is also a shortest path from C to C^{\prime}. Furthermore, p_{j-2} has no mate for $P^{\prime \prime} ; p_{j-1}$ has two mates, namely $u_{1}, u_{2} ; y$ has no mate; u_{3} has no mate as $u_{4} \nsim p_{j+2}$. However, p_{j+2} and p_{j+3} may have one or two mates for $P^{\prime \prime}$. Now $P^{\prime \prime}$ is an arrow from C to C^{\prime} unless p_{j+2} has one mate and p_{j+3} has two mates. Similarly, $P^{\prime \prime}$ is an arrow from C^{\prime} to C unless p_{j+3} has one mate and p_{j+3} has two mates.

Suppose $P^{\prime \prime}$ is an arrow in the same direction as P. Consider the planarization $\Gamma_{P^{\prime \prime}}$ of Γ with respect to $P^{\prime \prime}$. Yet $v_{2} v_{3}$ is a chord of $\Gamma_{P^{\prime \prime}}$ and v_{2}, v_{3} have lists of size at least four in $\Gamma_{P^{\prime \prime}}$. Thus $U=v_{2} v_{3}$ is a blocking chord of $\Gamma_{P^{\prime \prime}}$, contradicting Lemma 4.5.3, a contradiction. So we may suppose that $P^{\prime \prime}$ is not an arrow in the same direction as P.

So suppose P is an arrow from C to C^{\prime}. Hence $P^{\prime \prime}$ is not an arrow from C to C^{\prime}. Therefore p_{j+2} has at least one mate p_{j+2}^{\prime} for $P^{\prime \prime}$ and p_{j+3} has two mates, call them $p_{j+3}^{\prime}, p_{j+3}^{\prime \prime}$ for $P^{\prime \prime}$. Given p_{j+2}^{\prime}, either $p_{j+3} p_{j+3}^{\prime} p_{j+2}$ or $p_{j+3} p_{j+3}^{\prime \prime} p_{j+2}$ is a separating triangle. Suppose without loss of generality that $p_{j+3} p_{j+3}^{\prime} p_{j+2}$ is a separating triangle. Now there are two cases: the edge $p_{j+2} p_{j+3}^{\prime}$ is through the top or through the bottom. Suppose it is through the top. As Γ_{1} is a harmonica, p_{j+3}^{\prime} must be adjacent to u_{3}. But then $p_{j-1} y u_{3} p_{j+3}^{\prime} p_{j+4}$ shows that P is not a shortest path, a contradiction. So we may suppose the edge $p_{j+2} p_{j+3}^{\prime}$ is through the bottom. Note that as P is a shortest path, $p_{j+3}^{\prime} \nsim u_{3}, u_{4}$. Consider the vertex $u_{5} \neq y$ such that $u_{3} u_{4} u_{5}$ is triangle in Γ_{1}. If $u_{4} \in P_{T}$, then $N\left(u_{5}\right) \cap P=\left\{p_{j+2}, p_{j+3}\right\}$ while if $u_{4} \in P_{B}$, then $N\left(u_{5}\right) \cap P=\left\{p_{j+1}, p_{j+2}\right\}$. In either case, u_{5} must be adjacent to p_{j+3}^{\prime}, a contradiction to the fact that Γ_{1} is a harmonica as otherwise in the subcanvas F^{i} between $y=y_{i-1}$ and $p_{j+3}^{\prime}=y_{i}$, the fan F_{1}^{i} has the wrong parity - it is even when it should be odd, a contradiction.

So we may suppose that P is an arrow from C^{\prime} to C. Hence $P^{\prime \prime}$ is not an arrow from C^{\prime} to C. Therefore p_{j+3} has at least one mate p_{j+3}^{\prime} for $P^{\prime \prime}$ and p_{j+2} has two mates, call them $p_{j+2}^{\prime}, p_{j+2}^{\prime \prime}$ for $P^{\prime \prime}$. Given p_{j+1}, either $p_{j+2} p_{j+2}^{\prime} u_{3}$ or $p_{j+2} p_{j+2}^{\prime \prime} u_{3}$ is a separating triangle. Suppose without loss of generality that $p_{j+2} p_{j+2}^{\prime} u_{3}$ is a separating triangle. Hence the edge $p_{j+2}^{\prime} p_{j+3}$ is through the bottom. Thus the edge $p_{j+2}^{\prime} p_{j+3}$ is through the bottom as otherwise $p_{j+2}^{\prime \prime}$ has degree at most four, a contradiction. Furthermore, the edge $p_{j+2}^{\prime \prime} p_{j+2}$ must be the through the top. Yet given p_{j+3}^{\prime}, the edge $p_{j+2}^{\prime \prime} p_{j+3}$ must be through the bottom. Hence $p_{j+2}^{\prime \prime} \in Y$. It follows that the edge $p_{j+2}^{\prime \prime} p_{j+2}^{\prime}$ exists and that $p_{j+2}^{\prime} p_{j+2}^{\prime \prime} u_{3}$ is a triangle in Γ_{1}. As Γ_{1} is a harmonica, F_{1}^{i} must be an even fan where $y_{i-1}=y$ and $y_{i}=p_{j+2}^{\prime \prime}$. Thus there exists a vertex $u_{5} \sim u_{3}, u_{4}, p_{j+2}^{\prime}, p_{j+2}, p_{j+1}$. Now consider the 8 -walk $C_{0}=y u_{3} p_{j+2}^{\prime} p_{j+2} u_{3} y u_{1} p_{j-1} ; C_{0}$ does not separate C from C^{\prime}. Nevertheless, every L-coloring of $G\left[V\left(C_{0}\right)\right]$ extends to an L-coloring of $G\left[V\left(C_{0}\right) \cup\left\{p_{j}, p_{j-1}, v_{1}, v_{2}, v_{3}, u_{4}, u_{5}\right\}\right]$. This follows from Theorem 2.2.2 as only v_{1} and u_{5} have at least three neighbors in C_{0} and they have exactly three.

Claim 4.6.17. $\left|f_{2}\right| \neq 6$.

Proof. Suppose not. As P is a shortest path, it follows that the boundary of f_{2} is $p_{j-1} p_{j} p_{j+1} u_{4} y u_{2}$ and that $N\left(u_{2}\right) \cap P=\left\{p_{j-2}, p_{j-1}\right\}$ and that $N\left(u_{2}\right) \cap P=\left\{p_{j+1}, p_{j+2}\right\}$. Note though that p_{j} is not adjacent to any of $u_{1}, u_{2}, u_{3}, u_{4}$ and yet p_{j} has degree at least five. Now p_{j} is adjacent to p_{j-1} and p_{j+1} and possibly y, but this implies that there must be at least two vertices contained in the interiors of f_{1} and f_{2}.

Suppose first that $y \sim p_{j}$. We may assume without loss of generality that the edge $y p_{j}$ is in f_{2}. But then there are no vertices in the interior of f_{2}. As p_{j} has at least two neighbors in the interiors of f_{1} and f_{2}, there must be at least two vertices in the interior of f_{1}. So case (ii) or (iii) of Theorem 1.5.2 for f_{1}. But then as G is nearly triangulated, y is adjacent to p_{j-1} and p_{j+1} through f_{2}. Hence $p_{j-1} y p_{j+1} u_{3} y u_{1}$ is a 6 -walk that does not separate C from C^{\prime}. Lt $G_{C_{0}}$ be the graph whose boundary
is C_{0} as well the edges and vertices inside the disk bounded by C_{0}. By Theorem 1.5.2 applied to C_{0} for $G_{C_{0}}$, there are at most three vertices in its interior. As p_{j} is in $V\left(G_{C_{0}}\right) \backslash V\left(C_{0}\right)$ and there are are least two vertices in the interior, it follows that case (iii) holds for $G_{C_{0}}$, that there are exactly two vertices v_{1}, v_{2} in the interior of f_{1} and that p_{j} is adjacent to both of them. Hence case (ii) holds for f_{1} and $y \sim v_{1}, v_{2}$. So $p_{j} v_{1} y$ and $p_{j} v_{2} y$ are separating triangles, a contradiction as $z \in\left\{p_{j}, v_{1}, v_{2}\right\}$.

So we may assume that y is not adjacent to p_{j}. Thus y is adjacent to p_{j-1} and p_{j+1}. If the edges $p_{j-1} y$ and $p_{j+1} y$ are both in f_{1} or both in f_{2}, then y is adjacent to p_{j} as G is nearly triangulated, a contradiction. So we may assume without loss of generality that $p_{j-1} y$ lies in f_{2} and $p_{j+1} y$ lies in f_{1}. By Theorem 1.5.2, there is at most one vertex in the interior of f_{1} and at most one vertex in the interior of f_{2}. Hence p_{j} has degree at most four, a contradiction.

Next we consider the vertices of Z^{i}.

Lemma 4.6.18. Assume Hypothesis 4.6.2. Let $z \in Z$ and $y \in Y$ such that $y \sim$ z. If $y \in Y_{1} \cup Y_{2}$, then z is in a separating triangle. If $y \in Y_{1}^{*}$, then z is in a separating triangle or the interior of a hexadecahedral band (with y as in the proof of Lemma 4.6.8).

Proof. Suppose not. Let x be such that $x y z$ is a triangle in Γ_{2}. We may assume without loss of generality that $z \sim p_{j}, p_{j+1}$ and $x \sim p_{j-2}, p_{j-1}$ as otherwise $z x$ is in a separating triangle. We may also suppose without loss of generality that $z \in P_{T} \backslash Y$ and $z \in P_{B} \backslash Y$. Furthermore $y \nsim p_{k}$ where $k \geq j+2$ given the path $p_{j-2} x y p_{k}$. Thus $N(y) \cap P \subseteq\left\{p_{j-1}, p_{j}, p_{j+1}\right\}$. Yet $y \nsim p_{j}$ as otherwise $z y p_{j}$ is a separating triangle, a contradiction. Hence $y \sim p_{j-1}, p_{j+1}$. Thus y is adjacent to p_{j-1} through the bottom given z. But then y is adjacent to p_{j+1} through the top as G is nearly triangulated and $y \nsim p_{j}$.

Let $y u_{1} u_{2}$ be the other triangle in Γ_{2} containing y. We may assume without loss of generality that $u_{1} \in P_{T}$ and $u_{2} \in P_{B}$. Given the path $p_{j-2} x y u_{1}$, we find that $u_{1} \sim p_{j+1}, p_{j+2}$. Note then that p_{j} is not in a separating triangle. If $p_{j} \sim u_{2}$, then $p_{j} \in P_{2}^{*}$ and hence p_{j} is in a separating triangle, a contradiction, or in the interior of a hexadecahedral band with y by Lemma4.6.9. In the latter case, z must also be in the interior of the hexadecahedral band, a contradiction. Thus $p_{j} \nsim u_{2}$ and hence p_{j} does not have neighbor in Γ_{2} through the bottom. Thus $p_{j} \in P_{1}^{*}$. But then p_{j} is in a separating triangle by Lemmas ..., a contradiction.

Corollary 4.6.19. Assume Hypothesis 4.6.2. If $v \in \Gamma\left[T_{1}, T_{2}\right]$, then v is in T_{1}, T_{2}, or a triangle separating a vertex of T_{1} from a vertex of T_{2}, or in the interior of a hexadecahedral band.

Proof. By Lemmas 4.6.4, 4.6.5, 4.6.7, 4.6.6, 4.6.8 and Lemmas...every vertex in $\Gamma\left[T_{1}, T_{2}\right]$ is in a separating triangle in Γ or the interior of a hexadecahedral band. As triangles cannot cross, it follows that every vertex in $\Gamma\left[T_{1}, T_{2}\right]$ is in T_{1}, T_{2} or a triangle separating a vertex of T_{1} from a vertex of T_{2} or in the interior of a hexadecahedral band.

Lemma 4.6.20. Assume Hypothesis 4.6.2. If B is a band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$, then B is tetrahedral, octahedral or hexadecahedral.

Proof. Let $B=\left(G_{B}, T_{3}, T_{4}, L\right)$ be a band in the band decomposition. If $G=T_{3} \cup T_{4}$, then B is tetrahedral or octahedral by Lemma 4.4.4. So suppose that $G \neq T_{3} \cup T_{4}$. But then $G_{B} \backslash T_{3} \cup T_{4}$ must contain a vertex which is not in a separating triangle. But then by Corollary 4.6.19, that vertex is in the interior of a hexadecahedral band. So B must be hexadecahedral.

Proof of Lemma 4.6.1. We may assume Hypothesis 4.6.2. By Lemma 4.6.20, every band in the band decomposition of $\Gamma\left[T_{1}, T_{2}\right]$ is tetrahedral, octahedral or hexadecahedral. Furthermore, $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}, P_{2}\right)-2$ where $\Gamma_{2}=\left(G, P_{1} \cup P_{2}, L\right)$. As Γ_{2} is a
shortening of Γ_{1}, it follows from Lemma 4.5.2 that $d\left(T_{1}, T_{2}\right) \geq d\left(P_{1}, P_{2}\right)-34$ where $P_{1}^{\prime}, P_{2}^{\prime}$ are the sides of Γ_{1}.

We may now show that a minimum counterexample to Theorem 4.1.1 has distant separating triangles such that every band in the band decomposition of the prismcanvas between them is tetrahedral, octahedral or hexadecahedral.

Lemma 4.6.21. Let $d_{0}>0$. If $\Gamma=\left(G, T_{1}, T_{2}, L\right)$ is a counterexample to Theorem 4.1.1 with a minimum number of vertices and subject to that a maximum number of edges, then there exist triangles T_{1}^{\prime} and T_{2}^{\prime} of G each separating C_{1} from C_{2} such that $d\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \geq d_{0}$ and every band in the band decomposition of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ is a subgraph of a tetrahedral, octahedral or hexadecahedral band.

Proof. We may assume that (1) holds for Lemma 4.4.6 as otherwise the lemma follows. That is to say Γ is nearly triangulated and there exist $T_{1}^{\prime}, T_{2}^{\prime}$ and every planarization Γ^{*} of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ contains a long bottleneck $\Gamma_{1}=\left(G^{\prime}, P_{1} \cup P_{2}, L\right)$ where $d\left(T_{1}, T_{2}\right)-2 d_{0}-c_{0} \leq$ $6 d\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$. As $d\left(P_{1}, P_{2}\right) \geq 32$, it follows, from Lemma 4.5.16 if Γ_{1} is an accordion and Lemma 4.6.20 if Γ_{1} is a harmonica, that there exist triangles $T_{1}^{\prime \prime}, T_{2}^{\prime \prime}$ separating C_{1} from C_{2} such that $d\left(T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right) \geq d\left(P_{1}, P_{2}\right)-34$ and every band in the band decomposition of $\Gamma\left[T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right]$ is tetrahedral, octahedral, or hexadecahedral. As Γ is a counterexample, we may assume that $d\left(T_{1}, T_{2}\right) \geq 2 d_{0}+c_{0}+6\left(34+d_{0}\right)$ and hence $d\left(T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right) \geq d_{0}$ as desired.

4.7 Magic Colorings with Tetrahedral Bands

Our goal in the following sections is to prove the following:
Theorem 4.7.1. There exists d such that the following holds:
Let $\Gamma=\left(G, T_{1}, T_{2}, L\right)$ be a prism-canvas such that $d\left(T_{1}, T_{2}\right) \geq 14$ and every band in the band decomposition of Γ is tetrahedral, octahedral or hexadecahedral. Let L be a list assignment of G such that $|L(v)|=5$ for all $v \in V(G)$. If ϕ is an L-coloring of $T_{1} \cup T_{2}$, then ϕ extends to an L-coloring of G.

First in this section, we will define certain magical sets of colorings for triangles that will be useful in showing that such a coloring exist. Then we will proceed to develop the theory of magical colorings for tetrahedral bands.

Definition. Let T be a triangle and L a list assignment for T such that $|L(v)|=5$ for all $v \in T$. We say a set of proper L-colorings \mathcal{C} of T is

Magic 1: If \mathcal{C} is precisely the set of proper L^{\prime}-colorings of T where for some ordering v_{1}, v_{2}, v_{3} of T, either
(1a) $\left|L^{\prime}\left(v_{1}\right)\right|=\left|L^{\prime}\left(v_{2}\right)\right|=\left|L^{\prime}\left(v_{3}\right)\right|=2$ and these are pariwise disjoint, or
(1b) $\left|L^{\prime}\left(v_{1}\right)\right|=\left|L^{\prime}\left(v_{2}\right)\right|=2,\left|L^{\prime}\left(v_{3}\right)\right|=3, L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{3}\right)=\emptyset$, and $L^{\prime}\left(v_{2}\right) \subseteq$ $L^{\prime}\left(v_{3}\right)$.
(Alternately, $\left|L^{\prime}\left(v_{1}\right)\right|=\left|L^{\prime}\left(v_{2}\right)\right|=2,\left|L^{\prime}\left(v_{3}\right)\right|=3, L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{2}\right)=\emptyset$ and $\left.L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{3}\right)=\emptyset.\right)$

Magic 2: If \mathcal{C} is precisely the set of proper L^{\prime}-colorings of T where for some ordering v_{1}, v_{2}, v_{3} of T, either
(2a) $\left|L^{\prime}\left(v_{1}\right)\right|=\left|L^{\prime}\left(v_{2}\right)\right|=\left|L^{\prime}\left(v_{3}\right)\right|=2$ and these are pariwise disjoint, or
(2b) $\left|L^{\prime}\left(v_{1}\right)\right|=2,\left|L^{\prime}\left(v_{2}\right)\right|=2,\left|L^{\prime}\left(v_{3}\right)\right|=5, L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{2}\right)=\emptyset, L^{\prime}\left(v_{1}\right), L^{\prime}\left(v_{2}\right) \subseteq$ $L^{\prime}\left(v_{3}\right)$, or,
(2c) $\left|L^{\prime}\left(v_{1}\right)\right|=2,\left|L^{\prime}\left(v_{2}\right)\right|=\left|L^{\prime}\left(v_{3}\right)\right|=3, L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{2}\right)=\emptyset, L^{\prime}\left(v_{1}\right) \subseteq L^{\prime}\left(v_{3}\right)$.

Magic 3: If there exist list assignments $L^{\prime}, L^{\prime \prime}$ of T such that \mathcal{C} is the set of proper colorings which are L^{\prime}-colorings but not $L^{\prime \prime}$-colorings where the list assignments are one of the following for some ordering v_{1}, v_{2}, v_{3} of T :
(3a) $\left|L^{\prime}\left(v_{1}\right)\right|=\left|L^{\prime}\left(v_{2}\right)\right|=\left|L^{\prime}\left(v_{3}\right)\right|=2$ and these are pariwise disjoint, and $L^{\prime \prime}(v)=\emptyset$ for all $v \in T$, or

$$
\begin{equation*}
\left|L^{\prime}\left(v_{1}\right)\right|=2,\left|L^{\prime}\left(v_{2}\right)\right|=2,\left|L^{\prime}\left(v_{3}\right)\right|=5, L^{\prime}\left(v_{1}\right) \cap L^{\prime}\left(v_{2}\right)=\emptyset, L^{\prime}\left(v_{1}\right), L^{\prime}\left(v_{2}\right) \subseteq \tag{3b}
\end{equation*}
$$ $L^{\prime}\left(v_{3}\right)$, and $L^{\prime \prime}(v)=\emptyset$ for all $v \in T$, or,

(3c) $\left|L^{\prime}\left(v_{1}\right)\right|=2,\left|L^{\prime}\left(v_{2}\right)\right|=\left|L^{\prime}\left(v_{3}\right)\right|=5, L^{\prime}\left(v_{1}\right) \subset L^{\prime}\left(v_{2}\right), L^{\prime}\left(v_{3}\right), \mid L^{\prime}\left(v_{2}\right) \cap$ $L^{\prime}\left(v_{3}\right) \mid \geq 4, L^{\prime \prime}\left(v_{2}\right)=L^{\prime \prime}\left(v_{3}\right)$ is a subset of size two of $L^{\prime}\left(v_{2}\right) \cap L^{\prime}\left(v_{3}\right) \backslash L^{\prime}\left(v_{1}\right)$ and $L^{\prime \prime}\left(v_{1}\right)=L^{\prime}\left(v_{1}\right)$.

Definition. Let (G, C_{1}, C_{2}) be a prismatic graph such that every band in its band decomposition $\mathcal{B}=B_{1} \ldots B_{m}$ is tetrahedral. Let $T_{0}=C_{1}, T_{m}=C_{m}$ and let $T_{1} \ldots T_{m}$ be the triangles such that $B_{i}=G\left[T_{i-1}, T_{i}\right]$. We now define a natural mapping p : $V(G) \rightarrow V\left(C_{1}\right)$ as follows: Let $p(v)=v$ for all $v \in C_{1}$. Then for successive i, define $p(v)$ where $v \in T_{i} \backslash T_{i-1}$ to be $p(u)$ where $u \in T_{i-1} \backslash T_{i}$. Note that there also exists a natural ordering of the vertices of $G \backslash C_{1}$, namely $x_{i}=T_{i} \backslash T_{i-1}$. We now define the signature of $\left(G, C_{1}, C_{2}\right)$ to be the sequence $p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)$. We say a prismatic graph is variegated if every band in its band decomposition is tetrahedral, there does not exist $x \in C_{1}$ such that x appears consecutively in its signature, and there does not exist $x, y \in C_{1}$ such that x, y appear consecutively three times in its signature, namely, xyxyxy.

We say a prism-canvas is variegated if its underlying prismatic graph is variegated.

Proposition 4.7.2. If $\Gamma=\left(G, C_{1}, C_{2}, L\right)$ is a critical prism canvas such that every band in the band decomposition of G is tetrahedral, then Γ is variegated.

We say a variegated prism-canvas $\left(G, C_{1}, C_{2}, L\right)$ is rainbow if all three vertices of C_{1} appear in the signature of $\left(G, C_{1}, C_{2}\right)$.

Corollary 4.7.3. Let $\Gamma=\left(G, C_{1}, C_{2}, L\right)$ be a variegated prism-canvas. If Γ has at least six bands in its band decomposition, then there exists (essential) triangles T_{1}, T_{2} such that $\Gamma\left[T_{1}, T_{2}\right]$ is a rainbow prism-canvas with three bands in its band decomposition. Furthermore, if Γ has at least seven bands in its band decomposition, there exists T_{1}, T_{2} such that $\Gamma\left[T_{1}, T_{2}\right]$ is a rainbow prism-canvas with four bands in its band
decomposition and letting $T_{1}=v_{1} v_{2} v_{3}$, the signature of $\left(G\left[T_{1}, T_{2}\right], T_{1}, T_{2}\right)$ has one of the following forms up to permuation of $\{1,2,3\}$:
(i) $v_{1} v_{2} v_{3} v_{1}$
(ii) $v_{1} v_{2} v_{3} v_{2}$

4.7.1 Magic 1

Lemma 4.7.4. Let $B=T_{0} \ldots T_{4}$ be a rainbow sequence of tetrahedral bands of length four such that $B=T_{0} \ldots T_{3}$ is also rainbow (i.e. form of previous lemma). If ϕ is a proper coloring of T_{0}, then there exists a Magic 1 set \mathcal{C} of colorings of T_{4} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

Proof. We let $S(u)=L(u) \backslash\left\{\phi(v): v \in N(u) \cap T_{0}\right\}$ for all $u \in G \backslash T_{0}$. We assume without loss of generality that $|S(u)|=|L(u)|-\left|N(u) \cap T_{0}\right|$.

Case (i) $v_{1} v_{2} v_{3} v_{1}$:
Let $T_{1} \backslash T_{0}=\left\{v_{1}^{\prime}\right\}, T_{2} \backslash T_{1}=\left\{v_{2}^{\prime}\right\}, T_{3} \backslash T_{2}=\left\{v_{3}^{\prime}\right\}$ and $T_{4} \backslash T_{3}=\left\{v_{1}^{\prime \prime}\right\}$.
Suppose $S\left(v_{1}^{\prime}\right) \subseteq S\left(v_{2}^{\prime}\right)$. Let $\mathcal{C}\left(v_{2}^{\prime}\right)=S\left(v_{1}^{\prime}\right), \mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{3}^{\prime}\right) \backslash \mathcal{C}\left(v_{2}^{\prime}\right)$ and $\mathcal{C}\left(v_{1}^{\prime \prime}\right)=$ $L\left(v_{1}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{2}^{\prime}\right)$. Note that \mathcal{C} contains a set \mathcal{C}^{\prime} of Magic 1 colorings. We claim that every coloring $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B. To see this, simply let $\psi(v)=\phi(v)$ if $v \in T_{0}, \psi(v)=\phi^{\prime}(v)$ if $v \in T_{4}$ and $\psi\left(v_{1}^{\prime}\right)=S\left(v_{1}^{\prime}\right) \backslash \psi\left(v_{2}^{\prime}\right)$. For the rest of the chapter, we will omit such justifications of why a specified set of colorings extends as desired. Instead, we will specify the desired set of colorings and leave it to the reader to check that they extend.

