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SUMMARY 

In recent years, microfluidic technologies have provided for drastic improvements in cost, 

speed and capabilities in a variety of areas, including bio-technology. Lab-on-a-chip 

devices have allowed processes that once required expensive and bulky equipment and 

highly-trained personnel to now be done on miniaturized, inexpensive devices that can 

often be used with very little training. Microfluidic mixing of fluid samples is a vital 

component of many of these processes, and precisely-controllable microfluidic mixing of 

complex samples including components such as live cells would be of great benefit. 

Additionally, efficient specific capture and extraction of particles such as bacteria and rare 

cells from fluid samples would greatly enhance current bio-sensing capabilities, but has 

proved to be a difficult problem to solve. 

 The objective of this work is to model and investigate microfluidic mixing and particle 

capture using magnetically actuated structures. More specifically, this work is focused on 

the study of two different types of magnetically actuated structures with microfluidic 

applications. The first type utilizes magnetic microbeads which are magnetically driven in 

controlled orbits through a fluid in a microchannel, while the second type uses synthetic 

cilia actuated in simple patterns by an oscillating or rotating magnetic field. 

 We use a fully coupled lattice Boltzmann lattice spring model to perform three-

dimensional computational simulations to model and understand the fluid and solid 

dynamics of these systems. We then investigate the use of these structures for microfluidic 

mixing and for capture of particles from a fluid sample. We investigate the physical 

mechanisms that lead to microfluidic mixing and particle capture in these model systems. 
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Further, we study the effect of geometrical configurations and system parameters on 

microfluidic mixing and particle capture, so as to provide insight into how to exploit these 

physical mechanisms for effective mixing and particle capture. The results of our research 

will provide understanding of physical mechanisms that can be harnessed for microfluidic 

mixing and particle capture in bio-sensing and other microfluidic applications.  
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Lab-on-a-chip devices that make use of microfluidic technologies to perform laboratory 

operations on a small scale have a variety of benefits, as these compact devices can allow 

many operations to be performed rapidly at field locations at low cost and using small fluid 

sample sizes (1, 2). However, microfluidic systems have their own challenges. Due to the 

small length scale of microfluidic systems, they operate at a low Reynolds number  Re ,  

in which the fluid motion is dominated by fluid viscosity, whereas inertial effects can be 

safely neglected. In this situation, creative mechanisms must be used to generate micro-

flows that promote important functions such as microfluidic mixing and particle capture. 

Time-irreversible active mechanical manipulation of the fluid (3) can be used to create such 

flow. In our proposed research, we study the fluid dynamics of two different devices that 

use simple magnetic field inputs to create time irreversible movement, and investigate their 

ability to perform microfluidic mixing and particle capture. 

 The first type of device that we study is a miniaturization of a common mixer with which 

we are all familiar – the blender.  A blender uses rotation of its blades in a fluid reservoir 

to create a circulation pattern in the fluid, which quickly and effectively mixes the fluid.  A 

simple and inexpensive method of creating a similar action on the microscale is through a 

system of orbiting magnetic microbeads (4). In such a system, readily available magnetic 

microbeads are driven in controlled orbits around soft magnetic discs which are patterned 

onto the floor of a microfluidic channel through simple rotation of an external magnetic 

field. While such bead manipulation has been experimentally and numerically 
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demonstrated (4), there is not currently an understanding of the generated flow field, or of 

its effectiveness in microfluidic mixing or particle capture. 

 The second type of device which we study is inspired by nature. A variety of biological 

organisms utilize beating cilia to create flows in the surrounding fluid which help them to 

transport, capture and absorb nutrients, as well as to expel foreign objects (5, 6). Biological 

cilia are tiny elastic filaments that are generally a few micrometers in length, such that they 

operate in a low Reynolds number environment. Their elasticity combined with an 

asymmetric stroke (7-9) play a critical role in generating the motion required for efficient 

mass transport in a highly viscous fluid environment. The ability of biological cilia to 

regulate microscale transport processes has motivated researchers to design different types 

of biomimetic synthetic cilia (10-15), which are typically driven in a complicated fashion. 

A simple method of actuating microscale synthetic cilia so as to take advantage of cilia 

elasticity and create a time-irreversible asymmetric stroke could prove beneficial in 

providing microscale transport that supports microfluidic mixing and particle capture. 

