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SUMMARY

Thomassen proved that there are only finitely many 6-critical graphs embed-

dable on a fixed surface. He also showed that planar graphs are 5-list-colorable. This

thesis develops new techniques to prove general theorems for 5-list-coloring graphs

embedded in a fixed surface. Indeed, a general paradigm is established which improves

a number of previous results while resolving several open conjectures. In addition,

the proofs are almost entirely self-contained.

In what follows, let Σ be a fixed surface, G be a graph embedded in Σ and L a

list assignment such that, for every vertex v of G, L(v) has size at least five. First,

the thesis provides an independent proof while also improving the bound obtained

by DeVos, Kawarabayashi and Mohar that says that if G has large edge-width, then

G is 5-list-colorable. The bound for edge-width is improved from exponential to

logarithmic in Euler genus, which is best possible up to a multiplicative constant.

Second, the thesis proves that there exist only finitely many 6-list-critical graphs

embeddable in Σ, solving a conjecture of Thomassen from 1994. Indeed, it is shown

that the number of vertices in a 6-list-critical graph is at most linear in genus, which is

best possible up to a multiplicative constant. As a corollary, there exists a linear-time

algorithm for deciding 5-list-colorability of graphs embeddable in Σ.

Furthermore, we prove that the number of L-colorings of an L-colorable graph

embedded in Σ is exponential in the number of vertices of G, with a constant de-

pending only on the Euler genus g of Σ. This resolves yet another conjecture of

Thomassen from 2007. The thesis also proves that if X is a subset of the vertices

of G that are pairwise distance Ω(log g) apart and the edge-width of G is Ω(log g),

then any L-coloring of X extends to an L-coloring of G. For planar graphs, this was

x



conjectured by Albertson and recently proved by Dvorak, Lidicky, Mohar, and Postle.

For regular coloring, this was proved by Albertson and Hutchinson. Other related

generalizations are examined.
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CHAPTER I

INTRODUCTION

In this chapter, we will provide the graph theoretic context of the results to follow. In

Section 1.1, we give descriptions of the basic terminology and structures used for our

results. In Section 1.2, we explain how graphs can be embedded on surfaces other than

the plane. In Section 1.3, we present an overview of the history of coloring graphs on

surfaces, especially in regards to 5-coloring. In Section 1.4, we introduce list-coloring

and begin to examine the history of 5-list-coloring graphs on surfaces. In Section

1.5, 1.6 and 1.7 we review results about extending colorings of precolored subgraphs,

5-list-coloring graphs with crossings, and proving the existence of exponentially many

5-list-colorings. In Section 1.8, we state the main results of this thesis. In Section

1.9, we provide an outline of the proof of the main results.

1.1 Graph Theoretic Preliminaries

We follow the exposition of Diestel in [16]. A graph is an ordered pair (V (G), E(G))

consisting of a nonempty set V (G) of vertices and a set E(G) of edges, which are two

elements subsets of V (G). Thus, we do not allow loops or multiple edges; that is, all

graphs in this thesis are assumed to be simple.

If e = {u, v} is an edge where u, v ∈ V (G), then we write e = uv and say that u

and v are the ends of e. If u is an end of e then we say that e is incident with u and

vice versa. If u, v ∈ V (G) such that there exists e ∈ E(G) with e = uv, then we say

that u and v are adjacent and we denote this by writing u ∼ v.

Two graphs G and H are isomorphic if there exists a bijection f between V (G)

and V (H) such that any two vertices u and v in G are adjacent if and only if f(u)

and f(v) are adjacent in H. If v ∈ V (G), the neighborhood of v, denoted by N(v), is
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the set of all vertices in G adjacent to v. The degree of a vertex v, denoted by d(v)

is the size of its neighborhood.

Graphs are usually represented in a pictorial manner with vertices appearing as

points and edges represented by lines connecting the two vertices associated with the

edge. One class of graphs is the class of complete graphs which consist of graphs with

vertex set V and an edge joining every pair of distinct vertices in V .

For a graph G = (V,E), if V ′ ⊆ V , E ′ ⊆ E and for every edge e′ ∈ E ′ both ends

of e′ are in V ′, then G′ = (V ′, E ′) is a subgraph of G. Given a graph G = (V,E),

if X is a subset of vertices, we denote by G[X] the subgraph with vertex set X and

edge set containing every edge of G with both ends contained in X. Then G[X] is

the graph induced by X.

A graph G is connected if there exists a path between any two vertices of G, and

disconnected otherwise. A subgraph H of G is a connected component of G if H is

connected and there does not exist an edge e 6∈ E(H) with an end in V (H). A vertex

v of a connected graph G is a cutvertex if G− v is disconnected.

We say that (G1, G2) is a separation of G if G1, G2 are edge-disjoint subgraphs of

G whose union is G. We say |V (G1) ∩ V (G2)| is the order of a separation (G1, G2)

of G. We say that a cutvertex v of G divides into two graphs G1, G2 if (G1, G2) is a

separation of G such that V (G1) ∩ V (G2) = {v}.

The distance between two vertices u and v of G, denoted by d(u, v), is the the

length of the shortest path between them. We let Nk(v) = {u ∈ V (G)|d(u, v) = k},

that is the vertices at distance k from v. We say that Bk(v) = {u ∈ V (G)|d(u, v) ≤ k},

the set of vertices distance at most k from v, is the ball of radius k centered at v.

1.2 Graphs on Surfaces

A surface is defined to be a connected, compact, 2-dimensional manifold with empty

boundary. We follow the exposition of Mohar and Thomassen [41] to describe how

2



we view graphs on surfaces and ask the reader to refer to this text for further details.

Two surfaces are homeomorphic if there exists a bijective continuous mapping between

them such that the inverse is also continuous. Let X be a topological space. An arc

in X is the image of a continuous one-to-one function f : [0, 1]→ X. We say a graph

G is embedded in a topological space X if the vertices of G are distinct elements of

X and every edge of G is an arc connecting in X the two vertices it joins in G, such

that its interior is disjoint from other edges and vertices. An embedding of a graph G

in topological space X is an isomorphism of G with a graph G′ embedded in X.

A topological space X is arcwise connected if any two elements of X are con-

nected by an arc in X. The existence of an arc between two points of X determines

an equivalence relation whose equivalence classes are called the arcwise connected

components, or the regions of X. A face of C ⊆ Xis an arcwise connected compo-

nent of X \C. A 2-cell embedding is an embedding where every face is homeomorphic

to an open disk.

If G is a graph embedded in the plane, then we say that G is a plane graph. In

that case, there exists an infinite face of G. If G is connected, we say that boundary

walk of the infinite face of G is the outer walk of G. We say an edge e of G is a chord

of the outer walk of G if the edge does not lie on the boundary of the infinite face

but both its ends do.

A curve in X is the image of a continuous one-to-one function f : S1 → X where

S1 is the unit circle. A curve is two-sided if traversing along it preserves orientation

and one-sided otherwise. A surface is nonorientable if there exists a one-sided curve

in the surface. A surface is orientable if all curves are two-sided.

A useful method for constructing a surface is as follows. Let P be a collection

of pairwise disjoint regular polygons in the plane such that the sum of the number

of edges in the collection of polygons is even, every edge has the same length and

is oriented from one of its end, called the tail, to the other, called the head. Now

3



identify pairs of edges so that heads are identified with heads and tails with tails.

Consequently, all points in the union of these polygons have open neighborhoods

homeomorphic to the plane and hence their union is a surface. It can be shown - see

[41] - that every surface is homeomorphic to a surface constructed from such a set P

where all the polygons are triangles.

All surfaces have been characterized by the classification theorem of surfaces. Be-

fore we state the theorem, some more definitions are in order. The most basic surface

that is considered in the classification theorem of surfaces is the sphere, denoted S0.

The sphere can be constructed by letting P be a collection of four equilateral triangles

and identifying them to yield a regular tetrahedron.

Given a surface Σ, there exists a set of operations to yield a different, and in a

sense we will define later, a more complicated surface. In particular, these operations

are adding a handle, adding a twisted handle or adding a crosscap.

First let us define adding a handle. Let T1 and T2 be two disjoint triangles in S

all of whose side lengths are the same. If Σ is orientable, then orient the edges of

T1 and T2 so that the directions of T1’s edges are the opposite of T2’s when each is

viewed in a clockwise direction. Then if we remove the interiors of T1 and T2 and

identify the edges of T1 to the edges of T2, this creates a new surface Σ′. We say that

S ′ is obtained by adding a handle to Σ. Notice that we can only add a handle to an

orientable surface.

Suppose that S is orientable and the clockwise orientations of T1 and T2 are the

same. If we remove the interior of T1 and T2 and we identify the edges of T1 to the

edges of T2 then the resulting surface, call it Σ′′, is the result of adding a twisted

handle to Σ. If S is nonorientable, then any handle added is a twisted handle.

Finally, suppose that we have a simple closed disk, call it T . Suppose that we delete

the interior of T from S and identify diametrically opposite points of T . This adds

a crosscap to Σ. It can also be shown that adding two crosscaps is equivalent to
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adding a twisted handle. We can now state the classification theorem of surfaces. It

states that every surface is homeomorphic to either Sg, the surface obtained from the

sphere by adding g handles, or Nk, the surface obtained from the sphere by adding k

cross-caps.

Using this terminology, S0 = N0 is the sphere, S1 is the torus, N1 is the projective

plane and N2 is the Klein bottle. Define the Euler characteristic of a surface Σ to be

χ(Σ) = 2− 2h if Σ = Sh and χ(Σ) = 2− k if Σ = Nk. Also, define the Euler genus of

surface S, denoted by g(S), to be g(Σ) = 2− χ(Σ). In this whenever we refer to the

genus of a surface, we shall mean the Euler genus. We can now state Euler’s formula

for surfaces.

Theorem 1.2.1 ([41]). Let G be a graph which is 2-cell embedded in a surface S. If

G has n vertices, q edges and f faces in Σ, then

n− q + f = χ(Σ).

Another important property of graphs embedded in surfaces is that curves in the

surface may have different properties. A homotopy between two functions f and g

from a space X to a space Y is a continuous map G from X × [0, 1] → Y such

that G(x, 0) = f(x) and G(x, 1) = g(x). Two functions are homotopic if there is a

homotopy between them. A contractible cycle of a graph embedded in a surface is

a cycle in the graph which is the image of a closed curve homotopic to a a constant

map. We call it contractible because it can be contracted to a point. However, on

some surfaces there also exist cycles which are noncontractible.

One metric useful in the study of embedded graphs is the property of edge-width.

The edge-width of a graph G embedded in a surface S, denoted by ew(G), is the

length of the smallest noncontractible cycle in G.
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1.3 Coloring Graphs on Surfaces

Graph coloring is an area of study in graph theory that has received much attention.

Indeed, mathematicians have long been interested in coloring maps. A natural ques-

tion is to ask what is the fewest number of colors so that the regions or countries

of a map that touch one another have different colors. For planar maps, it was long

conjectured that four colors suffices. The Four-Color Theorem [7, 8, 44], proved in

the 1970s, settled this conjecture in the affirmative.

Definition. Let X be a nonempty set. We say that a function φ : V (G) → X is

a coloring of G if for all e = uv ∈ E(G), φ(u) 6= φ(v). We say that a coloring

φ : V (G) → X is a k-coloring if |X| = k. We say that a graph G is k-colorable if

there exists a k-coloring of G. The chromatic number of G, denoted by χ(G), is the

minimum k such that G is k-colorable.

Mathematicians have wondered what generalizations of the Four-Color Theorem

might be true. A natural class of graphs to determine the coloring properties for is

graphs embedded in a surface. A fundamental question in topological graph theory

is as follows: Given a surface Σ and an integer t > 0, which graphs embedded in Σ

are t-colorable? Heawood proved that if Σ is not the sphere, then every graph in Σ

is t-colorable as long as t ≥ H(Σ) := b(7 +
√

24g + 1)/2c, where g is the Euler genus

of Σ.

Ringel and Youngs [43] proved that the bound is best possible for all surfaces

except the Klein bottle. In 1934, Franklin [31] proved that every graph embeddable

in the Klein bottle requires only six colors, but Heawood’s bound gives only seven.

Dirac [17] and Albertson and Hutchinson [2] improved Heawood’s result by showing

that every graph in Σ is actually (H(Σ) − 1)-colorable, unless it has a subgraph

isomorphic to the complete graph on H(Σ) vertices.

Thus the maximum chromatic number for graphs embeddable in a surface has been
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found for every surface. Yet the modern view argues that most graphs embeddable in a

surface have small chromatic number. To formalize this notion, we need a definition.

We say that a graph G is t-critical if it is not (t − 1)-colorable, but every proper

subgraph of G is (t− 1)-colorable. Using Euler’s formula, Dirac [18] proved that for

every t ≥ 8 and every surface Σ there are only finitely many t-critical graphs that

embed in Σ. By a result of Gallai [33], this can be extended to t = 7. Indeed, we will

see in a moment that this extends to t = 6 by a deep result of Thomassen.

First however, let us mention a different approach used by Thomassen to formalize

the notion that most graphs on a surface are 5-colorable. He was able to show that

graphs with large edge-width, that is graphs in which local neighborhood of every

vertex is planar, are 5-colorable. Thomassen proved the following.

Theorem 1.3.1. If G is a graph embedded in a surface Σ such that ew(G) ≥ 2Ω(g(Σ)),

then G is 5-colorable.

Yet we note that Theorem 1.3.1 is implied by a corresponding bound on the size

of 6-critical graphs embedded in a surface since k-colorability and having large edge-

with are properties preserved by subgraphs. That is, if H ⊆ G, then χ(H) ≤ χ(G)

and ew(H) ≥ ew(G). Nevertheless, we will improve the required lower bound on

edge-width in Theorem 1.3.1 to Ω(log g(Σ)) in Chapter 5. Moreover such a logarith-

mic bound is best possible up to a multiplicative constant as we will demonstrate

in Chapter 5 using Ramanujan graphs. Using deep and powerful new techniques,

Thomassen was able to prove the following.

Theorem 1.3.2. For every surface Σ, there are finitely many 6-critical graphs that

embed in Σ.

Furthermore, Theorem 1.3.2 yields an algorithm for deciding whether a graph on

a fixed surface is 5-colorable.
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Corollary 1.3.3. There exists a linear-time algorithm for deciding 5-colorability of

graphs on a fixed surface.

This follows from a result of Eppstein [28, 29] which gives a linear-time algorithm

for testing subgraph isomorphism on a fixed surface. Hence if the list of 6-critical

graphs embeddable on a surface is known, one need merely test whether a graph

contains one of the graphs on the list. The list is known only for the projective

plane [2], torus [45], and Klein bottle [13, 37].

Theorem 1.3.2 is best possible as it does not extend to t ≤ 5 for surfaces other than

the plane and t ≤ 4 for the plane. Indeed, Thomassen [50], using a construction of

Fisk [32], constructed infinitely many 5-critical graphs that embed in the torus. One

may also ask how large the 6-critical graphs on a fixed surface can be. Theorem 1.3.2

implies an implicit bound on the number of vertices in a 6-critical graph embeddable

in Σ in terms of the genus of Σ. However, Thomassen did not prove an explicit

bound. Postle and Thomas [42] gave a new proof of Theorem 1.3.2 that also provides

an explicit bound. They proved the following.

Theorem 1.3.4. The number of vertices of a 6-critical graph embedded in a surface

Σ is O(g(Σ)).

Their bound is best possible up to a multiplicative constant as demonstrated by

Hajos’ construction on copies of K6.

1.4 List-Coloring Graphs on Surfaces

There exists a generalization of coloring where the vertices do not have to be colored

from the same palette of colors.

Definition. We say that L is a list-assignment for a graph G if L(v) is a set of colors

for every vertex v. We say L is a k-list-assignment if |L(v)| = k for all v ∈ V (G). We

say that a graph G has an L-coloring if there exists a coloring φ such that φ(v) ∈ L(v)
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for all v ∈ V (G). We say that a graph G is k-choosable, also called k-list-colorable, if

for every k-list-assignment L for G, G has an L-coloring. The list chromatic number

of G, denoted by ch(G), is the minimum k such that G is k-list-colorable.

Note that χ(G) ≤ ch(G) as a k-coloring is a k-list-coloring where all the lists

are the same. In fact, Dirac’s Theorem[17] has been generalized to list-coloring by

Bohme, Mohar and Stiebitz [12] for most surfaces; the missing case, g(Σ) = 3, was

completed by Kral and Skrekovski [39].

Nevertheless, list-coloring differs from regular coloring. One notable example of

this is that the Four Color Theorem does not generalize to list-coloring. Indeed

Voigt [53] constructed a planar graph that is not 4-choosable.

Yet the list chromatic number of planar graphs is now well understood, thanks

to Thomassen [46]. He was able to prove the following remarkable theorem with an

outstandingly short proof.

Theorem 1.4.1. Every planar graph is 5-choosable.

Actually, Thomassen [46] proved a stronger theorem.

Theorem 1.4.2 (Thomassen). If G is a plane graph with outer cycle C and P = p1p2

is a path of length one in C and L is a list assignment with |L(v)| ≥ 5 for all

v ∈ V (G) \ V (C), |L(v)| ≥ 3 for all v ∈ V (C) \ V (P ), and |L(p1)| = |L(p2)| = 1 with

L(p1) 6= L(p2), then G is L-colorable.

Indeed, this theorem will be the starting point for this research. In Chapter 2,

we will generalize this result in a number of different ways. To understand questions

about list-coloring, it is helpful to define a similarly useful notion of being list-critical.

Definition. If L is list assignment for a graph G, then we say that G is L-critical if

G does not have an L-coloring but every proper subgraph of G does. Similarly, we

say that G is k-list-critical if G is not (k−1)-list-colorable but every proper subgraph

of G is.
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We should mention the following nice theorem of Gallai [33].

Theorem 1.4.3. Let G be an L-critical graph where L is a list assignment for G.

Let H be the graph induced by the vertices v of G such that d(v) = |L(v)|. Then each

block of H is a complete graph or an odd cycle.

Theorem 1.4.3 is the key trick to proving there are only finitely many 7-critical

graphs embedded in a fixed surface. In fact using Theorem 1.4.3, Thomassen [50]

gave a simple proof that there are only finitely many 7-list-critical graphs on a fixed

surface. Indeed, Thomassen proved the following stronger theorem.

Theorem 1.4.4. Let G be a graph embedded in a surface Σ. Let L be a list assignment

of G and let S be a set of vertices in G such that |L(v)| ≥ 6 for each v ∈ V (G) \ S.

If G is L-critical, then |V (G)| ≤ 150(g(Σ) + |S|).

Naturally then, Thomassen conjectured (see Problem 5 of [50]) that Theorem 1.3.2

generalizes to list-coloring.

Conjecture 1.4.5. For every surface Σ, there are finitely many 6-list-critical graphs

that embed in Σ.

Note that Kawarabayashi and Mohar [38] announced without proof a resolution

of Conjecture 1.4.5. Indeed, they claim a strengthening of Conjecture 1.4.5 when

there are precolored vertices as in Theorem 1.4.4, though not with a linear bound.

We will nevertheless provide an independent proof of Conjecture 1.4.5 in Chapter 5.

Our proof also gives a new proof of Theorem 1.3.2 as his techniques do not apply for

list-coloring. In fact, we will also generalize the linear bound of Postle and Thomas

to list-coloring.

Meanwhile, DeVos, Kawarabayashi, and Mohar [15] generalized Theorem 1.3.1 to

list-coloring.

Theorem 1.4.6. If G is a graph embedded in a surface Σ such that ew(G) ≥ 2Ω(g(Σ)),

then G is 5-list-colorable.
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Indeed in Chapter 5, we give an independent proof of Theorem 1.4.6 and improve

the required lower bound to Ω(log g(Σ)) with a completely different proof. Moreover

it should be noted that while a linear bound is implied by a linear bound for 6-list-

critical graphs, a logarithmic bound requires some additional ideas.

1.5 Extending Precolored Subgraphs

An important technique in Thomassen’s proofs is to ask what colorings of a graph

are possible when a certain subgraph has already been precolored. To that end if H

is a subgraph of G and φ is a coloring of H and φ′ is a coloring of G, we say that φ

extends to φ′ if φ′(v) = φ(v) for all v ∈ V (H). Thomassen proved the following.

Theorem 1.5.1. Let G be a 2-connected plane graph with no separating triangle and

with outer cycle C. Let φ be a 5-coloring of G[V (C)]. Then G contains a connected

subgraph H with at most 5|C|
3

vertices such that either

(i) φ cannot be extended to a 5-coloring of H, or,

(ii) φ can be extended to a 5-coloring of H such that each vertex of G\H which sees

more than two colors of H either has degree at most 4, or, has degree 5 and is

joined to two distinct vertices of H of the same color.

The coloring of H in (ii) can be extended to a 5-coloring of G.

Yerger [54] was able to improve Theorem 1.5.1 by showing that there exists such

an H with |V (H)| ≤ O(|C|3). Postle and Thomas further improved Theorem 1.5.1

by proving that there exists such an H with |V (H)| ≤ O(|C|), which is best possible

up to a multiplicative constant.

As for list-coloring, here is a very useful little theorem of Bohme et al. [12],

originally shown by Thomassen for regular coloring [45], that characterizes when

precolorings of cycles of length at most six do not extend. First let us say that if φ

is a coloring of a subgraph of H of a graph G, then a vertex u ∈ V (G) \ V (H) sees
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a color c if there exists v ∈ V (H) ∩N(u) such that φ(v) = c. With this in mind, we

let S(u) = L(u) \ {φ(v)|v ∈ N(u) ∩ V (H)}, the set of available colors of u.

Theorem 1.5.2. Let G be a plane graph, C = c1c2 . . . ck be a facial cycle of G such

that k ≤ 6, and L be a 5-list-assignment. Then every proper precoloring φ of G[V (C)]

extends to an L-coloring of G unless one of the following conditions holds:

(i) k ≥ 5 and there is a vertex u ∈ V (G) \ V (G) such that v is adjacent to at least

five vertices in C and u has no available colors, or,

(ii) k = 6 and there is an edge u1u2 in E(G \ H) such that u1, u2 each have one

available color and it is the same for both,

(iii) k = 6 and there is a triangle u1u2u3 in G \H such that u1, u2, u3 have the same

set of available colors and that set has size two.

Meanwhile Dvorak, Lidicky, Mohar and Postle [27] generalized Theorem 1.5.1 to

list-coloring with a quadratic bound. They also conjectured the existence of a linear

bound. In Chapter 3, we prove just such a linear bound for list-coloring.

Thomassen then extended Theorem 1.5.1 to the case when the precolored sub-

graph has more than one component. He proved the following stronger version of

Theorem 1.3.2.

Theorem 1.5.3. For all g, q ≥ 0, there exists a function f(g, q) such the following

holds: Let G be a graph embedded in a surface Σ of Euler genus g and let S be a set

of at most q vertices in G. If φ is a 5-coloring of S, then φ extends to a 5-coloring of

G unless there is a graph H with at most f(g, q) vertices such that S ⊆ H ⊆ G and

the 5-coloring of S does not be extend to a 5-coloring of H.

In fact, Postle and Thomas [42] proved that f is linear. In Chapters 4 and 5, we

generalize Theorem 1.5.3 to list-coloring. Indeed, we prove that f is linear, which is

best possible up to a multiplicative constant.
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Furthermore, Thomassen wondered though whether the dependence of f on the

number of components in Theorem 1.5.3 could be dropped if certain conditions were

satisfied. Specifically, Thomassen conjectured [50] that if all the components of S were

just isolated vertices whose pairwise distance in the graph was large, then any pre-

coloring of S always extends. Albertson [1] proved this in 1997. He then conjectured

that this generalizes to list-coloring.

Conjecture 1.5.4. There exists D such that the following holds: If G is a plane graph

with a 5-list assignment L and X ⊂ V (G) such that d(u, v) ≥ D for all u 6= v ∈ X,

then any L-coloring of X extends to an L-coloring of G.

Dvorak, Lidicky, Mohar, and Postle [27] recently announced a proof of Albertson’s

conjecture. In Chapter 5, we will give a different proof of Albertson’s conjecture more

in line with the results of Axenovich, Hutchinson, and Lastrina [10].

Indeed, Thomassen [50] conjectured something more.

Problem 1.5.5. Let G be a planar graph and W ⊂ V (G) such that G[W ] is bipartite

and any two components of G[W ] have distance at least d from each other. Can any

coloring of G[W ] such that each component is 2-colored be extended to a 5-coloring

of G if d is large enough?

Thomassen proved Problem 1.5.5 when W consists of two components (see The-

orem 7.3 of [50]). Albertson and Hutchinson [4] proved Problem 1.5.5. As for list

coloring, Theorem 1.4.2 proves Problem 1.5.5 when W has one component and the

question asks whether the coloring can be extended to an L-coloring of G where L

is a 5-list-assignment. In Chapter 5, we prove the list-coloring version when W has

two components. We believe the results of Chapters 3 and 5 will also yield a proof

when W has any number of components but for now this remains open. Note that a

proof of the list-coloring vertsion of Problem 1.5.5 was announced without proof by
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Kawarabayashi and Mohar in [38], where the distance d grows as a function of the

number of components of W .

In addition, Albertson and Hutchinson [3] have generalized Albertson’s result to

other surfaces. They proved that if the graph is locally planar, then any precoloring

of vertices far apart extends.

Theorem 1.5.6. Let G be a graph embedded in a surface Σ 6= S0 such that ew(G) ≥

208(2g(Σ − 1). If X ⊆ V (G) such that d(u, v) ≥ 18 for all u 6= v ∈ X, then any

5-coloring of X extends to an 5-coloring of G.

In Chapter 5, we prove a similar generalization for list-coloring for surfaces when

ew(G) ≥ Ω(log g) but the distance between vertices in X is also at least Ω(log g).

Note that such a generalization for surfaces when ew(G) ≥ 2Ω(g) and the distance

between vertices in X grows as a function of X was announced by Kawarabayshi and

Mohar in [38].

Meanwhile, Dean and Hutchinson [14] have proven that if G is a graph embedded

in a surface Σ, L is a H(Σ)-list-assignment for V (G) and X ⊂ V (G) such that all

vertices u 6= v ∈ X have pairwise distance at least four, then any L-coloring of X

extends to an L-coloring of G. They also asked the following:

Question 1.5.7. For which k ≥ 5 does there exist dk > 0 such that their result holds

when H(Σ) is replaced by k?

Of course, some additional proviso is necessary in Question 1.5.7 as there exists

graphs that are not k-list-colorable for k ≤ H(Σ). Hence either G being L-colorable

or the stronger assumption of large edge-width seems to be required.

In Chapter 5, we generalize Theorem 1.5.6 to list-coloring. We also improve the

necessary lower bound on the edge-width to be Ω(log g(Σ)), which is best possible up

to a multiplicative constant. This also answers Question 1.5.7 in the affirmative for

all k ≥ 5 with the proviso that G has edge-width Ω(log g(Σ)).
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Albertson and Hutchinson [5] also prove a similar version of Problem 1.5.5 for

surfaces. We believe our techniques can also generalize that result to list-coloring

while improving their bound, but for now this remains open.

1.6 5-List-Coloring with Crossings Far Apart

Definition. We say a graph G is drawn in a surface Σ if G is embedded in Σ except

that there are allowed to exist points in Σ where two — but only two — edges cross.

We call such a point of Σ and the subsequent pair of edges of G, a crossing.

Dvorak, Lidicky and Mohar [26] proved that crossings far apart instead of precol-

ored vertices also leads to 5-list-colorability.

Theorem 1.6.1. If G can be drawn in the plane with crossings pairwise at distance

at least 15, then G is 5-list-colorable.

In Chapter 5, we provide an independent proof of Theorem 1.6.1. Indeed, we gen-

eralize Theorem 1.6.1 to other surfaces. Of course, Theorem 1.6.1 does not generalize

verbatim as some condition is necessary to even guarantee that a graph drawn on a

surface without crossings is 5-list-colorable. A lower bound on the edge-width seems

to be a natural condition that guarantees that a graph is 5-list-colorable. Thus we

will generalize Theorem 1.6.1 to other surfaces with addition requirement of having

large edge-width. Indeed we will prove that edge-width logarithmic in the genus of

the surface suffices, which is best possible.

1.7 Exponentially Many Colorings

Thomassen wondered whether a planar graph has many 5-list-colorings. He [51]

proved the following.

Theorem 1.7.1. If G is a planar graph and L is a 5-list assignment for G, then G

has 2|V (G)|/9 L-colorings.
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Thomassen [49, 51] then conjectured that Theorem 1.7.1 may be generalized to

other surfaces. Of course not every graph on other surfaces is 5-list-colorable. Hence,

Thomassen conjectured the following.

Conjecture 1.7.2. Let G be a graph embedded in a surface Σ and L is a 5-list-

assignment for G. If G is L-colorable, then G has 2c|V (G)| L-colorings where c is a

constant depending only on g, the genus of Σ.

Note that a proof of Conjecture 1.7.2 was announced without proof by Kawarabayashi

and Mohar in [38]. We provide an independent proof of Conjecture 1.7.2 in Chapter

5. Indeed, we will show that precoloring a subset of the vertices still allows exponen-

tially many 5-list-colorings where the constant depends only on the genus and the

number of precolored vertices. In fact, we show that the dependence on genus and

the number of precolored vertices can be removed from the exponent.

1.8 Main Results

Let us now state the main results of this thesis. First let us note the following theorem

about extending the coloring of a precolored cycle to a list coloring of the whole graph.

Theorem 1.8.1. Let G be a 2-connected plane graph with outer cycle C and L a

5-list-assignment for G. Then G contains a connected subgraph H with at most 29|C|

vertices such that for every L-coloring φ of C either

(i) φ cannot be extended to an L-coloring of H, or,

(ii) φ can be extended to an L-coloring of G.

This settles a conjecture of Dvorak et al. [27] in the affirmative. The fact that the

bound is linear is crucial to proving many of the main results. Indeed the main results

of Chapter 5 are first proved in a general setting about families of graphs satisfying

a more abstract version of Theorem 1.8.1.

16



Another key ingredient of the proof is to extend Theorem 1.8.1 to two cycles.

However, before this could be done, we found it necessary to prove a number of

generalizations of Theorem 1.4.2. Here is one of the more elegant generalizations of

Theorem 1.4.2, which we prove in Section 2.5.

Theorem 1.8.2. If G is a plane graph with outer cycle C and p1, p2 ∈ V (G) and

L is a list assignment with |L(v)| ≥ 5 for all v ∈ V (G) \ V (C), |L(v)| ≥ 3 for all

v ∈ V (C) \ {p1, p2}, and |L(p1)| = |L(p2)| = 2, then G is L-colorable.

This settles a conjecture of Hutchinson [36] in the affirmative.

Applying the general theory developed in Chapter 5, we prove a number of new

results. In Section 5.8.1, we settle Conjecture 1.4.5 in the affirmative. Indeed, mir-

roring Theorem 1.3.4, we prove a linear bound in terms of genus of the number of

vertices of a 6-list-critical graph.

Theorem 1.8.3. If G is a 6-list-critical graph embedded in a surface Σ, then |V (G)| =

O(g(Σ)).

Indeed, Theorem 1.8.3 is best possible up to a multiplicative constant. Also it

should be noted that Theorem 1.8.3 provides independent proofs of Theorems 1.3.2

and 1.3.4, though the constant in Theorem 1.3.4 may be better. As a corollary of

Theorem 1.8.3, we can approximately determine the number of 6-list-critical graphs

embeddable in a fixed surface.

Theorem 1.8.4. Let Σ be a surface. There exist only finitely many 6-list-critical

graphs embeddable in Σ.

An immediate corollary of Theorem 1.8.3 is that we are now able to decide 5-list-

colorablity on a fixed surface in linear-time:

Theorem 1.8.5. There exists a linear-time algorithm to decide 5-list-colorability on

a fixed surface.
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In Section 5.8, we actually prove a stronger version of Theorem 1.8.3 that allows

the precoloring of a set of vertices.

Theorem 1.8.6. Let G be a connected graph 2-cell embedded in a surface Σ, S ⊆

V (G) and L a 5-list-assignment of G. Then there exists a subgraph H with |V (H)| =

O(|S|+ g(Σ)) such that for every L-coloring φ of S either

(1) φ does not extend to an L-coloring of H, or

(2) φ extends to an L-coloring of G.

In addition, in Section 5.8.2, we use Theorem 1.8.6 to give an independent proof

of Theorem 1.4.6 while improving the bound on the necessary edge-width from ex-

ponential in genus to logarithmic in genus. This also improves the best known lower

bound for regular coloring which was linear in genus.

Theorem 1.8.7. If G is 2-cell embedded in a surface Σ and ew(G) ≥ Ω(log g(Σ)),

then G is 5-list-colorable.

Indeed, Theorem 1.8.7 is best possible given the existence of Ramanujan graphs [40]

which have girth k, 2Θ(k) vertices and large fixed chromatic number (e.g. 6). Moreover

in Section 5.8.2, using Theorem 1.8.6 we are also able to prove the following theorem

about extending a precoloring of vertices pairwise far apart.

Theorem 1.8.8. Let G be 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g) and L

be a 5-list-assignment for G. If X ⊂ V (G) such that d(u, v) ≥ Ω(log g(Σ)) for all

u 6= v ∈ X, then every L-coloring of X extends to an L-coloring of G.

When Σ is the sphere, Theorem 1.8.8 reduces to Conjecture 1.5.4 and therefore

provides an independent proof of that conjecture. Indeed, this is the generalization

of that conjecture as developed by Albertson and Hutchinson, except that we have

improved the necessary lower bound from exponential in genus to logarithmic in
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genus, which is best possible up to a multiplicative constant. In fact, in Section 5.8.2,

we are able to prove a stronger version of Theorem 1.8.8. Namely, we generalize to

the case of precoloring cycles far apart.

Theorem 1.8.9. Let G be 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g) and L

be a 5-list-assignment for G. Let C = {C1, C2, . . .} be a collection of disjoint cycles

of G such that d(Ci, Cj) ≥ Ω(log(|Ci| + |Cj| + g(Σ))) for all Ci 6= Cj ∈ C and the

inherited embedding of Gi = BΩ(log(|Ci|+g(Σ)))(Ci) is plane for all Ci ∈ C. If φ is an

L-coloring of the cycles in C such that φ � Ci can be extended to an L-coloring of Gi

for all Ci ∈ C, then φ extends to an L-coloring of G.

Note that we do not require a strict upper bound on the size of the cycles, rather

just that the pairwise distance between the cycles as well as the locally planar neigh-

borhood of the cycles reflect their size. In Section 5.8.2, we provide an application of

Theorem 1.8.9 for cycles of size four. We prove the following theorem.

Theorem 1.8.10. Let G be drawn in a surface Σ with a set of crossings X and L

be a 5-list-assignment for G. Let GX be the graph obtained by adding a vertex vx at

every crossing x ∈ X. If ew(GX) ≥ Ω(log g(Σ)) and d(vx, vx′) ≥ Ω(log g(Σ)) for all

vx 6= vx′ ∈ V (GX) \ V (G), then G is L-colorable.

When Σ is the sphere, Theorem 1.8.10 reduces to Theorem 1.6.1 and hence pro-

vides an independent proof of that result. Finally in Section 5.9, we settle Conjec-

ture 1.7.2 in the affirmative.

Theorem 1.8.11. For every surface Σ there exists a constant c > 0 such that fol-

lowing holds: Let G be a graph embedded in Σ and L a 5-list-assignment for G. If G

has an L-coloring, then G has at least 2c|V (G)| L-colorings of G.

Indeed, we prove a stronger version of Theorem 1.8.11 about extending a precol-

oring of a subset of the vertices.
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Theorem 1.8.12. There exist constants c, c′ > 0 such that following holds: Let G be

a graph embedded in a surface Σ, X ⊆ V (G) and L a 5-list-assignment for G. If φ is

an L-coloring of G[X] such that φ extends to an L-coloring of G, then φ extends to

at least 2c|V (G)|−c′(g(Σ)+|X|) L-colorings of G.

1.9 Outline of the Proof

In Chapter 2, we generalize Theorem 1.4.2 to the case where the two precolored

vertices are not adjacent but have lists of size two. This resolves a conjecture of

Hutchinson [36]. We then proceed to characterize the critical graphs when two non

adjacent precolored vertices have lists of size one and two and then lists of size one.

We then characterize the critical graphs for two precolored edges that are not incident.

Thomassen [51] characterized these when the edges are incident with the same vertex,

that is for paths of length two. Indeed, we show that if the two edges are far apart,

then there is a proportionally long segment of the graph which has a particularly

nice structure, called a bottleneck, that is one of two types, called accordions and

harmonicas.

In Chapter 3, we prove a linear bound for Theorem 1.5.1 for list-coloring. We then

generalize this in the manner of Theorem 1.4.2 to prove a linear bound in terms of the

precolored path. Furthermore, we show that if there are many precolored paths, as

opposed to just two precolored edges, then either a linear bound is obtained or there a

long bottleneck as in Chapter 2. Furthermore, we expand the usefulness of such linear

bounds by showing that these critical graphs have other nice properties. Namely, we

show that all vertices have logarithmic distance from the precolored vertices and the

balls around vertices grow exponentially in their radius. In addition, we prove that

precolorings of a cycle have exponentially many extensions to the interior, less a linear

factor in the size of the cycle.

In Chapter 4, we use the bottleneck theorem to prove the any coloring of two
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precolored triangles that are far apart extends to the whole graph. Our strategy

is as follows. We show there exists a long chain of separating triangles where the

graph between any two consecutive triangles in the chain is one of three types, called

tetrahedral, octahedral and hexadecahedral after their number of faces. We then

develop a theory somewhat akin to that in Chapter 2, to show that if the chain is

long enough then any coloring of the outer and inner triangle extends to the whole

graph.

In Chapter 5, we generalize the main result of Chapter 4 to the case of two precol-

ored cycles. We then extend the linear bound, logarithmic distance and exponential

growth results from Chapter 3 to the case of two cycles. Next we proceed to develop an

abstract theory for families of graphs satisfying such linear isoperimetric inequalities

for the disc and cylinder, which we call hyperbolic families. We prove all of our main

theorem hold in the setting of hyperbolic families. The theory of hyperbolic families

has wider applications beyond 5-list-coloring as there exist other hyperbolic families

of interest. The families of critical graphs of a number of other coloring problems

are hyperbolic. Indeed, it follows that any coloring problem satisfying Theorem 1.8.1

leads to similar theorems as developed in this thesis. After developing the general

theory of hyperbolic families, we then apply the theory to the family of 6-list-critical

graphs to derive the main results for 5-list-coloring. Finally, we apply the theory for

a slightly different family to obtain the exponentially many 5-list-colorings result.
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CHAPTER II

TWO PRECOLORED VERTICES

2.1 Introduction

In this chapter, we prove generalizations of Theorem 1.4.2 of Thomassen, restated

here for convenience.

Theorem 2.1.1 (Thomassen). If G is a plane graph with outer cycle C and P = p1p2

is a path of length one in C and L is a list assignment with |L(v)| ≥ 5 for all

v ∈ V (G) \ V (C), |L(v)| ≥ 3 for all v ∈ V (C) \ V (P ), and |L(p1)| = |L(p2)| = 1 with

L(p1) 6= L(p2), then G is L-colorable.

In Section 2.5, we will resolve a conjecture of Hutchinson [36] in the affirmative

that Theorem 1.4.2 can be extended to the case where p1 and p2 are not required to

be adjacent and both p1 and p2 have lists of size two. This is Theorem 1.8.2, which

we restate here for convenience.

Theorem 2.1.2. If G is a plane graph with outer cycle C and P = {p1, p2} and

L is a list assignment with |L(v)| ≥ 5 for all v ∈ V (G) \ V (C), |L(v)| ≥ 3 for all

v ∈ V (C) \ V (P ), and |L(p1)| = |L(p2)| = 2, then G is L-colorable.

Note that Theorem 1.8.2 is a strict generalization of Theorem 1.4.2 as any min-

imum counterexample to that theorem yields a counterexample to Theorem 2.2.2.

Indeed as we will in Chapter 3, Theorem 1.8.2 will imply a very useful characteriza-

tion of when colorings of paths P with |V (P )| > 2 as in Theorem 1.4.2 do not extend.

Furthermore, we also generalize Hutchinson’s results [36] about the case when one or

both of p1, p2 have a list of size one and G is an outerplane graph to case when G is

plane while also providing independent proofs of said results.
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In Section 2.6, we shall begin characterizing how the colorings of P in Theo-

rem 1.4.2 extend to other paths of length one in the outer cycle. In Section 2.7, we

will characterize the minimal non-colorable graphs when one of p1, p2 is allowed to

have a list of size one. In Section 2.8, we will characterize the minimal non-colorable

graphs when both p1, p2 are allowed to have lists of size one. Finally in Section 2.11,

we will show that minimal non-colorable graphs when there are two precolored paths

of length one far apart then there exists a a special structure of one of two types

whose length is proportional to the distance between the edges.

2.2 Two with Lists of Size Two Theorem

In this section, we prove a generalization of this theorem. Let us define the graphs

we will be investigating.

Definition (Canvas). We say that (G,S, L) is a canvas if G is a connected plane

graph, S is a subgraph of the boundary of the infinite face of G, and L is a list

assignment for the vertices of G such that |L(v)| ≥ 5 for all v ∈ V (G) \ V (C) where

C is the boundary of the infinite face of G, |L(v)| ≥ 3 for all v ∈ V (G) \ V (S), and

there exists a proper L-coloring of S.

If S is a path that is also a subwalk of the the outer walk of G, then we say that

(G,S, L) is a path-canvas. If the outer walk of G is a cycle C and S = C, then we

say that (G,S, L) is a cycle-canvas.

We say an L-coloring φ of S is non-extendable if there does not exist an L-coloring

φ′ of G such that φ′(v) = φ(v) for all v ∈ V (S). We say the canvas (G,S, L) is L-

critical if there does not an exist an L-coloring of G but for every edge e 6∈ E(S)

where both ends of e not in S, there exists an L-coloring of G \ e.

Hence, Thomassen’s theorem restated in these terms is as follows.

Theorem 2.2.1 (Thomassen). If (G,P, L) is a path-canvas and |V (P )| ≤ 2, then G

is L-colorable.
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We can also restate Theorem 1.8.2 in these terms.

Theorem 2.2.2 (Two with List of Size Two Theorem). If (G,S, L) is a canvas with

V (S) = {v1, v2} and |L(v1)|, |L(v2)| ≥ 2, then G is L-colorable.

It should be noted that this theorem is not true when one allows three vertices

with list of size two (e.g. an even fan). We actually prove a stronger statement. But

first we need some preliminaries.

2.3 Fans and Bellows

A useful reduction is that found by Thomassen in his proof of 5-choosability.

Definition (Thomassen Reduction). Let T = (G,S, L) be a canvas. Let C be the

outer walk of G. Suppose that there exists v ∈ V (C) \ V (S) such that uv ∈ E(C)

where u ∈ V (S), u is the only neighbor of v belonging to S, v is not a cutvertex of

G and v does not belong to a chord of C. Given a coloring φ of S, we may define a

Thomassen reduction with respect to φ and v of T , denoted by T (φ, v) = (G′, S, L′),

as follows. Let G′ = G \ v. Define a list assignment L′ as follows. Let S(v) be a

subset of size two of L(v) \ φ(u). Let L′(w) = L(w) \ S(v) for all w such that w is

not in V (C) and w is adjacent to v and let L′(w) = L(w) otherwise.

Proposition 2.3.1. Let T (φ, v) = (G′, S, L′) be a Thomassen reduction of T =

(G,S, L) with respect to φ and v. The following holds:

(1) T (φ, v) is a canvas.

(2) If G′ has an L′-coloring extending φ, then G has an L-coloring extending φ.

(3) If T is L-critical, then G′ contains an L′-critical subgraph G′′ and hence there

exists an L′′-critical canvas (G′′, S, L′′) where L′′(v) = {φ(v)} for v ∈ S and

L′′(v) = L′(v) otherwise.
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Proof. If x ∈ V (G′) such that |L′(x)| < 5, then either x ∈ C or x ∼ v. In either case,

x is in the outer walk of G′. Note that if x ∈ V (G′) such that L′(x) 6= L(x), then

x 6∈ C and hence |L(x)| = 5, |L′(x)| ≥ 3. Thus, if x ∈ V (G′) such that |L′(x)| < 3,

then x ∈ S. This proves that (1).

Let φ be an L′-coloring of G′. Let φ(v) = S(v)\φ(w) where w 6∈ S and vw ∈ E(C).

Now φ is an L-coloring of G. This proves (2).

If T is L-critical, then there does not exist an L-coloring of G. Hence by (2), there

does not exist an L′-coloring of G′ extending φ. Hence, there exists an L′′-critical

subcanvas and (3) follows.

Definition (Fans). We say a graph G is a fan if G consists of a cycle C = v1v2 . . . vk

and edges v1vi for all i, 3 ≤ i ≤ k− 1. We say that v1 is the hinge of the fan and that

the path v2v1vk is the base of the fan. We define the length of the fan to be k − 2.

We say a fan G is even if its length is even and odd if its length is odd.

Proposition 2.3.2. Let G be a fan with cycle v1v2 . . . vk where v1 is the hinge of

the fan and let L be a list assignment for G such that |L(v)| ≥ 3 for all v ∈ V (G \

{v1, v2, vk}). If φ is an L-coloring of P , then φ extends to an L-coloring of G unless

there exist colors c3 . . . , ck−2 such that c1 6= ci and ci 6= ci+1 for all i, 2 ≤ i ≤ k − 2

and L(vi) = {c1, ci−1, ci} for all i, 3 ≤ i ≤ k−1, where c1 = φ(v1), c2 = φ(v2), φ(vk) =

ck−1.

Definition. Let T = (G,P, L) be a path-canvas with |V (P )| = 3. Suppose that G is

a fan with cycle C = v1v2 . . . vk and hinge v1 where P = v2v1vk. We say that T is a

fan if there exists a non-extendable L-coloring of P .

We say a fan T is even if G is an even fan and odd if G is odd fan. We say an odd

fan T is exceptional if there exist two non-extendable L-colorings of P which differ

only in the color of the hinge. We say an even fan T is exceptional if there exist

two non-extendable L-colorings of P which interchange the colors of the hinge and

another vertex in the base.
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Definition (Wheel). We say a graph G is a wheel if G is a cycle C and a vertex

v 6∈ V (C) such that v adjacent to every vertex of C. We say v is the center of the

wheel.

Proposition 2.3.3. Let G be a wheel with cycle v1v2 . . . vk and center v and let

L be a list assignment for G such that |L(v)| ≥ 3 for all v ∈ V (G \ {v1, v2, v3}).

If φ is an L-coloring of P = v1v2v3, then φ extends to an L-coloring of G unless

φ(v1) 6= φ(v3), {φ(v1), φ(v2), φ(v3)} ⊂ L(v) and (G \ v2, P
′, L) is an exceptional odd

fan where P ′ = v1vv3 with two non-extendable colorings, φ1, φ2 extending φ, where

{φ1(v), φ2(v)} = L(v) \ {φ(v1), φ(v2), φ(v3)}.

Definition (Turbofans). Let T = (G,P, L) be a path-canvas with |V (P )| = 3. Let

P = p1p2p3. Suppose that G is a wheel with center v 6∈ V (P ). We say that T is a

turbofan if there exists a non-extendable L-coloring of P . We say that P is the base

of T .

Definition (1-Sum). Let T = (G,S, L) be a canvas. Let C be the facial walk of the

infinite face of G. Suppose that v ∈ C is a cutvertex of C. Thus v divides G into

two graphs G1, G2. Let V (S1) = V (S ∩ G1) ∪ {v} and E(S1) = E(S) ∩ E(G1) and

similarly for S2. Let L1(v), L2(v) ⊂ L(v) such that L1(v) ∪ L2(v) = L(v) and let

L1(x) = L(x), L2(x) = L(x) otherwise. Let T1 = (G1, S1, L1) and T2 = (G2, S2, L2).

We say that T is the 1-sum of T1 and T2 along the vertex v.

Definition (2-Sum). Let T = (G,S, L) be a canvas. Let C be the facial walk of

the infinite face of G. Suppose that uv is a chord of C. Thus uv divides G into two

graphs G1, G2. Let V (S1) = V (S ∩G1)∪ {u, v} and E(S1) = (E(S)∩E(G1))∪ {uv}

and similarly for S2. Let T1 = (G1, S1, L) and T2 = (G2, S2, L). We say that T is the

2-sum of T1 and T2 along the edge uv.

Definition (Bellows). Let T = (G,P, L) be a canvas with |V (P )| = 3. Let P =

p1p2p3 and C be the outer walk of G. We say T is a bellows if either T is a fan, a
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turbofan, or T is the 2-sum of two smaller bellows along the edge p2x for some vertex

x ∈ C \ P such that there exists a non-extendable L-coloring of P . We say that P is

the base of T .

Thomassen [51, Theorem 3] proved the following.

Theorem 2.3.4 (Thomassen). If T = (G,P, L) is a path-canvas with |V (P )| = 3,

then G has an L-coloring unless there exists a subgraph G′ ⊆ G, P ⊂ G′, such that

T ′ = (G′, P, L) is a bellows.

We will also need two lemmas of Thomassen. The following can be found in [51,

Lemma 1].

Lemma 2.3.5. If T = (G,P, L) is a bellows that is not a fan, then there exists at

most one proper L-coloring of P that does not extend to an L-coloring of G \ P .

The following can be found in [51, Lemma 4].

Lemma 2.3.6. If T is a bellows with |L(p1)| = 1 and |L(p3)| = 3, then there exists a

color c in L(p3) such that any proper L-coloring φ of P with φ(p3) = c can be extended

to an L-coloring of G. If T is not an exceptional even fan (where p2 and p3’s colors

are interchanged), then there exist at least two such colors.

We will need a very similar lemma later on, which we state here for convenience.

Lemma 2.3.7. If T is a bellows with |L(p3)| = 2, then there exist at most two colors

c in L(p1) such that there exists a proper L-coloring φ of {p1, p2} with φ(p1) = c that

cannot be extended to an L-coloring of G. Moreover there exists at most one such

color, unless T is an odd fan, L(p3) ⊂ L(p1) and the two such colors are L(p3) (and

the non-extendable colorings are from L(p3)).

Proof. Let φ be a non-extendable L-coloring of {p1, p2}. By Theorem 1.4.2, it follows

that φ(p2) ∈ L(p3). Let L(p3) = {c1, c2}. Let φ1(p3) = c1 and φ1(p2) = c2; let
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φ2(p3) = c2 and φ2(p2) = c1. By Theorem 1.4.2, there exists at most one color bi in

L(p1) such that φi extends to a non-extendable coloring of P . Thus there exist at

most two such colors in L(p1), namely b1 and b2 satisfying the conclusion as desired.

Suppose b1 and b2 exist. We may assume without loss of generality that L(p1) =

{b1, b2}. Let p′3 such that p′3p3p2 is a triangle in G. If p′3 = p1, it follows that

L(p3) = {b1, b2} and the lemma follows. So we may suppose that p′3 6= p1. Consider

T ′ = (G \ {p3}, P ′, L′) where P ′ = p1p2p
′
3, L′(p′3) = L(p′3) \ L(p3), L′(p1) ⊇ L(p1) be

a set of size three and L′(v) = L(v) for all v ∈ G \ {p3, p
′
3}. Now T ′ is a bellows with

|L′(p3)| = 1 and |L′(p1)| = 3. By Lemma 2.3.6, there exist at least two colors c in

L′(p1) such that any proper L′-coloring φ′ of P ′ with φ′(p3) = c can be extended to an

L′-coloring of G\{p1} unless T ′ is an exceptional even fan. If T ′ is not an exceptional

fan, this implies that there exists a color c in L(p1) such that any proper L-coloring

φ of {p1, p2} with φ(p1) = c can be extended to an L-coloring of G. Yet c ∈ {b1, b2},

a contradiction.

So T ′ is an exceptional even fan. Indeed the colors of p1 and p2 must be in-

terchanged its non-extendable L′-colorings. Thus L(p1) = {c1, c2} = L(p3) and the

lemma follows.

Another useful lemma we will need, which has the same spirit as the above, is the

following.

Lemma 2.3.8. If T is a bellows with |L(p1)| = 1, |L(p3)| = 1, then there exist at

most two colors c in L(p2) \ (L(p1) ∪ L(p3)) such that the proper L-coloring φ of P

with φ(p1) = L(p1), φ(p3) = L(p3) and φ(p2) = c can not be extended to an L-coloring

of G. If T is not an exceptional odd fan, then there exists at most one color.

Proof. We proceed by induction on the number of vertices of G. By Lemma 2.3.5,

it follows that T is a fan. Let the outer cycle of G be labeled as p1, v1, . . . , vk, p3, p2.

Clearly k ≥ 1. Let P ′ = v1p2p3. Consider the bellows T ′ = (G \ {p1}, P ′, L). By
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Lemma 2.3.6, there exists a color c in L(v1) such that any proper L-coloring φ of

P ′ with φ(v1) = c can be extended to an L-coloring of G \ {p1}. Yet it follows that

such a color c must be in L(p1). Hence there does not exist at least two such colors

and by Lemma 2.3.6, T ′ is an exceptional even fan whose non-extendable colorings

interchange the colors of v1 and p2. It follows that T is an exceptional odd fan and

the two colors are colors in the non-extendable colorings of T ′.

We may now characterize the non-extendable L-colorings of a bellows.

Proposition 2.3.9. Let T = (G,P, L) be a path-canvas with |V (P )| = 3. Let P =

p1p2p3 and C be the outer walk of G. Suppose that T is the sum of two bellows

T1 = (G1, P1, L) and (G2, P2, L) along the edge p2x where x ∈ V (C \ P ). If φ is an

L-coloring of P , then φ is non-extendable if and only if L(x) has size three and can be

denoted {φ(p2), c1, c2} such that the coloring φ1 with φ1(p1) = φ(p1), φ1(p2) = φ(p2)

and φ1(x) = c1 does not extend to G1 and the coloring φ2 with φ2(p3) = φ(p3), φ2(p2) =

φ(p2) and φ2(x) = c2 does not extend to G2.

Proof. Suppose φ is non-extendable. We may assume without loss of generality that

L(pi) = φ(pi) for all i ∈ {1, 2, 3}. First suppose that φ(p2) 6∈ L(x) or |L(x)| ≥ 4.

By Theorem 1.4.2, there exists an L-coloring φ1 of G1 that extends φ � P1 ∩ P .

Let L1(x) = L(x) \ φ1(x) and L1(v) = L(v) for all v ∈ G1 \ {x}. By Theo-

rem 1.4.2, there exists an L1-coloring φ2 of G1 that extends φ � P1 ∩ P . Let

L2(x) = {φ1(x), φ2(x), φ(p2)} and L2(v) = L2(v) for all v ∈ G2 \ {x}. By Theo-

rem 1.4.2, there exists an L2-coloring φ3 of G2. Let φ′ = φ3 ∪φj where j ∈ {1, 2} and

φ3(x) = φj(x). Now φ′ is an L-coloring of G that extends φ, a contradiction.

So we may suppose that φ(p2) ∈ L(x) and |L(x)| = 3. Let L(x) = {φ(p2), c1, c2}.

By Theorem 1.4.2, there exist L-colorings φ1 of G2 and φ2 of G1. Yet φ1(x) 6= φ2(x)

as otherwise φ1 ∪ φ2 is an L-coloring of G, a contradiction. We may suppose without

loss of generality that φ1(x) = c1 and φ2(x) = c2. But then φ1 � P1 does not extend
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to G1 and φ2 � P2 does not extend to G2 and the proposition holds.

Similarly the converse holds as x must receive a color in any L-coloring of G and

yet that color must either be c1, which does not extend to G1, or c2, which does not

extend to G2.

2.4 Critical Lemmas

Definition. Let T = (G,S, L) be a canvas and let C be the outer walk of G. We say

a cutvertex v of G is essential if whenever v divides G into graphs G1, G2 6= G, where

V (G1) ∩ V (G2) = {v}, G1 ∪ G2 = G, then S ∩ (V (Gi) \ {v}) 6= ∅ for all i ∈ {1, 2}.

We say a chord U of C is essential if for every division of G into graphs G1, G2 6= G,

such that V (G1) ∩ V (G2) = V (U) and G1 ∪ G2 = G, then S ∩ (V (Gi) \ V (U)) 6= ∅

for all i ∈ {1, 2}

Lemma 2.4.1. If T = (G,S, L) is an L-critical canvas, then

(1) every cutvertex of G is essential, and

(2) every chord of the outer walk of G is essential, and

(3) there does not exist a vertex in the interior of a cycle of size at most four, and

(4) there exists at most one vertex in the interior of a cycle of size five.

Proof. Suppose v is a cutvertex of G that is not essential. Hence there exist graphs

G1, G2 such that V (G1) ∩ V (G2) = {v} and V (S) ∩ V (G2) ⊆ {v}. As T is L-critical,

there exists an L-coloring φ of G1. By Theorem 1.4.2, φ can be extended to G2. Thus

G has an L-coloring, a contradiction. This proves (1).

Suppose U = u1u2 is a chord of the outer walk of G that is not essential. Hence

there exist graphs G1, G2 such that V (G1) ∩ V (G2) = {u1, u2} and V (S) ∩ V (G2) ⊆

{u1, u2}. As T is L-critical, there exists an L-coloring φ of G1. By Theorem 1.4.2, φ

can be extended to G2. Thus G has an L-coloring, a contradiction. This proves (2).
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Let C be a cycle of size at most five in G. Let G1 = G \ (Int(C) \ C) and

G2 = Int(C). Suppose Int(C) \ C 6= ∅. As T is L-critical, there exists an L-coloring

φ of G1. By Theorem 1.5.2, φ can be extended to an L-coloring of G2, a contradiction,

unless |C| = 5 and there exists a vertex v ∈ Int(C) \C adjacent to all of the vertices

of C. (3) has thus been proved. In addition, by (3), there cannot be vertices in the

interior of the triangles containing v in C + v and hence there is at most one vertex

in the interior of C. This proves (4).

2.5 Proof of the Two with Lists of Size Two Theorem

In this section, we prove Theorem 2.2.2. But first a definition.

Definition (Democratic Reduction). Let T = (G,S, L) be a canvas and L0 be a set

of two colors. Suppose that P = p1 . . . pk is a path in C such that, for every vertex

v in P , v is not the end of a chord of C or a cutvertex of C and L0 ⊂ L(v). Let

x be the vertex of C adjacent to p1 and y be the vertex of C adjacent to pk. We

define the democratic reduction of P with respect to L0 and centered at x, denoted

as T (P,L0, x), as (G \ P, S, L′) where L′(w) = L(w) \ L0 if w ∈ (N(P ) \ {y}) ∪ {x}

and L′(w) = L(w) otherwise.

Indeed, we now prove a stronger version of Theorem 2.2.2.

Theorem 2.5.1. Let T = (G,S, L) be a canvas where S has two components: a

path P and an isolated vertex u with |L(u)| ≥ 2. If |V (P )| ≥ 2, suppose that G is

2-connected, that u is not adjacent to an internal vertex of P and that there does not

exist a chord of the outer cycle of G with an end in P which separates a different

vertex of P from u.

If L(v) = L0 for all v ∈ V (P ) where |L0| = 2, then G has an L-coloring unless

L(u) = L0 and G[V (P ) ∪ {u}] is an odd cycle.

Proof. Let T = (G,S, L) be a counterexample such that |V (G)| is minimized and

subject to that |V (P )| is maximized. Let C be the outer walk of G. Hence T is
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L-critical. By Claim 2.4.1(2), all chords of C are essential. By Claim 2.4.1(1), all

cutvertices of G are essential.

So we may assume there is no chord of C with an end in P . Let v1 and v2 be the

two vertices (not necessarily distinct) of C adjacent to P .

Claim 2.5.2. G is 2-connected.

Proof. Suppose there is a cutvertex v of G. By assumption then, |V (P )| = 1. Let

V (P ) = {u′}. Now v divides G into two graphs G1 and G2. As v is an essential

cutvertex of G, we may suppose without loss of generality that u ∈ V (G2) \ V (G1)

and u′ ∈ V (G1) \ V (G2).

Consider the canvas (G1, S1, L) where S1 = P + v. As |V (G1)| < |V (G)|, there

exists an L-coloring φ1 of G1 as T is a minimum counterexample. Let L1(v) =

L(v) \ {φ1(v)} and L1(x) = L(x) for all x ∈ G1 \ {v}. As |V (G1)| < |V (G)|, there

exists an L′-coloring φ2 of G1 by the minimality of G. Note that φ1(v) 6= φ2(v).

Let L2(v) = {φ1(v), φ2(v)} and L2(x) = L(x) for all x ∈ G2 \ {v}. Consider the

canvas (G2, S2, L2) where S2 = P ′ + u and P ′ is a path with sole vertex v2. As

|V (G2)| < |V (G)|, there exists an L2-coloring φ of G2. Let i be such that φi(v) = φ(v).

Therefore, φ∪φi is an L-coloring of G, contrary to the fact that T is a counterexample.

Claim 2.5.3. Either v1 6= u or v2 6= u.

Proof. Suppose not. That is, v1 = v2 = u. If L(u) \ L0 6= ∅, let φ(u) ∈ L(u) \ L0

and extend φ to a coloring of G[V (P ) ∪ {u}]. Let L′(v) = L(v) \ L0 for all v ∈

V (G)\ (V (P )∪{u}) and L′(u) = {φ(u)}. By Theorem 1.4.2, G\P has an L′-coloring

and thus G has an L-coloring, contrary to the fact that T is a counterexample. So

we may suppose that L(u) = L0. Thus by assumption G[V (P ) ∪ {u}] is an even

cycle. Let φ be an L-coloring of G[V (P ) ∪ {u}]. Let L′(v) = L(v) \ L0 for all
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v ∈ V (G) \ (V (P )∪{u}). By Theorem 1.4.2, G \ (P +u) has an L′-coloring and thus

G has an L-coloring, contrary to the fact that T is a counterexample.

Thus v1 6= v2 as there is no cutvertex of G.

Claim 2.5.4. For all i ∈ {1, 2}, if vi 6= u, then vi is the end of an essential chord of

C.

Proof. As v1 and v2 are symmetric, it suffices to prove the claim for v1. So suppose

v1 6= u and v1 is not the end of an essential chord of C. First suppose that |L(v1) \

L0| ≥ 2. Let G′ = G \ V (P ), S ′ = P ′ + u where P ′ is a path with sole vertex v1.

Furthermore, let L′(v1) be a subset of size two of L(v1) \ L0, L′(x) = L(x) \ L0 for

all x ∈ N(P ) \ {v1, v2} and L′(x) = L(x) otherwise. As |V (G′)| < |V (G)|, G′ has an

L′-coloring as T is a minimum counterexample. Thus G has an L-coloring, contrary

to the fact that T is a counterexample.

So we may assume that L(p1) ⊆ L(v1) and |L(v1)| = 3. Let P ′ be the path

obtained from P by adding v1. Let S ′ = P ′ + u,L′(v1) = L0 and L′(x) = L(x) for all

x ∈ V (G) \ {v1}. Consider the canvas (G,S ′, L′). As v1 is not the end of an essential

chord of C and (G,S, L) was chosen so that |V (P )| was maximized, we find that

G[V (P ) ∪ {v1, u}] is an odd cycle and L(u) = L0.

Now color G as follows. Let φ(v1) ∈ L(v1) \ L0. Extend φ to a coloring of

V (P ) ∪ {v1, u}. Let L′(x) = L(x) \ L0 for all x ∈ V (G) \ (V (P ) ∪ {v1, u}) and

L′(v1) = φ(v1). By Theorem 1.4.2, there exists an L′-coloring of G \ (P + u) and

hence G has an L-coloring, contrary to the fact that T is a counterexample.

By Claim 2.5.3, we may assume without loss of generality that v1 6= u. By

Claim 2.5.4, v1 is the end of an essential chord of C. But this implies that v2 6= u.

By Claim 2.5.4, v2 is the end of an essential chord of C. As G is planar, it follows

that v1v2 is a chord of C.

Claim 2.5.5. |V (P )| = 1
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Proof. Suppose not. Now v1v2 divides G into two graphs G1, G2 where without loss

of generality V (P ) ⊂ V (G1) and u ∈ V (G2). Construct a new graph G′ with V (G′) =

V (G2) ∪ {v} and E(G′) = E(G2) ∪ {vv1, vv2}. Let L(v) = L0. Consider the canvas

(G′, S, L) where S = P ′ + u and P ′ is a path with sole vertex v. As |V (P )| ≥

2, |V (G′)| < |V (G)|. So there exists an L-coloring φ of G′ as T is a minimum

counterexample. Hence there exists an L-coloring φ of G2 where {φ(v1), φ(v2)} 6=

L(p1). We extend φ to an L-coloring of P ∪ G2. Let L′(x) = L(x) \ L(p1) for all

x ∈ V (G1) \ (V (P )∪ {v1, v2}), L′(v1) = φ(v1) and L′(v2) = φ(v2). By Theorem 1.4.2,

there exists an L′-coloring of G1 \ P . Thus G has an L-coloring, contrary to the fact

that T is a counterexample.

So we may assume that P = {v}. Let L0 = L(v) = {c1, c2}.

Claim 2.5.6. For i ∈ {1, 2}, L0 ⊂ L(vi) and |L(vi)| = 3

Proof. By symmetry it suffices to prove the claim for v1. If |L(vi)| = 3, then L0 \

L(v1) 6= ∅ and so let c ∈ L0 \ L(v1). Otherwise we may suppose that |L(v1)| ≥ 4. In

this case let c ∈ L(v).

In either case, let L′(v1) = L(v1) \ {c}, L′(v2) = L(v2) \ {c} and L′(x) = L(x)

otherwise. Consider the canvas (G′, S ′, L′) where G′ = G \ {v}, S ′ = P ′ + u and P ′

is a path with sole vertex v2. As |V (G′)| < |V (G)|, there exists an L′-coloring of G′

as T is a minimum counterexample. Thus G has an L-coloring, contrary to the fact

that T is a counterexample.