So we may assume that $\left|S\left(v_{2}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right)\right| \geq 2$. Let $\mathcal{C}\left(v_{2}^{\prime}\right)$ be a subset of $S\left(v_{2}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right)$ of size two.

If $S\left(v_{1}^{\prime}\right) \subseteq S\left(v_{3}^{\prime}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{1}^{\prime}\right)$ and $\mathcal{C}\left(v_{1}^{\prime \prime}\right)=L\left(v_{1}^{\prime \prime}\right) \backslash S\left(v_{1}^{\prime}\right)$. So we may assume, $S\left(v_{1}^{\prime}\right) \nsubseteq S\left(v_{3}\right)$. If $\mathcal{C}\left(v_{2}^{\prime}\right) \subseteq S\left(v_{3}^{\prime}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of $S\left(v_{3}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right)$ of size 3 and hence $C\left(v_{3}^{\prime}\right) \supseteq C\left(v_{2}^{\prime}\right)$ and then let $\mathcal{C}\left(v_{1}^{\prime \prime}\right)=L\left(v_{1}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{3}^{\prime}\right)$.

So we may suppose that $\left|S\left(v_{3}^{\prime}\right) \backslash\left(S\left(v_{1}^{\prime}\right) \cup \mathcal{C}\left(v_{2}^{\prime}\right)\right)\right| \geq 2$. So let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of $S\left(v_{3}^{\prime}\right) \backslash\left(S\left(v_{1}^{\prime}\right) \cup \mathcal{C}\left(v_{2}^{\prime}\right)\right)$ of size two and $\mathcal{C}\left(v_{1}^{\prime \prime}\right)=L\left(v_{1}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{2}^{\prime}\right)$.

Case (ii) $v_{1} v_{2} v_{3} v_{2}$:
Let $T_{1} \backslash T_{0}=\left\{v_{1}^{\prime}\right\}, T_{2} \backslash T_{1}=\left\{v_{2}^{\prime}\right\}, T_{3} \backslash T_{2}=\left\{v_{3}^{\prime}\right\}$ and $T_{4} \backslash T_{3}=\left\{v_{2}^{\prime \prime}\right\}$.
Let $\mathcal{C}\left(v_{1}^{\prime}\right)=S\left(v_{1}^{\prime}\right)$. If $S\left(v_{1}^{\prime}\right) \cap S\left(v_{2}^{\prime}\right)=\emptyset$ or if $S\left(v_{1}^{\prime}\right) \subseteq S\left(v_{2}^{\prime}\right), \operatorname{let} \mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{3}^{\prime}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right)$ and $\mathcal{C}\left(v_{2}^{\prime \prime}\right)=L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right)$.

So we may assume that $\left|S\left(v_{1}^{\prime}\right) \cap S\left(v_{2}^{\prime}\right)\right|=1$. If $S\left(v_{2}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right) \subseteq S\left(v_{3}^{\prime}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)=$ $S\left(v_{2}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right)$ and $\mathcal{C}\left(v_{2}^{\prime \prime}\right)$ be a subset of $L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{3}^{\prime}\right)$ of size three. If $\mathcal{C}\left(v_{1}^{\prime}\right) \subseteq S\left(v_{3}^{\prime}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of $S\left(v_{3}^{\prime}\right) \backslash\left(S\left(v_{2}^{\prime}\right) \backslash S\left(v_{1}^{\prime}\right)\right)$ of size three containing $\mathcal{C}\left(v_{1}^{\prime}\right)$ and let $\mathcal{C}\left(v_{2}^{\prime \prime}\right)$ be a subset of $L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{3}^{\prime}\right)$ of size two.

So we may assume that $\left|\mathcal{C}\left(v_{1}^{\prime}\right) \cap S\left(v_{3}^{\prime}\right)\right| \leq 1$. Let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of $S\left(v_{3}^{\prime}\right) \backslash$ $\left(S\left(v_{1}^{\prime}\right) \cup S\left(v_{2}^{\prime}\right)\right)$ of size two and let $\mathcal{C}\left(v_{2}^{\prime \prime}\right)=L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right)$.

Proposition 4.7.5. If \mathcal{C} is a Magic 2 set of L-colorings of T, then \mathcal{C} contains a Magic 1 set of L-colorings \mathcal{C}^{\prime} of T.

Lemma 4.7.6. Let $B=T_{0} T_{1}$ be a tetrahedral band. If \mathcal{C} is a Magic 1 set of colorings of T_{0}, then there exists a Magic 2 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Proof. Let $T_{0}=v_{1} v_{2} v_{3}$ and $T_{1}=v_{1}^{\prime} v_{2} v_{3}$. First suppose that \mathcal{C} is of the form (1a). That is, $\mathcal{C}\left(v_{1}\right), \mathcal{C}\left(v_{2}\right), \mathcal{C}\left(v_{3}\right)$ are pairwise disjoint lists of size two. We let $\mathcal{C}^{\prime}\left(v_{2}\right)=$ $\mathcal{C}\left(v_{2}\right)$ and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{3}\right)$. If $\mid L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup \mathcal{C}\left(v_{3}\right) \mid \geq 2\right.$, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup \mathcal{C}\left(v_{3}\right)\right)$ of size two. Thus \mathcal{C}^{\prime} is of the form (2a). So we may assume that $\mathcal{C}\left(v_{2}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{1}^{\prime}\right)$. In that case, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$. Thus \mathcal{C}^{\prime} is of the form $(2 b)$ with order $v_{2} v_{3} v_{1}^{\prime}$.

We may assume that \mathcal{C} is of the form (1b). First suppose that $\mathcal{C}\left(v_{1}\right) \cap \mathcal{C}\left(v_{3}\right)=\emptyset$ and $\mathcal{C}\left(v_{1}\right) \cap \mathcal{C}\left(v_{2}\right)=\emptyset$. Without loss of generality suppose that $\mathcal{C}\left(v_{2}\right) \subset \mathcal{C}\left(v_{3}\right)$. Now
let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right), \mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{3}\right)$ and $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right) \backslash \mathcal{C}\left(v_{2}\right)$. Thus \mathcal{C}^{\prime} is of the form $(2 c)$ with order $v_{2} v_{1}^{\prime} v_{3}$.

So we may assume without loss of generality that $\mathcal{C}\left(v_{2}\right) \cap \mathcal{C}\left(v_{1}\right)=\emptyset$ and $\mathcal{C}\left(v_{2}\right) \cap$ $\mathcal{C}\left(v_{3}\right)=\emptyset$. Suppose that $\mathcal{C}\left(v_{3}\right) \subset \mathcal{C}\left(v_{1}\right)$. We let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$ and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{3}\right)$. If $\left|L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup \mathcal{C}\left(v_{3}\right)\right)\right| \geq 2$, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup \mathcal{C}\left(v_{3}\right)\right)$ of size two. Thus \mathcal{C}^{\prime} is of the form (2a). So we may assume that $\mathcal{C}\left(v_{2}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{1}^{\prime}\right)$. In that case, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$. Thus \mathcal{C}^{\prime} is of the form $(2 b)$ with order $v_{2} v_{3} v_{1}^{\prime}$.

Finally suppose that $\mathcal{C}\left(v_{1}\right) \subset \mathcal{C}\left(v_{3}\right)$. We let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$. If $\mid L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup\right.$ $\mathcal{C}\left(v_{1}\right) \mid \geq 2$, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{2}\right) \cup \mathcal{C}\left(v_{1}\right)\right)$ of size two and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{1}\right)$. Thus \mathcal{C}^{\prime} is of the form (2a). So we may assume that $\mathcal{C}\left(v_{2}\right), \mathcal{C}\left(v_{1}\right) \subset L\left(v_{1}^{\prime}\right)$. In that case, let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right) \backslash \mathcal{C}\left(v_{1}\right)$ and let $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{3}\right)$. Thus \mathcal{C}^{\prime} is of the form (2c) with order $v_{2} v_{3} v_{1}^{\prime}$.

Corollary 4.7.7. Let $B=T_{0} T_{1}$ be a tetrahedral band. If \mathcal{C} is a Magic 1 set of colorings of T_{0}, then there exists a Magic 1 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Corollary 4.7.8. Let $B=T_{0} T_{1}$ be a tetrahedral band. If \mathcal{C} is a Magic 2 set of colorings of T_{0}, then there exists a Magic 2 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Corollary 4.7.9. Let $B=T_{0} \ldots T_{7}$ be a sequence of tetrahedral bands of length seven. If ϕ is a proper coloring of T_{0}, then there exists a Magic 1 set \mathcal{C} of colorings of T_{7} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

4.7.2 Magic 3

Proposition 4.7.10. If \mathcal{C} is a Magic 3 set of colorings, then \mathcal{C} contains a Magic 2 set of coloring \mathcal{C}^{\prime}.

Lemma 4.7.11. Let $B=T_{0} T_{1}$ be a tetrahedral band. IfC is a Magic 3 set of colorings of T_{0}, then there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Proof. Let $T_{0}=v_{1} v_{2} v_{3}$ be numbered as in the definition of Magic 3. We condition on the form of \mathcal{C}.
(3a) As (2a) implies (3a) and (2b) implies (3b), this case was already proven in Lemma 4.7.6.
(3b) First suppose that $T_{1}=v_{1} v_{2} v_{3}^{\prime}$. Let $\mathcal{C}^{\prime}\left(v_{1}\right)=\mathcal{C}\left(v_{1}\right)$ and $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$. If $\left|L\left(v_{3}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)\right| \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two from $L\left(v_{3}^{\prime}\right) \backslash$ $\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)$ and hence (3a) holds. Otherwise, we let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)=L\left(v_{3}^{\prime}\right)$ and (3b) holds for the order $v_{1} v_{2} v_{3}^{\prime}$.

We may assume without loss of generality, given the symmetry of v_{1} and v_{2}, that $T_{1}=v_{1}^{\prime} v_{2} v_{3}$. Let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$. If $\left|L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)\right| \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of size two from $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)$. Also let $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{1}\right)$ and hence (3a) or (3b) holds.

So we may suppose that $\mathcal{C}\left(v_{1}\right), \mathcal{C}\left(v_{2}\right) \subset L\left(v_{1}^{\prime}\right)$. We let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right), \mathcal{C}^{\prime}\left(v_{3}\right)=$ $\mathcal{C}\left(v_{3}\right)$ and $L_{1}\left(v_{1}^{\prime}\right)=L_{1}\left(v_{3}\right)=\mathcal{C}\left(v_{1}\right)$ and $L_{1}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$. Now (3c) holds.
(3c) First suppose that $T_{1}=v_{1}^{\prime} v_{2} v_{3}$. If $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right) \mid \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of size two from $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{1}\right)$ and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{F}$. Hence (3a) holds. So we may suppose that $\mathcal{C}\left(v_{1}\right), \mathcal{F} \subset L\left(v_{1}^{\prime}\right)$. Now let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\mathcal{F}, \mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{C}\left(v_{2}\right)$ and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{3}\right)$. Furthermore let $\mathcal{F}^{\prime}=\mathcal{C}\left(v_{1}\right)$. Now (3c) holds with \mathcal{F}^{\prime} and order $v_{1}^{\prime} v_{2} v_{3}$.

So we may suppose without loss of generality, given the symmetry of v_{2} and v_{3}, that $T_{1}=v_{1} v_{2}^{\prime} v_{3}$. Let $\mathcal{C}^{\prime}\left(v_{1}\right)=\mathcal{C}\left(v_{1}\right), \mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{F}$. If $\left|L\left(v_{2}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right)\right| \geq 2$,
let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)$ be a subset of size two of $L\left(v_{2}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right)$. Hence (3a) holds. Otherwise, let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right)$ and (3b) holds with order $v_{1} v_{3} v_{2}^{\prime}$.

Lemma 4.7.12. Let $B=T_{0} T_{1} T_{2} T_{3}$ be a sequence of tetrahedral bands of length three. If \mathcal{C} is a Magic 2 set of colorings of T_{0}, then there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{3} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

Proof. Given Lemma 4.7.11, it is sufficient to prove that there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{i} for some $i \in\{0,1,2,3\}$.

If \mathcal{C} is of the form $(2 a)$ or (2b), then \mathcal{C} is of the form (3a) or (3b) respectively. Thus \mathcal{C} is a Magic 3 set of colorings of T_{0}. So we may assume that \mathcal{C} is of the form (2c).

Let $T_{0}=v_{1} v_{2} v_{3}$. We may assume without loss of generality that \mathcal{C} is of the form (2c) for the order $v_{1} v_{2} v_{3}$. That is, $\left|\mathcal{C}\left(v_{1}\right)\right|=2,\left|\mathcal{C}\left(v_{2}\right)\right|=\left|\mathcal{C}\left(v_{3}\right)\right|=3, \mathcal{C}\left(v_{1}\right) \cap \mathcal{C}\left(v_{2}\right)=\emptyset$, $\mathcal{C}\left(v_{1}\right) \subseteq \mathcal{C}\left(v_{3}\right)$. Let \mathcal{F} be a subset of size two of $\mathcal{C}\left(v_{2}\right) \backslash \mathcal{C}\left(v_{3}\right)$.

First suppose that $T_{1}=v_{1} v_{2} v_{3}^{\prime}$. Let $\mathcal{C}^{\prime}\left(v_{1}\right)=\mathcal{C}\left(v_{1}\right)$ and $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{F}$. If $\mid L\left(v_{3}^{\prime}\right) \backslash$ $\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right) \mid \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $L\left(v_{3}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right)$. Hence (3a) holds for \mathcal{C}^{\prime}. So we may suppose that $\mathcal{C}\left(v_{1}\right), \mathcal{F} \subset L\left(v_{3}^{\prime}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)=L\left(v_{3}^{\prime}\right)$ and hence $(3 b)$ holds for \mathcal{C}^{\prime} with order $v_{1} v_{2} v_{3}^{\prime}$.

Next suppose that $T_{1}=v_{1}^{\prime} v_{2} v_{3}$. Suppose $L\left(v_{1}^{\prime}\right) \neq \mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)$. Let $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{1}\right)$ and let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ be a subset of size two of $L\left(v_{1}^{\prime}\right) \backslash \mathcal{C}\left(v_{1}\right)$ that is not entirely contained in $\mathcal{C}\left(v_{2}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{2}\right)$ be a subset of size two of $\mathcal{C}\left(v_{2}\right) \backslash \mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$. Now (3a) holds for \mathcal{C}^{\prime}. So we may assume that $L\left(v_{1}^{\prime}\right)=\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)$.

Further suppose that $T_{2}=v_{1}^{\prime} v_{2}^{\prime} v_{3}$. Let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\mathcal{F}$ and $\mathcal{C}^{\prime}\left(v_{3}\right)=\mathcal{C}\left(v_{1}\right)$. If $\mid L\left(v_{2}^{\prime}\right) \backslash$ $\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right) \mid \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)$ be a subset of size two of $L\left(v_{2}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{F}\right)$. Hence (3a) holds for \mathcal{C}^{\prime}. So we may suppose that $\mathcal{C}\left(v_{1}\right), \mathcal{F} \subset L\left(v_{3}^{\prime}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right)$ and hence $(3 b)$ holds for \mathcal{C}^{\prime} with order $v_{1}^{\prime} v_{3} v_{2}^{\prime}$.

So instead suppose that $T_{2}=v_{1}^{\prime} v_{2} v_{3}^{\prime}$. Further suppose that $\mathcal{C}\left(v_{2}\right) \cap \mathcal{C}\left(v_{3}\right) \neq \emptyset$. Let $\mathcal{C}\left(v_{1}\right)=\left\{c_{1}, c_{2}\right\}$. If $\left|L\left(v_{3}^{\prime}\right) \backslash\left(\left\{c_{1}\right\} \cup \mathcal{C}\left(v_{2}\right)\right)\right| \geq 2$, then let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $L\left(v_{3}^{\prime}\right) \backslash\left(\left\{c_{1}\right\} \cup \mathcal{C}\left(v_{2}\right)\right)$. Also let $\mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{F}$ and $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\left\{c_{1}\right\} \cup\left(\mathcal{C}\left(v_{2}\right) \backslash \mathcal{F}\right)$. Hence (3a) holds for \mathcal{C}^{\prime}. So we may suppose that $\left\{c_{1}\right\}, \mathcal{C}\left(v_{2}\right) \subset L\left(v_{3}^{\prime}\right)$. By symmetry of c_{1}, c_{2}, we may also suppose that $c_{2} \in L\left(v_{3}^{\prime}\right)$. Now let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right), \mathcal{C}^{\prime}\left(v_{2}\right)=\mathcal{F}$ and $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)=\left\{c_{1}, c_{2}\right\}$. Hence (3b) holds for \mathcal{C}^{\prime} with order $v_{2} v_{3}^{\prime} v_{1}^{\prime}$.

So we may assume that $\mathcal{C}\left(v_{2}\right) \cap \mathcal{C}\left(v_{3}\right)=\emptyset$ when $T_{2}=v_{1}^{\prime} v_{2} v_{3}^{\prime}$. Suppose without loss of generality that $\mathcal{C}\left(v_{1}\right)=\{1,2\}, \mathcal{C}\left(v_{2}\right)=\{3,4,5\}, \mathcal{C}\left(v_{3}\right)=\{1,2,6\}, L\left(v_{1}^{\prime}\right)=$ $\{1,2,3,4,5\}$. If $\left|L\left(v_{3}^{\prime}\right) \backslash\{3,4,5,6\}\right| \geq 2$, let $C^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $L\left(v_{3}^{\prime}\right) \backslash$ $\{3,4,5,6\}$ and let $C^{\prime}\left(v_{2}\right)=\{3,4\}$. $\left|L\left(v_{1}^{\prime}\right) \backslash \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)\right| \geq 4$, let $C^{\prime}\left(v_{1}\right)$ be a subset of size two of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}^{\prime}\left(v_{2}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)\right)$ and hence (3a) holds. So we may suppose that $C^{\prime}\left(v_{3}^{\prime}\right) \subset L\left(v_{1}^{\prime}\right)$. So let $C^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$ and hence (3b) holds with order $v_{2} v_{3}^{\prime} v_{1}^{\prime}$. So we may assume that $L\left(v_{3}^{\prime}\right)=\{3,4,5,6, c\}$. If $c \in\{1,2\}$, let $C^{\prime}\left(v_{3}^{\prime}\right)=\{c, 5\}$, $C^{\prime}\left(v_{2}\right)=\{3,4\}$ and $C^{\prime}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$; hence (3b) holds. So $c \neq 1,2$. Let $\mathcal{C}^{\prime}\left(v_{3}\right)=\{c, 5\}$, $\mathcal{C}^{\prime}\left(v_{2}\right)=\{3,4\}$ and $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\{1,2\}$. Hence (3a) holds.

Finally we may suppose that $T_{1}=v_{1} v_{2}^{\prime} v_{3}$. But then let $\mathcal{C}\left(v_{2}^{\prime}\right)$ be a subset of size three of $L\left(v_{2}^{\prime}\right) \backslash \mathcal{C}\left(v_{1}\right)$. Now \mathcal{C} is of the form (2c) with order $v_{1} v_{2}^{\prime} v_{3}$. Yet, $T_{2} \neq v_{1} v_{2}^{\prime \prime} v_{3}$. So by the arguments of the preceding paragraphs either T_{2} or T_{3} has a Magic 3 set of colorings.

Lemma 4.7.13. Let $B=T_{0} T_{1} T_{2} T_{3}$ be a rainbow sequence of tetrahedral bands of length three. If \mathcal{C} is a Magic 3 set of colorings of T_{0} and \mathcal{C}^{\prime} is a Magic 3 set of colorings of T_{3}, then there exists $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ is a proper coloring of B.

Proof. Suppose for a contradiction that the conclusion does not hold. Let $T_{0}=v_{1} v_{2} v_{3}$, $T_{1}=v_{1}^{\prime} v_{2} v_{3}, T_{2}=v_{1}^{\prime} v_{2}^{\prime} v_{3}$ and $T_{3}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$. Consider the degree three vertices v_{1} and v_{3}^{\prime}. We say v_{1} is good if \mathcal{C} has the form (3a) or $\left|\mathcal{C}\left(v_{1}\right)\right| \geq 5$. Similarly we say v_{3}^{\prime} is
good if \mathcal{C}^{\prime} has the form (3a) or $\left|\mathcal{C}\left(v_{3}^{\prime}\right)\right| \geq 5$.
If v_{1} (or similarly v_{3}^{\prime}) is good, then any proper coloring ψ of $B \backslash\left\{v_{1}\right\}$, such that ψ restricted to $T_{0}-v_{1}$ extends to a coloring of T_{0} in \mathcal{C} and ψ restricted to T_{3} in C^{\prime}, extends to a proper coloring ψ of B such that $\psi\left(T_{0}\right.$ is in \mathcal{C}.

Claim 4.7.14. At least one of v_{1}, v_{3}^{\prime} is not good.

Proof. Otherwise delete v_{1}, v_{3}^{\prime}. Now we may assume that v_{2}, v_{3} have disjoints list of size two and similarly for $v_{1}^{\prime}, v_{2}^{\prime}$. But then we may color $v_{2} v_{3} v_{1}^{\prime} v_{2}^{\prime}$ from these lists and extend back to v_{1}, v_{3}^{\prime}.

Claim 4.7.15. Neither v_{1} nor v_{3}^{\prime} is good.
Proof. We may suppose without loss of generality that v_{1} is not good but that v_{3}^{\prime} is good. Delete v_{3}^{\prime}. First suppose \mathcal{C} is of the form (3b). As v_{1} is not good, delete the vertex x with list of size five in T_{0}. This is permissible as both v_{2}, v_{3} have degree at most four in $B \backslash\left\{v_{3}^{\prime}\right\}$. Now we may color $B \backslash\left\{x, v_{3}^{\prime}\right\}$, which is at most a K_{4} with two pairs of disjoint lists of size two.

So we may suppose that \mathcal{C} is of the form (3c). Now remove $\mathcal{C}\left(v_{2}\right) \backslash\left(\mathcal{F} \cup \mathcal{C}\left(v_{1}\right)\right)$ from the list for v_{2}^{\prime} and delete v_{2}, v_{3}. Then color $v_{2}^{\prime}, v_{1}^{\prime}, v_{1}$ in that order.

First suppose that \mathcal{C} and \mathcal{C}^{\prime} are of the form (3b). If v_{2} has a list of size five, we color in the following order: v_{3}, the lists of size two in T_{3}, the list of size five in T_{3}, v_{1} and finally v_{2}. So v_{2} has a list of size two and so does v_{2}^{\prime} by symmetry. So color v_{2} and v_{2}^{\prime}. Now v_{3}, v_{1}^{\prime} have lists of size three while v_{1}, v_{3}^{\prime} have lists of size two. So we may color $v_{1} v_{3} v_{1}^{\prime} v_{3}^{\prime}$ which is a $K_{4}-e$.

Next suppose that \mathcal{C} is of the form $(3 b)$ and \mathcal{C}^{\prime} is of the form (3c). If v_{2} has a list of size five, we color in the following order: v_{3}, the list of size two in T_{3}, the lists of size five in T_{3}, v_{1} and finally v_{2}. So v_{2} has a list of size two. We color in the following order: v_{1}^{\prime} from $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right) \backslash \mathcal{F}, v_{1}, v_{2}, v_{3}^{\prime}, v_{3}$ and finally v_{2}^{\prime}.

Last suppose that \mathcal{C} and \mathcal{C}^{\prime} are of the form (3c). Remove \mathcal{F}^{\prime} from $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)$ and \mathcal{F} from $\mathcal{C}\left(v_{3}\right)$. Color $v_{1}, v_{3}, v_{1}^{\prime}, v_{3}^{\prime}$ which is a $K_{4}-e$ with two lists of size and two lists of size three. Now color v_{2}, v_{2}^{\prime}.