Additionally, understanding the dynamics and effects of cilia that beat in similar fashion 

to those occurring in nature can provide insights into the function of biological cilia. 

 In the research presented herein, we study the dynamics of both types of magnetically 

actuated microfluidic devices, namely orbiting magnetic microbeads and magnetically 

actuated synthetic cilia. We examine the fluid flow patterns created therein, and study the 

utility of each device for both the task of microfluidic mixing and of particle capture. We 

examine the physical principles leading to microfluidic mixing and particle capture in these 

devices, so as to provide an understanding of how these devices can be effectively utilized 

in lab-on-a-chip applications. 
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1.2 Background and Literature Review 

1.2.1 Microfluidic Mixing 

Lab-on-a-chip technologies often require rapid mixing to ensure reliable processing of fluid 

samples in microfluidic devices. At the microscale laminar flows characterized by a low 

Reynolds number, mixing can be difficult to achieve if it is left purely to molecular 

diffusion, which is rather slow for rapid processing of a fluid sample (16, 17).  In order to 

overcome this problem, a variety of passive and active microfluidic mixers have been 

developed (18). 

 Passive mixers use geometric features to mix fluid streams as they flow through the 

device (19-21). Stroock et al (17) demonstrated a continuous-flow chaotic mixer in which 

fluid streams flowed through a microchannel patterned with staggered herringbone-shaped 

grooves were effectively mixed through folding of the fluids into thin laminae, reducing 

the distance required for molecules to diffuse for mixing to occur. However, this mixer 

mixes over a downstream distance on the order of a centimeter, does not allow for 

independent control of flow rate and mixing, and is limited to continuous-flow 

applications. 

 Active mixers use external acoustic, electrical, or magnetic inputs to induce mixing by 

actively agitating fluid (22-25). Among other approaches, the use of ferromagnetic and 

superparamagnetic micro-particles is attractive for microfluidic mixing due to the ability 

to precisely guide the motion of these solid particles by alternating magnetic fields. Rida 

and Gijs (26) used a tightly-packed porous moving structure of chains of ferromagnetic 

micro-particles formed in a microchannel by an oscillating magnetic field to induce rapid 
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fluid mixing. However, the tightly packed structures used in such a design can obstruct 

motion of micro-particles present in the fluid sample, such as cells or unfiltered 

particulates, and thus limit the types of fluid samples that can be used in such a device. 

Additionally, the ferromagnetic particles required by this technique continue to 

agglomerate even after removal of the magnetic field. The use of superparamagnetic 

microbeads that do not remain magnetized upon removal of a magnetic field would be 

preferable, to allow for removal of individual beads for further analysis after 

processing (27). 

 Mao et al (28) and Owen et al (4) proposed an active mixer composed of a microchannel 

containing an array of superparamagnetic beads driven in controlled orbits around soft 

magnetic discs by the magnetic poles induced on the discs by a rotating external magnetic 

field. They showed through computer simulations that these orbiting magnetic beads can 

be potentially used to induce efficient mixing of a fluid in a microchannel. 

1.2.2 Particle Capture 

Rapid and specific detection of a dilute concentration of biological particles from fluid 

samples has proven to be a difficult task. Specific detection of bacteria has traditionally 

required a culturing step, so as to raise the small population of bacteria in a fluid sample 

up to a detectable level (29). While this method is able to raise even very low concentration 

levels to a detectable level, it can also be extremely time consuming, requiring an 

incubation time of several hours or even days (30). 

 More recently, microfluidic devices that use functionalized magnetic beads, which have 

a large surface area to volume ratio and can be easily extracted from a fluid sample, have 
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become popular in efforts to increase the speed and sensitivity of detection of biological 

particles (27, 31). Oftentimes, functionalized microbeads are incubated in fluid samples 

containing suspended target particles, allowing particles to specifically bind to the 

magnetic beads, and are then magnetically separated from the fluid sample for further 

analysis (32-35). While these methods can be effective at detection without growing an 

entire colony, the required incubation step is time-prohibitive for use in point-of-care and 

field applications. 