Claim 2.5.7. L(v1) = L(v2)

Proof. Suppose not. As G is planar, either v1 is not the end of a chord of C separating

v2 from u or v2 is not the end of a chord separating v1 from u. Assume without loss

of generality that v1 is not in a chord of C separating v2 from u. This implies that

v1 is not the end of a chord in C. Let v′ be the vertex in C distinct from v2 that is

adjacent to v1.
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Let c = L(v1) \ L0. Let G′ = G \ {v, v1}, L′(x) = L(x) \ {c} if x ∼ v1 and

L′(x) = L(x) otherwise. Note that |L′(v2)| ≥ 3 as L(v1) 6= L(v2). First suppose that

u 6= v′. Hence |L(u)|, |L(v′)| ≥ 2. Let S ′ = P ′+u where P ′ is a path with sole vertex

v′. Hence (G′, S ′, L′) is a canvas. As |V (G′)| < |V (G)|, there exists an L′-coloring of

G′ as T is a minimum counterexample. Thus there exists an L-coloring of G, contrary

to the fact that T is a counterexample.

So we may suppose that u = v′. Hence |L(u)| ≥ 1. Now (G′, S ′, L′) is a canvas

with V (S ′) = {u}. By Theorem 1.4.2, there exists an L′-coloring of G. Thus there

exists an L-coloring of G, contrary to the fact that T is a counterexample.

Let c3 = c′1 = c′2. Let P ′ = v1v2. Let L1(v1) = L1(v2) = {c1, c3} and L1(x) = L(x)

for all x ∈ V (G) \ {v, v1, v2}. Similarly let L2(v1) = L2(v2) = {c2, c3} and L2(x) =

L(x) for all x ∈ V (G) \ {v, v1, v2}.

Claim 2.5.8. One of v1, v2 is the end of an essential chord of C distinct from v1v2.

Proof. Suppose not. Consider the canvases (G\{v}, P ′+u, L1) and (G\{v}, P ′+u, L2)

which satisfy the hypotheses of theorem. As |V (G′)| < |V (G)|, these canvases must

satisfy the conclusion as T is a counterexample with a minimum number of vertices.

Now either L1(v1) or L2(v1) is not equal to L(u). So assume without loss of generality

that L1(v1) 6= L(u) = L1(u). Thus there exists an L1-coloring of G \ v. Hence there

exists an L-coloring of G, contrary to the fact that T is a counterexample.

Suppose without loss of generality that v2 is the end of an essential chord of C

distinct from v1v2. Choose such a chord v2u1 such that u1 is closest to v1 measured

by the distance in C \ {v2}. Now v2u1 divides G into two graphs G1 and G2 where

we suppose without loss of generality that v ∈ V (G1) and u ∈ V (G2).

First suppose v1 is adjacent to u1. Let L′(u1) = L(u1) \ {c3} and L′(x) = L(x)

otherwise. Consider the canvas (G2, S
′, L′) where S ′ = P ′ + u and P ′ is a path with

sole vertex u1. As |V (G2)| < |V (G)|, there exists an L′-coloring φ of G2 as T is a
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minimum counterexample. But then we may extend φ to v, v1 to obtain an L-coloring

of G, contrary to the fact that T is a counterexample.

So we may suppose that v1 is not adjacent to u1. Consider the canvas T1 =

(G1, P
′, L) where P ′ = vv2u1. As u1 is not adjacent to v1, T1 is not a fan. By

Lemma 2.3.5, there is at most one coloring φ of P ′ which does not extend to G1. Let

L′(u1) = L(u1)\{φ(u1)} and L′(x) = L(x) otherwise. Consider the canvas (G2, S
′, L′)

where S ′ = P ′ + u and P ′ is a path with sole vertex u1. As |V (G2)| < |V (G)|, there

exists an L′-coloring φ′ of G′ as T is a minimum counterexample. Then we extend φ′

to v as |L(v)| ≥ 2 and then to G1 as φ′(u1) 6= φ(u1). Thus we obtain an L-coloring

of G, contrary to the fact that T is a counterexample.

2.6 Accordions

In this section, we will begin to characterize how the coloring of P in Theorem 1.4.2

extend to colorings of other paths of length one on the boundary of the outer walk.

Indeed we will show that any L-coloring of P extends to at least two L-colorings of

any other path P ′ of length one unless a very specific structure occurs.

2.6.1 Coloring Extensions

Definition. Suppose T = (G,P, L) is a path-canvas where P = p1p2 is a path of

length one in C. Suppose we are given a collection C of L-colorings of P . Let P ′ be

an edge of G with both ends in C. We let ΦG(P ′, C) denote the collection of proper

colorings of P ′ that can be extended to a proper coloring φ of G such that φ restricted

to P is a coloring in C. We will drop the subscript G when the graph is clear from

context.

We may now restate Theorem 1.4.2 in these terms.

Theorem 2.6.1 (Thomassen). Let T = (G,P, L) be a path-canvas with |V (P )| = 2,

C a collection of proper L-colorings of P and P ′ is an edge of G with both ends in C.
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Φ(P ′, C) is nonempty.

Note the following easy proposition.

Proposition 2.6.2. Let T, P, P ′ be as in Theorem 2.6.1. If U = u1u2 is a chord of

C separating P from P ′, then

Φ(P ′,Φ(U, C)) = Φ(P ′, C)

2.6.2 Governments

To explain the structure of extending larger sets of coloring, we focus on two special

sets of colorings, defined as follows.

Definition (Government). Let C = {φ1, φ2, . . . , φk}, k ≥ 2, be a collection of disjoint

proper colorings of a path P = p1p2 of length one. For p ∈ P , let C(p) denote the set

{φ(p)|φ ∈ C}.

We say C is dictatorship if there exists i ∈ {1, 2} such that φj(pi) is the same for

all 1 ≤ j ≤ k, in which case, we say pi is the dictator of C. We say C is democracy if

k = 2 and φ1(p1) = φ2(p2) and φ2(p1) = φ1(p2). We say C is a government if C is a

dictatorship or a democracy.

Here is a useful lemma about non-extendable colorings of bellows.

Lemma 2.6.3. Let T = (G,P, L) be a bellows with base P = p1p2p3. Suppose that

p1 6∼ p3. Let φ(p1) = c. Then there exist at most two colorings φ1, φ2 of p2, p3

extending φ that do not extend to an L-coloring of G \P . Furthermore, C = {φ1, φ2}

is a government. In addition, if C is a democracy then T is an exceptional even fan.

If C is a dictatorship, then p3 is its dictator and T is an exceptional odd fan.

Proof. Follows from Proposition 2.3.9.
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2.6.3 Accordions

Definition. We say a graph G is an accordion with ends P1, P2, which are distinct

paths of length one, if G is a bellows with base P1 ∪ P2 or there exists a chord U of

G that divides G into two accordions: G1 with ends P1, U and G2 with ends P2, U .

Definition (Accordion). Let T = (G,S, L) be a canvas such that S = P1 ∪P2 where

P1, P2 are distinct paths of length one. We say that T is an accordion with ends

P1, P2 if T is a bellows with base P1 ∪P2, or T is the 2-sum of two smaller accordions

T1 = (G1, P1 ∪ U,L) with ends P1, U and T2 = (G2, P2 ∪ U,L) with ends U, P2 along

an edge U = u1u2 such that |L(u1)|, |L(u2)| ≤ 3.

Definition (1-accordion). Let T = (G,P, L) be a path-canvas with |V (P )| = 2 and

|L(v)| = 1 for all v ∈ V (P ). Let P ′ = p1p2 be an edge of the outer walk of G. We say

T is a 1-accordion from P to P ′ if G is an accordion whose ends are P and P ′ and

there exists exactly one L-coloring of G.

Proposition 2.6.4. If T = (G,P, L) is a 1-accordion from P to P ′ where P ′ is an

edge of C, then |L(v)| = 3 for all v ∈ V (C) \ V (P ) where C is the outer walk of G.

Proof. Suppose not. Then there exists v ∈ V (C) \ V (P ) such that |L(v)| ≥ 4. As

T is a 1-accordion, then G has exactly one L-coloring φ of G by definition. Let

T ′ = (G,P, L′) where L′(v) = L(v) \ {φ(v)} and L′(z) = L(z) otherwise. Now T ′ is a

canvas. By Theorem 1.4.2, there exists an L′-coloring φ′ of G. Yet φ′ is an L-coloring

of G and φ′(v) 6= φ(v), which contradicts the fact that φ was the only L-coloring of

G.

Hence a 1-accordion is also an accordion.

Theorem 2.6.5 (Accordion). Let T = (G,P, L) be a canvas, where P is a path of

length one, and P ′ be a path of length one distinct from P . If C is a non-empty set

of proper L-colorings of P such that if |C| ≥ 2 then C contains a government, then
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Φ(P ′, C) does not contain a government if and only if T contains a subcanvas T ′ such

that T ′ is a 1-accordion from P to P ′ and C = {φ}, where φ is the unique proper

coloring of P in T ′.

Proof. We proceed by induction on the number of vertices of G. As a 1-accordion

has a unique L-coloring, one implication is clear. So let us prove the other. Suppose

Φ(P ′, C) does not contain a government. Following the proof of Lemma 2.4.1, we

may assume that the canvas (G,P ∪ P ′, L) does not have non-essential chords, non-

essential cutvertices or a vertex in the interior of a triangle or 4-cycle, as otherwise

theorem follows by induction. Let C be the outer walk of G.

First suppose there is a cutvertex v of G. If v does not separate P from P ′,

then we may delete a block of G not containing P, P ′ and the theorem follows by

induction and Theorem 1.4.2. So we may suppose v divides G into graphs G1, G2

where V (P ) ⊂ V (G1) and V (P ′) ⊂ V (G2). By Theorem 2.6.1, Φ(v, C) is nonempty.

Let c ∈ Φ(v, C) and uv be an edge of G2 incident with the infinite face of G. Let

C ′ = {(c, c′) : c′ ∈ L(u) \ {c}} be a set of colorings of P ′′ = uv. If P ′ = P ′′, the

the theorem follows. Otherwise, apply induction to (G2, P
′′, L) with C ′ to find that

ΦG2(P
′, C ′) contains a government. But it follows that ΦG2(P

′, C) ⊆ ΦG(P ′, C) and

hence Φ(P ′, C) contains a government, a contradiction.

Next suppose there is a chord U = u1u2 of C, the outer walk of G, separating

G into G1, G2 where V (P ) ⊂ V (G1) and V (P ′) ⊂ V (G2). Let T1 = (G1, P, L)

and T2 = (G2, U, L). By Theorem 2.6.1, Φ(U, C) is nonempty. By induction for T2,

|Φ(P ′,Φ(U, C))| does not contain a government if and only if T2 contains a 1-accordion

T ′2 from U to P ′, |Φ(U, C)| = 1 and Φ(U, C) = {φ′}, where φ′ is the unique coloring of

U in T ′2. By induction for T1 then, T1 contains a 1-accordion T ′1 from P to U , C = {φ}

and Φ(U, C) = {φ′}, where φ is the unique coloring of P in T ′1. Thus T contains a

1-accordion T ′ from P to P ′, the 1-sum of T ′1 and T ′2 and φ is the unique coloring of

P in T ′ as desired. So we may assume there is no chord of G separating P from P ′.
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Suppose P ∩ P ′ 6= ∅. We may assume by induction that T is a bellows. Let

P = p1p2 and P ′ = p2p3. As there is no chord of C, G is either a triangle or a

turbofan. Suppose G is a triangle. If C contains a democracy, then Φ(P ′, C) contains

a dictatorship as desired. Suppose C contains a dictatorship C ′. If p1 is the dictator

of C ′, then Φ(P ′, C) contains a dictatorship as desired unless L(p3) has size three and

consists of the color of p1 in C and the colors of p2 in C. But then Φ(P ′, C) contains a

democracy as desired. If p2 is the dictator of C ′, then Φ(P ′, C) contains a dictatorship

with dictator p2 as desired.

So we may suppose that C does not contain a government and hence |C| = 1

by assumption. Let C = {φ}. If |L(v) \ {φ(p1), φ(p2)}| ≥ 2, then C contains a

dictatorship with dictator p2 as desired. So we may suppose that |L(v)| = 3 and

φ(p1), φ(p2) ∈ L(v). But then T contains a 1-accordion, a contradiction.

So we may suppose that G is a turbofan. By Lemma 2.3.5, there exists exactly

one coloring φ of P that does not extend to an L-coloring of G. Let φ′ ∈ C. Now

φ′ extends to at least two colorings of P . If more than one of these extends, then

Φ(P ′, C) contains a dictatorship with dictator p2 as desired. It follows that |L(v)| = 3,

φ′(p1) = φ(p1), φ′(p2) = φ(p2) and φ(p2), φ(p3) ∈ L(v). Thus |C| = 1 and T contains

a 1-accordion whose unique coloring restricts on P to the unique coloring in C.

So we may suppose that P ∩P ′ = ∅. Let P = p1p2 and P ′ = p′1p
′
2. Let v1, v2 be the

vertices of the infinite face not in P adjacent to p1, p2 respectively. We claim that that

either v1 or v2 is not in V (P ′). Suppose not. Then G is precisely a four-cycle p1p2v2v1

and V (P ′) = {v1, v2}. We fix a coloring φ of P , remove φ(p1) from L(v1) and φ(p2)

from L(v2). Thus we obtain all L′-colorings of P ′, where L′(v1) = L(v1)\{φ(p1)} and

L′(v2) = L(v2) \ {φ(p2)}. But this set contains a government, a contradiction. This

proves the claim. So we may suppose without loss of generality that v1 6∈ V (P ′).

Now consider the Thomassen reduction of v1, T1 = T (Φ, v1). If ΦG\v1(P
′, C)

contains a government, then so does ΦG(P ′, C) as desired. Thus by induction T1
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contains a 1-accordion T ′1 from P to P ′, |C| = 1 and C = {φ} is the unique proper

L-coloring of P in T ′1. Similarly if v2 6∈ V (P ′), the Thomassen reduction of v2,

T2 = T (Φ, v2), contains a 1-accordion T ′2 from P to P ′ and φ is the unique proper

L-coloring of P in T ′2.

But now we may assume without loss of generality that p1, p
′
1, p
′
2, p2 appear in

that order in the outer walk of G. We claim that there exists x ∼ p1, p2, p
′
1, p
′
2 or

the theorem follows. First suppose v2 ∈ V (P ′). Hence v2 = p′2. As T ′1 is a 1-

accordion and there does not exist a chord of the outer walk of G, we find that there

exists x1 ∼ v1, p1, p2, p
′
2. Let G′ = G \ V (P ). Let L′(x1) = L(x1) \ {φ(p1), φ(p2)},

L′(v1) = L(v1) \ {φ(p1)}, L′(p′2) = L(p′2) \ {φ(p2)} and L′ = L otherwise.

If |L′(p′2)| = 2, let φ(x1) ∈ L′(x1) \ L′(p′2); otherwise, let φ(x1) ∈ L′(x1). Then let

φ(v1) ∈ L′(v1) \ {φ(x1)}. Let L′′(p′2) = L′(p′2) ∪ {φ(x1)} and L′′ = L′ otherwise. Let

C ′ = {φ} be a set of L′′-colorings for P ′′ = x1v1. By induction on T ′ = (G\P, P ′′, L′′),

we find that either Φ(P ′, C ′) contains a government or T ′ contains a 1-accordion from

P ′′ to P ′. If Φ(P ′, C) contains a government, then so does Φ(P ′, C) and the theorem

follows. So we may assume that T ′ contains a 1-accordion from P ′′ to P ′. As there

is no chord of the outer walk of G, it follows that x1 is adjacent to p′1 and the claim

follows with x = x1.

So we may suppose that v2 6∈ V (P ′). By considering T1 and T2 we find that

either the claim holds or there exists x1, x2 ∈ V (G) such that x1 ∼ v1, p1, p2, v2, x2

and x2 ∼ v1, v2, p
′
1, p
′
2. Without loss of generality we may suppose that C(p1) = {1},

C(p2) = {2}, L(v1) = {1, 3, 4, }, L(v2) = {2, 3, 5} and L(x1) = {1, 2, 3, 4, 5}. Thus

in the unique coloring φ1 of T ′1, we find that φ1(x1) = 5 and φ1(v2) = 3. But now

|L(x2) \ {3, 4, 5}| ≥ 2 and hence |L1(x2) \ {3, 5}| ≥ 2. It follows that there exist at

least two L1-colorings of T ′1, contradicting that T ′1 is a 1-accordion.

As x ∼ p1, p2, p
′
1, p
′
2, we find that p1xp

′
1 and p2xp

′
2 are bellows B1 and B2 respec-

tively as otherwise we may delete B1 \ {p1xp
′
1} or B2 \ {p2xp

′
2} and apply induction.
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Suppose without loss of generality that φ(p1) = 1 and φ(p2) = 2. If |L(v1)\{1}| ≥

3, then consider T ′ = (G \ {p1v1}, P, L′) where L′(v1) = L(v1) \ {1} and L′ = L. By

induction, T ′ contains a 1-accordion T ′′ from P to P ′. But then x is in T ′′ and yet

|L′(x)| = 5, contradicting Proposition 2.6.4.

We claim that that B1 and B2 are fans. Suppose not. Suppose without loss of

generality that B1 is not a fan. By Lemma 2.3.5, there exists a unique non-extendable

coloring φ′ of B1. Consider T ′ = (G\(B1\{p1xp
′
1}), P, L′) where L′(x) = L(x)\{φ′(x)}

and L′ = L. By induction, T ′ contains a 1-accordion T ′′ from P to P ′. But then x is

in T ′′ and yet |L′(x)| = 4, contradicting Proposition 2.6.4. This proves the claim.

By Lemma 2.3.6, for i ∈ {1, 2} there exists at most two colors in L(p′i) that extend

to a coloring of pixp
′
i that does not extend to a coloring of Bi. Suppose there is at

most one such color c1 for i = 1 and at most one such color c2 for i = 2. Now let

L′(p′1) = L(p1) \{c1} and L′(p′2) = L(p2) \{c2}. But then every L′-coloring of P ′ is in

Φ(P ′, C) and yet the set of L′-colorings of P ′ contains a government as desired. This

also shows that |L(p1)| = |L(p2)| = 3.

So we may suppose without loss of generality that p′1 has two colors c1, c2 in

L(p′1) that do not extend to an L-coloring of B1. By Lemma 2.3.6, it follows that

L(v1) \φ(p1) = {c1, c2}, c1, c2 ∈ L(x) and the non-extendable colorings of p1, x, p
′
1 are

φ(p1), c1, c2 and φ(p1), c2, c1.

We may assume without loss of generality that L(x) = {φ(p1), φ(p2), c1, c2, c3}.

Now let c′3 be a color in L(p′2) such that every L-coloring of p′2, x with p′2 colored c3

extends to an L-coloring of B2. Suppose c3 6= c′3. But then Φ(P ′, C) contains the

colorings (with p′1 color first): (c1, c
′
3) and (c2, c

′
3), a dictatorship as desired. So we

may assume that c3 = c′3 and hence there exist two colors c′1, c
′
2 in L(p′2) that do not

extend to an L-coloring of B2. It follows then that c′1, c
′
2 ∈ L(x) \ {φ(p1), φ(p2)}. Yet

c′1, c
′
2 6= c3. So we may assume without loss of generality that c′1 = c1 and c′2 = c2.

Now color x with c3. It follows that the colorings c1, c2 and c2, c1 are in Φ(P ′, C)
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and hence Φ(P ′, C) contains a democracy as desired.

2.7 Harmonicas

In this section, we will characterize how governments extend. Specifically, we will

show that a government extends to two governments unless a very specific structure

occurs. We will then show that this structure is the only obstruction to generalizing

Theorem 2.2.2 to the case of one vertex with a list of size one and one with a list of

size two.

Definition. Let C be a collection of disjoint proper colorings of a path P = p1p2 of

length one. We say C is a confederacy if C is not a government and yet C is the union

of two governments.

Definition (Harmonica). Let T = (G,S, L) be a canvas such that S = P ∪P ′ where

P, P ′ are paths of length one. Let C be a government for P . We say T is a harmonica

from P to P ′ with government C if

• G = P = P ′, or

• C is a dictatorship, G = P ∪ P ′, P ∩ P ′ = z where z is the dictator of C, or

• C is a dictatorship and there exists a triangle zu1u2 where z ∈ V (P ) is the

dictator of C in color c, L(u1) = L(u2) = c ∪ L0 where |L0| = 2 and the canvas

(G \ (P \U), U ∪P ′, L) is a harmonica from U = u1u2 to P ′ with democracy C ′

whose colors are L0, or

• C is a democracy, there exists z ∼ p1, p2 such that L(z) = L0∪{c} where L0 are

the colors of C and there exists i ∈ {1, 2} such that the canvas (G\pi, U∪P ′, L′)

is a harmonica with dictatorship C ′ = {φ1, φ2} where U = zp3−i and φ1(z) =

φ2(z) = c and {φ1(p3−i), φ2(p3−i)} = L0.
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Note that ΦT (P ′, C) is a government C ′. We say a harmonica is even if C and C ′

are both dictatorships or both democracies and odd otherwise.

Lemma 2.7.1. Let T = (G,S, L) be a canvas. Suppose that S = P ∪ P ′ where

P = p1p2 is a path of length one and P 6= P ′. If T contains a harmonica T1 =

(G1, P + P ′, L) with dictatorship C where p1 is the dictator of C ′, then T does not

contain

(1) an harmonica T2 = (G2, P ∪ P ′, L) with democracy C ′, or

(2) a harmonica T2 = (G2, P ∪P ′, L) with government C ′ such that p2 is the dictator

of C ′.

Proof. Let T1, T2 be a counterexample such that |V (G1)|+ |V (G2)| is minimized.

First suppose that (i) holds. As T2 is a harmonica with a democracy, there exists

p ∼ p1, p2 such that L0 ⊂ L(p) where L0 = L2(p1) = L2(p2) and |L0| = 2. First

suppose p1p is a chord of the outer walk ofG. Then T ′2 = (G2\p1, pp1+u, L′2) is an even

harmonica, where L′2(p) = L(p) \ L0 and L′2(v) = L(v) otherwise. Thus p2 6∈ G1 and

we may consider the canvases T ′ = (G\p2, pp1+u, L), T1, T
′
2. Yet T ′2 has smaller length

than T2 and satisfies (ii), contrary to the fact that T1, T2 were chosen to minimize the

sum of the sizes of the harmonicas. So we may assume that p2p is a chord of the outer

walk of G. But then T ′1 = (G1 \ p1, pp2 + u, L1) is a harmonica with democracy. We

may then consider the canvases T ′ = (G\p1, pp2 +u, L), T ′1, T
′′
2 = (G2\p1, pp2 +u, L′2).

Yet T ′2 has smaller length than T2 and T ′1 has smaller length than T1. Moreover, T ′1

satisfies (i), and hence T ′′2 , T
′
1 is a counterexample that contradicts the fact that T1, T2

were chosen to minimize the sum of the sizes of the harmonicas.

Finally suppose that (ii) holds. As G is planar there exists p ∼ p1, p2 and p in

at least one of G1 or G2. Suppose without loss of generality that p ∈ V (G1). Let

L′1(p2) = L′1(p) = L1(p) \ L1(p1). Thus T ′1 = (G1 \ p1, pp2 + u, L′1) is a harmonica

with a democracy. Moreover, T ′1 has smaller length than T1. But then T2, T
′
1 is a
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counterexample that contradicts the fact that T1, T2 were chosen to minimize the

sum of the sizes of the harmonicas.

Theorem 2.7.2. Let T = (G,P, L) be a canvas and P, P ′ be paths of length one in

C. Given a collection C of proper colorings of P such that C is a government or a

confederacy, then Φ(P ′, C) contains a confederacy unless C is a government and there

exists a subgraph G′ of G such that (G′, P ∪ P ′, L) is a harmonica from P to P ′ with

government C.

Proof. Suppose that T = (G,S, L) is a counterexample with |V (G)| minimized and

subject to the condition that C is a government if possible. Following the proof

of Lemma 2.4.1, we may suppose that T does not have non-essential chords, non-

essential cutvertices or a vertex in the interior of a triangle or 4-cycle. Let C be the

outer walk of G.

Claim 2.7.3. G is 2-connected.

Proof. Suppose not. Then there exists a curvertex v of G. We may assume by

Lemma 2.4.1, that v is essential, which implies that v separates P from P ′. If v ∈

P ∪ P ′, then theorem follows from Bellows Coloring Lemmas?

So suppose v divides G into two graphs G1, G2 such that without loss of generality

V (P ′) ⊂ V (G2) and V (P ) ⊂ V (G1). Consider the canvases T1 = (G1, S1, L) and

T2 = (G2, S2, L) where S1 = P ∪ U and S2 = U ′ ∪ P ′ where U is an edge of the

outer walk of G1 containing v and U ′ is an edge of the outer walk of G2 containing

v. If there exist two colorings φ1, φ2 of T1 such φ1(v) 6= φ2(v). But then there

exists a confederacy C ′′ for U ′ such that every coloring in it extends back to T1. As

T is a minimum counterexample, it follows that ΦT2(P
′, C ′′) has a confederacy, a

contradiction.
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Now as T is a minimum counterexample, either ΦT1(U, C) is a government and

contains a harmonica T ′1 from P to U or ΦT1(U, C) has a confederacy C ′′. The latter

is a contradiction as then there would exist two colorings φ1, φ2 of T1 such that

φ1(v) 6= φ2(v). It follows similarly then that T ′1 is an even harmonica if C is a

dictatorship and odd if C is a democracy. But then as T is a minimum counterexample,

it follows by considering T ′2 = (G2 ∪U,U +P ′, L) that ΦT ′
2
(P ′, C ′′) has a confederacy,

a contradiction.

Claim 2.7.4. C is a government.

Proof. Suppose not. Then C = C1 ∪ C2 is a confederacy. As T is a minimum coun-

terexample, there exists a harmonica T1 from P to P ′ for C1 and a harmonica T2 from

P to P ′ for C2. But this contradicts Lemma 2.7.1 unless C1, C2 are both dictatorship

with the same dictator. It is not hard to see though that Φ(P ′, C1) 6= Φ(P ′, C2) and

hence that Φ(P ′, C) has a confederacy, a contradiction.

Claim 2.7.5. There does not exist a chord of C.

Proof. Suppose there exists a chord U of C. We may assume U is essential, separating

a vertex of P from a vertex of P ′. Now U divides G into graphs G1, G2 where we may

assume without loss of generality that P ⊆ G1 and P ′ ⊆ G2. Consider the canvases

T1 = (G1, P ∪ U,L) and T2 = (G2, U ∪ P ′, L). As T is a minimum counterexample,

either ΦT1(U, C) contains a confederacy C ′ or there exists harmonica T ′1 from P to U

with government C. Suppose the former. But then as T is a minimum counterexample,

ΦT2(P
′, C ′) contains a confederacy and hence so does Φ(P ′, C) a contradiction.

So we may suppose the latter. But then ΦT1(U, C) is a government C ′. As T is

a minimum counterexample, ΦT2(P
′, C ′) contains or a confederacy or there exists a

harmonica T ′2 from U to P ′ with government C ′. If the former holds, then Φ(P ′, C)

contains a confederacy, a contradiction. So suppose the latter. But then the 2-sum
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of T ′1 and T ′2 with respect to U is harmonica from P to P ′ with government C, a

contradiction.

Claim 2.7.6. P ∩ P ′ = ∅.

Proof. Suppose not. If P = P ′, then (G,P ∪ P ′, L) is a harmonica, a contradiction.

So we may suppose that P 6= P ′. Let z = P ∩ P ′. If there do not exist φ1, φ2 ∈ C

such that φ1(z) 6= φ2(z), then C and Φ(P ′, C) are dictatorships with dictator z. But

then (P ∪ P ′, P ∪ P ′, L) is a harmonica, a contradiction.

So we may suppose there exists φ1, φ2 ∈ C such that φ1(z) 6= φ2(z). First suppose

T is not a bellows with base P ∪ P ′. We may assume by criticality that G = P ∪ P ′.

But then φ1 and φ2 extend to distinct governments of P ′ and hence Φ(P ′, C) contains

a confederacy, a contradiction.

So we may assume that T is a bellows with base P ∪P ′. By Claim 2.7.5, it follows

that either G is a triangle or T is a turbofan. In the former case, it is not hard to see

that either Φ(P ′, C) contains a confederacy or T is a harmonica, a contradiction. So

suppose the latter.

By Lemma 2.3.5, there exists a unique L-coloring φ0 of P∪P ′ that does not extend

to an L-coloring of G. Let i ∈ {1, 2} such that φi(z) 6= φ0(z). Hence there is a dicta-

torship C1 ⊆ Φ(P ′, C) such that φ(z) = φi(z) for all φ ∈ C1. Let P ′ = zz′. Suppose

L(z′) \ {φ1(z), φ2(z), φ0(z′)} 6= ∅. Let c be a color in L(z′) \ {φ1(z), φ2(z), φ0(z′)}.

Hence there exists a dictatorship C2 ⊆ Φ(P ′, C) such that φ(z′) = c for all φ ∈ C2.

But then Φ(P ′, C) contains the confederacy C1 ∪ C2, a contradiction.

So we may assume that L(z′) = {φ0(z′), φ1(z), φ2(z)} as |L(z′)| ≥ 3. Hence,

φ0(z′) 6= φ1(z), φ2(z). Hence the democracy C2 in colors φ1(z), φ2(z) is in Φ(P ′, C).

But then Φ(P ′, C) contains the confederacy C1 ∪ C2, a contradiction.

Claim 2.7.7. C is a dictatorship.
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Proof. Suppose not. Hence C is a democracy. Let L0 be the colors of C. Let Q =

q1 . . . qk be a maximal path in C such that E(Q) ∩ E(P ′) = ∅, V (P ) ⊆ V (Q),

L0 ⊂ L(v) for all v ∈ V (Q). Suppose q1 6∈ V (P ′). Let q1v1 ∈ E(C) \ E(Q). Let

T ′ = (G\Q, v1 +P ′, L′) be the democratic reduction of Q with democracy L0 centered

around v1. As Q is maximal and q1 6∈ V (Q), L0 is not a subset of L(v1) as otherwise

Q + v1 would also be path satisfying the above conditions, contradicting that Q is

maximal. Hence |L′(v1)| ≥ 2. Let P ′′ be a path of length one of C containing v1.

Thus the set of L′-coloring of P ′′ contains a confederacy C ′. As T is a minimum

counterexample, it follows from considering T ′′ = (G\Q,P ′′∪P ′, L′) that ΦT ′′(P ′, C ′)

contains a confederacy and hence ΦT (P ′, C) contains a confederacy, a contradiction.

So we may suppose that q1 ∈ V (P ′). By symmetry, it follows that qk ∈ V (P ′).

Yet P ∩ P ′ = ∅ by Claim 2.7.6. So q1, qk 6∈ V (P ). Let c1 ∈ L(q1) \ L0 and c2 ∈

L(q2) \ L0. Let C1 = {φ1, φ
′
1} where φ1(q1) = φ′1(q1) = c1 and {φ1(qk), φ

′
1(qk)} = L0.

Similarly, let C2 = {φ2, φ
′
2} where φ2(qk) = φ′2(qk) = c2 and {φ2(q1), φ′2(q1)} = L0.

Hence C1 and C2 are distinct governments of P ′ and C ′ = C1 ∪ C2 is a confederacy.

Moreover, for all φ ∈ C ′, φ ∈ Φ(P ′, C). To see this, simply extend φ to Q using the

colors of L0. Then if φ ∈ C1, consider the democratic reduction T ′ of Q \ q1 centered

around q1. There exists a coloring of T ′ by Theorem 1.4.2. Hence φ ∈ Φ(P ′, C).

Similarly if φ ∈ C2, consider the democratic reduction T ′ of Q \ qk centered around

qk. There exists a coloring of T ′ again by Theorem 1.4.2. Hence φ ∈ Φ(P ′, C).

Suppose without loss of generality that p1 is the dictator of C in color c. Let

v1, v2 be the vertices of C adjacent to p1. Now let T1 = (G \ {v1}, S, L1), T2 =

(G \ {v2}, S, L2) be the Thomassen reductions of v1, v2 respectively. If ΦT1(P
′, C)

contains a confederacy, then so does ΦT (P ′, C), a contradiction. So we may suppose,

as T is a minimum counterexample, that T1 contains a harmonica from P to P ′ with

government C. Similarly for T2.
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Thus there exists v 6∈ C such that v ∼ p1, v1, v2. As T1 contains a harmonica,

L1(v) = L1(v2). So it follows though that c ∈ L(v2), that |L(v2)| = 3. Similarly

c ∈ L(v1) and |L(v1)| = 3. In addition, we now find that L(v1) ∩ L(v2) = {c} and

L(v) = L(v1) ∪ L(v2). Consider the furthest chords U1 = vu1 and U2 = vu2 with one

end in C and the other end v in the paths from v1 to P ′ and v2 to P ′, respectively,

avoiding p1. We find by planarity that u1 is adjacent to u2 given the edges of the

harmonicas. Hence P ′ = u1u2.

On the other hand we claim that L(v1) = L(v2). Let Ci = ΦTi(P
′, C). As Ci is not

a confederacy, Ci is government as T is a minimal counterexample. Yet C1 must be a

dictatorship, as ΦT1(vu2, C) is either a democracy or a dictatorship with dictator u2.

Similarly C2 must be a dictatorship. But then C1, C2 must have the same dictator

in the same color as otherwise C1 ∪ C2 is a confederacy in Φ(P ′, C), a contradiction.

Suppose without loss of generality that u1 is the dictator of C1 and C2. But now

it follows that L(v2) \ {c} ⊂ L(u1) given the democracy on vu2 in T1. However,

L(v1) \ {c} ⊂ L(u1) given the democracy on v1v in T2. Yet |L(u1)| = 3 as T1 and T2

are harmonicas, a contradiction to the fact that L(v1) ∩ L(v2) = {c}.

Definition (Harmonica). Let T = (G,S, L) be a canvas such that S = P + u where

P is a path of length at most one and |L(u)| = 2. We say T is a harmonica from P

to u if there exists a color c such that either

• V (P ) = {p}, |L(p)| = 1 and there exists p′ ∼ p and u′ ∼ u such that (G,P ∪

P ′, L′) is a harmonica with dictatorship C where P = pp′′, C is the set of L-

colorings of P , P ′ = uu′, L′(u) = L(u) ∪ {c} and L′(w) = (w) otherwise, and

Φ(P ′, C) is a dictatorship with dictator u in color c.

• P = p1p2, L(p1) = L(p2), |L(p1)| = 2, and there exists u′ ∼ u such that

(G,P ∪P ′, L′) is a harmonica with democracy C where C is the set of L-colorings
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of P , P ′ = uu′, L′(u) = L(u) ∪ {c} and L′(w) = (w) otherwise, and Φ(P ′, C) is

a dictatorship with dictator u in color c.

Following our earlier definition, we say such a harmonica is odd if |V (P )| = 2 and

even if |V (P )| = 1.

Theorem 2.7.8. Let T = (G,S, L) be a canvas, where S = P + u and P = p1p2 is a

path of length one and |L(u)| ≥ 2. Let C be the set of L-colorings of P . If |C| ≥ 2,

then G is L-colorable unless there exists a canvas T ′ = (G′, P + u, L) with G′ ⊆ G,

S ′ = P + P ′, unless C is a government, |L(u)| = 2 and T is a harmonica from P to

u.

Proof. Follows from Theorem 2.7.2.

2.8 Orchestras

In this section, we will characterize when governments on two distinct paths P, P ′ of

length one on the outer walk of a canvas do not extend to an L-coloring of the whole

graph. In addition, this characterizes the obstructions to generalizing Theorem 2.2.2

to the case where both vertices have lists of size one. First we prove a useful coloring

lemma which will be required for the proof.

Lemma 2.8.1. Let G be a plane graph as follows: x ∼ x′, x ∼ v1, v2, x′ ∼ w1, w2,

there exists u1, u2 ∼ x, x′ and u1xv1, u2xv2, u1x
′w1, u21x′w2 are the bases of bellows,

or are edges because ui = vi or ui = wi. Let T = (G,S, L) be a canvas where

S = {v1, v2, w1, w2}. If |L(x)|, |L(x′)| ≥ 4 and |L(v)| ≥ 2 for all v ∈ S, then G

has an L-coloring unless there exists z ∈ {x, x′} such that z is adjacent to all of S,

v1zw1 and v2zw2 are the bases of exceptional odd fans, L(v1) = L(w1) has size two,

L(v2) = L(w2) has size two, and L(z) = L(v1) ∪ L(v2).

Proof. Suppose not. Let T be a counterexample with a minimum number of vertices.

Claim 2.8.2. For all i ∈ {1, 2}, ui 6= vi, wi.
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Proof. Suppose not. We may assume without loss of generality that u1 = w1 and

hence x ∼ w1. Consider the bellows T1 with base v1xw1. If there is only one color

of w1 in L(w1) that extends to an L′-coloring of {w1, x} that does not then extend

to an L-coloring of T1, color w1 with a different color, delete T1 \ x, and remover the

color of w1 from L(x) and L(x′). Now x, x′ have lists of size three, so we may find a

coloring by Theorem 2.2.2.

So suppose there are two such colors. By Lemma 2.3.7, L(w1) = L(v1). Now

remove L(w1) from L(x). Thus x, v2, w2 have lists of size two and x′ has a list of

size four. This has a coloring by Theorem 2.7.8 unless xv2w2 is an exceptional odd

fan and L(w2) = L(v2). Applying the same argument symmetrically shows that

xw1v1 is an exceptional odd fan and hence x is adjacent to all of S. Furthermore

L(x) = L(v1) ∪ L(v2) where these have size two. So |L(x)| = 4. But then the

conclusion of the lemma holds, a contradiction. This proves the claim.

So we may suppose that u1 6= v1, w1 and u2 6= v2, w2. Thus v1xu1 is the base of a

bellows T1 and u1x
′w1 is the base of a bellows T2. Suppose there exists only one color

of u1 in L(u1) that extends to an L′-coloring of {u1, x} that does not then extend to

an L-coloring of T1. Let L′(u1) = L(u1) and L′ = L otherwise. Consider the canvas

T ′ = (G′, S ′, L′) where G′ = G \ (T1 \ {u1, x}) and S ′ = S \ {v1} ∪ {u1}. Now T ′

satisfies the hypotheses of the lemma. As T is a minimum counterexample, it follows

that either G′ has an L′-coloring, a contradiction as then G has an L-coloring or there

exists z ∈ {x, x′} such that z is adjacent to all of S, contradicting Claim 2.8.2 as then

u2 = w2 or u2 = v2.

So we may assume there are two such non-extendable colors of u1 in L(u1). Thus

by Lemma 2.3.7, L(v1) ⊆ L(u1) where the two non-extendable colors are L(v1).

Similarly, we may assume that L(w1) ⊆ L(u1) where the two non-extendable colors

are L(w1).

Suppose L(v1) = L(w1). Now color u1 from L(u1) \ L(v1), delete T1 ∪ T2 \ {x, x′}
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and remove the color of u1 from L(x) and L(x′). Then x, x′ have lists of size three

and there exists a coloring by Theorem 2.2.2. But this extends to an L-coloring of

G, a contradiction. So we may assume that L(v1) 6= L(w1).

By symmetry of u1 and u2, we may assume that L(v2), L(w2) ⊂ L(u2) and L(v2) 6=

L(w2). Now color v1, w1 with the same color from L(w1)∩L(v1) and remove that color

from L(x), L(x′), L(u1). This leaves x, x′, u2 with lists L′ of size three and u1, v2, w2

with lists L′ of size two.

We claim this has a coloring as L′(v2) = L(v2) 6= L(w2) = L′(w2). Color w2, v2

with the same color from L′(w2)∩L′(v2); this must generate four lists of size two, as

three two’s and a three has a coloring. But this will color unless x, x′, u1 or x, x′, u2

have the same lists. Suppose the latter case. Color x and w2 with the same color not

in L′(u1). Then color v2,u2,x′ and finally u1. So suppose the former case. Color x

and w2 with the same color from L′(w2) \ L′(v2), then color u1, x
′, u2, v2.

Definition (Orchestra). Let T = (G,P ∪P ′, L) be a canvas, where P, P ′ are distinct

paths of length at most one in C and they are disjoint if either is a path of length

zero. We say T is a double bellows with sides P, P ′ if there exists a vertex v adjacent

to all vertices in V (P ) ∪ V (P ′) and the inlets of G[P ∪ P ′ ∪ {v}] are the bases of

bellows. We say that a double bellows T is a wheel bellows if G is a wheel. We say

T if a defective double bellows if T is a wheel bellows less an edge from the center of

the wheel v to a vertex in P ∪ P ′.

We say T is an instrument with sides P, P ′ if T is a bellows with base P ∪ P ′, or

T is double bellows or defective double bellows with sides P, P ′.

We say T is an instrumental orchestra with sides P, P ′ if T is an instrument

with sides P, P ′, or T is the 1-sum or 2-sum of two smaller instrumental orchestras

T1 = (G1, P +U,L) and T2 = (G2, P
′+U,L), along the vertex or edge U , respectively

where |L(v)| ≤ 4 for all v ∈ U .

We say T is a special orchestra with sides P, P ′ if there exists an edge uu′ such
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that T consists of an harmonica (possibly null) from P to u, the edge uu′, and a

harmonica (possibly null) from u′ to P ′, where |L(u)|, |L(u′)| ≤ 3.

We say T is an orchestra if T is an instrumental orchestra or a special orchestra.

Theorem 2.8.3. Let T = (G,P1∪P2, L) be a canvas, where P1, P2 are disjoint edges

of C. Let C1 be a government for P1 and C2 be a government for P2. If there do not

exist colorings φ1 ∈ C1, φ2 ∈ C2 such that φ1 ∪ φ2 extends to an L-coloring of G, then

there exists an orchestra T ′ = (G′, P ′1∪P ′2, L) with sides P ′1, P
′
2 where G′ is a subgraph

of G, and for all i ∈ {1, 2}, P ′i ⊆ Pi, and Pi = P ′i if C1 is a democracy.

Moreover, if T ′ cannot be found such that T ′ is instrumental, then T ′ is a special

orchestra with cut-edge uu′, the harmonica from P to u is even if C1 is a dictator-

ship and odd otherwise and similarly the harmonica from P ′ to u′ is even if C2 is a

dictatorship and odd otherwise.

Proof. Let T = (G,P ∪ P ′, L) be a counterexample with a minimum number of

vertices. By proofs similar to that of Lemma 2.4.1, we may assume no vertices of

G are in the interior of a triangle or 4-cycle and there is at most one vertex in the

interior of a 5-cycle. Let C be the outer walk of G.

Claim 2.8.4. There does not exist a cutvertex v of G.

Proof. Suppose there exists a cutvertex v of G. Then v divides G into two graphs

G1, G2. Suppose P ∪ P ′ ⊆ G1. We now apply induction to (G1, P ∪ P ′, L) . If there

exists an orchestra with sides P, P ′, the theorem follows. So we may assume that

there exist φ1 ∈ C1, φ2 ∈ C2 such that φ1 ∪ φ2 extends to an L-coloring of G1. But

then by Theorem 1.4.2, this extends to an L-coloring of G, a contradiction.

So we may assume that v separates P from P ′. Let φ1 ∈ C. By Theorem 1.4.2,

φ1 extends to an L-coloring of G1. Let L1(v) = L(v) \ {φ1(v)} and L1(x) = L1(x)

otherwise. First suppose that T1 = (G1, P + v, L1) has an L-coloring φ2. Then let

L2(v) = {φ1(v), φ2(v)} and L2(x) = L(x) otherwise. But then T2 = (G2, P
′ + v, L2)
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does not have an L-coloring as T is a counterexample. By Theorem 2.7.8, there

exists a harmonica T ′2 = (G′2, P
′+ v, L2) from P ′ to v. It follows from Theorem 1.4.2,

however that for all c ∈ L(v) \L2(v), there exists an L-coloring φc of G2 such that φc

restricted to P ′ is in C ′ and φc(v) = c.

Let T ′1 = (G1, P + v, L′1) where L′1(v) = L(v) \ L2(v). Suppose that |L(v)| = 3.

Then as T is a minimum counterexample, T ′1 contains an orchestra T ′′1 = (G′1, P +

v, L′1). If T ′′1 is a special orchestra, then it follows that (G′1∪G′2, P ∪P ′, L) is a special

orchestra, a contradiction. If T ′′1 is an instrumental orchestra, then (G′1∪G′2, P∪P ′, L)

is an instrumental orchestra, a contradiction. So we may suppose that |L(v)| = 4.

By Theorem 2.7.8, T ′1 contains a harmonica T ′′1 = (G′1, P +v, L′1) from P to v. Hence,

(G′1 ∪ G′2, P ∪ P ′, L) is an instrumental orchestra, a contradiction. Finally suppose

|L(v)| = 5. By Theorem 1.4.2, G1 has an L′1-coloring bu then G has an L-coloring,

contrary to the fact that T is a counterexample.

So we may suppose that T1 does not have an L-coloring. By Theorem 2.7.8, T1

contains a harmonica T ′1 = (G′1, P + v, L1). Note then that |L1(v)| = 2 and hence

|L(v)| = 3. Let T2 = (G2, v + P ′, L2) where L2(v) = L(v) \ L1(v) and L2(x) = L(x)

otherwise. Then as T is a minimum counterexample, T2 contains an orchestra T ′2 =

(G′2, v + P ′, L2). If T ′2 is a special orchestra, then (G′1 ∪ G′2, P ∪ P ′, L) is a special

orchestra, a contradiction. If T ′2 is an instrumental orchestra, then (G′1∪G′2, P ∪P ′, L)

is an instrumental orchestra, a contradiction.

Claim 2.8.5. There does not exist a chord U of C with both ends having lists of size

less than five.

Proof. Suppose there is such a chord U . Thus U divides G into two graphs G1, G2.

First suppose that P ∪ P ′ ⊂ V (G1). If there exists an orchestra with sides P, P ′ in

G1, the theorem follows. So we may assume that there exist φ1 ∈ C1, φ2 ∈ C2 such

that φ1∪φ2 extends to an L-coloring of G1. But then by Theorem 1.4.2, this extends
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to an L-coloring of G, a contradiction.

So we may assume without loss of generality that V (P ) \ V (G2) 6= ∅ and V (P ′) \

V (G1) 6= ∅. By Theorem 2.6.5, ΦG1(U, C1) has a government. Similarly ΦG2(U, C2)

has a government. Consider T1 = (G1, P + U,L) with governments C1 for P and

ΦG2(U, C2) for U . As T is a minimum counterexample, T1 must contain an orchestra

T ′1 = (G′1, P + U,L). Similarly, T2 = (G2, U + P ′, L) must contain an orchestra

T ′2 = (G′2, P
′ + U,L). If T ′1 and T ′2 are instrumental then T contains an instrumental

orchestra T = (G′1 ∪G′2, P ∪ P ′, L), a contradiction.

So we may assume without loss of generality that T ′1 is a special orchestra. Let TP

be the harmonica of T ′1 from P . If TP is not empty, then as there is no cutvertex of G

by Claim 2.8.4, it follows that there exists a chord U ′ of C distinct from U separating

P from U . But there is an instrumental orchestra T ′′1 from U ′ to P , namely that given

by the harmonica. Applying the argument above to U ′, we obtain a contradiction

unless the orchestra found between U ′ and P ′ is a special orchestra T ′′2 . But then the

2-sum of T ′′1 and T ′′2 is a special orchestra. So we may suppose that TP is empty.

It follows that C is a dictatorship and the dictator x of C is adjacent to a vertex

u in the the harmonica in T ′1 from U . Let U ′ be the chord from said harmonica

separating P1 from P2 and incident with u. But then x ∪ U ′ is the base of a bellows

as T is critical and u is not a cutvertex of G by Claim 2.8.4. Therefore T1 contains

an instrumental orchestra, a contradiction.

Case 1: At least one of C1, C2 is a democracy.

Suppose that at least one of C1, C2 is a democracy. Without loss of generality,

suppose that C1 is a democracy. Let L0 be the two colors of the democracy. Choose

a path Q ⊇ P in C \P ′ if C ′ is a democracy, and in C \ {u} if C is a dictatorship with

dictator u, such that L0 ⊆ L(x) and |L(x)| ≤ 4 for all x ∈ Q, and subject to that

|V (Q)| is maximum. Let Q = q1 . . . qk.

Let v1, v2 ∈ V (C) such that p1v1, p2v2 ∈ E(C) and w1, w2 ∈ V (C) such that
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q1w1, qkw2 ∈ E(C).

First suppose that w1 ∈ V (P ′) if C2 is a democracy or w1 is the dictator if C2 is a

dictatorship. Suppose C2 is a dictatorship. So P ′ = u. Thus L(u) = {c}. If c ∈ L(p1),

color u with c and then color P ′ using C. Let G′ = G \ (P ′ ∪ {u}) and remove the

colors in L(p1) from vertices in N(P ′∪{u}). The resulting graph is a canvas that has

two vertices with list of size two on the boundary. By the Theorem 2.2.2, there is an

L′-coloring of G′, a contradiction.

So suppose that C2 is a democracy. Let L′0 be the colors of C2. If L′0 ∩ L0 = ∅,

we may color the democratic reduction of Q centered around w1 by Theorem 1.4.2, a

contradiction. If |L′0 ∩ L0| = 1, color w1 from L′0 ∩ L0 and extend to Q and P ′ \ w1.

We may then extend this coloring to a coloring of G \ (Q ∪ P ′) by Theorem 1.4.2.

If L0 = L′0, we may color the democratic reduction of Q ∪ P ′ by Theorem 1.4.2, a

contradiction. So we may assume that w1 6∈ V (P ′) and by symmetry that w2 6∈ V (P ′).

Now we may add w1 to Q and get a larger path, which contradicts the choice of

Q, unless |L(w1) ∩ L0| ≤ 1 or |L(w1)| = 5. Similarly we may add w2 to Q and get a

larger path, which contradicts the choice of Q, unless |L(w2)∩L0| ≤ 1 or |L(w2)| = 5.

Consider the democratic reduction, T1 = (G\Q,w1+P ′, L1), of Q centered around

w1, and the democratic reduction, T2 = (G \ Q,w1 + P ′, L2), of Q centered around

w2. If |L1(w1)| ≥ 3, then G\Q has an L1-coloring by Theorem 1.4.2, a contradiction.

Thus |L1(w1)| ≤ 4 and hence L(w1)∩L0| ≤ 1. So we may assume that |L(w1)| = 3 and

|L1(w1)| = |L(w1) \ L0| = 2. Similarly, |L(w2)| = 3 and |L2(w2)| = |L(w2) \ L0| = 2.

Note that |L(v)| ≤ 4 for all v ∈ Q by the choice of Q.

By Theorem 2.7.8, there exists a harmonica T ′1 = (G1, w1 +P ′, L1) from P ′ to w1.

Let x′1, u
′
1 ∈ V (G1) such that w1x

′
1u
′
1 is a triangle. Note that |L1(x′1)|, |L1(u′1)| = 3. By

Claim 2.8.5, either |L(x′1)| = 5 or |L(u′1)| = 5. So assume without loss of generality

that |L(x′1)| = 5. But then x′1 ∈ N(Q) as |L1(x′1)| = |L(x′1) \ L0| = 3. Suppose

u′1 ∈ N(Q). But then either u′1 or x′1 is a cutvertex of the harmonica T ′1 and yet
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is adjacent to w1, which is impossible. So u′1 6∈ N(Q) and hence u′1 ∈ V (C). As

u′1 6∈ N(Q), L(u′1) = L1(u′1). Yet as T ′1 is a harmonica, |L1(u′1)| = 3. Furthermore,

L1(u′1) = L1(x′1). Yet, L0 ∪ L1(x′1) = L(x′1) and so L0 ∩ L1(x′1) = ∅. It follows then

that L0 ∩ L(u′1) = ∅.

Let P1 be the path from v1 to w1 in C avoiding P and let P2 be the path from v2

to w2 in C avoiding P . Note that P1 and P2 are subpaths of Q and thus |L(v)| ≤ 4

for all v ∈ P1 ∪ P2. Now consider the coloring φ with φ(w1) ∈ L(w1) ∩ L0, where

we note that this is nonempty as |L(w1) \ L0| = 2 and |L(w1)| = 3. Extend φ to

Q \ V (P2) using one of the colorings in C. Now let T2 = (G \ (P ∪ P1), v2 + P ′, L2)

where L2(x) = L(x) \ {φ(p) : p ∈ P ∪ P1, p ∼ x}. As L0 ∩ L(u′1) = ∅, there is only

one vertex not in P ′ that has a list of size less than three and that is v2, which has

a list of size two. As G is not L-colorable, Theorem 2.7.8 implies that there exists a

harmonica T ′2 = (G2, v2 +P ′, L2) from P ′ to v2. Let x2, u2 ∈ G2 such that v2x2u2 is a

triangle. Using an identical argument as above, we find u2 ∈ V (C) \N(P ∪P1), x2 ∈

N(P ∪P1)\V (C). We find then that L2(x2)∪L0 = L(x2) and hence L2(x2)∩L0 = ∅.

Yet L2(v2) ⊂ L2(x2) and hence L2(v2) ∩ L0 = ∅. As C has no chord whose ends

have lists of size less than five by Claim 2.8.5, v2 has at most one neighbor in P ∪P1,

namely p2. Thus, L0 is not a subset of L(v2), but this implies that v2 = w2. Note

that x2 has at least two neighbors in P ∪ P1.

Now we let φ′(v2) ∈ L(v2)∩L(p1) and extend φ′ to P using C. By Theorem 2.7.8,

there exists a harmonica T ′′1 = (G \ (P ∪ {v2}), v1 + P ′, L′1) from P ′ to v1 where

L′1(x) = L(x) \ {φ′(p) : p ∈ P ∪ {v2}, p ∼ x}. Let x1, u1 ∈ G1 such that v1x1u1 is a

triangle. Using an identical argument as above, we find u1 ∈ V (C) \ N(P ∪ {v2}),

x2 ∈ N(P ∪{v2})\V (C). But then we also find as above that v1 = w1. Thus P = Q.

As v1 = w1, then x2 has two neighbors in P ∪ {v1}. Similarly, x1 has at least two

neighbors in P ∪ {v2}. As G is planar, we find that x1 = x2 = x.

Thus x is adjacent to v1, v2, u1, u2. Moreover, x is adjacent to at least one of p1, p2.
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But notice that x2 must have two neighbors with different colors in P ∪ {v1} and yet

p2 receives the same color as v1; hence, x = x2 is adjacent to p1. Similarly x1 must

have two neighbors with different colors in P ∪{v2} and yet p1 receives the same color

as v2; hence, x = x1 is adjacent to p2. Let u′1 be the neighbor of x in the path from

v1 to P ′ closest to P ′, Similarly let u′2 be the neighbor of x in the path from v2 to

P ′ closest to P ′. Given the harmonicas T ′′1 , we find that either u′1 is in a chord of C

whose ends have lists of size less than five (indeed, lists of size three), contradicting

Claim 2.8.5, or u′1 ∈ V (P ′). Similarly we find that u′2 ∈ V (P ′). But then T is a

double bellows with sides P, P ′ as desired.

Case 2: C1 and C2 are dictatorships.

So we may assume that C1 and C2 are dictatorships. Let u1, u2 be their dictators.

Let v1, v2 be the neighbors of u1 in C and w1, w2 be the neighbors of u2 in C, where

we may assume without loss of generality that v1 and w1 (and similarly v2 and w2)

are on the subwalk from u1 to u2 of C.

Claim 2.8.6. d(u1, u2) ≥ 3.

Proof. Suppose u1 is adjacent to u2. If L(u1) = L(u2) is allowed, then the edge u1u2

is an orchestra. So we may suppose L(u1) 6= L(u2). But then there exists an L-

coloring of G by Theorem 1.4.2. So we may suppose that u1 6∼ u2. Similarly suppose

d(u1, u2) = 2. Thus there exists a vertex v adjacent to u1 and u2. If v ∈ V (C), then

T is a bellows with base u1vu2. So suppose v 6∈ V (C). Then u1vu2 is the base of two

bellows and thus T is a double bellows. Either way, T is an orchestra, a contradiction.

Claim 2.8.7. v1, v2, w1, w2 have lists of size less than five.

Proof. Suppose not. So without loss of generality |L(v1)| = 5. Let G′ be obtained

from G by deleting the edge u1v1. Let L′(v1) = L(v1) \L(u1) and L′(v) = L(v) for all

v ∈ G\v1. As T is a minimum counterexample, T ′ = (G′, S, L′) contains an orchestra
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T ′′ = (G′′, S, L′). Show that v1 6∈ G′′ and hence that T contains an orchestra, a

contradiction...

It also follows from Claim 2.8.5 that the Thomassen reductions T1, T2 on v1 or v2

respectively are canvases. We now consider these in detail. Let P1 be the path from

v1 to w1 in C \ {u1, u2} and P2 be the path from v2 to w2 in C \ {u1, u2}. As G is

2-connected by Claim 2.8.4, P1 ∩ P2 = ∅.

Claim 2.8.8. There exists a neighbor z1 of v1, |L(z1)| = 5, such that z1 is adjacent

to a vertex with a list of size less than five in P2.

Proof. As T is a minimum counterexample, T1 = (G \ {v1}, {u1, u2}, L1) contains an

orchestra T ′1 = (G′, {u1, u2}, L1). Suppose T ′1 is a special orchestra. If the cut-edge of

T ′1 is not incident with u1, then u1 is in a triangle u1v2z1 of T ′1. Now z1 is not in V (C)

and hence |L(z1))| = 5. Yet |L1(z1)| = 3; so z1 is adjacent to v1 and the claim follows.

So we may suppose that T ′1 is an instrumental orchestra. Let F be the instrument of

T ′1 that contains u1. If F is a bellows, then let z1z2 be the edge in the base of F such

that z1, z2 6= u. If F is a double bellows or a defective double bellows, let z1z2 be the

side of F not containing u1.

Suppose u2 6∈ {z1, z2}. Now |L1(z1)|, |L1(z2)| < 5 and yet v1 is not adjacent to

both z1 and z2. So we may assume that z2 ∈ V (C). As there is no chord of C with

lists of size less than five by Claim 2.8.5, it follows that z2 ∈ P2 and z1 6∈ C. Thus

z1 ∼ v1 and the lemma follows. So we may suppose that u2 ∈ {z1, z2}. But now it

follows that d(u1, u2) ≤ 2, contradicting Claim 2.8.6.

Claim 2.8.9. There exists x1, |L(x1)| = 5 such that x1 is adjacent to v1, v2.

Proof. By symmetry, there exists a neighbor z2 of v2, |L(z2)| = 5, such that z2 is

adjacent to a vertex with a list of size less than five in P1. As G is planar, we choose

z1, z2 such that z1 = z2. Call this vertex x1. Now x1 is adjacent to v1 and v2, and

|L(x1)| = 5.
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Note that x1 6∈ V (C) as otherwise u1v1x1 is the base of a bellows F as v1 is a not

a cutvertex by Claim 2.8.4. If F is fan, it must be that u1 ∼ x1 as there is no chord of

C whose ends have lits of size less than five by Claim 2.8.5. But then we can delete u1

and remove its color from L(v1) and L(x1) and find a harmonica by Theorem 2.7.8.

So T contains a special orchestra, a contradiction. So we may suppose that F is not a

fan. But then we delete u1, remove its color from L(v1) and remove the color c of x1 in

the non-extendable coloring of F from L(x1) and find a harmonica by Theorem 2.7.8.

So T contains a special orchestra, a contradiction.

By symmetry there exists x2 6∈ V (C), |L(x2)| = 5 such that x2 is adjacent to

w1, w2.

Claim 2.8.10. (1) Either there exists i ∈ {1, 2} such that the only edge uv with

u ∈ N(vi), |L(u)| = 5 and v ∈ P3−i, |L(v)| < 5, is x1v3−i, or,

(2) N(x1) ∩ (Pi \ {vi}) 6= ∅ for all i ∈ {1, 2}.

Proof. Suppose not. As (2) does not hold, we may assume without loss of generality

that N(x1) ∩ (P1 \ {v1}) = ∅. As (1) does not hold for i = 2, there exists uv,

u ∼ v2, |L(u)| = 5 and v ∈ P1, |L(v)| < 5 such that either u 6= x1 or v 6= v1. As

N(x1)∩ P = {v1}, it follows that u 6= x1. As (1) does not hold for i = 1, there exists

u′v′, u′ ∼ v1, |L(u′)| = 5 and v′ ∈ P2, |L(v′)| < 5 such that either u′ 6= x1 or v′ 6= v2.

As G is planar, it follows that either u = u′ or v′ = v2. In either case, u ∼ v1, v2 and

hence x1 is in the interior of the 4-cycle u1v1uv2, a contradiction.

A symmetric claim holds for x2, w1, w2.

Claim 2.8.11. x1 ∼ u1.

Proof. Suppose not. It follows that T1 contains a special orchestra T ′1 where the cut-

edge of T ′1 is u1v2, and similarly T2 contains a special orchestra T ′2 where the cut-edge

of T ′2 is u1v1.
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Suppose Claim 2.8.10(1) holds with i = 2. It follows that T2 contains a special

orchestra T ′2 where the cut-edge of T ′2 is u1v1. Let v1z1z2 be the triangle in the

harmonica of T ′2 which contains v1. But then z1z2 is an edge such that - without loss

of generality - z1 ∈ N(v2), |L(z1)| = 5 and z2 ∈ P1, |L(z2)| = 3, contradicting that

Claim 2.8.10(1) holds with i = 2. So we may suppose that Claim 2.8.10(1) does not

hold with i = 2. By symmetry, Claim 2.8.10(1) does not hold with i = 1 and hence

Claim 2.8.10(1) does not hold.

So Claim 2.8.10(2) holds. As Claim 2.8.10(2) holds and there is no chord of C

whose ends have lists of size less than five, it follows that x1 ∼ u2 and v1x1u2 is the

base of an even fan. Similarly, v2x1u2 is the base of an even fan. Hence T contains a

defective double bellows, a contradiction.

By symmetry, x2 ∼ u2. As d(u1, u2) ≥ 3 by Claim 2.8.6, {v1, x1, v2}∩{w1, x2, w2} =

∅.

Claim 2.8.12. For all i ∈ {1, 2}, if Claim 2.8.10(2) holds or Claim 2.8.10(1) holds

with i, then either there exists a vertex in P3−i adjacent to both x1 and x2, or, there

exists adjacent vertices z1, z2 in P3−i such that z1z2x2x1 is a 4-cycle.

Proof. By symmetry, it suffices to prove the claim for i = 2. Let z1 be the neighbor

of x1 in P1 closest to w1 in P1. Now T2 contains an orchestra T ′2. Suppose T ′2 is

a special orchestra. It follows from an argument similar to that given in the proof

of Claim 2.8.11 that w1u2 is the cut-edge of T ′2. Let w1z1z2 be the triangle in the

harmonica of T ′2 which contains w1. But then z1z2 is an edge such that - without

loss of generality - z1 ∈ N(v2), |L(z1)| = 5 and z2 ∈ P1, |L(z2)| = 3, and hence

Claim 2.8.10(1) does not hold with i = 2. So Claim 2.8.10(2) holds and it follows

that z1 = x1 and hence w1 ∼ x1. Therefore w1 is adjacent to both x1 and x2 as

desired.

So we may suppose that T ′2 is an instrumental orchestra. Note that there does not
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a cutvertex of T ′2 as then there would exists an edge z1z2 such that - without loss of

generality - z1 ∈ N(v2), |L(z1)| = 5 and z2 ∈ P1, |L(z2)| = 3, where z1, z2 6∈ {v1, x1}

contradicting that either Claim 2.8.10(2) holds or Claim 2.8.10(1) holds with i = 2.

Let F be the instrument in T ′2 with side x1z1 whose other side is closest to u2. It

follows since there is no such edge z1z2 as above that u2 is in F . If F is a bellows,

then z1 = w1 and the claim follows. If F is a double bellows, then z1 ∼ x2 and the

claim follows.

So we may suppose that F is a defective double bellows. Yet x2 must be the center

of the wheel. If x2 ∼ z1, the claim follows. So x2 6∼ z1. But then there exists z2 ∈ F

such that z1z2x2x1 is a 4-cycle. Yet z2 must be in P1 since z1 6∼ u2 as d(u1, u2) ≥ 3

by Claim 2.8.6.

An identical claim holds for the symmetric version of Claim 2.8.10.

Claim 2.8.13. For all i ∈ {1, 2}, either there exists a vertex zi in Pi adjacent to both

x1 and x2, or, there exists adjacent vertices zi, zi in Pi such that ziz
′
ix2x1 is a 4-cycle.

Proof. If Claim 2.8.10(2) holds, then the claim follows by applying Claim 2.8.12 with

i = 1 and again with i = 2. So we may suppose that Claim 2.8.10(1) holds. Without

loss of generality suppose Claim 2.8.10(1) holds with i = 2. By Claim 2.8.10, the

claim holds for i = 1. Moreover as Claim 2.8.10(1) holds with i = 2, z = v1 is

adjacent to both x1 and x2, or, there exists z1, z2 in Pi such that z1z2x2x1 is a 4-cycle

where z1 = v1.

Now it follows that (2) holds for the symmetric version of Claim 2.8.10 or that

(1) holds with i = 1. By the symmetric version of Claim 2.8.10(2), the claim holds

for i = 2. So claim holds for i = 1 and 2. This proves the claim.

Moreover, by these arguments, and symmetric arguments for P ′, we find that

either x ∼ w1 or x′ ∼ v1 or there exists z1 6= v1, w1 such that z1 ∈ V (C) and
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z1 ∼ x, x′. Similarly either x ∼ w2 or x′ ∼ v2 or there exists z2 6= v2, w2 such that

z2 ∈ V (C) and z2 ∼ x, x′.

Define L′(z) = L(z)\{L(u) : u ∈ {u1, u2}, u ∼ z}. Thus |L′(w1)|,|L′(w2)|,|L′(v1)|,|L′(v2)| ≥

2 and |L′(x1)|, |L′(x2)| ≥ 4. Consider the canvas (G \ {u1, u2}, S, L′) where S =

{v1, v2, w1, w2}. By Lemma 2.8.1, this has an L′-coloring of G \ {u1, u2} unless there

exists z ∈ {x1, x2} such that z is adjacent to all of S and |L′(z)| = 4. But an L′-

coloring of G \ {u1, u2} extends to an L-coloring of G, a contradiction. So we may

assume without loss of generality that x1 is adjacent to all of S and |L′(x1)| = 4. But

then x2 is in the interior of the 4-cycle u2w1x1w2, a contradiction.