Corollary 4.7.16. Let $B=T_{0} \ldots T_{6}$ be a sequence of tetrahedral bands of length six. If \mathcal{C} is a Magic 3 set of colorings of T_{0} and \mathcal{C}^{\prime} is a Magic 3 set of colorings of T_{6}, then there exists $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ extends to an L-coloring of B.

4.8 Magic Colorings with Octahedral Bands

The goal of this section is to incorporate octahedral bands in the theory of magic colorings.

Lemma 4.8.1. Let $B=T_{0} T_{1} T_{2}$ be such that $T_{0} T_{1}$ and $T_{1} T_{2}$ are octahedral bands. If ϕ is a proper coloring of T_{0}, then there exists a Magic 1 set \mathcal{C} of colorings of T_{2} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

Proof. Let $T_{1}=v_{1} v_{2} v_{3}$ and $T_{2}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ where v_{i} is adjacent to v_{j}^{\prime} if and only if $i \neq j$.
Let $S(v)=L(v) \backslash\left\{\phi(u) \mid u \in T_{0} \cap N(v)\right\}$ for a $v \notin T_{0}$. We may assume without loss of generality that $\left|S\left(v_{i}\right)\right|=3$ and $S\left(v_{i}^{\prime}\right)=L\left(v_{i}^{\prime}\right)$ for all $i \in\{1,2,3$,$\} . First$ suppose that $S\left(v_{1}\right)=S\left(v_{2}\right)$. Let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of $L\left(v_{3}^{\prime}\right) \backslash S\left(v_{1}\right)$ of size two. Let $\mathcal{C}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$ and $\mathcal{C}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right)$. We claim that any proper coloring in \mathcal{C} extends to T_{0} : simply color v_{3} and then v_{1} and v_{2}. This works as $v_{1}^{\prime} \sim v_{2}^{\prime}$ and hence cannot receive the same color. The claim follows. In addition, it is not hard to see that \mathcal{C} contains a Magic 1 subset.

So we may assume that $S\left(v_{1}\right) \backslash S\left(v_{2}\right) \neq \emptyset$. By symmetry we may also assume that $S\left(v_{2}\right) \backslash S\left(v_{3}\right) \neq \emptyset$. Let $c \in S\left(v_{1}\right) \backslash S\left(v_{2}\right)$. Color v_{1} with c. Let $c^{\prime} \in S\left(v_{2}\right) \backslash S\left(v_{3}\right)$ and let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)=L\left(v_{3}^{\prime}\right) \backslash\{c, c\}, \mathcal{C}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$. If $c \in S\left(v_{3}\right)$, let $\mathcal{C}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right) \backslash S\left(v_{3}\right)$; otherwise let $\mathcal{C}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right) \backslash\{c\}$. We claim that any proper coloring ϕ in \mathcal{C} extends
to T_{0}. If $\phi\left(v_{1}^{\prime}\right) \neq c^{\prime}$, color v_{2} with c^{\prime} and then color v_{3}. So assume $\phi\left(v_{1}^{\prime}\right)=c^{\prime}$ and color v_{2} and then v_{3}. The claim follows. Moreover, it is not hard to see that \mathcal{C} contains a Magic 1 subset.

Lemma 4.8.2. Let $B=T_{0} T_{1} T_{2} T_{3}$ be such that $T_{0} T_{1}, T_{2} T_{3}$ are tetrahedral bands and $T_{1} T_{2}$ is an octahedral band. If ϕ is a proper coloring of T_{0}, then there exists a Magic 1 set \mathcal{C} of colorings of T_{2} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

Proof. Let $T_{1}=v_{1} v_{2} v_{3}$ and suppose without loss of generality that $v_{2} \notin T_{0}$. Let $T_{2}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ where v_{i} is adjacent to v_{j}^{\prime} if and only if $i \neq j$.

First suppose that $T_{3}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime \prime}$. Let $S(v)=L(v) \backslash\left\{\phi(u) \mid u \in T_{0} \cap N(v)\right\}$ for a $v \notin T_{0}$. We may assume without loss of generality that $\left|S\left(v_{2}\right)\right|=2,\left|S\left(v_{2}^{\prime}\right)\right|=3$, $\left|S\left(v_{1}^{\prime}\right)\right|=\left|S\left(v_{3}^{\prime}\right)\right|=4$ and $S\left(v_{3}^{\prime \prime}\right)=L\left(v_{3}^{\prime \prime}\right)$. Let $\mathcal{C}\left(v_{1}^{\prime}\right)$ be a subset of size two from $S\left(v_{1}^{\prime}\right) \backslash S\left(v_{2}\right)$ and delete v_{2}. Then delete v_{3}^{\prime}. If $S\left(v_{2}^{\prime}\right)$ has two colors disjoint from $\mathcal{C}\left(v_{1}^{\prime}\right)$, let $\mathcal{C}\left(v_{2}^{\prime}\right)$ be a subset of size two of $S\left(v_{2}^{\prime}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right)$; then if $L\left(v_{3}^{\prime \prime}\right)$ has two colors disjoint from $\mathcal{C}\left(v_{1}^{\prime}\right) \cup \mathcal{C}\left(v_{2}^{\prime}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be two such disjoint colors and hence (1a) holds. Otherwise $\mathcal{C}\left(v_{1}^{\prime}\right) \subset S\left(v_{2}^{\prime}\right)$. So let $\mathcal{C}\left(v_{2}^{\prime}\right)=S\left(v_{2}^{\prime}\right)$ and let $\mathcal{C}\left(v_{3}^{\prime \prime}\right)$ be a subset of size two in $L\left(v_{3}^{\prime \prime}\right)$ disjoint from $\mathcal{C}\left(v_{2}^{\prime}\right)$. Hence (1b) holds with order $v_{3}^{\prime \prime} v_{1}^{\prime} v_{2}^{\prime}$.

We may now assume, using the symmetry of v_{1}^{\prime} and v_{3}^{\prime}, that $T_{3}=v_{1}^{\prime} v_{2}^{\prime \prime} v_{3}^{\prime}$. Suppose that $\left|S\left(v_{1}^{\prime}\right) \cap S\left(v_{2}^{\prime}\right)\right| \leq 2$. Now let $\mathcal{C}\left(v_{1}^{\prime}\right)$ be a subset of size two of $S\left(v_{1}^{\prime}\right) \backslash S\left(v_{2}^{\prime}\right)$ and delete v_{2}^{\prime}. If $\mathcal{C}\left(v_{1}^{\prime}\right)=S\left(v_{2}\right)$, let $\mathcal{C}\left(v_{3}^{\prime}\right)$ be a subset of size two of $S\left(v_{3}^{\prime}\right) \backslash S\left(v_{2}\right)$ and delete v_{2}. Then let $\mathcal{C}\left(v_{2}^{\prime \prime}\right)=L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right)$ and either (1a) or (1b) holds. So suppose that $S\left(v_{2}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right) \neq \emptyset$. Color v_{2} with a color c from $S\left(v_{2}\right) \backslash \mathcal{C}\left(v_{1}^{\prime}\right) \neq \emptyset$. Remove c from $S\left(v_{3}^{\prime}\right)$ and delete v_{2}. Now if there are two colors in $S\left(v_{3}^{\prime}\right) \backslash\{c\}$ disjoint from $\mathcal{C}\left(v_{1}^{\prime}\right)$ we finish as above. Otherwise, $\mathcal{C}\left(v_{1}\right) \subset S\left(v_{3}^{\prime}\right) \backslash\{c\}$. So let $\mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{3}^{\prime}\right) \backslash\{c\}$ and $\mathcal{C}\left(v_{2}^{\prime \prime}\right)$ be a subset of size two in $L\left(v_{2}^{\prime \prime}\right) \backslash \mathcal{C}\left(v_{3}^{\prime}\right)$. Hence (1b) holds with order $v_{2}^{\prime \prime} v_{1}^{\prime} v_{3}^{\prime}$.

So we may assume that $\left|S\left(v_{1}^{\prime}\right) \cap S\left(v_{2}^{\prime}\right)\right| \geq 3$. That is, $S\left(v_{2}^{\prime}\right) \subset S\left(v_{1}^{\prime}\right)$. By the symmetry of v_{1}^{\prime} and v_{3}^{\prime}, we may also assume that $S\left(v_{2}^{\prime}\right) \subset S\left(v_{3}^{\prime}\right)$. If $S\left(v_{2}\right) \backslash S\left(v_{2}^{\prime}\right) \neq \emptyset$,
let $\mathcal{C}\left(v_{1}^{\prime}\right)=\mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{2}^{\prime}\right)$ and delete v_{2}. Then let $\mathcal{C}\left(v_{2}^{\prime \prime}\right)=L\left(v_{2}^{\prime \prime}\right) \backslash S\left(v_{2}^{\prime}\right)$ and delete v_{2}^{\prime}. Hence ($1 b$) holds with order $v_{2}^{\prime \prime} v_{1}^{\prime} v_{3}^{\prime}$. So we may suppose that $S\left(v_{2}\right) \subset S\left(v_{2}^{\prime}\right)$. Let $\mathcal{C}\left(v_{1}^{\prime}\right)=S\left(v_{2}\right), \mathcal{C}\left(v_{3}^{\prime}\right)=S\left(v_{3}^{\prime}\right) \backslash S\left(v_{2}\right)$ and delete v_{2}. Let $\mathcal{C}\left(v_{2}^{\prime \prime}\right)=L\left(v_{2}^{\prime \prime}\right) \backslash S\left(v_{2}\right)$ and delete v_{2}^{\prime}. Now either (1a) holds or (1b) holds with order $v_{1}^{\prime} v_{3}^{\prime} v_{2}^{\prime \prime}$.

Lemma 4.8.3. Let $B=T_{0} T_{1}$ be an octahedral band. If \mathcal{C} is a Magic 1 set of colorings of T_{0}, then there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Proof. Let $T_{0}=v_{1} v_{2} v_{3}$ and $T_{1}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ where v_{i} is adjacent to v_{j}^{\prime} if and only if $i \neq j$. First we suppose that \mathcal{C} is of the form (1a). Further suppose that $\mid L\left(v_{3}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup\right.$ $\left.\mathcal{C}\left(v_{2}\right)\right) \mid \geq 2$. Let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $L\left(v_{3}^{\prime}\right) \backslash\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)$. Now we may delete v_{1} and v_{2}.

Further suppose there exist two colors in $L\left(v_{1}^{\prime}\right)$ disjoint from $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \cup \mathcal{C}\left(v_{3}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{1}\right)$ be a subset of size two of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \cup \mathcal{C}\left(v_{3}\right)\right)$ and delete v_{3}. Then if $L\left(v_{2}^{\prime}\right)$ has two colors disjoint from $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)$ be a subset of size two $L\left(v_{2}^{\prime}\right) \backslash\left(\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)\right)$ and hence $(3 a)$ holds. So $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right), \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \subset L\left(v_{2}^{\prime}\right)$ and (3b) holds with order $v_{1}^{\prime} v_{3}^{\prime} v_{2}^{\prime}$.

So we may suppose instead that $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{1}^{\prime}\right)$. By symmetry, $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right), \mathcal{C}\left(v_{3}\right) \subset$ $L\left(v_{2}^{\prime}\right)$. But then (3c) holds with $\mathcal{F}=\mathcal{C}\left(v_{3}\right)$ and order $v_{3}^{\prime} v_{1}^{\prime} v_{2}^{\prime}$.

So we may suppose that $\mathcal{C}\left(v_{1}\right), \mathcal{C}\left(v_{2}\right) \subset L\left(v_{3}^{\prime}\right)$. By symmetry, $\mathcal{C}\left(v_{1}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{2}^{\prime}\right)$ and $\mathcal{C}\left(v_{2}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{1}^{\prime}\right)$. Now let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)=\mathcal{C}\left(v_{1}\right), \mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)=\mathcal{C}\left(v_{3}\right)$ and $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\mathcal{C}\left(v_{2}\right)$. Hence (3a) holds.

So we may assume that \mathcal{C} is of the form (1b). We may assume without loss of generality that $\mathcal{C}\left(v_{3}\right) \cap\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right)=\emptyset,\left|\mathcal{C}\left(v_{3}\right)\right|=\left|\mathcal{C}\left(v_{1}\right)\right|=2,\left|\mathcal{C}\left(v_{2}\right)\right|=3$ and $\mathcal{C}\left(v_{1}\right) \subset \mathcal{C}\left(v_{2}\right)$.

Let $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $L\left(v_{3}^{\prime}\right) \backslash \mathcal{C}\left(v_{2}\right)$. Now any L-coloring ϕ of $B \backslash\left\{v_{1}, v_{2}\right\}$ such that $\phi\left(v_{3}^{\prime}\right) \in \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ and $\phi\left(v_{3}\right) \in \mathcal{C}\left(v_{3}\right)$ extends to an L-coloring ϕ of B such that ϕ restricted to T_{0} is in \mathcal{C}; simply color v_{1}, then v_{2}. So it suffices to define
\mathcal{C}^{\prime} for $B \backslash\left\{v_{1}, v_{2}\right\}$ such that \mathcal{C}^{\prime} is a Magic 3 set of colorings and every L-coloring $\phi \in C^{\prime}$, there exists $c \in \mathcal{C}\left(v_{3}\right)$ such setting $\phi\left(v_{3}\right)=c$ yields an L-coloring of $B \backslash\left\{v_{1}, v_{2}\right\}$.

Suppose there exist two colors in $L\left(v_{1}^{\prime}\right)$ disjoint from $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \cup \mathcal{C}\left(v_{3}\right)$. Then let $\mathcal{C}^{\prime}\left(v_{1}\right)$ be a subset of size two of $L\left(v_{1}^{\prime}\right) \backslash\left(\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \cup \mathcal{C}\left(v_{3}\right)\right)$; now every L-coloring ϕ of T_{1} such that $\phi\left(v_{1}^{\prime}\right) \in \mathcal{C}^{\prime}\left(v_{1}\right)$ and $\phi\left(v_{3}^{\prime}\right) \in \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ extends to an L-coloring of $B \backslash\left\{v_{1}, v_{2}\right\}$. Now if $L\left(v_{2}^{\prime}\right)$ has two colors disjoint from $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$, let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)$ be a subset of size two $L\left(v_{2}^{\prime}\right) \backslash\left(\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)\right)$ and hence \mathcal{C}^{\prime} is of the form $(3 a)$. So $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right), \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right) \subset L\left(v_{2}^{\prime}\right)$ and \mathcal{C}^{\prime} is of the form (3b) with order $v_{1}^{\prime} v_{3}^{\prime} v_{2}^{\prime}$.

So we may suppose instead that $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{1}^{\prime}\right)$. Noting the symmetry of $v_{1}^{\prime}, v_{2}^{\prime}$ in $B \backslash\left\{v_{1}, v_{2}\right\}$, we find that $\mathcal{C}^{\prime}\left(v_{3}^{\prime}\right), \mathcal{C}\left(v_{3}\right) \subset L\left(v_{2}^{\prime}\right)$. But then \mathcal{C}^{\prime} is of the form (3c) with $\mathcal{F}=\mathcal{C}\left(v_{3}\right)$ and order $v_{3}^{\prime} v_{1}^{\prime} v_{2}^{\prime}$.

Corollary 4.8.4. Let $B=T_{0} T_{1}$ be an octahedral band. If \mathcal{C} is a Magic 1 set of colorings of T_{0}, then there exists a Magic 1 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Corollary 4.8.5. Let $B=T_{0} T_{1}$ be an octahedral band. If \mathcal{C} is a Magic 2 set of colorings of T_{0}, then there exists a Magic 2 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Corollary 4.8.6. Let $B=T_{0} T_{1}$ be an octahedral band. If \mathcal{C} is a Magic 3 set of colorings of T_{0}, then there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Lemma 4.8.7. Let $B=T_{0} T_{1}$ be an octahedral band. If \mathcal{C} is a Magic 3 set of colorings of T_{0} and \mathcal{C}^{\prime} is a Magic 3 set of colorings of T_{1}, then there exists $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ is a proper coloring of B.

Proof. Let $T_{0}=v_{1} v_{2} v_{3}, T_{1}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ where v_{i} is adjacent to v_{j}^{\prime} if $i \neq j$.
First suppose that \mathcal{C} is of the form (3b). Delete the vertex x with list of size five as x has degree four in B. If \mathcal{C}^{\prime} is of the form (3a), then we color $B \backslash\{x\}$, which is
essentially a path on five vertices each with list of size two. If \mathcal{C}^{\prime} is of the form (3b), delete the vertex x^{\prime} with the list of size five in T_{3} as x has degree four in B. Now color $B \backslash\left\{x, x^{\prime}\right\}$ which is a path of length three or two disjoint edges all with list of size two. So we may suppose that \mathcal{C}^{\prime} is of the form (3c). Delete a vertex x^{\prime} with list of size five adjacent to x in B. Thus x^{\prime} has degree three in $B \backslash\{x\}$. Then delete the other vertex $x^{\prime \prime}$ with list of size five in T_{3}. Finally color the vertices of $B \backslash\left\{x, x^{\prime}, x^{\prime \prime}\right\}$. So we may assume that neither \mathcal{C} nor by symmetry \mathcal{C}^{\prime} is of the form (3b).

Next suppose \mathcal{C} is of the form (3c). Suppose without loss of generality that $v_{1}, v_{2} \in T_{0}$ have lists of size five while $v_{3} \in T_{0}$ has a list of size two. Delete v_{1} and v_{2} and color $B \backslash\left\{v_{1}, v_{2}\right\}$. If \mathcal{C}^{\prime} is of the form (3a) such a coloring exists as we have a path of length two plus an isolated vertex all with lists of size two. If \mathcal{C}^{\prime} is of the form $(3 c)$, we color the lists of size two and then the lists of size five. Finally we may extend such a coloring ϕ back to v_{1} and v_{2} unless without loss of generality $\mathcal{C}\left(v_{1}\right)=\{1,2,3,4,5\}$, $\mathcal{C}\left(v_{2}\right)=\{1,2,3,4,6\}, \mathcal{F}=\{3,4\}, \mathcal{C}\left(v_{3}\right)=\{1,2\}$ and $\phi\left(v_{3}\right)=1, \phi\left(v_{2}^{\prime}\right)=5, \phi\left(v_{3}^{\prime}\right)=2$, $\phi\left(v_{1}^{\prime}\right)=6$. But then change the color of $\phi\left(v_{3}\right)$ to 2 and extend to v_{1} and v_{2}. So we may assume that neither \mathcal{C} nor by symmetry \mathcal{C}^{\prime} is of the form (3c).

Finally we may suppose that \mathcal{C} and \mathcal{C}^{\prime} are of the form (3a). But then B is a subgraph of a cycle of length six (after deleting edges between vertices with disjoint lists) whose vertices have lists of size two. By Theorem 1.4.3, B has a list-coloring as desired.

4.9 Magic Colorings with Hexadecahedral Bands

The goal of this section is to incorporate hexadecahedral bands in the theory of magic colorings.

Lemma 4.9.1. Let $B=T_{0} T_{1}$ be such that $T_{0} T_{1}$ is a hexadecahedral band. If ϕ is a proper coloring of T_{0}, then there exists a Magic 3 set \mathcal{C} of colorings of T_{2} such that for every $\phi^{\prime} \in \mathcal{C}, \phi \cup \phi^{\prime}$ extends to an L-coloring of B.

Proof. Let $B \backslash\left(T_{0} \cup T_{1}\right)=v_{1} v_{2} v_{3} v_{4}$ and $T_{1}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ where for all $i \in\{1,2,3\}, v_{i}$ is adjacent to v_{j}^{\prime} if and only $i \neq j$ and $v_{4} \sim v_{2}^{\prime}$. Let $S(v)=L(v) \backslash\left\{\phi(u) \mid u \in T_{0} \cap N(v)\right\}$ for a $v \notin T_{0}$. We may assume without loss of generality that $\left|S\left(v_{1}\right)\right|=\left|S\left(v_{3}\right)\right|=$ $\left|S\left(v_{4}\right)\right|=3$ and $\left|S\left(v_{2}\right)\right|=4$.

Suppose $S\left(v_{4}\right)=S\left(v_{3}\right)$. Let $\mathcal{C}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right) \backslash S\left(v_{3}\right)$. Delete v_{4}, then v_{3}, then v_{2}, then v_{1}. Let $\mathcal{C}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right)$ and $\mathcal{C}\left(v_{3}^{\prime}\right)=L\left(v_{3}^{\prime}\right)$. Hence \mathcal{C} contains either a subset of the form (3a) or (3b) as desired.

So we may assume that $S\left(v_{4}\right) \neq S\left(v_{3}\right)$ and by symmetry that $S\left(v_{4}\right) \neq S\left(v_{1}\right)$. Let $\mathcal{C}\left(v_{1}^{\prime}\right)=L\left(v_{1}^{\prime}\right) \backslash S\left(v_{3}\right)$ and $\mathcal{C}\left(v_{2}^{\prime}\right)=L\left(v_{2}^{\prime}\right)$. Let $c \in S\left(v_{1}\right) \backslash S\left(v_{4}\right)$ and $\mathcal{C}\left(v_{3}^{\prime}\right)=L\left(v_{3}^{\prime}\right) \backslash\{c\}$. We claim that any proper coloring $\phi \in \mathcal{C}$ of T_{1} extends to a S-coloring of $v_{1} v_{2} v_{3} v_{4}$. If $\phi\left(v_{2}^{\prime}\right) \neq c$, color v_{1} with c, then color v_{2}, v_{3}, v_{4} in that order. If $\phi\left(v_{2}^{\prime}\right)=c^{\prime}$, color $v_{1}, v_{2}, v_{3}, v_{4}$ in that order. The claim follows.

Hence \mathcal{C} contains either a subset of the form (3a) or (3b) as desired. To see this let $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)=\mathcal{C}\left(v_{2}^{\prime}\right), \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right)$ be a subset of size two of $\mathcal{C}\left(v_{3}^{\prime}\right) \backslash \mathcal{C}^{\prime}\left(v_{2}^{\prime}\right)$. Then if $\mathcal{C}\left(v_{1}^{\prime}\right)$ has two disjoints color from $\mathcal{C}^{\prime}\left(v_{2}^{\prime}\right) \cup \mathcal{C}^{\prime}\left(v_{3}^{\prime}\right),(3 a)$ holds; otherwise let $\mathcal{C}^{\prime}\left(v_{1}^{\prime}\right)=\mathcal{C}\left(v_{1}^{\prime}\right)$ and $(3 b)$ holds with order $v_{2}^{\prime} v_{3}^{\prime} v_{1}^{\prime}$.

Corollary 4.9.2. Let $B=T_{0} T_{1}$ be a hexadecahedral band. If \mathcal{C} is a Magic 3 set of colorings of T_{0}, then there exists a Magic 3 set \mathcal{C}^{\prime} of colorings of T_{1} such that for every $\phi^{\prime} \in \mathcal{C}^{\prime}$, there exists $\phi \in \mathcal{C}$ where $\phi \cup \phi^{\prime}$ is an L-coloring of B.

Lemma 4.9.3. Let $B=T_{0} T_{1}$ be a hexadecahedral band. If \mathcal{C} is a Magic 3 set of colorings of T_{0} and \mathcal{C}^{\prime} is a Magic 3 set of colorings of T_{1}, then there exists $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that $\phi \cup \phi^{\prime}$ is a proper coloring of B.

Proof. Let $T_{0}=v_{1} v_{2} v_{3}$ and $T_{1}=u_{1} u_{2} u_{3}$. Let $B \backslash\left(T_{0} \cup T_{1}\right)=w_{1} w_{2} w_{3} w_{4}$, where $w_{1} \sim v_{1}, v_{2}, u_{3}, w_{2} \sim v_{2}, v_{3}, u_{3}, u_{1}, w_{3} \sim v_{3}, u_{1}, u_{2}$ and $w_{4} \sim v_{3}, v_{1}, u_{2}, u_{3}$. Note that in any proper coloring of $T_{0} \cup T_{1}, w_{2}$ and w_{4} see at most four colors and so can be colored. The problem then is that if w_{1} or w_{3} then see five colors they may not be
able to be colored. The solution then is as follows. It suffices to choose $\phi \in \mathcal{C}$ and $\phi^{\prime} \in \mathcal{C}^{\prime}$ such that w_{1} and w_{3} see only two colors in $\phi \cup \phi^{\prime}$, because then we color w_{2} and w_{4} followed by w_{1} and w_{3}.