Theorem 2.8.14. Let T = (G,P ∪P ′, L) be a canvas where P, P ′ are paths of length

at most one. Suppose that if P (resp. P ′) has length one, then the set of L-colorings

of P (resp P ′) is a democracy. If P (resp P ′) has length zero, then suppose that the

vertex of P has a list of size at most two. Further suppose that

(1) if |V (P )| = 2, P ′ = u′, |L(u′)| = 2, then d(P, u′) > 1;

(2) if P = u, P ′ = u′ and |L(u)| = |L(u′)| = 1, then d(u, u′) > 2;

(3) if |V (P )| = 2, P ′ = u′, |L(u′)| = 1, then d(P, P ′) > 3;

(4) if |V (P )| = |V (P ′)| = 2 then d(P, P ′) > 4.

If there does not exist an L-coloring of G, then there exists an essential chord of

the outer walk C of G whose ends have lists of size less than five.

Proof. Note that (1) follows Theorem 2.7.8. The rest follow from Theorem 2.8.3 as

an orchestra of the prescribed lengths yield chords whose ends have lists of size less

than five as desired.
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2.9 Reducing a Precolored Edge to a Government

In this section, we extend Theorem 2.8.14 to the case when |C1|, |C2| = 1. First a

definition that will be useful for the proof.

Definition (d-slicing). Let d > 0. Let T = (G,P ∪ P ′, L) be a canvas and let P be

a path such that d(P, P ′) > d.

We say that a canvas T ′ = (G′, P1 ∪ P ′, L′) is a d-slicing of T with respect to P

if all of the following hold:

(i) There exists a path P0 with both ends on the outer walk of G that divides G

into G1 and G′ where G1 includes P and G′ includes P ′.

(ii) P1 is a subpath of P0 of length at most one such that for all v ∈ V (P1), d(v, P ) ≤

d−1 and if |V (P1)| = 2, then the set of L′-colorings of P1 contains a government.

(iii) For all v ∈ V (G) with d(v, P ) ≥ d, v ∈ V (G′) and L′(v) = L(v).

(iv) If G′ has an L′-coloring, then G has an L-coloring.

Note that a d-slicing of T with respect to P is a d′-slicing of T with respect to P

for all d′ ≥ d such that d′ < d(P, P ′).

Theorem 2.9.1. Let d = 4. Let T = (G,P ∪ P ′, L) be a canvas where P is path of

length one and P ′ is a path of length at most one. Let P = p1p2 and suppose that

|L(p1)| = |L(p2)| = 1. Suppose that

(1) if P ′ = u and |L(u)| = 2, then d(P, u) > d+ 1;

(2) if P ′ = u and |L(u)| = 1, then d(P, u) > d+ 3;

(3) if P ′ = p′1p
′
2 and L(p′1) = L(p′2), |L(p′1)| = 2, then d(P, P ′) > d+ 4;

(4) if P ′ = p′1p
′
2 and |L(p′1)| = |L(p′2)| = 1, then d(P, P ′) > 2d+ 4;

64



.

If there does not exist an L-coloring of G, then there exists an essential chord of

the outer walk C of G whose ends have lists of size less than five.

Proof. Suppose not. Let T = (G,S, L) be counterexample with a minimum number of

edges where S = P ∪P ′. We may assume that T is L-critical; hence by Lemma 2.4.1,

every cutvertex of G or chord of G is essential and there is no vertex in the interior

of a 4-cycle. Let P = p1p2 and p1v1, p2v2 ∈ E(C). As d(P, P ′) > 1, v1, v2 6∈ V (P ′).

Let L(p1) = {c1} and L(p2) = {c2}. Let S(w) = L(w) \ {ci|w ∼ pi}.

The following claim is very useful.

Claim 2.9.2. There does not exist a d-slicing of T with respect to P .

Proof. Suppose not. Let T ′ = (G′, P1 ∪ P ′, L′) be a d-slicing of T with respect to

P . As T is a counterexample, there does not exist an L-coloring of G. Hence, by

property (iv) of d-slicing, there does not exist an L′-coloring of G′.

First suppose there exists an essential chord of the outer walk C ′ of G′ with

both ends having lists of size less than five. Let U be such a chord of C ′ closest

to P ′. As T is a counterexample, U is not a chord of C. Hence there is an end,

call it z of U such that z 6∈ V (C). Thus |L(z)| = 5 and yet |L′(z)| < 5. By

property (iii) of d-slicing, d(z, P ) ≤ d − 1. Hence d(U, P ) ≤ d − 1. Note then that

d(P, P ′) ≤ d(U, P ) + 1 + d(U, P ′) ≤ d+ d(U, P ′).

Consider T ′′ = (G′′, U ∪ P ′, L′) where U divides G′ into two graphs G1 and G′′

where G′′ is the one containing P ′. Note that by property (ii) of d-slicing, either P1 is

one vertex or a path of length one and there exists a set of L-coloring of P1 that is a

government. Either way, by Theorem 2.6.5, it follows that there exists a government

C for U such that every L-coloring φ ∈ C extends to an L′-coloring of G1. As there

does not exist an L′-coloring of G′, there does not exist an L′-coloring φ of G′′ with

φ � U ∈ C. Further note that as U was chosen closest to P ′, there does not exist an
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essential chord of the outer walk of G′′ with both ends having list of size less than

five.

Now if (1),(2), or (3) holds for T , apply Theorem 2.8.14 to T ′′ to find that

d(U, P ′) ≤ 1, 3, or 4 respectively. Hence d(P, P ′) ≤ d + 1, d + 3, or d + 4, re-

spectively, a contradiction. If (4) holds for T , apply (2) or (3) to T ′′ to find that

d(U, P ′) ≤ d+ 4 and hence d(P, P ′) ≤ 2d+ 4, a contradiction.

So we may suppose there does not exist an essential chord of C ′ with both ends

having lists of size less than five. Note again that by property (ii) of d-slicing, either

P1 is one vertex or a path of length one and there exists a set of L-coloring of P1 that

is a government. Furthermore d(P1, P ) ≤ d − 1 by property (ii) of d-slicing. Note

that d(P, P ′) ≤ d(P1, P
′) + d.

If (1),(2), or (3) holds for T , apply Theorem 2.8.14 to T ′ to find that d(P1, P
′) ≤ 1,

3, or 4 respectively. Hence d(P, P ′) ≤ d+1, d+3, or d+4, respectively, a contradiction.

If (4) holds for T , apply (2) or (3) to T ′ to find that d(U, P ′) ≤ d + 4 and hence

d(P, P ′) ≤ 2d+ 4, a contradiction.

Claim 2.9.3. There does not exists a chord U of C with an end v such that d(v, P ) ≤

d− 1.

Proof. Suppose not. Now U divides G into two graphs G1, G2 with P ∩ (G2 \U) = ∅

and P ′ ∩ (G1 \ U) = ∅. Now there must be an end of U with a list of size five as

otherwise T is not a counterexample. It now follows from Theorem 2.6.5 that there

exists a government C ′ for U such that every L-coloring φ ∈ C extends to an L-coloring

of G1.

Consider T ′ = (G2, U ∪P ′, L′). If (1),(2), or (3) holds for T , apply Theorem 2.8.14

to T ′ to find that d(U, P ′) ≤ 1, 3, or 4 respectively. Hence d(P, P ′) ≤ d+ 1, d+ 3, or

d + 4, respectively, a contradiction. If (4) holds for T , apply (2) or (3) to T ′′ to find

that d(U, P ′) ≤ d+ 4 and hence d(P, P ′) ≤ 2d+ 4, a contradiction.
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Claim 2.9.4. For i ∈ {1, 2}, |S(vi)| = 2.

Proof. Suppose not. Suppose without loss of generality that |L(v1)| ≥ 4 or c1 6∈ L(v1).

Let G′ = G \ p1 and let L′(v) = L(v) \ {c1} for all v ∈ N(p1) and L′ = L otherwise.

Now T ′ = (G′, p2 +P ′, L′) is a canvas as there is no chord of C incident with p1 whose

other end has a list of size less than five. Yet T ′ is a 2-slicing of T with respect to P ,

contradicting Claim 2.9.2.

Claim 2.9.5. There does not exist a cutvertex v of G.

Proof. Suppose there does. As T is critical, v is essential. Thus v divides G into

two graphs G1, G2 where V (P ) ∩ (V (G2) \ {v}) = ∅ and V (P ′) ∩ (V (G1) \ {v}) = ∅.

Suppose v ∈ V (P ). But then (G \ (P \ v), v + P ′, L) is a 1-slicing of T with respect

to P , contradicting Claim 2.9.2.

So we may suppose that v 6∈ V (P ) ∪ V (P ′). For i ∈ {1, 2}, let Li(v) be the set of

all colors c in L(v) such that coloring v with c does not extend to an L-coloring of Gi.

As T is critical, |L1(v)|+ |L2(v)| ≥ |L(v)| ≥ 3. Yet by Theorem 1.4.2, |Li(v)| ≥ 1 for

all i ∈ {1, 2}. Let T1 = (G1, P +v, L1) where L1(v) is as above and L1 = L otherwise.

Similarly let T2 = (G2, v + P ′, L2) where L2(v) is as above and L2 = L otherwise.

Suppose |L1(v)| = 2. By (1) applied to T1, it follows that d(v, P ) ≤ 3 ≤ d + 1.

Yet d(P, P ′) ≤ d(v, P ) + d(v, P ′). If (1) holds for T2, apply Theorem 2.8.14 to T ′′ to

find that there exists an essential chord whose ends have lists of size less than five, a

contradiction. If (2) or (3) holds for T2, apply Theorem 2.8.14 to find that d(v, P ′) ≤ 2

or 3 respectively. Hence d(P, P ′) ≤ d+3, or d+4, respectively, a contradiction. If (4)

holds for T , apply (2) to T ′′ to find that d(v, P ′) ≤ d+ 3 and hence d(P, P ′) ≤ 2d+ 3,

a contradiction.

So we may suppose that |L1(v)| = 1. By (2) applied to T1, it follows that d(v, P ) ≤

d+ 3. Hence |L2(v)| = 2. If (1) or (2) holds for T , then by Theorem 2.8.14 applied to

T2, there exists an essential chord of the outer walk of G2 whose ends have lists of size
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less than five, a contradiction. If (3) holds for T , then by Theorem 2.8.14 applied to

T2, d(v, P ′) ≤ 1 and hence d(P, P ′) ≤ d+ 4, a contradiction. If (4) holds for T , then

it follows from (1) applied to T2 that d(v, P ′) ≤ d+ 1 and hence d(P, P ′) ≤ 2d+ 4, a

contradiction.

As there does not exist a chord of C with both ends having size less than five,

we may consider the Thomassen reductions T1 = (G1, S, L1) and T2 = (G2, S, L2) for

v1, v2 respectively.

Claim 2.9.6. For i ∈ {1, 2}, there exists xi 6∈ V (C) such that xi ∼ p1, p2, vi, c1, c2 ∈

L(xi) and S(vi) ⊆ S(xi).

Proof. By symmetry it suffices to prove the claim for i = 1. So consider T1. As T is

a minimum counterexample, there exists a chord of the outer walk C1 of G1 whose

ends have lists in L1 of size at most four. As T is a counterexample, such a chord of

C1 is not also a chord of C.

Let U = u1u2 be the furthest such chord of C1 from P where u1 6∈ V (C). Now

U divides G into two graphs H1, H2 where we may assume without loss of generality

that P ∩ (H2 \ U) = ∅. As U is not a chord of C and |L1(u1)| < 5, we find that u1 is

adjacent to v1.

Suppose ΦT1(U, C) contains a government C ′. Now d(v, P ) ≤ 3 ≤ d for all v ∈ U .

But then T ′′ = (G′′, U ∪ P ′, L1) is a d-slicing of T with respect to P , contradicting

Claim 2.9.2.

So we may suppose that ΦT1(U, C) does not contain a government. By Theo-

rem 2.6.5, |ΦT1(U, C1)| = 1 and there exists a 1-accordion T ′1 in T1 from P to U . As

p1 is not in a chord of C by Claim 2.9.3, there exists x1 ∼ p2 such that x1p2 is a

chord of C1 and |L1(x1)| = 3. Yet x1p2 is not a chord of C. Hence x1 ∼ v1 and

L(x1) is the disjoint of L1(x1) and S(v1). As there is no vertex inside of the 4-cycle

p1v1x1p2, we find given the 1-accordion T ′1 that p1 ∼ x1. Hence, c1, c2 ∈ L1(x1) and
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thus S(v1) ⊆ S(x1). This proves the claim.

As G is planar, it follows that x1 = x2. Call this vertex x. Hence c1, c2 ∈ L(x)

and S(v1), S(v2) ⊆ S(x).

Claim 2.9.7. |S(v1) ∩ S(v2)| = 1.

Proof. Suppose not. As S(v1), S(v2) are lists of size two and both are a subset of

S(x), a list of size three, we find that |S(v1) ∩ S(v2)| ≥ 1. So we may assume that

S(v1) = S(v2). Let S(x)\S(v1) = {c}. Let T ′ = (G\P, x+P ′, L′) where L′(x) = {c},

L′(v1) = S(v1)∪{c}, L′(v2) = S(v2)∪{c} and L′ = L otherwise. Now d(x, P ) ≤ 1 ≤ d.

It follows that T ′ is a 2-slicing of T with respect to P , contradicting Claim 2.9.2.

So we may assume that S(v1) = {c3, c4}, S(v2) = {c3, c5}, and S(x) = {c3, c4, c5}.

For i ∈ {1, 2}, let si ∈ S \P such that si is closest to vi C \P ; let Pi be the path in C

from vi to si avoiding P ; let ui be the neighbor of x in Pi closest to si, as measured in

Pi. Let W1 be the bellows with base p1xu1 and W2 be the bellows with base p2xu2.

Note that these are the bases of bellows as T is L-critical. Further note that as d ≥ 3,

neither u1 nor u2 is in a chord of C.

Claim 2.9.8. For all i ∈ {1, 2}, then there are at least two colors in S(x) that extend

to a L-coloring of the base of Wi that does not extend to an L-coloring of Wi.

Proof. Suppose not. We may assume without loss of generality that there exists at

most one such color c for W1. Let L′(x) = L(x) \ {c, c1} if c exists and L′(x) =

L(x) \ {c1} otherwise. Let L′(w) = L(w) for all w ∈ G \ {x}. Let G′ = G \ (W1 \ {x})

and S ′ = S \ {p1}. Now T ′ = (G′, p2 + P ′, L′) is a 4-slicing of T with respect to P ,

contradicting Claim 2.9.2.

It follows that for all i ∈ {1, 2}, Wi is an exceptional odd fan or an exceptional

even fan. Hence, c3, c4 ∈ L(v) for all v ∈ W1 \ {x, u1} and c3, c5 ∈ L(v) for all

v ∈ W2 \ {x, u2}.
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If W1 is an exceptional odd fan, then there exists c6 ∈ L(u1) such that the only

non-extendable L-colorings of p1, x, u1 to W1 are c1, c3, c6 and c1, c4, c6 and hence

c6 6= c3, c4. Similarly if W2 is an exceptional odd fan, then there exists c7 ∈ L(u2)

such that the only non-extendable L-colorings of p2, x, u2 to W2 are c2, c3, c7 and

c2, c5, c7 and hence c7 6= c3, c5.

If W1 is an exceptional even fan, then the only non-extendable L-colorings of

p1, x, u1 to W1 are c1, c3, c4 and c1, c4, c3. If W2 is an exceptional even fan, then the

only non-extendable L-colorings of p2, x, u2 to W2 are c1, c3, c5 and c1, c5, c3.

Here are some useful claims before we break our analysis into cases.

Claim 2.9.9. For i ∈ {1, 2}, |L(ui)| = 3.

Proof. Suppose not. Suppose without loss of generality that |L(u1)| ≥ 4. Thus

u1 6= v1.

First suppose W1 is odd. Let L′(u1) = L(u1) \ {c6}, L′(x) = L(x) \ {c1}. Let

G′ = G \ (W1 \ {x, u1}). Now T ′ = (G′, p2 + P ′, L′) is a 3-slicing of T with respect to

P , contradicting Claim 2.9.2.

So we may suppose that W1 is even. Let L′(u1) = L(u1) \ {c3}, L′(x) = {c4},

L′(v2) = {c3, c4, c5}. Let G′ = G \ (P ∪ (W1 \ {x, u1})). Now T ′ = (G′, x + P ′, L′) is

a 3-slicing of T with respect to P , contradicting Claim 2.9.2.

Claim 2.9.10. If Wi is odd, then L(ui) \ {c5+i} = S(vi) or {c4, c5}.

Proof. Suppose not. Suppose without loss of generality that W1 is odd and yet

L(u1) \ {c6} 6= {c3, c4} or {c4, c5}. Let G′ = G \ (W1 \ {x}) \ p2. First suppose

c4 ∈ L(u1) \ {c6}. Let L′(v2) = L′(x) = {c3, c5} and L′(w) = L(w) \ (L(u1) \ {c6}) for

all w ∈ N(u1)∩V (G′) where w 6= x, and L′ = L otherwise. Now T ′ = (G′, x+P ′, L′)

is a 4-slicing of T with respect to P , contradicting Claim 2.9.2.

So we may suppose that c4 6∈ L(u1). Let L′(v2) = S(v2) ∪ {c4}, L′(x) = {c4},

L′(w) = L(w) \ (L(u1) \ {c6}) for all w ∈ N(u1) ∩ V (G′) where w 6= x, and L′ = L
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otherwise. Now T ′ = (G′, x+P ′, L′) is a 4-slicing of T with respect to P , contradicting

Claim 2.9.2.

Case 1: W1 and W2 are odd.

Let T ′ = (G′, u1 + P ′, L′) be the democratic reduction of x, u2 in (G \ (P ∪W1 ∪

W2 \ {u1, x, u2}), {u1, x, u2}∪P ′, S) with respect to L(u2) \ {c6} and centered around

u1. If every L′-coloring of G′ extends to an L-coloring of G, then T ′ is a 4-slicing of

T with respect to P , contradicting Claim 2.9.2.

But then it follows that L(u1) \ (L(u2) \ {c7} = c6. That is, L(u1) \ {c6} =

L(u2) \ {c7}. This implies that either v1 6= u1 or v2 6= u2. Suppose without loss of

generality that v1 6= u1. Hence, by Claim 2.9.10, L(u1) \ {c6} = {c3, c4} or {c4, c5}.

But this implies then that v2 6= u2. Hence, by Claim 2.9.10, L(u2) \ {c7} = {c3, c5}

or {c4, c5}. It now follows that L(u1) \ {c6} = L(u2) \ {c7} = {c4, c5}.

Let yu1 ∈ V (C) where y 6∈ W1. Let T ′ = (G′, y + P ′, L′) be the democratic

reduction of u1, x, u2 in (G \ (P ∪ W1 ∪ W2 \ {u1, x, u2}), {v1, x, u2} ∪ P ′, S) with

respect to {c4, c5} and centered around y. Now T ′ is a 4-slicing of T with respect to

P , contradicting Claim 2.9.2.

Case 2: One of W1,W2 is even and the other odd.

We may suppose without loss of generality that W1 is even and W2 is odd. As

W1 is an exceptional even fan, c3, c4 ∈ L(u1) and the only non-extendable L-colorings

of p1, x, u1 to W1 are c1, c3, c4 and c1, c4, c3. As W2 is odd, L(u2) \ {c7} = {c3, c5} or

{c4, c5} by Claim 2.9.10.

So we may assume that S(v1) ⊂ L(u1). Suppose c5 6∈ L(u1). Let T ′ = (G′, u1 +

P ′, L′) be the democratic reduction of x, u2 in (G\(P∪W1∪W2\{u1, x, u2})), {u1, x, u2}∪

P ′, S ′) with respect to L(u2)\{c7} and centered around u1 where S ′(u1) = L(u1)\S(x)

and S ′ = S otherwise. Now T ′ is a 4-slicing of T with respect to P , contradicting

Claim 2.9.2.

So we may assume that L(u1) = {c3, c4, c5}. Let yu1 ∈ V (C) where y 6∈ W1. Let
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T ′ = (G′, y + P ′, L′) be the democratic reduction of u1, x, u2 in (G \ (P ∪W1 ∪W2 \

{u1, x, u2}), {v1, x, u2} ∪ P ′, S) with respect to L(u2) \ {c7} and centered around y.

Now T ′ is a 4-slicing of T with respect to P , contradicting Claim 2.9.2.

Case 3: W1 and W2 are even.

As W1 is an exceptional even fan, c3, c4 ∈ L(u1) and the only non-extendable L-

colorings of p1, x, u1 to W1 are c1, c3, c4 and c1, c4, c3. Similarly as W2 is an exceptional

even fan, c3, c5 ∈ L(u2) and the only non-extendable L-colorings of p2, x, u2 to W2 are

c2, c3, c5 and c2, c5, c3.

Suppose that c4 ∈ L(u2). Let T ′ = (G′, u1 + P ′, L′) be the democratic reduction

of x, u2 in (G\ (P ∪W1∪W2 \{u1, x, u2})), {u1, x, u2}∪P ′, S) with respect to {c3, c4}

and centered around u1. Now T ′ is a 4-slicing of T with respect to P , contradicting

Claim 2.9.2.

So we may suppose that c4 6∈ L(u2). Let G′ = G \ (P ∪ W1 ∪ W2 \ {u1, u2}).

Let L′(u1) = L(u1) \ S(v1), L′(w) = L(w) \ {c4} for all w ∈ V (G′) ∩ N(x). Let

T ′ = (G′, u1 + P ′, L′). Now T ′ is a 3-slicing of T with respect to P , contradicting

Claim 2.9.2.

Theorem 2.9.11 (Two Precolored Edges). Let T = (G,P ∪P ′, L) be a canvas where

P ∪ P ′ are paths of length one and d(P, P ′) ≥ 14. If there does not exist an L-

coloring, then there exists an essential chord of the outer walk of G whose ends are

not in V (P ) ∪ V (P ′) but have lists of size less than five.

Proof. Let C be the outer walk of G. If there exists an essential chord of C incident

with a vertex of P , let P1 be the essential chord incident with a vertex of P closest

to P ′, and let P1 = P otherwise. Define P2 similarly for P ′. Apply Theorem 2.9.1

to the canvas T ′ = (G′, P1 ∪ P2, L) between P1 and P2. As d(P1, P2) ≥ 12 since

d(P, P ′) ≥ 14, there exists a chord U of the outer walk of G′ whose ends have lists of
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size less than five. Now U is also a chord of the outer walk of G. Furthermore, U is

not incident with a vertex of P or P ′ given how P1 and P2 were chosen.

2.10 Two Confederacies

In this section, we will further characterize the structure of orchestras which start

with two confederacies. This will allow us to prove that orchestras contain either a

harmonica or accordion whose length is proportional to that of the orchestra.

Definition. Let C be a collection of disjoint proper colorings of a path P = p1p2 of

length one. We say C is an alliance if either

(1) C = C1 ∪ C2 such that C1, C2 are dictatorships, |C(p1)|, |C(p2)| ≤ 3 and for all

i ∈ {1, 2}, if z is the dictator of Ci, then Ci(z) ∩ C3−i(z) = ∅, or,

(2) C = C1 ∪C2 ∪C3 where C1 is a dictatorship with dictator p1, C2 is a dictatorship

with dictator p2 and C3 is a democracy with colors C1(p1)∪ C2(p2) and C2(p1)∩

C1(p2) = ∅.

If (1) holds for C, we say C is an alliance of the first kind and if (2) holds for C

that C is an alliance of the second kind.

Lemma 2.10.1. Let T = (G,P, L) be a bellows with base P = p1p2p3 and let C be a

confederacy for p1p2. If |L(p3)| ≥ 4, then Φ(p2p3, C) contains an alliance.

Proof. By Theorem 2.7.2, we may assume that T is a turbofan or p1 ∼ p3. Let

C = C1 ∪ C2 be a confederacy where C1, C2 are distinct governments. Suppose that

T is a turbofan. By Lemma 2.3.5, there exists a unique coloring of P that does not

extend to an L-coloring of G. Let L′(p3) = L(p3) \ {φ(p3)}. Let c1, c2 ∈ C(p2). Let C ′i

be the set of all colorings φ of p2, p3 such that φ(p2) = ci and φ(p3) ∈ L′(p3). Hence

C ′1, C ′2 are dictatorships with dictator p2 such that C ′1(p2) 6= C ′2(p2). Thus C ′ = C ′1 ∪ C ′2

is an alliance as desired.
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So we may suppose that p1 ∼ p3. Suppose that C1 is a democracy and C1(p1) =

{c1, c2}. Let L′(p3) be a subset of L(p3) \ {c1, c2} of size two. For i ∈ {1, 2}, let

C ′i be all colorings φ of p2, p3 such that φ(p2) = ci and φ(p3) ∈ L′(p3). Hence C ′1, C ′2

are dictatorships with dictator p2 such that C ′1(p2) 6= C ′2(p2). Thus C ′ = C ′1 ∪ C ′2 is

an alliance as desired. So we may suppose that neither C1 nor by symmetry C2 is a

democracy.

Hence C1 and C2 are dictatorships. Suppose that the dictator of C1 is p1. Let

L′(p3) be a subset of L(p3) \ C1(p1) of size three. Let c1, c2 ∈ C1(p2). For i ∈ {1, 2},

let C ′i be all colorings φ of p2, p3 such that φ(p2) = ci and φ(p3) ∈ L′(p3). Hence C ′1, C ′2

are dictatorships with dictator p2 such that C ′1(p2) 6= C ′2(p2). Thus C ′ = C ′1 ∪ C ′2 is an

alliance as desired.

So we may suppose that p2 is the dictator of C1 and by symmetry also of C2.

Let L′(p3) be a subset of L(p3) of size three. Let c1 = C1(p2) and c2 = C2(p2). For

i ∈ {1, 2}, let C ′i be all colorings φ of p2, p3 such that φ(p2) = ci and φ(p3) ∈ L′(p3).

Now |C ′i| ≥ 2 for i = 1, 2. Hence C ′1, C ′2 are dictatorships with dictator p2 such that

C ′1(p2) 6= C ′2(p2). Let C ′ = C ′1 ∪ C ′2. Now by Theorem 1.4.2, all colorings in C ′ are in

Φ(P ′, C). Hence C ′ is an alliance as desired.

Lemma 2.10.2. Let T = (G,P, L) be a bellows with base P = p1p2p3. If C is an

alliance for p1p2 and C ′ is a confederacy for p2p3 such that |C(p2) ∪ C ′(p2)| ≤ 3, then

there exist φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of G.

Proof. Note that |C(p2)|, |C(p3)| ≥ 2. Hence as |C(p2)∪C ′(p2)| ≤ 3, C(p2)∩C ′(p2) 6= ∅.

We claim that there exists c ∈ C(p2) ∩ C ′(p2) such that there exists two colorings

φ in C or two colorings φ in C ′ with φ(p2) = c. Suppose |C(p2)| = 2. Hence C is an

alliance of the first kind. Now for all c ∈ C(p2) there exist two colorings φ ∈ C such

that φ(p2) = c as C is an alliance. Thus the claim follows with c ∈ C(p2) ∩ C ′(p2).

So we may suppose that |C(p2)| = 3. But then there is one c0 ∈ C(p2) such that

there exist two colorings φ ∈ C with φ(p2) = c as C is an alliance. Hence we may
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assume that c0 6∈ C ′(p2) as otherwise the claim follows with c = c0. So |C ′(p2)| = 2

as |C(p2) ∪ C ′(p2)| ≤ 3. But then there exists c ∈ C ′(p2) such that there exist two

colorings φ ∈ C ′ with φ(p2) = c as C is a confederacy. As c is also in C(p2), this proves

the claim.

Let L′(p2) = {c}, L′(p1) = {φ(p1)|φ ∈ C, φ(p2) = c}∪{c} and L′(p3) = {φ(p3)|φ ∈

C ′, φ(p2) = c} ∪ {c}. As c ∈ C(p2)∩ C ′(p2), |L′(p1)|, |L′(p3)| ≥ 2. Furthermore, by the

claim above either |L′(p1)| ≥ 3 or |L′(p3)| ≥ 3. Hence by Theorem 1.4.2, there exists

an L′-coloring of G. But this implies there exist φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′

extends to an L-coloring of G as desired.

Lemma 2.10.3. Let T = (G,P ∪ P ′, L) be a double bellows, C be a democracy for P

and C ′ be a democracy for P ′. Then there exist φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′

extends to an L-coloring of G.

Proof. Let x be the center of T . Let P = p1p2, P ′ = p′1p
′
2 such that T1 = (G1, p1xp

′
1, L)

is a bellows with base p1xp
′
1, T2 = (G2, p2xp

′
2, L) is a bellows with base p2xp

′
2 and

V (G1)∩V (G2) = {x}. Let L1 be the colors of the democracy C and L2 be the colors of

the democracy C ′. Suppose that neither T1 nor T2 is a turbofan. Hence G is a wheel.

Let c ∈ L(x)\L1∪L2. Now let L′(w) = L(w)\{c} for all w ∈ G\({x}∪V (P )∪V (P ′)),

L′(p1) = L′(p2) = L1 and L′(p′1) = L′(p′2) = L2. Now |L′(w)| ≥ 2 for all w ∈ G \ {x}.

Hence by Theorem 1.4.3, either there exists an L′-coloring and the lemma follows or

L′(w) = L′(v) for all w, v ∈ G \ {x} and G is an odd wheel. But then there exists a

vertex v ∈ G \ ({x} ∪ V (P1) ∪ V (P2). Yet |L(v)| = 3. So by repeating the argument

above with c ∈ L(x) \ L(v), it follows that there exist an L-coloring as desired.

Lemma 2.10.4. Let T = (G,P ∪ P ′, L) be a double bellows, C be a dictatorship

for P = p1p2 with dictator p1 and C ′ be a democracy for P ′ = p′1p
′
2. Let L′(p2) =

C(p2) ∪ C(p1) and x be the center of the double bellows. If there do not exist φ ∈ C

and φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of G, then all of the following

hold:
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(1) C(p1) ∩ C ′(p′1) = ∅ and C(p1), C ′(p′1) ⊂ L(x).

(2) p1xp
′
1, p1xp

′
2 are the bases of exceptional odd fans of length at least three and

there exists c ∈ C ′(p′1) such that the non-extendable colorings are φ(p1) ∈ C(p1),

φ(x) ∈ L(x) \ (C(p1) ∪ C ′(p′1)) and φ(p′i) = c for all i ∈ {1, 2}.

Proof. Let T1 = (G1, p1xp
′
1, L

′) be the bellows with base p1xp
′
1, T2 = (G2, p1xp

′
2, L

′)

the bellows with base p1xp
′
2 where L′(p1) = C(p1), L′(p2) = C(p2) ∪ C(p1), L′(p′1) =

C ′(p′1), L′(p′2) = C(p′2) and L′ = L otherwise. We may assume that p1 6∼ p′1, p
′
2 as

otherwise G is a wheel and yet p1∪P ′ either has two colorings or a coloring with only

two colors; hence by Lemma 2.3.5, there exists an L′-coloring of G, a contradiction.

We claim that if T1 is not an exceptional even fan then T2 is an exceptional odd

fan where the non-extendable colors of x are L(x) \ (C(p1) ∪ C ′(p′1). To see this,

note that by Lemma 2.3.6, there exists c ∈ L′(p′1) such that any L′-coloring φ of

G \ (G1 \ {p1, x, p
′
1}) with φ(p′1) = c can be extended to an L′-coloring of G. But

there does not exist an L′-coloring of G. So color p′1 with c, then color p′2 from

L′(p2) \ {c}. By Lemma 2.3.8, this coloring extends to an L′-coloring of G2 unless

T2 is an exceptional odd fan with non-extendable colors L(x) \ (C(p1) ∪ C ′(p′1). This

proves the claim. In addition, as this is a set of size at most two, we find that

C(p1), C ′(p′1) ⊂ L(x) and C(p1) ∩ C ′(p′1) = ∅ also follow from the claim.

Thus if T1 is not an exceptional even fan, then T2 is an exceptional odd fan by the

claim. But then so is T1 by the claim and the lemma follows. So we may suppose that

T1 is an exceptional even fan and by symmetry so is T2. But then the non-extendable

colorings of x to T1 and to T2 are C ′(p′1). Hence color x from L(x)\(C(p1)∪C ′(p′1)), then

color p′1, p
′
2. This extends to a L′-coloring of G as x was colored with an extendable

color of T1 and T2, a contradiction.

Lemma 2.10.5. Let T = (G,P ∪ P ′, L) be a double bellows, C be a confederacy for

P = p1p2 such that C is the union of two dictatorships and C ′ be a confederacy for
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P ′ = p′1p
′
2 such that C ′ is the union of two dictatorships. Suppose |L(p′1)|, |L(p′2)| ≥ 3.

If there do not exist φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of

G, then C, C ′ are not alliances and Φ(P ′, C) contains an alliance.

Proof. Suppose not. Let x be the center of T . Let T1 be the bellows with base p1xp
′
1

and T2 be the bellows with base p1xp
′
2. Let T ′1 be the bellows with base p2xp

′
1 and

T ′2 be the bellows with base p2xp
′
2. We may assume without loss of generality that

p1, p
′
1, p
′
2, p2 appear in that order in the outer walk C of G. Let C ⊇ C1 ∪ C2 where

C1, C2 are distinct dictatorships with distinct dictators if possible and let C ′ ⊇ C ′1 ∪C ′2

where C ′1, C ′2 are distinct dictatorships with distinct dictators if possible.

Claim 2.10.6. If z1 ∈ V (P ) is the dictator of a dictatorship C3 ⊂ C and z2 ∈ V (P ′)

is the dictator of a dictatorship C4 ⊂ C ′ such that z1 6∼ z2, then one of the bellows with

base z1xz2 is an exceptional odd fan. Furthermore, if only one of the bellows B1 and

B2 with base z1xz2, say B1, is an exceptional odd fan then L(x) is the disjoint union

of C3(z1), C4(z2), the two non-extendable colors of B1 and the one non-extendable

color of B2.

Proof. Let B1 6= B2 be the two bellows with base z1xz2. We may suppose that neither

B1 nor B2 is an exceptional odd fan. Hence by Lemma 2.3.6, for all i ∈ {1, 2}, there

exists at most one color ci so that coloring x with ci does not extend to a coloring of

Bi. Let c3 ∈ L(x)\ (C3(z1)∪C4(z2)∪{c1, c2}). Now the coloring of z1, x, z2 with colors

C3(z1), c3, C4(z2) respectively extends to colorings of B1 and B2, a contradiction.

Similarly suppose B1 is an exceptional odd fan and B2 is not an exceptional odd

fan. It must be that L(x) = {c1, c2, c3, c4, c5} where c1, c2 are the non-extendable

colors of x in B1, C3(z1) = {c3}, C4(z2) = {c4} and c5 is the non-extendable color of

B2.

Claim 2.10.7. Suppose that p′1 is the dictator of C ′1 and p′2 is the dictator of C ′2.

Further suppose that p1 is the dictator of C1 and p1 6∼ p′1.
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Let L(x) = {1, 2, 3, 4, 5}. Then all of the following hold up to permutation of the

colors of L(x):

(1) T1, T2 are both exceptional even fans or both exceptional odd fans and C1(p1) =

{1};

(2) if T1, T2 are both even, then C ′(p′1) = {2, 3}, C ′(p′2) = {4, 5}, the colors of the

non-extendable democracy of xp′1 in T1 are 2, 3 and, for xp′2 in T2 are 4, 5;

(3) if T1, T2 are both odd, then C ′(p′1) = {2, 3}, C ′(p′2) = {4, 5}, C ′1(p′1) = {2},

C ′2(p′2) = {4} the non-extendable dictatorship for T1 has colors 3, 4 for x and for

T2 has color 2, 5 for x;

(4) p2 is the dictator of C2.

Proof. We may assume without loss of generality that C1(p1) = {1}. By Claim 2.10.6,

one of the bellows with base p1xp
′
1 is odd and one of the bellows with base p1xp

′
2 is

odd. This implies that T1, T2 are either both even or both odd. This proves (1).

Suppose T1, T2 are both even. Thus T1 +p′2 is odd and T2 +p′1 is odd. Hence T1 +p′2

must be an odd exceptional fan by Claim 2.10.6 applied to C1 and C ′2. Thus T1, T2 are

exceptional even fans and thus their non-extendable colorings are democracies C3, C4

by Lemma 2.6.3. Hence C2(p′1) = C3(p′1) has size two and C1(p′2) = C4(p′1) has size two.

Let C2(p′1) = {2, 3}. We may assume without loss of generality that C2(p′2) = {4}.

But then 4, 5 is a non-extendable coloring of T2 and hence C4(p′1) = C1(p′2) = {4, 5}.

It follows that C1(p′1) ⊂ {2, 3}. This proves (2).

Suppose T1, T2 are both odd. Hence T1, T2 are exceptional odd fans by Claim 2.10.6

applied to C1 and C ′1. Thus their non-extendable colorings are dictatorships C3, C4

with dictators p′1, p
′
2 respectively by Lemma 2.6.3. We may assume without loss of

generality that C3(p′1) = C1(p′1) = {2} and C3(x) = {3, 4}. But then 5 ∈ C4(x) and

C1(p′2) = {5}∪ C2(p′2). Suppose without loss of generality that C4(p′2) = C2(p′2) = {4}.
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But then 2 ∈ C4(x) as 2 6∈ C3(x). Thus C4(p′2) = {4, 5} and C4(x) = {2, 5}. This

proves (3).

Finally, we prove (4). Suppose that p2 is not the dictator of C2. But then p1 is the

dictator of C2. It follows from (2) or (3) that C2(p1) = L(x)\(C ′(p′1)∪C ′(p′2)) = C1(p1),

a contradiction.

Claim 2.10.8. Suppose that p′1 is the dictator of C ′1 and p′2 is the dictator of C ′2. Then

there exists i, j ∈ {1, 2} such that pi ∼ p′i and pi is the dictator of Cj.

Proof. Suppose without loss of generality that p1 is the dictator of C1. Suppose

p1 6∼ p′1. By Claim 2.10.7(1), T1, T2 are either both exceptional even fans or both

exceptional odd fans. By Claim 2.10.7(5), p2 is the dictator of C2. If p2 ∼ p′2 the

claim follows with i = j = 2. So we may suppose p2 6∼ p′2. By Claim 2.10.7(1) T ′1, T
′
2

are either both even or both odd. Yet T ′1 and T1 have different parity.

Without loss of generality we may suppose that T ′1, T
′
2 are odd and T1, T2 even. By

Claim 2.10.7(3) and (4), it follows that |C2(p1) ∩ C ′2(p′1)| = 1 and C1(p2) = C ′1(p′2) and

L(x) = C2(p1) ∪ C ′2(p′1) ∪ C1(p2). Now color p1, p
′
1 from C2(p1) ∩ C ′2(p′1), color T ′2 \ {x}

from C2(p1). Color T1 \{x} from C2(p1) and x from C ′2(p′1)\C2(p1). Hence there exists

an L-coloring φ of G with φ � P ∈ C and φ � P ′ ∈ C ′, a contradiction.

Claim 2.10.9. C ′1 and C ′2 have the same dictator.

Proof. Suppose not. We may assume without loss of generality that p′1 is the dictator

for C ′1 and p′2 is the dictator for C ′2. By Claim 2.10.8, we may suppose without loss of

generality that p2 ∼ p′2 and p2 is the dictator of C2. Suppose p1 is the dictator of C1.

Now T1, T2 are even. By Claim 2.10.7, we may suppose without loss of generality that

C1(p1) = {1}, C1(p2) = {4, 5}, C ′(p′1) = {2, 3} and C ′(p′2) = {4, 5}. Symmetrically, we

find that without loss of generality C ′(p2) = {4, 5}, C ′(p1) = {1, 2} and C ′1(p′1) = {3}.

Unfortunately, there does now not have to exist a coloring of G from extending

colorings in C and C ′. But we have determined that C and C ′ are not alliances. Indeed,

79



it is not hard to see that any other L-coloring of P ′ does extend to an L-coloring of G.

That is Φ(P ′, C) is the set of all L-coloring of P ′ not in C ′. Thus we may assume that

L(p′1) = {2, 3, x} and L(p′2) = {4, 5, y} as otherwise Φ(P ′, C) contains an alliance, a

contradiction. Now Φ(P ′, C) contains a dictatorship with dictator p1 in color x and a

dictatorship with dictator p2 in color y.

Suppose y 6= 2. Then Φ(P, C ′) contains a dictatorship with dictator p1 in color

2. Hence Φ(P ′, C) contains an alliance as there are two disjoint dictatorships with

dictator p1, one in color x and one in color 2, a contradiction. So we may suppose

y = 2. Similarly suppose x 6= 4. Then Φ(P, C ′) contains a dictatorship with dic-

tator p1 in color 2. Hence Φ(P ′, C) contains an alliance as there are two disjoint

dictatorships with dictator p2, one in color y and one in color 4, a contradiction. So

we may suppose x = 4. But now Φ(P ′, C) contains the alliance of the second kind:

{(4, 2), (4, 5), (3, 5), (2, 4)}, a contradiction.

So we may suppose that p2 is the dictator of C1. But then there exists i ∈ {1, 2}

such Ci(p2) ∩ C2(p′2) = ∅. But then there exists an L-coloring of G by Theorem 1.4.2,

a contradiction.

So we may assume that C ′1 and C ′2 have the same dictator z. Suppose without

loss of generality that p′1 is the dictator of C1 and C2. Note that in the proof of

Claim 2.10.9, the symmetry of P and P ′ is only broken in the case that C1 and C2

do not have the same dictator. It follows then by symmetry that C1 and C2 have the

same dictator z′.

Suppose z ∼ z′. We may assume without loss of generality that C1(z) 6= C2(z′).

But then there exists an L-coloring of G by Theorem 1.4.2, a contradiction.

So we may suppose that z 6∼ z′. Let T3, T4 be the distinct bellows with base

zxz′. By Claim 2.10.6, at least one of T3, T4 is an odd exceptional fan. Suppose

without loss of generality that T3 is an odd exceptional fan. Let x1 = V (P ) \ {z} and

x2 = V (P ′) \ {z′}. If T4 is an even fan of length two, then at least one of x1, x2 is
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in T3. Thus there exists y ∈ {x1, x2} such that the bellows Ti containing y is not an

even of length two, and hence contains a vertex y′ 6= z, z′, y, x in its outer walk.

Suppose without loss of generality that y = x1. Given y′, it follows that C1(y) ∩

C2(y) 6= ∅. Let c ∈ C1(y) ∩ C2(y). Now let C3 = {φ1, φ2} where φ1(y) = φ2(y) = c and

φ1(z) ∈ C1(z) and φ2(z) ∈ C2(z). So C3 is a dictatorship with dictator y. But now

C1 ∪ C3 have distinct dictators and therefore contradict the choice of C1, C2.

Lemma 2.10.10. Let T = (G,P ∪ P ′, L) be a double bellows or a defective double

bellows, C be a confederacy for P and C ′ be a confederacy for P ′. If there do not exist

φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of G, then C, C ′ are not

alliances and Φ(P ′, C) contains an alliance.

Proof. We may assume without loss of generality that T is a double bellows. Let

x be the center of T . Let P = p1p2, P ′ = p′1p
′
2 such that T1 = (G1, p1xp

′
1, L) is

a bellows with base p1xp
′
1, T2 = (G2, p2xp

′
2, L) is a bellows with base p2xp

′
2 and

V (G1) ∩ V (G2) = {x}. By Lemma 2.10.3, we may assume that C does not contain a

democracy. Let C = C1 ∪ C2 where C1, C2 are dictatorships.

Suppose C ′ contains a democracy C ′′. Suppose without loss of generality that p1 is

the dictator of C1. By Lemma 2.10.4 applied to C1 and C ′′, we find that T1 is an odd

fan and T2 is an even fan. Applying Lemma 2.10.4 then to C2 and C ′′, we find that p1

is also the dictator of C2. But then C1(p1) ∩ C2(p1) = ∅. Yet the only non-extendable

colorings φ of T1 require φ(p1) ∈ C1(p1), a contradiction.

So we may assume that C ′ does not contain a democracy. Hence C is an alliance

of the first kind. Let C ′ = C ′1 ∪ C ′2 where C ′1, C ′2 are dictatorships. But then by

Lemma 2.10.5, Φ(P ′, C) contains an alliance as desired.

Lemma 2.10.11. Let T = (G,P ∪ P ′, L) be a 2-connected instrumental orchestra

with sides P ∪P ′ where P, P ′ are paths of length one such that d(P, P ′) ≥ 3. Let C be
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a confederacy for P and C ′ be a confederacy for P ′. If there do not exist φ ∈ C and

φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of G, then T contains an accordion

as a subcanvas.

Proof. First suppose that one of the instruments of T is a double bellows or defective

double bellows. Let W = (G′, P1 ∪ P2, L) be such an instrument where P1, P2 are

the sides of W . As d(P, P ′) ≥ 3, we may assume without loss of generality that

P2 ∩ (P ∪ P ′) = ∅ and that P2 separates P1 from P ′. By Theorem 2.7.2, Φ(P1, C)

contains a confederacy C1 and Φ(P2, C ′) contains a confederacy C2. If there exist

φ ∈ C1 and φ′ ∈ C2 such that φ ∪ φ′ extends to an L-coloring of G′, then there exist

φ ∈ C and φ′ ∈ C such that φ ∪ φ′ extends to an L-coloring of G, a contradiction.

By Lemma 2.10.10 applied to W with C1 and C2, it follows that Φ(P2, C1) contains

an alliance C ′1. Now let W ′ 6= W be the other instrument of T with side P2. Suppose

W ′ = (G′′, P2 ∪ P3, L) is a double bellows or defective double bellows where P2, P3

are the sides of W ′. By Theorem 2.7.8, Φ(P3, C ′) contains a confederacy C ′2. By

Lemma 2.10.10 applied to W with C ′1 and C ′2, we find that there exist φ ∈ C ′1 and

φ′ ∈ C ′2 such that φ ∪ φ′ extends to an L-coloring of G′′, then there exist φ ∈ C and

φ′ ∈ C such that φ ∪ φ′ extends to an L-coloring of G, a contradiction.

So we may suppose that W ′ is a bellows. By Theorem 2.7.2, Φ(P3, C ′) contains

a confederacy C ′2 such that |C ′2(z) ∪ C ′1(z)| ≤ 3 where {z} = V (P2) ∩ V (P3), since

z 6∈ V (P )∪V (P ′). By Lemma 2.10.2 applied to W with C ′1 and C ′2, we find that there

exist φ ∈ C ′1 and φ′ ∈ C ′2 such that φ ∪ φ′ extends to an L-coloring of G′′, then there

exist φ ∈ C and φ′ ∈ C such that φ∪φ′ extends to an L-coloring of G, a contradiction.

So we may assume that all the instruments in T are bellows. Let C be the outer

walk of G. As T is not an accordion, there exists a vertex v ∈ V (C) \ (V (P )∪V (P ′))

such that |L(v)| ≥ 4. Let W = (G′, P1 ∪P2, L) be a bellows of T such that P1, P2 are

the sides of W and v ∈ V (P2) \ V (P1). We may suppose without loss of generality

that P2 separates a vertex of P1 from P ′. By Theorem 2.7.2, Φ(P1, C) contains a
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confederacy C1. By Lemma 2.10.1, ΦW (P2, C1) contains an alliance C ′1.

Now let W ′ 6= W be the other instrument of T with side P2. Now W ′ = (G′′, P2 ∪

P3, L) is a bellows where P2, P3 are the sides of W ′. By Theorem 2.7.2, Φ(P3, C ′)

contains a confederacy C ′2 such that |C ′2(z) ∪ C ′1(z)| ≤ 3 where {z} = V (P2) ∩ V (P3),

since z 6∈ V (P ) ∪ V (P ′). By Lemma 2.10.2 applied to W with C ′1 and C ′2, we find

that there exist φ ∈ C ′1 and φ′ ∈ C ′2 such that φ ∪ φ′ extends to an L-coloring of G′′,

then there exist φ ∈ C and φ′ ∈ C such that φ ∪ φ′ extends to an L-coloring of G, a

contradiction.

Definition (Bottleneck). Let T = (G,S, L) be a canvas and C be the outer walk of

G. Suppose there exists chords U1, U2 of C with no end in S such that U1 divides G

into two graphs G1, G
′
1 and U2 divides G into G2, G

′
2 where G1 ∩ S = G2 ∩ S. Let

G′ = G\(G1\U1)\(G2\U2). If the canvas T ′ = (G′, U1∪U2, L) contains an accordion

or a harmonica, call it T ′′, we say that T ′′ is a bottleneck of T .

Theorem 2.10.12 (Two Confederacies). Let T = (G,P ∪ P ′, L) be a canvas with

P, P ′ distinct edges of C with d(P, P ′) ≥ 6, C be a confederacy for P and C ′ be a

confederacy for P ′. If there do not exist φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ extends

to an L-coloring of G, then there exists a bottleneck (G′, U1 ∪ U2, L) of T where

dG′(U1, U2) ≥ dG(P, P ′)/2− 3.

Proof. Let C = C1 ∪ C2, C ′ = C ′1 ∪ C ′2 where C1, C2, C ′1, C ′2 are governments. We may

assume that T is a counterexample with a minimum number of vertices. By Theo-

rem 2.8.3 applied to T with C1 and C ′1, there exists an orchestra T ′ = (G′, P1 ∪ P2, L)

with sides P ′1, P
′
2 where G′ is a subgraph of G, and P1 ⊆ P , and P1 = P if C1 is a

democracy, and similarly P2 ⊆ P ′, and P2 = P ′ is C2 is a democracy.

First suppose T ′ is a special orchestra. But then this implies that there exists a

bottleneck (G′, U1 ∪ U2, L) of T where dG′(U1, U2) ≥ dG(P, P ′)/2− 3 as desired.

So we may suppose that T ′ is an instrumental orchestra. As T is a minimum

counterexample it follows that either T is a 2-connected instrumental orchestra or that
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there exists an essential cutvertex v of G. Suppose the former. By Lemma 2.10.11,

T contains an accordion as desired. But then it follows that there exists a bottleneck

(G′, U1∪U2, L) of T where dG′(U1, U2) ≥ dG(P, P ′)−5 ≥ dG(P, P ′)/2−3 as d(P, P ′) ≥

4.

So we may suppose there exists an essential cutvertex v of G. Thus v divides G

into two graphs G1, G2 such that P ∩ (G2 \ {v}) = ∅ and P ′ ∩ (G1 \ {v}) = ∅. Let

L′(w) = C(w) for w ∈ V (P ), L′(w) = C ′(w) for w ∈ V (P ′) and L′ = L otherwise.

First suppose v ∈ V (P )∪V (P ′). Suppose then without loss of generality that v ∈ P .

By Theorem 2.7.2 applied to (G2, P
′+v, L′), we find that there exists an L′-coloring of

G2, but this can be extended to an L′-coloring of G by Theorem 1.4.2, a contradiction.

So we may assume that v 6∈ V (P ) ∪ V (P ′). But then by Theorem 2.7.2, there

exists at most one color c ∈ L(v) such that there does not exist a coloring φ of G1

with φ �∈ C and φ(v) = c. Similarly there exists at most one color c′ ∈ L(v) such that

there does not exist a coloring φ of G1 with φ �∈ C and φ(v) = c. Yet |L(v)| ≥ 3 and

hence there exists c′′ 6= c, c′ with c′′ ∈ L(v). But then there exist φ ∈ C and φ′ ∈ C ′

such that φ ∪ φ′ extends to an L-coloring of G, a contradiction.

Corollary 2.10.13. Let T = (G,P ∪ P ′, L) be a critical orchestra with sides P, P ′

where P, P ′ are paths of length one. Let C1 be a government for P and C2 be govern-

ment for P ′. If there do not exist colorings φ1 ∈ C1, φ2 ∈ C2 such that φ1 ∪φ2 extends

to an L-coloring of G, then there exist at most four vertices in V (C)\(V (P )∪V (P ′)),

where C is the outer walk of G, with lists of size at least four.

Proof. Let C be the outer walk of G. It follows by definition that |L(v)| < 5 for

all v ∈ V (C) \ (V (P ) ∪ V (P ′)). Let X = {v ∈ V (C) \ (V (P ) ∪ V (P ′))||L(v)| = 4.

Suppose to a contradiction that |X| ≥ 5. If T is a special orchestra then |X| = 0 by

definition. So we may suppose that T is instrumental. For all x ∈ X, it follows by

definition that there exist two instruments W1,W2 such that x ∈ W1∩W2 and indeed

that x is in a side of both W1 and W2.
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First suppose there exists x ∈ X such that x is a cutvertex of G. As T is critical, x

is an essential curtvertex. Consider the canvases TP from P to x and TP ′ from P ′ to x.

By Theorem 2.7.8, there exists at least two colorings φ1, φ2 of TP such that φ1, φ2 ∈ C

and φ1(x) 6= φ2(x). Furthermore by Theorem 2.7.8, there exists a third coloring φ3 of

TP such that φ3 ∈ C and φ3(x) 6= φ1(x), φ2(x) unless TP contains a harmonica from

P to u. Suppose φ3 exists. Let L′(x) = {φ1(x), φ2(x), φ3(x)} and L′ = L otherwise.

By Theorem 1.4.2, there exists an L′-coloring φ of TP ′ with φ � P ′ ∈ C ′. But then φ

extends to an L-coloring φ of T with φ � P ∈ C, a contradiction.

So we may suppose that TP contains a harmonica from P to u. As T is critical, it

follows that TP is a harmonica from P tu u. By symmetry TP ′ is a harmonica from

P ′ to u. But then X = {x} by the definition of harmonica, a contradiction. So we

may suppose that no vertex in X is a cutvertex of G. Thus every vertex in X is in a

chord of C.

Next we claim that that there exist two disjoint chords U1, U2 of C such that

U1 ∩ X,U2 ∩ X 6= ∅. Suppose not. Thus all chords of C with an end in X must

intersect. As all chords of C are essential, it follows from the planarity of G that

these chords all have a common end u. But then there exist at least three distinct

chords U1 = ux1, U2 = ux2, U3 = ux3 where u ∈ U1 ∩ U2 ∩ U3 and x1, x2, x3 ∈ X. We

may suppose without loss of generality that U1 separates x2 from P and U3 separates

x2 from P ′. Hence u1x2u3 is the base of a bellows containing x2 as T is critical, a

contradiction as |L(x2)| = 4. This proves the claim.

Choose disjoint chords U1, U2 such that U1 is closest to P and U2 closest to P ′.

By Theorem 2.7.2, both Φ(U1, C1),Φ(U2, C2) contain a confederacy. Given how U1, U2

were chosen and as |X| ≥ 5, there exists a vertex x ∈ X \ (U1 ∪ U2) such that x

is in the instrumental orchestra T ′ between U1 and U2. It follows from the proof of

Lemma 2.10.11, that d(U1, U2) ≤ 2 and that T ′ contains a double bellows W with

U3, U4 such that U3 ∩U1 6= ∅ and U4 ∩U2 6= ∅. But then U1 ∪U3 and U2 ∪U4 are the
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bases of bellows. It follows then as |L(x)| = 4, that x ∈ U3 \ U1 or x ∈ U4 \ U2.

Suppose without loss of generality that x ∈ U3 \ U1. By Lemma 2.10.1, Φ(U3, C1)

contains an alliance. Meanwhile Φ(U4, C2) contains a confederacy. By Lemma 2.10.11

applied to W , there exist φ1 ∈ Φ(U3, C1), φ2 ∈ Φ(U4, C2) such that φ1 ∪ φ2 extends to

an L-coloring of W , a contradiction.

2.11 Bottlenecks

We conclude this chapter by proving the most substantial theorem which shows that

in a canvas, if the coloring of two edges far apart does not extend to a coloring of the

whole graph, then there exists a proportionally long bottleneck. We will generalize

this theorem to longer paths as well as collection of more than two paths in Chapter

3. We will also use this theorem as the basis of the proofs in Chapter 4.

Theorem 2.11.1 (Bottleneck Theorem: Two Edges). If T = (G,P ∪ P ′, L) is a

canvas with P, P ′ distinct edges of C with d(P, P ′) ≥ 14, then either there exists an

L-coloring of G, or there exists a bottleneck (G′, U1 ∪U2, L) of T where dG′(U1, U2) ≥

dG(P, P ′)/6− 22.

Proof. Suppose there does not exist an L-coloring of G. Let d = (P, P ′). By Theo-

rem 2.9.11, there exists an essential chord U0 of C such that d(U0, P ) ≤ 13. Now we

may assume that d ≥ 132 as otherwise U0 is the desired bottleneck.

Similarly, there exists an essential chord U6 of C such that d(U6, P ) ≥ d − 14.

We claim that there exists essential chords U1, U2, U3, U4, U5 of C such that id/6 −

7 ≤ d(Ui, P ) ≤ id/6 + 7. Suppose not. Let Wi be the essential chord of C with

d(Wi, P ) < id/6− 7 and there does not exist another such chord separating a vertex

of Wi from P ′. Similarly let W ′
i be the essential chord of C with d(W ′

i , P ) > id/6 + 7

and there does not exist another such chord separating a vertex of Wi from P ′.

But then d(Wi,W
′
i ) ≥ 14. By Theorem 2.9.11, there exists an essential chord Ui

of C separating a vertex of Wi from a vertex of W ′
i . Given how Wi was chosen, it
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follows that d(Ui, P ) ≥ id/6− 7. Similarly given how W ′
i was chosen, it follows that

d(Ui, P ) ≤ id/6 + 7. This proves the claim. Note that as d/6− 22 ≥ 0 as d ≥ 132, it

follows that all of the chords {Ui|0 ≤ i ≤ 6} are disjoint.

Let C0 = {φ} where φ is an L-coloring of P and C6 = {φ′} where φ′ is an L-

coloring of P ′. By Theorem 2.6.5, Φ(U1, C0) has a government or T [P,U1] is an

accordion but then T [U0, U1] is a bottleneck with d(U0, U1) ≥ d/6 − 21. So we may

suppose that Φ(U1, C0) has a government C1. Similarly, if Φ(U5, C6) does not have a

government, then T [U5, P
′] is an accordion but then T [U5, U6] is a bottleneck with

d(U5, U6) ≥ d/6− 22. So we may suppose that Φ(U5, C6) has a government C5.

By Theorem 2.7.2, Φ(U2, C1) contains a confederacy unless there exists a harmon-

ica from U1 to U2. But then T [U1, U2] is a bottleneck with d(U1, U2) ≥ d/6 − 15 as

desired. So we may suppose that Φ(U2, C1) contains a confederacy C2. Similarly we

may suppose that Φ(U4, C5) contains a confederacy C4.

Now d(U2, U4) ≥ d/3 − 15. As d/3 − 15 ≥ 6 since d ≥ 132, it follows from

Theorem 2.10.12 that T [U2, U4] contains a bottleneck T [U ′2, U
′
4] with d(U ′2, U

′
4) ≥

(d/3− 15)/2− 3 ≥ d/6− 22 as desired.
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CHAPTER III

LINEAR BOUND FOR ONE CYCLE

3.1 Introduction

In this chapter, we prove the following theorem which settles a conjecture of Dvorak

et al [27].

Theorem 3.1.1. Let G be a 2-connected plane graph with outer cycle C and L a

5-list-assignment for G. Then G contains a connected subgraph H with at most 29|C|

vertices such that for every L-coloring φ of C either

(i) φ cannot be extended to an L-coloring of H, or,

(ii) φ can be extended to an L-coloring of G.

Indeed, it will be necessary to prove a stronger version of Theorem 1.8.1 which

bounds the the number of vertices in terms of the sum of the sizes of large faces.

Another clever aspect to the proof is to incorporate the counting of neighbors of C

into the stronger formula. This allows the finding of reducible configurations close to

the boundary in a manner similar to the discharging method’s use of Euler’s formula.

In Section 3.2, we define a more general notion of criticality for graphs and canvases

which will be useful for proving Theorem 1.8.1. In Section 3.3, we prove a structure

theorem for said critical cycle-canvases. In Section 3.4, we prove Theorem 1.8.1.

In addition in this chapter we will prove a number of generalizations of Theo-

rem 1.8.1. In Section 3.4, we prove that there exists a graph as in Theorem 1.8.1 with

the stronger property that for every f of H every L-coloring of the boundary of f

extends to the subgraph of G contained in the interior of f . In Section 3.5, we prove
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that if the constant in Theorem 1.8.1 is modified, then outcome (ii) can be upgraded

to say that there exist 2c|G\C| extensions of φ for some constant c.

In Section 3.6, we show that such a linear bound implies that every vertex in H of

Theorem 1.8.1 has at most logarithmic distance from C. This idea will be very crucial

to the proofs in Chapter 5 and is a main reason why linear bounds are so fruitful.

Logarithmic distance also implies that vertices in H exhibit exponential growth, that

is, the size of the ball around a vertex grows exponentially with the radius of the ball.

In Section 3.7, 3,8 and 3.9, we extend Theorem 1.8.1, which is actually about cycle-

canvases, to the more general case of path-canvases. We prove a structure theorem for

critical path-canvases in Section 3.7, a linear bound in Section 3.8, and logarithmic

distance and exponential growth in Section 3.9.

In Sections 3.10, 3.11 and 3.12, we extend Theorem 2.11.1 to given a canvas with

any number of precolored paths of any length, then there exists a long bottleneck or

the size of the canvas is linear in the number of precolored vertices.

3.2 Critical Subgraphs

Definition (T -critical). Let G be a graph, T ⊆ G a (not necessarily induced) sub-

graph of G and L a list assignment to the vertices of V (G). For an L-coloring φ of

T , we say that φ extends to an L-coloring of G if there exists an L-coloring ψ of G

such that φ(v) = ψ(v) for all v ∈ V (T ). The graph G is T -critical with respect to the

list assignment L if G 6= T and for every proper subgraph G′ ⊂ G such that T ⊆ G′,

there exists a coloring of T that extends to an L-coloring of G′, but does not extend

to an L-coloring of G. If the list assignment is clear from the context, we shorten this

and say that G is T -critical.

We say a canvas (G,S, L) is critical if G is S-critical with respect to the list

assignment L.

Definition. Let G be a graph and T ⊂ V (G). For S ⊆ G, a graph G′ ⊆ G is an
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S-component with respect to T of G if S is a proper subgraph of G′, T ∩G′ ⊆ S and

all edges of G incident with vertices of V (G′) \ V (S) belong to G′.

For example, if G is a plane graph with T contained in the boundary of its outer

face and S is a cycle in G, then the subgraph of G drawn inside the closed disk

bounded by S, which we denote by IntS(G), is an S-component of G with respect to

T . Here is a useful lemma.

Lemma 3.2.1. Let G be a T -critical graph with respect to a list assignment L. Let

G′ be an S-component of G with respect to T , for some S ⊆ G. Then G′ is S-critical.

Proof. Since G is T -critical, every isolated vertex of G belongs to T , and thus every

isolated vertex of G′ belongs to S. Suppose for a contradiction that G′ is not S-

critical. Then, there exists an edge e ∈ E(G′)∩E(S) such that every L-coloring of S

that extends to G′ \ e also extends to G′. Note that e 6∈ E(T ). Since G is T -critical,

there exists a coloring Φ of T that extends to an L-coloring φ of G \ e, but does not

extend to an L-coloring of G. However, by the choice of e, the restriction of φ to S

extends to an L-coloring φ′ of G′. Let φ′′ be the coloring that matches φ′ on V (G′)

and φ on V (G)∩ V (G′). Observe that φ′′ is an L-coloring of G extending Φ, which is

a contradiction.

Lemma 3.2.1 has two useful corollaries. To state them, however, we need the

following definitions.

Definition. Let T = (G,S, L) be a canvas and S ′ ⊂ V (G). If G′ is a S ′-component

with respect to S, then we let T [G′, S ′] denote the canvas (G′, S ′, L).

Definition. Let T = (G,P, L) be a path-canvas and C be the outer walk of G. We

say a path P ′ in G is a span if the ends of P ′ have lists of size less than five and the

only internal vertices of P ′ with lists of size less than five are in P . Let δ(P ′) be the

path from the ends of P ′ in C that does not traverse a vertex of P \P ′. We define the

exterior of P ′, denoted by Ext(P ′) as the set of vertices in δ(P ′) ∪ Int(P ′ ∪ δ(P ′)).
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Definition. Let T = (G,S, L) be a cycle-canvas or path-canvas. If C ′ is a cycle in G,

we let T [C ′] denote the cycle-canvas (Int(C ′), C ′, L). If T is a path-canvas and P ′ is a

span of G, then we let T [P ′] denote the path-canvas (P ′ ∪Ext(P ′), P ′ ∪ δ(P ′), P ′, L).

Corollary 3.2.2. Let T = (G,S, L) be a critical canvas. If C ′ is a cycle in G such

that Int(C ′) 6= C ′, then T [C ′] is a critical cycle-canvas.

Proof. G′ = Int(C ′) is a C ′-component of G. As G is S-critical, G′ is C ′-critical.

Corollary 3.2.3. Let (G,P, L) be a critical path-canvas. If P is a span of T , then

T [P ] is a critical path-canvas.

Proof. G′ = P ′∪Ext(P ′) is a P ′-component of G. As G is S-critical, G′ is P ′-critical.

Another useful fact is the following.

Proposition 3.2.4. Let T = (G,S, L) be a canvas such that there exists a proper

L-coloring of S that does not extend to G. Then there exists a S-critical subgraph G′

of G such that S ⊆ G′.

Definition. Let T = (G,S, L) be a canvas and G′ ⊆ G such that S ⊆ G′ and G′ is

connected. We define the subcanvas of T induced by G′ to be (G′, S, L).

Thus in Proposition 3.2.4, the subcanvas of T induced by G′ is critical.

Corollary 3.2.5. Let T = (G,S, L) be a canvas such that there exists a proper L-

coloring of S that does not extend to G. Then T contains a critical subcanvas.

3.3 Critical Cycle-Canvases

The following theorem is an easy consequence of Theorem 1.4.2.

Theorem 3.3.1. (Cycle Chord or Tripod Theorem)

If T = (G,C, L) is critical cycle-canvas, then either
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(1) C has a chord in G, or

(2) there exists a vertex of G with at least three neighbors on C, and at most one

of the internal faces of G[v ∪ V (C)] is nonempty.

Proof. Suppose C does not have a chord. Let X be the set of vertices with at least

three neighbors on C. Let V (G′) = C ∪X and E(G′) = E(G[C ∪X])− E(G[X]).

We claim that if f is face of G′ such that f is incident with at most one vertex of f ,

then f does not include a vertex or edge of G. Suppose not. Let C ′ be the boundary

of f . As C has no chords and every edge with one end in X and the other in C is

in E(G′), it follows that C ′ has no chords. As T is critical, there exists an L-coloring

φ of G \ Int(C ′) which does not extend to G. Hence, there exists an L-coloring φ

of C ′ which does not extend to Int(C). Let G′ = Int(C) ∪ (C ′ \ C), S ′ = C ′ \ C,

L′(v) = φ(v) for v ∈ S and L′(v) = L(v)\{φ(x) : x ∈ C∩N(v)}. Consider the canvas

T ′ = (G′, S ′, L′). By Theorem 1.4.2, there exists an L’-coloring of T ′ and hence an

L-coloring of G which extends φ, a contradiction. This proves the claim.

As T is critical, G 6= C. As C has no chords, it follows from the claim above

that X 6= ∅.Let F be the internal faces of G′ incident with at least two elements of

X. Consider the tree whose vertices are X ∪ F where a vertex x ∈ X is adjacent to

f ∈ F is x is incident with f . Let v be a leaf of T . By construction, v ∈ X. Hence

at most one of the internal faces of G[v ∪V (C)] is incident with another vertex of X.

Yet all other faces of G[v ∪ V (C)] are incident with only one element of X, namely

v, and so by the claim above, these faces are empty as desired.

3.3.1 Deficiency

Definition. If G is a plane, we let F(G) denote the set of finite faces of G. We define

the deficiency of a cycle-canvas T = (G,C, L) as
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def(T ) = |V (C)| − 3−
∑

f∈F(T )

(|f | − 3)

.

Definition. If f is a face of a graph G, let δf denote the facial walk of f and G[f ]

denote the Int(δf). If T = (G,S, L) is a canvas and f is a face of G, let T [f ] denote

the canvas T [δf ], that is, (G[f ], δf, L).

Lemma 3.3.2. If T is a cycle-canvas and T [G′] is a subcanvas such that G′ is 2-

connected, then

def(T ) = def(T [G′]) +
∑

f∈F(G′)

def(T [f ])

.

Proof.

def(T [G′])+
∑

f∈F(G′)

def(T [f ]) = |V (C)|−3−
∑

f∈F(G′)

(|f |−3)+
∑

f∈F(G′)

(|f |−3)−
∑

f ′∈F(G[f ])

(|f ′|−3)

.

Every face of G is a face of exactly one T [f ],
∑

f∈F(G′)

∑
f ′∈F(G[f ])(|f ′| − 3) =∑

f∈F(G)(|f | − 3). Hence,

|V (C)| − 3−
∑

f∈F(G′)

(|f | − 3) +
∑

f∈F(G′)

(|f | − 3)−
∑

f∈F(G)

(|f | − 3).

As the middle terms cancel, this is just |V (C)| − 3 −
∑

f∈F(G)(|f | − 3) = def(T )

as desired.

Theorem 3.3.3. (Cycle Sum of Faces Theorem)

If T = (G,C, L) is a critical cycle-canvas, then def(T ) ≥ 1.

Proof. We proceed by induction on the number of vertices of G. Note that if T is a

cycle-canvas and G = C, then def(C) = 0. Apply Theorem 3.3.1.
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Suppose (1) holds; that is there is a chord U of C. Let C1, C2 be cycles such

that C1 ∩ C2 = U and C1 ∪ C2 = C ∪ U . Hence |V (C1)| + |V (C2)| = |V (C)| + 2.

Let T1 = T [C1] = (G1, C1, L) and T2 = T [C2] = (G2, C2, L). If f ∈ F(G), then

f ∈ F(G1) ∪ F(G2). Thus by Lemma 3.3.2, def(T ) = def(T1) + def(T2) + 1.

By Theorem 3.2.2, T1 and T2 are critical cycle-canvases (or empty). By induction,

def(Ti) ≥ 1 if Int(Ci) 6= Ci. As noted before, def(Ti) = 0 if Int(Ci) = ∅. In either

case, def(Ti) ≥ 0. Thus def(T ) ≥ 0 + 0 + 1 ≥ 1 as desired.

So we may suppose that (2) holds; that is, there exists v 6∈ V (C) such that v

is adjacent to at least three vertices of C and at most one of the faces of C ∪ v is

nonempty. First suppose that all the faces are empty, that is to say that V (G) =

V (C)∪ v. Now v must have degree at least 5 as G is C-critical. Thus, def(T ) ≥ 2 as

desired.

Let G′ = C ∪ v. So we may suppose that only one of the faces of F(G) is

nonempty. Let C ′ be the boundary of the non-empty face. Now, |V (C)| − |V (C ′)| ≥∑
f ∈ F(G) \ F(G′)(|f | − 3). That is, def(T ) ≥ def(T [C ′]). Yet by induction,

def(T [C ′]) ≥ 1 as Int(C ′) 6= C ′. Thus def(T ) ≥ 1 as desired.

Corollary 3.3.4. (Cycle Bounded Face Theorem)

Let (G,C, L) be a critical cycle-canvas. If f is an internal face of G, then |f | <

|V (C)|.

Proof. By Theorem 3.3.3, |V (C)| − 3 −
∑

f∈F(G)(|f | − 3) ≥ 1. Thus |V (C)| − 4 ≥∑
f∈F(G)(|f | − 3). As the terms on the right side are always positive, |V (C)| − 4 ≥

|f | − 3 for any internal face f of G. Thus |f | < |V (C)|.

3.4 Linear Bound for Cycles

To prove the linear bound for cycles, we shall prove a stronger statement instead.

First a few definitions.
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Definition. Let T = (G,C, L) be a cycle-canvas. We define v(T ) = |V (G \ C)|. We

also define the quasi-boundary of T , denoted by Q(T ), as {v 6∈ V (C) : ∃f ∈ F(G), v ∈

δf, δf ∩ V (C) 6= ∅}. We let q(T ) = |Q(T )|.

Fix ε, α > 0. Let s(T ) = εv(T ) + αq(T ), d(T ) = def(T )− s(T ).

Proposition 3.4.1. Let T be a cycle-canvas and T ′ = (G′, S, L) be a subcanvas. The

following hold:

• v(T ) = v(T ′) +
∑

f∈F(G′) v(T [f ]),

• q(T ) ≤ q(T ′) +
∑

f∈F(G′) q(T [f ]),

• s(T ) ≤ s(T ′) +
∑

f∈F(G′) s(T [f ]),

• If G′ is 2-connected, then d(T ) ≥ d(T ′) +
∑

f∈F(G′) d(T [f ]).

Proof. The first follows as every vertex of V (G \ C) is in exactly one of V (G′ \

C), {V (T [f ] \ δf) : f ∈ F(G′)} and every vertex in one of those sets is in V (G \ C).

The second follows from the claim that Q(T ) ⊆ Q(T [G′]) ∪
⋃
f∈F(G′) Q(T [f ]). To

see this claim, suppose that v ∈ Q(T ). Now v ∈ Q(T ) if and only if there exists a

path from v to a vertex u in C which is internally disjoint from G. If v ∈ G′, then P

does not cross G′ and yet u ∈ V (C ′); hence, v ∈ Q(T [G′]). So we may assume that

v ∈ δf for some f ∈ F(G′). Yet, it must be that u ∈ δf and that P does not cross

the graph δf ∪ Int(δf); hence, v ∈ Q(T [f ]).

The third follows from the first two. The fourth follows from the third and

Lemma 3.3.2.

Corollary 3.4.2. Let T = (G,C, L) be a cycle canvas. If U is a chord of C and

C1, C2 cycles such that C1 ∩ C2 = U and C1 ∪ C2 = C + U , then

d(T ) ≥ d(T [C1]) + d(T [C2]) + 1.
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If v is a vertex with two neighbors u1, u2 ∈ V (C) and C1, C2 cycles such that

C1 ∩ C2 = u1vu2 and C1 ∪ C2 = C + u1vu2, then

d(T ) ≥ d(T [C1]) = d(T [C2])− 1− (α + ε).

Proposition 3.4.3. Let T = (G,C, L) be a 2-connected cycle-canvas.

(i) If G = C, then d(T ) = 0.

(ii) If v(T ) = 0, then d(T ) = |E(G) \ E(C)|.

(iii) If v(T ) = 1, then d(T ) = |E(G) \ E(C)| − 3− (α + ε).

Proof. (i) If G = C, then v(T ) = q(T ) = s(T ) = 0. As def(T ) = 0, d(T ) = 0− 0 = 0.

(ii) If v(T ) = 0, then q(T ) = 0. Thus s(T ) = 0. As v(T ) = 0, def(T ) =

|E(G) \ E(C)| by Lemma 3.3.4. So d(T ) = |E(G) \ E(C)| as desired.

(iii) If v(T ) = 1, then q(T ) = 1. Thus s(T ) = α + ε. Let v ∈ V (G) \ V (C).

As G is 2-connected, deg(v) ≥ 2. Thus def(T ) = |E(G) \ E(C)| − 3. Combining,

d(T ) = |E(G) \ E(C)| − 3− (α + ε) as desired.

Corollary 3.4.4. Let T = (G,C, L) be a 2-connected cycle-canvas. If v(T ) ≤ 1, then

d(T ) ≥ 3− (α + ε) unless

(i) v(T ) = 0 and |E(G) \ E(C)| ≤ 2, or

(ii) v(T ) = 1 and |E(G) \ E(C)| ≤ 5.

We are now ready to state our generalization of the linear bound for cycles.

Theorem 3.4.5. Let ε, α, γ > 0 satisfying the following:

(1) ε ≤ α,

(2) 8(α + ε) ≤ γ,

(3) γ ≤ 1/2 + (α + ε).
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If T = (G,C, L) is a critical cycle-canvas and v(T ) ≥ 2, then d(T ) ≥ 3− γ.

Proof. Let T = (G,C, L) be a counterexample such that |E(G)| is minimized.

Let us note that as G is C-critical there does not exist a cutvertex or a separating

edge, triangle, or 4-cycle in G. Furthermore, deg(v) ≥ 5 for all v ∈ V (G) \ V (C).

Claim 3.4.6. v(T ) ≥ 4

Proof. Suppose not. Suppose v(T ) = 2. But then |E(G) \ E(C)| ≥ 9. Hence,

def(T ) ≥ 3 while s(T ) = 2(α + ε). Hence d(T ) ≥ 3 − 2(α + ε) which is at least

3− γ by inequality (2), contrary to the fact that T is a counterexample. So we may

suppose that v(T ) = 3. But then |E(G) \ E(C)| ≥ 12. Hence, def(T ) ≥ 3 while

s(T ) = 3(α+ ε). Hence d(T ) ≥ 3− 3(α+ ε) which is at least 3− γ by inequality (2),

contrary to the fact that T is a counterexample.

3.4.1 Proper Critical Subgraphs

Here is a remarkably useful lemma.

Claim 3.4.7. Suppose T0 = (G0, C0, L0) is a critical cycle-canvas with |E(G0)| ≤

|E(G)| and v(T0) ≥ 2. If G0 contains a proper C0-critical subgraph G′, then d(T0) ≥

4−γ. Furthermore, if |E(G0)\E(G′)|, |E(G′)\E(C)| ≥ 2, then d(T0) ≥ 4−2(α+ ε).

Proof. Given Proposition 3.4.3 and the fact that T is a minimum counterexample, it

follows that d(T0[f ]) ≥ 0 for all f ∈ F(G′). Moreover as G′ is a proper subgraph, there

exists at least one f such that Int(f) 6= ∅. For such an f , d(T [f ]) ≥ 1. Furthermore,

if |E(G0) \ E(G′)| ≥ 2, either there exist two such f ’s or d(T [f ]) ≥ 2− (α + ε).

Now d(T0) ≥ d(T [G′]) +
∑

f∈F(G′) d(T0[f ]) by Proposition 3.4.1. As noted above

though,
∑

f∈F(G′) d(T0[f ]) ≥ 1 and is at least 2− (α + ε) if |E(G0) \ E(G′)| ≥ 2.

So suppose v(T0[G′]) > 1. Then d(T0[G′]) ≥ 3− γ as T is a minimum counterex-

ample. Hence d(T0) ≥ 4−γ if |E(G0)\E(G′)| = 1 and d(T0) ≥ 5− (α+ ε)−γ, which

is at least 4− 2(α + ε) by inequality (2), as desired.
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So we may assume that v(T0[G′]) ≤ 1. Suppose v(T0(G′)) = 1. Then there

exists f ∈ F(G′) such that v(T0[f ]) ≥ 1. If v(T0[f ]) ≥ 2, then d(T0[f ]) ≥ 3 − γ

as T is a minimum counterexample. If v(T0[f ]) = 1, then d(T0[f ]) ≥ 2 − (α + ε)

by Proposition 3.4.3. In either case, d(T0[f ]) ≥ 2 − (α + ε). As above, d(T0) ≥

d(T0[G′]) + d(T [f ]) ≥ 2(2 − (α + ε)) = 4 − 2(α + ε), which is at least 4 − γ by

inequality (2), and the lemma follows as desired.

So suppose v(T0[G′]) = 0. As G′ 6= C ′, d(T0[G′]) ≥ |E(G′) \ E(C)| by Propo-

sition 3.4.3. As v(T0) ≥ 2, either there exists f ∈ F(G′) such that v(T [f ]) ≥ 2

or there exists f1, f2 ∈ F(G′) such that v(T0[f1]), v(T0[f1]) ≥ 1. Suppose the first

case. Then d(T0[f ]) ≥ 3 − γ as T is a minimum counterexample. Hence d(T0) ≥

|E(G′) \E(C)|+ 3− γ as desired. Thus if |E(G′) \E(C)| = 1, then d(T0) ≥ 4− γ as

desired, and if |E(G′) \ E(C)| ≥ 2, then d(T0) ≥ 5− γ which is at least 4− 2(α + ε)

by inequality (3). So suppose the latter. Then d(T0[f1]), d(T0[f2]) ≥ 2 − ε − α and

d(T0) ≥ 1 + 2(2− ε) = 5− 2(ε+ α), as desired.

Claim 3.4.8. There does not exist a proper C-critical subgraph G′ of G.

Proof. Follows from Claim 3.4.7.

This implies that we may assume that C is precolored as follows. There exists a

proper coloring φ of C that does not extend to G as G is C-critical. However, φ must

extend to every proper subgraph H of G, as otherwise H contains a critical subgraph

and hence G contains a proper critical subgraph contradicting Claim 3.4.8. In this

sense, G is critical for every coloring of C that does not extend to G. For the rest of

the proof, we fix a coloring φ of C which does not extend to G.

For v 6∈ V (C), we let S(v) = L(v) \ {φ(u)|u ∈ N(v) ∩ V (C)}.

Claim 3.4.9. There does not exist a chord of C.
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Proof. Suppose there exists a chord e of C. Let G′ = C ∪ e. As v(T ) 6= 0, G′ is a

proper subgraph of G. Yet G′ is critical, contradicting Claim 3.4.8.

3.4.2 Dividing Vertices

Definition. Suppose T0 = (G0, C0, L0) is a cycle-canvas. Let v 6∈ V (C0) be a vertex

and suppose there exist two distinct faces f1, f2 ∈ F(G0) such that v ∈ δfi and

δfi ∩ V (C0) 6= ∅ for i ∈ {1, 2}. Let ui ∈ δfi ∩ V (C0). Consider cycles C1, C2 where

C1 ∩C2 = u1vu2 and C1 ∪C2 = C0 ∪u1vu2; note that we might have added the edges

u1v, u2v. If for all i ∈ {1, 2}, |E(T [Ci]) \E(Ci)| ≥ 2, then we say that v is a dividing

vertex. If for all i ∈ {1, 2}, if v(T [Ci]) ≥ 1, we say v is a strong dividing vertex. If v is

a dividing vertex and the edges u1v, u2v are in G, then we say that v is true dividing

vertex.

Claim 3.4.10. Suppose T0 = (G0, C0, L0) is a critical cycle-canvas with |E(G0)| ≤

|E(G)| and v(T0) ≥ 2. If G0 contains a true dividing vertex v, then d(T0) ≥ 3−3(α+

ε).

Proof. Let G′ = C ∪ {u1v, u2v}. Let C1, C2 be the two facial cycles of G′. Thus

|V (C)| + 4 = |V (C1)| + |V (C2)|. Now def(T [G′]) = |V (C)| − 3 − (|V (C1) − 3) −

(|V (C2)− 3) = −1. Moreover, s(T [G′]) = α + ε and hence, d(T [G′]) = −1− (α + ε).

Note that T [C1], T [C2] are critical cycle-canvases. If v(T [C1]) = 0, then |E(T [C1])\

E(C1)| ≥ 2 by the definition of dividing; hence, d(T [C1]) ≥ 2 by Proposition 3.4.3. If

v(T [C1]) = 1, then d(T [C1]) ≥ 2− (α+ ε) by Proposition 3.4.3. If v(T [C1]) ≥ 2, then

d(T [C1]) ≥ 3−γ as T is a minimum counterexample. In any case, d(T [C1]) ≥ 2−(α+ε)

as γ ≤ 1 + (α + ε) by inequality (3). Similarly, d(T [C2]) ≥ 2− (α + ε).

By Lemma 3.4.1, d(T ) ≥ d(T [G′]) + d(T [C1]) + d(T [C2]) ≥ (−1− (α+ ε)) + 2(2−

(α + ε)) = 3− 3(α + ε).

Claim 3.4.11. Suppose T0 = (G0, C0, L0) is a critical cycle-canvas with |E(G0)| ≤

|E(G)| and v(T0) ≥ 2. If G0 contains a strong dividing vertex v, then d(T0) ≥
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3− 3(α + ε).

Proof. If v is true, then the claim follows from Claim 3.4.10. So we may suppose that

v is not adjacent to u1. Note that v(T [C1]) ≥ 1 as v is strong. If v(T [C1]) = 1, then

that vertex is a true dividing vertex and the claim follows from Claim 3.4.10. So we

may assume that v(T [C1]) ≥ 2 and similarly that v(T [C2]) ≥ 2.

Let G′ = C ∪{u1v, u2v}. Let C1, C2 be the two facial cycles of G′. Thus |V (C)|+

4 = |V (C1)|+|V (C2)|. Now def(T [G′]) = |V (C)|−3−(|V (C1)−3)−(|V (C2)−3) = −1.

Moreover, s(T [G′]) = α + ε and hence, d(T [G′]) = −1− (α + ε).

So suppose that v is adjacent to u2. Note that T [C1], T [C2] are critical cycle-

canvases. As v(T [C1]) ≥ 2, d(T [C1]) ≥ 3 − γ as T is a minimum counterexample.

Similarly, d(T [C2]) ≥ 3− γ. By Lemma 3.4.1, d(T + {u1v}) ≥ d(T [G′]) + d(T [C1]) +

d(T [C2]). Yet, d(T ) = d(T +{u1v})− 1. Hence, d(T ) ≥ (−1− ε−α) + 2(3−γ)− 1 =

4− (α+ ε)− 2γ. This is at least 3− 3(α+ ε) as 2γ ≤ 1 + 2(α+ ε) by inequality (3).

So we may suppose that v is not adjacent to u2. For every c ∈ L(v), let φc(v) = c

and φc(x) = φ(x) for all x ∈ C. For every c ∈ L(v), φc does not extend to an L-

coloring of either Int(C1) or Int(C2). Thus there exists C ⊂ L(v) with |C| = 3 and

i ∈ {1, 2} such that φc does not extend to an L-coloring of Int(Ci) for all c ∈ C.

Suppose without loss of generality that i = 1. Let C ′1 = C1 ∪ {u1u2} \ {u1v, u2v}.

We claim that C ′1 has a proper coloring that does not extend in. If φ(u1) = φ(u2),

change φ(u1) to a new color in L0(u1) and L0(x) for x ∈ N(u1). Change L0(v) to

C ∪{φ(u1), φ(u2)}. Now φ is a coloring of C ′1 which does not extend to an L0 coloring

of Int(C1). Thus it contains a critical subcanvas. Using Claim 3.4.7 if necessary and

as v(T [C ′1]) ≥ 2, d(T [C ′1]) ≥ 3− γ by the minimality of T . Similarly as v(T [C2]) ≥ 2,

d(T [C2]) ≥ 3− γ.

Let us now count deficiencies. By Lemma 3.4.1, def(T+{u1v, u2v}) = def(T [G′])+

def(T [C1]) + def(T [C2]). Yet, def(T ) = def(T + {u1v, u2v}) − 2. Furthermore,

def(T [C1]) = def(T [C ′1]) + 1. Hence, def(T ) = def(T [C1]) + def(T [C2]) − 3 =
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def(T [C ′1]) + def(T [C2])− 2.

Next we count the function s. We claim that s(T ) ≤ s(T [C ′1]) + s(T [C2]). This

follows as every vertex of G \C is either in G′1 \C ′1 or G2 \C2. Moreover every vertex

of Q(T ) is either in Q(T [C ′1]) or Q(T [C2]).

Finally putting it all together, we find that

d(T ) ≥ d(T [C ′1]) + d(T [C2])− 2 ≥ 2(3− γ)− 2 = 4− 2γ

.

This is at least 3− 3(α + ε) as 2γ ≤ 1 + 3(α + ε) by inequality (3).

Claim 3.4.12. G does not have a true dividing vertex or strong dividing vertex.

Proof. This follows from Claims 3.4.10 and 3.4.11, and as 3(ε+α) ≤ γ by inequality

(2).

3.4.3 Tripods

Definition. Let T0 = (G0, C0, L0) be a cycle-canvas. We say a vertex v 6∈ V (C0) is a

quadpod if at most one face of G0[C0 ∪ v] is non-empty and |N(v) ∩ V (C0)| ≥ 4. We

say a vertex v 6∈ V (C0) is a tripod if exactly one face of G0[C0 ∪ v] is non-empty and

|N(v) ∩ V (C0)| = 3. Letting C0 = c1c2 . . . ck, we then say that a vertex v 6∈ V (C) is

a tripod for ci if v is a tripod, v ∼ ci, ci ∈ V (C), and the faces of G0[C0 ∪ v] incident

with ci are empty.

If v is a tripod or quadpod, we let C0[v] denote the boundary of the non-empty

face of G0[C0 ∪ v]. We let W (T0) denote the set of all quadpods of T0. We let X(T0)

denote the set of all tripods of T0. If X ′ ⊆ X(T0), we let C0[X ′] denote the boundary

of the non-empty face of G0[C0 ∪X ′].

Let X1 = X(T ), X2 = X(T [C[X1]]) and X3 = X(T [C[X1][X2]]). Let W1 = W (T ),

W2 = W (T [C[X1]]) and W3 = W (T [C[X1][X2]]).
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Claim 3.4.13. W1 = ∅ and X1 6= ∅.

Proof. By Claim 3.4.9, there does not exist a chord of C. Suppose there exists a

quadpod v of C. But then v is a true dividing vertex of G, contradicting Claim 3.4.12.

Hence W1 = ∅. By Theorem 3.3.1, it follows that X1 6= ∅.

Claim 3.4.14. C[X1] does not have a chord.

Proof. Suppose not. Let v1v2 be a chord of C[X1]. As C has no chord by Claim 3.4.9,

we may assume without loss of generality that v1 6∈ V (C). Thus v1 is a tripod of

C. Hence v2 is also a tripod, as otherwise v1 is not a tripod. But then v2 is a true

dividing vertex for C[v1]. As v(T ) ≥ 3 by Claim 3.4.6, v(T [C[v1]]) ≥ 2. Therefore by

Claim 3.4.10, d(T [C[v1]]) ≥ 3 − 3(α + ε). Yet d(T ) ≥ d(T [C[v1]]) − (α + ε). Thus,

d(T ) ≥ 3− 4(α + ε), a contradiction as 4(α + ε) ≤ γ by inequality (2).

Claim 3.4.15. C[X1] does not have a true or strong dividing vertex.

Proof. Suppose not. Let v be a true or strong dividing vertex of C[X1]. Let u1, u2

be as in the definition of true or strong dividing vertex. Let U = {u1, u2} \ C.

Hence |U | ≤ 2 and v is a true or strong dividing vertex of C[U ]. Yet, v(T [C[U ]]) ≥

v(T )− |U | ≥ 2 as v(T ) ≥ 4 by Claim 3.4.6. Therefore by Claims 3.4.10 and 3.4.11,

d(T [C[U ]]) ≥ 3−3(α+ε). Yet d(T ) ≥ d(T [C[U ]])−2(α+ε). Thus, d(T ) ≥ 3−5(α+ε),

a contradiction as 5(α + ε) ≤ γ by inequality (2).

Claim 3.4.16. W2 = ∅ and X2 6= ∅. Furthermore for all x2 ∈ X2, if x2 is a tripod

for v ∈ C[X1], then v ∈ V (C).

Proof. By Claim 3.4.14, there does not exist a chord of C[X1]. Suppose there exists

a quadpod v of C[X1]. But then v is a true dividing vertex of C[X1], contradicting

Claim 3.4.15. Hence W2 = ∅. By Theorem 3.3.1, it follows that X2 6= ∅.

Let x2 ∈ X2. Now x2 is tripod for some v in C[X1]. If v ∈ X1, then d(x1) = 4, a

contradiction. So v ∈ V (C) as desired.
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Claim 3.4.17. C[X1][X2] does not have a chord and hence X3 ∪W3 6= ∅.

Proof. Suppose not. Let v1v2 be a chord of C[X1][X2]. As C[X1] has no chord by

Claim 3.4.14, we may assume without loss of generality that v1 6∈ V (C) ∪X1. Thus

v1 ∈ X2. Hence v2 ∈ X2 as otherwise v1 is not a tripod of C[X1], a contradiction.

Let U = (N(v1) ∪N(v2)) ∩X1. Let C ′ = C[U ][v1, v2]. Let T ′ = T [C ′]. As d(v1) ≥ 5,

v(T ′) ≥ 1. Suppose v(T ′) ≥ 2. By Claim 3.4.7, d(T ′) ≥ 4 − γ. Yet d(T ) ≥

d(T ′)− 6(α+ ε). Thus, d(T ) ≥ 3− γ, a contradiction as 6(α+ ε) ≤ 1 by inequalities

(2) and (3).

So we may suppose that v(T ′) = 1. But then d(T ′) ≥ 3 − (α + ε) by Proposi-

tion 3.4.3. Hence, d(T ) ≥ 3− 7(α+ ε), a contradiction as 7(α+ ε) ≤ γ by inequality

(2).

Claim 3.4.18. If z ∈ X3 ∪ W3 and v ∈ C[X1][X2] ∩ N(z) such that the faces of

G[V (C) ∪X1 ∪X2 ∪ z] incident with v are empty, then v ∈ V (C).

Proof. Suppose not. As z 6∈ X2 ∪W2, z is adjacent to a vertex x2 ∈ X2.

As x2 6∈ X1, x2 is adjacent to a vertex x1 ∈ X1. As noted above, x2 is a tripod in

C[X1] for vertex of C.

If v ∈ X2, then d(v) = 4, a contradiction. So we may assume that v ∈ X1. Let

u1, u2 be the other neighbors of z in C[X1][X2] such that the cyclic orientation of

N(z) is u1vu2 . . ..

For i ∈ {1, 2}, if ui ∈ X2 and |N(ui)∩X1| = 2, then x1 ∈ N(ui)∩X1 as otherwise

there exists a vertex of degree four, a contradiciton. Note that if ui ∈ X1, then ui is

not adjacent to x1 by Claim 3.4.14.

If u1 ∈ X2 and N(x2) ∩ X1 = {v}, let φ(u1) ∈ S(u1) \ S(v). If u1 ∈ X2 and

N(x2)∩X1 = {v, u′1}, let φ(u′1) ∈ S(u′1) and φ(u1) ∈ S(u1)\ (S(v)∪{φ(u′1)}). Choose

φ similarly if u2 ∈ X2.

103



Let C ′ = C[v, u1, u
′
1, u2, u

′
2] and T ′ = (G′, C ′, L) = T [C ′]. Consider G′ \ vz. We

claim that G′ \ vz has a C ′-critical subgraph. This follows because if φ extends to an

L-coloring of G′ \ vz then φ could be extended to an L-coloring of G′ and hence of

G, a contradiction.

Thus G′ contains a proper C ′-critical subgraph G′′. We claim that v(T ′) ≥ 2.

Suppose not. Then v(T ′) = 1 and hence N(z) ⊆ V (C ′). But now if u1 ∈ X2, then

d(u1) = 4, a contradiction. So u1 ∈ X1 and similarly u2 ∈ X1. But then d(v) = 4, a

contradiction. This proves the claim that v(T ′) ≥ 2.

By Claim 3.4.7, we find that d(T ′) ≥ 4 − γ. Moreover, s(T ) ≤ s(T ′) + 5(α + ε),

def(T ) = def(T ′) and hence d(T ) ≥ d(T ′)− 5(α + ε). Thus d(T ) ≥ 4− γ − 5(α + ε),

which is at least 3− γ as 5(α+ ε) ≤ 1 by inequalities (2) and (3), a contradiction.

Claim 3.4.19. W3 = ∅ and X3 6= ∅. Furthermore if x3 ∈ X3, then N(x3) ∩ (X1 ∪

X2) = {x2} where x2 ∈ X2, x3 is not a tripod for x2 and N(x2) ∩X1 = {x1} and x2

is not a tripod for x1.

Proof. Let z ∈ W3 ∪X3. Let the neighbors of z in C[X1][X2] have cyclic orientation

u1 . . . uk. By Claim 3.4.18, ui ∈ V (C) for all i such that 2 ≤ i ≤ k − 1. As z 6∈ X1, it

follows that k ≤ 4.

Suppose that |N(z) ∩X2| ≥ 2. Thus u1, uk ∈ X2. It follows that |N(u1) ∩X1| =

|N(uk) ∩X1| = 1. Let N(u1) ∩X1 = {u′1} and N(uk) ∩X1 = {u′k}. Choose φ(u1) ∈

S(u1) and φ(uk) ∈ S(uk) such that either φ(u1) = φ(uk) or at least one of φ(u1), φ(uk)

is not in S(z). Now choose φ(u′1) ∈ S(u′1) \ {φ(u1)} and φ(u′k) ∈ S(u′k) \ {φ(uk)}.

Let C ′ = C[u1, u
′
1, uk, u

′
k] and T ′ = (G′, C ′, L) = T [C ′]. Consider G′ \ vz where

v ∈ {u1, uk} and, if φ(u1) 6= φ(uk), then φ(v) 6∈ S(z). We claim that G′ \ vz has a

C ′-critical subgraph. This follows because if φ extends to an L-coloring of G′ \ vz

then φ could be extended to an L-coloring of G′ and hence of G, a contradiction.

Thus G′ contains a proper C ′-critical subgraph G′′. Now v(T ′) ≥ 2 as otherwise

104



d(u1) = 4, a contradiction. By Claim 3.4.7, we find that d(T ′) ≥ 4 − γ. Moreover,

s(T ) ≤ s(T ′) + 4(α + ε), def(T ) = def(T ′) and hence d(T ) ≥ d(T ′)− 4(α + ε). Thus

d(T ) ≥ 4 − γ − 4(α + ε), which is at least 3 − γ as 4(α + ε) ≤ 1 by inequalities (2)

and (3), a contradiction.

So we may assume that |N(z) ∩X2| ≤ 1. As z 6∈ X2, |N(z) ∩X2| ≥ k − 2. Thus

k = 3 and |N(z) ∩ X2| = 1. This shows that W3 = ∅; by Theorem 3.3.1, it follows

that X3 6= ∅. We may assume without loss of generality that u1 ∈ X2 and hence

uk 6∈ X2. Let x2 = u1. Hence N(z) ∩ X2 = {x2}. It follows that |N(x2) ∩ X1| = 1

as otherwise there would be a vertex of degree four, a contradiction. But then by

Claim 3.4.16, x2 is not a tripod for x1. Thus the claim is proved if uk ∈ V (C).

So we may suppose that uk ∈ X1. But then the same argument as above produces

a contradiction as we may still choose φ(u1), φ(uk) such that either φ(u1) = φ(uk) or

at least one of φ(u1), φ(uk) is not in S(z), since |S(u1)|+ |S(uk)| = 3+2 > 4 = |S(z)|.

By Claim 3.4.19, there exists x1 ∈ X1, x2 ∈ X2, x3 ∈ X3 such that N(x3) ∩ (X1 ∪

X2) = {x2}, N(x2) ∩X1 = {x1}, x3 is not a tripod for x2 in C[X1][X2] and x2 is not

a tripod for x1 in C[X1].

Claim 3.4.20. deg(x1) = deg(x2) = 6, deg(x3) ∈ {5, 6} and there exists adjacent

vertices z1, z2 6∈ V (C) such that z1 ∼ x1, x2 and z2 ∼ x2, x3.

Proof. We claim that |NG\C(x1) \ Q(T )| ≤ 1. Suppose not. As v(T ) ≥ 3 by

Claim 3.4.6, v(T [C[v]]) ≥ 2. By the minimality of T , d(T [C[x1]]) ≥ 3 − γ. Yet,

q(T ) ≤ q(T [C[x1]])− 1 and v(T ) = v(T [C[x1]) + 1. Thus s(T ) ≤ s(T [C[x1]]) + ε− α.

As def(T ) = def(T [C[x1]]), we find that d(T ) ≥ d(T [C[x1]])+α−ε ≥ (3−γ)+(α−ε).

As α ≥ ε by inequality (1), d(T ) ≥ 3− γ, a contradiction.

As G is C-critical, deg(x1) ≥ 5. So suppose deg(x1) ≥ 7. As shown above,

|NG\C(x1) \Q(T )| ≤ 1. Thus |NG\C(x1) ∩Q(T )| ≥ 3 as deg(v) ≥ 7. Without loss of
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generality we may suppose that x1 is tripod for c2 and that the cyclic orientation of

N(v)∩(Q(T )∪V (C)) is c1c2c3q1 . . . q . . . q2 where c1, c2, c3 ∈ V (C) and q, q1, q2 ∈ Q(T ).

Thus q is a dividing vertex of C[x1]. Given the presence of q1 and q2, q is a strong

dividing vertex of C[x1], a contradiction as in Claim 3.4.15.

Suppose deg(x1) = 5. Note that N(x2) ∩ X1 = {x1}. Let C ′ = C[x1][x2] and

T ′ = (G′, C ′, L) = T [C ′]. Consider G′ \ x1z where z 6∈ V (C) ∪ {x2}. We claim that

G′ \ x1z has a C ′-critical subgraph. To see this, choose φ(x2) ∈ S(x2) \ S(x1). This

set is nonempty as |S(x2)| = 3, |S(x1)| = 2. Now if φ extends to an L-coloring of G′

then φ could be extended to an L-coloring of G, a contradiction, as x1 would see at

most four colors.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that v(T ′) ≥ 2 as x2

has degree at least five and thus has at least two neighbors in Int(C ′) \ V (C ′). By

Claim 3.4.7, d(T ′) ≥ 4− γ. Moreover, s(T ) ≤ s(T ′) + 2(α+ ε), def(T ) = def(T ′) and

hence d(T ) ≥ d(T ′)− 2(α+ ε). Thus d(T ) ≥ 4− γ − 2(α+ ε), which is at least 3− γ

as 2(α + ε) ≤ 1 by inequalities (2) and (3).

Similar arguments show that deg(x2) = 6, deg(x3) ∈ {5, 6} and that |NG\C[X1](x2)\

Q(T [X1])| ≤ 1. Moreover, |Q(T )| = |Q(T [C[x1]])| = |Q(T [C[x1][x2])|. Let z1, z2 be

such that N(x2) \ (C ∪ {x1, x3}) = {z1, z2} and the cyclic orientation around x2

is x1z1z2x3 . . .. As |Q(T [C[X1]])| ≤ |Q(T )|, we find that z1 ∼ x1. Similarly as

|Q(T [C[x1][x2])| ≤ |Q(T )|, we find that z2 ∼ x3 as desired.

Let φ(x1) ∈ S(x1) and C1 = C[x1]. Let S1(z) = S(z) \ {φ(x1)} if x1 ∼ z and

S1 = S otherwise. We may assume by Claim3.4.7 that T1 = T [C1] is φ-critical.

Claim 3.4.21. If z ∈ NG\C1(x2), then S1(x2) ⊆ S1(z).

Proof. Suppose that S1(x2) \ S1(z) 6= ∅. Let C ′ = C[x1][x2] and T ′ = (G′, C ′, L) =

T [C ′]. Consider G′ \ x2z. We claim that G′ \ x2z has a C ′-critical subgraph. To see

this, Choose φ(x2) ∈ S(x2) \ S(z). Now if φ extends to an L-coloring of G′ then φ
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could be extended to an L-coloring of G, a contradiction, as x2 and z could not have

the same color.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that v(T ′) ≥ 2 as z

has degree at least five and thus has at least two neighbors in Int(C ′) \ V (C ′). By

Claim 3.4.7, d(T ′) ≥ 4− γ. Moreover, s(T ) ≤ s(T ′) + 2(α+ ε), def(T ) = def(T ′) and

hence d(T ) ≥ d(T ′)− 2(α+ ε). Thus d(T ) ≥ 4− γ − 2(α+ ε), which is at least 3− γ

as 2(α + ε) ≤ 1 by inequalities (2) and (3), a contradiction.

Claim 3.4.22. If z ∈ NG\C1(x3) and z 6= x2, then S1(x3) ⊆ S1(z).

Proof. This follows in the same manner as Claim 3.4.21.

Claim 3.4.23. N(z1) ∩ V (C1) = x1.

Proof. Note that z1 ∼ x1. Suppose that |N(z1)∩V (C1)| ≥ 2. But then as deg(x1) = 6,

z1 is a true dividing vertex of C1, a contradiction as in Claim 3.4.15.

Claim 3.4.24. deg(x3) = 6.

Proof. Suppose not. By Claim 3.4.20, deg(x3) = 5. By Claim 3.4.21, S1(x2) ⊂ S1(x3)

and hence L(z2) \ (S1(x2) ∪ S1(x3)) = L(z2) \ S1(x3). Yet, |L(z2) \ S1(x3)| ≥ 2 as

|L(z2)| = 5, |S1(x3)| = 3. Let C ′ = C1[x2][x3] \ {x2x3} ∪ {x2z2, x3z2} and T ′ =

(G′, C ′, L) = T [C ′]. Consider G′ \ {x2z1, x3z3} where z3 6∈ V (C2) ∪ {x2}.

We claim that G′ \ {x2z1, x3z3} has a C ′-critical subgraph. To see this, choose

φ(z2) ∈ L(z2) \ S1(x3). If φ extends to an L-coloring of G′, then φ could be extended

to an L-coloring of G as x2 would see at most one color (that of z1) and hence φ could

be extended to x2 as |S1(x2)| = 2, but then φ could be extended to x3 as x3 would

see at most two colors (that of x2 and z3) and |S1(x3)| = 3. But this contradicts that

T is a counterexample.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that v(T ′) ≥ 2 given z1

and z3. Moreover, |E(G′)\E(G′′)| ≥ 2. In addition, we claim that |E(G′′)\E(C ′)| ≥ 2.
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Suppose not. Then there would exist a chord of C ′, which would imply that z2 is

adjacent to a vertex in C. But then z2 is a true dividing vertex of C[x1][x2]. So by

Claim 3.4.10, d(T [C[x1][x2]) ≥ 3 − 3(α + ε). Hence d(T ) ≥ 3 − 5(α + ε) which is at

least 3− γ as 5(α + ε) ≤ γ by inequality (2), a contradiction. This proves the claim

that |E(G′′) \ E(C ′)| ≥ 2.

By Claim 3.4.7, we find that d(T ′) ≥ 4−2(α+ε). Moreover, s(T ) ≤ s(T ′)+4(α+ε),

def(T ) = def(T ′)−1 and hence d(T ) ≥ d(T ′)−1−4(α+ε). Thus d(T ) ≥ 3−6(α+ε),

which is at least 3− γ as 6(α + ε) ≤ γ by inequality (2), a contradiction.

Let C ′ = C1[x2][x3] \ {x1x2, x2x3} ∪ {x1z1, z1z2, z2x3} and T ′ = (G′, C ′, L) =

T [C ′]. Consider G′ \ {x3z3, x3z4} where z3 6= z4 6∈ V (C) ∪ {x2, z2}. We claim that

G′ \{x3z4, x3z4} has a C ′-critical subgraph. To see this, choose φ(z2) ∈ L(z2)\S1(x3)

and φ(z1) ∈ S1(z1) \ (S1(x2) ∪ {φ(z2)}). If φ extends to an L-coloring of G′, then φ

could be extended to an L-coloring of G as x3 would see at most two colors(that of

z3 and z4) and hence φ could be extended to x3 as |S1(x3)| = 4, but then φ could be

extended to x2 as x2 would see at most one color (that of x3) and |S1(x2)| = 2. But

this contradicts that T is a counterexample.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that v(T ′) ≥ 2 as given

z3, z4. Moreover, |E(G′)\E(G′′)| ≥ 2. In addition, we claim that |E(G′′)\E(C ′)| ≥ 2.

Suppose not. Then there would exist a chord of C ′, which would imply that z2 or z3

is adjacent to a vertex in C. But then z1 or z2 is a true dividing vertex of C[x1][x2].

So by Claim 3.4.10, d(T [C[x1][x2]) ≥ 3− 3(α+ ε). Hence d(T ) ≥ 3− 5(α+ ε) which

is at least 3 − γ as 5(α + ε) ≤ γ by inequality (2), a contradiction. This proves the

claim that |E(G′′) \ E(C ′)| ≥ 2.

By Claim 3.4.7, we find that d(T ′) ≥ 4−2(α+ε). Moreover, s(T ) ≤ s(T ′)+5(α+ε),

def(T ) = def(T ′)−1 and hence d(T ) ≥ d(T ′)−1−5(α+ε). Thus d(T ) ≥ 3−5(α+ε),

which is at least 3− γ as 7(α + ε) ≤ γ by inequality (2), a contradiction.
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Let us state Theorem 3.4.5 with explicit constants while omitting quasi-boundary

from the formula.

Theorem 3.4.25. If (G,C, L) is a critical cycle-canvas, then |V (G) \ V (C)|/28 +∑
f∈F(G)(|f | − 3) ≤ |V (C)| − 3.

Proof. Let ε = α = 1/28 and γ = 4/7. Then apply Theorem 3.4.5.

We may now prove Theorem 1.8.1 which we restate in terms of critical cycle-

canvases.

Theorem 3.4.26. If (G,C, L) is a critical cycle-canvas, then |V (G)| ≤ 29|V (C)|.

Proof. |V (G) \ V (C)| ≤ 28|V (C)| by Corollary 3.4.25. Hence, |V (G)| = |V (G) \

V (C)|+ |V (C)| ≤ 29|V (C)|.

Definition. Let T = (G,C, L) be a cycle-canvas. Let G′ ⊆ G such that for every

face f ∈ F(G′), every L-coloring of the boundary walk of f extends to an L-coloring

of the interior of f . We say T ′ = (G′, C, L) is an easel for T .

Given that the linear bound is proved in terms of deficiency, which works well

for applying induction to a subgraph and its faces, we may actually prove a stronger

theorem about easels which we will use in Chapter 5.

Theorem 3.4.27. If T = (G,C, L) is a cycle-canvas, then there exists an easel

T ′ = (G′, C, L) for T such that |V (G′ \ C)| ≤ 28def(T ′).

Proof. We proceed by induction on the number of vertices of G. We may suppose

that T contains a critical subcanvas T0 = (G0, C, L), as otherwise the lemma follows

with T ′ = T . By Theorem 3.4.25, |V (G0\C)| ≤ 28def(T0). For every face f ∈ F(G0),

there exists by induction an easel T ′f = (G′f , Cf , L) for Tf = (Gf , Cf , L) such that

|V (G′f \ Cf )| ≤ 28def(T ′f ).
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Let G′ = G0∪
⋃
f∈F(G0) G

′
f and let T ′ = (G′, C, L). Now for every face f ∈ F(G′),

every L-coloring of the boundary walk of f extends to an L-coloring of the interior

of f . Moreover by Lemma 3.3.2, def(T0) +
∑

f∈F(G0) = def(T ′). Yet |V (G0 \ C)| +∑
f∈F(G0

|V (Gf \Cf )| = |V (G′ \C)|. Hence |V (G′ \C)| ≤ 28def(T ′) and the theorem

is proved.

Let T = (G,C, L) be a cycle-canvas and T ′ = (G′, C, L) be an easel for T . As

|V (G′ \ C)| ≥ 0, Theorem 3.4.27 also implies that def(T ) ≥ 0 and hence the size of

any face f ∈ F(G′) is at most |C|. Note that G′ could be equal to C though if every

L-coloring of C extends to an L-coloring of G. Suppose that T ′′ = (G′′, C, L) is an

easel for T ′. It follows that T ′′ is also an easel for T ′. Therefore it is of interest to

consider minimal easels for T . To that end, we make the following defintion.

Definition. Let T = (G,C, L) be a cycle-canvas and T ′ = (G′, C, L) an easel for T .

We say that T ′ is a critical easel for T if there does not exist T ′′ = (G′′, C, L) such

that G′′ ( G′ such that T ′′ is an easel for T ′, and hence also an easel for T as noted

above.

Thus Theorem 3.4.27 says that every critical easel T ′ = (G′, C, L) of T = (G,C, L)

satisfies |V (G′ \ C)| ≤ 28def(T ′).

3.5 Exponentially Many Extensions of a Precoloring of a
Cycle

Thomassen [51] proved that planar graphs have exponentially many 5-list-colorings

from a given 5-list-assignment. Indeed, he proved a stronger statement, restated here

in terms of path-canvases.

Theorem 3.5.1. [Theorem 4 in [51]] Let T = (G,P, L) be a path-canvas. Let r be

the number of vertices of C, the outer walk of G, such that |L(v)| = 3. If T is not a

bellows, then G has at least 2|V (G\P )|/9−r/3 distinct L-colorings unless |V (P )| = 3 and

there exists v ∈ V (G), |L(v)| = 4 and v is adjacent to all the vertices of P .
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Corollary 3.5.2. Let T = (G,C, L) be a cycle-canvas such that |C| ≤ 4. Let φ be an

L-coloring of G[V (C)], then logE(φ) ≥ |V (G \ C)|/9, where E(φ) is the number of

extensions of φ to G, unless |C| = 4 and there exists a vertex not in V (C) adjacent

to all the vertices of C.

Proof. Let v ∈ C. Let G′ = G \ {v}, P = C \ {v} and L′(w) = L(w) \ {φ(v)} for

all w ∈ N(v). Apply Theorem 3.5.1 to (G′, P, L′). Note that there does not exist a

vertex x ∈ V (G′) such that |L′(v)| = 3. Hence r = 0 and it follows that there are

2|V (G\C)|/9 distinct L-colorings of G unless |V (P )| = 3 and there exists x ∈ V (G) with

|L′(x)| = 4 and x adjacent to all vertices of P . But then |C| = 4 and there exists a

vertex adjacent to all the vertices of C.

Lemma 3.5.3. If T = (G,C, L) is a cycle-canvas and φ is an L-coloring of C that

extends to an L-coloring of G, then logE(φ) ≥ (|V (G \ C)| − 29(|C| − 3))/9, where

E(φ) is the number of extensions of φ to G.

Proof. We proceed by induction on the number of vertices of G. As ε ≤ 1/9, we may

assume that |C| ≥ 5 by Corollary 3.5.2. It also follows from Corollary 3.5.2, that

there does not exist a vertex-cut in G of size at most three as otherwise the lemma

follows by induction. Thus there is no separating triangle in G. Similarly if there

exists a separating 4-cycle C ′ in G, then there must exist a vertex in the interior of

C ′ adjacent to all the vertices of C ′ as otherwise the theorem follows by induction.

First suppose there exists v ∈ V (G) such that v has at least three neighbors on

C. Suppose that v has at least four neighbors on C. Let G′ = G[V (C) ∪ {v}] and

T ′ = (G′, C, L). As φ extends to an L-coloring of G, we can extend φ to v. For all f ∈

F(G′), it follows by induction that logETf (φ) ≥ (|V (Gf \Cf )|−29(|Cf |−3))/9 for all

f ∈ F(G′). Thus logE(φ) ≥
∑

f∈F(G′) logETf (φ) ≥ ((|V (G\C)|−1)−29(|C|−4))/9

as def(T ′) ≥ 1. The lemma follows.

So we may assume that v has exactly three neighbors on C. Let S(v) =∈ L(v) \

{φ(u)|u ∈ N(v) ∩ C}. Hence |S(v)| ≥ 2. Let c1, c2 ∈ S(v). For i ∈ {1, 2}, let
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φi(v) = ci and φi(u) = φ(u) for all u ∈ V (C). If both φ1 and φ2 extend to L-

colorings of φ, it follows by induction applied to the faces of G[V (C) ∪ {v}] that

logE(φi) ≥ ((|V (G \ C)| − 1) − 29(|V (C)| − 3))/9. Yet E(φ) ≥ E(φ1) + E(φ2) and

hence logE(φ) ≥ (|V (G \ C)| − 29(|V (C)| − 3))/9 and the lemma follows.

So we may suppose that φ1 does not extend to an L-coloring of G. Hence there

exists f ∈ F(G′) such that Tf contains a critical subcanvas T ′f = (Gf , Cf , L). By

Lemma 3.4.26, |V (Gf \ Cf )| ≤ 28def(Tf ). Let G′ = G[V (Gf ) ∪ V (C)]. Thus |V (G′ \

C)| = |V (G′ \ Cf |+ 1, def(Tf ) ≤ def(T ′). Hence |V (G′ \ C)| ≤ 29def(T ′).

As φ extends to an L-coloring of G, φ extends to an L-coloring of G′. For all

f ∈ F(G′), it follows by induction that logETf (φ) ≥ (|V (Gf \Cf )| − 29(|Cf | − 3))/9

for all f ∈ F(G′). Thus logE(φ) ≥
∑

f∈F(G′) logETf (φ) ≥ ((|V (G \ C)| − |V (G′ \

C)|)− 29(|C| − 3− def(T ′)))/9. The lemma follows.

Suppose there exists v ∈ V (G) such that v has two neighbors u1, u2 ∈ V (C)

and dC(u1, u2) ≥ 3. Consider the cycles C1, C2 such that C1 ∩ C2 = u1vu2 and

C1 ∪ C2 = C ∪ v. Note that |C1| + |C2| = |C| + 4. Let T1 = (G1, C1, L1) where

G1 = Int(C1) and T2 = (G2, C2, L) where G2 = Int(C2). Now extend φ to v and

apply induction to T1 and T2. By induction, logETi(φ) ≥ (|V (Gi\Ci)|−29(|Ci|−3))/9

for all i ∈ {1, 2}. Hence, logE(φ) ≥ (|V (G \C)| − 1)− 29(|C1|+ |C2| − 6))/9 and the

lemma follows as |C1|+ |C2| − 6 ≥ |C| − 4.

Finally we may suppose there does not exist v ∈ V (G) \ V (C) such that v has at

least three neighbors in C. Let G′ = G \ C and L′(v) = L(v) \ {φ(u)|u ∈ N(v) ∩ C}

for all v ∈ V (G′). By Theorem 3.5.1, there exist 2|V (G′)|/9−|S|/3 distinct L-colorings of

G extending φ where S = {v ∈ V (G′)||L′(v)| = 3}.

Let v ∈ S. Then v has at least two neighbors on C as |L′(v)| = 3. Thus v has

exactly two neighbors u1, u2 on C. But then dC(u1, u2) ≤ 2. Thus there exists a cycle

C ′ of size at most four containing the vertices u1, u2, v and perhaps another vertex on

C. But note then that there does not exists a vertex in the interior of C ′ as otherwise
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|C ′| = 4 and there exists a vertex adjacent to all the vertices of C ′, and hence adjacent

to all three vertices on C, a contradiction. It now follows that |S| ≤ |C|. Therefore

logE(φ) ≥ |V (G′)|/9−|S|/3 ≥ |V (G \C)|/9−|C|/3. As |C|/3 ≤ 29(|C|− 3)/9 since

|C| ≥ 4, the lemma follows.

3.6 Logarithmic Distance for Cycles

Lemma 3.6.1. If T = (G,S, L) is a critical canvas such that for all v ∈ V (G), if

|L(v)| < 5, then v ∈ S, then |V (G)| ≤ 29|V (S)|.

Proof. Note that |S| ≥ 3 by Theorem 1.4.2. Let W be the outer walk of G. Delete

all instances from W of vertices not in S and remove all instances from W but for

one for vertices in S. The result W ′ is a cycle on the vertices of S. Now add a new

vertex between every two consecutive vertices in W ′ unless there is already an edge

between those vertices that lies in the same place in the walk W . Then add edges

along the new walk so as to form a cycle C. Let G′ be the graph with vertex set

V (C) ∪ V (G) and edge set E(G) ∪ E(C). For every v ∈ V (C) \ V (S), let L(v) be

any set of five colors. Now (G′, C ′, L) is a critical cycle-canvas. By Theorem 3.4.25,

|V (G′) \ V (C ′)|/28 +
∑

f∈F(G′)(|f | − 3) ≤ |V (C ′)| − 3.

Moreover, every v ∈ V (C) \ V (S) is incident with a different face in F(G′) and

these faces have size at least four because a vertex was not added if its two consecutive

vertices already had an edge in the walk W . Hence,
∑

f∈F(G′)(|f | − 3) ≥ |V (C)| −

|V (S)|. Thus, |V (G)\V (S)|/28 = |V (G′)\V (C ′)|/28 ≤ |V (S)|−3. Hence, |V (G)| ≤

29|V (S)| as desired.

Theorem 3.6.2. Let T = (G,S, L) be a critical canvas and C be its outer walk. If

X is a separation of G into two graphs G1, G2 where S ∪V (C) ⊆ G1, then |V (G2)| ≤

29|X|.

Proof. Let G′ be the union of X and all components of G \X that do not contain a

vertex in S. Let X ′ be all vertices in G′ with that are in S ∪V (C) or have a neighbor
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in V (G) \ V (G′). Clearly, X ′ ⊆ X as S ∪ V (C) ⊆ G1. Note the vertices of X ′ lie on

the outer face of G′ as they are either in S or have a path to a vertex of S through

G \ G′ and yet the vertices of S lie on the outer face of G. Hence T ′ = (G′, X ′, L)

is a canvas. Furthermore as T is critical, T ′ is critical by Lemma 3.2.1 as G′ is an

X ′-component of G with respect to S. Yet every vertex in G′ is either in S ∪ V (C)

or has a list of size five. Thus every vertex in V (G′) \ X ′ has a list of size five. By

Theorem 3.6.1, |V (G′)| ≤ 29|X ′|. Hence |V (G2)| ≤ |V (G′)| ≤ 29|X ′| ≤ 29|X| as

desired.

Theorem 3.6.3. If T = (G,C, L) is a critical cycle-canvas, v0 ∈ V (G) and X ⊆

V (G) such that X separates v from C, then d(v0, X) ≤ 58 log |X| for all v ∈ V (G2) \

X.

Proof. We proceed by induction on the size of X. Let G1, G2 be graphs such that

X = V (G1) ∩ V (G2), C ⊆ G1 and v0 ∈ V (G2). By Theorem 1.4.2, |X| ≥ 2 as T is

critical. Thus, we may assume that d(v0, X) > 58, as otherwise the theorem follows.

Let Xi = {v ∈ V (G2)|d(v,X) = i} and let Hi = G[
⋃
j≥iXj]. As |V (G2)| ≤

29|V (X)| by Theorem 3.6.2, there exists i, 1 ≤ i ≤ 58 such that |Xi| ≤ |X|/2. As

d(v0, X) > 58, Xi separates v0 from C. By induction on Xi, d(v0, Xi) ≤ 58 log |Xi| ≤

58 log |X| − 58. Yet d(v,X) ≤ 58 for all v ∈ Xi and hence d(v0, X) ≤ 58 log C as

desired.

Theorem 3.6.4. [Logarithmic Distance for Cycle-Canvases] If T = (G,C, L) is a

critical cycle-canvas, then d(v, C) ≤ 58 log |C| for all v ∈ V (G).

Proof. Follows from Theorem 3.6.3 with X = C.

Theorem 3.6.5. [Exponential Growth for Cycle-Canvases] If T = (G,C, L) is a

critical cycle-canvas and v0 ∈ V (G)\V (C), then for all k ≤ d(v0, C), |Nk(v0)| ≥ 2k/58.

Proof. Let k ≤ d(v0, C). Now Nk(v0) separates v0 from C. By Theorem 3.6.3,

k = d(v0, Nk(v0)) ≤ 58 log |Nk(v0)|. Hence |Nk(v0)| ≥ 2k/58 as desired.
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3.6.1 Critical Easels

We use similar proofs to derive logarithmic distance and exponential growth for crit-

ical easels.

Theorem 3.6.6. Let T = (G,C, L) be a cycle-canvas and T ′ = (G′, C, L) be a critical

easel for T . If X is a separation of G′ into two graphs G1, G2 where C ⊆ G1, then

|V (G2)| ≤ 29|X|.

Proof. Suppose not. Let G0 be the union of X and all components of G′ \X that do

not contain a vertex in C. Let X ′ be all vertices in G0 with that are in C or have

a neighbor in V (G′) \ V (G0). Clearly, X ′ ⊆ X as C ⊆ G1. Note the vertices of X ′

lie on the outer face of G0 as they are either in C or have a path to a vertex of C

through G′ \G0 and yet the vertices of C lie on the outer face of G′.

Let W be the outer walk of G0. Delete all instances from W ′ of vertices not in

X ′ and remove all instances from W but for one for vertices in X ′. The result W ′ is

a cycle on the vertices of X ′. Now add a new vertex between every two consecutive

vertices in X ′ unless there is already an edge between those vertices that lies in the

same place in the walk W . Then add edges along the new walk so as to form a cycle

C0. Let G′0 be the graph with vertex set V (C0)∪V (G0) and edge set E(G0)∪E(C0).

For every v ∈ V (C0) \ V (X ′), let L(v) be any set of five colors. Now T0 = (G0, C0, L)

is a cycle-canvas. By Theorem 3.4.27, there exists an easel T ′0 = (G′0, C0, L) for T0

such that d0(T ′0) ≥ 0, that is |V (G′0) \ V (C0)|/28 +
∑

f∈F(G′
0)(|f | − 3) ≤ |V (C0)| − 3.

Moreover, every v ∈ V (C0) \ X ′ is incident with a different face in F(G′0) and

these faces have size at least four because a vertex was not added if its two consecutive

vertices already had an edge in the walkW . Hence,
∑

f∈F(G′
0)(|f |−3) ≥ |V (C0)|−|X ′|.

Thus, |V (G0) \ X ′|/28 = |V (G′0) \ V (C0)|/28 ≤ |X ′| − 3. Thus G′0 \ (C0 \ X ′) is a

proper subgraph of G0 \ (C0 \X ′).

Let G′′ = G′ \ (G0 \ G′0). It follows that T ′′ = (G′′, C, L) is an easel for T ′.
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Moreover, G′′ is a proper subgraph of G′, contradicting that T ′ is a critical easel.

Theorem 3.6.7. Let T = (G,C, L) be a cycle-canvas and T ′ = (G′, C, L) be a critical

easel for T . If v0 ∈ V (G′) and X ⊆ V (G′) such that X separates v from C, then

dG′(v0, X) ≤ 58 log |X| for all v ∈ V (G2) \X.

Proof. See proof of Theorem 3.6.3.

Theorem 3.6.8. [Logarithmic Distance for Critical Easels] If T = (G,C, L) is a

cycle-canvas and T ′ = (G′, C, L) is a critical easel for T , then d(v, C) ≤ 58 log |C| for

all v ∈ V (G′).

Proof. Follows from Theorem 3.6.7 with X = C.

Theorem 3.6.9. [Exponential Growth for Critical Easels] Let T = (G,C, L) be a

cycle-canvas and T ′ = (G′, C, L) be a critical easel for T . If v0 ∈ V (G′) \ V (C), then

for all k ≤ d(v0, C), |Nk(v0)| ≥ 2k/58.

Proof. Let k ≤ d(v0, C). Now Nk(v0) separates v0 from C. By Theorem 3.6.7,

k = d(v0, Nk(v0)) ≤ 58 log |Nk(v0)|. Hence |Nk(v0)| ≥ 2k/58 as desired.

3.7 Critical Path-Canvases

We note that Theorem 2.3.4 can be restated in terms of criticality.

Theorem 3.7.1. If T = (G,P, L) is a critical path-canvas with |V (P )| = 3, then T

is a bellows.

We prove that something akin to Theorem 3.3.1 amazingly holds for critical path-

canvases.

Theorem 3.7.2. (Path Chord or Tripod Theorem)

If (G,P, L) is a critical path-canvas, C is the outer walk of G, then either

(1) there is an edge of G that is not an edge of P but has both ends in P , or
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(2) there is a chord of C with one end in the interior of P and the other end has

list of size three but is not in P , or

(3) there are two distinct chords of C whose common end has a list of size four but

is not in P and whose other ends are in the interior of P , (and the cycle made

by the chords and the subpath of P connecting their ends has empty interior)

(4) there exists a vertex v with list of size five with at least three neighbors on P

and all of the internal faces of G[v ∪ V (P )] is empty.

Proof. Suppose none of the above hold. We now claim that every L-coloring of P

extends to an L-coloring of G, contrary to the fact that T is critical. To see this, fix

an L-coloring φ of P . Let L′(v) = L(v) \ {φ(x) : x ∈ V (P ), x ∼ v} for all v 6∈ V (P ).

Let v1, v2 (not necessarily distinct) be the vertices of the infinite face adjacent to

the ends of P . Note then that |L′(v)| ≥ 3 for all v 6= v1, v2. This follows because if

|L(v)| = 3, then v does not have a neighbor in P as (2) does not hold, and if |L(v)| = 4,

then v does not have two neighbors in P as (3) does not hold. If |L(v)| = 5, then v

has at most two neighbors in P as otherwise (4) holds by the proof of Theorem 3.3.1.

Thus, |L′(v)| ≥ |L(v)| − 2 ≥ 3.

Let G′ = G \ P , S ′ = {v1, v2} and T ′ = (G′, S ′, L′). Suppose v1 = v2, then

|L′(v1)| ≥ 1. By Theorem 1.4.2 applied to T ′, there exists an L′-coloring of G′ and

hence φ extends to an L-coloring of G as desired. So we may assume that v1 6= v2. In

this case, |L′(v1)|, |L′(v2)| ≥ 2. By Theorem 2.2.2 applied to T ′, G′ has an L′-coloring

and hence φ extends to an L-coloring of G as desired.

3.7.1 Deficiency

Definition. (Inlets)

Let (G,P, L) be a path-canvas and C be the outer walk of G. Suppose that the

path P appears only once as a subwalk of C. Decompose the subwalk C−P into the
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sequence of subwalks between vertices with lists of size less than five that are not in

the interior of P . We call any such subwalk in the sequence which has length at least

two an inlet. If i is an inlet, we let |i| denote the length of the subwalk plus one. We

let I(T ) denote the set of inlets of T .

Definition. We define the deficiency of a path-canvas T as

def(T ) = |V (P )| − 3−
∑

f∈F(T )

(|f | − 3)−
∑
i∈I(T )

(|i| − 3)

.

Theorem 3.7.3. (Path Sum of Faces Theorem)

If T = (G,P, L) is a critical path-canvas, then def(T ) ≥ 0.

Proof. We proceed by induction on the number of vertices of G. First we claim

that G is 2-connected. Suppose not. Then there exists a cutvertex v of G. As v

is essential we find that v ∈ V (P ). Thus v divides G into two graphs G1, G2 and

P into two paths P1, P2 with P1 ⊂ V (G1) and P2 ⊂ V (G2). Let Ti = (Gi, Pi, L).

If Gi 6= Pi, then Ti is Pi-critical. Thus |V (P1)| + |V (P2)| = |V (P )| + 1. Moreover,∑
f∈F (T1)(|f | − 3) +

∑
f∈F(T2)(|f | − 3) =

∑
f∈F(T )(|f | − 3). Therefore, we need only

deduce how the inlets of T1, T2 and T relate. Basically, the inlets of T are just the

union of the inlets of T1 and T2, except that there could be a new inlet at v of size

three, or there is an inlet of T1 or T2 incident with v which then gets lengthened by

one, or there is an inlet in both T1 and T2 incident with v and they are then combined.

In all cases, we find that
∑

i∈I(T )(|i| − 3) ≤
∑

i∈I(T1)(|i| − 3) +
∑

i∈I(T2)(|i| − 3) + 2.

Combining all these formula shows that def(T ) ≥ def(T1) + def(T2) ≥ 0 + 0 = 0 as

desired.

Apply Theorem 3.7.2. Suppose (1) holds; that is, P has a chord in G. If the chord

is actually an edge between the two ends of P , we may apply Theorem 3.3.3, to find

that def(T ) ≥ 0. So we may assume the chord is not between the ends of P . Let P ′
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be the resulting inlet and C ′ be the cycle made by the chord. Consider the resulting

path and cycle-canvases. Now |V (P )| = |V (P ′)|+ |V (C ′)|−2. As F(T ) ⊆ F(T [P ′])∪

F(T [C ′]) and I(T ) ⊆ I(T [P ′]), we find that def(T ) = def(T [P ′]) + def(T [C ′]) + 1.

By Theorem 3.3.3, def(T [C ′]) ≥ 1 if Int(C ′) 6= ∅ and def(T [C ′]) = 0 if Int(C ′) =

∅. Similarly if P ′ = G′ then def(T [P ′]) = 0 and if P ′ 6= G′, then def(T [P ′]) ≥ 0

by induction. In either case then def(T [C ′]), def(T [P ′]) ≥ 0 and hence def(T ) ≥

0 + 0 + 1 = 1 as desired.

Suppose (2) or (3) holds; that is there is a chord U of C where one end is an

internal vertex of P and the other end a vertex not in P with list of size less than

five. Let C1, C2 be cycles such that C1 ∩C2 = U and C1 ∪C2 = C ∪U ; let P1 and P2

be paths such that P1 ∩ P2 = U and P1 ∪ P2 = P ∪ U and P1 ⊂ C1, P2 ⊂ C2. Hence

|V (P1)|+ |V (P2)| = |V (P )|+ 3.