First suppose that \mathcal{C} is of the form (3a). Further suppose that \mathcal{C}^{\prime} is of the form (3a). In this case, either $\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right) \cup \mathcal{C}^{\prime}\left(u_{3}\right)\right) \backslash L\left(w_{1}\right) \neq \emptyset$ or $\mathcal{C}^{\prime}\left(u_{3}\right) \cap\left(\mathcal{C}\left(v_{1}\right) \cup \mathcal{C}\left(v_{2}\right)\right) \neq \emptyset$. Either way we may color v_{1}, v_{2}, u_{3} such that w_{1} sees at most two colors. Symmetrically, we may color v_{3}, u_{1}, u_{2} such that w_{3} sees at most two colors. These coloring together are proper as vertices in T_{0} have pairwise disjoint lists and similarly for T_{1}.

Next suppose that \mathcal{C}^{\prime} is of the form (3b). Suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. Without loss of generality suppose that $\left|\mathcal{C}^{\prime}\left(u_{1}\right)\right|=5$. In this case, we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. Now $\left|\mathcal{C}^{\prime}\left(u_{1}\right) \backslash \phi^{\prime}\left(u_{3}\right)\right| \geq 4$. So either $\mathcal{C}\left(v_{3}\right) \cup\left(\mathcal{C}^{\prime}\left(u_{1}\right) \backslash \phi^{\prime}\left(u_{3}\right)\right) \backslash$ $L\left(w_{3}\right) \neq \emptyset$ or $\mathcal{C}\left(v_{3}\right) \cap\left(\mathcal{C}^{\prime}\left(u_{1}\right) \backslash \phi^{\prime}\left(u_{3}\right)\right) \neq \emptyset$. Either way we may color u_{1} and v_{3} so that w_{3} sees at most one color. Then we color u_{2} and then w_{3} sees at most two colors as desired. So we may suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=5$. In this case, we may color v_{3}, u_{1}, u_{2} so that w_{3} sees at most two colors. Then as $\mathcal{C}^{\prime}\left(u_{3}\right) \backslash\left\{\phi^{\prime}\left(u_{1}\right), \phi^{\prime}\left(u_{2}\right)\right\} \mid \geq 3$, we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors as desired.

We suppose that \mathcal{C}^{\prime} is of the form (3c). Suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. In this case, we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. Now $\left|\mathcal{C}^{\prime}\left(u_{1}\right) \backslash \phi^{\prime}\left(u_{3}\right)\right| \geq 4$ and we may color u_{1} and v_{3} so that w_{3} sees at most one color. Then we color u_{2} and then w_{3} sees at most two colors as desired. So we may suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=5$. Now we may color v_{3}, u_{1}, u_{2} so that w_{3} sees at most two colors. Then u_{3} has as least two colors available. So we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors as desired. So we may assume that \mathcal{C}, and by symmetry \mathcal{C}^{\prime} is not of the form (3a).

So suppose that \mathcal{C} is of the form (3b). Further suppose that \mathcal{C}^{\prime} is of the form (3b). Suppose that $\left|\mathcal{C}\left(v_{3}\right)\right|=5$. Then suppose that $\left|\mathcal{C}\left(u_{3}\right)\right|=5$. In this case, color u_{1}, u_{2}, v_{3} so that w_{3} sees at most two colors. Now u_{3} has three available colors and v_{1}, v_{2} have at least three available colors combined. So we may color u_{3}, v_{1}, v_{2} so that w_{1} sees at
most two colors as desired. So suppose that $\left|\mathcal{C}\left(u_{3}\right)\right|=2$. In this case, color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. Then as v_{3} has at least three available colors, and v_{1}, v_{2} have at least four available colors combined, we may color v_{3}, u_{1}, u_{2} so that w_{3} sees at most two colors as desired.

So we may assume that $\left|\mathcal{C}\left(v_{3}\right)\right|=2$ and by symmetry that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. Note that there are at least five colors in $\mathcal{C}^{\prime}\left(u_{1}\right) \cup \mathcal{C}^{\prime}\left(u_{2}\right)$ and two in $\mathcal{C}\left(v_{3}\right)$. So consider $\left(\mathcal{C}^{\prime}\left(u_{1}\right) \cup \mathcal{C}^{\prime}\left(u_{2}\right)\right) \backslash \mathcal{C}^{\prime}\left(u_{3}\right)$ and $\mathcal{C}\left(v_{3}\right)$. If these sets intersect or one has a color not in $L\left(w_{3}\right)$, we may color v_{3}, u_{1}, u_{2} such that w_{3} sees at most two colors and u_{3} still has two available colors. Then as v_{1}, v_{2} have at least four available colors combined, we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. But then if $\mathcal{C}\left(v_{3}\right) \backslash \mathcal{C}^{\prime}\left(u_{3}\right) \neq \emptyset$, we may color u_{1}, u_{2} so that w_{3} sees at most one color. Then we may color v_{1}, v_{2}, u_{3} so that w_{1} sees at most one color and finish by coloring v_{3} and then w_{3} sees at most one color. So we may assume that $\mathcal{C}\left(v_{3}\right)=\mathcal{C}^{\prime}\left(u_{3}\right)$. But then we may color v_{3} and the vertex with a list of size five in T_{1} with one color from $\mathcal{C}\left(v_{3}\right)$ and u_{3} and the vertex with a list of size five in T_{0} with the other color from $\mathcal{C}\left(v_{3}\right)$. In this way, w_{1} and w_{3} see at most two colors as desired.

Next suppose that \mathcal{C}^{\prime} is of the form $(3 c)$. Suppose that $\left|\mathcal{C}\left(v_{3}\right)\right|=5$. Then suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. In this case, color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. Now v_{3} has three available colors and v_{1}, v_{2} have four available colors combined. So we may color v_{3}, u_{1}, u_{2} such that w_{3} sees at most two colors as desired. So suppose without loss of generality that $\left|\mathcal{C}^{\prime}\left(u_{1}\right)\right|=2$. In this case, color v_{1}, v_{2}, u_{3} so that w_{1} sees at most two colors. Now v_{3} has three available colors and v_{1}, v_{2} have three available colors combined. So we may color v_{3}, u_{1}, u_{2} such that w_{3} sees at most two colors as desired.

So we may assume that $\left|\mathcal{C}\left(v_{3}\right)\right|=2$. Then suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. Without loss of generality, we may assume that $\left|\mathcal{C}\left(v_{1}\right)\right|=5$. If $\mathcal{C}\left(v_{1}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color v_{1} with such a color and then color v_{3}. Now u_{1} can either be colored the same as v_{3} or with a
color not in $L\left(w_{3}\right)$. Color u_{1} as such, then u_{2}, u_{3}, v_{2}. But then w_{1} and w_{3} see at most two colors as desired. Similarly if $\mathcal{C}^{\prime}\left(u_{3}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color u_{3} with such a color. Now v_{3} has two available colors and u_{1}, u_{2} have four avaialble colors combined. So color v_{3}, u_{1}, u_{3} such that w_{3} sees at most two colors. Color v_{1}, v_{2} and then w_{1} sees at most two colors as desired.

So we may now assume that $\mathcal{C}^{\prime}\left(u_{3}\right) \subset \mathcal{C}\left(v_{1}\right)$ as $\mathcal{C}^{\prime}\left(u_{3}\right), \mathcal{C}\left(v_{1}\right) \subseteq L\left(w_{1}\right)$. If $\mathcal{C}^{\prime}\left(u_{1}\right) \backslash$ $L\left(w_{3}\right) \neq \emptyset$, color u_{1} with such a color, then color u_{3}, v_{1}, v_{2} such that w_{1} sees at most two colors. Then color v_{3} and u_{2} and thus w_{3} sees at most two colors as desired. If $\mathcal{C}\left(v_{3}\right) \backslash L\left(w_{3}\right) \neq \emptyset$, color v_{3} with such a color, then color u_{3}, v_{1}, v_{2} such that w_{1} sees at most two colors. Then color u_{1}, u_{2} and thus w_{3} sees at most two colors as desired. So we may also assume that $\mathcal{C}\left(v_{3}\right) \subset \mathcal{C}^{\prime}\left(u_{1}\right)$ as $\mathcal{C}\left(v_{3}\right), \mathcal{C}^{\prime}\left(u_{1}\right) \subseteq L\left(w_{3}\right)$. In this case, color u_{3} and v_{1} with the same color and then color v_{3} and u_{1} with the same color. Finally color v_{2} and u_{2} and thus w_{1} and w_{3} see at most two colors as desired.

So suppose that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=5$. In this case, color v_{3}, u_{1}, u_{2} such that w_{3} sees at most two colors. Now v_{1}, v_{2} have at least four available colors combined while u_{3} has at least two available colors. So we may color v_{1}, v_{2}, u_{3} such that w_{1} sees at most two colors as desired.

So we may assume that \mathcal{C}, and by symmetry \mathcal{C}^{\prime}, is of the form $(3 c)$. Suppose that $\left|\mathcal{C}\left(v_{3}\right)\right|=\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$. If $\mathcal{C}\left(v_{1}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color v_{1} with such a color and then color v_{3}. Now u_{1} can either be colored the same as v_{3} or with a color not in $L\left(w_{3}\right)$. Color u_{1} as such, then u_{3}, u_{2}, v_{2}. But then w_{1} and w_{3} see at most two colors as desired. Similarly if $\mathcal{C}^{\prime}\left(u_{3}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color u_{3} with such a color. Now v_{3} has two available colors and u_{1}, u_{2} have four available colors combined. So color v_{3}, u_{1}, u_{3} such that w_{3} sees at most two colors. Color v_{1}, v_{2} and then w_{1} sees at most two colors as desired. So we may now assume that $\mathcal{C}^{\prime}\left(u_{3}\right) \subset \mathcal{C}\left(v_{1}\right)$ as $\mathcal{C}^{\prime}\left(u_{3}\right), \mathcal{C}\left(v_{1}\right) \subseteq L\left(w_{1}\right)$. By symmetry, we may then assume that $\mathcal{C}\left(v_{3}\right) \subset \mathcal{C}^{\prime}\left(u_{1}\right)$. In this case, color u_{3} and v_{1} with the same color and then color v_{3} and u_{1} with the same color. Finally color v_{2} and u_{2} and thus
w_{1} and w_{3} see at most two colors as desired.
Next suppose that $\left|\mathcal{C}\left(v_{3}\right)\right|=\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=5$. We may suppose without loss of generality that $\left|\mathcal{C}\left(v_{1}\right)\right|=2$. Moreover, given that the succeeding arguments are identical for u_{1} and u_{2}, we may also assume that $\left|\mathcal{C}\left(u_{1}\right)\right|=2$. If $\mathcal{C}\left(v_{1}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color v_{1} with such a color. Now v_{3} has four available colors and u_{1} has two available colors. So either color u_{1}, v_{3} with same color or one of them with a color not in $L\left(w_{3}\right)$. Then color u_{3}, u_{2}, v_{2} in that order. But then w_{1} and w_{3} see at most two colors as desired. Similarly if $\mathcal{C}^{\prime}\left(u_{3}\right) \backslash L\left(w_{1}\right) \neq \emptyset$, color u_{3} with such a color. Then color u_{1}. Now v_{3} can either be colored the same as u_{1} or with a color not in $L\left(w_{3}\right)$. So color v_{3} as such and then color v_{1}, v_{2}, u_{2} in that order. But now w_{1} and w_{3} see at most two colors as desired. So we may now assume that $\mathcal{C}\left(v_{1}\right) \subset \mathcal{C}^{\prime}\left(u_{3}\right)$ as $\mathcal{C}^{\prime}\left(u_{3}\right), \mathcal{C}\left(v_{1}\right) \subseteq L\left(w_{1}\right)$. By symmetry, we may now assume that $\mathcal{C}^{\prime}\left(u_{1}\right) \subset \mathcal{C}\left(v_{3}\right)$. In this case, color u_{3} and v_{1} with the same color and then color v_{3} and u_{1} with the same color. Finally color v_{2} and u_{2} and thus w_{1} and w_{3} see at most two colors as desired.

Finally we may suppose that one of $\left|\mathcal{C}\left(v_{3}\right)\right|,\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|$ is of size two and the other of size five. By symmetry, we may assume without loss of generality that $\left|\mathcal{C}^{\prime}\left(u_{3}\right)\right|=2$ and $\left|\mathcal{C}\left(v_{3}\right)\right|=5$. In this case, color u_{3}, v_{1}, v_{2} such that w_{3} sees at most two colors. Now v_{3} has at least two available colors while u_{1}, u_{2} have at least four available colors combined. So we may color u_{1}, u_{2}, v_{3} such that w_{1} sees at most two colors as desired.

We are now ready to use these lemmas about magic colorings to prove Theorem 4.7.1.

Proof of Theorem 4.7.1. Suppose not. For $i \in\{1,2,3\}$, let M_{i} be the closest triangle to T_{1} such that ϕ extends to a Magic i set of colorings of M_{i}. Similarly for $i \in$ $\{1,2,3\}$, let M_{i}^{\prime} be the closest triangle to T_{2} such that ϕ^{\prime} extends to a Magic i set of colorings of $M_{i}{ }^{\prime}$. By Corollary 4.7.9 and Lemmas 4.8.2, 4.8.1 and 4.9.1, $d\left(T_{1}, M_{1}\right) \leq 2$
and $d\left(T_{2}, M_{1}^{\prime}\right) \leq 2$. By Lemmas 4.7.6, 4.7.12, 4.8.3 and 4.9.1, $d\left(M_{1}, M_{3}\right) \leq 2$ and $d\left(M_{1}^{\prime}, M_{3}^{\prime}\right) \leq 2$. By Corollary 4.7.16 and Lemmas 4.8.7, 4.9.3, it follows that if $d\left(M_{3}, M_{3}^{\prime}\right) \geq 2$, then there exist ϕ extends to an L-coloring of G. Hence $d\left(M_{3}, M_{3}^{\prime}\right) \leq$ 1. But now $d\left(T_{1}, T_{2}\right) \leq d\left(T_{1}, M_{1}\right)+1+d\left(M_{1}, M_{3}\right)+1+d\left(M_{3}, M_{3}^{\prime}\right)+1+d\left(M_{3}^{\prime}, M_{1}^{\prime}\right)+$ $1+d\left(M_{1}^{\prime}, T_{1}\right) \leq 13$, a contradiction.

4.10 Proof of the Two Precolored Triangles Theorem

Proof of Theorem 4.1.1. Let $\Gamma=\left(G, T_{1}, T_{2}, L\right)$ is a counterexample to Theorem 4.1.1 with a minimum number of vertices and subject to that a maximum number of edges. By Lemma 4.6.21 with $d_{0}=14$, there exists triangles T_{1}^{\prime} and T_{2}^{\prime} of G each separating C_{1} from C_{2} such that $d\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \geq 14$ and every band in the band decomposition of $\Gamma\left[T_{1}^{\prime}, T_{2}^{\prime}\right]$ is a subgraph of a tetrahedral, octahedral or hexadecahedral band.

Let ϕ be an L-coloring of $T_{1} \cup T_{2}$. By Theorem 1.4.2, it follows that $\phi \upharpoonleft T_{1}$ can be extended to an L-coloring of $\Gamma\left[T_{1}, T_{1}^{\prime}\right]$ and similarly $\phi \upharpoonleft T_{2}$ can be extended to an L-coloring of $\Gamma\left[T_{2}, T_{2}^{\prime}\right]$. By Theorem 4.7.1, ϕ can now be extended to an L-coloring of G, a contradiction.

CHAPTER V

A GENERAL LINEAR BOUND

5.1 Introduction

In this chapter, we prove the main results of this thesis. In Section 5.2, we generalize Theorem 4.1.1 to the case of two cycles with lists of size three a constant distance apart. Then we extend Theorems 3.4.26 and 3.6.4 to the case of two precolored cycles. In Section 5.3, we extend Theorem 3.4.27 to the case of two precolored cycles. In Section 5.4, we extend Theorem 3.5.3 to the case of two precolored cycles.

In Section 5.5, we define a useful way to planarize a graph on a surface. In Section 5.6, we proceed to develop an abstract theory for families of graphs satisfying a linear isoperimetric inequality, as in Theorem 3.4.26, for the disc and any isoperimetric inequality for the cylinder. In Section 5.7, we prove our main results holds in this abstract setting. In Section 5.8, we apply the general theory to the family of 6 -listcritical graphs to derive the main results for 5-list-coloring. Finally, in Section 5.9, we apply the theory for a slightly different family to obtain the exponentially many 5-list-colorings result.

5.2 A Linear Bound for the Cylinder

Theorem 5.2.1. [Cylinder Theorem: Cycles with Lists of Size Three] If $\Gamma=(G, C \cup$ $\left.C^{\prime}, L\right)$ is a cylinder-canvas where vertices in $C \cup C^{\prime}$ have lists of size at least three and $d\left(C, C^{\prime}\right) \geq D$, then there exists an L-coloring of G.

Proof. Suppose that Γ is a counterexample to the theorem with a minimum number of vertices and subject to that a maximum number of edges. Thus Γ is critical. Hence there are no degree four vertices in $G \backslash\left(C \cup C^{\prime}\right)$ and there do not exist vertices in the
interior of triangles that do not separate a vertex of C from a vertex of C^{\prime}.
Claim 5.2.2. Either there exists a triangle C_{0} separating C, C^{\prime} such that $d\left(C_{0}, C \cup\right.$ $\left.C^{\prime}\right) \leq 2$, or there exists a path $P=p_{0} p_{1} \ldots p_{k}$ from C to C^{\prime} such that all the following hold:
(1) $p_{0} \in C, p_{k} \in C^{\prime}$,
(2) P is a shortest path from C to C^{\prime},
(3) none of $p_{1}, p_{2}, p_{k-2}, p_{k-1}$ has two mates (i.e. is tripled)
(4) P is an arrow from p_{0} to p_{k},
(5) if p_{1} (resp. p_{k-1}) has more than one neighbor on C (resp. C^{\prime}), then there either there is no neighbor of p_{1} on C (resp. $\left.C^{\prime}\right)$ to the left or no neighbor of p_{1} on C_{1} to the right,
(6) if p_{2} (resp. p_{k-2}) has a mate, then if it is a right mate, then there is no neighbor of p_{1} on C (resp. $\left.C^{\prime}\right)$ to the left and similarly if it is a left mate, then there is no neighbor of p_{1} on C to the right.

Proof. Consider a shortest path Q from C to C^{\prime}. Let $p_{1} \in Q$ such that $p_{1} \notin C$ and yet p_{1} has a neighbor in C. Similarly let $p_{k-1} \in Q$ such that $p_{1} \notin C^{\prime}$ and yet p_{k-1} has a neighbor in C^{\prime}. Let $P^{\prime}=p_{1} p_{2} \ldots p_{k-1}$ be an arrow from p_{1} to p_{k-1}, where by Lemma 4.2.2 such a P^{\prime} is guaranteed to exist. We claim that neither p_{2} nor p_{k-2} has two mates in P^{\prime}. For suppose not. Say p_{i} has two mates where $i \in\{2, k-2\}$. As p_{i} does not have degree four and no vertices in the interior of triangles that do not separate a vertex of C_{1} from a vertex of C_{2}, one of the mates, call it x, of p_{i} is in a triangle, either $p_{i-1} x p_{i}$ or $p_{i+1} x p_{i}$, that separates a vertex of C from a vertex of C^{\prime}. Call this triangle C_{0} and note that $d\left(C_{0}, C \cup C^{\prime}\right) \leq 2$.

Now let p_{0} be a neighbor of p_{1} on C such that there is no neighbor of p_{1} on C either to the left or to the right, and in addition if p_{2} has a mate z in P^{\prime}, then p_{0} has
no neighbor on C to the left if z is a right mate, and, p_{0} has no neighbor on C to the right if z is a left mate. Let p_{k} be chosen similarly. Let $P=p_{0} p_{1} \ldots p_{k-1} p_{k}$. Clearly (1) and (2) hold. Furthermore, (5) and (6) hold as p_{0} and p_{k} were chosen to satisfy these conditions. Moreover, (3) is satisfied. For suppose not. Say p_{i} has two mates where $i \in\{1,2, k-2, k-1\}$. As p_{i} does not have degree four and no vertices in the interior of triangles that do not separate a vertex of C_{1} from a vertex of C_{2}, one of the mates, call it x, of p_{i} is in a triangle, either $p_{i-1} x p_{i}$ or $p_{i+1} x p_{i}$, that separates a vertex of C from a vertex of C^{\prime}. Call this triangle C_{0} and note that $d\left(C_{0}, C \cup C^{\prime}\right) \leq 2$.

Finally we show that (4) is satisfied. Suppose not. Thus there exist $i, 2 \leq i \leq k-1$ such that p_{i} is tripled and yet p_{i-1} is doubled. Yet P^{\prime} was an arrow from p_{1} to p_{k-1} and hence $i \notin[3, k-2]$. Thus either $i=2$ or $i=k-1$. If $i=2$, then p_{2} is tripled, a contradiction as (3) was shown to hold for P. If $i=k-1$, then p_{k-1} is tripled, a contradiction as (3) was shown to hold for P. Hence (4) holds and the claim is proved.

Claim 5.2.3. There exists D^{\prime} such that if there does not exist a triangle separating C and C^{\prime} and $d\left(C, C^{\prime}\right) \geq D^{\prime}$, then G is L-colorable.

Proof. As there is no triangle separating C and C^{\prime}, by Claim 5.2.2, there exist a path P satisfying (1)-(6) in Claim 5.2.2. Choose P such that p_{1} and p_{k-1} have mates in P if possible. Let p_{0}^{\prime} be the other 'most' neighbor of p_{1} if p_{1} has more than one neighbor on C and similarly let p_{k}^{\prime} be the other 'most' neighbor of p_{k-1} on C^{\prime}. Let $P_{1}=p_{0} p_{1} p_{0}^{\prime}$ if p_{0}^{\prime} exists and $P_{2}=p_{k} p_{k-1} p_{k}^{\prime}$ if p_{k}^{\prime} exists. Let $B_{1}=\operatorname{Ext}\left(P_{1}\right)$, the bellows with base P_{1} and $B_{2}=\operatorname{Ext}\left(P_{2}\right)$, the bellows with base B_{2}.

Suppose that either p_{k}^{\prime} does not exist or there does not exist a vertex adjacent to $p_{k}^{\prime}, p_{k-1}, p_{k-2}$. Similarly suppose that either p_{0}^{\prime} does not exist or there does not exist a vertex adjacent to $p_{0}^{\prime}, p_{1}, p_{2}$. As P is an arrow from p_{0} to p_{k} and $\left|L\left(p_{0}\right)\right|,\left|L\left(p_{k}\right)\right| \geq 3$, there exists a bichromatic coloring ϕ of P by Lemma 4.2.3. Let G^{\prime} be the graph
obtained from G by cutting along P and deleting P. Let $L^{\prime}(v)=L(v) \backslash\{\phi(u) \mid u \in$ $N(v) \cap P\}$. Let $S^{\prime}=\left(N\left(p_{0}\right) \cup N\left(p_{1}\right) \cup N\left(p_{k-1}\right) \cup N\left(p_{k}\right)\right) \cap\left(C \cup C^{\prime}\right)$. Let $\Gamma^{\prime}=\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$ be the resulting canvas.

By Theorem 1.4.2, there exists an L^{\prime}-coloring ϕ^{\prime} of $G^{\prime} \cap\left(B_{1} \cup B_{2}\right)$. Let $G^{\prime \prime}=G^{\prime} \backslash$ $\left(B_{1} \cup B_{2}\right)$. Let $L^{\prime \prime}(v)=L^{\prime}(v) \backslash\left\{\phi^{\prime}(u) \mid u \in\left\{p_{0}^{\prime}, p_{k}^{\prime}\right\}, u \sim v\right\}$. Let $S^{\prime \prime}=\left\{v| | L^{\prime \prime}(v) \mid<3\right\}$. Consider the resulting canvas $\Gamma^{\prime \prime}=\left(G^{\prime \prime}, S^{\prime \prime}, L^{\prime \prime}\right)$.