By Theorem 3.2.3, T [P1] and T [P2] are critical path-canvases (or empty). As

F(T ) ⊆ F(T [P1]) ∪ F(T [P2]) and I(T ) ⊆ I(T [P1]) ∪ I(T [P2]). Thus def(T ) =

def(T [P1])+def(T [P2]). By induction, def(T [Pk]) ≥ 0 for k ∈ {1, 2} even if Gk = Pk.

So we find that def(T ) ≥ 0 as desired.

So we may suppose that (4) holds; that is, there exists v with list of size five

such that v is adjacent to at least three vertices of C and all of the internal faces of

P ∪ v are empty. Let P ′ be the new path. Consider the canvas T [P ′] = (G′, P ′, L).

Note that I(T ) ⊆ I(T [P ′]). Now, |V (P )| − |V (P ′)| ≥
∑

f∈F(T )\F(T [P ′])(|f | − 3).

Thus def(T ) ≥ def(T [P ′]). If P ′ 6= G′, then by induction def(T [P ′]) ≥ 0 and so

def(T ) ≥ 0 as desired. So we may suppose that P ′ = G′. In this case, def(T [P ′]) = 0.

Nevertheless as P ′ = G though, v has at least five neighbors on the boundary and so

|V (P )| − |V (P ′)| ≥
∑

f∈F(T )\F(T [P ′])(|f | − 3) + 2 and so def(T ) ≥ def(T [P ′]) + 2. As

def(T [P ′]) = 0, def(T ) ≥ 2 as desired.

Corollary 3.7.4. (Path Bounded Face Theorem)

Let T = (G,P, L) be a critical path-canvas. If f is an internal face of G, then
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|f | ≤ |V (P )|, and if i is an inlet, then |i| ≤ |V (P )|.

Proof. By Theorem 3.7.3, |V (P )| − 3−
∑

f∈F(T )(|f | − 3)−
∑

i∈I(T )(|i| − 3) ≥ 0. As

the terms on the right side are always positive, |V (P )| − 3 ≥ |f | − 3 for any internal

face f of G. Thus |f | ≤ |V (P )|. Similarly |V (P )| − 3 ≥ |i| − 3 for any inlet i. Thus

|i| ≤ |V (P )|.

Lemma 3.7.5. Let T = (G,P, L) be a critical path-canvas. If i is an inlet with

|i| ≥ |V (P )| − 1, then |i| = |V (P )| − 1 and either G is P plus a bellows whose base is

the first three or last three vertices of P , or, G is P plus an edge between two vertices

of P which have distance two in P .

Proof. We proceed by induction on the number of vertices of G. By Theorem 1.4.2,

|V (P )| ≥ 3. If |V (P )| = 3, then G is a bellows by Theorem 2.3.4 and the lemma

follows. So we may assume that |V (P )| ≥ 4. Apply Theorem 3.7.2 to T .

Suppose (1) holds. Then there is an edge e of G not in P but with both ends in

P . Consider P + e which has precisely one inlet, call it i with path P ′. If the two

ends do not have distance at most two in P , then |i| = |V (P ′)| ≤ |V (P )| − 2. If

Ext(P ′) = ∅, then the lemma follows immediately. Otherwise, by induction on T [P ′],

every inlet has size at most |V (P ′)| − 1 ≤ |V (P )| − 3 and the lemma follows. So we

may suppose that the ends have distance two in P and hence |V (P ′)| = |V (P )|−1. If

Ext(P ′) =6= ∅, then by induction, every inlet has size at most |V (P ′)|−1 = |V (P )|−2

and the lemma follows. So we may suppose that Ext(P ′) = ∅ and hence G = P + e

and the lemma follows.

Suppose (2) or (3) holds. That is, there is a chord of C, the outer cycle of G, with

one end an internal vertex of P and the other v not in P but with a list of size less

than five. Let P1, P2 be the resulting paths. Thus |V (P1)|+ |V (P2)| = |V (P )|+ 3. As

both P1, P2 have at least three vertices, |V (P1)|, |V (P2)| ≤ |V (P )|. If both have size

at most |V (P )| − 1, then the lemma follows unless one, say P1, has size |V (P )| − 1
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and empty exterior. In that case, the other, say P2, has size 4 and it is not hard to

see that what remains must be a bellows with base P2 \ v.

So we may assume without loss of generality that |V (P1)| = |V (P )|. It follows

from Theorem 1.4.2 that v must be incident with an edge in Ext(P1) (besides the

chord). Yet by induction on P1, either G is P1 + e where e is an edge with both ends

in P distance two, or G is a bellows whose base is the first or last three vertices of

P1. In the first case, v must be incident with e and hence the last three vertices must

be the base of a bellows. In the latter case, again the last three vertices must be the

base of a bellows.

Suppose (4) holds. That is, there is a vertex v with list of size five and at least

three neighbors on P and all of the internal faces of G[P ∪ v] are empty. Let i be

the inlet of G[P ∪ v] and P ′ its path. If v has at least five neighbors on P , then

|i| = |V (P ′)| ≤ |V (P )| − 2. Thus the lemma holds immediately if Ext(P ′) = ∅ and

by induction otherwise. If v has four neighbors on P , then |i| = |V (P ′)| = |V (P )|−1.

If Ext(P ′) 6= ∅, the lemma follows by induction. Yet if Ext(P ′) = ∅, then v has

degree four but a list of size five and hence G is not P -critical, a contradiction.

So we may assume that v has three neighbors on P . Moreover by a similar

argument it follows that these vertices are consecutive in P and that |i| = |V (P ′)| =

|V (P )|. By induction applied to P ′, we find that either there is an edge with both

ends in P or a bellows whose base if the first or last three vertices of P . Yet as v has

degree three and a list of size five, v must be incident with at least two other edges.

So we may assume there is a bellows whose base is the first or last three vertices of

P . Indeed, v must be in the base of that bellows. Moreover, v must be incident with

two vertices, so the bellows is actually a fan. It is easy to see then that v must be

a tripod for either the second or second to last vertex of P and thus T is P plus a

bellows on the first or last three vertices of P .
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3.8 Linear Bound for Paths

Definition. Let T = (G,P, L) be a path-canvas. We say a vertex v ∈ V (G) is

superfluous if v 6∈ V (P ) and there exists a span P ′ in G, |V (P ′)| = 3 such that

v ∈ Ext(P ′). We say a vertex is substantial if it is not superfluous. We define the

truncation of G, denoted by G∗, to be the subgraph of G induced by the substantial

vertices of G. We define the truncated outer walk, denoted by C∗, to be the outer

walk of G∗.

Note that if |V (P )| = 3, then V (G∗) = V (P ) trivially. We will proceed to show

that the number of vertices in G∗ is linear in the size of P . That is, the number of

vertices not in long fans on the boundary is linear in the size of P . Such a linear

bound for critical path-canvases will be instrumental for characterizing the structure

of canvases when S is not just one component. We shall first prove that |V (C∗)| is

linear in |V (P )|.

Let C = {v ∈ V (C)||L(v)| < 5}. We say that a chord of C involving an internal

vertex u in P and a vertex not in P is a short chord, if u is adjacent to an end vertex

of P . Let R(T ) = V (C∗ \ P ) and r(T ) = |R(T )|.

Theorem 3.8.1. Let ε ≤ 1/19 and γ = 2ε. If T = (G,P, L) is a critical path-canvas

with no short chord and |V (P )| ≥ 4, then εr(T ) ≤ |V (P )| − 3− γ.

Proof. We proceed by induction on the number of vertices. First we claim that if

|V (P )| = 4, that r(T ) ≤ 3. We may assume that P is induced as otherwise r(T ) = 0

and the claim follows. Now if there exists v 6∈ V (P ) such that v is adjacent to all

vertices of P , then r(T ) = 1 and the theorem follows. So now we may suppose without

loss of generality that P = p1p2p3p4 and there does not exist a vertex adjacent to all

of p2, p3, p4. Let u 6= p3 such that up4 is an edge in the outer walk C of G.

Now we may assume that |V (P )| ≥ 5 as 3ε + γ ≤ 1. Let φ be a non-extendable

coloring of P . Consider T ′ = (G \ {p2, p3, p4}, {p1, u}, L′) where L′(v) = L(v) \
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{φ(pi)|i ∈ {2, 3, 4}, v ∼ pi}. Now |L′(u)| ≥ 2. By Theorem 2.7.8, there exists a

harmonica T ′′ from p1 to u where T ′′ = (G′, {p1, u}, L′) and G′ ⊆ G \ {p2, p3, p4}.

As T ′′ is a harmonica, |L′(v)| = 3 for all v ∈ G′ \ {p1, u}. But this implies that

|V (G′) \ V (C)| ≤ 2, because there can be one vertex in G′ adjacent to p2, p3 and

another one adjacent to p3, p4. However, we now find that r(T ) ≤ 3 and the claim

follows.

Apply Theorem 3.7.2. Suppose (1) holds. That is, G = C; then V (C∗ \ P ) = ∅

and the formula follows.

Let P = p1 . . . pk. Suppose (2) or (3) holds. That is, C has a chord U = piv

where pi ∈ V (P ). By assumption U is not a short chord; that is, 3 ≤ i ≤ k − 2. Let

v1, v2 ∈ C be neighbors of pi such that v1 is closest to p1 and v2 is closest to pk. Let

P1 = p1 . . . piv1 and P2 = v2pi . . . pk. Now |V (P )|+ 3 = |V (P1)|+ |V (P2)|. Moreover,

as v1 chosen closest to p1, T [P1] has no short chord. By induction, εr(T [P1]) ≤

|V (P1)| − 3− γ. Similarly, εr(T [P2]) ≤ |V (P2)| − 3− γ.

Yet r(T ) ≤ r(T [P1]) + r(T [P2]) + 2. Hence εr(T ) ≤ |V (P1)| − 3 + |V (P2)| − 3 −

2γ + 2ε = |V (P )| − 3− γ + (2ε− γ). As γ ≥ 2ε, the formula holds as desired.

So we may suppose that (4) holds. That is, T has a tripod. If T has a tripod for pi

where 3 ≤ i ≤ k−2, we apply induction to P [v]. We find that εr(T ) ≤ |V (P )|−3−γ

as desired. So we may assume that T has no tripod for pi, 3 ≤ i ≤ k − 2.

Let φ be a coloring of P . Let PInt = P \ {p1, pk} and L′(v) = L(v) \ {φ(p) : p ∈

V (PInt), p ∼ v} for all v ∈ V (G) \ V (P ). As T has no tripod for pi, 3 ≤ i ≤ k − 2

and no short chord, then T ′ = (G \ PInt, {p1, pk}, L′) is a canvas. By Theorem 2.8.3,

T ′ contains an orchestra T ′′ from p1 to pk. Let C ′ be the walk in T ′′ from p1 to pk

which is not a subwalk of the outer walk in T .

Suppose T ′′ = (G′′, {p1, pk}, L′) is a special orchestra with cut-edge u1u2, where

u1 separates p1 from u2. Thus there are harmonicas from p1 to u1 and from p2 to u2.

As there are at least dG′′(p1, pk)/2 vertices in V (G′′) \ V (C) such that |L′(v)| = 3, we
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find that dG′′(p1, pk) ≤ 2(k − 1). However, r(T ) ≤ dG′′(p1, pk) unless u1, u2 6∈ V (C).

In that case, we find that r(T ) ≤ dG′′(p1, pk) + 3 by applying the claim about the

case when |V (P )| = 4 to the inlet I of P ∪G′′ of size four with u1, u2 ∈ V (I). Thus

r(T ) ≤ 2k + 1. Hence, εr(T ) ≤ ε(2k + 1). Now this will be at most k − 3 − γ as

desired as long as 3+2ε+γ ≤ (1−2ε)k. Yet k = |V (P )| ≥ 5 and hence it is sufficient

to require that 12ε+ γ ≤ 2.

So we may suppose that T ′′ is an instrumental orchestra. By Lemma 2.10.13,

there are at most four vertices with list of size at least four in C ′. Hence, |V (C ′)| ≤

3|V (P )| + 3, because we have to account for cutvertices and cutedges in T ′′ which

were already on the boundary of C. But then |V (C∗ \P )| ≤ 2|V (C ′)| as every vertex

in V (C∗ \ P ) \ V (C ′) would have to be the center of a double bellow or defective

double bellows or the hinge of a bellows. Thus |V (C∗ \ P )| ≤ 6|V (P )| + 6. So

εR(T ) ≤ 6ε|V (P )| + 6ε. Now this will be at most |V (P )| − 3 − γ as desired as long

as 3 + 6ε + γ ≤ (1 − 6ε)|V (P )|. Yet |V (P )| ≥ 5 and hence it is sufficient to require

that 36ε+ γ ≤ 2.

Corollary 3.8.2. If T is a critical path-canvas, then |V (C∗)| ≤ 20|V (P )|.

Theorem 3.8.3. If T is a critical path-canvas, then |V (G∗)| ≤ 580|V (P )|.

Proof. By Corollary 3.8.2, |V (C∗)| ≤ 33|V (P )|. But then T [C∗] is a critical cycle-

canvas. By the linear bound for critical cycle-canvases, |V (G∗)| ≤ 29|V (C∗)| ≤

580|V (P )|.

3.9 Logarithmic Distance for Paths

Definition. Let T = (G,S, L) be a canvas. Let γ be a closed curve in the plane such

that γ intersects G only at vertices of G. We say that γ is a slicer of T if there is no

vertex of S in the interior of the disk whose boundary is γ. Let C be the outer walk

of G. Let k be the number of times C and γ cross (as opposed to intersect). Define

the dimension of γ to be k/2.
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If γ is a slicer of T , we define a canvas Tγ = (G′, S ′, L) as follows. Let G′ be

the graph obtained by intersecting G with the closed disk bounded by γ. Let S ′ be

the graph obtained by intersecting G with γ. We say that Tγ is a slice and define

its dimension to be the minimum of the dimension of γ′ over all slicers γ′ of T such

Tγ = Tγ′ . We also say that S ′ is the boundary of the slice.

Note that if T ′ is a slice of a critical canvas T , then T ′ is also critical by Lemma 3.2.1.

Lemma 3.9.1. Let T = (G,S, L) be a critical canvas. Suppose there exists a path P

in the outer walk of G such that S ⊆ P and for all v ∈ V (P ) \V (S), |L(v)| = 5, then

|V (G)| ≤ 1160|V (S)|.

Proof. For every two consecutive vertices of S in P , add a new vertex adjacent to

only those two vertices. Let P ′ be the path on the new vertices and the vertices of S.

Let G′ be the graph with vertex set V (P ′) ∪ V (G) and edge set E(P ′) ∪ E(C). For

every v ∈ V (P ′) \V (S), let L(v) be any set of five colors. Now (G′, P ′, L) is a critical

path-canvas. By Theorem 3.8.3, |V (G′)| ≤ 580|V (P ′)|. Hence, |V (G)| ≤ 1160|V (S)|

as desired.

Corollary 3.9.2. Let T = (G,S, L) be a critical canvas. If T ′ = (G′, S ′, L) is a slice

of T of dimension at most one, then |V (G′)| ≤ 1160|V (S ′)|.

Theorem 3.9.3. Let T = (G,P, L) is a critical path-canvas and X ⊆ V (G) separate

G into two graphs G1, G2 such that G2 ∩ P ⊆ X, then |V (G2)| ≤ 1160|X|.

Proof. Let G′ be the union of X and all components of G \ X that do not contain

a vertex in P . Let X ′ be all vertices in G′ that are in S ∪ V (C) or have a neighbor

in V (G) \ V (G′). Clearly, X ′ ⊆ X as S ∪ V (C) ⊆ G1. Note the vertices of X ′

lie on the outer face of G′ as they are either in P or have a path to a vertex of P

through G \ G′ and yet the vertices of P lie on the outer face of G. It follows that

T ′ = (G′, X ′, L) is a slice of T of dimension one. Furthermore T ′ is critical. By
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Theorem 3.9.2, |V (G′)| ≤ 1160|X ′|. Hence |V (G2)| ≤ |V (G′)| ≤ 1160|X ′| ≤ 1160|X|

as desired.

Theorem 3.9.4. If T = (G,P, L) is a critical path-canvas, v0 ∈ V (G) and X ⊆ V (G)

such that X separates v from P , then d(v0, X) ≤ 2320 log |X|.

Proof. We proceed by induction on the size of X. Let G1, G2 be graphs such that

X = V (G1) ∩ V (G2), C ⊆ G1 and v0 ∈ V (G2). By Theorem 1.4.2, |X| ≥ 2 as T

is critical. Thus, we may assume that d(v0, X) > 2320, as otherwise the theorem

follows.

Let Xi = {v ∈ V (G2)|d(v,X) = i} and let Hi = G[
⋃
j≥iXj]. As |V (G2)| ≤

1914|V (X)| by Theorem 3.9.3, there exists i, 1 ≤ i ≤ 320 such that |Xi| ≤ |X|/2.

As d(v0, X) > 2320, Xi separates v0 from C. By induction on Xi, d(v0, Xi) ≤

1160 log |Xi| ≤ 1160 log |X| − 1160. Yet d(v,X) ≤ 1160 for all v ∈ Xi and hence

d(v0, X) ≤ 1160 log C as desired.

Theorem 3.9.5. [Logarithmic Distance for Path-Canvases] If T = (G,P, L) is a

critical path-canvas, then d(v, P ) ≤ 2320 log |P | for all v ∈ V (G).

Proof. Follows from Theorem 3.6.3 with X = P .

Theorem 3.9.6. [Exponential Growth for Path-Canvases] If T = (G,P, L) is a crit-

ical path-canvas and v0 ∈ V (G) \ V (P ), then for all k ≤ d(v0, P ), |Nk(v0)| ≥ 2k/2320.

Proof. Let k ≤ d(v0, P ). Now Nk(v0) separates v0 from C. By Theorem 3.9.4,

k = d(v0, Nk(v0)) ≤ 58 log |Nk(v0)|. Hence |Nk(v0)| ≥ 2k/2320 as desired.

3.10 Bottleneck Theorem for Two Paths

Definition. Let T = (G,S, L) be a critical canvas. We say a vertex v ∈ S is

relaxed if there exist two L-coloring φ1, φ2 of S such that φ1, φ2 do not extend to G,

φ1(v) 6= φ2(v) and φ1(w) = φ2(w) for all w ∈ S \ {v}.
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Theorem 3.10.1. If T = (G,P1 ∪ P2, L) is a connected critical canvas, where

P1, P2 are disjoint paths of the outer walk C of G such that d(Int(P1), Int(P2)) ≥

Ω(|P1| log |P1| + |P2| log |P2|), then there exists an essential chord of C whose ends

have lists of size less than five and are not in P1 ∪ P2. (If |P1| or |P2| at most two,

then measure distance to P1 or P2 respectively).

Proof. Let us proceed by induction on |V (P1)| + |V (P2)|. Suppose without loss of

generality that |V (P1)| ≥ |V (P2)|. We may assume that |V (P1)| ≥ 3 as otherwise the

theorem follows from Theorem 2.11.1.

We now prove a stronger statement. For i ∈ {1, 2}, let Ri be the set of relaxed

vertices of Int(Pi) and Si = Int(Pi) \Ri. If |V (P )| = 2, let dr(T ) = min{d(R1, P2) +

1, d(S1, P2)}. If |V (P )| ≥ 3, let dr(T ) = min{d(R1, R2) + 2, d(R1, S2) + 1, d(S1, R2) +

1, d(S1, S2)}.

Let f(m1,m2) = 2320(m1 logm1 +m2 logm2).

We now prove that

dr(T ) ≤ f(|V (P1)|, |V (P2)|) + 4.

Let T = (G,P1∪P2, L) be a counterexample to the formula above with a minimum

number of vertices where |V (P1)| ≥ |V (P2)| without loss of generality. Let k1 =

|V (P1)| and k2 = |V (P2)|. Hence d(P1, P2) > f(k1, k2). Let C be the outer walk of

G.

Claim 3.10.2. For i ∈ {1, 2}, there does not exist Gi ⊆ G such that Gi ∩ P3−i = ∅

and (Gi, Pi, L) is a critical canvas.

Proof. Suppose not. Now ki ≥ 3 by Theorem 1.4.2. Furthermore, either P3−i is

contained in Ext(I) where I is an inlet of Gi, or, there exists an edge e in Gi which

is an essential chord U of T whose ends both have lists of size less than five. Suppose

the latter. As T is a counterexample, e must be incident with a vertex of Pi. Thus
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d(U, Pi) ≤ 1. By induction, it follows that d(P3−i, U) ≤ f(k3−i, 2); hence d(P1, P2) ≤

f(k3−i, 2) + 2 ≤ f(k3−i, ki) as ki ≥ 3, a contradiction.

So suppose the former. By Lemma 3.7.5, |I| < |V (Pi)|. Apply induction to

the canvas between I and P3−i. Thus d(I, P3−i) ≤ f(|I|, k3−i). By Theorem 3.9.5,

d(v, Pi) ≤ 2320 log ki. Hence d(P1, P2) ≤ f(k1, k2), a contradiction.

Hence there does not exist an edge e not in Pi with both ends of e in Pi. Let P1 =

p1p2 . . . pk1 . Let v1, v2 be the vertices of C adjacent to P1 where p1v1, pk1v2 ∈ E(C).

Claim 3.10.3. N(v1) = {p1}, N(v2) = {pk1}, and neither v1 nor v2 is in a chord of

C or is a cutvertex of G (and hence v1 6= v2).

Proof. It suffices by symmetry to prove the claim for v1. Suppose v1 is a cutvertex

of G. As T is critical, v is an essential cutvertex. By induction applied to the canvas

between v and P2, we find that d(v1, P2) ≤ f(1, k2) and hence d(P1, P2) ≤ f(1, k2)+1,

a contradiction.

Similarly if v1 is in a chord U = v1v of C, U is an essential chord of C. Suppose

that v 6= p2. If v 6∈ P1, let P ′1 = U and let P ′1 be the union of U and the path

from v to pk otherwise. Note that |V (P ′1)| ≤ k1 − 1 as v 6= p2. Apply induction

to the canvas between P ′1 and P2 to find that d(U, P2) ≤ f(k1 − 1, k2) and hence

d(P1, P2) ≤ f(2, k2) + 2, a contradiction.

So we may suppose that v = p2. Let U ′ = p2u1 be the chord of C with u1 on

the path from v1 to P ′ and u1 closest to P ′. As T is critical, p1p2u1 is the base of a

bellows W . Let P ′1 = u1p2p3 . . . pk1 . Consider the canvas T ′ = (G′, P ′1∪P2, L) from P ′1

to P2. Now T ′ is critical. As T is a minimum counterexample, dr(T ) ≤ f(k1, k2) + 4.

We claim that R(P1)\{p2} ⊆ R(P ′1)\{p2}. To see this, let u ∈ R(P1)\{p2}. Thus

there exist two L-colorings φ1, φ2 of P1 ∪P2 that do not extend to an L-coloring of G

such that φ1(u) 6= φ2(u) and φ1 = φ2 otherwise. By Theorem 1.4.2, φ1 extends to an

L-coloring φ of W . Let φ1(u1) = φ2(u1) = φ(u1). As φ1 = φ2(w) for all w 6= u. Now
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φ1, φ2 are L-colorings of P ′1∪P2 that do not extend to an L-coloring of G\{} such that

φ1(u) 6= φ2(u) and φ1 = φ2 otherwise. Thus u is relaxed for T ′. So u ∈ R(P ′1) \ {p2}

as claimed.

IfR(P1) ⊆ R(P ′1), then it follows that dr(T ) ≤ dr(T ) and hence dr(T ) ≤ f(k1, k2)+

4, a contradiction. By the claim of the last paragraph then, we may assume that p2

is relaxed in T and yet p2 is not relaxed in T ′. Thus there exist two L-colorings φ1, φ2

of P1 ∪ P2 that do not extend to an L-coloring of G such that φ1(p2) 6= φ2(p2) and

φ1 = φ2 otherwise. Yet φ1 extends to an L-coloring φ′1 of W by Theorem 1.4.2. If

φ′1(u1) 6= φ2(p2), then as argued above, it follows that p2 is relaxed, a contradiction.

So φ′1(u1) = φ2(p2). Similarly, we find that φ2 extends to an L-coloring φ′2 of W and

φ′2(u1) = φ1(p2).

Thus φ1(p2), φ2(p2) ∈ L(u1). Note that φ1(p3) 6= φ1(p2), φ2(p2). Consider in T ′,

the democratic reduction T ′′ = (G′′, P ′′1 ∪P2, L
′′) of p2, u1 with respect to {φ1(p2), φ2(p2)}

centered around p3. Now there exists a critical subcanvas T0 of T ′′.

Suppose that T0 is connected. First suppose there exists a chord of T0 whose ends

have lists from L′′ of size less than three and are not in P ′′1 ∪ P2. Let U0 be such a

chord closest to P2. Now U0 is not a chord of C as T is a counterexample. Hence

at least one of its ends is adjacent to either p2 or u1. Thus d(P1, U0) ≤ 2. Yet by

induction, d(U0, P2) ≤ f(2, k2) and hence d(P1, P2) ≤ f(k1, k2), a contradiction. So

we may suppose there is no such chord. By induction, d(P ′′1 , P2) ≤ f(k1 − 2, k2), a

contradiction.

So we may suppose that T0 is not connected. Now it follows from Claim 3.10.2

that the component of T0 containing P2 is just P2. But then there exists an inlet I,

|I| < |P ′1| of the component of T0 containing P ′1 separating P ′′1 from P2 in T ′′. Hence

there exists a path P0, |V (P0)| ≤ k1− 1 vertices with d(v, P1) ≤ log k1 for all vertices

v ∈ V (P0). By induction d(P0, P2) ≤ f(k1 − 1, k2) and hence d(P1, P2) ≤ f(k1, k2), a

contradiction.
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Consider the Thomassen reductions T1 = (G1, P1 ∪ P2, L1) and T2 = (G2, P1 ∪

P2, L2), of v1 and v2 respectively. As T is critical, there exist critical subcanvases

T ′1 = (G′1, P1 ∪ P2, L1) and T ′2 = (G′2, P1 ∪ P2, L2) of T1 and T2, respectively.

Claim 3.10.4. For i ∈ {1, 2}, T ′i is disconnected.

Proof. Suppose not. Suppose without loss of generality that T ′1 is connected. As T is

a minimum counterexample, it follows that there exists an essential chord U = u1u2

of T ′1 whose ends have lists of size less than five and are not in P1 ∪ P2. We may

assume that U is such a chord closest to P2. As T is a counterexample, U is not

a chord of C. So we may suppose without loss of generality that u1 6∈ V (C). Yet

|L1(u1)| < 5. Thus u1 is adjacent to v1.

Consider the subcanvas T ′′1 of T ′1 from U to P2. Moreover, T ′′1 is critical. As U

was chosen closest to P2, there does not exist an essential chord U ′ of T ′′1 whose ends

have lists of size less than five and are not in P1 ∪ P2. But then as T is a minimum

counterexample, we find that d(U, P2) ≤ f(2, k2). Yet d(U, P1) ≤ 2 as u1 is adjacent

to v1. Hence d(P1, P2) ≤ f(k1, k2), a contradiction.

It now follows that that the component G0 of G′i containing P2 is just P2. Suppose

not. Then G0∩P1 = ∅ and (G0, P2, L) is a critical canvas. It follows from Claim 3.10.2

that there exists a vertex u ∈ G0 such that L(u) 6= L1(u). Thus u is adjacent

to v1. So d(u, P1) ≤ 2 and yet d(u, P2) ≤ 2320 log |P2| by Theorem 3.9.5. Hence,

d(P1, P2) ≤ f(k1, k2), a contradiction.

We prove the following useful claim.

Claim 3.10.5. For all i where 2 ≤ k1− 1, there does not exist a vertex v adjacent to

pi−1, pi, pi+1.

Proof. Suppose not. By Claim 3.10.3 that v 6∈ V (C) and hence |L(v)| = 5.

Let P ′1 be the path obtained from P1 by replacing pi with v. Now |P ′1| = k1.

Consider the canvas T ′ = (G\{pi}, P ′1∪P2, L) between P ′1 and P2. Now T ′ is critical.
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As T is a counterexample, there cannot exist a chord of the outer walk of T ′ whose

ends have lists of size less than five and are not in P ′1 ∪ P2. Thus as T is a minimum

counterexample to the formula above, we find that dr(T
′) ≤ f(k1, k2) + 4.

Now we claim that v is relaxed in T ′. Let φ be an L-coloring of P1 ∪P2 that does

not extend to an L-coloring of G. Let S(v) = L(v) \ {φ(pi−1), φ(pi), φ(pi+1)}. Note

then that |S(v)| ≥ 2 as |L(v)| = 5. Let c1, c2 ∈ S(v). For i ∈ {1, 2}, let φi(v) = ci

and φi = φ otherwise. Hence φ1, φ2 are L-colorings of P ′1 ∪ P2 that do not extend

to an L-coloring of G \ {pi} such that φ1(v) 6= φ2(v) but φ1 = φ2 otherwise. So v is

relaxed as claimed.

Next we claim that R(P1) ⊆ R(P ′1) \ {v}. To see this, let u ∈ R(P1). Thus there

exist two L-colorings φ1, φ2 of P1 ∪ P2 that do not extend to an L-coloring of G such

that φ1(u) 6= φ2(u) and φ1 = φ2 otherwise.

Suppose u 6= pi. Let S(v) = L(v)\{φ1(pi−1), φ2(pi−1), φ1(pi), φ2(pi), φ1(pi+1), φ2(pi+1)}.

As φ1 = φ2(w) for all w 6= u, we find that |S(v)| ≥ 1 as |L(v)| = 5. Let c ∈ S(v)

and φ1(v) = φ2(v) = c. Now φ1, φ2 are L-colorings of P ′1 ∪ P2 that do not extend to

an L-coloring of G \ {pi} such that φ1(u) 6= φ2(u) and φ1 = φ2 otherwise. Thus u is

relaxed for T ′. So u ∈ R(P ′1) \ {v} as claimed.

Suppose u = pi. If φ1(pi−1) = φ1(pi+1), let G′ be obtained from G by deleting

pi and identifying pi−1 and pi+1 to a single vertex. If φ1(pi−1) 6= φ1(pi+1), let G′ be

obtained from G by deleting pi and adding an edge between pi−1 and pi+1. Let P ′1 be

the resulting path on P1 \ {pi}. Consider T ′ = (G′, P ′1 ∪ P2, L). Now there does not

exist an L′-coloring of G that extends φ1.

Hence T ′ contains a critical subcanvas T ′′. If T ′′ is connected, then d(P1, P2) ≤

d(P ′1, P2) ≤ f(k1 − 1, k2), a contradiction. If T ′′ is not connected, then there exists

G1 ⊆ G such that G1 ∩ P2 = ∅ and (G1, P1, L) is a critical canvas, contradicting

Claim 3.10.2. Thus R(P1) ⊂ R(P ′1) \ {v} as claimed.

But now it follows that dr(T ) ≤ dr(T
′) and hence dr(T ) ≤ f(k1, k2) + 4, contrary
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to the fact that T was a counterexample to this formula.

Claim 3.10.6. For i ∈ {1, 2}, T ′i is a bellows with base p1p2p3 or base pk1−2pk1−1pk1.

Proof. Suppose not. It suffices to prove the claim for T ′1. If there exists a chord of T ′1

which separates P1 from P2 in T1, then we obtain a contradiction as in Claim 3.10.4.

So we may assume that there is an inlet I of T ′1 which separates P1 from P2. Suppose

|I| ≤ k1 − 2. Consequently, there is a path P ′1 in G with size at most k1 − 1 that

separates P1 from P2 such that d(v, P1) ≤ 2320 log k1 for all v ∈ V (P ′1). As T is

a counterexample, there does not exist an essential chord whose ends have lists of

size less than five and are not in P1 ∪ P2. By induction, it follows that d(P ′1, P2) ≤

f(|V (P ′1)|, k2) and hence d(P1, P2) ≤ f(k1, k2) as |V (P ′1)| ≤ k1 − 1, a contradiction.

So we may assume that |I| ≥ k1 − 1. By Lemma 3.7.5, |I| = k1 − 1 and T ′1 is a

bellows whose base is the first or last three vertices of P1.

Claim 3.10.7. k1 = 3.

Proof. Suppose not. Hence k1 ≥ 4. By Claim 3.10.6, T ′1 is a bellows with base

pi−1pipi+1 for i ∈ {2, k1 − 2}. By Claim 3.10.5 there does not exist a vertex v of P1

adjacent to pi−1, pi, pi+1. Thus there exists a chord U = piv of T ′1 where v 6∈ V (P1).

By Claim 3.10.3, v 6∈ V (C). Yet |Li(v)| = 3 as T ′1 is a bellows. Thus v is adjacent to

v1.

Consider the path P ′ from v to pi+1 in outer walk of T ′1 avoiding pi; let v′ be the

closest vertex of P ′ to pi+1, as measured in P ′, such that v′ is adjacent to v1. Note

that v′ 6∈ V (C) by Claim 3.10.3. Let v′′ be the neighbor of v′ in P ′ closer to pk1 . Given

how v′ was chosen, it follows that v′′ ∈ V (C). Now P ′′1 = v1vv
′′ is a path on three

vertices separating P1 from P2. Moreover, d(P ′′1 , P1) ≤ 1 and d(P ′′1 , P2) ≤ f(3, k2) by

induction. Hence d(P1, P2) ≤ f(k1, k2) as k1 ≥ 4, a contradiction.

Thus by Claim 3.10.6, T ′1 and T ′2 are bellows with base P1 = p1p2p3. By Claim 3.10.5,

there does not exist v 6∈ V (C) such that v ∼ p1, p2, p3. Hence for i ∈ {1, 2}, T ′i is
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not a turbofan and thus there exists a chord of T ′i . For i ∈ {1, 2}, let Ui = p2xi be

a chord of T ′i . By Claim 3.10.3, xi 6∈ V (C). Thus xi is adjacent to vi. Furthermore

as there are no vertices in the interior of the 4-cycles p2x1v1p1 and p2x2v2p3, we find

that x1 ∼ p1 and x2 ∼ p3.

By Claim 3.10.5, we find that x1 6= x2. Indeed, it follows that Ui is the only chord

of T ′i for i ∈ {1, 2}. So consider the bellows T ′′1 in T ′1 with base x1p2p3. Now T ′′1 must

be a turbofan and hence x2 is the center of its wheel. That is, x2 ∼ x1 and x1x2p3 is

the base of an even fan. Let x3 6= p2 such that x3 ∼ x1, x2. By symmetry there also

exists a turbofan T ′′2 in T ′2 with base x2p2p1 where x1 is the center of its wheel and

x2x1p1 is the base of an even fan. Moreover, x3 is in both T ′′1 and T ′′2 .

If x3 is not adjacent to v1, then the edge in the outer walk of T ′′1 incident with x3

but not with x1 is a chord whose ends have lists of size less than five but are not in

P1∪P2, contrary to the fact that T is a counterexample. So x3 ∼ v1 and by symmetry

x3 ∼ v2.

Now let φ be an L-coloring of P1 that does not extend to an L-coloring of G. Let

S(x1) = L(x1) \ {φ(p1), φ(p2)} and let S(x2) = L(x2) \ {φ(p2), φ(p3)}. Given T ′′1 and

T ′′2 , we may assume that |S(x1)|, |S(x2)| = 3.

Suppose S(x1) 6= S(x2). Hence |S(x1)∩S(x2)| ≤ 2. Let G′ = G \ (P ∪{x1, x2})∪

{z1, z2} where z1 ∼ z2, x3, v1 and z2 ∼ z1, x3, v2. Let L′(z1) = {c1} and L′(z2) =

{c2} where c1, c2 are brand new colors, that is not in
⋃
v∈V (G) L(v). Let L′(v1) =

(L(v1) \ {φ(p1)}) ∪ c1 and L′(v2) = (L(v2) \ {φ(p3)}) ∪ c2. Finally let L′(x3) =

(L(x3) \ (S(x1) ∩ S(x2))) ∪ {c1, c2} and L′ = L otherwise. Now T ′ = (G′, P ′1 ∪ P2, L
′)

with P ′1 = z1z2 is a canvas and there does not exist an L′-coloring of G′ as there does

not exist an L-coloring of G. Thus T ′ contains a connected critical subcanvas T ′′.

Yet as T is counterexample, there does not exist a chord of G′ whose ends have lists

of size less than five and are not in P ′1 ∪ P2. By induction d(P ′1, P2) ≤ f(2, k2). But

then d(P1, P2) ≤ f(3, k2), a contradiction.
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So we may assume that S(x1) = S(x2). Let G′ = G \ (P ∪ {x1, x2}) ∪ {v1v2}.

Let L′(v1) = L(v1) \ {φ(p1)}, L′(v2) = L(v2) \ {φ(p3)} and L′ = L otherwise. Now

T ′ = (G′, P ′1 ∪ P2, L
′) with P ′1 = v1v2 is a canvas and there does not exist an L′-

coloring of G′ as there does not exist an L-coloring of G. Thus T ′ contains a connected

critical subcanvas T ′′. Yet as T is counterexample, there does not exist a chord of

G′ whose ends have lists of size less than five and are not in P ′1 ∪ P2. By induction

d(P ′1, P2) ≤ f(2, k2). But then d(P1, P2) ≤ f(3, k2), a contradiction.

Theorem 3.10.8. If T = (G,P ∪ P ′, L) is a connected critical canvas, where P, P ′

are disjoint paths of C such that there is no chord of the outer walk of G whose ends

have lists of size less than five and are not in P ∪ P ′, then |V (G)| = O(|P |+ |P ′|).

Proof. Let d = d(P, P ′) and P0 be a shortest path from P to P ′. P0 creates up to two

paths P1, P2, whose lengths are at most O(d+ |P |+ |P ′|). Moreover G = Ext(P1) ∪

Ext(P2). Yet (Ext(P1), P1, L) and (Ext(P2), P2, L) are critical path-canvases. By

Theorem 3.8.3, |V (Ext(P1))| = O(|P1|) and |V (Ext(P2))| = O(|P2|). Hence |V (G)| =

O(d+ |P |+ |P ′|).

If d ≤ O(|P | + |P |′), then |V (G)| = O(|P | + |P ′|) as desired. So suppose d ≥

Ω(|P | + |P ′|). Hence |V (G)| ≤ cd for some constant c. There must exist a distance

i1, i2, 1 ≤ i1, i2 ≤ d/4 such that |Ni1(P1)|, |Ni2(P2)| ≤ 4c. Thus there exists a slice

T ′ = (G′, P3 ∪ P4, L) of dimension two where P3 ⊆ Ni1(P1) and P4 ⊂ Ni2(P2). Thus

d(P3, P4) ≥ d/2. By Theorem 3.10.1 applied to T ′, we find that d/2 ≤ d(P3, P4) ≤

f(4c, 4c) and hence d ≤ 2f(4c, 4c). Thus |V (G)| ≤ c2f(4c, 4c)), a constant, as desired.

Theorem 3.10.9. If T = (G,P ∪ P ′, L) is a connected critical canvas, where P, P ′

are disjoint paths of C there is no chord of the outer walk of G whose ends have lists

of size less than five and are not in P ∪ P ′, then d(P, P ′) ≤ O(log(|P |+ |P ′|)).
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Proof. There must exist a distance i, 1 ≤ i ≤ 2c where c is the constant in Theo-

rem 3.10.8, such that either there are at most |P1|/2 vertices at distance i from P1 or

there are at most |P2|/2 vertices at distance i from P2. The corollary then follows by

induction.

Theorem 3.10.10. [Logarithmic Distance Bottleneck Theorem: Two Paths] If T =

(G,P ∪P ′, L) is a connected critical canvas, where P, P ′ are disjoint paths of C such

that there is no bottleneck T ′ = (G′, U1 ∪ U2, L) of T where d(U1, U2) ≥ d, then

d(P, P ′) ≤ O(log(|P |+ |P ′|)) + 6d.

Proof. Suppose not. By Theorem 3.10.9, there exists a chord of the outer walk of

G whose ends have lists of size less than five and are not in P ∪ P ′. Let U1 be

the closest such chord to P1 and U2 be the closest such chord to P2. It follows

from Theorem 3.10.9 that d(P1, U1) ≤ O(log |P |) and d(P2, U2) ≤ O(log |P ′|). Thus

d(U1, U2) ≥ d(P, P ′)−O(log(|P |+ |P ′|)). Yet by Theorem 2.11.1, d(U1, U2) ≤ 6d+22

and the theorem follows.

Using Theorem 3.8.3, we also obtain a bound on |V (G)| when there is no bottle-

neck with sides at distance at least d as follow.

Theorem 3.10.11. If T = (G,P ∪ P ′, L) is a connected critical canvas, where P, P ′

are disjoint paths of C such that there is no bottleneck T ′ = (G′, U1 ∪ U2, L) of T

where d(U1, U2) ≥ d, then |V (G)| ≤ O(|P |+ |P ′|) + 12d.

Theorem 3.10.12. [Exponential Growth Theorem: Two Paths] If T = (G,P ∪P ′, L)

is a connected critical canvas, where P, P ′ are disjoint paths of C such that no bot-

tleneck T ′ = (G′, U1 ∪ U2, L) of T where d(U1, U2) ≥ d, and v0 ∈ V (G) \ V (P ∪ P ′),

then for all k ≤ d(v0, P ∪ P ′), |Nk(v0)| ≥ 2Ω(k−6d).

Proof. Let k ≤ d(v0, P ∪ P ′). Now Nk(v0) separates v0 from C. By Theorem 3.9.4,

k = d(v0, Nk(v0)) ≤ O(log |Nk(v0)|) + 6d. Hence |Nk(v0)| ≥ 2Ω(k−6d) as desired.
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3.11 Steiner Trees

Definition. Let G be a graph and S ⊂ V (G). We say T ⊆ G is a Steiner tree for S if

T is a tree with a minimum number of edges such that S ⊂ V (T ). We let T ∗ denote

the tree formed from T by supressing degree two vertices not in S. If e ∈ E(T ∗), we

let ψ(e) denote the path in T between the endpoints of e and we let mid(e) denote a

mid-point of that path. We say that the path ψ(e) is a seam of the tree T .

Lemma 3.11.1. Let T = (G,S, L) be a canvas. If H is a Steiner tree of G for S and

we let B(e) denote N|e|/4−1(mid(e)) for every seam e of H, then

(1) for all seams e of H, B(e) is contained in a slice whose boundary is contained

in N|e|/4−1(e), and

(2) for all distinct seams e, f of H, B(e) ∩B(f) = ∅.

Proof.

Claim 3.11.2. There cannot exist a path from an internal vertex v in a seam e of H

to a vertex in H \ e that is shorter than mimimum of the length of the paths from v

to the endpoints of e.

Proof. Otherwise, we could add such a path and delete whichever path from v to an

endpoint of e that leaves H a tree.

We now prove (1). Let e be a seam of T . It follows from the claim above that

N|e|/2−1(mid(e))∩ (T \ ψ(e) = ∅. Hence, B(e) is contained in a slice whose boundary

is contained in N|e|/4−1(e).

We now prove (2). Let e and f be distinct seams of H. Suppose B(e)∩B(f) 6= ∅.

Suppose without loss of generality that |e| ≥ |f |. But now there exists a path of

length at most |e|/4 + |f |/4 − 2 ≤ |e|/2 − 2 between mid(e) and mid(f) which is a

vertex of H \ e, contradicting the claim above.
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3.12 Bottleneck Theorem for Many Paths

Theorem 3.12.1. [Linear Bottleneck Theorem: Many Paths] If T = (G,S, L) is a

connected critical canvas, where S is the union of disjoint paths of C such that there is

no bottleneck T ′ = (G′, U1 ∪ U2, L) of T where d(U1, U2) ≥ d, then |V (G)| = O(d|S|).

Proof. Let T be a Steiner tree of G for S. It follows by applying Theorem 3.8.3 to

all of the canvases made by T that

|V (G)| ≤ 957(2|E(T )|)

. Yet, the number of seams of H is at most 2|S|, as branch points are only necessary

to span vertices in S.

As T ∗ was formed by supressing vertices of degree two in T , |V (T ) \ V (T ∗)| =

|E(T ) \ E(T ∗)|. Thus,

|V (G)| ≤ 580(4|S|+ 2|V (T ) \ V (T ∗)|).

Let E be the set of all seams e of T , φ(e) \ V (T ∗) 6= ∅. Hence, for all e ∈ E ,

mid(e) exists. For all e ∈ E , let B(e) = N|e|/4−1(mid(e)). By Lemma 3.11.1 (i), B(e)

is contained in a slice whose boundary is contained in N|e|/4−1(e). It follows from

Lemma 3.10.12 that |B(e)| ≥ 2c(|e|/4−1−6d) for some constant c. Hence,

|V (G)| ≥
∑
e∈E

2c(|e|/4−1−6d) ≥ |E|2c(
∑

e∈E(|e|/4|E|)−1−6d)

where the last inequality follows from the concavity of the exponential function. Yet

|V (H) \ V (H∗)| ≤
∑

e∈E |e|. Combining, we find that

|E|2(c/4)(
∑

e∈E |e|)/|E|/2c(1+6d) ≤ |V (G)| ≤ |V (G)| ≤ 1160(2|S|+
∑
e∈E

|e|).

We may suppose that
∑

e∈E |e| ≥ 2|S| as otherwise |V (G)| ≤ 4640|S| as desired.

Hence, |V (G)| ≤ 2320
∑

e∈E |e|. Letting x =
∑

e∈E /|E|, the average size of a seam in

|E|, we find that
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2(c/4)x ≤ 2320(2c(1+6d))x.

Let c′ = 23202c(1+6d). Hence, x ≤ max{4 log(4c′/c)/c, 4/c}, call this constant c0.

Note that c0 = O(d). Hence,

|V (G)| ≤ 2320c0|E| ≤ 4640c0|S|

as |E| ≤ |E(H∗)|. The theorem now follows with constant max{4640c0, 4640} =

O(d).

Corollary 3.12.2 (Logarithmic Distance Bottleneck Theorem: Many Vertices). There

exists D > 0 such that the following holds: If T = (G,S, L) is a canvas, where S

is the union of disjoint vertices v1, v2 . . . such that d(vi, vj) ≥ D and no bottleneck

T ′ = (G′, U1 ∪ U2, L) of T where d(U1, U2) ≥ d, then G has an L-coloring.

Proof. Suppose not. Then there exists S ′ ⊆ S and G′ ⊆ G such that (G′, S ′, L) is a

connected critical canvas. It follows from Theorem 3.10.12, that |BD/2(v)| ≥ 2Ω(D)

for all v ∈ V (S). Hence |V (G′)| ≥ |S|2Ω(D), contradicting Theorem 3.12.1 for large

enough D.
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CHAPTER IV

TWO PRECOLORED TRIANGLES

4.1 Introduction

In this chapter, we will prove the following theorem.

Theorem 4.1.1. [Two Precolored Triangles Theorem]

There exists d such that following holds:

Let G be a planar graph and T1 and T2 triangles in G such that d(T1, T2) ≥ d.

Let L be a list assignment of G such that |L(v)| ≥ 5 for all v ∈ V (G). If φ is an

L-coloring of T1 ∪ T2, then φ extends to an L-coloring of G.

In Section 4.2 and 4.3, we develop a technique to color and delete a shortest path

between T1 and T2 so that the resulting graph is a canvas (G,S, L) such that S is

the union of two paths P1, P2 corresponding to T1, T2 respectively. In Section 4.4, we

show that if a minimum counterexample to Theorem 4.1.1 does not have a long chain

of triangles separating T1 from T2 where the graphs between any two consecutive

triangles are one of three types then the canvas has a local L-coloring near each Pi.

This then allows us to invoke Theorem 2.11.1 to produce a long bottleneck of the

canvas.

In Sections 4.5 and 4.6, we show that a long bottleneck yields a similarly long chain

of triangles separating T1 from T2 where the graphs between any two consecutive

triangles just so happen to be the three types defined in Section 4.4. In Sections

4.7, 4.8 and 4.9 we develop a theory of sets of colorings, somewhat akin to that in

Chapter 2, to prove that for long enough chains of triangles involving these three types

of graphs any coloring of the inner and outer triangle extends to the whole graph.

Finally in Section 4.10, we combine all of these results to prove Theorem 4.1.1.
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4.2 Coloring a Shortest Path

Definition. Let G be a planar graph and p0, pn ∈ V (G) where d(p0, pn) = n. Let

P = p0p1 . . . pn be a shortest path between p0 and pn in G. We say a vertex v ∈

V (G \ P ) is a mate of pi ∈ P if v ∼ pi−1, pi, pi+1 and 1 ≤ i ≤ n− 1. We say a vertex

p ∈ P is doubled if p has a mate. We say a vertex p ∈ P is tripled if p has two distinct

mates.

We say a vertex p ∈ P is quadrupled if p has three distinct mates. We will prove

that in a planar graph there cannot be a quadrupled vertex.

We say a path P from p0 to pn is an arrow from p0 to pn if P = p0p1 . . . pn

is a shortest path between p0 and pn and the following property holds: for all i,

2 ≤ i ≤ n− 1, if pi is tripled, then pi−1 is not doubled.

Proposition 4.2.1. Let G be a planar graph and p0, pn be vertices of G. Let P be a

shortest path from p0 to pn, then no internal vertex of P is quadrupled.

Proof. Suppose a vertex pi of P is quadrupled. That is, pi has three mates x1, x2, x3.

But that means each of x1, x2, x3 is adjacent to all of pi−1, pi, pi+1. Thus G[{x1, x2, x3,

pi−1, pi, pi+1}] contains K3,3 as a subgraph, a contradiction since G is planar.

Lemma 4.2.2. Let n > 0, G be a planar graph and p0, pn−1, pn be vertices of G

such that d(pn, p0) = n, d(pn−1, p0) = n − 1, pn−1 ∼ pn. There exists an arrow

P = p0 . . . pn−1pn from p0 to pn.

Proof. We proceed by induction on n = d(pn, p0). If n = 1, then pn−1 = p0 as

d(pn−1, p0) = 0. Hence P = p0p1 is an arrow from p0 to p1 as desired. So suppose

n ≥ 2. By induction, there exists an arrow P ′ = p0 . . . pn−2pn−1 from p0 to pn−1. Now

P ′+pn is an arrow from p0 to pn as desired unless pn−1 is tripled and pn−2 is doubled.

Let p′n−1, p
′′
n−1 be the mates of pn−1 and p′n−2 be a mate of pn−2 in P ′.
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By induction, there exists an arrow P ′′ = p0 . . . p
′
n−2pn−1. Hence P ′′ + pn is an

arrow as desired unless pn−1 is tripled and p′n−2 is doubled in P ′′. Yet the mates of

pn−1 in P ′′ must be p′n−1, p
′′
n−1 as otherwise G contains a K3,3 subdivision with branch

points pn−2, pn−1, pn and p′n−1, p
′′
n−1, p

′′′
n−1 where p′′′n−1 is a mate of pn−1 in P ′′ distinct

from p′n−1, p
′′
n−1, a contradiction to the assumption that G is planar. But then G

contains a K5 subdivision with branch points pn−1, p′n−1, p′′n−1, pn−2 and p′n−2.

Definition. Let G be a graph and L a list assignment for G. Let S ⊂ V (G). We say

a coloring φ of S is bichromatic if for all v ∈ V (G \ S), |{c ∈ L(v) : ∃p ∈ V (S) such

that φ(p) = c}| ≤ 2.

Lemma 4.2.3. Let G be a planar graph and p0, pn be vertices of G such that d(p0, pn) =

n. Let P be an arrow from p0 to pn. Suppose that |L(v)| = 5 for all v ∈ V (G) \

{p0, pn−1, pn} and that |L(p0)| = 3.

(1) If |L(pn−1)| = 3 and |L(pn)| = 5, then there exists a bichromatic L-coloring of

P .

(2) If |L(pn−1)| = 5 and |L(pn)| = 3, then there exists a bichromatic L-coloring of

P .

Proof. We proceed by induction on n. If n ≤ 1, then there is surely a bichromatic

L-coloring of P . Notice that we need only consider how a coloring of P affects the

mates of vertices of P .

Consider pn−1. By Proposition 4.2.1, pn−1 is not quadrupled. We now consider

three cases.

• Case 1: pn−1 has no mate

Proof of (1)/(2): Apply induction using (2) to P \pn. There exists a bichromatic

L-coloring of P \ pn. Extend this coloring to pn. As pn−1 has no mate, this

coloring is bichromatic.
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• Case 2: pn−1 has one mate v

That is pn−1 is doubled.

Proof of (1): Apply induction using (2) to P \ pn. There exists a bichromatic

L-coloring φ of P \ pn. Now we need only color pn so that v sees at most two

colors from its list. We may suppose then that φ(pn−2), φ(pn−1) ∈ L(v). But

then either φ(pn−2) ∈ L(pn) or L(pn) \ L(v) 6= ∅. Color pn with such a color.

Thus v will see at most two colors and φ is bichromatic.

Proof of (2): Apply induction successively three times using (1) to P \ pn.

Thus there exists three bichromatic L-colorings φ1, φ2, φ3 of P \ pn such that

φi(pn−2) 6= φj(pn−2) for all i 6= j ∈ {1, 2, 3}. Let ci = φi(pn−2). Let C =

{c1, c2, c3}.

If there exists i, such that φi(pn−1) 6∈ L(v), then we may extend this coloring

to pn and it will be bichromatic as desired. So we may assume that for all i,

φi(pn−1) ∈ L(v).

Similarly, we may assume that ci ∈ L(v) for all i. Now if there exists i such

that ci ∈ L(pn), let φi(pn) = ci and then φi is bichromatic. So we may assume

that L(pn) ∩ C = ∅. As C ⊂ L(v), we find that L(pn) \ L(v) 6= ∅. Now let

φ1(pn) ∈ L(pn) \ L(v) and it follows that φ1 is bichromatic.

• Case 3: pn−1 has two mates v1, v2

As P is an arrow, pn−2 has no mate. Apply induction using (ii) three times to

P \ {pn−1, pn} to find three colorings φ1, φ2, φ3 such that φi(pn−2) 6= φj(pn−2)

for all i 6= j ∈ {1, 2, 3}. Let ci = φi(pn−2). Let C = {c1, c2, c3}. It suffices to

show that we may extend one of these coloring to pn−1, pn such that neither v1

nor v2 sees more than two colors from its list.

Note that we may assume L(v1) 6= L(v2) as otherwise we may proceed as if pn−1

had only one mate.
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Proof of (1):

If there exists i such that ci 6∈ L(v1), L(v2), then we extend φi to pn−1 and pn.

Clearly φi is bichromatic in this case. So we may assume that C ⊂ L(v1)∪L(v2).

If there exists i such that ci ∈ L(v1) \ L(v2), then we let φi(pn) = ci if L(pn) =

L(v1) and let φi(pn) ∈ L(pn)\L(v1) otherwise. We then extend φi to pn−1. Now

φi is bichromatic as pn−2 receives a color not in L(v2) and pn receives either the

same color as pn−2 or a color not in L(v1). So we may assume using symmetry

that C ⊂ L(v1) ∩ L(v2).

If L(pn) \ (L(v1) ∪ L(v2)), extend φ1 to pn using such a color and then to pn−1.

Now φ1 is bichromatic as pn receives a color not in L(v1) or L(v2). So we may

assume that L(pn) ⊆ L(v1) ∪ L(v2).

If there exists i such that ci ∈ L(pn), let φi(pn) = ci and then extend to pn−1.

Now φi is bichromatic as pn and pn−2 receive the same color. So we may assume

that L(pn) ∩ C = ∅.

But then,

L(pn) ⊆ L(pn) \ C ⊆ (L(v1) ∪ L(v2)) \ C ⊆ (L(v1) \ C) ∪ (L(v2) \ C).

However as C ⊂ L(v1), L(v2) and |C| = 3, |L(v1) \ C| = |L(v2) \ C| = 2. Thus,

|L(pn)| ≤ 4, a contradiction.

Proof of (2):

As L(v1) 6= L(v2), we may assume without loss of generality that L(pn−1) \

L(v2) 6= ∅. Yet we may also assume that L(pn−1) ⊆ L(v1) ∪ L(v2). Suppose

not and let c ∈ L(pn−1) \ (L(v1) ∪ L(v2)). There exists i such that ci 6= c. Let

φi(pn−1) = c and extend to pn. Now φi is bichromatic as pn−1 receives a color

not in L(v1) or L(v2).
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If there exists i such that ci ∈ L(pn), let φi(pn) = ci and then extend to pn1 .

Now φi is bichromatic as pn and pn−2 receive the same color. So we may assume

that L(pn) ∩ C = ∅.

Let c ∈ L(pn−1) \ L(v2). As L(pn) ∩ C = ∅,

|(L(pn) \ {c}) ∪ (C \ {c})| ≥ 5,

which is larger than |L(v1) \ {c}| = 4 as c ∈ L(v1). Thus either there exists i

such that ci 6∈ L(v1) or L(pn) \ L(v1) 6= ∅.

In the former case, let φi(pn−1) = c and extend to pn. Now extend φi to pn. As

pn−2 receives a color not in L(v1) and pn−1 receives a color not in L(v2), φi is

bichromatic.

In the latter case, there exists i such that ci 6= c. Let φi(pn−1) = c and φi(pn) ∈

L(pn) \ L(v1). As pn receives a color not in L(v1) and pn−1 receives a color not

in L(v2), φi is bichromatic.

Here is a definition which will be useful later.

Definition. Let P be an arrow from u to v of a plane graph G and p ∈ P \ {u, v}.

Let pT be the neighbor of p in P closest to v and pB be the neighbor of p in P closest

to u. We say that a neighbor z of p not in V (P ) is to the right of p if the vertices

pT , z, pB appear in that order in the clockwise cyclic order of p and we say z is to the

left if they appear in the order pB, z, pT . Similarly, we say z is a right mate of p if z

is a mate of p that is to the right of p and we say z is left mate if z is a mate of p

that is to the left of p. Furthermore, we say that an edge e 6∈ E(P ) incident with p

is to the left if its other end z is to the left of p and to the right otherwise.
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4.3 Planarizing a Prism-Canvas

We may now apply the technique of the preceding section to graphs embedded in the

cylinder.

Definition. (Cylinder Cycle-Canvas, Prism-Canvas)

We say that T = (G,C1, C2, L) is a cylinder cycle-canvas if G is a plane graph,

C1 is the outer facial cycle of G, C2 is a facial cycle in G distinct from C1 and L is

a list assignment for G such that |L(v)| ≥ 5 for all v ∈ V (G \ (C1 ∪ C2)), |L(v)| ≥ 1

for all v ∈ V (C1) ∪ V (C2), C1 ∪ C2 has an L-coloring. We say T is a prism-canvas if

|C1| = |C2| = 3.

Definition. (Planarization)

Suppose that d(C1, C2) ≥ 3. Let P = p0p1 . . . pd−1pd be a shortest path between

C1 and C2 where p0 ∈ V (C1) and pd ∈ V (C2) such that |N(p1) ∩ V (C1)| ≤ 2 and

|N(pd−1) ∩ V (C2)| ≤ 2, and P ′ = P \ {p0, pd} is an arrow from p1 to pd−1.

We now define the planarization of T = (G,C1, C2, L) with respect to P to be the

canvas (G0, S, L
′) as follows: First let G′ = G \ P ′. Next fix a bicoloring φ of P ′ for

G \ (C1 ∪ C2) from the lists L where φ can be extended to an L-coloring of C1 ∪ C2.

Let L′(v) = L(v) \ {φ(u) : u ∼ v, u ∈ P ′} for all v ∈ G′ \ (C1 ∪ C2). Finally if p1 has

one neighbor in C1, cut C1 at p0 (i.e. split p0 into two vertices) and let P1 be the path

between the vertices created by the split of p0 using vertices of C1; otherwise, let P1

be the path between the two neighbors of p1 in the homotopically non-trivial way and

delete the homotopically trivial part. Let P2 be defined in the same way for pd and

C2. Let L′(v) = L(v) for all v ∈ P1 ∪ P2. Let G0 be the resulting graph, C its outer

cycle and S = P1 ∪ P2. We say that Γ∗ is a planarization of T is the planarization of

T with respect to some such path P .

However there can be many choices of P and hence many planarizations of T .

We will need to choose P such that the planarization maximizes certain structures.
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Hence the following definitions.

Definition. Let (G,S, L) be a canvas. Let U = u1u2 be an essential chord of the outer

walk C of G such that |L(u1)|, |L(u2)| < 5. Let G1 ∩G2 = U and G1 ∪G2 = C ∪ U .

We say that U is a stopping chord if there exists i ∈ {1, 2} such that there does not

exist a vertex z ∈ V (Gi) such |L(z)| = 3 and z ∼ u1, u2 and neither u1 nor u2 is in a

chord of C with a vertex in V (Gi)\U whose ends have lists of size three. We say that

U is a blocking chord if there exists i, j ∈ {1, 2} such that |L(ui)| ≥ 4, and, either

|L(u3−i| ≥ 4 or u3−i has at most one neighbor with a list of size three in Gj. We say

that U is a cut-edge if u1, u2 are essential cutvertices of G.

Note that there does not exist a stopping chord, blocking chord, or cut-edge in

the middle of a canvas containing an accordion or harmonica.

Definition. Let Γ be a cylinder canvas. Let Γ∗ be a planarization of Γ and let

P = p0p1 . . . pd where Γ∗ is the planarization of Γ with respect to P . We say a cut-

edge u1u2 of Γ∗ is dividing if u1 has neighbors p1, p
′
1 ∈ V (P ) such that u1 is to the left

of p1 and to the right of p′1 and similarly u2 has neighbors p2, p
′
2 ∈ V (P ) such that u2

is to the left of p2 and to the right of p′2.

We say Γ∗ is good if over all such planarizations, Γ∗ maximizes |NC1(p1)| +

|NC2(pd−1)|, and subject to that Γ∗ maximizes the combined total of stopping chords,

blocking chords and dividing cut-edges of Γ∗.

The maximization above for an optimal planarization will prove useful precisely

because accordions and harmonicas do not have stopping chords, blocking chords or

cut-edges.

4.4 Bands and Band Decompositions

Recall that our goal is to prove the following:
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Theorem 4.4.1 (Two Precolored Triangles Theorem). There exists d such that fol-

lowing holds:

Let G be a planar graph and T1 and T2 triangles in G such that d(T1, T2) ≥ d. If

L is a list assignment of G such that |L(v)| ≥ 5 for all v ∈ V (G) and φ is a proper

coloring of T1 ∪ T2, then φ extends to an L-coloring of G.

We will make certain assumptions about a minimum counterexample to Theo-

rem 4.1.1. The following definition will prove useful in that regard.

Definition. (Nearly Triangulated)

Let T = (G,C1, C2, L) be a cylinder cycle-canvas. We say T is nearly triangulated

if for every face f in G such that f is not bounded by C1 or C2 or a triangle, and every

two nonadjacent vertices u, v ∈ δf , f is bounded by a cycle and dG+{uv}(C1, C2) <

dG(C1, C2).

Proposition 4.4.2. Let T = (G,C1, C2, L) be a nearly triangulated prism-canvas.

If there is no vertex cut of size at most two separating C1 and C2, then G is a

triangulation.

Proof. Suppose not. Then there exists a face f not bounded by a triangle or C1, C2.

As there is no cutvertex G, f is bounded by a cycle. Let u, v be two nonconsecutive

vertices of f . As there is no vertex cut of size two, u is not adjacent to v. Yet as T

is nearly triangulated, dG+{uv}(C1, C2) < dG(C1, C2). Yet we note that there cannot

exist two paths P1, P2 in G+{uv} from C1 to C2 with length less than d = dG(C1, C2)

where u is closer to C1 in P1 and v is closer to C1 in P2. As f is bounded by a cycle,

it follows that there exists vertices u1, u2, v2, v1 that appear in f in that order such

that u1 ∼ u2, v1 ∼ v2, and u1 is closer to C1 in every shortest path from C1 to C2 in

G+ {u1v2} and u2 is closer to C2 in every shortest path from C1 to C2 in G+ {u2v1}.

Hence d(u1, C1) + d(v2, C2) + 1 < d and d(u2, C2) + d(v1, C1) + 1 < d. But then either
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d ≤ d(u1, C1) +d(u2, C2) + 1 < d or d ≤ d(v1, C1) +d(v2, C2) + 1 < d, a contradiction.

Definition. (Bands and Band Decompositions)

We say that a triple (G, T1, T2) is a prismatic graph if G is a plane graph with

two distinguished facial triangles T1 6= T2 where T1 bounds the infinite face of G.

Recall that if C is a cycle in a plane graph G, then Int(C) denotes the closed disk

containing with boundary C. If T3, T4 are separating triangles in G, each separating

a vertex in T1 from a vertex in T2 and Int(T3) ⊇ Int(T4), then we let G[T3, T4] denote

the prismatic graph ((G ∩ Int(T3) \ Int(T4)) ∪ T4, T3, T4). We say a prismatic graph

(G, T1, T2) is a band if there does not exist a triangle T in G separating a vertex in

T1 from a vertex in T2.

We say that Γ = (G,C1, C2, L) is a band if Γ is a prism-canvas and the prismatic

graph (G,C1, C2) is a band.

Note that every prismatic graph (G,C1, C2) has a unique decomposition into

bands. Namely, letting T0 = C1 and Tm = C2, consider the sequence of all trian-

gles separating a vertex in C1 from a vertex in C2: Int(T0) ⊃ Int(T1) ⊃ Int(T2) . . . ⊃

Int(Tm−1) ⊃ C2 = Tm. Let Bi = (G \ (Ext(Ti−1) ∪ Int(Ti)) ∪ Ti, Ti−1, Ti). As the

sequence contained all such triangles, Bi is a band. We define the band decomposition

of the prismatic graph (G,C1, C2) to be the sequence of bands, B1B2 . . . Bm produced

above.

Thus if Γ = (G,C1, C2, L) is a prism-canvas, we define the band decomposition of

Γ, denoted B(Γ) = B1 . . . Bm, where Bi = (Gi, Ti, Ti−1, L) is the canvas - that is also

a band - corresponding to the band (Gi, Ti−1, Ti) in the band decomposition of the

prismatic graph (G,C1, C2) above.