We claim that if $v \in S^{\prime \prime}$, then either v is a neighbor of p_{0} or p_{0}^{\prime} in C or a neighbor of p_{k} or p_{k}^{\prime} in C^{\prime}. Suppose not. It follows that without loss of generality that v is a neighbor of p_{0}^{\prime} and that v has two neighbors in p_{0}, p_{1}, p_{2}. As there does not exist v adjacent to all of $p_{0}^{\prime}, p_{1}, p_{2}$, we may assume that $v \sim p_{0}$. If $v \sim p_{1}$, then either $v p_{1} p_{0}$ or $v p_{1} p_{0}^{\prime}$ is a triangle separating C from C^{\prime}, a contradiction. So we may suppose that $v \sim p_{2}$. But then either $v p_{0} p_{1} p_{2}$ or $v p_{0}^{\prime} p_{1} p_{2}$ is a 4 -cycle not separating C from C^{\prime} and hence $G \cup\left\{v p_{1}\right\}$ is a counterexample with the same number of vertices but more edges, a contradiction.

We claim that $S^{\prime \prime} \cap C$ consists either of at most two vertices with lists of size two or one vertex with a list of size one. This follows from the fact that we chose the p_{0} such that p_{1} has no neighbor either to the right or to the left by (5). So if p_{0}^{\prime} exists there can only be one vertex adjacent to p_{0} in $C \cap V\left(G^{\prime \prime}\right)$ and similarly one to p_{0}^{\prime} in $C \cap V\left(G^{\prime \prime}\right)$ as there are no chords of C or C^{\prime}. If p_{0}^{\prime} does not exist, then there are at most two neighbors of p_{0} in C. This proves the claim.

Similarly $S^{\prime \prime} \cap C^{\prime}$ consists either of at most two vertices with lists of size two or one vertex with a list of size one. As there is no triangle separating C and C^{\prime} and P was a shortest path between them, there cannot exist a long bottleneck in Γ^{\prime} as such a bottleneck would either have to involve many chords between C (or C^{\prime}) and P, or create a separating triangle between C and C^{\prime}. But now the claim follows by invoking Theorem 3.12.1, as the critical subcanvas $\left(G^{\prime}, S, L^{\prime}\right)$, where S are the vertices of Γ^{\prime} with lists of size at most two, must include a vertex from S in C and
another vertex from S in C^{\prime} (as there are local colorings near C and C^{\prime} given either one precolored vertex or two lists of size two). But then $\left|V\left(G^{\prime}\right)\right| \geq d\left(C, C^{\prime}\right) \geq D^{\prime}$ and yet $\left|V\left(G^{\prime}\right)\right|=O(|S|)=O(4)$, a contradiction.

So suppose that p_{0}^{\prime} exists and there exists a vertex $v \sim p_{0}^{\prime}, p_{1}, p_{2}$. We may suppose without loss of generality that $\left|L\left(p_{0}\right)\right|=\left|L\left(p_{0}^{\prime}\right)\right|=3$. As P was chosen so that p_{1} had a mate if possible, we find that p_{1} has a mate p_{1}^{\prime}. As there is no triangle separating C from $C^{\prime}, p_{1}^{\prime} \neq v$. First suppose that $L\left(p_{0}\right) \backslash L\left(p_{1}^{\prime}\right) \neq \emptyset$. In this case, let $\phi\left(p_{0}\right) \in L\left(p_{0}\right) \backslash L\left(p_{1}^{\prime}\right)$. If B_{1} is a fan, let $\phi\left(p_{1}\right)$ in $L\left(p_{1}\right) \backslash\left(\left\{\phi\left(p_{0}\right)\right\} \cup L\left(p_{0}^{\prime}\right)\right)$; if B_{1} is not a fan, let $\phi\left(p_{1}\right) \in L\left(p_{1}\right) \backslash\left\{\phi\left(p_{0}\right), \phi_{1}\left(p_{1}\right)\right\}$ where ϕ_{1} is the unique non-extendable coloring of P_{1} to B_{1}. Now let $L_{0}\left(p_{2}\right)=L\left(p_{2}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}$ and $L_{0}=L$ otherwise. Otherwise we may suppose that $L\left(p_{0}\right) \subset L\left(p_{1}^{\prime}\right)$. In this case, let $L_{0}\left(p_{2}\right)=L\left(p_{2}\right) \backslash\left(L\left(p_{1}^{\prime}\right) \backslash L\left(p_{0}\right)\right)$ and $L_{0}=L$ otherwise.

As $P \backslash\left\{p_{0}, p_{1}\right\}$ is an arrow from p_{2} to p_{k} and $\left|L_{0}\left(p_{2}\right)\right|,\left|L_{0}\left(p_{k}\right)\right| \geq 3$, there exist a bichromatic L_{0}-coloring ϕ of $P \backslash\left\{p_{0}, p_{1}\right\}$ by Lemma 4.2.3. Now if $L\left(p_{0}\right) \subset L\left(p_{1}^{\prime}\right)$, we would like to extend ϕ to p_{1} and then p_{0}. To that end, if B_{1} is a fan, let $\phi\left(p_{1}\right)$ in $L\left(p_{1}\right) \backslash\left(\left\{\phi\left(p_{2}\right)\right\} \cup L\left(p_{0}^{\prime}\right)\right)$; if B_{1} is not a fan, let $\phi\left(p_{1}\right) \in L\left(p_{1}\right) \backslash\left\{\phi\left(p_{2}\right), \phi_{1}\left(p_{1}\right)\right\}$ where ϕ_{1} is the unique non-extendable coloring of P_{1} to B_{1}. Let $\phi\left(p_{0}\right)=\phi\left(p_{2}\right)$ if $\phi\left(p_{2}\right) \in L\left(p_{0}\right)$ and otherwise let $\phi\left(p_{0}\right) \in L\left(p_{0}\right) \backslash\left\{\phi\left(p_{1}\right\}\right.$. Hence, in either case ϕ is an L-coloring of P such that all vertices not in P see at most two colors.

Let G^{\prime} be the graph obtained from G by cutting along P and deleting P. Let $L^{\prime}(v)=L(v) \backslash\{\phi(u) \mid u \in N(v) \cap P\}$. Let $S^{\prime}=\left(N\left(p_{0}\right) \cup N\left(p_{1}\right) \cup N\left(p_{k-1}\right) \cup N\left(p_{k}\right)\right) \cap$ $\left(C \cup C^{\prime}\right)$. Let $\Gamma^{\prime}=\left(G^{\prime}, S^{\prime}, L^{\prime}\right)$ be the resulting canvas.

By Theorem 1.4.2, there exists an L^{\prime}-coloring ϕ^{\prime} of $G^{\prime} \cap B_{2}$. Furthermore note that every L^{\prime}-coloring of p_{0}^{\prime} can be extended to an L-coloring of B_{1} extending ϕ. Let $G^{\prime \prime}=G^{\prime} \backslash\left(\left(B_{1} \backslash p_{0}^{\prime}\right) \cup B_{2}\right)$. Let $L^{\prime \prime}(v)=L^{\prime}(v) \backslash\left\{\phi^{\prime}\left(p_{k}^{\prime}\right) \mid p_{k}^{\prime} \sim v\right\}$. Let $S^{\prime \prime}=\left\{v \| L^{\prime \prime}(v) \mid<\right.$ $3\}$. Consider the resulting canvas $\Gamma^{\prime \prime}=\left(G^{\prime \prime}, S^{\prime \prime}, L^{\prime \prime}\right)$.

We claim that if $v \in S^{\prime \prime}$, then either v is a neighbor of p_{0} in C or $v=p_{0}^{\prime}$ or v is a
neighbor of p_{k} or p_{k}^{\prime} in C^{\prime}. This claim follows in the same way as before for vertices near C^{\prime} and is clear for vertices near C. We then claim that $S^{\prime \prime} \cap C$ consists either of at most two vertices with lists of size two. This follows from the fact that we chose the p_{0} such that p_{1} has no neighbor either to the right or to the left by (5). So as p_{0}^{\prime} exists there can only be one vertex adjacent to p_{0} in $C \cap V\left(G^{\prime \prime}\right)$. This proves the claim.

Now $S^{\prime \prime} \cap C^{\prime}$ consists either of at most two vertices with lists of size two or one vertex with a list of size one as before. As there is no triangle separating C and C^{\prime} and P was a shortest path between them, there cannot exist a long bottleneck in Γ^{\prime} as such a bottleneck would either have to involve many chords between C (or C^{\prime}) and P, or create a separating triangle between C and C^{\prime}. But now the claim follows by invoking Theorem 3.12.1, as the critical subcanvas $\left(G^{\prime}, S, L^{\prime}\right)$, where S are the vertices of Γ^{\prime} with lists of size at most two, must include a vertex from S in C and another vertex from S in C^{\prime} (as there are local colorings near C and C^{\prime} given either one precolored vertex or two lists of size two). But then $\left|V\left(G^{\prime}\right)\right| \geq d\left(C, C^{\prime}\right) \geq D^{\prime}$ and yet $\left|V\left(G^{\prime}\right)\right|=O(|S|)=O(4)$, a contradiction.

So we may suppose that p_{k}^{\prime} exists and there exists a vertex $v^{\prime} \sim p_{k}^{\prime}, p_{k-1}, p_{k-2}$. The same argument applies as above when either p_{0}^{\prime} does not exist or there does not exist $v \sim p_{0}^{\prime}, p_{1}, p_{2}$ as we did not use the direction of the arrow in that argument. A similar argument also applies when p_{0}^{\prime} exists and there exists $v \sim p_{0}^{\prime}, p_{1}, p_{2}$ by modifying L to L_{0} at both ends and finding a bichromatic coloring ϕ of the arrow from p_{2} to p_{k-2}. In that case, we do not either p_{0}^{\prime} or p_{k}^{\prime} and then proceed as above.

Let D_{0} be the distance in Theorem 4.1.1. If $|C|,\left|C^{\prime}\right| \leq 3$, the theorem follows from Theorem 4.1.1 as long as $D \geq D_{0}$. By Claim 5.2.3, there exists D^{\prime} such that if there does not exist a triangle separating a vertex of C and a vertex of C^{\prime} and $d\left(C, C^{\prime}\right) \geq D^{\prime}$, then the graph G is L-colorable. So we may suppose there exists a triangle separating a vertex of C from a vertex of C^{\prime}. Let T_{1} be such a triangle closest to C and T_{2} be
such a triangle closest to C^{\prime}. By Claim 5.2.3, $d\left(C, T_{1}\right) \leq D^{\prime}$ and $d\left(C^{\prime}, T_{2}\right) \leq D^{\prime}$ and yet by Theorem 4.1.1, $d\left(T_{1}, T_{2}\right) \leq D_{0}$. Hence $d\left(C, C^{\prime}\right) \leq 2 D^{\prime}+D_{0}$, a contradiction if $D>2 D^{\prime}+D_{0}$.

Lemma 5.2.4 (Cylinder Theorem: Linear-Log Distance). If $\Gamma=\left(G, C_{1} \cup C_{2}, L\right)$ is a connected critical cylinder-canvas, then $d\left(C_{1}, C_{2}\right) \leq O\left(\left|C_{1}\right| \log \left|C_{1}\right|+\left|C_{2}\right| \log \left|C_{2}\right|\right)$.

Proof. Let us proceed by induction on $\left|C_{1}\right|+\left|C_{2}\right|$. Suppose without loss of generality that $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right|$. We may assume that $\left|V\left(C_{1}\right)\right| \geq 4$ as otherwise the theorem follows from Theorem 4.1.1.

We now prove a stronger statement. For $i \in\{1,2\}$, let R_{i} be the set of relaxed vertices of C_{i} and $S_{i}=V\left(C_{i}\right) \backslash R_{i}$. Let $d_{r}(\Gamma)=\min \left\{d\left(R_{1}, R_{2}\right)+2, d\left(R_{1}, S_{2}\right)+\right.$ $\left.1, d\left(S_{1}, R_{2}\right)+1, d\left(S_{1}, S_{2}\right)\right\}$.

Let $f\left(m_{1}, m_{2}\right)=58\left(\left(m_{1}-3\right) \log m_{1}+\left(m_{2}-3\right) \log m_{2}\right)+D+2$ where D is the constant in Theorem 5.2.1.

We now prove that

$$
d_{r}(T) \leq f\left(\left|C_{1}\right|,\left|C_{2}\right|\right)+2
$$

Let $T=\left(G, C_{1} \cup C_{2}, L\right)$ be a counterexample to the formula above with a minimum number of vertices, where $\left|C_{1}\right| \geq\left|C_{2}\right|$ without loss of generality. Let $k_{1}=\left|C_{1}\right|$ and $k_{2}=\left|C_{2}\right|$. Hence $d\left(C_{1}, C_{2}\right)>f\left(k_{1}, k_{2}\right)$. Note then that $C_{1} \cap C_{2}=\emptyset$ as $d\left(C_{1}, C_{2}\right) \geq 1$.

Claim 5.2.5. For $i \in\{1,2\}$, there does not exist $G_{i} \subseteq G$ such that $G_{i} \cap C_{3-i}=\emptyset$ and $\left(G_{i}, C_{i}, L\right)$ is a critical canvas.

Proof. Suppose not. Suppose without loss of generality that there exists $G_{1} \subseteq G$ such that $G_{1} \cap C_{2}=\emptyset$ and $\left(G_{1}, C_{1}, L\right)$ is a critical canvas. There exists a face f of G_{1} such that the boundary cycle of f, call it C, separates a vertex of C_{1} from C_{2}. By Corollary 3.3.4, $|C|<\left|C_{1}\right|$. By induction, it follows that $d\left(C, C_{2}\right) \leq f\left(|C|, k_{2}\right)$. Hence $d\left(C, C_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$. By Theorem 3.6.4, $d\left(v, C_{1}\right) \leq 58 \log k_{1}$ for all $v \in V(C)$. Hence $d\left(C_{1}, C_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

Hence there does not exist a chord U of C_{1} or C_{2}.
Claim 5.2.6. For $i \in\{1,2\}$, there does not exist v with at least three neighbors in $C_{1} \cup C_{2}$.

Proof. As $d\left(C_{1}, C_{2}\right) \geq 3$, we may suppose without loss of generality that v has at least three neighbors on C_{1}. As there does not exist a chord of $C_{1}, v \notin V\left(C_{1}\right)$. Let f be the face of $G\left[C_{1} \cup\{v\}\right]$ such that the boundary cycle of f, call it C, separates a vertex of C_{1} from C_{2}. Suppose $|C|<\left|C_{1}\right|$. By induction, it follows that $d\left(C, C_{2}\right) \leq$ $f\left(|C|, k_{2}\right)$. Hence $d\left(C, C_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$. By Theorem 3.6.4, $d\left(v, C_{1}\right) \leq 58 \log k_{1}$ for all $v \in V(C)$. Hence $d\left(C_{1}, C_{2}\right) \leq f\left(k_{1}, k_{2}\right)$, a contradiction.

So we may suppose that $|C|=\left|C_{1}\right|$. Let $C_{1}=v_{1} v_{2} v_{3} \ldots v_{k_{1}}$. We may assume without loss of generality that $N(v) \cap C_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Hence $C=v_{1} v v_{3} \ldots v_{k_{1}}$.

Consider the canvas $\Gamma^{\prime}=\left(G \backslash\left\{v_{2}\right\}, C \cup C_{2}, L\right)$. Now T^{\prime} is critical. As T is a counterexample with a minimum number of vertices, we find that $d_{r}\left(T^{\prime}\right) \leq f\left(k_{1}, k_{2}\right)+$ 2.

Now we claim that v is relaxed in T^{\prime}. Let ϕ be an L-coloring of $C_{1} \cup C_{2}$ that does not extend to an L-coloring of G. Let $S(v)=L(v) \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{3}\right)\right\}$. Note then that $|S(v)| \geq 2$ as $|L(v)|=5$. Let $c_{1}, c_{2} \in S(v)$. For $i \in\{1,2\}$, let $\phi_{i}(v)=c_{i}$ and $\phi_{i}=\phi$ otherwise. Hence ϕ_{1}, ϕ_{2} are L-colorings of $P_{1}^{\prime} \cup P_{2}$ that do not extend to an L-coloring of $G \backslash\left\{p_{i}\right\}$ such that $\phi_{1}(v) \neq \phi_{2}(v)$ but $\phi_{1}=\phi_{2}$ otherwise. So v is relaxed as claimed.

Next we claim that $R\left(C_{1}\right) \subseteq R(C) \backslash\{v\}$. To see this, let $u \in R\left(C_{1}\right)$. Thus there exist two L-colorings ϕ_{1}, ϕ_{2} of $P_{1} \cup P_{2}$ that do not extend to an L-coloring of G such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise.

Suppose $u \neq v_{2}$. Let $S(v)=L(v) \backslash\left\{\phi_{1}\left(v_{1}\right), \phi_{2}\left(v_{1}\right), \phi_{1}\left(v_{2}\right), \phi_{2}\left(v_{2}\right), \phi_{1}\left(v_{3}\right), \phi_{2}\left(v_{3}\right)\right\}$. As $\phi_{1}=\phi_{2}(w)$ for all $w \neq u$, we find that $|S(v)| \geq 1$ as $|L(v)|=5$. Let $c \in S(v)$ and $\phi_{1}(v)=\phi_{2}(v)=c$. Now ϕ_{1}, ϕ_{2} are L-colorings of $P_{1}^{\prime} \cup P_{2}$ that do not extend to
an L-coloring of $G \backslash\left\{p_{i}\right\}$ such that $\phi_{1}(u) \neq \phi_{2}(u)$ and $\phi_{1}=\phi_{2}$ otherwise. Thus u is relaxed for T^{\prime}. So $u \in R\left(P_{1}^{\prime}\right) \backslash\{v\}$ as claimed.

Suppose $u=v_{2}$. If $\phi_{1}\left(v_{1}\right)=\phi_{1}\left(v_{3}\right)$, let G^{\prime} be obtained from G by deleting v_{2} and identifying v_{1} and v_{3} to a single vertex. If $\phi_{1}\left(v_{1}\right) \neq \phi_{1}\left(v_{3}\right)$, let G^{\prime} be obtained from G by deleting v_{2} and adding an edge between v_{1} and v_{2}. Let C_{1}^{\prime} be the resulting path on $C_{1} \backslash\left\{v_{2}\right\}$. Consider $\Gamma^{\prime}=\left(G^{\prime}, C_{1}^{\prime} \cup C_{2}, L\right)$. Now there does not exist an L^{\prime}-coloring of G that extends ϕ_{1}.

Hence Γ^{\prime} contains a critical subcanvas $\Gamma^{\prime \prime}$. If $\Gamma^{\prime \prime}$ is connected, then by induction $d\left(C_{1}, C_{2}\right) \leq d\left(C_{1}^{\prime}, C_{2}\right) \leq f\left(k_{1}-1, k_{2}\right)$, a contradiction. If $\Gamma^{\prime \prime}$ is not connected, then there exists $G_{1} \subseteq G$ such that $G_{1} \cap P_{2}=\emptyset$ and $\left(G_{1}, P_{1}, L\right)$ is a critical canvas, contradicting Claim 5.2.5. Thus $R\left(C_{1}\right) \subset R\left(C_{1}^{\prime}\right) \backslash\{v\}$ as claimed.

But now it follows that $d_{r}(\Gamma) \leq d_{r}\left(\Gamma^{\prime}\right)$ and hence $d_{r}(\Gamma) \leq f\left(k_{1}, k_{2}\right)+2$, contrary to the fact that Γ was a counterexample to this formula.

Let ϕ be an L-coloring of $C_{1} \cup C_{2}$ such that ϕ does not extend to an L-coloring of G. Let $G^{\prime}=G \backslash\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)$. Let $L^{\prime}(v)=L(v) \backslash\left\{\phi(u) \mid u \in V\left(C_{1}\right) \cup V\left(C_{2}\right), u \in N(v)\right\}$. By Claim 5.2.6, $\left|L^{\prime}(v)\right| \geq 3$ for all $v \in V\left(G^{\prime}\right)$. Let C_{1}^{\prime} be the boundary walk of the outer face of G^{\prime} and C_{2}^{\prime} be the face of G^{\prime} containing the disk bounded by C_{2}. Now add edges to the outer face so that vertices with lists L^{\prime} of size less than five in C_{1}^{\prime} form a cycle $C_{1}^{\prime \prime}$. Similarly add edges inside the disk bounded by C_{2}^{\prime} so that vertices with lists L^{\prime} of size less than five in C_{2}^{\prime} form a cycle $C_{2}^{\prime \prime}$. Now $\Gamma^{\prime}=\left(G^{\prime}, C_{1}^{\prime \prime} \cup C_{2}^{\prime \prime}, L^{\prime}\right)$ is a cylinder-canvas. Furthermore, $d\left(C_{1}^{\prime \prime}, C_{2}^{\prime \prime}\right) \geq f\left(k_{1}, k_{2}\right)-2 \geq D$, a contradiction as then ϕ extends to an L-coloring of G by Theorem 5.2.1.

Corollary 5.2.7 (Cylinder Theorem: Linear-Log Bound). If $\Gamma=\left(G, C \cup C^{\prime}, L\right)$ is a connected critical cylinder-canvas, then $|V(G)| \leq O\left(|C| \log |C|+\left|C^{\prime}\right| \log \left|C^{\prime}\right|\right)$.

Proof. Let f_{1} be the face of G whose boundary is C and f_{2} be the face of G whose boundary is C^{\prime}. Let P be a shortest path from C to C^{\prime}. Let f be the face of
$G\left[C \cup C^{\prime} \cup P\right]$ such that $f \neq f_{1}, f_{2}$. Let $C^{\prime \prime}$ be the boundary walk of f. But then G is $C^{\prime \prime}$-critical. As $d\left(C, C^{\prime}\right) \leq O\left(|C| \log |C|+\left|C^{\prime}\right| \log \left|C^{\prime}\right|\right)$ by Lemma 5.2.4, $C^{\prime \prime} \leq$ $O\left(|C| \log |C|+\left|C^{\prime}\right| \log \left|C^{\prime}\right|\right)$. By Corollary 3.4.26, $\left|V\left(G^{\prime}\right)\right| \leq O\left(\left|C^{\prime \prime}\right|\right) \leq O(|C| \log |C|+$ $\left.\left|C^{\prime}\right| \log \left|C^{\prime}\right|\right)$. As $|V(G)| \leq\left|V\left(G^{\prime}\right)\right|$, the corollary follows.

Lemma 5.2.8 (Cylinder Theorem: Linear Distance). If $\Gamma=\left(G, C \cup C^{\prime}, L\right)$ is a connected critical cylinder-canvas, then $d\left(C, C^{\prime}\right) \leq O\left(|C|+\left|C^{\prime}\right|\right)$.

Proof. There must exist a distance $i, 1 \leq i \leq 2 c \log |C|$ where c is the constant in Corollary 5.2.7, such that either there are at most $|C| / 2$ vertices at distance i from C or there must exist a distance $j, 1 \leq j \leq 2 c \log \left|C^{\prime}\right|$ such that there are at most $\left|C^{\prime}\right| / 2$ vertices at distance i from C^{\prime}. The corollary then follows by induction (actually shows $\left.d\left(C, C^{\prime}\right) \leq O\left(\log ^{2}|C|+\log ^{2}\left|C^{\prime}\right|\right)\right)$.

Theorem 5.2.9 (Cylinder Theorem: Linear Bound). If $\Gamma=\left(G, C \cup C^{\prime}, L\right)$ is a connected critical cylinder-canvas, then $|V(G)| \leq O\left(|C|+\left|C^{\prime}\right|\right)$.

Proof. Let f_{1} be the face of G whose boundary is C and f_{2} be the face of G whose boundary is C^{\prime}. Let P be a shortest path from C to C^{\prime}. Let f be the face of $G\left[C \cup C^{\prime} \cup P\right]$ such that $f \neq f_{1}, f_{2}$. Let $C^{\prime \prime}$ be the boundary walk of f. But then G is $C^{\prime \prime}$-critical. As $d\left(C, C^{\prime}\right) \leq O\left(|C|+\left|C^{\prime}\right|\right)$ by Lemma 5.2.8, $C^{\prime \prime} \leq O\left(|C|+\left|C^{\prime}\right|\right)$. By Corollary 3.4.26, $\left|V\left(G^{\prime}\right)\right| \leq O\left(\left|C^{\prime \prime}\right|\right) \leq O\left(|C|+\left|C^{\prime}\right|\right)$. As $|V(G)| \leq\left|V\left(G^{\prime}\right)\right|$, the theorem follows.