Definition. (Types of Bands)

Let B = (G, T1, T2, L) be a band. We say B is tetrahedral if G = K4.
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We say B is octahedral if T1 ∩ T2 = ∅ and every vertex of T1 has two neighbors in

T2 and vice versa.

We say B is hexadecahedral if T1 ∩T2 = ∅ and G \ (T1 ∪T2) = C4 = c1c2c3c4, c1, c3

have two neighbors each in both of T1 and T2, c2 has a neighbor in T1 and two in T2

while c4 has two neighbors in T1 and one in T2.

Here are some useful lemmas to note.

Lemma 4.4.3. If Γ = (G, T1 ∪ T2, L) is a critical prism-canvas with T1 ∩ T2 6= ∅,

then every band in the band decomposition of Γ is tetrahedral.

Proof. Proceed by induction on vertices of G. If |T1 ∩ T2| = 2, then given that Γ is

critical and that T is a triangulation, G = K4 and Γ is a tetrahedral band. So we

may suppose that |T1 ∩ T2| = 1. By minimum counterexample (i.e. criticality), one

of the outcomes of Theorem 1.5.2 holds. Of course G could be the graph induced by

the walk and hence G is C plus some additional chords. But then as a Γ is a near-

triangulation, we can find a tetrahedral band in the band decomposition of Γ and the

lemma follows by induction. If (i) holds, that is, there is exactly one vertex v in the

interior, then v is adjacent to all vertices of T1 ∪ T2. So we again find a tetrahedral

band in the band decomposition and the lemma follows by induction. Thus either

case (ii) or (iii) holds, that is, there are either two or three pairwise adjacent vertices.

But there too, we can find a tetrahedral band in the band decomposition and the

lemma follows by induction.

Lemma 4.4.4. If Γ is a prism-canvas with T1 ∩ T2 = ∅, G = T1 ∪ T2 and G is a

triangulation, then either every band in the band decomposition of Γ is tetrahedral or

Γ is an octahedral band.

Proof. If there exists i ∈ {1, 2} and a vertex v ∈ Ti such that v has three neighbors in

T3−i, then there is a tetrahedral band in the band decomposition. Yet then in what
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remains, the two triangles share the vertex v and so by Lemma 4.4.3, every band in

the band decomposition of Γ is tetrahedral.

So we may suppose that every vertex in Ti has at most two neighbors in T3−i

for all i ∈ {1, 2}. But then as G is a triangulation, there are six edges of G not in

E(T1) ∪ E(T2). So every vertex of G must have two neighbors in the other triangle.

It follows that Γ is an octahedral band.

We are almost prepared to invoke Theorem 3.10.10 to start characterizing the

bands in the band decomposition. However, we need one more lemma to handle the

case when the coloring of one of the paths of the planarization does not extend locally.

Lemma 4.4.5. Let Γ = (G,C1, C2, L) be a critical prism-canvas such that d(C1, C2) ≥

4. Let Γ∗ = (G∗, P1 ∪P2, L
∗) be a planarization of Γ with respect to an arrow P . For

all i ∈ {1, 2}, if G∗ \P3−i is not L∗-colorable, then the band that contains Ci is either

tetrahedral, octahedral, or hexadecahedral.

Proof. It suffices by symmetry to prove the statement for i = 1. So we may suppose

that G∗ \ P2 is not L∗-colorable and hence that there is a critical subcanvas Γ′ of Γ∗

containing P1 but not P2. Let p1 be the end of the arrow P adjacent to C1 and p2 be

its neighbor in P not in C1.

Note that by the definition of optimal planarization, the vertices of P adjacent to

C1 and C2 are chosen to maximize their number of neighbors in C1, C2 respectively.

Let T1 = v1v2v3. Apply Theorem 3.7.2 to Γ′. Now (1) does not hold as by the

construction of Γ∗ there does not exist an edge of Γ∗ with both ends in P1 but not in

P1.

Suppose (4) holds. That is, there exists a tripod v in T ′. But then there exists a

separating triangle T0 with vertices (T1 \ {vi}) ∪ {v} where v is a tripod for vi and

the band G[C1, T0] is tetrahedral as desired.

Suppose (3) holds. Hence |V (P1)| = 4 and there exists a vertex v 6∈ P1 adjacent

150



to the two vertices in the interior of P1 such that |L′(v)| = 4. Suppose without loss

of generality that P1 = v1v2v3v1. Hence v ∼ v2, v3. As |L′(v)| = 4, v is also adjacent

to a vertex z in P . Note that N(p1) ∩ V (C1) = v1.

Suppose z = p1. Hence z is adjacent to v1. Now one of the 4-cycles v1zvv2

and v1zvv3 does not separate C1 from C2. Suppose without loss of generality that

C ′ = v1zvv2 does not separate C1 from C2. As Γ is critical, there does not exist

a vertex in the interior of C ′. As Γ′ is a critical path-canvas, we find that v1 ∼ v.

But then T0 = v1vv3 is a separating triangle and the band G[C1, T0] is tetrahedral as

desired.

So we may suppose that z 6= p1. But then given v, we find that P was not chosen

so that its end p1 adjacent to C1 had a maximum number of neighbors in C1, a

contradiction.

So we may suppose that (2) holds. We claim that |V (P1)| 6= 4. Suppose not.

Thus p1 has only one neighbor in C1. We may suppose without loss of generality that

v1 is the neighbor of p1 in C1. As (2) holds, there exists a vertex v 6∈ P1 adjacent to

a vertex in the interior of P1 such that |L′(v)| = 3. Hence P1 = v1v2v3v1. Suppose

without loss of generality that v ∼ v2.

As |L′(v)| = 3, then v must be adjacent to p1, p2. If v ∼ v3, then given v, we find

that P was not chosen so that its end p1 adjacent to C1 had a maximum number of

neighbors in C1, a contradiction. So we may assume that v 6∼ v3.

Suppose vp1v1v3v2 is a cycle that does not separate C1 from C2. Suppose there

exist a vertex v′ in the interior of the 5-cycle. As Γ is critical, v′ ∼ v1, v2, v3 and hence

v1v
′v3 is a separating triangle. But then the band incident with C1 is tetrahedral

as desired. So there does not exist a vertex in the interior of the 5-cycle. Now as

Γ′ is critical, it follows that v is adjacent to at least one of v1, v3. If v is adjacent

to both, then there exists a separating triangle involving v and two vertices of T0;

hence C1 is incident with a tetrahedral band as desired. So we may suppose that v
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is adjacent to only one of v1, v2. Hence |N(v)∩ T1| = 2, but then we find that P was

not chosen so that its end p1 adjacent to C1 had a maximum number of neighbors in

C1, a contradiction.

So we may suppose that vp1v1v3v2 is a cycle separating C1 from C2. But then

vp1v1v2 is a 4-cycle that does not separate C1 from C2. As T is critical, there does

not exist a vertex in its interior. Yet v is not adjacent to v1, as then, since there exists

a shortest path from C1 to C2 through v, v contradicts the choice of p1 for the end of

the arrow P adjacent to C1.

So we may suppose that Γ′ is a bellows with base v2v3v1. If Γ′ is a turbofan, then

As Γ′ is critical, there exists v′ ∼ v1, v2, v3 and hence v2v
′v1 is a separating triangle.

But then the band incident with C1 is tetrahedral as desired. v 6∼ v3, there exists

v′ 6∈ P1 such that v′ ∼ v3 and |L′(v′)| = 3. By symmetry of v2, v3 it follows that

v′p1v1v3 is a 4-cycle that does not separate C1 from C2. Furthermore, there does

not exist in the interior of that cycle and yet v′ 6∼ v1. But then now every coloring

of P1 \ {v1} and hence of P1 extends to an L-coloring of Γ′ by Theorem 1.4.2, a

contradiction to the fact that Γ′ is critical.

So we can assume that |V (P1)| = 3. We may assume without loss of generality

that P1 = v1v2v3 and there exist a short chord v2w3 of Γ′. As L′(w3) = 3, w3 is

adjacent to p1.p2. We may assume without loss of generality v3v2w3p1 is a 4-cycle

that does not separate C1 from C2. Hence there is no vertex in its interior. As Γ′ is a

bellows, it follows that w3 ∼ v3. Apply Theorem 3.7.2 to the canvas obtained to the

bellows in Γ′ with base P ′1 = v1v2w3. Again (1) clearly does not hold. So suppose (2)

holds. That is, there is then a tripod w1. But then w1 ∼ v1, v2, w3, p1. Hence w1w3p1

is a separating triangle T0 and the band G[C1, T0] is octahedral as desired. So (3)

holds. That is, there exists a short chord v2w1. But then w1 ∼ v1, p1, p2 where we

note that w1 is not adjacent to pi, i ≥ 3 as then w1p3p4 . . . is a shorter path from T1

to T2.
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Now there cannot be another chord v2w2 as then w2 is only adjacent to p2 and

thus has a list of size four, which cannot happen in a bellows. Thus w1v2w3 is the

base of a turbofan. So there is a tripod w2, w2 ∼ v2, w1, w3. Now w1w2w3 is the base

of an even fan as w1v2w3 is the base of a turbofan. Hence there exist vertices x3, x1

where x3 ∼ w3, w2, p2, p3 and x1 ∼ w1, w2, p2, p3. But then there cannot exist another

vertex x2 in the turbo fan, otherwise x2 has a list of size at least four as x2 is not

adjacent to p4, because then w2x2p4 is a shorter path from T1 to T2. So x1 ∼ x3. But

then x1p2x3 is a separating triangle T0 and the band G[C1, T0] is hexadecahedral as

desired.

Lemma 4.4.6. Let d0 > 0. There exists c0 > 0 such that the following holds: If

Γ = (G, T1, T2, L) is a counterexample to Theorem 4.1.1 with a minimum number of

vertices and subject to that a maximum number of edges, then there exist triangles T ′1

and T ′2 of G each separating C1 from C2 such that either

(1) Γ is nearly triangulated and every planarization Γ∗ of Γ[T ′1, T
′
2] contains a long

bottleneck Γ1 = (G′, P ′1 ∪ P ′2, L) where d(T1, T2)− 2d0 − c0 ≤ 6d(P ′1, P
′
2), or,

(2) d(T ′1, T
′
2) ≥ d0 and every band in the band decomposition of Γ[T ′1, T

′
2] is a sub-

graph of a tetrahedral, octahedral or hexadecahedral band.

Proof. Suppose (1) does not hold. First suppose that Γ is not nearly triangulated.

Suppose there exists a face f that is not bounded by a cycle. Hence there exists

a cutvertex v of G separating T1 from T2. For i ∈ {1, 2}, let T ′i be furthest triangle

from Ti such that T ′i separates Ti from v and every band in the band decomposition

of Γ[Ti, T
′
i ] is the subgraph of a tetrahedral, octahedral or hexadecahedral band. As

(2) does not hold, d(Ti, T
′
i ) ≤ d0.

Let Γ′i = Γ[T ′i , v]. Now there does not exist a vertex in Γi adjacent to all vertices

of T ′i as then T ′i would not be the furthest triangle. Given how T1, T2 were chosen,

it follows from Lemma 4.4.5 that for all i ∈ {1, 2} and for any planarization Γ∗i of

153



Γ′i, any L-coloring of T ′i extends to an L-coloring of Γ∗i \ {v}. Indeed more is then

true, any L-coloring of T ′i extends to an L′-coloring of G where L′(w) = L(w) for all

w ∈ Γ′i\{v} and |L′(v)| ≥ 3. But now it follows that any L-coloring of T ′1∪T ′2 extends

to an L-coloring of Γ[T ′1, T
′
2], a contradiction to the fact that Γ is a counterexample.

So we may suppose there exists a face f with two nonadjacent vertices u, v where

dG+{uv}(T1, T2) ≥ dG(T1, T2). But then (G + {uv}, T1, T2, L) is also counterexample

to Theorem 4.1.1 with same number of vertices but more edges, a contradiction.

So we may suppose that Γ is nearly triangulated. For i ∈ {1, 2}, let T ′i be furthest

triangle from Ti such that T ′i separates T1 from T2 and every band in the band decom-

position of Γ[Ti, T
′
i ] is the subgraph of a tetrahedral, octahedral or hexadecahedral

band. As (2) does not hold, d(Ti, T
′
i ) ≤ d0. Let Γ[T ′1, T

′
2] = (G0, P1 ∪ P2, L). Apply-

ing Theorem 3.10.11 to Γ[T ′1, T
′
2], we find that Γ[T ′1, T

′
2] contains a long bottleneck as

d(P ′1, P
′
2) ≥ O(log(4 + 4)) = c0.

We may now invoke Theorem 3.10.10 on the planarization of the prism-canvas to

obtain a long harmonica or accordion as a subcanvas. Such a bottleneck will give

rise to a sequence of separating triangles in the original graph. Indeed in the next

section, we will show that every vertex in the middle of a long accordion is in a

separating triangle and hence by the lemmas above that there is a prism-canvas in

the middle where every band in its band decomposition is tetrahedral or octahedral.

Similarly, in the section after that, we will show that every vertex in the middle of a

long harmonica is in a separating triangle or the interior of a hexadecahedral band.

4.5 Bands for Accordions

Our goal in this section is to classify the types of bands which can occur given a long

accordion in the planarization. Of course, it is not immediately clear that separating

triangles are even generated or that the distance between two nearest separating

triangles (and hence the size of the band) is even small. But we will show that this
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does indeed occur using the fact that the path P was a good planarizer! In this way,

we will prove the following lemma:

Lemma 4.5.1. Let Γ = (G0, C1, C2, L) be a cylinder-canvas, Γ∗ be an optimal pla-

narization of Γ. Suppose there exists a bottleneck Γ1 = (G,P1∪P2, L) of Γ∗ such that

Γ1 is an accordion and d(P1, P2) ≥ 34. Then there exists triangles T1 and T2 each

separating C1 from C2 such that d(T1, T2) ≥ d(P1, P2)−34 and every band in the band

decomposition of Γ[T1, T2] is tetrahedral or octahedral.

Now we will not be working with Γ1 to prove this lemma but rather the vertices

in the middle of Γ1. We make this notion more precise with the following definition.

Definition. Suppose that Γ1 = (G,P1 ∪ P2, L) is a bottleneck of a a canvas Γ with

d(P1, P2) ≥ 32. Let U1, U2, . . . Um be a maximum collection of chords of the outer

walk of Γ1 whose ends have lists of size three and are not cutvertices of Γ1. Let Γ2

be the bottleneck of Γ1 between U5 and Um−4. We say that Γ2 is a shortening of Γ1.

Lemma 4.5.2. If Γ2 = (G′, P ′1 ∪ P ′2, L) is a shortening of a bottleneck Γ1 = (G,P1 ∪

P2, L), then d(P ′1, P
′
2) ≥ d(P1, P2)− 32.

Proof. Let U1, U2, . . . Um be a maximum collection of chords of the outer walk of Γ1

as in the definition of shortening where Γ2 is the bottleneck between U5 and Um−4.

As Γ1 is an accordion or harmonica, it follows that d(Ui, Ui+1) ≤ 2 for all i where

1 ≤ i ≤ m− 1. Similarly d(U1, P1) ≤ 2 and d(Um, P2) ≤ 2. Hence d(U5, P1) ≤ 15 and

d(Um−4, P2) ≤ 15. Hence d(U1, U2) ≤ d(P1, P2)− 32 as desired.

We will need the following very useful lemma.

Lemma 4.5.3. Suppose that Γ2 = (G,P1 ∪ P2, L) is the shortening of a bottleneck

Γ1 = (G′, P ′1∪P ′2, L) of an optimal planarization Γ∗ of a cylinder-canvas Γ with respect

to the path P . Suppose that Γ∗0 is a planarization of Γ with respect to a path P ′ such
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that for V (P ′) \ V (P ) ⊆ V (G). Then there does not exist a stopping chord, blocking

chord, or dividing cut-edge U of Γ∗0 such that U ∩ V (G) 6= ∅.

Proof. Suppose not. Hence there exists a stopping chord, blocking chord, or dividing

cut-edge of Γ∗0, call it U0, such that U0 ∩ V (G) 6= ∅.

Claim 4.5.4. If U is a blocking chord, stopping chord, or dividing cut-edge of Γ∗,

then U is not contained in G′ \ (P ′1 ∪ P ′2).

Proof. Suppose not. Let U = u1u2. Suppose U is a stopping chord. Suppose without

loss of generality that there does not exist a vertex z ∈ V (G1) with a list of size

three adjacent to both u1, u2 and neither u1 nor u2 are in a chord of G1 whose ends

have lists of size three. Yet as Γ is a harmonica or accordion, there exists a bellows

W incident with the chord U . If U is not a fan, then Γ is an accordion. Hence Γ

is 2-connected and the other side of W is a chord where both ends have lists of size

three, a contradiction. So we may suppose that U is a fan. But then we may assume

without loss of generality that W is a triangle and hence z ∈ W \ U is in a triangle

with u1, u2, a contradiction.

Suppose U is a blocking chord. Without loss of generality we may suppose that

|L(u1)| ≥ 4. Hence u1 is not contained in the harmonica or accordion. Thus Γ2

contains a harmonica, u2 is a cutvertex of the harmonica, and |L(u2)| = 3. But then

u2 has two neighbors with lists of size three in both G1, G2 where G1 ∩ G2 = U and

G1 ∪G2 = G′ ∪ U , a contradiction to the fact that U is a blocking chord.

So suppose U is a dividing cut-edge. But then u1, u2 are cutvertices of G′. Thus Γ2

contains a harmonica and hence u1, u2 are cutvertices of the harmonica. Yet u1 ∼ u2,

a contradiction.

Claim 4.5.5. Every blocking chord, stopping chord, or dividing cut-edge of Γ∗ is a

blocking chord, stopping chord, or dividing cut-edge of Γ∗0, respectively.
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Proof. Suppose not. Let U = u1u2 be a blocking chord, stopping chord, or dividing

cut-edge of Γ∗. By Claim 4.5.4, there exists i ∈ {1, 2} such that ui 6∈ V (G′)\(V (P ′1)∪

V (P ′2)). We claim that d(ui, G) ≥ 4. Suppose not. As Γ2 is a shortening of Γ1, there

exist chords Ui = viv
′
i for 1 ≤ i ≤ 4 whose ends have lists of size three, are not

cutvertices of Γ1, and separate ui from G in Γ∗. But then Ui is a chord of Γ∗ and we

may assume without loss of generality that vi has two neighbors in P through the

top and v′i has two neighbors in P though the bottom. But then it follows, as P is a

shortest path from C1 to C2, that the neighbors of v4, v
′
4 on P closest to C2 are not

adjacent to the neighbors of v1, v
′
1 on P closest to C1. Hence there does not exist a

neighbor of ui adjacent to a neighbor of a vertex in G, a contradiction. This proves

the claim.

Thus d(ui, P
′ \ P ) ≥ 4. So d(U, P ′ \ P ) ≥ 3. As d(U, P ′ \ P ) ≥ 2 this implies

that u1, u2 are in Γ∗0 and have the same lists in Γ∗0 as in Γ∗. Thus U is a chord of Γ∗0.

Furthermore as d(U, P ′ \ P ) ≥ 3, the neighbors of u1, u2 in Γ∗ and the same as those

in Γ∗0. Indeed, their neighbors have the same lists in Γ∗0 as in Γ∗.

It now follows that if U is a blocking chord of Γ∗, then U is a blocking chord of

Γ∗0 as desired. Similarly if U is a dividing cut-edge of Γ∗, then U is also a dividing

cut-edge of Γ∗0.

Finally note that for i ∈ {1, 2} if ui in a chord U ′ of the outer walk of Γ∗0 with

both ends having lists of size less than three, then U ′ is also a chord of the outer walk

of Γ∗ whose both ends have a list of size three. It now follows that if U is a stopping

chord of Γ∗, then U is a stopping chord of Γ∗0.

By Claim 4.5.4, U0 is not a blocking chord, stopping chord, or cutvertex of Γ∗.

But now it follows that from Claim 4.5.5 that Γ∗0 has a strictly larger sum of block-

ing chords, stopping chords, and dividing cut-edges than Γ∗, a contradiction to the

assumption that Γ∗ is an optimal planarization.
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We will prove Lemma 4.5.1 by a sequence of lemmas. These lemmas require a

common hypothesis which we state here.

Hypothesis 4.5.6. Γ = (G0, C1, C2, L) is a critical nearly triangulated cylinder-

canvas and Γ∗ is an optimal planarization of Γ with respect to the path P = p1 . . . pd

where d = d(C1, C2)− 1. There exists a bottleneck Γ1 of Γ∗ with ends P ′1, P
′
2 which is

an accordion and d(P ′1, P
′
2) ≥ 34. Let Γ2 = (G,P1 ∪ P2, L) be a shortening of Γ1 and

C be the outer walk of G.

We will need to label various parts of the accordion Γ2. To that end, let C be the

outer walk of G. Let U1, U2, . . . Um−1 be the chords of C. Let U0 = P1 and Um = P2,

and W1,W2, . . .Wm be the resulting bellows of the accordion. We will assume that

no three of the U ’s intersect in a vertex as then we could just omit the middle chord,

combining two bellows of the accordion. That is, Ui∩Ui+2 = ∅ for all i, 0 ≤ i ≤ m−2.

As the Wi’s are bellows, |Ui∩Ui+1| = 1 for all i, 0 ≤ i ≤ m−1. Let xi+1 = Ui∩Ui+1,

x0 = U0 \ U1 and xm+1 = Um \ Um−1. Let X =
⋃
i xi.

We will say that an edge e in E(G) \E(P ) incident with a vertex v in the interior

of P is through the bottom if e is to the left of v. Similarly we say e is through the

top if e is to the right of v. Similarly we say that two vertices are adjacent through

the bottom (resp. top) if the edge incident with both of them is through the bottom

(resp. top).

Let bL = min{k|pk has a neighbor through the bottom in Γ2}, bR = max{k|pk has

a neighbor through the top in Γ2} and let tL, tR be similarly defined for neighbors

through the top. Let kL = max{bL, tL} and kR = min{bR, tR}. Let P ∗ = {pk|kL ≤

k ≤ kR}.

Let PB be the minimal path in the outer walk of Γ2 containing all the vertices

which are adjacent to vertices of P ∗ through the bottom and similarly let PT be the

minimal path in the outer walk of Γ2 containing all the vertices which are adjacent

to vertices of P ∗ through the top.
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Note that if xi ∈ PB(PT respectively), then xi+1 ∈ PT (PB respectively). Moreover,

as there are no cut vertices, PT ∩ PB = ∅.

Lemma 4.5.7. Assume Hypothesis 4.5.6. For every vertex v ∈ V (C), NG0(v)∩ P is

a path of length one or two and hence |NG0(v) ∩ P | = 2 or 3.

Proof. As all vertices in C have a list of size three, v has at least two neighbors in

P . Moreover, as there are no cutvertices of G, v is adjacent to vertices of P either

through the top or through the bottom. Yet there cannot be two neighbors of v in P

with distance at least three in P , as then P is not shortest. Hence the neighbors of v

lie on a subpath of P of length at most two. Given that Γ is nearly triangulated, it

follows that v is adjacent to all vertices on that subpath of P as desired.

Lemma 4.5.8. Assume Hypothesis 4.5.6. For every vertex p ∈ P ∗, NG0(p)∩PB and

NG0(p) ∩ PT are paths of length zero or one.

Proof. By symmetry, it suffices to prove the lemma for N(p) ∩ PB. If p has at least

two neighbors in PB, then p has exactly two neighbors in PB and they are adjacent,

as otherwise, there is a vertex in PB with at most one neighbor in P , contrary to the

fact that Γ1 is an accordion. The lemma now follows if p has a neighbor in PB. So

suppose not. Consider the face f of Γ incident with p and vertices in PB. It is not

hard to see that there must be a vertex v of PB incident with f such that adding the

edge pv does not decrease the distance from C1 to C2 in Γ. Yet p is not adjacent to

v and so this contradicts that Γ is nearly triangulated.

Lemma 4.5.9. Assume Hypothesis 4.5.6. For all i, 1 ≤ i ≤ m, Wi is a fan of length

at most three.

Proof. Suppose not. First suppose that the outer cycle of Wi has length at least six.

That is, there is a path xi−1v1v2v3 . . . xi+1 in C not containing xi. Thus xi−1 has a

neighbor u on P and xi+1 has a neighbor u′ on P such that dP (u, u′) ≥ 5 and yet
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uxi−1xixi+1u
′ is a path of length four in G. Thus P is not shortest, a contradiction.

But then if Wi is a fan, it is fan of length at most three as desired.

So we may suppose Wi is a turbofan of length three. Suppose without loss of

generality that xi−1 ∼ pj−2, pj−1. Thus xi+1 ∼ pj+1, pj+2. Notice that N(xi) ∩ P ⊆

{pj−1, pj, pj+1}. Yet as Γ is critical, there cannot be more than three vertices in the

interior of a disc bounded by 6-walk. Thus either xi ∼ pj−1, pj or pj, pj+1 as otherwise

u1, u2, u3, pj are in the interior of the disc bounded by the 6-walk pj−1xi−1xixi+1pj+1xi.

Let Wi \X = {u1, u2, u3} where u1 ∼ xi−1, u2 ∼ xi+1 and u3 ∼ xi−1, xi, xi+1. Thus

u1 ∼ pj−1, pj and u2 ∼ pj, pj+1.

Now consider the path P ′ obtained from P by replacing the vertices pj−1, pj, pj+1

with the vertices xi−1, u3, xi+1. As Γ1 is also an accordion, pk is not tripled for all k,

j − 3 ≤ k ≤ j + 3. Yet in P ′, xi−1, xi+1 are not doubled and xi is not tripled given

Wi. Furthermore if pj−2 is tripled in P ′, then pj−3 is not doubled. Similarly if pj+2

is tripled in P ′, then pj+3 is not doubled. It now follows that P ′ is an arrow in the

same direction as P .

Let ΓP ′ be the planarization of Γ with respect to P ′. If xi ∼ pj−1, pj, then

U = pj−1xi is a stopping chord of ΓP ′ given that neither pj−1 nor xi are in a chord

in G2 where C2 ⊂ G2 whose other end is a list of size three. But this contradicts

Lemma 4.5.3. Similarly, if xi ∼ pj, pj+1, then U = pj+1xi is a stopping chord of ΓP ′

given no chord in G1 where C1 ⊂ G1. But this contradicts Lemma 4.5.3.

Lemma 4.5.10. Assume Hypothesis 4.5.6. For all xi, 1 ≤ i ≤ m, either the edge

xixi−1 is in a separating triangle or the edge xixi+1 is in a separating triangle.

Proof. Let pj be the neighbor of xi−1 in P with j smallest and pk be the neighbor of

xi+1 in P with k largest. As mentioned before, k−j ≤ 4 given the path pjxi−1xixi+1pk.

Of course, k− j ≥ 2 as xi−1 and xi+1 have at least two neighbors on P . Note that by

Lemma 4.5.7, xi−1 ∼ pj+1 and xi+1 ∼ pk−1.
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Note that N(xi) ∩ P ⊆ {ph : k − 3 ≤ h ≤ j + 3} given the paths pkxi+1xi and

pjxi−1xi.

If k − j = 4, then N(xi) ∩ P ⊆ {pj+1, pj+2, pj+3}. Thus either pj+1 or pj+3 is a

neighbor of xi. In the former case, xi−1xipj+1 is a separating triangle. In the latter

case, xixi+1pj+3 is a separating triangle.

If k− j = 3, then N(xi) ⊆ {pj, pj+1, pj+2, pj+3}. Let pl ∼ xi where l, j ≤ l ≤ j+3.

If l = j or j + 1, then xi−1xipl is a separating triangle. If l = j + 2 or j + 3, then

xi−1xipl is a separating triangle.

If k − j = 2, then N(xi) ⊆ {pj−1, pj, pj+1, pj+2, pj+3}. Yet N(xi) ∩ P is path of

length at most two by Lemma 4.5.7, so one of pj, pj+1, pj+2 is in N(xi) ∩ P . Let

pl ∼ xi where l, j ≤ l ≤ j + 3. If l = j or j + 1, then xi−1xipl is a separating triangle.

If l = j + 1 or j + 2, then xi−1xipl is a separating triangle.

Lemma 4.5.11. Assume Hypothesis 4.5.6. If Wi is a fan of length one or two and

v ∈ Wi \X, then the edge vxi is in a separating triangle.

Proof. Let pj be the neighbor of xi−1 in P with j smallest and pk be the neighbor of

xi+1 in P with k largest. As mentioned before, k−j ≤ 4 given the path pjxi−1xixi+1pk.

Of course, k − j ≥ 2 as xi−1 and xi+1 have at least two neighbors on P .

Note that N(xi) ∩ P ⊆ {ph : k − 3 ≤ h ≤ j + 3} given the paths pkxi+1xi and

pjxi−1xi.

If k − j = 4, then N(xi) ∩ P ⊆ {pj+1, pj+2, pj+3}. In this case N(v) ∩ P ⊇

{pj+1, pj+2} or {pj+2, pj+3}. Thus v, xi is in a separating triangle as desired.

If k − j = 3, then N(xi) ⊆ {pj, pj+1, pj+2, pj+3. Yet N(v) ∩ P = {pj+1, pj+2}. As

N(xi) ∩ P is a path of length one or two by Lemma 4.5.7, either pj+1 or pj+2 is a

neighbor of xi and hence vxi is in a separating triangle as desired.

Lemma 4.5.12. Assume Hypothesis 4.5.6. For all vertices p ∈ P ∗, there exists i,

1 ≤ i ≤ m, such that Wi ∩N(p) ∩ PB,Wi ∩N(p) ∩ PT 6= ∅.
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Proof. Let pj ∈ P ∗. By Lemma 4.5.8, p has a neighbor in PB and a neighbor in PT .

By Lemma 4.5.7, N(v)∩ PB and N(v)∩ PT are paths of length at least one. If there

does not exist i as desired, then there exists i such that Ui = xixi+1 that separates

N(pj) ∩ B from N(pj) ∩ PT . As xi 6∼ pj, we find that xi has a neighbor pk with

k ≤ j − 2. Similarly as xi+1 6∼ pj, xi has a neighbor pk′ such that k′ ≥ j + 2. Yet

then pkxixi+1pk′ shows that P was not a shortest path, a contradiction.

Corollary 4.5.13. Assume Hypothesis 4.5.6. For all p ∈ P ∗, p is in a separating

triangle.

Proof. If there is an edge between N(p)∩PB and N(p)∩PT , then p is in a separating

triangle. And yet these intersect the same bellows Wi by Lemma 4.5.12. However, by

Lemma 4.5.9, Wi is a fan and hence all vertices of Wi ∩PB and Wi ∩PT are adjacent

and the corollary follows.

It now follows from the lemmas above that every vertex in Γ2 is in a separating

triangle in G0. Let V ′ = V (G)∪P ∗. Let T1 be the outermost separating triangle of G0

with V (T1) ⊆ V ′ and T2 be the innermost separating triangle of G0 with V (T2) ⊆ V ′.

Lemma 4.5.14. Assume Hypothesis 4.5.6. If v ∈ Γ[T1, T2], then v ∈ Γ2 ∪ P ∗.

Proof. Let H be the subgraph of Γ[T1, T2] induced by V (Γ2) ∪ P ∗. It follows from

Lemmas 4.5.7 and 4.5.8, that every face of H has size at most four. So by criticality

there is no vertex in the interior of these faces and hence V (Γ[T1, T2]) = V (H).

Corollary 4.5.15. Assume Hypothesis 4.5.6. If v ∈ Γ[T1, T2], then v is in T1, T2 or

a triangle separating a vertex of T1 from a vertex of T2.

Proof. By Lemmas 4.5.10, 4.5.11 and 4.5.13, every vertex in P ∗∪Γ2 is in a separating

triangle in Γ. As triangles cannot cross, it follows that every vertex in Γ[T1, T2] is in

T1, T2 or a triangle separating a vertex of T1 from a vertex of T2.
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Lemma 4.5.16. Assume Hypothesis 4.5.6. If B is a band in the band decomposition

of Γ[T1, T2], then B is tetrahedral or octahedral.

Proof. Let B = (GB, T3, T4, L) be a band in the band decomposition of Γ[T1, T2]. If

G = T3∪T4, then B is tetrahedral or octahedral by Lemma 4.4.4. So we may suppose

that G 6= T3 ∪ T4. But then GB \ T3 ∪ T4 must contain a vertex which is not in a

separating triangle, contradicting Corollary 4.5.15.

Proof of Lemma 4.5.1. We may assume Hypothesis 4.5.6. By Lemma 4.5.16, every

band in the band decomposition of Γ[T1, T2] is tetrahedral or octahedral. Furthermore,

d(T1, T2) ≥ d(P1, P2) − 2 where Γ2 = (G,P1 ∪ P2, L). As Γ2 is a shortening of Γ1, it

follows from Lemma 4.5.2 that d(T1, T2) ≥ d(P ′1, P
′
2) − 34 where P ′1, P

′
2 are the ends

of Γ1.

4.6 Bands for Harmonicas

Our goal in this section is to prove the following:

Lemma 4.6.1. Let Γ = (G0, C1, C2, L) be a cylinder-canvas, Γ∗ be an optimal pla-

narization of Γ. Suppose there exists a bottleneck Γ1 = (G,P1∪P2, L) of Γ∗ such that

Γ1 is a harmonica and d(P1, P2) ≥ 34. Then there exists triangles T1 and T2 of G0

each separating C1 from C2 such that d(T1, T2) ≥ d(P1, P2) − 32 and every band in

the band decomposition of Γ[T1, T2] is tetrahedral, octahedral or hexadecahedral.

We will prove Lemma 4.6.1 by a sequence of lemmas. These lemmas require a

common hypothesis which we state here.

Hypothesis 4.6.2. Γ = (G0, C1, C2, L) is a critical nearly triangulated cylinder-

canvas and Γ∗ is an optimal planarization of Γ with respect to the path P = p1 . . . pd

where d = d(C1, C2)− 1. There exists a bottleneck Γ1 of Γ∗ with sides P ′1, P
′
2 which is

a harmonica and d(P ′1, P
′
2) ≥ 34. Let Γ2 = (G,P1 ∪ P2, L) be a shortening of Γ1 and

C be the outer walk of G.
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Suppose Hypothesis 4.6.2 holds. We will need to label various parts of the har-

monica Γ2. To that end, let Y = {y1, y2, . . .} be the cutvertices of Γ1 that are also

in Γ2 and F i be the subcanvas between yi−1 and yi. Let F i
j be the jth fan of F i.

Let xij be the hinge of F i
j and let xi0 = yi−1 and xili = yi where li is the number of

fans of F i. Let X =
⋃
iX

i. (Hinges are the middle vertices of bases of the fans) We

say F i is a diamond if it is a fan of length one (in this case, neither is more a hinge

than the other; so we will say neither is a hinge). Another set of important vertices

is Zi = N(Y ) ∩ F i \X i. Let Z =
⋃
i Z

i.

We will say that an edge e in E(G)\E(P ) incident with a vertex in the interior of

P is through the bottom if the end not in P lies to the left of the end in P . Similarly

we say e is through the top if the end not in P lies to the right of the end in P .

Similarly we say that two vertices are adjacent through the bottom (resp. top) if the

edge incident with both of them is through the bottom (resp. top).

Let NB denote the set of vertices p in P with a neighbor v such that v in PB \ Y ,

or v in Y and v is adjacent to p through the bottom. Similarly, let NT denote the

set of vertices p in P with a neighbor v such that v ∈ PT \ Y , or v in Y and v is

adjacent to p through the top. Let bL = min{k|pk ∈ NB}, bR = max{k|pk ∈ NB},

tL = {min k|pk ∈ NT} and tR = max{k|pk ∈ NT}. Let kL = max{bL, tL} and

kR = min{bR, tR}. Let P ∗ = {pk|kL ≤ k ≤ kR}. Let C be the outerwalk of Γ2.

(Improve) Let PB be the bottom path of C, that is the the path of C that contains

the vertices of C who are adjacent to P through the bottom and similarly let PT be

the top path of C.

Note that if xi ∈ PB(PT respectively), then xi+1 ∈ PT (PB respectively). Moreover,

PT ∩ PB = Y .

We are now ready to start proving lemmas about the vertices in Γ2.

Lemma 4.6.3. Suppose Hypothesis 4.6.2 holds. For every vertex v ∈ V (C) \ Y ,

N(v) ∩ P is a path of length one or two and hence |N(v) ∩ P | = 2 or 3.
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Proof. As all vertices in C have a list of size three, v has at least two neighbors in

P . Moreover, as v is not a cutvertex of G, v reaches these neighbors by only one

homotopy type, top or bottom. Yet there cannot be two neighbors of v in P with

distance at least three in P , as then P is not shortest. Hence the neighbors of v lie on

a subpath of P of length at most two. Given that G is nearly-triangulated, it follows

that v is adjacent to all vertices on that subpath of P as desired.

Lemma 4.6.4. Assume Hypothesis 4.6.2. Suppose F i is not a diamond. If x ∈ X i\Y ,

then x is in a separating triangle.

Proof. Suppose without loss of generality that x ∈ PT . As F i is not a diamond, x

has at least two neighbors in PB \ Y each with two neighbors in P . Let w1 be the

neighbor of x in PB \ Y closest to P1 and w2 be the neighbor of x in PB \ Y closest

to P2.

Let pj be the neighbor of w1 in P with j smallest and pk be the neighbor of w2

in P with k largest. As mentioned before, k − j ≤ 4 given the path pjw1xw2pk. Of

course, k − j ≥ 2 as w1 and w2 have at least two neighbors on P . Note that by

Lemma 4.6.3, w1 ∼ pj+1 and w2 ∼ pk−1.

Note that N(x)∩P ⊆ {ph : k− 3 ≤ h ≤ j + 3} given the paths pkw2x and pjw1x.

If k − j = 4, then N(x) ∩ P ⊆ {pj+1, pj+2, pj+3}. Thus either pj+1 or pj+3 is a

neighbor of x. In the former case, w1xpj+1 is a separating triangle. In the latter case,

xw2pj+3 is a separating triangle.

If k − j = 3, then N(x) ⊆ {pj, pj+1, pj+2, pj+3}. Let pl ∼ x where j ≤ l ≤ j + 3.

If l = j or j + 1, then w1xpl is a separating triangle. If l = j + 2 or j + 3, then w2xpl

is a separating triangle.

If k − j = 2, then N(x) ⊆ {pj−1, pj, pj+1, pj+2, pj+3}. Yet N(x) ∩ P is path of

length at most two by Lemma 4.6.3, so one of pj, pj+1, pj+2 is in N(x)∩P . Let pl ∼ x

where j ≤ l ≤ j + 3. If l = j or j + 1, then w1xpl is a separating triangle. If l = j + 1

or j + 2, then w2xpl is a separating triangle.
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Lemma 4.6.5. Assume Hypothesis 4.6.2. Suppose F i is not a diamond. If v ∈

F i
j \ (X i ∪ Zi), then the edge vxj is in a separating triangle.

Proof. As v ∈ F i
j \X i, xj has two neighbors w1, w2 in F i

j such that w1vw2 is a path in

F i
j . As v 6∈ Zi, w1, w2 6∈ Y . As F i

j is a fan, w1, w2 ∼ xi. Let ph be the neighbor of w1

in P with h smallest and pk be the neighbor of w2 in P with k largest. As mentioned

before, k − h ≤ 4 given the path phw1xw2pk. Given that v has two neighbors in P ,

k − h ≥ 3.

If k−h = 4, thenN(xj)∩P ⊆ {ph+1, ph+2, ph+3}. Thus by Lemma 4.6.3, ph+2 ∼ xj.

Yet v ∼ ph+2 and thus vxjph+2 is a separating triangle.

If k − h = 3, then N(xj) ⊆ {ph, ph+1, ph+2, ph+3}. Thus by Lemma 4.6.3, either

xj ∼ ph+1 or xj ∼ ph+2. Yet v ∼ ph+1, ph+2. So vxj is a separating triangle.

Let Y2 denote the set of vertices in Y with at least two neighbors through one side

(top or bottom).

Lemma 4.6.6. Assume Hypothesis 4.6.2. If y ∈ Y2, then y is in a separating triangle.

Proof. Let yi ∈ Y2. Suppose without loss of generality that yi has two neighbors on

P where the edges go from PB to P . Let pj, pk be two such neighbors of Y where we

may assume k > j and there does not exists h, k > h > j such that ph is a neighbor

of Y through the bottom. First suppose k = j + 1. Let x1 ∈ N(yi) ∩ PT ∩ F i−1 and

x2 ∈ N(yi) ∩ PT ∩ F i. Let ph1 be the neighbor of x1 in P with h1 smallest and let

ph2 be the neighbor of x2 in P with h2 largest. By Lemma 4.6.3, x1 ∼ ph1+1 and

x2 ∼ ph2−1. Hence h2 ≥ h1 + 2.

If x1 or x2 is adjacent to pj or pj+1, then y is in a separating triangle as desired.

Nevertheless, given the path ph1x1yipj+1, we find that h1 ≥ j − 2 and hence h2 ≥ j.

But then as x2 is not adjacent to pj or pj+1, it follows that h2 ≥ j + 3. Similarly

given the path ph2x2yipj, we find that h2 ≤ j + 3 and hence h1 ≤ j + 1. As x1 is not
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adjacent to pj or pj+1, it follows that h1 ≤ j − 2. Thus h2 ≥ h1 + 5. Yet given the

path x1yix2, we find that h2 ≤ h1 + 4 as P is a shortest path, a contradiction.

So we may assume that k ≥ j+2. AsG is a nearly triangulated, y must be adjacent

to pj+1 through the top. But then pjpj+1yi is a separating triangle as desired.

Let Y1 denote the vertices in Y with one neighbor in P through each side (top

and bottom) such that these neighbors are adjacent.

Lemma 4.6.7. Assume Hypothesis 4.6.2. If y ∈ Y1, then y is in a separating triangle.

Proof. Let yi ∈ Y1. Suppose without loss of generality that the neighbor of yi on top

is pj−1 and the neighbor of y on bottom is pj. Then pj−1pjyi is a separating triangle.

Let Y ∗1 denote the set of vertices in Y with one neighbor in P through each such

that these neighbors are not adjacent.

Lemma 4.6.8. Assume Hypothesis 4.6.2. If y ∈ Y ∗1 , then y is in a separating triangle

or in the interior of a hexadecahedral band (as well as pj,z1,z4).

Proof. Let yi ∈ Y ∗1 . Without loss of generality let pj−1 be the neighbor of yi on the

bottom and pj+1 be the neighbor of yi on top. Let z1z2yi be the triangle in F i−1

and z3z4yi be the triangle in F i. We may suppose without loss of generality that

z1, z3 ∈ PT and z2, z4 ∈ PB. It follows that N(z2)∩P = {pj−2, pj−1} as otherwise P is

not a shortest path. Similarly N(z3)∩P = {pj+1, pj+2}. If z1 ∼ pj−1, then z1pj−1yi is

a separating triangle as desired. Yet z1 6∼ pj−3 given the path z1yipj+1. But then by

Lemma 4.6.3, it follows that N(z1)∩P = {pj, pj+1}. Similarly N(z4)∩P = {pj−1, pj}.

Meanwhile there exists u1 ∈ F i−1 such that u1 6= yi and u1z1z2 is a triangle.

Similarly there exists u2 ∈ F i such that u2 6= yi and u2z3z4 is a triangle. Now N(u1)∩

P ⊆ {pj−2, pj−1, pj} given the path u1z1pj+1. Similarly N(u2) ∩ P ⊆ {pj, pj+1, pj+2}

given the path u2z4pj−1.
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We claim that u1 ∼ pj−1. Suppose not. As u1 has two neighbors on P , u1 ∼

pj−2, pj. Given z2 and yi, u1 must be adjacent to pj through the top. But then if u1

is adjacent to pj−2 through the top, then u1 would be adjacent to pj−1 as G is nearly

triangulated. So we may assume that u1 is adjacent to pj−2 through the bottom. Now

consider the path P ′ = P \ {pj−1, pj} ∪ {z2, z1}. Note then that z1 has only one mate

yi in P ′, pj+1 has no mate in P ′, and as pj−1 is not a mate of z2 since pj−1 6∼ z1, z2

has at most one mate in P ′, namely u1. Given that neither u1 nor pj−1 is a mate of

pj−2 in P ′, we find that pj−2 has no mate in P ′. Combining these observations, we

find that P ′ is an arrow.

However, the edge pj−1pj is a 2-separation of the planarization ΓP ′ of Γ with

respect to P ′. Moreover, we claim that U = pj−1pj is a stopping chord of ΓP ′ in the

direction of C. Suppose not. Thus either pj is adjacent vertex v with two neighbors

in P \ {pk : k ≥ j − 1} such that one of those neighbors is through the top, or, pj−1

has a vertex with two such neighbors such that one is through the bottom. Suppose

the former. Then P is not a shortest path, given v. So suppose the latter. Yet

v 6= u1 as pj−1 is not adjacent to u1. Furthermore, u1 is in a triangle u1w1w2 in

F i−2 where w1 ∈ PT \ Y and w2 ∈ PB \ Y . It follows that w1 ∼ pj−2 and hence

v = w1. But w1 ∈ PT and hence does not have a neighbor on P through the bottom,

a contradiction. This proves the claim.

So U is a stopping chord of ΓP ′ contradicting Lemma 4.5.3.

By an identical argument, we can show that u2 ∼ pj+1. Now given z2 and yi,

u1 must be adjacent to pj−1 through the top. Similarly given z3 and yi, u2 must

be adjacent to pj+1 through the bottom. Thus pj−1pjz1u1 is a 4-cycle that does not

separate C from C ′. Thus there are no vertices in its interior. Yet as G is nearly

triangulated, one of the edges pj−1z1 and pju1 must be present. Yet z1 is not adjacent

to pj−1 and hence pj is adjacent to u1. A similar argument shows that pj is adjacent to

u2. Now T1 = pj−1u1z2 and T2 = pj+1u2z3 are separating triangles. Indeed, G[T1, T2]
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is a band. The internal vertices of that band are pjz1yiz4 and it is not hard to check

the adjacencies to see that the band is hexadecahedral as desired.

Let P ∗2 denote the set of vertices in P ∗ with a neighbor in Γ2 through top and

bottom. Let P ∗1 = P ∗ \ P ∗2 .

Lemma 4.6.9. Assume Hypothesis 4.6.2. If p ∈ P ∗2 , then either p is in a separating

triangle or p is in the interior of a hexadecahedral band (with y as in Lemma 4.6.8).

Proof. Suppose not. Then note that the neighbors of p in Γ2 through the top must

form a subpath as otherwise, the vertex in the middle is in Y and thus p is adjacent

to it through the other side and hence p is in a separating triangle. Now if p has a

neighbor on top and a neighbor on bottom that are adjacent then p is in a separating

triangle as desired. So we may assume without loss of generality that the neighbors

of p in Γ2 through the top are closer to C than p’s neighbors on the bottom and that

the neighbors through the bottom are closer to C ′ than then neighbors on top.

Let u1 be the neighbor through the top closest to C ′ along PT and u2 be the

neighbor through the bottom closest to C along PB. Let u′1 be the neighbor of u1

in PT closer to C ′. If u′1 6∈ Y , then consider the vertex z1 ∈ Γ2, that is in a triangle

z1u1u
′
1. Clearly, z1 ∈ PB \ Y . But then p′z1u

′
1p
′′ yields a shorter path than P , where

p′ is the neighbor of z1 on P closest to C and p′′ is the neighbor of u′1 on P closest to

C ′. So we may suppose that u′1 in Y .

Let u′2 be the neighbor of u2 in PB closer to C. Similarly we find that u′2 ∈ Y . If

u′1 6= u′2, then there exists z1 ∈ PB \ Y and z2 ∈ PT \ Y such that z1 is adjacent to

z2 and z1z2 is a chord of Γ2 separating u1 from u2. But then p′z1z2p
′′ yields a shorter

path than P , where p′ is the neighbor of z1 on P closest to C and p′′ is the neighbor

of z2 on P closest to C ′. So we may suppose u′1 = u′2, call it y.

Let us call p, pj, so that pj−1pjpj+1 is a subpath of P with pj−1 closest to C. Now

y is not adjacent to pj as we chose u1 closest to C ′ and u2 closest to C. Let u3 such
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that u1u3y is a triangle in Γ2 and u4 such that u2u4y is triangle in Γ2. Now u4 is

not adjacent to pj as u1 was chosen closest to C. Thus there exists k4 ≥ j + 2 such

that u4 ∼ pk4 . But this implies there does not exist k ≤ j − 2 such that y ∼ pk as

otherwise pkyu4pk4 is a shortcut for P . Similarly, there exists k3 ≤ j − 2 such that

u3 ∼ pk3 and hence there does not exist k ≥ j + 2 such that y ∼ pk.

As y has at least two neighbors on P , we find that y ∼ pj−1, pj+1. Indeed, y must

be adjacent to pj+1 through the top as u1 ∼ pj−1, pj through the top, and to pj−1

through the bottom as u2 ∼ pjpj+1 through the bottom. But then u1pjpj+1y is a 4-

cycle which does not separate C from C ′ and hence there are no vertices in its interior.

As G is nearly triangulated and y 6∼ pj, we find that u1 ∼ pj+1. Similarly there are

no vertices in the interior of u2pjpj−1y and hence u2 ∼ pj−1. Now if u1 ∼ pj−1 and

u2 ∼ pj+1, then pj has degree four, a contradiction.

So we may assume without loss of generality that u2 6∼ pj+1. Now if u1 6∼ pj−1,

then it is not hard to see that y cannot be in separating triangle; thus, by Lemma 4.6.8,

it follows that pj is in the interior of the same hexadecahedral band as y and the lemma

follows. So we may assume that u1 ∼ pj−1.

Consider P ′ = (P \ {pj}) ∪ {y}. Now P ′ is also a shortest path from C to C ′.

Furthermore, y has exactly one mate for P ′, namely, u1, pj−1 has exactly one mate

for P ′, namely u3, and pj+1 has exactly one mate for P ′, namely u4.

Suppose P is an arrow from C to C ′. Then P ′ is an arrow from C to C ′ unless

pj+2 has two mates, call them p′j+2, p
′′
j+2. Now given that u4 is not a mate of pj+2

for P ′, either p′j+2 or p′′j+2 is in a separating triangle with pj+1 and pj+2. We may

suppose without loss of generality that p′j+2pj+2pj+1 is a separating triangle. Hence

the edge p′j+2pj+2 is through the top and the edge p′j+2pj+1 is through the bottom.

Thus p′j+2 ∈ Y . As Γ1 is a harmonica, p′j+2 must be adjacent to u4. Yet as Γ1 is

a harmonica, F i must be an even fan where yi−1 = y and yi = p′j+2. Thus p′j+2 is

adjacent to u2, a contradiction to the fact that P is a shortest path given the path
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pj−1u2p
′
j+2pj+3. Hence if P is an arrow from C to C ′, P ′ is an arrow from C to C ′.

Suppose P is an arrow from C ′ to C. Then P ′ is an arrow from C ′ to C unless

pj−2 has two mates, call them p′j−2, p
′′
j−2. Now given that u3 is not a mate of pj−2

for P ′, either p′j−2 or p′′j−2 is in a separating triangle with pj−1 and pj−2. We may

suppose without loss of generality that p′j−2pj−2pj−1 is a separating triangle. Hence

the edge p′j−2pj−2 is through the bottom and the edge p′j−2pj−1 is through the top.

Thus p′j−2 ∈ Y . As Γ1 is a harmonica, p′j−2 must be adjacent to u1, a contradiction

to the fact that P is a shortest path given the path pj−3p
′
j−2u1pj+1. Hence if P is an

arrow from C ′ to C, P ′ is an arrow from C ′ to C.

So we may suppose that P ′ is an arrow in the same direction as P . Consider the

planarization ΓP ′ of Γ with respect to P ′. Now U = u1pj is a dividing cut-edge in

ΓP ′ , contradicting Lemma 4.5.3.

It now follows from the lemmas above that every vertex in Γ2 is in a separating

triangle in G0. Let V ′ = V (G)∪P ∗. Let T1 be the outermost separating triangle of G0

with V (T1) ⊆ V ′ and T2 be the innermost separating triangle of G0 with V (T2) ⊆ V ′.

Let H be G[V (Γ2)∪V (P ∗)]\{e = uv|u, v ∈ V (Γ2), e 6∈ E(Γ2)}. Let H ′ = H \{e =

uv|u ∈ Y, v ∈ P ∗}. Let F be the set of faces of H ′ incident with vertices in Y that

are not triangles. Let Fi be faces in F with size i.

Proposition 4.6.10. Assume Hypothesis 4.6.2. If v ∈ Γ[T1, T2] \ (Γ2 ∪ P ∗), then v

is in the interior of a face f in F5 ∪ F6.

Proof. A vertex not in H must be in the interior of a face of H of size at least five. All

faces of H not incident with a vertex in Y are triangles as G is a near-triangulation.

Moreover, faces in H incident with a vertex in Y have size at most six.

Proposition 4.6.11. If v ∈ P ∗1 , then v is incident with a face f in F6 and the edges

of the boundary of f incident with v are in P .
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Proof. As v ∈ P ∗1 , v does not have a neighbor in Γ2 through either top or bottom.

But then, on that side it must be incident with a face f in H of size at least four.

Thus, but then f must be incident with a vertex in Y . If f has size less than six,

then v has a neighbor in Γ2. Thus f has size six and the edges of the boundary of f

incident with v are in P .

Now we may characterize the vertices in Y in a different more useful way. Namely,

let Ya,b denote the set of vertices y in Y such that the two faces of H ′ that are incident

with y but are not triangles have sizes a and b where a ≥ b. Thus by the above

Propositions, we may characterize the vertices of P ∗1 and Γ[T1, T2]\ (Γ2∪P ∗) by what

Ya,b the vertex of y in those propositions belongs to.

Let Pa,b be the vertices of P ∗1 such that there exists y in Ya,b where p and y are

both incident with a face of size six in H ′ as in Proposition 4.6.11. Hence Pa,b = ∅ if

a ≤ 5. We define Wa,b as the vertices of Γ[T1, T2] \ (V (Γ2) ∪ V (P ∗)) in the interior of

a non-triangular face of H ′ incident with a vertex y ∈ Ya,b.

Lemma 4.6.12. Assume Hypothesis 4.6.2. If a ≤ 5, then Wa,4 = ∅.

Proof. Suppose not. Then there exists a vertex w ∈ Wa,4, a ≤ 5. Yet w must be in

a face f of size at least five. Hence a = 5. But then the cutvertex y incident with f

can have at most one neighbor in P , contradicting that Γ2 is a harmonica.

Lemma 4.6.13. Assume Hypothesis 4.6.2. All vertices in W5,5 are in a separating

triangle.

Proof. Let w ∈ W5,5. Thus w is in a face f1 of size five. Let y be the cutvertex

incident with f . As y has two neighbors in P , y must be incident with two edges in

the interior of f2, the other face of size five in H ′ incident with y. Let pj, pj+1 be these

neighbors. Now if pj or pj+1 is incident with f1, then w is in a separating triangle as

desired. Let pk and pk+1 be the vertices of P incident with f1. So we may suppose
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without loss of generality that k ≥ j+2. Let u be such that upk+1 is an edge incident

with f1 and u 6= pk. By Lemma 4.6.3, u ∼ pk+2. But then pjyupk+2 shows that P is

not a shortest path from C1 to C2, a contradiction.

Lemma 4.6.14. Assume Hypothesis 4.6.2. All vertices in
⋃
b≥4(W6,b ∪ P6,b) are in a

separating triangle.

Proof. Suppose not. Let z be such a vertex not in a separating triangle. If z ∈ P ∗1 ,

let y ∈ Y be the cutvertex opposite z as in Lemma 4.6.11; otherwise let y ∈ Y be the

cutvertex incident with the face of H ′ containing z in its interior as in Lemma 4.6.10.

Recall that P = p1 . . . pd is a shortest path from C to C ′. Let f1, f2 be the

two non-triangular faces of H ′ incident with y. We may suppose without loss of

generality that f1 is on top and f2 is on bottom, that |f1| = 6, and f1 is a face

for z as in Lemmas 4.6.11 and 4.6.10. Let u1u2y and u3u4y be the triangles of Γ2

incident with y. We may assume without loss of generality that u1, u3 ∈ PT \ Y

and hence u2, u4 ∈ PB \ Y . Let pj−1, pj, pj+1 be the vertices of P incident with f1

such that the boundary of f1 is pj−1pjpj+1u3yu1. Thus N(u1)∩P = {pj−2, pj−1} and

N(u3) ∩ P = {pj+1, pj+2} as otherwise P is not shortest. Therefore, we may assume

that if z ∈ P , then z = pj.

Claim 4.6.15. |f2| 6= 4.

Proof. Suppose not. Now y is incident with at most one edge that lies in f2. Yet y

has at least two neighbors on P ; thus y is incident with at least one edge that lies in

f1. Suppose that ypj is such an edge. But then y is adjacent to pj−1, pj+1 through

edges in f1 as G is nearly triangulated. Thus there is no vertex in the interior of f1

or f2. Moreover, one of u2, u4 is adjacent to pj as P is a shortest path. Thus, ypj is

in a separating triangle, a contradiction as z = pj.

So we may assume that ypj is not an edge that lies in f1. Without loss of generality,

we may suppose that ypj+1 is an edge that lies in f1. Suppose there is no vertex in
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the interior of f1; hence z = pj. Yet as pj is not adjacent to u1 and G is nearly

traingulated, the edge pj−1y must lie in f1. But then as G is nearly triangulated and

ypj is not an edge that lies in f1, ypj must be an edge and hence it must lie in f2.

Thus ypjpj+1 is a separating triangle, contradicting that z = pj.

So we may assume there exists a vertex v in the interior of f1. Hence N(v) =

{pj−1, pj, pj+1, y, u1}. Yet y must have another neighbor in P . Thus either pj is in

f2 and the edge ypj lies in f2 or pj−1 is in f2 and the edge ypj−1 lies in f2. Suppose

the former. Then yvpj is a separating triangle, contradicting that z ∈ {v, pj}. So we

may suppose the latter that ypj−1 is an edge that lies in f2.

Suppose P is an arrow from C to C ′. Consider P ′ = (P \ {pj}) ∪ {y}. Now P ′

is also a shortest path from C to C ′. Furthermore, y has exactly one mate for P ′,

namely, v, and pj−1 has exactly two mates for P ′, namely u1, u2. Moreover, pj+1 has

one mate for P ′, namely u3. In addition, pj−2 has no mate for P ′ given u1, u2. Now

P ′ is an arrow from C to C ′ unless pj+2 has two mates, call them p′j+2, p
′′
j+2. Now

either p′j+2 or p′′j+2 is in a separating triangle with pj+1 and pj+2. We may suppose

without loss of generality that p′j+2pj+2pj+1 is a separating triangle. Hence the edge

p′j+2pj+2 is through the top and the edge p′j+2pj+1 is through the bottom because

u3 ∼ pj+1, pj+2. Thus pj + 2′ ∈ Y . As Γ1 is a harmonica, p′j+2 must be adjacent to

u3. Yet as Γ1 is a harmonica, F i must be an even fan where yi−1 = y and yi = p′j+2.

Thus p′j+2 is adjacent to u4, a contradiction to the fact that P is a shortest path given

the path pj−1u4p
′
j+2pj+3.

So we may suppose that P ′ is an arrow from C to C ′. Consider the planarization

ΓP ′ of Γ with respect to P ′. Now U = vpj is a dividing cut-edge of ΓP ′ , contradicting

Lemma 4.5.3.

Finally we may assume that P is an arrow from C ′ to C. Consider P ′′ = (P \

{pj, pj+1}) ∪ {u4, u3}. Now P ′′ is also a shortest path from C to C ′. Furthermore,

u4 has exactly one mate for P ′′, namely, y. Moreover, neither pj−1 nor pj−2 has a
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mate for P ′′. Note that pj+1 is not adjacent to u4 as then pj has degree four, a

contradiction. Thus pj+1 is not a mate of u3 for P ′′. So u3 has at most one mate for

P ′′.

Now P ′′ is an arrow from C ′ to C unless pj+2 has two mates, call them p′j+2, p
′′
j+2

and pj+3 has at least one mate, call it p′j+3. Now either p′j+2 or p′′j+2 is in a separating

triangle with u3 and pj+2. We may suppose without loss of generality that p′j+2pj+2u3

is a separating triangle. Hence the edge p′j+2pj+2 is through the bottom and the

edge p′′j+2pj+2 is through the top. Thus the edge p′j+2pj+3 is through the bottom as

otherwise p′′j+2 is in the interior of the 4-cycle p′j+2pj+3pj+2u3 which does not separate

C from C ′, a contradiction.

As pj+3 has a mate for P ′′, p′′j+2pj+3 cannot be through the top and so must be

through the bottom. Hence p′′j+2 ∈ Y . But then p′′j+2 is adjacent to u3 and pj+2′ as Γ1

is a harmonica. Thus F i is an even fan where yi−1 = y and yi = p′′j+2. It now follows

that there exists u5 ∈ Γ1 adjacent to all of u3, u4, p
′
j+2. Moreover as u5 ∈ PB \ Y and

hence N(u5) ∩ P is a path of length one or two. Yet N(u5) ∩ P ⊆ {pj, pj+1, pj+2}.

Hence u5 ∼ pj+1. But then u5 ∼ pj, as otherwise pj has a degree at most four, a

contradiction.

Note the 4-cycle u5p
′
j+2pj+2pj+1 that does not separate C from C ′. As G is nearly

triangulated, it follows that either u5 ∼ pj+1 or p′j+2 ∼ pj+1. Suppose u5 ∼ pj+1. Let

P ′′′ = P \ {pj+1}∪{u5}. Now pj−1 has no mates for P ′′′. Furthermore, pj has exactly

one mate for P ′′, namely, u4; u5 has exactly one mate, namely pj+1; pj+2 has exactly

one mate, namely p′j+2. Hence P ′′′ is an arrow from C ′ to C. Yet U = u3p
′′
j+2 is a

dividing cut-edge of ΓP ′′′ , contradicting Lemma 4.5.3.

So we may suppose that p′j+2 ∼ pj+1. Let P ′′′ = P \ {pj+2} ∪ {p′j+2}. Now pj has

exactly one mate for P ′′′, namely, v; pj+1 has no mate; p′j+2 has exactly one mate,

namely pj+2. In addition, pj+3 has no mate for P ′′′. Hence P ′′′ is an arrow from C ′

to C. Yet U = yu3 is a dividing cut-edge of ΓP ′′′ , contradicting Lemma 4.5.3.
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So we may suppose that P ′′ is an arrow from C ′ to C. So consider the planarization

ΓP ′′ of Γ with respect to P ′′. Now v has a list of size at least four in ΓP ′′ and y has a

list of size at least three. Yet vy is a chord of the infinite face of ΓP ′′ and y has only

three neighbors in ΓP ′′ with a list of size three. Hence, U = vy is a blocking chord of

ΓP ′′ , contradicting Lemma 4.5.3.

Claim 4.6.16. |f2| 6= 5.

Proof. Suppose not. We may assume without loss of generality that the boundary of

f2 is pj−1pju4yu2 and that N(u2)∩P = {pj−2, pj−1} and that N(u4)∩P ⊇ {pj, pj+1}.

Note that pj is not adjacent to u1, u2, u3. In addition, u2 6∼ u4 as otherwise u2u4pjpj−1

is a 4-cycle that does not separate C from C ′, but then as G is nearly triangulated

either u2 ∼ pj or u4 ∼ pj+1, contradicting that |f2| = 5.

First suppose there exists a vertex v in the interior of f2. As y has at least two

neighbors in P , y is incident with two edges that lie in f1. Hence there is no vertex

in the interior of f1. As G is nearly triangulated, it follows that y ∼ pj−1, pj, pj+1.

Hence pjvy is a separating triangle, a contradiction as z ∈ {v, pj}.

So we may assume there does not exist a vertex in the interior of f2. As G is

nearly triangulated and u2 6∼ pj, the edge pj−1y lies in f2. Suppose y 6∼ pj. Thus

y ∼ pj+1 as y has two neighbors in P . Hence ypj+1 lies in f1 and there is at most one

vertex in the interior of f1. But then pj has degree at most four, a contradiction. So

we may assume that y ∼ pj. If ypj lies in f1, then pj ∼ u1 as G is nearly traingulated,

a contradiction. So we may suppose that ypj lies in f2.

As P is a shortest path, pj−1 is not adjacent to either u3 or pj+1. Thus if there

does not exist a vertex in the interior of f1, then u1 ∼ pj as G is nearly triangulated,

contradicting that |f1| = 6. So we may suppose there exists a vertex in the interior

of f1. Now condition on the interior of f1 using Theorem 1.5.2. Suppose case (i)

holds. That is, there exists exactly one vertex v in the interior of f1. As G is nearly
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triangulated, it follows that v is adjacent to all of pj−1, pj, pj+1, u1, u3, y. Hence pjvy

is a separating triangle, a contradiction as z ∈ {v, pj}.

So there are at least two vertices in the interior. We claim now that u4 is not

adjacent to pj+2. Suppose it is. As u4 ∈ PB \ Y , the edge u4pj+2 must go through

the bottom. Hence the 7-walk C0 = pj−1yu4pj+2u3yu1 does not separate C from C ′.

As case (ii) or (iii) holds for f1, every L-coloring of the boundary of C0 extends to its

interior, a contradiction. This proves the claim that u4 is not adjacent to pj+2.

So suppose case (ii) holds. That is, there exist two adjacent vertices v1, v2 in the

interior of f1 such that v1, v2 are each adjacent to four vertices in the boundary of f1.

Suppose v1, v2 are both adjacent to pj. It follows that v1, v2 are both adjacent to y.

Hence pjv1y and pjv2y are separating triangles, a contradiction as z ∈ {v1, v2, pj}. So

we may suppose without loss of generality that v1 is adjacent to pj−1, pj, pj+1 and v2

is adjacent to u1, y, u3. There are two cases to consider: v1 is adjacent to u1 and v2

is adjacent to pj+1, or, v1 is adjacent to u3 and v2 is adjacent to pj−1.

Suppose that v1 is adjacent to u1 and v2 is adjacent to pj+1. Consider P ′ =

(P \ pj) ∪ v1. Now P ′ is also a shortest path from C to C ′. Furthermore, v1 has

exactly one mate for P ′, namely, pj, and pj−1 has exactly one mate for P ′, namely u1.

Moreover, pj+1 has no mate for P ′. In addition, pj−2 has no mate for P ’ given u1, u2.

Thus P ′ is an arrow in the same direction as P ′. So consider the planarization ΓP ′ of

Γ with respect to P ′. Now v2 has a list of size at least three in ΓP ′ and y has a list

of size at least four. Yet v2y is a chord of the infinite face of ΓP ′ and v2 has only two

neighbors in ΓP ′ with a list of size three. Hence, U = v2y is a blocking chord of ΓP ′ ,

contradicting Lemma 4.5.3.

So we may suppose that v1 is adjacent to u3 and v2 is adjacent to pj−1. Consider

P ′ = (P \ pj)∪ v1. Now P ′ is also a shortest path from C to C ′. Furthermore, v1 has

exactly one mate for P ′, namely, pj, and pj+1 has exactly one mate for P ′, namely

u3. Moreover, pj−1 has no mate for P ′. Suppose P ′ is an arrow in the same direction
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as P . So consider the planarization ΓP ′ of Γ with respect to P ′. Now v2 has a list of

size at least three in ΓP ′ and y has a list of size at least four. Yet v2y is a chord of

the infinite face of ΓP ′ and v2 has only two neighbors in ΓP ′ with a list of size three.

Hence, U = v2y is a blocking chord of ΓP ′ , contradicting Lemma 4.5.3.

So we may suppose that P ′ is not an arrow in the same direction as P . But this

implies that P is an arrow from C to C ′ and that pj+2 is tripled for P ′. That is,

there exist two mates, call them p′j+2, p
′′
j+2, of pj+2 for P ′. We may suppose without

loss of generality that pj+1pj+2p
′
j+2 is a separating triangle. Thus p′j+2 ∈ Y and as Γ1

is a harmonica, y is adjacent to u3 and u4. Hence p′′j+2 6∈ Y and the edge p′′j+2pj+3

is through the bottom. As p′′j+2 has degree at least five, the edge p′j+2pj+3 must be

through the top. So consider P ′′ = P \ {pj, pj+1}∪ {y, u3}. Now P ′′ is also a shortest

path from C to C ′. Furthermore, pj−2 has no mate for P ′′; pj−1 has two mates,

namely u1, u2; y has one mate, namely v2; u3 has no mate as u4 6∼ pj+2; pj+2 has one

mate, namely p′j+2; pj+3 has no mate.

Hence P ′′ is an arrow from C to C ′. So consider the planarization ΓP ′′ of Γ with

respect to P ′′. Yet U = v1v2 is a dividing cut-edge of ΓP ′′ , contradicting Lemma 4.5.3.

So we may assume that case (iii) holds. That is, there exist three pairwise adjacent

vertices v1, v2, v3 in the interior of f1 such that v1, v2, v3 are each adjacent to three

vertices in the boundary of f1. Now we may suppose without loss of generality

that either v1 ∼ pj−1, pj, pj+1, v2 ∼ pj−1, u1, y and v3 ∼ y, u3, pj+1, or, v1 ∼ u1, y, u3,

v2 ∼ u1, pj−1, pj and v3 ∼ pj, pj+1, u3. Suppose the former. Consider P ′ = (P \pj)∪v1.

Now P ′ is also shortest path from C to C ′. Furthermore, v1 has exactly one mate for

P ′, namely, pj. Moreover, neither pj−1 nor pj+1 has a mate for P ′. Hence P ′ is an

arrow in the same direction as P . So consider the planarization ΓP ′ of Γ with respect

to P ′. Now v2 has a list of size at least three in ΓP ′ and y has a list of size at least

four. Yet U = v2y is a chord of the infinite face of ΓP ′ and v2 has only two neighbors

in ΓP ′ with a list of size three. Hence, v2y is a blocking chord of ΓP ′ , contradicting
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Lemma 4.5.3.

So we may suppose the latter case that v1 ∼ u1, y, u3, v2 ∼ u1, pj−1, pj and v3 ∼

pj, pj+1, u3. Consider P ′′ = P \ {pj, pj+1} ∪ {y, u3}. Now P ′′ is also a shortest path

from C to C ′. Furthermore, pj−2 has no mate for P ′′; pj−1 has two mates, namely

u1, u2; y has no mate; u3 has no mate as u4 6∼ pj+2. However, pj+2 and pj+3 may have

one or two mates for P ′′. Now P ′′ is an arrow from C to C ′ unless pj+2 has one mate

and pj+3 has two mates. Similarly, P ′′ is an arrow from C ′ to C unless pj+3 has one

mate and pj+3 has two mates.

Suppose P ′′ is an arrow in the same direction as P . Consider the planarization ΓP ′′

of Γ with respect to P ′′. Yet v2v3 is a chord of ΓP ′′ and v2, v3 have lists of size at least

four in ΓP ′′ . Thus U = v2v3 is a blocking chord of ΓP ′′ , contradicting Lemma 4.5.3, a

contradiction. So we may suppose that P ′′ is not an arrow in the same direction as

P .

So suppose P is an arrow from C to C ′. Hence P ′′ is not an arrow from C to

C ′. Therefore pj+2 has at least one mate p′j+2 for P ′′ and pj+3 has two mates, call

them p′j+3, p
′′
j+3 for P ′′. Given p′j+2, either pj+3p

′
j+3pj+2 or pj+3p

′′
j+3pj+2 is a separating

triangle. Suppose without loss of generality that pj+3p
′
j+3pj+2 is a separating triangle.

Now there are two cases: the edge pj+2p
′
j+3 is through the top or through the bottom.

Suppose it is through the top. As Γ1 is a harmonica, p′j+3 must be adjacent to

u3. But then pj−1yu3p
′
j+3pj+4 shows that P is not a shortest path, a contradiction.

So we may suppose the edge pj+2p
′
j+3 is through the bottom. Note that as P is

a shortest path, p′j+3 6∼ u3, u4. Consider the vertex u5 6= y such that u3u4u5 is

triangle in Γ1. If u4 ∈ PT , then N(u5) ∩ P = {pj+2, pj+3} while if u4 ∈ PB, then

N(u5)∩P = {pj+1, pj+2}. In either case, u5 must be adjacent to p′j+3, a contradiction

to the fact that Γ1 is a harmonica as otherwise in the subcanvas F i between y = yi−1

and p′j+3 = yi, the fan F i
1 has the wrong parity - it is even when it should be odd, a

contradiction.
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So we may suppose that P is an arrow from C ′ to C. Hence P ′′ is not an arrow

from C ′ to C. Therefore pj+3 has at least one mate p′j+3 for P ′′ and pj+2 has two

mates, call them p′j+2, p
′′
j+2 for P ′′. Given pj+1, either pj+2p

′
j+2u3 or pj+2p

′′
j+2u3 is a

separating triangle. Suppose without loss of generality that pj+2p
′
j+2u3 is a separating

triangle. Hence the edge p′j+2pj+3 is through the bottom. Thus the edge p′j+2pj+3

is through the bottom as otherwise p′′j+2 has degree at most four, a contradiction.

Furthermore, the edge p′′j+2pj+2 must be the through the top. Yet given p′j+3, the

edge p′′j+2pj+3 must be through the bottom. Hence p′′j+2 ∈ Y . It follows that the

edge p′′j+2p
′
j+2 exists and that p′j+2p

′′
j+2u3 is a triangle in Γ1. As Γ1 is a harmonica,

F i
1 must be an even fan where yi−1 = y and yi = p′′j+2. Thus there exists a vertex

u5 ∼ u3, u4, p
′
j+2, pj+2, pj+1. Now consider the 8-walk C0 = yu3p

′
j+2pj+2u3yu1pj−1; C0

does not separate C from C ′. Nevertheless, every L-coloring of G[V (C0)] extends to an

L-coloring of G[V (C0)∪ {pj, pj−1, v1, v2, v3, u4, u5}]. This follows from Theorem 2.2.2

as only v1 and u5 have at least three neighbors in C0 and they have exactly three.

Claim 4.6.17. |f2| 6= 6.

Proof. Suppose not. As P is a shortest path, it follows that the boundary of f2 is

pj−1pjpj+1u4yu2 and that N(u2)∩P = {pj−2, pj−1} and that N(u2)∩P = {pj+1, pj+2}.

Note though that pj is not adjacent to any of u1, u2, u3, u4 and yet pj has degree at

least five. Now pj is adjacent to pj−1 and pj+1 and possibly y, but this implies that

there must be at least two vertices contained in the interiors of f1 and f2.

Suppose first that y ∼ pj. We may assume without loss of generality that the

edge ypj is in f2. But then there are no vertices in the interior of f2. As pj has at

least two neighbors in the interiors of f1 and f2, there must be at least two vertices

in the interior of f1. So case (ii) or (iii) of Theorem 1.5.2 for f1. But then as G is

nearly triangulated, y is adjacent to pj−1 and pj+1 through f2. Hence pj−1ypj+1u3yu1

is a 6-walk that does not separate C from C ′. Lt GC0 be the graph whose boundary
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is C0 as well the edges and vertices inside the disk bounded by C0. By Theorem 1.5.2

applied to C0 for GC0 , there are at most three vertices in its interior. As pj is in

V (GC0) \ V (C0) and there are are least two vertices in the interior, it follows that

case (iii) holds for GC0 , that there are exactly two vertices v1, v2 in the interior of f1

and that pj is adjacent to both of them. Hence case (ii) holds for f1 and y ∼ v1, v2.

So pjv1y and pjv2y are separating triangles, a contradiction as z ∈ {pj, v1, v2}.

So we may assume that y is not adjacent to pj. Thus y is adjacent to pj−1 and

pj+1. If the edges pj−1y and pj+1y are both in f1 or both in f2, then y is adjacent

to pj as G is nearly triangulated, a contradiction. So we may assume without loss

of generality that pj−1y lies in f2 and pj+1y lies in f1. By Theorem 1.5.2, there is

at most one vertex in the interior of f1 and at most one vertex in the interior of f2.

Hence pj has degree at most four, a contradiction.

Next we consider the vertices of Zi.

Lemma 4.6.18. Assume Hypothesis 4.6.2. Let z ∈ Z and y ∈ Y such that y ∼

z. If y ∈ Y1 ∪ Y2, then z is in a separating triangle. If y ∈ Y ∗1 , then z is in a

separating triangle or the interior of a hexadecahedral band (with y as in the proof of

Lemma 4.6.8).

Proof. Suppose not. Let x be such that xyz is a triangle in Γ2. We may assume

without loss of generality that z ∼ pj, pj+1 and x ∼ pj−2, pj−1 as otherwise zx is in a

separating triangle. We may also suppose without loss of generality that z ∈ PT \ Y

and z ∈ PB \ Y . Furthermore y 6∼ pk where k ≥ j + 2 given the path pj−2xypk. Thus

N(y) ∩ P ⊆ {pj−1, pj, pj+1}. Yet y 6∼ pj as otherwise zypj is a separating triangle, a

contradiction. Hence y ∼ pj−1, pj+1. Thus y is adjacent to pj−1 through the bottom

given z. But then y is adjacent to pj+1 through the top as G is nearly triangulated

and y 6∼ pj.
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Let yu1u2 be the other triangle in Γ2 containing y. We may assume without loss

of generality that u1 ∈ PT and u2 ∈ PB. Given the path pj−2xyu1, we find that

u1 ∼ pj+1, pj+2. Note then that pj is not in a separating triangle. If pj ∼ u2, then

pj ∈ P ∗2 and hence pj is in a separating triangle, a contradiction, or in the interior of

a hexadecahedral band with y by Lemma4.6.9. In the latter case, z must also be in

the interior of the hexadecahedral band, a contradiction. Thus pj 6∼ u2 and hence pj

does not have neighbor in Γ2 through the bottom. Thus pj ∈ P ∗1 . But then pj is in a

separating triangle by Lemmas . . . , a contradiction.

Corollary 4.6.19. Assume Hypothesis 4.6.2. If v ∈ Γ[T1, T2], then v is in T1, T2,

or a triangle separating a vertex of T1 from a vertex of T2, or in the interior of a

hexadecahedral band.

Proof. By Lemmas 4.6.4, 4.6.5, 4.6.7, 4.6.6, 4.6.8 and Lemmas. . . every vertex in

Γ[T1, T2] is in a separating triangle in Γ or the interior of a hexadecahedral band. As

triangles cannot cross, it follows that every vertex in Γ[T1, T2] is in T1, T2 or a triangle

separating a vertex of T1 from a vertex of T2 or in the interior of a hexadecahedral

band.

Lemma 4.6.20. Assume Hypothesis 4.6.2. If B is a band in the band decomposition

of Γ[T1, T2], then B is tetrahedral, octahedral or hexadecahedral.

Proof. Let B = (GB, T3, T4, L) be a band in the band decomposition. If G = T3 ∪ T4,

then B is tetrahedral or octahedral by Lemma 4.4.4. So suppose that G 6= T3 ∪ T4.

But then GB \ T3 ∪ T4 must contain a vertex which is not in a separating triangle.

But then by Corollary 4.6.19, that vertex is in the interior of a hexadecahedral band.

So B must be hexadecahedral.

Proof of Lemma 4.6.1. We may assume Hypothesis 4.6.2. By Lemma 4.6.20, every

band in the band decomposition of Γ[T1, T2] is tetrahedral, octahedral or hexadeca-

hedral. Furthermore, d(T1, T2) ≥ d(P1, P2)− 2 where Γ2 = (G,P1 ∪P2, L). As Γ2 is a
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shortening of Γ1, it follows from Lemma 4.5.2 that d(T1, T2) ≥ d(P1, P2) − 34 where

P ′1, P
′
2 are the sides of Γ1.

We may now show that a minimum counterexample to Theorem 4.1.1 has distant

separating triangles such that every band in the band decomposition of the prism-

canvas between them is tetrahedral, octahedral or hexadecahedral.

Lemma 4.6.21. Let d0 > 0. If Γ = (G, T1, T2, L) is a counterexample to Theo-

rem 4.1.1 with a minimum number of vertices and subject to that a maximum number

of edges, then there exist triangles T ′1 and T ′2 of G each separating C1 from C2 such

that d(T ′1, T
′
2) ≥ d0 and every band in the band decomposition of Γ[T ′1, T

′
2] is a subgraph

of a tetrahedral, octahedral or hexadecahedral band.

Proof. We may assume that (1) holds for Lemma 4.4.6 as otherwise the lemma follows.

That is to say Γ is nearly triangulated and there exist T ′1, T
′
2 and every planarization Γ∗

of Γ[T ′1, T
′
2] contains a long bottleneck Γ1 = (G′, P1∪P2, L) where d(T1, T2)−2d0−c0 ≤

6d(P ′1, P
′
2). As d(P1, P2) ≥ 32, it follows, from Lemma 4.5.16 if Γ1 is an accordion and

Lemma 4.6.20 if Γ1 is a harmonica, that there exist triangles T ′′1 , T
′′
2 separating C1 from

C2 such that d(T ′′1 , T
′′
2 ) ≥ d(P1, P2) − 34 and every band in the band decomposition

of Γ[T ′′1 , T
′′
2 ] is tetrahedral, octahedral, or hexadecahedral. As Γ is a counterexample,

we may assume that d(T1, T2) ≥ 2d0 + c0 + 6(34 + d0) and hence d(T ′′1 , T
′′
2 ) ≥ d0 as

desired.

4.7 Magic Colorings with Tetrahedral Bands

Our goal in the following sections is to prove the following:

Theorem 4.7.1. There exists d such that the following holds:

Let Γ = (G, T1, T2, L) be a prism-canvas such that d(T1, T2) ≥ 14 and every band

in the band decomposition of Γ is tetrahedral, octahedral or hexadecahedral. Let L be

a list assignment of G such that |L(v)| = 5 for all v ∈ V (G). If φ is an L-coloring of

T1 ∪ T2, then φ extends to an L-coloring of G.
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First in this section, we will define certain magical sets of colorings for triangles

that will be useful in showing that such a coloring exist. Then we will proceed to

develop the theory of magical colorings for tetrahedral bands.

Definition. Let T be a triangle and L a list assignment for T such that |L(v)| = 5

for all v ∈ T . We say a set of proper L-colorings C of T is

Magic 1: If C is precisely the set of proper L′-colorings of T where for some ordering

v1, v2, v3 of T , either

(1a) |L′(v1)| = |L′(v2)| = |L′(v3)| = 2 and these are pariwise disjoint, or

(1b) |L′(v1)| = |L′(v2)| = 2, |L′(v3)| = 3, L′(v1) ∩ L′(v3) = ∅, and L′(v2) ⊆

L′(v3).

(Alternately, |L′(v1)| = |L′(v2)| = 2, |L′(v3)| = 3, L′(v1) ∩ L′(v2) = ∅ and

L′(v1) ∩ L′(v3) = ∅.)

Magic 2: If C is precisely the set of proper L′-colorings of T where for some ordering

v1, v2, v3 of T , either

(2a) |L′(v1)| = |L′(v2)| = |L′(v3)| = 2 and these are pariwise disjoint, or

(2b) |L′(v1)| = 2, |L′(v2)| = 2, |L′(v3)| = 5, L′(v1) ∩ L′(v2) = ∅, L′(v1), L′(v2) ⊆

L′(v3), or,

(2c) |L′(v1)| = 2, |L′(v2)| = |L′(v3)| = 3, L′(v1) ∩ L′(v2) = ∅, L′(v1) ⊆ L′(v3).

Magic 3: If there exist list assignments L′, L′′ of T such that C is the set of proper colorings

which are L′-colorings but not L′′-colorings where the list assignments are one

of the following for some ordering v1, v2, v3 of T :

(3a) |L′(v1)| = |L′(v2)| = |L′(v3)| = 2 and these are pariwise disjoint, and

L′′(v) = ∅ for all v ∈ T , or
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(3b) |L′(v1)| = 2, |L′(v2)| = 2, |L′(v3)| = 5, L′(v1) ∩ L′(v2) = ∅, L′(v1), L′(v2) ⊆

L′(v3), and L′′(v) = ∅ for all v ∈ T , or,

(3c) |L′(v1)| = 2, |L′(v2)| = |L′(v3)| = 5, L′(v1) ⊂ L′(v2), L′(v3), |L′(v2) ∩

L′(v3)| ≥ 4, L′′(v2) = L′′(v3) is a subset of size two of L′(v2)∩L′(v3)\L′(v1)

and L′′(v1) = L′(v1).

Definition. Let (G,C1, C2) be a prismatic graph such that every band in its band

decomposition B = B1 . . . Bm is tetrahedral. Let T0 = C1, Tm = Cm and let T1 . . . Tm

be the triangles such that Bi = G[Ti−1, Ti]. We now define a natural mapping p :

V (G) → V (C1) as follows: Let p(v) = v for all v ∈ C1. Then for successive i, define

p(v) where v ∈ Ti \ Ti−1 to be p(u) where u ∈ Ti−1 \ Ti. Note that there also exists a

natural ordering of the vertices of G \ C1, namely xi = Ti \ Ti−1. We now define the

signature of (G,C1, C2) to be the sequence p(x1)p(x2) . . . p(xm). We say a prismatic

graph is variegated if every band in its band decomposition is tetrahedral, there does

not exist x ∈ C1 such that x appears consecutively in its signature, and there does

not exist x, y ∈ C1 such that x, y appear consecutively three times in its signature,

namely, xyxyxy.

We say a prism-canvas is variegated if its underlying prismatic graph is variegated.

Proposition 4.7.2. If Γ = (G,C1, C2, L) is a critical prism canvas such that every

band in the band decomposition of G is tetrahedral, then Γ is variegated.

We say a variegated prism-canvas (G,C1, C2, L) is rainbow if all three vertices of

C1 appear in the signature of (G,C1, C2).

Corollary 4.7.3. Let Γ = (G,C1, C2, L) be a variegated prism-canvas. If Γ has at

least six bands in its band decomposition, then there exists (essential) triangles T1, T2

such that Γ[T1, T2] is a rainbow prism-canvas with three bands in its band decompo-

sition. Furthermore, if Γ has at least seven bands in its band decomposition, there

exists T1, T2 such that Γ[T1, T2] is a rainbow prism-canvas with four bands in its band
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decomposition and letting T1 = v1v2v3, the signature of (G[T1, T2], T1, T2) has one of

the following forms up to permuation of {1, 2, 3}:

(i) v1v2v3v1

(ii) v1v2v3v2

4.7.1 Magic 1

Lemma 4.7.4. Let B = T0 . . . T4 be a rainbow sequence of tetrahedral bands of length

four such that B = T0 . . . T3 is also rainbow (i.e. form of previous lemma). If φ is a

proper coloring of T0, then there exists a Magic 1 set C of colorings of T4 such that

for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B.

Proof. We let S(u) = L(u) \ {φ(v) : v ∈ N(u) ∩ T0} for all u ∈ G \ T0. We assume

without loss of generality that |S(u)| = |L(u)| − |N(u) ∩ T0|.

Case (i) v1v2v3v1:

Let T1 \ T0 = {v′1}, T2 \ T1 = {v′2}, T3 \ T2 = {v′3} and T4 \ T3 = {v′′1}.

Suppose S(v′1) ⊆ S(v′2). Let C(v′2) = S(v′1), C(v′3) = S(v′3) \ C(v′2) and C(v′′1) =

L(v′′1) \ C(v′2). Note that C contains a set C ′ of Magic 1 colorings. We claim that

every coloring φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B. To see this, simply let

ψ(v) = φ(v) if v ∈ T0, ψ(v) = φ′(v) if v ∈ T4 and ψ(v′1) = S(v′1) \ ψ(v′2). For the

rest of the chapter, we will omit such justifications of why a specified set of colorings

extends as desired. Instead, we will specify the desired set of colorings and leave it

to the reader to check that they extend.

So we may assume that |S(v′2) \S(v′1)| ≥ 2. Let C(v′2) be a subset of S(v′2) \S(v′1)

of size two.

If S(v′1) ⊆ S(v′3), let C(v′3) = S(v′1) and C(v′′1) = L(v′′1)\S(v′1). So we may assume,

S(v′1) 6⊆ S(v3). If C(v′2) ⊆ S(v′3), let C(v′3) be a subset of S(v′3) \ S(v′1) of size 3 and

hence C(v′3) ⊇ C(v′2) and then let C(v′′1) = L(v′′1) \ C(v′3).
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So we may suppose that |S(v′3) \ (S(v′1) ∪ C(v′2))| ≥ 2. So let C(v′3) be a subset of

S(v′3) \ (S(v′1) ∪ C(v′2)) of size two and C(v′′1) = L(v′′1) \ C(v′2).

Case (ii) v1v2v3v2:

Let T1 \ T0 = {v′1}, T2 \ T1 = {v′2}, T3 \ T2 = {v′3} and T4 \ T3 = {v′′2}.

Let C(v′1) = S(v′1). If S(v′1)∩S(v′2) = ∅ or if S(v′1) ⊆ S(v′2), let C(v′3) = S(v′3)\C(v′1)

and C(v′′2) = L(v′′2) \ C(v′1).

So we may assume that |S(v′1) ∩ S(v′2)| = 1. If S(v′2) \ S(v′1) ⊆ S(v′3), let C(v′3) =

S(v′2) \ S(v′1) and C(v′′2) be a subset of L(v′′2) \ C(v′3) of size three. If C(v′1) ⊆ S(v′3),

let C(v′3) be a subset of S(v′3) \ (S(v′2) \ S(v′1)) of size three containing C(v′1) and let

C(v′′2) be a subset of L(v′′2) \ C(v′3) of size two.

So we may assume that |C(v′1) ∩ S(v′3)| ≤ 1. Let C(v′3) be a subset of S(v′3) \

(S(v′1) ∪ S(v′2)) of size two and let C(v′′2) = L(v′′2) \ C(v′1).

Proposition 4.7.5. If C is a Magic 2 set of L-colorings of T , then C contains a

Magic 1 set of L-colorings C ′ of T .

Lemma 4.7.6. Let B = T0T1 be a tetrahedral band. If C is a Magic 1 set of colorings

of T0, then there exists a Magic 2 set C ′ of colorings of T1 such that for every φ′ ∈ C ′,

there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Proof. Let T0 = v1v2v3 and T1 = v′1v2v3. First suppose that C is of the form (1a).

That is, C(v1), C(v2), C(v3) are pairwise disjoint lists of size two. We let C ′(v2) =

C(v2) and C ′(v3) = C(v3). If |L(v′1) \ (C(v2) ∪ C(v3)| ≥ 2, let C ′(v′1) be a subset of

L(v′1) \ (C(v2) ∪ C(v3)) of size two. Thus C ′ is of the form (2a). So we may assume

that C(v2), C(v3) ⊂ L(v′1). In that case, let C ′(v′1) = L(v′1). Thus C ′ is of the form (2b)

with order v2v3v
′
1.

We may assume that C is of the form (1b). First suppose that C(v1) ∩ C(v3) = ∅

and C(v1) ∩ C(v2) = ∅. Without loss of generality suppose that C(v2) ⊂ C(v3). Now
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let C ′(v2) = C(v2), C ′(v3) = C(v3) and C ′(v′1) = L(v′1) \ C(v2). Thus C ′ is of the form

(2c) with order v2v
′
1v3.

So we may assume without loss of generality that C(v2) ∩ C(v1) = ∅ and C(v2) ∩

C(v3) = ∅. Suppose that C(v3) ⊂ C(v1). We let C ′(v2) = C(v2) and C ′(v3) = C(v3). If

|L(v′1) \ (C(v2) ∪ C(v3))| ≥ 2, let C ′(v′1) be a subset of L(v′1) \ (C(v2) ∪ C(v3)) of size

two. Thus C ′ is of the form (2a). So we may assume that C(v2), C(v3) ⊂ L(v′1). In

that case, let C ′(v′1) = L(v′1). Thus C ′ is of the form (2b) with order v2v3v
′
1.

Finally suppose that C(v1) ⊂ C(v3). We let C ′(v2) = C(v2). If |L(v′1) \ (C(v2) ∪

C(v1)| ≥ 2, let C ′(v′1) be a subset of L(v′1)\(C(v2)∪C(v1)) of size two and C ′(v3) = C(v1).

Thus C ′ is of the form (2a). So we may assume that C(v2), C(v1) ⊂ L(v′1). In that

case, let C ′(v′1) = L(v′1) \ C(v1) and let C ′(v3) = C(v3). Thus C ′ is of the form (2c)

with order v2v3v
′
1.

Corollary 4.7.7. Let B = T0T1 be a tetrahedral band. If C is a Magic 1 set of

colorings of T0, then there exists a Magic 1 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Corollary 4.7.8. Let B = T0T1 be a tetrahedral band. If C is a Magic 2 set of

colorings of T0, then there exists a Magic 2 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Corollary 4.7.9. Let B = T0 . . . T7 be a sequence of tetrahedral bands of length seven.

If φ is a proper coloring of T0, then there exists a Magic 1 set C of colorings of T7

such that for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B.

4.7.2 Magic 3

Proposition 4.7.10. If C is a Magic 3 set of colorings, then C contains a Magic 2

set of coloring C ′.
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Lemma 4.7.11. Let B = T0T1 be a tetrahedral band. If C is a Magic 3 set of colorings

of T0, then there exists a Magic 3 set C ′ of colorings of T1 such that for every φ′ ∈ C ′,

there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Proof. Let T0 = v1v2v3 be numbered as in the definition of Magic 3. We condition on

the form of C.

(3a) As (2a) implies (3a) and (2b) implies (3b), this case was already proven in

Lemma 4.7.6.

(3b) First suppose that T1 = v1v2v
′
3. Let C ′(v1) = C(v1) and C ′(v2) = C(v2). If

|L(v′3) \ (C(v1)∪C(v2))| ≥ 2, then let C ′(v′3) be a subset of size two from L(v′3) \

(C(v1)∪C(v2)) and hence (3a) holds. Otherwise, we let C ′(v′3) = L(v′3) and (3b)

holds for the order v1v2v
′
3.

We may assume without loss of generality, given the symmetry of v1 and v2,

that T1 = v′1v2v3. Let C ′(v2) = C(v2). If |L(v′1) \ (C(v1) ∪ C(v2))| ≥ 2, then let

C ′(v′1) be a subset of size two from L(v′1)\(C(v1)∪C(v2)). Also let C ′(v3) = C(v1)

and hence (3a) or (3b) holds.

So we may suppose that C(v1), C(v2) ⊂ L(v′1). We let C ′(v′1) = L(v′1), C ′(v3) =

C(v3) and L1(v′1) = L1(v3) = C(v1) and L1(v2) = C(v2). Now (3c) holds.

(3c) First suppose that T1 = v′1v2v3. If L(v′1) \ (C(v1) ∪ F)| ≥ 2, then let C ′(v′1)

be a subset of size two from L(v′1) \ (C(v1) ∪ F). Then let C ′(v2) = C(v1) and

C ′(v3) = F . Hence (3a) holds. So we may suppose that C(v1),F ⊂ L(v′1). Now

let C ′(v′1) = F , C ′(v2) = C(v2) and C ′(v3) = C(v3). Furthermore let F ′ = C(v1).

Now (3c) holds with F ′ and order v′1v2v3.

So we may suppose without loss of generality, given the symmetry of v2 and v3,

that T1 = v1v
′
2v3. Let C ′(v1) = C(v1), C ′(v3) = F . If |L(v′2) \ (C(v1) ∪ F)| ≥ 2,
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let C ′(v′2) be a subset of size two of L(v′2) \ (C(v1) ∪ F). Hence (3a) holds.

Otherwise, let C ′(v′2) = L(v′2) and (3b) holds with order v1v3v
′
2.

Lemma 4.7.12. Let B = T0T1T2T3 be a sequence of tetrahedral bands of length three.

If C is a Magic 2 set of colorings of T0, then there exists a Magic 3 set C ′ of colorings

of T3 such that for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B.

Proof. Given Lemma 4.7.11, it is sufficient to prove that there exists a Magic 3 set

C ′ of colorings of Ti for some i ∈ {0, 1, 2, 3}.

If C is of the form (2a) or (2b), then C is of the form (3a) or (3b) respectively.

Thus C is a Magic 3 set of colorings of T0. So we may assume that C is of the form

(2c).

Let T0 = v1v2v3. We may assume without loss of generality that C is of the form

(2c) for the order v1v2v3. That is, |C(v1)| = 2, |C(v2)| = |C(v3)| = 3, C(v1)∩C(v2) = ∅,

C(v1) ⊆ C(v3). Let F be a subset of size two of C(v2) \ C(v3).

First suppose that T1 = v1v2v
′
3. Let C ′(v1) = C(v1) and C ′(v2) = F . If |L(v′3) \

(C(v1)∪F)| ≥ 2, then let C ′(v′3) be a subset of size two of L(v′3) \ (C(v1)∪F). Hence

(3a) holds for C ′. So we may suppose that C(v1),F ⊂ L(v′3). Then let C ′(v′3) = L(v′3)

and hence (3b) holds for C ′ with order v1v2v
′
3.

Next suppose that T1 = v′1v2v3. Suppose L(v′1) 6= C(v1)∪C(v2). Let C ′(v3) = C(v1)

and let C ′(v′1) be a subset of size two of L(v′1) \ C(v1) that is not entirely contained in

C(v2). Then let C ′(v2) be a subset of size two of C(v2) \ C ′(v′1). Now (3a) holds for C ′.

So we may assume that L(v′1) = C(v1) ∪ C(v2).

Further suppose that T2 = v′1v
′
2v3. Let C ′(v′1) = F and C ′(v3) = C(v1). If |L(v′2) \

(C(v1)∪F)| ≥ 2, then let C ′(v′2) be a subset of size two of L(v′2) \ (C(v1)∪F). Hence

(3a) holds for C ′. So we may suppose that C(v1),F ⊂ L(v′3). Then let C ′(v′2) = L(v′2)

and hence (3b) holds for C ′ with order v′1v3v
′
2.
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So instead suppose that T2 = v′1v2v
′
3. Further suppose that C(v2)∩C(v3) 6= ∅. Let

C(v1) = {c1, c2}. If |L(v′3) \ ({c1} ∪ C(v2))| ≥ 2, then let C ′(v′3) be a subset of size

two of L(v′3) \ ({c1} ∪ C(v2)). Also let C ′(v2) = F and C ′(v′1) = {c1} ∪ (C(v2) \ F).

Hence (3a) holds for C ′. So we may suppose that {c1}, C(v2) ⊂ L(v′3). By symmetry

of c1, c2, we may also suppose that c2 ∈ L(v′3). Now let C ′(v′1) = L(v′1), C ′(v2) = F

and C ′(v′3) = {c1, c2}. Hence (3b) holds for C ′ with order v2v
′
3v
′
1.

So we may assume that C(v2) ∩ C(v3) = ∅ when T2 = v′1v2v
′
3. Suppose without

loss of generality that C(v1) = {1, 2}, C(v2) = {3, 4, 5}, C(v3) = {1, 2, 6}, L(v′1) =

{1, 2, 3, 4, 5}. If |L(v′3) \ {3, 4, 5, 6}| ≥ 2, let C ′(v′3) be a subset of size two of L(v′3) \

{3, 4, 5, 6} and let C ′(v2) = {3, 4}. |L(v′1) \ C ′(v′3)| ≥ 4, let C ′(v1) be a subset of

size two of L(v′1) \ (C ′(v2) ∪ C ′(v′3)) and hence (3a) holds. So we may suppose that

C ′(v′3) ⊂ L(v′1). So let C ′(v′1) = L(v′1) and hence (3b) holds with order v2v
′
3v
′
1.

So we may assume that L(v′3) = {3, 4, 5, 6, c}. If c ∈ {1, 2}, let C ′(v′3) = {c, 5},

C ′(v2) = {3, 4} and C ′(v′1) = L(v′1); hence (3b) holds. So c 6= 1, 2. Let C ′(v3) = {c, 5},

C ′(v2) = {3, 4} and C ′(v′1) = {1, 2}. Hence (3a) holds.

Finally we may suppose that T1 = v1v
′
2v3. But then let C(v′2) be a subset of size

three of L(v′2) \ C(v1). Now C is of the form (2c) with order v1v
′
2v3. Yet, T2 6= v1v

′′
2v3.

So by the arguments of the preceding paragraphs either T2 or T3 has a Magic 3 set

of colorings.

Lemma 4.7.13. Let B = T0T1T2T3 be a rainbow sequence of tetrahedral bands of

length three. If C is a Magic 3 set of colorings of T0 and C ′ is a Magic 3 set of

colorings of T3, then there exists φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ is a proper

coloring of B.

Proof. Suppose for a contradiction that the conclusion does not hold. Let T0 = v1v2v3,

T1 = v′1v2v3, T2 = v′1v
′
2v3 and T3 = v′1v

′
2v
′
3. Consider the degree three vertices v1 and

v′3. We say v1 is good if C has the form (3a) or |C(v1)| ≥ 5. Similarly we say v′3 is
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good if C ′ has the form (3a) or |C(v′3)| ≥ 5.

If v1 (or similarly v′3) is good, then any proper coloring ψ of B \ {v1}, such that

ψ restricted to T0 − v1 extends to a coloring of T0 in C and ψ restricted to T3 in C ′,

extends to a proper coloring ψ of B such that ψ(T0 is in C.

Claim 4.7.14. At least one of v1, v
′
3 is not good.

Proof. Otherwise delete v1, v
′
3. Now we may assume that v2, v3 have disjoints list of

size two and similarly for v′1, v
′
2. But then we may color v2v3v

′
1v
′
2 from these lists and

extend back to v1, v
′
3.

Claim 4.7.15. Neither v1 nor v′3 is good.

Proof. We may suppose without loss of generality that v1 is not good but that v′3 is

good. Delete v′3. First suppose C is of the form (3b). As v1 is not good, delete the

vertex x with list of size five in T0. This is permissible as both v2, v3 have degree at

most four in B \ {v′3}. Now we may color B \ {x, v′3}, which is at most a K4 with two

pairs of disjoint lists of size two.

So we may suppose that C is of the form (3c). Now remove C(v2) \ (F ∪ C(v1))

from the list for v′2 and delete v2, v3. Then color v′2, v
′
1, v1 in that order.

First suppose that C and C ′ are of the form (3b). If v2 has a list of size five, we

color in the following order: v3, the lists of size two in T3, the list of size five in T3,

v1 and finally v2. So v2 has a list of size two and so does v′2 by symmetry. So color

v2 and v′2. Now v3, v
′
1 have lists of size three while v1, v

′
3 have lists of size two. So we

may color v1v3v
′
1v
′
3 which is a K4 − e.

Next suppose that C is of the form (3b) and C ′ is of the form (3c). If v2 has a list

of size five, we color in the following order: v3, the list of size two in T3, the lists of

size five in T3, v1 and finally v2. So v2 has a list of size two. We color in the following

order: v′1 from C ′(v′1) \ F , v1, v2, v′3, v3 and finally v′2.
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Last suppose that C and C ′ are of the form (3c). Remove F ′ from C ′(v′1) and F

from C(v3). Color v1, v3, v
′
1, v
′
3 which is a K4− e with two lists of size and two lists of

size three. Now color v2, v
′
2.

Corollary 4.7.16. Let B = T0 . . . T6 be a sequence of tetrahedral bands of length six.

If C is a Magic 3 set of colorings of T0 and C ′ is a Magic 3 set of colorings of T6, then

there exists φ ∈ C and φ′ ∈ C ′ such that φ ∪ φ′ extends to an L-coloring of B.

4.8 Magic Colorings with Octahedral Bands

The goal of this section is to incorporate octahedral bands in the theory of magic

colorings.

Lemma 4.8.1. Let B = T0T1T2 be such that T0T1 and T1T2 are octahedral bands. If

φ is a proper coloring of T0, then there exists a Magic 1 set C of colorings of T2 such

that for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B.

Proof. Let T1 = v1v2v3 and T2 = v′1v
′
2v
′
3 where vi is adjacent to v′j if and only if i 6= j.

Let S(v) = L(v) \ {φ(u)|u ∈ T0 ∩ N(v)} for a v 6∈ T0. We may assume without

loss of generality that |S(vi)| = 3 and S(v′i) = L(v′i) for all i ∈ {1, 2, 3, }. First

suppose that S(v1) = S(v2). Let C(v′3) be a subset of L(v′3) \ S(v1) of size two. Let

C(v′1) = L(v′1) and C(v′2) = L(v′2). We claim that any proper coloring in C extends

to T0: simply color v3 and then v1 and v2. This works as v′1 ∼ v′2 and hence cannot

receive the same color. The claim follows. In addition, it is not hard to see that C

contains a Magic 1 subset.

So we may assume that S(v1)\S(v2) 6= ∅. By symmetry we may also assume that

S(v2) \ S(v3) 6= ∅. Let c ∈ S(v1) \ S(v2). Color v1 with c. Let c′ ∈ S(v2) \ S(v3)

and let C ′(v′3) = L(v′3) \ {c, c}, C(v′1) = L(v′1). If c ∈ S(v3), let C(v′2) = L(v′2) \ S(v3);

otherwise let C(v′2) = L(v′2) \ {c}. We claim that any proper coloring φ in C extends
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to T0. If φ(v′1) 6= c′, color v2 with c′ and then color v3. So assume φ(v′1) = c′ and color

v2 and then v3. The claim follows. Moreover, it is not hard to see that C contains a

Magic 1 subset.

Lemma 4.8.2. Let B = T0T1T2T3 be such that T0T1, T2T3 are tetrahedral bands and

T1T2 is an octahedral band. If φ is a proper coloring of T0, then there exists a Magic

1 set C of colorings of T2 such that for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring

of B.

Proof. Let T1 = v1v2v3 and suppose without loss of generality that v2 6∈ T0. Let

T2 = v′1v
′
2v
′
3 where vi is adjacent to v′j if and only if i 6= j.

First suppose that T3 = v′1v
′
2v
′′
3 . Let S(v) = L(v) \ {φ(u)|u ∈ T0 ∩ N(v)} for a

v 6∈ T0. We may assume without loss of generality that |S(v2)| = 2, |S(v′2)| = 3,

|S(v′1)| = |S(v′3)| = 4 and S(v′′3) = L(v′′3). Let C(v′1) be a subset of size two from

S(v′1) \ S(v2) and delete v2. Then delete v′3. If S(v′2) has two colors disjoint from

C(v′1), let C(v′2) be a subset of size two of S(v′2) \ C(v′1); then if L(v′′3) has two colors

disjoint from C(v′1)∪C(v′2), let C(v′3) be two such disjoint colors and hence (1a) holds.

Otherwise C(v′1) ⊂ S(v′2). So let C(v′2) = S(v′2) and let C(v′′3) be a subset of size two

in L(v′′3) disjoint from C(v′2). Hence (1b) holds with order v′′3v
′
1v
′
2.

We may now assume, using the symmetry of v′1 and v′3, that T3 = v′1v
′′
2v
′
3. Suppose

that |S(v′1) ∩ S(v′2)| ≤ 2. Now let C(v′1) be a subset of size two of S(v′1) \ S(v′2) and

delete v′2. If C(v′1) = S(v2), let C(v′3) be a subset of size two of S(v′3)\S(v2) and delete

v2. Then let C(v′′2) = L(v′′2) \ C(v′1) and either (1a) or (1b) holds. So suppose that

S(v2) \ C(v′1) 6= ∅. Color v2 with a color c from S(v2) \ C(v′1) 6= ∅. Remove c from

S(v′3) and delete v2. Now if there are two colors in S(v′3) \ {c} disjoint from C(v′1) we

finish as above. Otherwise, C(v1) ⊂ S(v′3) \ {c}. So let C(v′3) = S(v′3) \ {c} and C(v′′2)

be a subset of size two in L(v′′2) \ C(v′3). Hence (1b) holds with order v′′2v
′
1v
′
3.

So we may assume that |S(v′1) ∩ S(v′2)| ≥ 3. That is, S(v′2) ⊂ S(v′1). By the

symmetry of v′1 and v′3, we may also assume that S(v′2) ⊂ S(v′3). If S(v2) \S(v′2) 6= ∅,
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let C(v′1) = C(v′3) = S(v′2) and delete v2. Then let C(v′′2) = L(v′′2) \ S(v′2) and delete

v′2. Hence (1b) holds with order v′′2v
′
1v
′
3. So we may suppose that S(v2) ⊂ S(v′2). Let

C(v′1) = S(v2), C(v′3) = S(v′3) \ S(v2) and delete v2. Let C(v′′2) = L(v′′2) \ S(v2) and

delete v′2. Now either (1a) holds or (1b) holds with order v′1v
′
3v
′′
2 .

Lemma 4.8.3. Let B = T0T1 be an octahedral band. If C is a Magic 1 set of colorings

of T0, then there exists a Magic 3 set C ′ of colorings of T1 such that for every φ′ ∈ C ′,

there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Proof. Let T0 = v1v2v3 and T1 = v′1v
′
2v
′
3 where vi is adjacent to v′j if and only if i 6= j.

First we suppose that C is of the form (1a). Further suppose that |L(v′3) \ (C(v1) ∪

C(v2))| ≥ 2. Let C ′(v′3) be a subset of size two of L(v′3) \ (C(v1)∪C(v2)). Now we may

delete v1 and v2.

Further suppose there exist two colors in L(v′1) disjoint from C ′(v′3)∪ C(v3). Then

let C ′(v1) be a subset of size two of L(v′1) \ (C ′(v′3) ∪ C(v3)) and delete v3. Then if

L(v′2) has two colors disjoint from C ′(v′1) ∪ C ′(v′3) let C ′(v′2) be a subset of size two

L(v′2)\ (C ′(v′1)∪C ′(v′3)) and hence (3a) holds. So C ′(v′1), C ′(v′3) ⊂ L(v′2) and (3b) holds

with order v′1v
′
3v
′
2.

So we may suppose instead that C ′(v′3), C(v3) ⊂ L(v′1). By symmetry, C ′(v′3), C(v3) ⊂

L(v′2). But then (3c) holds with F = C(v3) and order v′3v
′
1v
′
2.

So we may suppose that C(v1), C(v2) ⊂ L(v′3). By symmetry, C(v1), C(v3) ⊂ L(v′2)

and C(v2), C(v3) ⊂ L(v′1). Now let C ′(v′3) = C(v1), C ′(v′2) = C(v3) and C ′(v′1) = C(v2).

Hence (3a) holds.

So we may assume that C is of the form (1b). We may assume without loss of

generality that C(v3) ∩ (C(v1) ∪ C(v2)) = ∅, |C(v3)| = |C(v1)| = 2, |C(v2)| = 3 and

C(v1) ⊂ C(v2).

Let C ′(v′3) be a subset of size two of L(v′3) \ C(v2). Now any L-coloring φ of

B \ {v1, v2} such that φ(v′3) ∈ C ′(v′3) and φ(v3) ∈ C(v3) extends to an L-coloring φ of

B such that φ restricted to T0 is in C; simply color v1, then v2. So it suffices to define
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C ′ for B\{v1, v2} such that C ′ is a Magic 3 set of colorings and every L-coloring φ ∈ C ′,

there exists c ∈ C(v3) such setting φ(v3) = c yields an L-coloring of B \ {v1, v2}.

Suppose there exist two colors in L(v′1) disjoint from C ′(v′3)∪C(v3). Then let C ′(v1)

be a subset of size two of L(v′1) \ (C ′(v′3) ∪ C(v3)); now every L-coloring φ of T1 such

that φ(v′1) ∈ C ′(v1) and φ(v′3) ∈ C ′(v′3) extends to an L-coloring of B \ {v1, v2}. Now

if L(v′2) has two colors disjoint from C ′(v′1) ∪ C ′(v′3), let C ′(v′2) be a subset of size two

L(v′2)\ (C ′(v′1)∪C ′(v′3)) and hence C ′ is of the form (3a). So C ′(v′1), C ′(v′3) ⊂ L(v′2) and

C ′ is of the form (3b) with order v′1v
′
3v
′
2.

So we may suppose instead that C ′(v′3), C(v3) ⊂ L(v′1). Noting the symmetry of

v′1, v
′
2 in B \ {v1, v2}, we find that C ′(v′3), C(v3) ⊂ L(v′2). But then C ′ is of the form

(3c) with F = C(v3) and order v′3v
′
1v
′
2.

Corollary 4.8.4. Let B = T0T1 be an octahedral band. If C is a Magic 1 set of

colorings of T0, then there exists a Magic 1 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Corollary 4.8.5. Let B = T0T1 be an octahedral band. If C is a Magic 2 set of

colorings of T0, then there exists a Magic 2 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Corollary 4.8.6. Let B = T0T1 be an octahedral band. If C is a Magic 3 set of

colorings of T0, then there exists a Magic 3 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Lemma 4.8.7. Let B = T0T1 be an octahedral band. If C is a Magic 3 set of colorings

of T0 and C ′ is a Magic 3 set of colorings of T1, then there exists φ ∈ C and φ′ ∈ C ′

such that φ ∪ φ′ is a proper coloring of B.

Proof. Let T0 = v1v2v3, T1 = v′1v
′
2v
′
3 where vi is adjacent to v′j if i 6= j.

First suppose that C is of the form (3b). Delete the vertex x with list of size five

as x has degree four in B. If C ′ is of the form (3a), then we color B \ {x}, which is
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essentially a path on five vertices each with list of size two. If C ′ is of the form (3b),

delete the vertex x′ with the list of size five in T3 as x has degree four in B. Now

color B \ {x, x′} which is a path of length three or two disjoint edges all with list of

size two. So we may suppose that C ′ is of the form (3c). Delete a vertex x′ with list

of size five adjacent to x in B. Thus x′ has degree three in B \ {x}. Then delete the

other vertex x′′ with list of size five in T3. Finally color the vertices of B \ {x, x′, x′′}.

So we may assume that neither C nor by symmetry C ′ is of the form (3b).

Next suppose C is of the form (3c). Suppose without loss of generality that

v1, v2 ∈ T0 have lists of size five while v3 ∈ T0 has a list of size two. Delete v1 and v2

and color B \{v1, v2}. If C ′ is of the form (3a) such a coloring exists as we have a path

of length two plus an isolated vertex all with lists of size two. If C ′ is of the form (3c),

we color the lists of size two and then the lists of size five. Finally we may extend such

a coloring φ back to v1 and v2 unless without loss of generality C(v1) = {1, 2, 3, 4, 5},

C(v2) = {1, 2, 3, 4, 6}, F = {3, 4}, C(v3) = {1, 2} and φ(v3) = 1, φ(v′2) = 5, φ(v′3) = 2,

φ(v′1) = 6. But then change the color of φ(v3) to 2 and extend to v1 and v2. So we

may assume that neither C nor by symmetry C ′ is of the form (3c).

Finally we may suppose that C and C ′ are of the form (3a). But then B is a

subgraph of a cycle of length six (after deleting edges between vertices with disjoint

lists) whose vertices have lists of size two. By Theorem 1.4.3, B has a list-coloring as

desired.

4.9 Magic Colorings with Hexadecahedral Bands

The goal of this section is to incorporate hexadecahedral bands in the theory of magic

colorings.

Lemma 4.9.1. Let B = T0T1 be such that T0T1 is a hexadecahedral band. If φ is a

proper coloring of T0, then there exists a Magic 3 set C of colorings of T2 such that

for every φ′ ∈ C, φ ∪ φ′ extends to an L-coloring of B.

197



Proof. Let B \ (T0 ∪ T1) = v1v2v3v4 and T1 = v′1v
′
2v
′
3 where for all i ∈ {1, 2, 3}, vi is

adjacent to v′j if and only i 6= j and v4 ∼ v′2. Let S(v) = L(v) \ {φ(u)|u ∈ T0 ∩N(v)}

for a v 6∈ T0. We may assume without loss of generality that |S(v1)| = |S(v3)| =

|S(v4)| = 3 and |S(v2)| = 4.

Suppose S(v4) = S(v3). Let C(v′2) = L(v′2) \ S(v3). Delete v4, then v3, then v2,

then v1. Let C(v′1) = L(v′1) and C(v′3) = L(v′3). Hence C contains either a subset of

the form (3a) or (3b) as desired.

So we may assume that S(v4) 6= S(v3) and by symmetry that S(v4) 6= S(v1). Let

C(v′1) = L(v′1)\S(v3) and C(v′2) = L(v′2). Let c ∈ S(v1)\S(v4) and C(v′3) = L(v′3)\{c}.

We claim that any proper coloring φ ∈ C of T1 extends to a S-coloring of v1v2v3v4.

If φ(v′2) 6= c, color v1 with c, then color v2, v3, v4 in that order. If φ(v′2) = c′, color

v1, v2, v3, v4 in that order. The claim follows.

Hence C contains either a subset of the form (3a) or (3b) as desired. To see this

let C ′(v′2) = C(v′2), C ′(v′3) be a subset of size two of C(v′3) \ C ′(v′2). Then if C(v′1) has

two disjoints color from C ′(v′2) ∪ C ′(v′3), (3a) holds; otherwise let C ′(v′1) = C(v′1) and

(3b) holds with order v′2v
′
3v
′
1.

Corollary 4.9.2. Let B = T0T1 be a hexadecahedral band. If C is a Magic 3 set of

colorings of T0, then there exists a Magic 3 set C ′ of colorings of T1 such that for

every φ′ ∈ C ′, there exists φ ∈ C where φ ∪ φ′ is an L-coloring of B.

Lemma 4.9.3. Let B = T0T1 be a hexadecahedral band. If C is a Magic 3 set of

colorings of T0 and C ′ is a Magic 3 set of colorings of T1, then there exists φ ∈ C and

φ′ ∈ C ′ such that φ ∪ φ′ is a proper coloring of B.

Proof. Let T0 = v1v2v3 and T1 = u1u2u3. Let B \ (T0 ∪ T1) = w1w2w3w4, where

w1 ∼ v1, v2, u3, w2 ∼ v2, v3, u3, u1, w3 ∼ v3, u1, u2 and w4 ∼ v3, v1, u2, u3. Note that

in any proper coloring of T0 ∪ T1, w2 and w4 see at most four colors and so can be

colored. The problem then is that if w1 or w3 then see five colors they may not be
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able to be colored. The solution then is as follows. It suffices to choose φ ∈ C and

φ′ ∈ C ′ such that w1 and w3 see only two colors in φ ∪ φ′, because then we color w2

and w4 followed by w1 and w3.

First suppose that C is of the form (3a). Further suppose that C ′ is of the form (3a).

In this case, either (C(v1)∪C(v2)∪C ′(u3)) \L(w1) 6= ∅ or C ′(u3)∩ (C(v1)∪C(v2)) 6= ∅.

Either way we may color v1, v2, u3 such that w1 sees at most two colors. Symmetrically,

we may color v3, u1, u2 such that w3 sees at most two colors. These coloring together

are proper as vertices in T0 have pairwise disjoint lists and similarly for T1.

Next suppose that C ′ is of the form (3b). Suppose that |C ′(u3)| = 2. Without loss

of generality suppose that |C ′(u1)| = 5. In this case, we may color v1, v2, u3 so that w1

sees at most two colors. Now |C ′(u1) \φ′(u3)| ≥ 4. So either C(v3)∪ (C ′(u1) \φ′(u3)) \

L(w3) 6= ∅ or C(v3)∩ (C ′(u1) \φ′(u3)) 6= ∅. Either way we may color u1 and v3 so that

w3 sees at most one color. Then we color u2 and then w3 sees at most two colors as

desired. So we may suppose that |C ′(u3)| = 5. In this case, we may color v3, u1, u2 so

that w3 sees at most two colors. Then as C ′(u3) \ {φ′(u1), φ′(u2)}| ≥ 3, we may color

v1, v2, u3 so that w1 sees at most two colors as desired.

We suppose that C ′ is of the form (3c). Suppose that |C ′(u3)| = 2. In this case,

we may color v1, v2, u3 so that w1 sees at most two colors. Now |C ′(u1) \ φ′(u3)| ≥ 4

and we may color u1 and v3 so that w3 sees at most one color. Then we color u2 and

then w3 sees at most two colors as desired. So we may suppose that |C ′(u3)| = 5.

Now we may color v3, u1, u2 so that w3 sees at most two colors. Then u3 has as least

two colors available. So we may color v1, v2, u3 so that w1 sees at most two colors as

desired. So we may assume that C, and by symmetry C ′ is not of the form (3a).

So suppose that C is of the form (3b). Further suppose that C ′ is of the form (3b).

Suppose that |C(v3)| = 5. Then suppose that |C(u3)| = 5. In this case, color u1, u2, v3

so that w3 sees at most two colors. Now u3 has three available colors and v1, v2 have

at least three available colors combined. So we may color u3, v1, v2 so that w1 sees at
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most two colors as desired. So suppose that |C(u3)| = 2. In this case, color v1, v2, u3

so that w1 sees at most two colors. Then as v3 has at least three available colors, and

v1, v2 have at least four available colors combined, we may color v3, u1, u2 so that w3

sees at most two colors as desired.

So we may assume that |C(v3)| = 2 and by symmetry that |C ′(u3)| = 2. Note

that there are at least five colors in C ′(u1) ∪ C ′(u2) and two in C(v3). So consider

(C ′(u1) ∪ C ′(u2)) \ C ′(u3) and C(v3). If these sets intersect or one has a color not in

L(w3), we may color v3, u1, u2 such that w3 sees at most two colors and u3 still has

two available colors. Then as v1, v2 have at least four available colors combined, we

may color v1, v2, u3 so that w1 sees at most two colors. But then if C(v3) \ C ′(u3) 6= ∅,

we may color u1, u2 so that w3 sees at most one color. Then we may color v1, v2, u3

so that w1 sees at most one color and finish by coloring v3 and then w3 sees at most

one color. So we may assume that C(v3) = C ′(u3). But then we may color v3 and the

vertex with a list of size five in T1 with one color from C(v3) and u3 and the vertex

with a list of size five in T0 with the other color from C(v3). In this way, w1 and w3

see at most two colors as desired.

Next suppose that C ′ is of the form (3c). Suppose that |C(v3)| = 5. Then suppose

that |C ′(u3)| = 2. In this case, color v1, v2, u3 so that w1 sees at most two colors.

Now v3 has three available colors and v1, v2 have four available colors combined. So

we may color v3, u1, u2 such that w3 sees at most two colors as desired. So suppose

without loss of generality that |C ′(u1)| = 2. In this case, color v1, v2, u3 so that w1 sees

at most two colors. Now v3 has three available colors and v1, v2 have three available

colors combined. So we may color v3, u1, u2 such that w3 sees at most two colors as

desired.

So we may assume that |C(v3)| = 2. Then suppose that |C ′(u3)| = 2. Without

loss of generality, we may assume that |C(v1)| = 5. If C(v1) \L(w1) 6= ∅, color v1 with

such a color and then color v3. Now u1 can either be colored the same as v3 or with a
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color not in L(w3). Color u1 as such, then u2, u3, v2. But then w1 and w3 see at most

two colors as desired. Similarly if C ′(u3) \L(w1) 6= ∅, color u3 with such a color. Now

v3 has two available colors and u1, u2 have four avaialble colors combined. So color

v3, u1, u3 such that w3 sees at most two colors. Color v1, v2 and then w1 sees at most

two colors as desired.

So we may now assume that C ′(u3) ⊂ C(v1) as C ′(u3), C(v1) ⊆ L(w1). If C ′(u1) \

L(w3) 6= ∅, color u1 with such a color, then color u3, v1, v2 such that w1 sees at most

two colors. Then color v3 and u2 and thus w3 sees at most two colors as desired. If

C(v3) \L(w3) 6= ∅, color v3 with such a color, then color u3, v1, v2 such that w1 sees at

most two colors. Then color u1, u2 and thus w3 sees at most two colors as desired. So

we may also assume that C(v3) ⊂ C ′(u1) as C(v3), C ′(u1) ⊆ L(w3). In this case, color

u3 and v1 with the same color and then color v3 and u1 with the same color. Finally

color v2 and u2 and thus w1 and w3 see at most two colors as desired.

So suppose that |C ′(u3)| = 5. In this case, color v3, u1, u2 such that w3 sees at

most two colors. Now v1, v2 have at least four available colors combined while u3 has

at least two available colors. So we may color v1, v2, u3 such that w1 sees at most two

colors as desired.

So we may assume that C, and by symmetry C ′, is of the form (3c). Suppose that

|C(v3)| = |C ′(u3)| = 2. If C(v1) \ L(w1) 6= ∅, color v1 with such a color and then color

v3. Now u1 can either be colored the same as v3 or with a color not in L(w3). Color

u1 as such, then u3, u2, v2. But then w1 and w3 see at most two colors as desired.

Similarly if C ′(u3) \ L(w1) 6= ∅, color u3 with such a color. Now v3 has two available

colors and u1, u2 have four available colors combined. So color v3, u1, u3 such that w3

sees at most two colors. Color v1, v2 and then w1 sees at most two colors as desired.

So we may now assume that C ′(u3) ⊂ C(v1) as C ′(u3), C(v1) ⊆ L(w1). By symmetry,

we may then assume that C(v3) ⊂ C ′(u1). In this case, color u3 and v1 with the same

color and then color v3 and u1 with the same color. Finally color v2 and u2 and thus
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w1 and w3 see at most two colors as desired.

Next suppose that |C(v3)| = |C ′(u3)| = 5. We may suppose without loss of gener-

ality that |C(v1)| = 2. Moreover, given that the succeeding arguments are identical

for u1 and u2, we may also assume that |C(u1)| = 2. If C(v1) \ L(w1) 6= ∅, color v1

with such a color. Now v3 has four available colors and u1 has two available colors.

So either color u1, v3 with same color or one of them with a color not in L(w3). Then

color u3, u2, v2 in that order. But then w1 and w3 see at most two colors as desired.

Similarly if C ′(u3) \ L(w1) 6= ∅, color u3 with such a color. Then color u1. Now v3

can either be colored the same as u1 or with a color not in L(w3). So color v3 as such

and then color v1, v2, u2 in that order. But now w1 and w3 see at most two colors as

desired. So we may now assume that C(v1) ⊂ C ′(u3) as C ′(u3), C(v1) ⊆ L(w1). By

symmetry, we may now assume that C ′(u1) ⊂ C(v3). In this case, color u3 and v1 with

the same color and then color v3 and u1 with the same color. Finally color v2 and u2

and thus w1 and w3 see at most two colors as desired.

Finally we may suppose that one of |C(v3)|, |C ′(u3)| is of size two and the other of

size five. By symmetry, we may assume without loss of generality that |C ′(u3)| = 2

and |C(v3)| = 5. In this case, color u3, v1, v2 such that w3 sees at most two colors.

Now v3 has at least two available colors while u1, u2 have at least four available colors

combined. So we may color u1, u2, v3 such that w1 sees at most two colors as desired.

We are now ready to use these lemmas about magic colorings to prove Theo-

rem 4.7.1.

Proof of Theorem 4.7.1. Suppose not. For i ∈ {1, 2, 3}, let Mi be the closest triangle

to T1 such that φ extends to a Magic i set of colorings of Mi. Similarly for i ∈

{1, 2, 3}, let M ′
i be the closest triangle to T2 such that φ′ extends to a Magic i set of

colorings of Mi’. By Corollary 4.7.9 and Lemmas 4.8.2, 4.8.1 and 4.9.1, d(T1,M1) ≤ 2
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and d(T2,M
′
1) ≤ 2. By Lemmas 4.7.6, 4.7.12, 4.8.3 and 4.9.1, d(M1,M3) ≤ 2 and

d(M ′
1,M

′
3) ≤ 2. By Corollary 4.7.16 and Lemmas 4.8.7, 4.9.3, it follows that if

d(M3,M
′
3) ≥ 2, then there exist φ extends to an L-coloring of G. Hence d(M3,M

′
3) ≤

1. But now d(T1, T2) ≤ d(T1,M1) + 1 + d(M1,M3) + 1 + d(M3,M
′
3) + 1 + d(M ′

3,M
′
1) +

1 + d(M ′
1, T1) ≤ 13, a contradiction.

4.10 Proof of the Two Precolored Triangles Theorem

Proof of Theorem 4.1.1. Let Γ = (G, T1, T2, L) is a counterexample to Theorem 4.1.1

with a minimum number of vertices and subject to that a maximum number of edges.

By Lemma 4.6.21 with d0 = 14, there exists triangles T ′1 and T ′2 of G each separating

C1 from C2 such that d(T ′1, T
′
2) ≥ 14 and every band in the band decomposition of

Γ[T ′1, T
′
2] is a subgraph of a tetrahedral, octahedral or hexadecahedral band.

Let φ be an L-coloring of T1 ∪ T2. By Theorem 1.4.2, it follows that φ � T1 can

be extended to an L-coloring of Γ[T1, T
′
1] and similarly φ � T2 can be extended to an

L-coloring of Γ[T2, T
′
2]. By Theorem 4.7.1, φ can now be extended to an L-coloring

of G, a contradiction.
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CHAPTER V

A GENERAL LINEAR BOUND

5.1 Introduction

In this chapter, we prove the main results of this thesis. In Section 5.2, we generalize

Theorem 4.1.1 to the case of two cycles with lists of size three a constant distance

apart. Then we extend Theorems 3.4.26 and 3.6.4 to the case of two precolored cycles.

In Section 5.3, we extend Theorem 3.4.27 to the case of two precolored cycles. In

Section 5.4, we extend Theorem 3.5.3 to the case of two precolored cycles.

In Section 5.5, we define a useful way to planarize a graph on a surface. In Section

5.6, we proceed to develop an abstract theory for families of graphs satisfying a linear

isoperimetric inequality, as in Theorem 3.4.26, for the disc and any isoperimetric

inequality for the cylinder. In Section 5.7, we prove our main results holds in this

abstract setting. In Section 5.8, we apply the general theory to the family of 6-list-

critical graphs to derive the main results for 5-list-coloring. Finally, in Section 5.9,

we apply the theory for a slightly different family to obtain the exponentially many

5-list-colorings result.

5.2 A Linear Bound for the Cylinder

Theorem 5.2.1. [Cylinder Theorem: Cycles with Lists of Size Three] If Γ = (G,C ∪

C ′, L) is a cylinder-canvas where vertices in C ∪ C ′ have lists of size at least three

and d(C,C ′) ≥ D, then there exists an L-coloring of G.

Proof. Suppose that Γ is a counterexample to the theorem with a minimum number

of vertices and subject to that a maximum number of edges. Thus Γ is critical. Hence

there are no degree four vertices in G \ (C ∪C ′) and there do not exist vertices in the
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interior of triangles that do not separate a vertex of C from a vertex of C ′.

Claim 5.2.2. Either there exists a triangle C0 separating C,C ′ such that d(C0, C ∪

C ′) ≤ 2, or there exists a path P = p0p1 . . . pk from C to C ′ such that all the following

hold:

(1) p0 ∈ C, pk ∈ C ′,

(2) P is a shortest path from C to C ′,

(3) none of p1, p2, pk−2, pk−1 has two mates (i.e. is tripled)

(4) P is an arrow from p0 to pk,

(5) if p1 (resp. pk−1) has more than one neighbor on C (resp. C ′), then there either

there is no neighbor of p1 on C(resp. C ′) to the left or no neighbor of p1 on C1

to the right,

(6) if p2 (resp. pk−2) has a mate, then if it is a right mate, then there is no neighbor

of p1 on C (resp. C ′) to the left and similarly if it is a left mate, then there is

no neighbor of p1 on C to the right.

Proof. Consider a shortest path Q from C to C ′. Let p1 ∈ Q such that p1 6∈ C and

yet p1 has a neighbor in C. Similarly let pk−1 ∈ Q such that p1 6∈ C ′ and yet pk−1

has a neighbor in C ′. Let P ′ = p1p2 . . . pk−1 be an arrow from p1 to pk−1, where by

Lemma 4.2.2 such a P ′ is guaranteed to exist. We claim that neither p2 nor pk−2 has

two mates in P ′. For suppose not. Say pi has two mates where i ∈ {2, k − 2}. As

pi does not have degree four and no vertices in the interior of triangles that do not

separate a vertex of C1 from a vertex of C2, one of the mates, call it x, of pi is in a

triangle, either pi−1xpi or pi+1xpi, that separates a vertex of C from a vertex of C ′.

Call this triangle C0 and note that d(C0, C ∪ C ′) ≤ 2.