Theorem 5.2.10. [Cylinder Theorem: Logarithmic Distance] If $\Gamma=\left(G, C \cup C^{\prime}, L\right)$ is a connected critical cylinder-canvas, then $d\left(v, C \cup C^{\prime}\right) \leq O\left(\log \left(|C|+\left|C^{\prime}\right|\right)\right)$ for all $v \in V(G)$. In particular, $d\left(C, C^{\prime}\right) \leq O\left(\log \left(|C|+\left|C^{\prime}\right|\right)\right)$.

Proof. There must exist a distance $i, 1 \leq i \leq 2 c$ where c is the constant in Theorem 5.2.9, such that either there are at most $|C| / 2$ vertices at distance i from C or there are at most $\left|C^{\prime}\right| / 2$ vertices at distance i from C^{\prime}. The corollary then follows by induction.

5.3 Easels for Cylinder-Canvases

Definition. Let $T=\left(G, C_{1} \cup C_{2}, L\right)$ be a cylinder-canvas. Let f_{1} be the face of G bounded by C_{1} and f_{2} be the face of G bounded by C_{2}. Let $G^{\prime} \subseteq G$ such that for every face f of G such that $f \neq f_{1}, f_{2}$, every L-coloring of the boundary of f extends to an L-coloring of the interior of f. We say the cylinder-canvas $T^{\prime}=\left(G^{\prime}, C_{1} \cup C_{2}, L\right)$ is an easel for T.

Let $T=\left(G, C_{1} \cup C_{2}, L\right)$ be a cylinder-canvas and $T^{\prime}=\left(G^{\prime}, C_{1} \cup C_{2}, L\right)$ an easel for T. We say that T^{\prime} is a critical easel for T if there does not exist $T^{\prime \prime}=\left(G^{\prime \prime}, C_{1} \cup C_{2}, L\right)$ such that $G^{\prime \prime} \subsetneq G^{\prime}$ such that $T^{\prime \prime}$ is an easel for T^{\prime}, and hence also an easel for T as noted above.

We may now derive a linear bound on the size of an easel for a cylinder-canvas.

Theorem 5.3.1. If $T=\left(G, C_{1} \cup C_{2}, L\right)$ is a cylinder-canvas, then there exists an easel $T^{\prime}=\left(G^{\prime}, C_{1} \cup C_{2}, L\right)$ for T such that $\left|V\left(G^{\prime}\right)\right|=O\left(|C|+\left|C^{\prime}\right|\right)$.

Proof. Let f_{1} be the face of G whose boundary is C_{1} and f_{2} be the face of G whose boundary is C_{2}. Let P be a shortest path from C_{1} to C_{2}. Let f be the face of $G\left[C \cup C^{\prime} \cup P\right]$ such that $f \neq f_{1}, f_{2}$. Let C_{0} be the boundary walk of f.

Suppose $d\left(C_{1}, C_{2}\right) \leq O\left(\log \left(\left|C_{1}\right|+\left|C_{2}\right|\right)\right)$. Consider the canvas $T_{0}=\left(G_{0}, C_{0}, L\right)$. By Theorem 3.4.27, there exists an easel $T_{0}^{\prime}=\left(G_{0}^{\prime}, C_{0}, L\right)$ for T_{0} such that $\left|V\left(G_{0}^{\prime}\right)\right| \leq$ $29\left|V\left(C_{0}\right)\right|$. But T_{0}^{\prime} corresponds to an easel $T^{\prime}=\left(G^{\prime}, C_{1} \cup C_{2}, L\right)$ for T such that $\left|V\left(G^{\prime}\right)\right| \leq 29\left(\left|C_{1}\right|+\left|C_{2}\right|+|P|\right)+|P|=O\left(\left|C_{1}\right|+\left|C_{2}\right|\right)$.

So we may suppose that $d\left(C_{1}, C_{2}\right) \geq \Omega\left(\log \left(\left|C_{1}\right|+\mid C_{2}\right)\right)$. By Theorem 3.4.27, there exists a critical easel $T_{1}=\left(G_{1}, C_{1}, L\right)$ for the cycle-canvas $\left(G \backslash C_{2}, C_{1}, L\right)$ and a critical easel $T_{2}=\left(G_{2}, C_{2}, L\right)$ for the cycle-canvas $\left(G \backslash C_{1}, C_{2}, L\right)$. By Theorem 3.6.8, for all $i \in\{1,2\}, d\left(v, C_{i}\right) \leq 58 \log \left|C_{i}\right|$ for all $v \in V\left(G_{i}\right)$.

As $d\left(C_{1}, C_{2}\right) \geq \Omega\left(\log \left(\left|C_{1}\right|+\left|C_{2}\right|\right), G_{1} \cap G_{2}=\emptyset\right.$. Let C_{1}^{\prime} be the facial cycle of G_{1} separating C_{1} from C_{2} and similarly let C_{2}^{\prime} be the facial cycle of G_{2} separating
C_{1} from C_{2}. It follows that $d\left(C_{1}^{\prime}, C_{2}^{\prime}\right) \geq \Omega\left(\log \left(\left|C_{1}\right|+\left|C_{2}\right|\right)\right.$. By Theorem 5.2.10 applied to $T\left[C_{1}^{\prime}, C_{2}^{\prime}\right]$, we may assume that every L-coloring of $C_{1}^{\prime} \cup C_{2}^{\prime}$ which extends to an L-coloring of the vertices at distance $\log \left(\left|C_{1}^{\prime}\right|+\left|C_{2}^{\prime}\right|\right)$ extends to an L-coloring of $T\left[C_{1}^{\prime}, C_{2}^{\prime}\right]$. Yet as T_{1} is an easel for $\left(G \backslash C_{2}, C_{1}, L\right)$ and T_{2}, it follows that every L-coloring of $C_{1}^{\prime} \cup C_{2}^{\prime}$ extends to an L-coloring of $T\left[C_{1}^{\prime}, C_{2}^{\prime}\right]$. Thus $T^{\prime}=\left(G_{1} \cup G_{2}, C_{1} \cup\right.$ $\left.C_{2}, L\right)$ is an easel for T and $\left|V\left(G_{1} \cup G_{2}\right)\right| \leq 58\left(\left|C_{1}\right|+\left|C_{2}\right|\right)$ as desired.

5.4 Exponentially Many Extensions of Two Precolored Cycles

Lemma 5.4.1. Let $\epsilon \leq 1 / 18$ such that $\epsilon=1 /(1144 \alpha)$ and there exists $\alpha>\beta$ such that $\Omega(\log \beta) \leq \alpha<2^{\beta / 290} / 492$ with the property that if two cycles have size at most β and are at least α distance apart, then any coloring of those cycles which extends to distance $O(\log \beta)$ extends to the graph in between.

If $\left(G, C, C^{\prime}, L\right)$ is a cylinder cycle-canvas and ϕ is an L-coloring of $C \cup C^{\prime}$ that extends to an L-coloring of G, then $\log E(\phi) \geq \epsilon\left(\left|V\left(G \backslash\left(C \cup C^{\prime}\right)\right)\right|-50(|V(C)|+\right.$ $\left.\left|V\left(C^{\prime}\right)\right|\right)$), where $E(\phi)$ is the number of extensions of ϕ to G.

Proof. Suppose not. Let $\left(G, C, C^{\prime}, L\right)$ be a counterexample with a minimumber of vertices. Let $d=d\left(C, C^{\prime}\right)$ and $P=p_{0} p_{1} \ldots p_{d}$ be a shortest path from C to C^{\prime}. Let f_{1} be the face of G whose boundary is C and f_{2} be the face of G whose boundary is C^{\prime}. Let P be a shortest path from C to C^{\prime}. Let f be the face of $G\left[C \cup C^{\prime} \cup P\right]$ such that $f \neq f_{1}, f_{2}$. Let $C^{\prime \prime}$ be the boundary walk of f.

Note that $\left|V\left(G \backslash\left(C \cup C^{\prime}\right)\right)\right| \geq 50|V(C)|+\left|V\left(C^{\prime}\right)\right|$, as otherwise the formula holds, a contradiction.

Claim 5.4.2. $d \geq\left(|C|+|C|^{\prime}\right) / 3$

Proof. Suppose not. Extend ϕ to an L-coloring ϕ^{\prime} of $G\left[V(C) \cup V\left(C^{\prime}\right) \cup P^{\prime}\right]$ such that ϕ extends to an L-coloring of G. By Theorem 3.5.3, $\log E\left(\phi^{\prime}\right) \geq\left(\mid V\left(G \backslash\left(C \cup C^{\prime} \cup\right.\right.\right.$
$\left.P) \mid-29\left(\left|C^{\prime \prime}\right|\right)\right) / 9=\left(\left|V\left(G \backslash\left(C \cup C^{\prime}\right)\right)\right|-50\left(|C|+\mid C^{\prime}\right)\right) / 9$ as $d \leq\left(|C|+\left|C^{\prime}\right|\right) / 3$ and $\left|C^{\prime \prime}\right|=|C|+\left|C^{\prime}\right|+2 d$, a contradiction.

Claim 5.4.3. $|V(G)| \leq 143 d$.

Proof. Suppose not. Extend ϕ to an L-coloring ϕ^{\prime} of $G\left[V(C) \cup V\left(C^{\prime}\right) \cup P^{\prime}\right]$ such that ϕ extends to an L-coloring of G. By Theorem 3.5.3, $\log E\left(\phi^{\prime}\right) \geq\left(\left|V\left(G \backslash\left(C \cup C^{\prime} \cup P\right)\right)\right|-\right.$ $\left.29\left(\left|C^{\prime \prime}\right|\right)\right) / 9=\left(|V(G)|-58 d-30\left(|C|+|C|^{\prime}\right) / 9\right.$ as $\left|C^{\prime \prime}\right|=|C|+\left|C^{\prime}\right|+2 d$. As the formula does not hold for T, we find that $\log E(\phi) \leq\left(|V(G)|-51\left(|C|+\mid C^{\prime}\right)\right) / 18$ as $\epsilon \leq 18$. Yet $E\left(\phi^{\prime}\right) \leq E(\phi)$. So we find that $2|V(G)|-116 d-60\left(|C|+\left|C^{\prime}\right|\right) \leq|V(G)|-51\left(|C|+\left|C^{\prime}\right|\right)$. Hence $|V(G)| \leq 116 d+9\left(|C|+|C|^{\prime}\right) \leq 143 d$ as $|C|+\left|C^{\prime}\right| \leq 3 d$ by Claim 5.4.2, a contradiction.

Let A be the set of all i such that $p_{i \alpha}$ is in a cycle C_{i} of size at most β separating C from C^{\prime}. Let B be the set of all i such that $B_{\beta}\left(p_{i \alpha}\right)$ is contained in a slice H where $G \backslash H$ attaches to at most one face of H and the boundary of H is contained in $N_{\beta}\left(p_{i \alpha}\right)$.

For all $p_{i \alpha}, 1 \leq i \leq d / \alpha$, is either in a cycle C_{i} of size at most β separating C from C^{\prime} or $B_{\beta}\left(p_{i \alpha}\right)$ is contained in a slice H where $G \backslash H$ attaches to at most one face of H and the boundary of H is contained in $N_{\beta}\left(p_{i \alpha}\right)$. Hence $|A|+|B| \geq d / \alpha$. We will consider two cases, first when $|B| \geq d / 2 \alpha$ and second when $|A| \geq d / 2 \alpha$.

Suppose that $|B| \geq d / 2 \alpha$. Let $B^{\prime} \subseteq B$ such that for all $i, j \in B,|j-i| \geq 2$ and $\left|B^{\prime}\right|=|B| / 2 \geq d / 4$. Now for all $i, j \in B, B_{\beta}\left(p_{i \alpha}\right) \cap B_{\beta}\left(p_{j \alpha}\right)=\emptyset$ as $\beta<\alpha$. We need the following claim.

Claim 5.4.4. For all $i \in B$ and $0 \leq j \leq \beta,\left|B_{j}\left(p_{i \alpha}\right)\right| \leq 145\left|N_{j}\left(p_{i \alpha}\right)\right|$.

Proof. Suppose the claim does not hold for i and j. Let $p=p_{i \alpha}$. Thus $\left|B_{j}(p)\right|>$ ${ }_{145}\left|N_{j}(p)\right|$. Let C_{j} be a minimal subset of $N_{j}(p)$ separating $B_{j}(p)$ from $C \cup C^{\prime}$. Hence there exists a closed curve γ such that $V(G) \cap \gamma=V\left(C_{j}\right)$ and γ does not intersect
itself. For every two vertices u, v of C_{j} consecutive along γ, add a vertex w on γ and edges $u w$ and $v w$ to obtain a cycle C_{j}^{\prime} where $\left|C_{j}^{\prime}\right| \leq 2\left|C_{j}\right|$.

Let $G^{\prime}=\operatorname{Int}(\gamma)$ and consider the cycle-canvas $T^{\prime}=\left(G^{\prime}, C_{j}^{\prime}, L\right)$. Let $T^{\prime \prime}=$ $\left(G^{\prime \prime}, C_{j}^{\prime}, L\right)$ be a critical easel for T^{\prime}. It follows from Theorem 3.5.3, that if ϕ^{\prime} is an L-coloring of $G \backslash\left(G^{\prime \prime} \backslash C_{j}^{\prime}\right)$, then $\log E\left(\phi^{\prime}\right) \geq\left(\left|V\left(G^{\prime} \backslash G^{\prime \prime}\right)\right|-29\left(\left|C_{j}^{\prime}\right|-3\right)\right) / 9$, where $E\left(\phi^{\prime}\right)$ is the number of extensions of ϕ to G. As $\left|C_{j}^{\prime}\right| \leq 2\left|C_{j}\right|, \log E\left(\phi^{\prime}\right) \geq$ $\left(\left|V\left(G^{\prime} \backslash G^{\prime \prime}\right)\right|-58\left|C_{j}\right|\right) / 9$.

Meanwhile, consider the cylinder cycle-canvas $\left(G_{0}, C, C^{\prime}, L\right)$ where $G_{0}=G \backslash\left(G^{\prime} \backslash\right.$ $\left.G^{\prime \prime}\right)$. As G is a minimum counterexample, $\log E_{G_{0}}(\phi) \geq 2^{\epsilon\left(\left|V\left(G_{0} \backslash\left(C \cup C^{\prime}\right)\right)\right|-50\left(|V(C)|+\left|V\left(C^{\prime}\right)\right|\right)\right)}$. Hence, $\log E(\phi) \geq 2^{\epsilon\left(\left|V\left(G \backslash\left(C \cup C^{\prime}\right)\right)\right|-50\left(|V(C)|+\left|V\left(C^{\prime}\right)\right|\right)\right)} 2^{(1 / 9-\epsilon)\left|V\left(G^{\prime} \backslash G^{\prime \prime}\right)\right|-58\left|C_{j}\right| / 9}$. As G is a counterexample, we find that $\left|V\left(G^{\prime} \backslash G^{\prime \prime}\right)\right| \leq 58\left|C_{j}\right| /(1-9 \epsilon) \leq 116\left|C_{j}\right|$. As $\left|V\left(G^{\prime \prime}\right)\right| \leq 29\left|C_{j}\right|$, we find that $\left|B_{j}(p)\right| \leq 145\left|N_{j}(p)\right|$, a contradiction.

Claim 5.4.5. For all $i \in B$ and $0 \leq j \leq \beta,\left|B_{j}\left(p_{i \alpha}\right)\right| \geq 2^{j / 290}$.
Proof. Let $p=p_{i \alpha}$. Proceed by induction on j. If $j \leq 290$, the claim holds as $\left|B_{j}(p)\right| \geq 2$ if $j \geq 1$ and is at least one if $j=0$. So suppose $j>290$. By induction $\left|B_{j-290}(p)\right| \geq 2^{j / 290} / 2$. Yet by Claim 5.4.4, $\left|N_{k}(p)\right| \geq\left|B_{j-290}(p)\right| / 145$ for all k where $j-290<k \leq j$. Hence $\left|B_{j}(p)\right| \geq 2\left|B_{j-290}(p)\right|$ and the claim follows.

Thus $|V(G)| \geq \sum_{i \in B} 2^{\beta / 290} \geq 2^{\beta / 290}|B| / 2$ by Claim 5.4.5. Yet $|V(G)| \leq 143 d$ by Claim 5.4.3. Thus $|B| \leq 246 d / 2^{\beta / 290}$. Yet $|B| \geq d / 2 \alpha$ and hence $\alpha \geq 2^{\beta / 290} / 492$, a contradiction.

So we may suppose that $|A| \geq d / 2 \alpha$. Let $A^{\prime} \subseteq A$ such that for all $i, j \in A$, $|j-i| \geq 4$ and $\left|A^{\prime}\right| \geq|A| / 4 \geq d / 8 \alpha$. Now for all $i, j \in A^{\prime}, C_{i} \cap C_{j}=\emptyset$ and $d\left(C_{i}, C_{j}\right) \geq \alpha$ as $\beta<\alpha$. Thus any choice of L-colorings for the set of cycles $\bigcup_{i \in A^{\prime}} C_{i}$ will extend to an L-coloring as long for each cycle the L-coloring extends to distance $O(\log \beta)$. However, by Theorem 1.4.2, there are least two L-colorings for any C_{i} that
extend to distance $O(\log \beta)$. Hence there are at least $2^{\left|A^{\prime}\right|} \geq 2^{d / 8 \alpha} L$-colorings of G, which is at least $2^{|V(G)| / 1144 \alpha}=2^{\epsilon|V(G)|}$ as $|V(G)| \leq 143 d$ by Claim 5.4.3.

5.5 Steiner Frames

Definition. Let G be a graph and $S \subset V(G)$. We say $T \subseteq G$ is a Steiner tree for S if T is a tree with a minimum number of edges such that $S \subset V(T)$. We let T^{*} denote the tree formed from T by supressing degree two vertices not in S.

We will need a generalization of this for graphs embedded on a surface.

Definition. Let G be a graph 2-cell embedded on a surface Σ and $S \subset V(G)$. We say $H \subseteq G$ is a frame of G for S if H is a connected subgraph such that $S \subset V(H)$ and cutting Σ along H leaves a simply connected region. We let H^{*} denote the graph formed from H by supressing degree two vertices not in S (unless $S=\emptyset$ and H is a cycle in which case we let H^{*} denote the graph formed by suppressing all but three vertices of $H)$. If $e \in E\left(H^{*}\right)$, we let $\psi(e)$ denote the path in H between the endpoints of e and we let $\operatorname{mid}(e)$ denote a mid-point of that path. We say that the path $\psi(e)$ is a seam of the frame H.

We say a frame H is a Steiner frame of G for S if it has the minimum number of edges among all frames of G for S.

Note that a Steiner frame, and hence a frame, always exists as it is also the subgraph with the minimum number of edges such that $S \subset V(H)$ and every region formed by cutting Σ open along H is simply connected. This follows because if there existed at least two regions, then there would exist an edge of H adjacent to two distint regions. But then deleting such an edge would join the two simply connected region into one simply connected region, contradicting a minimum number of edges.

Definition. Let G be a graph embedded on a surface Σ. We say that a subgraph H of G is a slice if the embedding of H inherited from the embedding of G is plane and
there exist a set of at most two faces of the embedding such that all vertices of H adjacent to a vertex not in H are incident with one of the faces in that set. We say that H is a disc slice if there exists such a set with at most one face and a cylinder slice otherwise. If H is a slice, then the boundary of H is the set of vertices of H adjacent to vertices not in H.

Lemma 5.5.1. Let G be a graph 2 -cell embedded on a surface Σ and $S \subset V(G)$. If H is a Steiner frame of G for S and we let $B(e)$ denote $N_{|e| / 4-1}(\operatorname{mid}(e))$ for every seam e of H, then
(1) for all seams e of $H, B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$, and
(2) for all distinct seams e, f of $H, B(e) \cap B(f)=\emptyset$.

Proof.

Claim 5.5.2. There cannot exist a path from an internal vertex v in a seam e of H to a vertex in $H \backslash e$ that is shorter than mimimum of the length of the paths from v to the endpoints of e.

Proof. Otherwise, we could add such a path and delete whichever path from v to an endpoint of e that leaves the cut-open simply connected.

We now prove (1). Let e be a seam of H. It follows from the claim above that $N_{|e| / 2-1}(\operatorname{mid}(e)) \cap(H \backslash \psi(e))=\emptyset$. Hence, the inherited embedding of $B(e)$ from G is plane if the two appearances of e in the boundary walk of the simply connected region have opposite orientations and in the projective plane if they have the same. Yet if they have the same orientation and cannot be embedded in the plane, then there is a path P, with length $|e| / 2-1$ from the midpoint to itself passing through the simply connected region. We may then add the path P to H and delete the path from the midpoint to the endpoint of e which is longest. The resulting graph still
cuts open Σ to a simply connected region as the two appearances of e had the same orientation, as well as spanning the vertices of S. But this contradicts that H had a minimum number of edges.

Thus the inherited embedding of $B(e)$ is plane. It follows that even more is true. The neighborhood $B(e)$ embeds in the plane and this embedding can be extended to an embedding of a plane graph H^{\prime} such that $(H \backslash B(e)) \cap H^{\prime}=\emptyset$ and there are is a set of at most two faces of H^{\prime} such that every neighbor of $G \backslash H^{\prime}$ in H^{\prime} is in one of those faces. That is, $B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$.

We now prove (2). Let e and f be distinct seams of H. Suppose $B(e) \cap B(f) \neq \emptyset$. Suppose without loss of generality that $|e| \geq|f|$. But now there exists a path of length at most $|e| / 4+|f| / 4-2 \leq|e| / 2-2$ between $\operatorname{mid}(e)$ and $\operatorname{mid}(f)$ which is a vertex of $H \backslash e$, contradicting the claim above.

5.6 Hyperbolic Families of Graphs

Definition. We say a pair (G, H) is a graph with boundary if G is a graph and H is a subgraph of G. We say two graphs with boundary $\left(G_{1}, H_{1}\right)$ and $\left(G_{2}, H_{2}\right)$ are isomorphic if there exists an isomorphism from G_{1} to G_{2} which is also an isomorphism from H_{1} to H_{2}.

Let (G, H) be a graph with boundary 2 -cell embedded in a surface. Let $\left(G_{1}, G_{2}\right)$ be a separation of G such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=X$ and $V(H) \subseteq G_{2}$. Now let G_{1}^{\prime} be a graph obtained from G_{1} by splitting vertices of X. If the resulting graph with boundary $\left(G_{1}^{\prime}, X^{\prime}\right)$ can be embedded in the plane so that all the vertices of X^{\prime} lie in a common face, then we say that $\left(G_{1}^{\prime}, X^{\prime}\right)$ is a disc-excision of (G, H).

Let (G, H) be a graph with boundary 2-cell embedded in a surface. Let G_{1} be a slice of G and X its boundary. If $V(H) \subseteq X \cup\left(G \backslash G_{1}\right)$, then we say that $\left(G_{1}, X\right)$ is a cylinder-excision of (G, H).

Let \mathcal{F} be a family of graphs with boundary 2-cell embedded on surfaces. We say that \mathcal{F} is hyperbolic if
(1) there exists $c_{\mathcal{F}}>0$ such that for all disc-excisions (G, H) of a member of \mathcal{F}, $|V(G)| \leq c_{\mathcal{F}}|V(H)|$, and
(2) there exists $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that for all cylinder-excisions (G, H) of a member of $\mathcal{F},|V(G)| \leq f(|V(H)|)$.

We say that $c_{\mathcal{F}}$ is the disc Cheeger constant for \mathcal{F}.

5.6.1 Logarithmic Distance, Exponential Growth for Disc-Excisions

Lemma 5.6.1 (Logarithmic Distance). Let \mathcal{F} a hyperbolic family of graphs with boundary. If (G, H) is a disc-excision of a member of \mathcal{F}, then $d(v, H) \leq 2 c_{\mathcal{F}} \log |V(H)|$ for all $v \in V(G)$.

Proof. We proceed by induction on $|V(G)|$. There must exist a distance $i, 1 \leq i \leq$ $2 c_{\mathcal{F}}$, such that either there are at most $|H| / 2$ vertices at distance i from H. The corollary then follows by induction on $(G \backslash\{v \mid d(v, H)<i\},\{v \mid d(v, H)=i\}$.

Corollary 5.6.2. Let \mathcal{F} a hyperbolic family of graphs with boundary. If (G, H) is a disc-excision of a member of \mathcal{F}, then $\left|B_{k}(v)\right| \geq 2^{\Omega(k)}$ for all $v \in V(G)$ and $k>0$ such that $B_{k-1}(v) \cap H=\emptyset$.

Proof. Let $k \leq d(v, H)$. Now $N_{k}(v)$ separates v from C. By Theorem 3.9.4, $k=$ $d\left(v, N_{k}(v)\right) \leq 2 c_{\mathcal{F}} \log \left|N_{k}(v)\right|$. Hence $\left|N_{k}(v)\right| \geq 2^{k /\left(2 c_{\mathcal{F}}\right)}$ as desired.

5.6.2 Linear Bound, Logarithmic Distance and Exponential Growth for Cylinder-Excisions

Lemma 5.6.3 (Linear Cylinder Bound). Let \mathcal{F} a hyperbolic family of graphs with boundary. Then there exists $c_{\mathcal{F}, 1}$ such the following holds: If (G, H) is a cylinderexcision of a member of \mathcal{F}, then $|V(G)| \leq c_{\mathcal{F}, 1}|V(H)|$.

Proof. Thus $H=C \cup C^{\prime}$ where C, C^{\prime} are facial cycles. Let f_{1} be the face of G whose boundary is C and f_{2} be the face of G whose boundary is C^{\prime}. Take a shortest path P from C to C^{\prime}. Let f be the face of $G\left[C \cup C^{\prime} \cup P\right]$ such that $f \neq f_{1}, f_{2}$. Let $C^{\prime \prime}$ be the boundary walk of f. But then $\left(G^{\prime}, C^{\prime \prime}\right)$ is a disc-excision. Let $d\left(C, C^{\prime}\right)=d$. If $d \leq O\left(|C|+\left|C^{\prime}\right|\right)$, then by $C^{\prime \prime} \leq|C|+\left|C^{\prime}\right|+2 d$. By property (i) of hyperbolic families, $\left|V\left(G^{\prime}\right)\right| \leq O\left(\left|C^{\prime \prime}\right|\right) \leq O\left(|C|+\left|C^{\prime}\right|\right)$. As $|V(G)| \leq\left|V\left(G^{\prime}\right)\right|$, the lemma follows.

So we may assume that $d \geq \Omega\left(|C|+\left|C^{\prime}\right|\right)$. Yet by property (i) of a hyperbolic family, $|V(G)| \leq O(d)$. Thus there exists $k, 1 \leq k \leq d / 4$ such that $\left|N_{k}(C)\right| \leq$ $8 c_{\mathcal{F}}$ and similarly there exists $k^{\prime}, 3 d / 4 \leq k^{\prime} \leq d$ such that $\left|N_{k^{\prime}}\left(C^{\prime}\right)\right| \leq 8 c_{\mathcal{F}}$. Yet $d\left(N_{k}(C), N_{k^{\prime}}\left(C^{\prime}\right)\right) \geq d / 2$. Consider the cylinder excision, $\left(G^{\prime \prime}, N_{k}(C) \cup N_{k^{\prime}}\left(C^{\prime}\right)\right)$. By property (ii), it follows that $d / 2 \leq\left|V\left(G^{\prime \prime}\right)\right| \leq f\left(N_{k}(C), N_{k^{\prime}}\left(C^{\prime}\right)\right)$. Hence $|V(G)| \leq$ $O(d)$ and yet $d \leq 2 \max _{1 \leq m, n \leq 8 c_{\mathcal{F}}} f(m, n)$.

We say that $c_{\mathcal{F}, 1}$ is the cylinder Cheeger constant of \mathcal{F}.

Corollary 5.6.4. Let \mathcal{F} a hyperbolic family of graphs with boundary. If (G, H) is a cylinder-excision of a member of \mathcal{F}, then $d(v, H) \leq O(\log |V(H)|)$ for all $v \in V(G)$.

Proof. We proceed by induction on $|V(G)|$. There must exist a distance $i, 1 \leq i \leq$ $2 c_{\mathcal{F}, 1}$, such that either there are at most $|H| / 2$ vertices at distance i from H. The corollary then follows by induction on $(G \backslash\{v \mid d(v, H)<i\},\{v \mid d(v, H)=i\})$.

Corollary 5.6.5. Let \mathcal{F} a hyperbolic family of graphs with boundary. If (G, H) is a cylinder-excision of a member of \mathcal{F}, then $\left|B_{k}(v)\right| \geq 2^{\Omega(k)}$ for all $v \in V(G)$ and $k>0$ such that $B_{k-1}(v) \cap H=\emptyset$.

Proof. Let $k \leq d(v, H)$. Now $N_{k}(v)$ separates v from C. By Theorem 3.9.4, $k=$ $d\left(v, N_{k}(v)\right) \leq 2 c_{\mathcal{F}, 1} \log \left|N_{k}(v)\right|$. Hence $\left|N_{k}(v)\right| \geq 2^{k /\left(2 c_{\mathcal{F}, 1}\right)}$ as desired.

5.7 General Linear Bound for Hyperbolic Families

Theorem 5.7.1. Let \mathcal{F} a hyperbolic family of graphs with boundary. If $(G, H) \in \mathcal{F}$ such that G is 2 -cell embedded on a surface Σ, then $|V(G)|=O(|V(H)|+g(\Sigma))$.

Proof. Let $(G, H) \in \mathcal{F}$. Let T be a Steiner frame of G for H. By cutting open along T, we obtain a graph G^{\prime} embedded in the disk with boundary C, where $|C|$ has size at most $2|E(T)|$. As $\left(G^{\prime}, C\right)$ is a disc-excision of (G, H), by Property (1) of hyperbolic families,

$$
|V(G)| \leq c_{\mathcal{F}}|C|=2 c_{\mathcal{F}}|E(H)|
$$

. Yet, the number of seams of H is at most $2(g(\Sigma)+|H|)$, as branch points are only necessary to cut open the surface or to span vertices in H.

As T^{*} was formed by supressing vertices of degree two in $T,\left|V(T) \backslash V\left(T^{*}\right)\right|=$ $\left|E(T) \backslash E\left(T^{*}\right)\right|$. Thus,

$$
|V(G)| \leq c_{\mathcal{F}}\left(4 g(\Sigma)+4|H|+2\left|V(T) \backslash V\left(T^{*}\right)\right|\right)
$$

Let \mathcal{E} be the set of all seams e of T such that $e \backslash V\left(T^{*}\right) \neq \emptyset$. Hence, for all $e \in \mathcal{E}$, $\operatorname{mid}(e)$ exists. For all $e \in \mathcal{E}$, let $B(e)=N_{|e| / 4-1}(\operatorname{mid}(e))$. By Lemma 5.5.1 (i), $B(e)$ is contained in a slice whose boundary is contained in $N_{|e| / 4-1}(e)$. $\operatorname{As}\left(B(e), N_{|e| / 4-1}\right)$ is a cylinder-excision of (G, H), it follows from Lemma 5.6.5 that $|B(e)| \geq 2^{c_{\mathcal{F}, 1}(|e| / 4-1)}$. Hence,

$$
|V(G)| \geq \sum_{e \in \mathcal{E}} 2^{c_{\mathcal{F}, 1}(|e| / 4-1)} \geq|\mathcal{E}| 2^{c_{\mathcal{F}, 1}\left(\sum_{e \in \mathcal{E}}|e| / 4|\mathcal{E}|-1\right)}
$$

where the last inequality follows from the concavity of the exponential function. Yet $\left|V(H) \backslash V\left(H^{*}\right)\right| \leq \sum_{e \in \mathcal{E}}|e|$. Combining, we find that

$$
|\mathcal{E}| 2^{\left(c_{\mathcal{F}, 1} / 4\right)\left(\sum_{e \in \mathcal{E}}|e|\right) /|\mathcal{E}|} / 2^{c_{\mathcal{F}, 1}} \leq|V(G)| \leq|V(G)| \leq 2 c_{\mathcal{F}}\left(2 g(\Sigma)+2|H|+\sum_{e \in \mathcal{E}}|e|\right)
$$

We may suppose that $\sum_{e \in \mathcal{E}}|e| \geq 2(g(\Sigma)+|S|)$ as otherwise $|V(G)| \leq 8 c_{\mathcal{F}}(g(\Sigma)+$ $|H|)$ as desired. Hence, $|V(G)| \leq 4 c_{\mathcal{F}} \sum_{e \in \mathcal{E}}|e|$. Letting $x=\sum_{e \in \mathcal{E}} /|\mathcal{E}|$, the average size of a seam in $|\mathcal{E}|$, we find that

$$
2^{\left(c_{\mathcal{F}, 1 / 4}\right) x} \leq 4 c_{\mathcal{F}} 2^{c_{\mathcal{F}, 1}} x
$$

Let $c^{\prime}=4 c_{\mathcal{F}} 2^{c_{\mathcal{F}, 1}}$. Thus $x \leq \max \left\{4 \log \left(4 c^{\prime} / c_{\mathcal{F}}\right) / c, 4 / c_{\mathcal{F}}\right\}=\max \left\{4\left(c_{\mathcal{F}, 1}+4\right) / c_{\mathcal{F}}, 4 / c_{\mathcal{F}}\right\}$, call this constant c_{0}. Hence,

$$
|V(G)| \leq 4 c_{\mathcal{F}} c_{0}|\mathcal{E}| \leq 8 c_{\mathcal{F}} c_{0}(g(\Sigma)+|H|)
$$

as $|\mathcal{E}| \leq\left|E\left(H^{*}\right)\right|$. The theorem now follows with constant $\max \left\{8 c_{\mathcal{F}} c_{0}, 8 c_{\mathcal{F}}\right\}$.

Corollary 5.7.2. Let \mathcal{F} a hyperbolic family of graphs with boundary. If $(G, H) \in \mathcal{F}$ such that G is 2-cell embedded on a surface Σ and T is a Steiner frame of G for H, then $|V(T)|=O(g(\Sigma)+|V(H)|)$.

Proof. See proof of Theorem 5.7.1.

5.7.1 Finitely Many Members of a Hyperbolic Family on a Fixed Surface

Corollary 5.7.3. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let G be a graph embedded on a surface Σ such that $(G, \emptyset) \in \mathcal{F}$, then $|V(G)| \leq O(g(\Sigma))$.

Proof. Now G has 2-cell embedding on a surface Σ^{\prime} whose genus is at most the genus of Σ. But then the corollary follows from Theorem 5.7.1 with $H=\emptyset$.

Corollary 5.7.4. Let \mathcal{F} be a hyperbolic family of graphs with boundary. Let Σ be a surface. There exist only finitely many graphs G embeddable in Σ such that $(G, \emptyset) \in$ \mathcal{F}.

Let \mathcal{F} be a family of graph with boundary. We say that a graph G is \mathcal{F}-free if there does not exist $G^{\prime} \subseteq G$ such that $\left(G^{\prime}, \emptyset\right) \in \mathcal{F}$. We say that a graph with boundary (G, H) is \mathcal{F}-free if there does not exist a graph with boundary $\left(G^{\prime}, H^{\prime}\right) \in \mathcal{F}$ such that G^{\prime} is isomorphic to a subgraph of G and under the same isomorphism $G^{\prime} \cap H$ is isomorphic to H^{\prime}.

Corollary 5.7.5. Let \mathcal{F} be a hyperbolic family of graphs with boundary. Let Σ be a surface. There exists a linear-time algorithm to decide if a graph embeddable in Σ is \mathcal{F}-free.

Proof. Follows from the linear time algorithm of Eppstein for testing subgraph isomorpism on a fixed surface.

5.7.2 Logarithmic Distance and Edge-Width

Corollary 5.7.6. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let $(G, H) \in \mathcal{F}$ such that G is a connected graph 2 -cell embedded on a surface Σ. If T is a Steiner frame of G for $V(H)$, then $d(v, T) \leq O(\log (g(\Sigma)+|V(H)|))$ for all $v \in V(G)$.

Proof. It follows from Theorem 5.6.1 that $d(v, V(T)) \leq O(\log |T|)$ for all $v \in v(G)$. By Corollary 5.7.2, $|T|=O(g(\Sigma)+|H|)$. Yet $d\left(v, V\left(T^{*}\right) \leq O(\log (g(\Sigma)+|H|)\right.$ for all $v \in V(T)$ as otherwise there would exist $e \in \mathcal{E}$ such that $|e| \geq \Omega(g(\Sigma)+|H|)$ and hence $|V(G)| \geq 2^{c_{\mathcal{F}}^{\prime}(|e| / 4-1)} \geq \Omega(g(\Sigma)+|H|)$, contradicting Theorem 5.7.1.

Lemma 5.7.7. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let $(G, H) \in \mathcal{F}$ such that G is a connected graph 2 -cell embedded on a surface Σ. There do not exist s_{1}, \ldots, s_{k}, where $\sum_{i=1}^{k} s_{i} \geq \Omega(|V(H)|+g(\Sigma))$, and vertices v_{1}, \ldots, v_{k} such that $B_{\leq \log s_{i}}\left(v_{i}\right)$ are disjoint from each other and from S, and are contained in slices.

Proof. As $B_{\log s_{i}}\left(v_{i}\right)$ are contained in slices disjoint from $S,\left(B_{\log s_{i}}\left(v_{i}\right), N_{\log s_{i}}\left(v_{i}\right)\right)$ is a cylinder-excision of (G, H) for all i. By Lemma 5.6.2, $\left|B_{\log s_{i}}\left(v_{i}\right)\right| \geq 2^{\Omega\left(\log s_{i}\right)} \geq \Omega\left(s_{i}\right)$. Hence, $|V(G)| \geq \sum_{i} \Omega\left(s_{i}\right) \geq \Omega(|H|+g(\Sigma))$, as the neighborhoods are disjoint. But this contradicts Theorem 5.7.1.

Corollary 5.7.8. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let G be a connected graph 2-cell embedded on a surface Σ and ew $(G) \geq \Omega(\log g(\Sigma))$, then G is \mathcal{F}-free.

Proof. Suppose not. Then G has a subgraph G^{\prime} such that $\left(G^{\prime}, \emptyset\right) \in \mathcal{F}$. Yet ew $\left(G^{\prime}\right) \geq$ $e w(G) \geq \Omega(\log g)$. Let $v_{1} \in V(G)$ and $s_{1}=\Omega(\log g(\Sigma))$. As $B_{\Omega(\log g(\Sigma))}(v)$ is locally planar this contradicts Lemma 5.7.7.

Corollary 5.7.9. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let (G, H) be a graph with boundary such that G is 2 -cell embedded in a surface Σ, ew $(G) \geq \Omega(\log g)$ and $d(u, v) \geq \Omega(\log g(\Sigma))$ for all $u \neq v \in V(H)$, then (G, H) is \mathcal{F}-free.

Proof. Suppose not. Then there exists $H^{\prime} \subseteq H$ and $G^{\prime} \subseteq G$ such that $\left(G^{\prime}, H^{\prime}\right) \in \mathcal{F}$. As G^{\prime} is connected?, it follows that $\left|G^{\prime}\right| \geq \Omega\left(\log g(\Sigma)+\left|H^{\prime}\right|\right)$ if G^{\prime} is non-plane and $\left|G^{\prime}\right| \geq \Omega\left(\left|H^{\prime}\right|\right)$ if G is plane. In either case, this contradicts Theorem 5.7.1.

Corollary 5.7.10. Let \mathcal{F} a hyperbolic family of graphs with boundary. Let (G, H) be a graph with boundary such that G is 2-cell embedded in a surface Σ, ew $(G) \geq$ $\Omega(\log g)$. Further suppose that H is a collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\}$ of disjoint cycles of G such that $d\left(C_{i}, C_{j}\right) \geq \Omega\left(\log \left(\left|C_{i}\right|+\left|C_{j}\right|+g(\Sigma)\right)\right)$ for all $C_{i} \neq C_{j} \in \mathcal{C}$ and $G_{i}=B_{\Omega\left(\log \left(\left|C_{i}\right|+g(\Sigma)\right)\right)}\left(C_{i}\right)$ is plane for all $C_{i} \in \mathcal{C}$. If (G, H) is not \mathcal{F}-free, then there exists i such that $\left(G_{i}, C_{i}\right)$ is not \mathcal{F}-free.

5.8 Applications to 5-List-Coloring

Theorem 5.8.1. The family of all 6-list-critical graphs is hyperbolic.

Proof. By Theorem 3.4.26, property (i) holds. By Theorem 5.2.9, property (ii) holds.

Hence we may apply the theorems of the previous section when \mathcal{F} is the family of all 6 -list-critical graphs. Note that by Theorem 1.4.4, the family of all k-list-critical graphs is hyperbolic for $k \geq 7$ and hence the theory may also be applied to those families as well.

Here is Theorem 5.7.1 restated for 5 -list-coloring.

Theorem 5.8.2. Let G be a connected graph 2 -cell embedded on a surface Σ and $S \subseteq V(G)$. If G is H-critical where H is the disjoint union of the vertices in S, then $|V(G)|=O(|S|+g(\Sigma))$.

Here is Theorem 5.7.2 restated.

Theorem 5.8.3. Let G be a connected graph 2 -cell embedded on a surface Σ and $S \subseteq V(G)$. If G is H-critical where H is the disjoint union of the vertices in S and T is a Steiner frame of G for S, then $|V(T)|=O(g(\Sigma)+|S|)$.

5.8.1 Finitely Many 6-List-Critical Graphs on a Fixed Surface

Here is Corollary 5.7.3 restated.

Theorem 5.8.4. Let G be a 6 -list-critical graph embedded on a surface Σ, then $|V(G)| \leq O(g(\Sigma))$.

Moreover, Corollary 5.7.3 is best possible up to the multiplicative constant. To see this apply Hajos' construction (for reference, see pp. 117-118 in [16]) to $g(\Sigma)$ copies of K_{6}. By genus additivity (see [11]), the resulting graph G has genus $g(\Sigma)$ and yet $|V(G)| \geq 5 g(\Sigma)$. Next we restate Corollary 5.7.4, though we also note that this is best possible.

Theorem 5.8.5. Let Σ be a surface. There exist only finitely many 6-list-critical graphs embeddable in Σ.

Note that this implies an algorithm as in Corollary 5.7.5.

Theorem 5.8.6. There exists a linear-time algorithm to decide 5 -list-colorability on a fixed surface.

5.8.2 Extending Precolorings: Albertson's Conjecture on Surfaces

Here is Corollary 5.7.6 restated.

Theorem 5.8.7. Let G be a connected graph 2 -cell embedded on a surface Σ and $S \subseteq V(G)$. If G is H-critical where H is the disjoint union of the vertices in S and T is a Steiner frame of G for S, then $d\left(v, V\left(T^{*}\right)\right) \leq O(\log (g(\Sigma)+|S|))$ for all $v \in V(G)$.

Next we restate Corollary 5.7 .9 when $\Sigma=S_{0}$, which is just Conjecture 1.5.4.

Theorem 5.8.8. There exists D such that the following holds: If G is a plane graph, $X \subset V(G)$ such that $d(u, v)>D$ for all $u \neq v \in X$ and L is a 5 -list assignment for the vertices of G, then any L-coloring of X extends to an L-coloring of G.

Proof. Suppose not. Then there exists $X^{\prime} \subset X$ such that G has an a connected X^{\prime} critical subgraph G^{\prime}. Now G^{\prime} is a connected plane graph and yet $|V(G)| \geq\left|X^{\prime}\right|(D / 2)$ as the vertices in X are pariwise distance D apart. Yet by Theorem 5.7.1, $|V(G)| \leq$ $O\left(\left|X^{\prime}\right|\right)$, a contradiction if D is large enough.

Next we restate Corollary 5.7.8 which improves the bound in Theorem 1.4.6 from $2^{\Omega(g(\Sigma))}$ to $\Omega(\log g(\Sigma))$.

Theorem 5.8.9. If G is 2-cell embedded in a surface Σ and ew $(G) \geq \Omega(\log g(\Sigma))$, then G is 5-list-colorable.

This is best possible given the existence of Ramunjan graphs (see [40]), which have girth $k, 2^{\Theta(k)}$ vertices and large fixed chromatic number and hence chromatic number at least six. But the genus of any graph is at most $|V(G)|^{2}$. Hence for every g, there exist graphs with girth $\Theta(\log g)$ which embed on a surface of genus g and have chromatic number - and hence list-chromatic number - at least six.

Here is Corollary 5.7.9 restated.

Theorem 5.8.10. Let G be 2-cell embedded in a surface Σ, ew $(G) \geq \Omega(\log g)$ and L be a 5-list-assignment for G. If $X \subset V(G)$ such that $d(u, v) \geq \Omega(\log g(\Sigma))$ for all $u \neq v \in X$, then any L-coloring of X extends to an L-coloring of G.

Now we restate Corollary 5.7.10 restated. However we strengthen to the case not only when every coloring of one of the cycles extends locally, but to when a particular coloring of the cycles extends locally.

Theorem 5.8.11. Let G be 2-cell embedded in a surface Σ, ew $(G) \geq \Omega(\log g)$ and L be a 5-list-assignment for G. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\}$ be a collection of disjoint cycles of G such that $d\left(C_{i}, C_{j}\right) \geq \Omega\left(\log \left(\left|C_{i}\right|+\left|C_{j}\right|+g(\Sigma)\right)\right)$ for all $C_{i} \neq C_{j} \in \mathcal{C}$. Let $d_{i}=B_{\Omega\left(\log \left(\left|C_{i}\right|+g(\Sigma)\right)\right)}\left(C_{i}\right)$ and suppose further $G_{i}=B_{d_{i}}\left(C_{i}\right)$ is contained in a slice whose boundary is contained in $N_{d_{i}}$ for all $C_{i} \in \mathcal{C}$. If ϕ is an L-coloring of the cycles in \mathcal{C} such that $\phi \upharpoonright C_{i}$ can be extended to an L-coloring of $B_{d_{i}}\left(C_{i}\right)$ for all $C_{i} \in \mathcal{C}$, then ϕ extends to an L-coloring of G.

Proof. Suppose not. By Lemma 3.4.27, there exists $G_{i}^{\prime} \subseteq G_{i}$ such that $\left(G_{i}^{\prime}, C_{i}, L\right)$ is a critical easel for $\left(G_{i}, C_{i}, L\right)$, that is, for every face $f \in \mathcal{F}\left(G_{i}^{\prime}\right)$, every L-coloring of the boundary walk of f extends to an L-coloring of the interior of f. By Theorem 3.6.8, $d\left(v, C_{i}\right) \leq 58 \log \left|V\left(C_{i}\right)\right|$. Now extend ϕ to a coloring of $\bigcup_{i} G_{i}$. Let C_{i}^{\prime} be the boundary of the slice containing G_{i}. By Corollary 5.7.10 applied to $G^{\prime}=G \backslash\left(\bigcup_{i} G_{i} \backslash C_{i}^{\prime}\right)$ with $\mathcal{C}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots\right\}$ we find that ϕ can be extended to an L-coloring of G.

As a corollary, we can derive a generalization of Theorem 1.6.1 to other surfaces while also providing an independent proof of said theorem.

Theorem 5.8.12. Let G be drawn in a surface Σ with a set of crossings X and L be a 5-list-assignment for G. Let G_{X} be the graph obtained by adding a vertex v_{x} at every crossing $x \in X$. If ew $\left(G_{X}\right) \geq \Omega(\log g(\Sigma))$ and $d\left(v_{x}, v_{x^{\prime}}\right) \geq \Omega(\log g(\Sigma))$ for all $v_{x} \neq v_{x^{\prime}} \operatorname{in} V\left(G_{X}\right) \backslash V(G)$, then G is L-colorable.