Now let p0 be a neighbor of p1 on C such that there is no neighbor of p1 on C

either to the left or to the right, and in addition if p2 has a mate z in P ′, then p0 has
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no neighbor on C to the left if z is a right mate, and, p0 has no neighbor on C to the

right if z is a left mate. Let pk be chosen similarly. Let P = p0p1 . . . pk−1pk. Clearly

(1) and (2) hold. Furthermore, (5) and (6) hold as p0 and pk were chosen to satisfy

these conditions. Moreover, (3) is satisfied. For suppose not. Say pi has two mates

where i ∈ {1, 2, k − 2, k − 1}. As pi does not have degree four and no vertices in the

interior of triangles that do not separate a vertex of C1 from a vertex of C2, one of

the mates, call it x, of pi is in a triangle, either pi−1xpi or pi+1xpi, that separates a

vertex of C from a vertex of C ′. Call this triangle C0 and note that d(C0, C∪C ′) ≤ 2.

Finally we show that (4) is satisfied. Suppose not. Thus there exist i, 2 ≤ i ≤ k−1

such that pi is tripled and yet pi−1 is doubled. Yet P ′ was an arrow from p1 to pk−1

and hence i 6∈ [3, k − 2]. Thus either i = 2 or i = k − 1. If i = 2, then p2 is tripled,

a contradiction as (3) was shown to hold for P . If i = k − 1, then pk−1 is tripled,

a contradiction as (3) was shown to hold for P . Hence (4) holds and the claim is

proved.

Claim 5.2.3. There exists D′ such that if there does not exist a triangle separating

C and C ′ and d(C,C ′) ≥ D′, then G is L-colorable.

Proof. As there is no triangle separating C and C ′, by Claim 5.2.2, there exist a path

P satisfying (1)-(6) in Claim 5.2.2. Choose P such that p1 and pk−1 have mates in P

if possible. Let p′0 be the other ’most’ neighbor of p1 if p1 has more than one neighbor

on C and similarly let p′k be the other ’most’ neighbor of pk−1 on C ′. Let P1 = p0p1p
′
0

if p′0 exists and P2 = pkpk−1p
′
k if p′k exists. Let B1 = Ext(P1), the bellows with base

P1 and B2 = Ext(P2), the bellows with base B2.

Suppose that either p′k does not exist or there does not exist a vertex adjacent to

p′k, pk−1, pk−2. Similarly suppose that either p′0 does not exist or there does not exist a

vertex adjacent to p′0, p1, p2. As P is an arrow from p0 to pk and |L(p0)|, |L(pk)| ≥ 3,

there exists a bichromatic coloring φ of P by Lemma 4.2.3. Let G′ be the graph
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obtained from G by cutting along P and deleting P . Let L′(v) = L(v) \ {φ(u)|u ∈

N(v)∩P}. Let S ′ = (N(p0)∪N(p1)∪N(pk−1)∪N(pk))∩(C∪C ′). Let Γ′ = (G′, S ′, L′)

be the resulting canvas.

By Theorem 1.4.2, there exists an L′-coloring φ′ of G′ ∩ (B1 ∪B2). Let G′′ = G′ \

(B1 ∪B2). Let L′′(v) = L′(v) \ {φ′(u)|u ∈ {p′0, p′k}, u ∼ v}. Let S ′′ = {v||L′′(v)| < 3}.

Consider the resulting canvas Γ′′ = (G′′, S ′′, L′′).

We claim that if v ∈ S ′′, then either v is a neighbor of p0 or p′0 in C or a neighbor

of pk or p′k in C ′. Suppose not. It follows that without loss of generality that v is a

neighbor of p′0 and that v has two neighbors in p0, p1, p2. As there does not exist v

adjacent to all of p′0, p1, p2, we may assume that v ∼ p0. If v ∼ p1, then either vp1p0

or vp1p
′
0 is a triangle separating C from C ′, a contradiction. So we may suppose that

v ∼ p2. But then either vp0p1p2 or vp′0p1p2 is a 4-cycle not separating C from C ′

and hence G∪{vp1} is a counterexample with the same number of vertices but more

edges, a contradiction.

We claim that S ′′ ∩C consists either of at most two vertices with lists of size two

or one vertex with a list of size one. This follows from the fact that we chose the p0

such that p1 has no neighbor either to the right or to the left by (5). So if p′0 exists

there can only be one vertex adjacent to p0 in C ∩ V (G′′) and similarly one to p′0 in

C ∩ V (G′′) as there are no chords of C or C ′. If p′0 does not exist, then there are at

most two neighbors of p0 in C. This proves the claim.

Similarly S ′′ ∩ C ′ consists either of at most two vertices with lists of size two or

one vertex with a list of size one. As there is no triangle separating C and C ′ and

P was a shortest path between them, there cannot exist a long bottleneck in Γ′ as

such a bottleneck would either have to involve many chords between C (or C ′) and

P , or create a separating triangle between C and C ′. But now the claim follows

by invoking Theorem 3.12.1, as the critical subcanvas (G′, S, L′), where S are the

vertices of Γ′ with lists of size at most two, must include a vertex from S in C and
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another vertex from S in C ′ (as there are local colorings near C and C ′ given either

one precolored vertex or two lists of size two). But then |V (G′)| ≥ d(C,C ′) ≥ D′ and

yet |V (G′)| = O(|S|) = O(4), a contradiction.

So suppose that p′0 exists and there exists a vertex v ∼ p′0, p1, p2. We may suppose

without loss of generality that |L(p0)| = |L(p′0)| = 3. As P was chosen so that

p1 had a mate if possible, we find that p1 has a mate p′1. As there is no triangle

separating C from C ′, p′1 6= v. First suppose that L(p0) \ L(p′1) 6= ∅. In this case, let

φ(p0) ∈ L(p0)\L(p′1). If B1 is a fan, let φ(p1) in L(p1)\({φ(p0)}∪L(p′0)); if B1 is not a

fan, let φ(p1) ∈ L(p1)\{φ(p0), φ1(p1)} where φ1 is the unique non-extendable coloring

of P1 to B1. Now let L0(p2) = L(p2) \ {φ(p1)} and L0 = L otherwise. Otherwise we

may suppose that L(p0) ⊂ L(p′1). In this case, let L0(p2) = L(p2) \ (L(p′1) \ L(p0))

and L0 = L otherwise.

As P \ {p0, p1} is an arrow from p2 to pk and |L0(p2)|, |L0(pk)| ≥ 3, there exist

a bichromatic L0-coloring φ of P \ {p0, p1} by Lemma 4.2.3. Now if L(p0) ⊂ L(p′1),

we would like to extend φ to p1 and then p0. To that end, if B1 is a fan, let φ(p1)

in L(p1) \ ({φ(p2)} ∪ L(p′0)); if B1 is not a fan, let φ(p1) ∈ L(p1) \ {φ(p2), φ1(p1)}

where φ1 is the unique non-extendable coloring of P1 to B1. Let φ(p0) = φ(p2) if

φ(p2) ∈ L(p0) and otherwise let φ(p0) ∈ L(p0) \ {φ(p1}. Hence, in either case φ is an

L-coloring of P such that all vertices not in P see at most two colors.

Let G′ be the graph obtained from G by cutting along P and deleting P . Let

L′(v) = L(v) \ {φ(u)|u ∈ N(v) ∩ P}. Let S ′ = (N(p0) ∪N(p1) ∪N(pk−1) ∪N(pk)) ∩

(C ∪ C ′). Let Γ′ = (G′, S ′, L′) be the resulting canvas.

By Theorem 1.4.2, there exists an L′-coloring φ′ of G′ ∩ B2. Furthermore note

that every L′-coloring of p′0 can be extended to an L-coloring of B1 extending φ. Let

G′′ = G′ \ ((B1 \p′0)∪B2). Let L′′(v) = L′(v)\{φ′(p′k)|p′k ∼ v}. Let S ′′ = {v||L′′(v)| <

3}. Consider the resulting canvas Γ′′ = (G′′, S ′′, L′′).

We claim that if v ∈ S ′′, then either v is a neighbor of p0 in C or v = p′0 or v is a
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neighbor of pk or p′k in C ′. This claim follows in the same way as before for vertices

near C ′ and is clear for vertices near C. We then claim that S ′′ ∩C consists either of

at most two vertices with lists of size two. This follows from the fact that we chose

the p0 such that p1 has no neighbor either to the right or to the left by (5). So as

p′0 exists there can only be one vertex adjacent to p0 in C ∩ V (G′′). This proves the

claim.

Now S ′′ ∩ C ′ consists either of at most two vertices with lists of size two or one

vertex with a list of size one as before. As there is no triangle separating C and C ′

and P was a shortest path between them, there cannot exist a long bottleneck in Γ′

as such a bottleneck would either have to involve many chords between C (or C ′)

and P , or create a separating triangle between C and C ′. But now the claim follows

by invoking Theorem 3.12.1, as the critical subcanvas (G′, S, L′), where S are the

vertices of Γ′ with lists of size at most two, must include a vertex from S in C and

another vertex from S in C ′ (as there are local colorings near C and C ′ given either

one precolored vertex or two lists of size two). But then |V (G′)| ≥ d(C,C ′) ≥ D′ and

yet |V (G′)| = O(|S|) = O(4), a contradiction.

So we may suppose that p′k exists and there exists a vertex v′ ∼ p′k, pk−1, pk−2. The

same argument applies as above when either p′0 does not exist or there does not exist

v ∼ p′0, p1, p2 as we did not use the direction of the arrow in that argument. A similar

argument also applies when p′0 exists and there exists v ∼ p′0, p1, p2 by modifying L

to L0 at both ends and finding a bichromatic coloring φ of the arrow from p2 to pk−2.

In that case, we do not either p′0 or p′k and then proceed as above.

Let D0 be the distance in Theorem 4.1.1. If |C|, |C ′| ≤ 3, the theorem follows from

Theorem 4.1.1 as long as D ≥ D0. By Claim 5.2.3, there exists D′ such that if there

does not exist a triangle separating a vertex of C and a vertex of C ′ and d(C,C ′) ≥ D′,

then the graph G is L-colorable. So we may suppose there exists a triangle separating

a vertex of C from a vertex of C ′. Let T1 be such a triangle closest to C and T2 be
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such a triangle closest to C ′. By Claim 5.2.3, d(C, T1) ≤ D′ and d(C ′, T2) ≤ D′ and

yet by Theorem 4.1.1, d(T1, T2) ≤ D0. Hence d(C,C ′) ≤ 2D′ +D0, a contradiction if

D > 2D′ +D0.

Lemma 5.2.4 (Cylinder Theorem: Linear-Log Distance). If Γ = (G,C1 ∪ C2, L) is

a connected critical cylinder-canvas, then d(C1, C2) ≤ O(|C1| log |C1|+ |C2| log |C2|).

Proof. Let us proceed by induction on |C1|+ |C2|. Suppose without loss of generality

that |V (C1)| ≥ |V (C2)|. We may assume that |V (C1)| ≥ 4 as otherwise the theorem

follows from Theorem 4.1.1.

We now prove a stronger statement. For i ∈ {1, 2}, let Ri be the set of relaxed

vertices of Ci and Si = V (Ci) \ Ri. Let dr(Γ) = min{d(R1, R2) + 2, d(R1, S2) +

1, d(S1, R2) + 1, d(S1, S2)}.

Let f(m1,m2) = 58((m1 − 3) logm1 + (m2 − 3) logm2) + D + 2 where D is the

constant in Theorem 5.2.1.

We now prove that

dr(T ) ≤ f(|C1|, |C2|) + 2.

Let T = (G,C1∪C2, L) be a counterexample to the formula above with a minimum

number of vertices, where |C1| ≥ |C2| without loss of generality. Let k1 = |C1| and

k2 = |C2|. Hence d(C1, C2) > f(k1, k2). Note then that C1 ∩C2 = ∅ as d(C1, C2) ≥ 1.

Claim 5.2.5. For i ∈ {1, 2}, there does not exist Gi ⊆ G such that Gi ∩ C3−i = ∅

and (Gi, Ci, L) is a critical canvas.

Proof. Suppose not. Suppose without loss of generality that there exists G1 ⊆ G

such that G1 ∩ C2 = ∅ and (G1, C1, L) is a critical canvas. There exists a face f of

G1 such that the boundary cycle of f , call it C, separates a vertex of C1 from C2. By

Corollary 3.3.4, |C| < |C1|. By induction, it follows that d(C,C2) ≤ f(|C|, k2). Hence

d(C,C2) ≤ f(k1 − 1, k2). By Theorem 3.6.4, d(v, C1) ≤ 58 log k1 for all v ∈ V (C).

Hence d(C1, C2) ≤ f(k1, k2), a contradiction.
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Hence there does not exist a chord U of C1 or C2.

Claim 5.2.6. For i ∈ {1, 2}, there does not exist v with at least three neighbors in

C1 ∪ C2.

Proof. As d(C1, C2) ≥ 3, we may suppose without loss of generality that v has at

least three neighbors on C1. As there does not exist a chord of C1, v 6∈ V (C1). Let f

be the face of G[C1 ∪ {v}] such that the boundary cycle of f , call it C, separates a

vertex of C1 from C2. Suppose |C| < |C1|. By induction, it follows that d(C,C2) ≤

f(|C|, k2). Hence d(C,C2) ≤ f(k1− 1, k2). By Theorem 3.6.4, d(v, C1) ≤ 58 log k1 for

all v ∈ V (C). Hence d(C1, C2) ≤ f(k1, k2), a contradiction.

So we may suppose that |C| = |C1|. Let C1 = v1v2v3 . . . vk1 . We may assume

without loss of generality that N(v) ∩ C1 = {v1, v2, v3}. Hence C = v1vv3 . . . vk1 .

Consider the canvas Γ′ = (G \ {v2}, C ∪ C2, L). Now T ′ is critical. As T is a

counterexample with a minimum number of vertices, we find that dr(T
′) ≤ f(k1, k2)+

2.

Now we claim that v is relaxed in T ′. Let φ be an L-coloring of C1 ∪C2 that does

not extend to an L-coloring of G. Let S(v) = L(v) \ {φ(v1), φ(v2), φ(v3)}. Note then

that |S(v)| ≥ 2 as |L(v)| = 5. Let c1, c2 ∈ S(v). For i ∈ {1, 2}, let φi(v) = ci and

φi = φ otherwise. Hence φ1, φ2 are L-colorings of P ′1 ∪ P2 that do not extend to an

L-coloring of G \ {pi} such that φ1(v) 6= φ2(v) but φ1 = φ2 otherwise. So v is relaxed

as claimed.

Next we claim that R(C1) ⊆ R(C) \ {v}. To see this, let u ∈ R(C1). Thus there

exist two L-colorings φ1, φ2 of P1 ∪ P2 that do not extend to an L-coloring of G such

that φ1(u) 6= φ2(u) and φ1 = φ2 otherwise.

Suppose u 6= v2. Let S(v) = L(v) \ {φ1(v1), φ2(v1), φ1(v2), φ2(v2), φ1(v3), φ2(v3)}.

As φ1 = φ2(w) for all w 6= u, we find that |S(v)| ≥ 1 as |L(v)| = 5. Let c ∈ S(v)

and φ1(v) = φ2(v) = c. Now φ1, φ2 are L-colorings of P ′1 ∪ P2 that do not extend to
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an L-coloring of G \ {pi} such that φ1(u) 6= φ2(u) and φ1 = φ2 otherwise. Thus u is

relaxed for T ′. So u ∈ R(P ′1) \ {v} as claimed.

Suppose u = v2. If φ1(v1) = φ1(v3), let G′ be obtained from G by deleting v2 and

identifying v1 and v3 to a single vertex. If φ1(v1) 6= φ1(v3), let G′ be obtained from G

by deleting v2 and adding an edge between v1 and v2. Let C ′1 be the resulting path

on C1 \ {v2}. Consider Γ′ = (G′, C ′1 ∪C2, L). Now there does not exist an L′-coloring

of G that extends φ1.

Hence Γ′ contains a critical subcanvas Γ′′. If Γ′′ is connected, then by induction

d(C1, C2) ≤ d(C ′1, C2) ≤ f(k1 − 1, k2), a contradiction. If Γ′′ is not connected, then

there exists G1 ⊆ G such that G1 ∩ P2 = ∅ and (G1, P1, L) is a critical canvas,

contradicting Claim 5.2.5. Thus R(C1) ⊂ R(C ′1) \ {v} as claimed.

But now it follows that dr(Γ) ≤ dr(Γ
′) and hence dr(Γ) ≤ f(k1, k2) + 2, contrary

to the fact that Γ was a counterexample to this formula.

Let φ be an L-coloring of C1∪C2 such that φ does not extend to an L-coloring of G.

Let G′ = G\(V (C1)∪V (C2)). Let L′(v) = L(v)\{φ(u)|u ∈ V (C1)∪V (C2), u ∈ N(v)}.

By Claim 5.2.6, |L′(v)| ≥ 3 for all v ∈ V (G′). Let C ′1 be the boundary walk of the

outer face of G′ and C ′2 be the face of G′ containing the disk bounded by C2. Now

add edges to the outer face so that vertices with lists L′ of size less than five in C ′1

form a cycle C ′′1 . Similarly add edges inside the disk bounded by C ′2 so that vertices

with lists L′ of size less than five in C ′2 form a cycle C ′′2 . Now Γ′ = (G′, C ′′1 ∪ C ′′2 , L′)

is a cylinder-canvas. Furthermore, d(C ′′1 , C
′′
2 ) ≥ f(k1, k2)− 2 ≥ D, a contradiction as

then φ extends to an L-coloring of G by Theorem 5.2.1.

Corollary 5.2.7 (Cylinder Theorem: Linear-Log Bound). If Γ = (G,C ∪C ′, L) is a

connected critical cylinder-canvas, then |V (G)| ≤ O(|C| log |C|+ |C ′| log |C ′|).

Proof. Let f1 be the face of G whose boundary is C and f2 be the face of G whose

boundary is C ′. Let P be a shortest path from C to C ′. Let f be the face of
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G[C ∪ C ′ ∪ P ] such that f 6= f1, f2. Let C ′′ be the boundary walk of f . But then

G is C ′′-critical. As d(C,C ′) ≤ O(|C| log |C| + |C ′| log |C ′|) by Lemma 5.2.4, C ′′ ≤

O(|C| log |C|+|C ′| log |C ′|). By Corollary 3.4.26, |V (G′)| ≤ O(|C ′′|) ≤ O(|C| log |C|+

|C ′| log |C ′|). As |V (G)| ≤ |V (G′)|, the corollary follows.

Lemma 5.2.8 (Cylinder Theorem: Linear Distance). If Γ = (G,C ∪ C ′, L) is a

connected critical cylinder-canvas, then d(C,C ′) ≤ O(|C|+ |C ′|).

Proof. There must exist a distance i, 1 ≤ i ≤ 2c log |C| where c is the constant in

Corollary 5.2.7, such that either there are at most |C|/2 vertices at distance i from C

or there must exist a distance j, 1 ≤ j ≤ 2c log |C ′| such that there are at most |C ′|/2

vertices at distance i from C ′. The corollary then follows by induction (actually shows

d(C,C ′) ≤ O(log2 |C|+ log2 |C ′|)).

Theorem 5.2.9 (Cylinder Theorem: Linear Bound). If Γ = (G,C ∪ C ′, L) is a

connected critical cylinder-canvas, then |V (G)| ≤ O(|C|+ |C ′|).

Proof. Let f1 be the face of G whose boundary is C and f2 be the face of G whose

boundary is C ′. Let P be a shortest path from C to C ′. Let f be the face of

G[C ∪ C ′ ∪ P ] such that f 6= f1, f2. Let C ′′ be the boundary walk of f . But then

G is C ′′-critical. As d(C,C ′) ≤ O(|C| + |C ′|) by Lemma 5.2.8, C ′′ ≤ O(|C| + |C ′|).

By Corollary 3.4.26, |V (G′)| ≤ O(|C ′′|) ≤ O(|C| + |C ′|). As |V (G)| ≤ |V (G′)|, the

theorem follows.

Theorem 5.2.10. [Cylinder Theorem: Logarithmic Distance] If Γ = (G,C ∪ C ′, L)

is a connected critical cylinder-canvas, then d(v, C ∪ C ′) ≤ O(log(|C|+ |C ′|)) for all

v ∈ V (G). In particular, d(C,C ′) ≤ O(log(|C|+ |C ′|)).

Proof. There must exist a distance i, 1 ≤ i ≤ 2c where c is the constant in Theo-

rem 5.2.9, such that either there are at most |C|/2 vertices at distance i from C or

there are at most |C ′|/2 vertices at distance i from C ′. The corollary then follows by

induction.
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5.3 Easels for Cylinder-Canvases

Definition. Let T = (G,C1 ∪ C2, L) be a cylinder-canvas. Let f1 be the face of G

bounded by C1 and f2 be the face of G bounded by C2. Let G′ ⊆ G such that for

every face f of G such that f 6= f1, f2, every L-coloring of the boundary of f extends

to an L-coloring of the interior of f . We say the cylinder-canvas T ′ = (G′, C1∪C2, L)

is an easel for T .

Let T = (G,C1∪C2, L) be a cylinder-canvas and T ′ = (G′, C1∪C2, L) an easel for

T . We say that T ′ is a critical easel for T if there does not exist T ′′ = (G′′, C1∪C2, L)

such that G′′ ( G′ such that T ′′ is an easel for T ′, and hence also an easel for T as

noted above.

We may now derive a linear bound on the size of an easel for a cylinder-canvas.

Theorem 5.3.1. If T = (G,C1 ∪ C2, L) is a cylinder-canvas, then there exists an

easel T ′ = (G′, C1 ∪ C2, L) for T such that |V (G′)| = O(|C|+ |C ′|).

Proof. Let f1 be the face of G whose boundary is C1 and f2 be the face of G whose

boundary is C2. Let P be a shortest path from C1 to C2. Let f be the face of

G[C ∪ C ′ ∪ P ] such that f 6= f1, f2. Let C0 be the boundary walk of f .

Suppose d(C1, C2) ≤ O(log(|C1| + |C2|)). Consider the canvas T0 = (G0, C0, L).

By Theorem 3.4.27, there exists an easel T ′0 = (G′0, C0, L) for T0 such that |V (G′0)| ≤

29|V (C0)|. But T ′0 corresponds to an easel T ′ = (G′, C1 ∪ C2, L) for T such that

|V (G′)| ≤ 29(|C1|+ |C2|+ |P |) + |P | = O(|C1|+ |C2|).

So we may suppose that d(C1, C2) ≥ Ω(log(|C1|+ |C2)). By Theorem 3.4.27, there

exists a critical easel T1 = (G1, C1, L) for the cycle-canvas (G\C2, C1, L) and a critical

easel T2 = (G2, C2, L) for the cycle-canvas (G \ C1, C2, L). By Theorem 3.6.8, for all

i ∈ {1, 2}, d(v, Ci) ≤ 58 log |Ci| for all v ∈ V (Gi).

As d(C1, C2) ≥ Ω(log(|C1| + |C2|), G1 ∩ G2 = ∅. Let C ′1 be the facial cycle of

G1 separating C1 from C2 and similarly let C ′2 be the facial cycle of G2 separating
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C1 from C2. It follows that d(C ′1, C
′
2) ≥ Ω(log(|C1| + |C2|). By Theorem 5.2.10

applied to T [C ′1, C
′
2], we may assume that every L-coloring of C ′1 ∪C ′2 which extends

to an L-coloring of the vertices at distance log(|C ′1| + |C ′2|) extends to an L-coloring

of T [C ′1, C
′
2]. Yet as T1 is an easel for (G \ C2, C1, L) and T2 , it follows that every

L-coloring of C ′1∪C ′2 extends to an L-coloring of T [C ′1, C
′
2]. Thus T ′ = (G1∪G2, C1∪

C2, L) is an easel for T and |V (G1 ∪G2)| ≤ 58(|C1|+ |C2|) as desired.

5.4 Exponentially Many Extensions of Two Precolored Cy-
cles

Lemma 5.4.1. Let ε ≤ 1/18 such that ε = 1/(1144α) and there exists α > β such

that Ω(log β) ≤ α < 2β/290/492 with the property that if two cycles have size at most

β and are at least α distance apart, then any coloring of those cycles which extends

to distance O(log β) extends to the graph in between.

If (G,C,C ′, L) is a cylinder cycle-canvas and φ is an L-coloring of C ∪ C ′ that

extends to an L-coloring of G, then logE(φ) ≥ ε(|V (G \ (C ∪ C ′))| − 50(|V (C)| +

|V (C ′)|)), where E(φ) is the number of extensions of φ to G.

Proof. Suppose not. Let (G,C,C ′, L) be a counterexample with a minimumber of

vertices. Let d = d(C,C ′) and P = p0p1 . . . pd be a shortest path from C to C ′. Let

f1 be the face of G whose boundary is C and f2 be the face of G whose boundary is

C ′. Let P be a shortest path from C to C ′. Let f be the face of G[C ∪ C ′ ∪ P ] such

that f 6= f1, f2. Let C ′′ be the boundary walk of f .

Note that |V (G\ (C ∪C ′))| ≥ 50|V (C)|+ |V (C ′)|, as otherwise the formula holds,

a contradiction.

Claim 5.4.2. d ≥ (|C|+ |C|′)/3

Proof. Suppose not. Extend φ to an L-coloring φ′ of G[V (C)∪V (C ′)∪P ′] such that

φ extends to an L-coloring of G. By Theorem 3.5.3, logE(φ′) ≥ (|V (G \ (C ∪ C ′ ∪
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P )| − 29(|C ′′|))/9 = (|V (G \ (C ∪ C ′))| − 50(|C| + |C ′))/9 as d ≤ (|C| + |C ′|)/3 and

|C ′′| = |C|+ |C ′|+ 2d, a contradiction.

Claim 5.4.3. |V (G)| ≤ 143d.

Proof. Suppose not. Extend φ to an L-coloring φ′ of G[V (C)∪V (C ′)∪P ′] such that φ

extends to an L-coloring of G. By Theorem 3.5.3, logE(φ′) ≥ (|V (G\(C∪C ′∪P ))|−

29(|C ′′|))/9 = (|V (G)|−58d−30(|C|+|C|′)/9 as |C ′′| = |C|+|C ′|+2d. As the formula

does not hold for T , we find that logE(φ) ≤ (|V (G)|−51(|C|+|C ′))/18 as ε ≤ 18. Yet

E(φ′) ≤ E(φ). So we find that 2|V (G)|−116d−60(|C|+|C ′|) ≤ |V (G)|−51(|C|+|C ′|).

Hence |V (G)| ≤ 116d + 9(|C| + |C|′) ≤ 143d as |C| + |C ′| ≤ 3d by Claim 5.4.2, a

contradiction.

Let A be the set of all i such that piα is in a cycle Ci of size at most β separating

C from C ′. Let B be the set of all i such that Bβ(piα) is contained in a slice H

where G \H attaches to at most one face of H and the boundary of H is contained

in Nβ(piα).

For all piα, 1 ≤ i ≤ d/α, is either in a cycle Ci of size at most β separating C from

C ′ or Bβ(piα) is contained in a slice H where G \H attaches to at most one face of

H and the boundary of H is contained in Nβ(piα). Hence |A| + |B| ≥ d/α. We will

consider two cases, first when |B| ≥ d/2α and second when |A| ≥ d/2α.

Suppose that |B| ≥ d/2α. Let B′ ⊆ B such that for all i, j ∈ B, |j − i| ≥ 2 and

|B′| = |B|/2 ≥ d/4. Now for all i, j ∈ B, Bβ(piα) ∩ Bβ(pjα) = ∅ as β < α. We need

the following claim.

Claim 5.4.4. For all i ∈ B and 0 ≤ j ≤ β, |Bj(piα)| ≤ 145|Nj(piα)|.

Proof. Suppose the claim does not hold for i and j. Let p = piα. Thus |Bj(p)| >

145|Nj(p)|. Let Cj be a minimal subset of Nj(p) separating Bj(p) from C∪C ′. Hence

there exists a closed curve γ such that V (G) ∩ γ = V (Cj) and γ does not intersect
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itself. For every two vertices u, v of Cj consecutive along γ, add a vertex w on γ and

edges uw and vw to obtain a cycle C ′j where |C ′j| ≤ 2|Cj|.

Let G′ = Int(γ) and consider the cycle-canvas T ′ = (G′, C ′j, L). Let T ′′ =

(G′′, C ′j, L) be a critical easel for T ′. It follows from Theorem 3.5.3, that if φ′ is

an L-coloring of G \ (G′′ \ C ′j), then logE(φ′) ≥ (|V (G′ \ G′′)| − 29(|C ′j| − 3))/9,

where E(φ′) is the number of extensions of φ to G. As |C ′j| ≤ 2|Cj|, logE(φ′) ≥

(|V (G′ \G′′)| − 58|Cj|)/9.

Meanwhile, consider the cylinder cycle-canvas (G0, C, C
′, L) where G0 = G \ (G′ \

G′′). AsG is a minimum counterexample, logEG0(φ) ≥ 2ε(|V (G0\(C∪C′))|−50(|V (C)|+|V (C′)|)).

Hence, logE(φ) ≥ 2ε(|V (G\(C∪C′))|−50(|V (C)|+|V (C′)|))2(1/9−ε)|V (G′\G′′)|−58|Cj |/9. As G is

a counterexample, we find that |V (G′ \ G′′)| ≤ 58|Cj|/(1 − 9ε) ≤ 116|Cj|. As

|V (G′′)| ≤ 29|Cj|, we find that |Bj(p)| ≤ 145|Nj(p)|, a contradiction.

Claim 5.4.5. For all i ∈ B and 0 ≤ j ≤ β, |Bj(piα)| ≥ 2j/290.

Proof. Let p = piα. Proceed by induction on j. If j ≤ 290, the claim holds as

|Bj(p)| ≥ 2 if j ≥ 1 and is at least one if j = 0. So suppose j > 290. By induction

|Bj−290(p)| ≥ 2j/290/2. Yet by Claim 5.4.4, |Nk(p)| ≥ |Bj−290(p)|/145 for all k where

j − 290 < k ≤ j. Hence |Bj(p)| ≥ 2|Bj−290(p)| and the claim follows.

Thus |V (G)| ≥
∑

i∈B 2β/290 ≥ 2β/290|B|/2 by Claim 5.4.5. Yet |V (G)| ≤ 143d by

Claim 5.4.3. Thus |B| ≤ 246d/2β/290. Yet |B| ≥ d/2α and hence α ≥ 2β/290/492, a

contradiction.

So we may suppose that |A| ≥ d/2α. Let A′ ⊆ A such that for all i, j ∈ A,

|j − i| ≥ 4 and |A′| ≥ |A|/4 ≥ d/8α. Now for all i, j ∈ A′, Ci ∩ Cj = ∅ and

d(Ci, Cj) ≥ α as β < α. Thus any choice of L-colorings for the set of cycles
⋃
i∈A′ Ci

will extend to an L-coloring as long for each cycle the L-coloring extends to distance

O(log β). However, by Theorem 1.4.2, there are least two L-colorings for any Ci that
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extend to distance O(log β). Hence there are at least 2|A
′| ≥ 2d/8α L-colorings of G,

which is at least 2|V (G)|/1144α = 2ε|V (G)| as |V (G)| ≤ 143d by Claim 5.4.3.

5.5 Steiner Frames

Definition. Let G be a graph and S ⊂ V (G). We say T ⊆ G is a Steiner tree for

S if T is a tree with a minimum number of edges such that S ⊂ V (T ). We let T ∗

denote the tree formed from T by supressing degree two vertices not in S.

We will need a generalization of this for graphs embedded on a surface.

Definition. Let G be a graph 2-cell embedded on a surface Σ and S ⊂ V (G). We

say H ⊆ G is a frame of G for S if H is a connected subgraph such that S ⊂ V (H)

and cutting Σ along H leaves a simply connected region. We let H∗ denote the graph

formed from H by supressing degree two vertices not in S (unless S = ∅ and H is a

cycle in which case we let H∗ denote the graph formed by suppressing all but three

vertices of H). If e ∈ E(H∗), we let ψ(e) denote the path in H between the endpoints

of e and we let mid(e) denote a mid-point of that path. We say that the path ψ(e) is

a seam of the frame H.

We say a frame H is a Steiner frame of G for S if it has the minimum number of

edges among all frames of G for S.

Note that a Steiner frame, and hence a frame, always exists as it is also the

subgraph with the minimum number of edges such that S ⊂ V (H) and every region

formed by cutting Σ open along H is simply connected. This follows because if there

existed at least two regions, then there would exist an edge of H adjacent to two

distint regions. But then deleting such an edge would join the two simply connected

region into one simply connected region, contradicting a minimum number of edges.

Definition. Let G be a graph embedded on a surface Σ. We say that a subgraph H

of G is a slice if the embedding of H inherited from the embedding of G is plane and

218



there exist a set of at most two faces of the embedding such that all vertices of H

adjacent to a vertex not in H are incident with one of the faces in that set. We say

that H is a disc slice if there exists such a set with at most one face and a cylinder

slice otherwise. If H is a slice, then the boundary of H is the set of vertices of H

adjacent to vertices not in H.

Lemma 5.5.1. Let G be a graph 2-cell embedded on a surface Σ and S ⊂ V (G). If

H is a Steiner frame of G for S and we let B(e) denote N|e|/4−1(mid(e)) for every

seam e of H, then

(1) for all seams e of H, B(e) is contained in a slice whose boundary is contained

in N|e|/4−1(e), and

(2) for all distinct seams e, f of H, B(e) ∩B(f) = ∅.

Proof.

Claim 5.5.2. There cannot exist a path from an internal vertex v in a seam e of H

to a vertex in H \ e that is shorter than mimimum of the length of the paths from v

to the endpoints of e.

Proof. Otherwise, we could add such a path and delete whichever path from v to an

endpoint of e that leaves the cut-open simply connected.

We now prove (1). Let e be a seam of H. It follows from the claim above that

N|e|/2−1(mid(e)) ∩ (H \ ψ(e)) = ∅. Hence, the inherited embedding of B(e) from G

is plane if the two appearances of e in the boundary walk of the simply connected

region have opposite orientations and in the projective plane if they have the same.

Yet if they have the same orientation and cannot be embedded in the plane, then

there is a path P , with length |e|/2 − 1 from the midpoint to itself passing through

the simply connected region. We may then add the path P to H and delete the path

from the midpoint to the endpoint of e which is longest. The resulting graph still
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cuts open Σ to a simply connected region as the two appearances of e had the same

orientation, as well as spanning the vertices of S. But this contradicts that H had a

minimum number of edges.

Thus the inherited embedding of B(e) is plane. It follows that even more is true.

The neighborhood B(e) embeds in the plane and this embedding can be extended to

an embedding of a plane graph H ′ such that (H \ B(e)) ∩ H ′ = ∅ and there are is

a set of at most two faces of H ′ such that every neighbor of G \ H ′ in H ′ is in one

of those faces. That is, B(e) is contained in a slice whose boundary is contained in

N|e|/4−1(e).

We now prove (2). Let e and f be distinct seams of H. Suppose B(e)∩B(f) 6= ∅.

Suppose without loss of generality that |e| ≥ |f |. But now there exists a path of

length at most |e|/4 + |f |/4 − 2 ≤ |e|/2 − 2 between mid(e) and mid(f) which is a

vertex of H \ e, contradicting the claim above.

5.6 Hyperbolic Families of Graphs

Definition. We say a pair (G,H) is a graph with boundary if G is a graph and

H is a subgraph of G. We say two graphs with boundary (G1, H1) and (G2, H2) are

isomorphic if there exists an isomorphism from G1 to G2 which is also an isomorphism

from H1 to H2.

Let (G,H) be a graph with boundary 2-cell embedded in a surface. Let (G1, G2)

be a separation of G such that V (G1) ∩ V (G2) = X and V (H) ⊆ G2. Now let G′1

be a graph obtained from G1 by splitting vertices of X. If the resulting graph with

boundary (G′1, X
′) can be embedded in the plane so that all the vertices of X ′ lie in

a common face, then we say that (G′1, X
′) is a disc-excision of (G,H).

Let (G,H) be a graph with boundary 2-cell embedded in a surface. Let G1 be a

slice of G and X its boundary. If V (H) ⊆ X ∪ (G \G1), then we say that (G1, X) is

a cylinder-excision of (G,H).
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Let F be a family of graphs with boundary 2-cell embedded on surfaces. We say

that F is hyperbolic if

(1) there exists cF > 0 such that for all disc-excisions (G,H) of a member of F ,

|V (G)| ≤ cF |V (H)|, and

(2) there exists f : Z+ → Z+ such that for all cylinder-excisions (G,H) of a member

of F , |V (G)| ≤ f(|V (H)|).

We say that cF is the disc Cheeger constant for F .

5.6.1 Logarithmic Distance, Exponential Growth for Disc-Excisions

Lemma 5.6.1 (Logarithmic Distance). Let F a hyperbolic family of graphs with

boundary. If (G,H) is a disc-excision of a member of F , then d(v,H) ≤ 2cF log |V (H)|

for all v ∈ V (G).

Proof. We proceed by induction on |V (G)|. There must exist a distance i, 1 ≤ i ≤

2cF , such that either there are at most |H|/2 vertices at distance i from H. The

corollary then follows by induction on (G \ {v|d(v,H) < i}, {v|d(v,H) = i}.

Corollary 5.6.2. Let F a hyperbolic family of graphs with boundary. If (G,H) is

a disc-excision of a member of F , then |Bk(v)| ≥ 2Ω(k) for all v ∈ V (G) and k > 0

such that Bk−1(v) ∩H = ∅.

Proof. Let k ≤ d(v,H). Now Nk(v) separates v from C. By Theorem 3.9.4, k =

d(v,Nk(v)) ≤ 2cF log |Nk(v)|. Hence |Nk(v)| ≥ 2k/(2cF ) as desired.

5.6.2 Linear Bound, Logarithmic Distance and Exponential Growth for
Cylinder-Excisions

Lemma 5.6.3 (Linear Cylinder Bound). Let F a hyperbolic family of graphs with

boundary. Then there exists cF ,1 such the following holds: If (G,H) is a cylinder-

excision of a member of F , then |V (G)| ≤ cF ,1|V (H)|.
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Proof. Thus H = C ∪C ′ where C,C ′ are facial cycles. Let f1 be the face of G whose

boundary is C and f2 be the face of G whose boundary is C ′. Take a shortest path

P from C to C ′. Let f be the face of G[C ∪ C ′ ∪ P ] such that f 6= f1, f2. Let C ′′

be the boundary walk of f . But then (G′, C ′′) is a disc-excision. Let d(C,C ′) = d.

If d ≤ O(|C| + |C ′|), then by C ′′ ≤ |C| + |C ′| + 2d. By property (i) of hyperbolic

families, |V (G′)| ≤ O(|C ′′|) ≤ O(|C|+ |C ′|). As |V (G)| ≤ |V (G′)|, the lemma follows.

So we may assume that d ≥ Ω(|C| + |C ′|). Yet by property (i) of a hyperbolic

family, |V (G)| ≤ O(d). Thus there exists k, 1 ≤ k ≤ d/4 such that |Nk(C)| ≤

8cF and similarly there exists k′, 3d/4 ≤ k′ ≤ d such that |Nk′(C
′)| ≤ 8cF . Yet

d(Nk(C), Nk′(C
′)) ≥ d/2. Consider the cylinder excision, (G′′, Nk(C) ∪Nk′(C

′)). By

property (ii), it follows that d/2 ≤ |V (G′′)| ≤ f(Nk(C), Nk′(C
′)). Hence |V (G)| ≤

O(d) and yet d ≤ 2 max1≤m,n≤8cF f(m,n).

We say that cF ,1 is the cylinder Cheeger constant of F .

Corollary 5.6.4. Let F a hyperbolic family of graphs with boundary. If (G,H) is a

cylinder-excision of a member of F , then d(v,H) ≤ O(log |V (H)|) for all v ∈ V (G).

Proof. We proceed by induction on |V (G)|. There must exist a distance i, 1 ≤ i ≤

2cF ,1, such that either there are at most |H|/2 vertices at distance i from H. The

corollary then follows by induction on (G \ {v|d(v,H) < i}, {v|d(v,H) = i}).

Corollary 5.6.5. Let F a hyperbolic family of graphs with boundary. If (G,H) is a

cylinder-excision of a member of F , then |Bk(v)| ≥ 2Ω(k) for all v ∈ V (G) and k > 0

such that Bk−1(v) ∩H = ∅.

Proof. Let k ≤ d(v,H). Now Nk(v) separates v from C. By Theorem 3.9.4, k =

d(v,Nk(v)) ≤ 2cF ,1 log |Nk(v)|. Hence |Nk(v)| ≥ 2k/(2cF,1) as desired.
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5.7 General Linear Bound for Hyperbolic Families

Theorem 5.7.1. Let F a hyperbolic family of graphs with boundary. If (G,H) ∈ F

such that G is 2-cell embedded on a surface Σ, then |V (G)| = O(|V (H)|+ g(Σ)).

Proof. Let (G,H) ∈ F . Let T be a Steiner frame of G for H. By cutting open along

T , we obtain a graph G′ embedded in the disk with boundary C, where |C| has size at

most 2|E(T )|. As (G′, C) is a disc-excision of (G,H), by Property (1) of hyperbolic

families,

|V (G)| ≤ cF |C| = 2cF |E(H)|

. Yet, the number of seams of H is at most 2(g(Σ) + |H|), as branch points are only

necessary to cut open the surface or to span vertices in H.

As T ∗ was formed by supressing vertices of degree two in T , |V (T ) \ V (T ∗)| =

|E(T ) \ E(T ∗)|. Thus,

|V (G)| ≤ cF(4g(Σ) + 4|H|+ 2|V (T ) \ V (T ∗)|).

Let E be the set of all seams e of T such that e \ V (T ∗) 6= ∅. Hence, for all e ∈ E ,

mid(e) exists. For all e ∈ E , let B(e) = N|e|/4−1(mid(e)). By Lemma 5.5.1 (i), B(e) is

contained in a slice whose boundary is contained in N|e|/4−1(e). As (B(e), N|e|/4−1) is

a cylinder-excision of (G,H), it follows from Lemma 5.6.5 that |B(e)| ≥ 2cF,1(|e|/4−1).

Hence,

|V (G)| ≥
∑
e∈E

2cF,1(|e|/4−1) ≥ |E|2cF,1(
∑

e∈E |e|/4|E|−1)

where the last inequality follows from the concavity of the exponential function. Yet

|V (H) \ V (H∗)| ≤
∑

e∈E |e|. Combining, we find that

|E|2(cF,1/4)(
∑

e∈E |e|)/|E|/2cF,1 ≤ |V (G)| ≤ |V (G)| ≤ 2cF(2g(Σ) + 2|H|+
∑
e∈E

|e|).

We may suppose that
∑

e∈E |e| ≥ 2(g(Σ) + |S|) as otherwise |V (G)| ≤ 8cF(g(Σ) +

|H|) as desired. Hence, |V (G)| ≤ 4cF
∑

e∈E |e|. Letting x =
∑

e∈E /|E|, the average

size of a seam in |E|, we find that

223



2(cF,1/4)x ≤ 4cF2cF,1x.

Let c′ = 4cF2cF,1 . Thus x ≤ max{4 log(4c′/cF)/c, 4/cF} = max{4(cF ,1+4)/cF , 4/cF},

call this constant c0. Hence,

|V (G)| ≤ 4cFc0|E| ≤ 8cFc0(g(Σ) + |H|)

as |E| ≤ |E(H∗)|. The theorem now follows with constant max{8cFc0, 8cF}.

Corollary 5.7.2. Let F a hyperbolic family of graphs with boundary. If (G,H) ∈ F

such that G is 2-cell embedded on a surface Σ and T is a Steiner frame of G for H,

then |V (T )| = O(g(Σ) + |V (H)|).

Proof. See proof of Theorem 5.7.1.

5.7.1 Finitely Many Members of a Hyperbolic Family on a Fixed Surface

Corollary 5.7.3. Let F a hyperbolic family of graphs with boundary. Let G be a

graph embedded on a surface Σ such that (G, ∅) ∈ F , then |V (G)| ≤ O(g(Σ)).

Proof. Now G has 2-cell embedding on a surface Σ′ whose genus is at most the genus

of Σ. But then the corollary follows from Theorem 5.7.1 with H = ∅.

Corollary 5.7.4. Let F be a hyperbolic family of graphs with boundary. Let Σ be a

surface. There exist only finitely many graphs G embeddable in Σ such that (G, ∅) ∈

F .

Let F be a family of graph with boundary. We say that a graph G is F-free if there

does not exist G′ ⊆ G such that (G′, ∅) ∈ F . We say that a graph with boundary

(G,H) is F -free if there does not exist a graph with boundary (G′, H ′) ∈ F such

that G′ is isomorphic to a subgraph of G and under the same isomorphism G′ ∩H is

isomorphic to H ′.
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Corollary 5.7.5. Let F be a hyperbolic family of graphs with boundary. Let Σ be a

surface. There exists a linear-time algorithm to decide if a graph embeddable in Σ is

F-free.

Proof. Follows from the linear time algorithm of Eppstein for testing subgraph iso-

morpism on a fixed surface.

5.7.2 Logarithmic Distance and Edge-Width

Corollary 5.7.6. Let F a hyperbolic family of graphs with boundary. Let (G,H) ∈ F

such that G is a connected graph 2-cell embedded on a surface Σ. If T is a Steiner

frame of G for V (H), then d(v, T ) ≤ O(log(g(Σ) + |V (H)|)) for all v ∈ V (G).

Proof. It follows from Theorem 5.6.1 that d(v, V (T )) ≤ O(log |T |) for all v ∈ v(G).

By Corollary 5.7.2, |T | = O(g(Σ) + |H|). Yet d(v, V (T ∗) ≤ O(log(g(Σ) + |H|) for all

v ∈ V (T ) as otherwise there would exist e ∈ E such that |e| ≥ Ω(g(Σ) + |H|) and

hence |V (G)| ≥ 2c
′
F (|e|/4−1) ≥ Ω(g(Σ) + |H|), contradicting Theorem 5.7.1.

Lemma 5.7.7. Let F a hyperbolic family of graphs with boundary. Let (G,H) ∈ F

such that G is a connected graph 2-cell embedded on a surface Σ. There do not

exist s1, . . . , sk, where
∑k

i=1 si ≥ Ω(|V (H)|+ g(Σ)), and vertices v1, . . . , vk such that

B≤log si(vi) are disjoint from each other and from S, and are contained in slices.

Proof. As Blog si(vi) are contained in slices disjoint from S, (Blog si(vi), Nlog si(vi)) is a

cylinder-excision of (G,H) for all i. By Lemma 5.6.2, |Blog si(vi)| ≥ 2Ω(log si) ≥ Ω(si).

Hence, |V (G)| ≥
∑

i Ω(si) ≥ Ω(|H| + g(Σ)), as the neighborhoods are disjoint. But

this contradicts Theorem 5.7.1.

Corollary 5.7.8. Let F a hyperbolic family of graphs with boundary. Let G be a

connected graph 2-cell embedded on a surface Σ and ew(G) ≥ Ω(log g(Σ)), then G is

F-free.
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Proof. Suppose not. Then G has a subgraph G′ such that (G′, ∅) ∈ F . Yet ew(G′) ≥

ew(G) ≥ Ω(log g). Let v1 ∈ V (G) and s1 = Ω(log g(Σ)). As BΩ(log g(Σ))(v) is locally

planar this contradicts Lemma 5.7.7.

Corollary 5.7.9. Let F a hyperbolic family of graphs with boundary. Let (G,H) be a

graph with boundary such that G is 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g)

and d(u, v) ≥ Ω(log g(Σ)) for all u 6= v ∈ V (H), then (G,H) is F-free.

Proof. Suppose not. Then there exists H ′ ⊆ H and G′ ⊆ G such that (G′, H ′) ∈ F .

As G′ is connected?, it follows that |G′| ≥ Ω(log g(Σ) + |H ′|) if G′ is non-plane and

|G′| ≥ Ω(|H ′|) if G is plane. In either case, this contradicts Theorem 5.7.1.

Corollary 5.7.10. Let F a hyperbolic family of graphs with boundary. Let (G,H)

be a graph with boundary such that G is 2-cell embedded in a surface Σ, ew(G) ≥

Ω(log g). Further suppose that H is a collection C = {C1, C2, . . .} of disjoint cycles

of G such that d(Ci, Cj) ≥ Ω(log(|Ci| + |Cj| + g(Σ))) for all Ci 6= Cj ∈ C and

Gi = BΩ(log(|Ci|+g(Σ)))(Ci) is plane for all Ci ∈ C. If (G,H) is not F-free, then there

exists i such that (Gi, Ci) is not F-free.

5.8 Applications to 5-List-Coloring

Theorem 5.8.1. The family of all 6-list-critical graphs is hyperbolic.

Proof. By Theorem 3.4.26, property (i) holds. By Theorem 5.2.9, property (ii) holds.

Hence we may apply the theorems of the previous section when F is the family of

all 6-list-critical graphs. Note that by Theorem 1.4.4, the family of all k-list-critical

graphs is hyperbolic for k ≥ 7 and hence the theory may also be applied to those

families as well.

Here is Theorem 5.7.1 restated for 5-list-coloring.
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Theorem 5.8.2. Let G be a connected graph 2-cell embedded on a surface Σ and

S ⊆ V (G). If G is H-critical where H is the disjoint union of the vertices in S, then

|V (G)| = O(|S|+ g(Σ)).

Here is Theorem 5.7.2 restated.

Theorem 5.8.3. Let G be a connected graph 2-cell embedded on a surface Σ and

S ⊆ V (G). If G is H-critical where H is the disjoint union of the vertices in S and

T is a Steiner frame of G for S, then |V (T )| = O(g(Σ) + |S|).

5.8.1 Finitely Many 6-List-Critical Graphs on a Fixed Surface

Here is Corollary 5.7.3 restated.

Theorem 5.8.4. Let G be a 6-list-critical graph embedded on a surface Σ, then

|V (G)| ≤ O(g(Σ)).

Moreover, Corollary 5.7.3 is best possible up to the multiplicative constant. To

see this apply Hajos’ construction (for reference, see pp. 117-118 in [16]) to g(Σ)

copies of K6. By genus additivity (see [11]), the resulting graph G has genus g(Σ)

and yet |V (G)| ≥ 5g(Σ). Next we restate Corollary 5.7.4, though we also note that

this is best possible.

Theorem 5.8.5. Let Σ be a surface. There exist only finitely many 6-list-critical

graphs embeddable in Σ.

Note that this implies an algorithm as in Corollary 5.7.5.

Theorem 5.8.6. There exists a linear-time algorithm to decide 5-list-colorability on

a fixed surface.

5.8.2 Extending Precolorings: Albertson’s Conjecture on Surfaces

Here is Corollary 5.7.6 restated.
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Theorem 5.8.7. Let G be a connected graph 2-cell embedded on a surface Σ and

S ⊆ V (G). If G is H-critical where H is the disjoint union of the vertices in S and T

is a Steiner frame of G for S, then d(v, V (T ∗)) ≤ O(log(g(Σ)+|S|)) for all v ∈ V (G).

Next we restate Corollary 5.7.9 when Σ = S0, which is just Conjecture 1.5.4.

Theorem 5.8.8. There exists D such that the following holds: If G is a plane graph,

X ⊂ V (G) such that d(u, v) > D for all u 6= v ∈ X and L is a 5-list assignment for

the vertices of G, then any L-coloring of X extends to an L-coloring of G.

Proof. Suppose not. Then there exists X ′ ⊂ X such that G has an a connected X ′-

critical subgraph G′. Now G′ is a connected plane graph and yet |V (G)| ≥ |X ′|(D/2)

as the vertices in X are pariwise distance D apart. Yet by Theorem 5.7.1, |V (G)| ≤

O(|X ′|), a contradiction if D is large enough.

Next we restate Corollary 5.7.8 which improves the bound in Theorem 1.4.6 from

2Ω(g(Σ)) to Ω(log g(Σ)).

Theorem 5.8.9. If G is 2-cell embedded in a surface Σ and ew(G) ≥ Ω(log g(Σ)),

then G is 5-list-colorable.

This is best possible given the existence of Ramunjan graphs (see [40]), which

have girth k, 2Θ(k) vertices and large fixed chromatic number and hence chromatic

number at least six. But the genus of any graph is at most |V (G)|2. Hence for every

g, there exist graphs with girth Θ(log g) which embed on a surface of genus g and

have chromatic number - and hence list-chromatic number - at least six.

Here is Corollary 5.7.9 restated.

Theorem 5.8.10. Let G be 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g) and

L be a 5-list-assignment for G. If X ⊂ V (G) such that d(u, v) ≥ Ω(log g(Σ)) for all

u 6= v ∈ X, then any L-coloring of X extends to an L-coloring of G.
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Now we restate Corollary 5.7.10 restated. However we strengthen to the case not

only when every coloring of one of the cycles extends locally, but to when a particular

coloring of the cycles extends locally.

Theorem 5.8.11. Let G be 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g) and L

be a 5-list-assignment for G. Let C = {C1, C2, . . .} be a collection of disjoint cycles

of G such that d(Ci, Cj) ≥ Ω(log(|Ci| + |Cj| + g(Σ))) for all Ci 6= Cj ∈ C. Let

di = BΩ(log(|Ci|+g(Σ)))(Ci) and suppose further Gi = Bdi(Ci) is contained in a slice

whose boundary is contained in Ndi for all Ci ∈ C. If φ is an L-coloring of the cycles

in C such that φ � Ci can be extended to an L-coloring of Bdi(Ci) for all Ci ∈ C, then

φ extends to an L-coloring of G.

Proof. Suppose not. By Lemma 3.4.27, there exists G′i ⊆ Gi such that (G′i, Ci, L) is a

critical easel for (Gi, Ci, L), that is, for every face f ∈ F(G′i), every L-coloring of the

boundary walk of f extends to an L-coloring of the interior of f . By Theorem 3.6.8,

d(v, Ci) ≤ 58 log |V (Ci)|. Now extend φ to a coloring of
⋃
iGi. Let C ′i be the boundary

of the slice containing Gi. By Corollary 5.7.10 applied to G′ = G \ (
⋃
iGi \ C ′i) with

C = {C ′1, C ′2, . . .} we find that φ can be extended to an L-coloring of G.

As a corollary, we can derive a generalization of Theorem 1.6.1 to other surfaces

while also providing an independent proof of said theorem.

Theorem 5.8.12. Let G be drawn in a surface Σ with a set of crossings X and L

be a 5-list-assignment for G. Let GX be the graph obtained by adding a vertex vx at

every crossing x ∈ X. If ew(GX) ≥ Ω(log g(Σ)) and d(vx, vx′) ≥ Ω(log g(Σ)) for all

vx 6= vx′inV (GX) \ V (G), then G is L-colorable.

Proof. Let G′ be obtained from GX by deleting the vertices at the crossings and

adding edges if necessary such that the neighbors of vx form a 4-cycle Cx for every

x ∈ X. Now ew(G′) ≥ Ω(log g(Σ)). Note that NΩ(log g(Σ)(Cx) is plane and that
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d(Cx, Cx′) ≥ Ω(log g(Σ)) by assumption. Let C =
⋃
x ∈ XCx and φ be an L-coloring

of the cycles in C such that φ � Cx is an L-coloring of G[Cx] for every x ∈ X. By

Theorem 1.5.2, φ � Cx extends to an L-coloring of NΩ(log g(Σ))(Cx) for all x ∈ X. By

Corollary 5.8.11, φ extends to an L-coloring of G. Thus G is L-colorable as desired.

5.9 Applications to Exponentially Many 5-List-Colorings

Definition. Let ε, α > 0. Let (G,H) be a graph with boundary embedded in a

surface Σ. Suppose there exists a 5-list-assignment L of G and an L-coloring φ of

H such that there does not exist 2ε(|V (G)\V (H)|−α(g(Σ)+|H|)) distinct L-colorings of G

extending φ but for every proper subgraph G′ ⊆ G such that H ⊆ G′ there do exist

2ε(|V (G′)\V (H)|−α(g(Σ)+|H|)) distinct L-colorings of G′ extending φ. Then we say that G

is (ε, α)-exponentially-critical.

Let Fε,α be the family of all (ε, α)-exponentially-critical graphs with boundary.

Theorem 5.9.1. Suppose 0 < ε < 1/18, α ≥ 0. If (G′, C) is a disc-excision of a

graph with boundary (G,H) ∈ Fε, then |V (G′)| ≤ 87|V (C)|.

Proof. Suppose to a contradiction that |V (G′)| > 59|V (C ′)|. Let L be a 5-list-

assignment for G and φ an L-coloring of H as in the definition of (ε, α)-exponentially-

critical. Let T = (G′, C, L). By Theorem 3.4.27, there exists a critical easel T ′ =

(G0, C, L) for T such that |V (G0)| ≤ 29|V (C)|. Thus G0 is a proper subgraph of G′.

Let G′0 = G \ (G′ \ G0). Thus G′0 is a proper subgraph of G. As G is (ε, α)-

exponentially-critical, there exist a set C of distinct L-colorings of G′0 extending φ such

that |C| = 2ε(|V (G′
0\H)|−α(g(Σ)+|H|)). Let φ′ ∈ C. Let f ∈ F(G0). Let Tf = (Gf , Cf , L)

be the canvas in the closed disk bounded by f . As T ′ is an easel, φ extends to

2((|V (Gf\Cf )|)−29(|Cf |−3))/9 distinct L-colorings of Gf by Theorem 3.5.3.

Let E(φ′) be the number of extensions of φ′ toG. Thus logE(φ) ≥
∑

f∈F(G0)(|V (Gf\

Cf )|−29(|Cf |−3))/9. As
∑

f∈F(G0) |V (Gf \Cf )| = |V (G\G′0)| and
∑

f∈F(G0)(|Cf |−
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3) = |C|−3, we find that logE(φ) ≥ (|V (G\G′0)|−29(|C|−3))/9. As |V (G\G′0)|/2 ≥

29|V (C)|, we find that logE(φ) ≥ |V (G \G′0)|/18. But then as ε ≤ 1/18, there exist

at least 2ε(|V (G\H)|−α(g(Σ)+|H|) distinct L-colorings of G extending φ, a contradiction

as (G,H) is (ε, α)-exponentially-critical for L and φ.

Theorem 5.9.2. Let ε ≤ ε′/2 where ε′ as in Theorem 5.4.1 and α ≥ 0. If (G′, C1 ∪

C2) is a cylinder-excision of a graph with boundary (G,H) ∈ Fε,α, then |V (G′)| =

c(|V (C1)|+ |V (C2)|) for some constant c > 0 not depending on α or ε.

Proof. Suppose to a contradiction that |V (G′)| ≥ Ω(|V (C1)| + |V (C2)|). Let L be

a 5-list-assignment for G and φ an L-coloring of H as in the definition of (ε, α)-

exponentially-critical. Consider the cylinder-canvas T = (G′, C1 ∪ C2, L). By Theo-

rem 5.3.1, there exists a critical easel T ′ = (G0, C1∪C2, L) for T such that |V (G0)| ≤

O(|V (C1)|+ |V (C2)|). Hence we may assume that G0 is a proper subgraph of G′ and

|V (G′ \G0)| ≥ |V (G′)|/2.

Let G′0 = G \ (G′ \ G0). Thus G′0 is a proper subgraph of G. As G is (ε, α)-

exponentially-critical, there exist a set C of distinct L-colorings of G′0 extending φ

such that |C| = 2ε(|V (G′
0)|−α(g(Σ)+|H|). Let φ′ ∈ C. Let f ∈ F(G0). Let Tf = (Gf , Cf , L)

be the canvas in the closed disk or cylinder bounded by f . As T ′ is an easel, φ extends

to 2ε
′((|V (Gf\Cf )|)−50|Cf |) distinct L-colorings of Gf by Theorem 3.5.3 if Cf is a disc and

by Theorem 5.4.1 where ε′ is as in Theorem 5.4.1.

Let E(φ′) be the number of extensions of φ′ toG. Thus logE(φ) ≥
∑

f∈F(G0) ε
′(|V (Gf\

Cf )| − 50|Cf |). Note that
∑

f∈F(G0) |V (Gf \ Cf )| = |V (G \ G′0)|. Further note that

as G0 is planar and |V (G0)| = O(|C1|+ |C2|) that
∑

f∈F(G0) |Cf | = O(|C1) + |C2|).

Hence we find that logE(φ) ≥ ε′(|V (G \G′0)| −α′(|C1|+ |C2))) for some constant

α′. As |V (G \ G′0)| ≥ |V (G′)|/2 ≥ Ω(|C1| + |C2|), we find that α′(|C1| + |C2|) ≤

|V (G \ G′0)|/2. Hence logE(φ) ≥ ε′|V (G \ G′0)|/2. But then as ε ≤ ε′/2, there exist

at least 2ε(|V (G\H)|−α(g(Σ)+|H|) distinct L-colorings of G extending φ, a contradiction

as (G,H) is (ε, α)-exponentially-critical for L and φ.
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Theorem 5.9.3. There exists δ > 0 such that following holds: For all ε > 0 with

ε ≤ δ and α ≥ 0, Fε,α is a hyperbolic family. Moreover, the disc Cheeger constant

and cylinder Cheeger constants for Fα,ε do not depend on α or ε.

Proof. Follows from Theorems 5.9.1 and 5.9.2.

Corollary 5.9.4. Let ε ≤ δ where δ as in Theorem 5.9.3 and α ≥ 0. If (G,H) ∈ Fε,α

is a graph embedded on a surface Σ, then |V (G)| ≤ c(g(Σ)+|V (H)|) for some constant

c > 0 not depending on α or ε.

Proof. Follows from Theorem 5.7.1 with F = Fε,α. Moreover as c only depends on

the disc and cylinder Cheegers constants for Fε,α and these do not depend on α or ε,

it follows that c does not depend on α or ε.

Theorem 5.9.5. Let δ, c be as in Corollary 5.9.4. Let G be a graph embedded in a

surface Σ, X ⊆ V (G) and L a 5-list-assignment for G. If φ is an L-coloring of G[X]

such that φ extends to an L-coloring of G, then φ extends to at least 2δ(|V (G)|−c(g(Σ)+|X|))

distinct L-colorings of G.

Proof. Suppose not. Thus there do not exist 2δ(|V (G)|−c(g(Σ)+|X|) distinct L-colorings

of G extending φ. So there exists a subgraph G′ of G with H ⊆ G′ such that

(G′, H) is (δ, c)-exponentially-critical. Hence (G′, H) ∈ Fδ,c. By Corollary 5.9.4,

|V (G′)| ≤ c(g(Σ) + |X|). Yet as φ extends to an L-coloring of G, φ also extends to an

L-coloring of G′. But then δ(|V (G)| − c(g(Σ) + |X|)) ≤ 0. So φ extends to at least

2δ(|V (G)|−c(g(Σ)+|X|)) L-colorings, a contradiction as G′ is (δ, c)-exponentially-critical.

Note that δ and c are constants not depending on g(Σ) or |X|.

5.10 Conclusion

We have developed new techniques for proving 5-list-coloring results for graphs on

surfaces. Let Σ be a surface, g the Euler genus of Σ, G a graph embedded in Σ and

L a 5-list-assignment for G. Our main results are:
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(1) There exists only finitely many 6-list-critical graphs on a surface Σ.

(2) There exists a linear-time algorithm for deciding 5-list-colorability on Σ.

(3) If X ⊆ V (G), then there exist a subgraph H of G such that X ⊆ H, |V (H)| =

O(|X| + g) and for every L-coloring φ of X, φ either extends to an L-coloring

of G or does not extend to an L-coloring of H.

(4) If ew(G) ≥ Ω(log g), then G is 5-list-colorable.

(5) If ew(G) ≥ Ω(log g) and X ⊆ V (G) such that d(u, v) ≥ Ω(log g) for all u 6= v ∈

X, then every L-coloring of X extends to an L-coloring of G.

(6) If G′ is a graph drawn in Σ with crossings Ω(log(g)) pairwise far apart and

ew(G) ≥ Ω(log g), then G′ is 5-list-colorable.

(7) If G is L-colorable, then G has 2Ω(|V (G)|−O(g) distinct L-colorings.

(8) If X ⊆ V (G) and φ is an L-coloring of G that extends to an L-coloring of G,

then there exist 2Ω(|V (G)|)−O(g+|X|) distinct L-colorings of G that extend φ.

Moreover, in Chapter 5 we developed the general theory of hyperbolic families of

graphs. That is, families whose associated graphs with boundary in the disc satisfy

a linear isoperimetric inequality and whose associated graphs in the cylinder satisfy

some isoperimetric inequality. We applied this theory to 5-list-coloring and for finding

exponentially many 5-list-colorings. This theory however has applications to other

problems.

Other examples of hyperbolic families include the family of k-list-critical graphs

for k ≥ 7 and 4-critical graphs of girth at least 5. Of special interest is 3-coloring and

3-list-coloring graphs of girth 5. A linear isoperimetric inequality has been proved for

the disc and cylinder for 4-critical graphs of girth 5 by Dvorak, Kral and Thomas [21,

22, 23, 24, 25] and hence the general theory applies there as well. Meanwhile, Dvorak
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and Kawarabayashi [20] have proved a linear isoperimetric inequality for the disc for

4-list-critical graphs of girth at least 5.

Consequently, an important open problem is proving whether there exists any

isoperimetric inequality for the cylinder for 4-list-critical graphs of girth 5. By the

general theory, a number of interesting theorems would follow, such as a generalization

of Dvorak’s result [19] that planar graphs with ≤ 4-cycles pairwise far part are 3-

choosable.

Notice that all the above proposed applications are examples of list homomor-

phisms of graphs. It now becomes an interesting research area to decide for which list

homomorphism problems, the corresponding critical graphs form a hyperbolic family.

Another interesting research area in this regard is the development of algorithms for

hyperbolic families. For example, finding an explicit linear-time algorithm whether a

graph embedded in a surface is F -free where F is a hyperbolic family.

As for 5-list-coloring, open problems remain. The most interesting seems to be

proving that if G is a graph with a collection of facial cycles C1, C2, . . . pairwise far

apart, and L is a list-assignment for V (G) such that |L(v)| ≥ 3 for all v ∈ V (G) and

|L(v)| ≥ 5 for all v 6∈
⋃
i V (Ci), then G has an L-coloring. More general bottleneck

theorems would also be of interest, as well as more explicit descriptions of the structure

of critical cycle-canvases and path-canvases. Another open problem that remains is

whether the dependence of the distance in (4) on g can be removed.
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