Proof. Let G^{\prime} be obtained from G_{X} by deleting the vertices at the crossings and adding edges if necessary such that the neighbors of v_{x} form a 4 -cycle C_{x} for every $x \in X$. Now $\operatorname{ew}\left(G^{\prime}\right) \geq \Omega(\log g(\Sigma))$. Note that $N_{\Omega(\log g(\Sigma)}\left(C_{x}\right)$ is plane and that
$d\left(C_{x}, C_{x^{\prime}}\right) \geq \Omega(\log g(\Sigma))$ by assumption. Let $\mathcal{C}=\bigcup x \in X C_{x}$ and ϕ be an L-coloring of the cycles in \mathcal{C} such that $\phi \upharpoonright C_{x}$ is an L-coloring of $G\left[C_{x}\right]$ for every $x \in X$. By Theorem 1.5.2, $\phi \upharpoonright C_{x}$ extends to an L-coloring of $N_{\Omega(\log g(\Sigma))}\left(C_{x}\right)$ for all $x \in X$. By Corollary 5.8.11, ϕ extends to an L-coloring of G. Thus G is L-colorable as desired.

5.9 Applications to Exponentially Many 5-List-Colorings

Definition. Let $\epsilon, \alpha>0$. Let (G, H) be a graph with boundary embedded in a surface Σ. Suppose there exists a 5 -list-assignment L of G and an L-coloring ϕ of H such that there does not exist $2^{\epsilon(|V(G) \backslash V(H)|-\alpha(g(\Sigma)+|H|))}$ distinct L-colorings of G extending ϕ but for every proper subgraph $G^{\prime} \subseteq G$ such that $H \subseteq G^{\prime}$ there do exist $2^{\epsilon\left(\left|V\left(G^{\prime}\right) \backslash V(H)\right|-\alpha(g(\Sigma)+|H|)\right)}$ distinct L-colorings of G^{\prime} extending ϕ. Then we say that G is (ϵ, α)-exponentially-critical.

Let $F_{\epsilon, \alpha}$ be the family of all (ϵ, α)-exponentially-critical graphs with boundary.

Theorem 5.9.1. Suppose $0<\epsilon<1 / 18, \alpha \geq 0$. If $\left(G^{\prime}, C\right)$ is a disc-excision of a graph with boundary $(G, H) \in \mathcal{F}_{\epsilon}$, then $\left|V\left(G^{\prime}\right)\right| \leq 87|V(C)|$.

Proof. Suppose to a contradiction that $\left|V\left(G^{\prime}\right)\right|>59\left|V\left(C^{\prime}\right)\right|$. Let L be a 5 -listassignment for G and ϕ an L-coloring of H as in the definition of (ϵ, α)-exponentiallycritical. Let $T=\left(G^{\prime}, C, L\right)$. By Theorem 3.4.27, there exists a critical easel $T^{\prime}=$ $\left(G_{0}, C, L\right)$ for T such that $\left|V\left(G_{0}\right)\right| \leq 29|V(C)|$. Thus G_{0} is a proper subgraph of G^{\prime}.

Let $G_{0}^{\prime}=G \backslash\left(G^{\prime} \backslash G_{0}\right)$. Thus G_{0}^{\prime} is a proper subgraph of G. As G is (ϵ, α) -exponentially-critical, there exist a set \mathcal{C} of distinct L-colorings of G_{0}^{\prime} extending ϕ such that $|\mathcal{C}|=2^{\epsilon\left(\left|V\left(G_{0}^{\prime} \backslash H\right)\right|-\alpha(g(\Sigma)+|H|)\right)}$. Let $\phi^{\prime} \in \mathcal{C}$. Let $f \in \mathcal{F}\left(G_{0}\right)$. Let $T_{f}=\left(G_{f}, C_{f}, L\right)$ be the canvas in the closed disk bounded by f. As T^{\prime} is an easel, ϕ extends to $2^{\left(\left(\left|V\left(G_{f} \backslash C_{f}\right)\right|\right)-29\left(\left|C_{f}\right|-3\right)\right) / 9}$ distinct L-colorings of G_{f} by Theorem 3.5.3.

Let $E\left(\phi^{\prime}\right)$ be the number of extensions of ϕ^{\prime} to G. Thus $\log E(\phi) \geq \sum_{f \in \mathcal{F}\left(G_{0}\right)}\left(\mid V\left(G_{f} \backslash\right.\right.$ $\left.\left.C_{f}\right) \mid-29\left(\left|C_{f}\right|-3\right)\right) / 9$. As $\sum_{f \in \mathcal{F}\left(G_{0}\right)}\left|V\left(G_{f} \backslash C_{f}\right)\right|=\left|V\left(G \backslash G_{0}^{\prime}\right)\right|$ and $\sum_{f \in \mathcal{F}\left(G_{0}\right)}\left(\left|C_{f}\right|-\right.$
$3)=|C|-3$, we find that $\log E(\phi) \geq\left(\left|V\left(G \backslash G_{0}^{\prime}\right)\right|-29(|C|-3)\right) / 9$. As $\left|V\left(G \backslash G_{0}^{\prime}\right)\right| / 2 \geq$ $29|V(C)|$, we find that $\log E(\phi) \geq\left|V\left(G \backslash G_{0}^{\prime}\right)\right| / 18$. But then as $\epsilon \leq 1 / 18$, there exist at least $2^{\epsilon(|V(G \backslash H)|-\alpha(g(\Sigma)+|H|)}$ distinct L-colorings of G extending ϕ, a contradiction as (G, H) is (ϵ, α)-exponentially-critical for L and ϕ.

Theorem 5.9.2. Let $\epsilon \leq \epsilon^{\prime} / 2$ where ϵ^{\prime} as in Theorem 5.4.1 and $\alpha \geq 0$. If $\left(G^{\prime}, C_{1} \cup\right.$ C_{2}) is a cylinder-excision of a graph with boundary $(G, H) \in \mathcal{F}_{\epsilon, \alpha}$, then $\left|V\left(G^{\prime}\right)\right|=$ $c\left(\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|\right)$ for some constant $c>0$ not depending on α or ϵ.

Proof. Suppose to a contradiction that $\left|V\left(G^{\prime}\right)\right| \geq \Omega\left(\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|\right)$. Let L be a 5 -list-assignment for G and ϕ an L-coloring of H as in the definition of (ϵ, α) -exponentially-critical. Consider the cylinder-canvas $T=\left(G^{\prime}, C_{1} \cup C_{2}, L\right)$. By Theorem 5.3.1, there exists a critical easel $T^{\prime}=\left(G_{0}, C_{1} \cup C_{2}, L\right)$ for T such that $\left|V\left(G_{0}\right)\right| \leq$ $O\left(\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|\right)$. Hence we may assume that G_{0} is a proper subgraph of G^{\prime} and $\left|V\left(G^{\prime} \backslash G_{0}\right)\right| \geq\left|V\left(G^{\prime}\right)\right| / 2$.

Let $G_{0}^{\prime}=G \backslash\left(G^{\prime} \backslash G_{0}\right)$. Thus G_{0}^{\prime} is a proper subgraph of G. As G is (ϵ, α) -exponentially-critical, there exist a set \mathcal{C} of distinct L-colorings of G_{0}^{\prime} extending ϕ such that $|\mathcal{C}|=2^{\epsilon\left(\left|V\left(G_{0}^{\prime}\right)\right|-\alpha(g(\Sigma)+|H|)\right.}$. Let $\phi^{\prime} \in \mathcal{C}$. Let $f \in \mathcal{F}\left(G_{0}\right)$. Let $T_{f}=\left(G_{f}, C_{f}, L\right)$ be the canvas in the closed disk or cylinder bounded by f. As T^{\prime} is an easel, ϕ extends to $2^{\epsilon^{\prime}\left(\left(\left|V\left(G_{f} \backslash C_{f}\right)\right|\right)-50\left|C_{f}\right|\right)}$ distinct L-colorings of G_{f} by Theorem 3.5.3 if C_{f} is a disc and by Theorem 5.4.1 where ϵ^{\prime} is as in Theorem 5.4.1.

Let $E\left(\phi^{\prime}\right)$ be the number of extensions of ϕ^{\prime} to G. Thus $\log E(\phi) \geq \sum_{f \in \mathcal{F}\left(G_{0}\right)} \epsilon^{\prime}\left(\mid V\left(G_{f} \backslash\right.\right.$ $\left.\left.C_{f}\right)|-50| C_{f} \mid\right)$. Note that $\sum_{f \in \mathcal{F}\left(G_{0}\right)}\left|V\left(G_{f} \backslash C_{f}\right)\right|=\left|V\left(G \backslash G_{0}^{\prime}\right)\right|$. Further note that as G_{0} is planar and $\left|V\left(G_{0}\right)\right|=O\left(\left|C_{1}\right|+\left|C_{2}\right|\right)$ that $\left.\sum_{f \in \mathcal{F}\left(G_{0}\right)}\left|C_{f}\right|=O\left(\mid C_{1}\right)+\left|C_{2}\right|\right)$.

Hence we find that $\left.\log E(\phi) \geq \epsilon^{\prime}\left(\left|V\left(G \backslash G_{0}^{\prime}\right)\right|-\alpha^{\prime}\left(\left|C_{1}\right|+\mid C_{2}\right)\right)\right)$ for some constant α^{\prime}. As $\left|V\left(G \backslash G_{0}^{\prime}\right)\right| \geq\left|V\left(G^{\prime}\right)\right| / 2 \geq \Omega\left(\left|C_{1}\right|+\left|C_{2}\right|\right)$, we find that $\alpha^{\prime}\left(\left|C_{1}\right|+\left|C_{2}\right|\right) \leq$ $\left|V\left(G \backslash G_{0}^{\prime}\right)\right| / 2$. Hence $\log E(\phi) \geq \epsilon^{\prime}\left|V\left(G \backslash G_{0}^{\prime}\right)\right| / 2$. But then as $\epsilon \leq \epsilon^{\prime} / 2$, there exist at least $2^{\epsilon(|V(G \backslash H)|-\alpha(g(\Sigma)+|H|)}$ distinct L-colorings of G extending ϕ, a contradiction as (G, H) is (ϵ, α)-exponentially-critical for L and ϕ.

Theorem 5.9.3. There exists $\delta>0$ such that following holds: For all $\epsilon>0$ with $\epsilon \leq \delta$ and $\alpha \geq 0, F_{\epsilon, \alpha}$ is a hyperbolic family. Moreover, the disc Cheeger constant and cylinder Cheeger constants for $\mathcal{F}_{\alpha, \epsilon}$ do not depend on α or ϵ.

Proof. Follows from Theorems 5.9.1 and 5.9.2.
Corollary 5.9.4. Let $\epsilon \leq \delta$ where δ as in Theorem 5.9.3 and $\alpha \geq 0$. If $(G, H) \in \mathcal{F}_{\epsilon, \alpha}$ is a graph embedded on a surface Σ, then $|V(G)| \leq c(g(\Sigma)+|V(H)|)$ for some constant $c>0$ not depending on α or ϵ.

Proof. Follows from Theorem 5.7.1 with $\mathcal{F}=\mathcal{F}_{\epsilon, \alpha}$. Moreover as c only depends on the disc and cylinder Cheegers constants for $\mathcal{F}_{\epsilon, \alpha}$ and these do not depend on α or ϵ, it follows that c does not depend on α or ϵ.

Theorem 5.9.5. Let δ, c be as in Corollary 5.9.4. Let G be a graph embedded in a surface $\Sigma, X \subseteq V(G)$ and L a 5 -list-assignment for G. If ϕ is an L-coloring of $G[X]$ such that ϕ extends to an L-coloring of G, then ϕ extends to at least $2^{\delta(|V(G)|-c(g(\Sigma)+|X|))}$ distinct L-colorings of G.

Proof. Suppose not. Thus there do not exist $2^{\delta(|V(G)|-c(g(\Sigma)+|X|)}$ distinct L-colorings of G extending ϕ. So there exists a subgraph G^{\prime} of G with $H \subseteq G^{\prime}$ such that $\left(G^{\prime}, H\right)$ is (δ, c)-exponentially-critical. Hence $\left(G^{\prime}, H\right) \in \mathcal{F}_{\delta, c}$. By Corollary 5.9.4, $\left|V\left(G^{\prime}\right)\right| \leq c(g(\Sigma)+|X|)$. Yet as ϕ extends to an L-coloring of G, ϕ also extends to an L-coloring of G^{\prime}. But then $\delta(|V(G)|-c(g(\Sigma)+|X|)) \leq 0$. So ϕ extends to at least $2^{\delta(|V(G)|-c(g(\Sigma)+|X|))} L$-colorings, a contradiction as G^{\prime} is (δ, c)-exponentially-critical.

Note that δ and c are constants not depending on $g(\Sigma)$ or $|X|$.

5.10 Conclusion

We have developed new techniques for proving 5 -list-coloring results for graphs on surfaces. Let Σ be a surface, g the Euler genus of Σ, G a graph embedded in Σ and L a 5 -list-assignment for G. Our main results are:
(1) There exists only finitely many 6 -list-critical graphs on a surface Σ.
(2) There exists a linear-time algorithm for deciding 5 -list-colorability on Σ.
(3) If $X \subseteq V(G)$, then there exist a subgraph H of G such that $X \subseteq H,|V(H)|=$ $O(|X|+g)$ and for every L-coloring ϕ of X, ϕ either extends to an L-coloring of G or does not extend to an L-coloring of H.
(4) If $e w(G) \geq \Omega(\log g)$, then G is 5 -list-colorable.
(5) If $e w(G) \geq \Omega(\log g)$ and $X \subseteq V(G)$ such that $d(u, v) \geq \Omega(\log g)$ for all $u \neq v \in$ X, then every L-coloring of X extends to an L-coloring of G.
(6) If G^{\prime} is a graph drawn in Σ with crossings $\Omega(\log (g))$ pairwise far apart and $e w(G) \geq \Omega(\log g)$, then G^{\prime} is 5 -list-colorable.
(7) If G is L-colorable, then G has $2^{\Omega(|V(G)|-O(g)}$ distinct L-colorings.
(8) If $X \subseteq V(G)$ and ϕ is an L-coloring of G that extends to an L-coloring of G, then there exist $2^{\Omega(|V(G)|)-O(g+|X|)}$ distinct L-colorings of G that extend ϕ.

Moreover, in Chapter 5 we developed the general theory of hyperbolic families of graphs. That is, families whose associated graphs with boundary in the disc satisfy a linear isoperimetric inequality and whose associated graphs in the cylinder satisfy some isoperimetric inequality. We applied this theory to 5 -list-coloring and for finding exponentially many 5 -list-colorings. This theory however has applications to other problems.

Other examples of hyperbolic families include the family of k-list-critical graphs for $k \geq 7$ and 4 -critical graphs of girth at least 5 . Of special interest is 3 -coloring and 3-list-coloring graphs of girth 5. A linear isoperimetric inequality has been proved for the disc and cylinder for 4-critical graphs of girth 5 by Dvorak, Kral and Thomas [21, $22,23,24,25]$ and hence the general theory applies there as well. Meanwhile, Dvorak
and Kawarabayashi [20] have proved a linear isoperimetric inequality for the disc for 4-list-critical graphs of girth at least 5 .

Consequently, an important open problem is proving whether there exists any isoperimetric inequality for the cylinder for 4 -list-critical graphs of girth 5 . By the general theory, a number of interesting theorems would follow, such as a generalization of Dvorak's result [19] that planar graphs with ≤ 4-cycles pairwise far part are 3choosable.

Notice that all the above proposed applications are examples of list homomorphisms of graphs. It now becomes an interesting research area to decide for which list homomorphism problems, the corresponding critical graphs form a hyperbolic family. Another interesting research area in this regard is the development of algorithms for hyperbolic families. For example, finding an explicit linear-time algorithm whether a graph embedded in a surface is \mathcal{F}-free where \mathcal{F} is a hyperbolic family.

As for 5 -list-coloring, open problems remain. The most interesting seems to be proving that if G is a graph with a collection of facial cycles C_{1}, C_{2}, \ldots pairwise far apart, and L is a list-assignment for $V(G)$ such that $|L(v)| \geq 3$ for all $v \in V(G)$ and $|L(v)| \geq 5$ for all $v \notin \bigcup_{i} V\left(C_{i}\right)$, then G has an L-coloring. More general bottleneck theorems would also be of interest, as well as more explicit descriptions of the structure of critical cycle-canvases and path-canvases. Another open problem that remains is whether the dependence of the distance in (4) on g can be removed.

REFERENCES

[1] M. Albertson, You can't paint yourself into a corner, J. Combin. Theory Ser. B, 73 (1998), pp. 189-194.
[2] M. Albertson and J. Hutchinson, The three excluded cases of Dirac's map-color theorem, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 7-17, Ann. New York Acad. Sci. 319, New York Acad. Sci., New York, 1979.
[3] M. Albertson and J. Hutchinson, Extending colorings of locally planar graphs, J. Graph Theory 36 (2001), no. 2, 105-116.
[4] M. Albertson and J. Hutchinson, Graph color extensions: when Hadwiger's conjecture and embeddings help, Electron. J. Combin. 9 (2002), no. 1, Research Paper 37, 10 pp. (electronic).
[5] M. Albertson and J. Hutchinson, Extending precolorings of subgraphs of locally planar graphs, European J. Combin. 25 (2004), no. 6, 863-871.
[6] M. Albertson and W. Stromquist, Locally planar toroidal graphs are 5-colorable. Proc. Amer. Math. Soc. 84 (1982), no. 3, 449-457.
[7] K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. of Math. 21 (1977), 429-490.
[8] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. of Math. 21 (1977), 491-567.
[9] A. Asadi, Z. Dvorak, L. Postle, R. Thomas, Sub-exponentially many 3-colorings of triangle-free planar graphs, arXiv:1007.1430v2 [math.CO].
[10] M. Axenovich, J. Hutchinson, M. Lastrina, List precoloring extension in planar graphs, arXiv:1006.5596v2. [math.CO]
[11] J. Battle, F. Harary, Y. Kodama and J.W.T. Young, Additivity of the genus of a graph, Bull. Am. Math. Sot. 68 (1962) 565-568.
[12] T. Bohme, B. Mohar and M. Stiebitz, Diracs map-color theorem for choosability, J. Graph Theory 32 (1999), 327-339.
[13] N. Chenette, L. Postle, N. Streib, R. Thomas, C. Yerger, Five-coloring graphs on the Klein bottle, arXiv:1201.5361v1 [math.CO].
[14] A. Dean and J. Hutchinson, List-coloring graph on surfaces with varying list sizes, arXiv:1206.3945v2 [math.CO].
[15] M. DeVos, K. Kawarabayashi, B. Mohar, Locally planar graphs are 5-choosable, J. Combin. Theory Ser. B 98 (2008) 1215-1232.
[16] R. Diestel, Graph theory, vol. 173 of Graduate Texts in Mathematics, Springer, Heidelberg, fourth ed., 2010.
[17] G. A. Dirac, Map color theorems, Canad. J. Math. 4 (1952) 480-490.
[18] G. A. Dirac, The coloring of maps, J. London Math. Soc. 28 (1953) 476-480.
[19] Z. Dvorak, 3-choosability of planar graphs with (≤ 4)-cycles far apart, arXiv:1101.4275v2 [math.CO].
[20] Z. Dvorak, K. Kawarabayashi, Choosability of planar graphs of girth 5, arXiv:1109.2976v1 [math.CO].
[21] Z. Dvorak, D. Kral, R. Thomas, Coloring planar graphs with triangles far apart, arXiv:0911.0885v1 [math.CO].
[22] Z. Dvorak, D. Kral, R. Thomas, Three-coloring triangle-free planar graphs in linear time, in Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA, 2009), SODA '09, Society for Industrial and Applied Mathematics, pp. 120-129, also to appear in ACM Transactions on Algorithms.
[23] Z. Dvorak, D. Kral, R. Thomas, Three-coloring triangle-free graphs on surfaces I. Extending a coloring to a disk with one triangle, arXiv:1010.2472v1 [cs.DM].
[24] Z. Dvorak, D. Kral, R. Thomas, Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk, manuscript.
[25] Z. Dvorak, D. Kral, R. Thomas, Three-coloring triangle-free graphs on surfaces III. Graphs of girth five, manuscript.
[26] Z. Dvorak, B. Lidicky, B. Mohar, 5-choosability of graphs with crossings far apart, arXiv:1201.3014v1 [math.CO].
[27] Z. Dvorak, B. Lidicky, B. Mohar, L. Postle, 5-list-coloring graphs with precolored vertices far apart, manuscript.
[28] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica 27 (2000) 275-291.
[29] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms and Applications 3 (1999) 1-27.
[30] P. Erdos, A. Rubin, H. Taylor, Choosability in graphs, Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, Congressus Numerantium, 26 (1979), 125-157.
[31] P. Franklin, A Six Color Problem, J. Math. Phys. 13 (1934) 363-379.
[32] S. Fisk, The non-existence of colorings, J. Combin. Theory Ser. B. 24 (1978), 247-248.
[33] T. Gallai, Kritische Graphen I, II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 165-192 and 373-395.
[34] J. Gimbel and C. Thomassen, Coloring graphs with fixed genus and girth, Transactions of the AMS 349 (1997) 4555-4564.
[35] H. Grotzsch, Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1959) 109-120.
[36] J. Hutchinson, On list-coloring extendable outerplanar graphs, Ars Mathematica Contemporanea 5 (2012) 171-184.
[37] K. Kawarabayashi, D. Kral, J. Kyncl, B. Lidicky, 6-critical graphs on the Klein bottle, SIAM J. Disc. Math. 23 (2009) 372-383.
[38] K. Kawarabayashi, B. Mohar, List-color-critical graphs on a fixed surface, in Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA, 2009), SODA '09, Society for Industrial and Applied Mathematics, pp. 1156-1165.
[39] D. Kral and R. Skrekovski, The last excluded case of Diracs map-color theorem for choosability. J. Graph Theory, 51 (2006), 319-354.
[40] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs, Combinatorica 8(3) (1988), 261-277.
[41] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
[42] L. Postle and R. Thomas, The number of vertices of 6-critical graph is linear in its genus, in preparation.
[43] G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. USA 60 (1968), 438-445.
[44] N. Robertson, D. P. Sanders, P. D. Seymour, R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.
[45] C. Thomassen, Five-coloring graphs on the torus, J. Combin. Theory Ser. B 62 (1994), 11-33.
[46] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), 180-181.
[47] C. Thomassen, Grotzsch's 3-color theorem and its counterparts for the torus and the projective plane, J. Combin. Theory Ser. B62 (1994), 268-279.
[48] C. Thomassen, Three-list-coloring planar graphs of girth five, J. Combin. Theory Ser. B64 (1995), 101-107.
[49] C. Thomassen, The number of k-colorings of a graph on a fixed surface, Discrete Math. 306 (2006), 3145-3253.
[50] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1997), 67-100.
[51] C. Thomassen, Exponentially many 5-list-colorings of planar graphs, J. Combin. Theory Ser. B 97 (2007), 571-583.
[52] B. Toft, On critical subgraphs of colour-critical graphs, Discrete Mathematics 7 (1974), 377-392.
[53] M. Voigt, List colourings of planar graphs, Discrete Mathematics 120 (1993) 215-219.
[54] C. Yerger, Color-Critical Graphs on Surfaces, Ph.D. Thesis, Georgia Institute of Technology, (2010).

VITA

Luke Jamison Postle was born on July 17, 1987 in Hartford, CT, the youngest of four children. He was valedictorian of the Master's School, a private Christian high school, that he graduated from at the age of 15. He attended Gordon College in Wenham, Massachusetts, where he graduated Summa Cum Laude with a triple major in Mathematics, Physics and History. While pursuing his undergraduate degree, he attended the Budapest Semester in Mathematics and participated in summer Research Experience for Undergraduates at North Carolina State University and Rutgers University.

He began his Ph.D. program at Georgia Tech in May 2007 as a research assistant to Robin Thomas, a position he held until 2009 when he was awarded a three year National Science Foundation Graduate Research Fellowship. He was awarded a Georgia Tech Institute Fellowship from 2007-2011. In 2010 he was recognized by the Georgia Tech Mathematics Department with their Top Graduate Student award. He has presented research papers at numerous conferences in the U.S., Canada and Europe.

From October to December of 2010, he was a visiting researcher at the University of Hamburg in Germany, during which time he collaborated with Reinhard Diestel on expanding the burgeoning field of infinite matroids. From April to June 2011, he was a visiting researcher at Charles University in Prague, Czech Republic, where he conducted research on graph coloring with Zdenek Dvorak.

Luke plans to complete the requirements for his Ph.D. in Algorithms, Combinatorics, and Optimization at the Georgia Institute of Technology in Atlanta, Georgia in the summer of 2012. In the fall of 2012, Luke will begin a post-doctoral position at Emory University in Atlanta, Georgia.