 In order to avoid a lengthy incubation step, beads can be magnetically held on surfaces 

in a microfluidic channel and used to capture biological particles from a fluid sample which 

is flowed over the static beads (36-40). Here, a static bed of functionalized magnetic 

microbeads acts as a filter for target particles, capturing particles that come into contact 

with the beads as they flow through the capture bed. However, capture using stationary 

beads is relatively inefficient and requires a long capture distance and for magnetic beads 

to occlude the entire height of the microchannel to achieve even a moderate capture 

efficiency (36). 

 Alternatively, surfaces of the microfluidic channel or of structures within the channel can 

be directly functionalized and used for specific particle capture (41). Capture on such 

surfaces does not allow for extraction of magnetic beads with their attached captured 

particles for further analysis, although the presence of captured particles can be detected 

through methods such as impedance measurements (41). As with the use of static beads, 

this method suffers from inefficiency due to the fact that target particles must come into 

contact with static surfaces to become captured. 
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1.3 Research Objectives and Scope 

The objective of this dissertation is to model and investigate the governing physics of two 

methods of providing microfluidic mixing and particle capture using magnetically actuated 

structures. The first method utilizes magnetic microbeads which are magnetically driven 

in controlled orbits through a fluid in a microchannel, while the second uses synthetic cilia 

actuated in a simple manner by an oscillating or rotating magnetic field. For each type of 

system, we desire to answer three basic questions: (1) What dynamic behaviors does the 

system exhibit which can be useful in microfluidic applications? (2) How can the system 

be utilized so as to provide for microfluidic pumping? (3) How can the system be used for 

capture of particles from a fluid sample? 

 In order to answer these questions, we use a fully coupled lattice Boltzmann lattice spring 

model to perform three-dimensional computational simulations. Using these simulations, 

we investigate the fluid and solid dynamics of the systems. We then investigate the use of 

these structures for microfluidic mixing and for capture of particles from a fluid sample. 

We investigate the physical mechanisms that lead to microfluidic mixing and particle 

capture in these model systems. Further, we study the effect of geometrical configurations 

and system parameters on microfluidic mixing and particle capture, so as to provide insight 

into how to exploit these physical mechanisms for effective mixing and particle capture. 

The results of our research will provide understanding of physical mechanisms that can be 

harnessed for microfluidic mixing and particle capture in bio-sensing and other 

microfluidic applications. 
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 The remainder of the dissertation is organized as follows. In Chapter 2, we describe the 

FSI and mass transport models in detail. In Chapter 3, we give details on how we use these 

basic computational methods to model the specific systems that we study and show 

validation of the models used in this work. In Chapter 4, we discuss the fluid and solid 

dynamics of magnetic microbeads orbiting in a fluid-filled microfluidic channel, and 

explore the use of orbiting microbeads in microfluidic mixing and micro-particle capture 

applications. In Chapter 5, we discuss the dynamics of two different types of magnetically-

actuated synthetic cilia: high-aspect-ratio flexible filaments, and ribbon-shaped cilia. We 

investigate how to control their dynamics and their effect on fluid transport for microfluidic 

mixing and nano-particle capture applications.  
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CHAPTER 2. COMPUTATIONAL METHODOLOGY 

In order to simulate the fluid and solid mechanics of our microfluidic systems, we use a 

computational method for fluid-structure interactions (FSI) (42, 43) that makes use of the 

lattice Boltzmann method (LBM) fully coupled to a lattice spring method (LSM) through 

appropriate boundary conditions (42, 43). Velocities of lattice spring nodes at the solid-

fluid interface are transmitted to the surrounding fluids through a modified bounce-back 

rule (44) that transfers momentum to the LBM distribution functions crossing the interface. 

LSM nodes on the boundary experience forces from the fluid pressure and viscous stresses 

calculated using the momentum exchange in the LBM fluid. A Brownian dynamics model 

is coupled to this model in order to model mass transport of nano-particles for microfluidic 

mixing and nano-particle deposition applications. In order to accelerate microfluidic 

mixing simulations, a lattice Boltzmann scalar transport model is used in place of the 

Brownian dynamics model. 

2.1 Lattice Boltzmann Method (LBM) 

We model fluid flow using LBM, an efficient solver of incompressible viscous flows (45, 

46). LBM is particularly well suited for flows with complex moving geometries, making it 

a good candidate for our purposes. The algorithm for LBM follows two steps: a streaming 

step, in which fluid “particles” move along predefined directions to neighboring nodes on 

a space-fixed lattice, and a collision step, in which the fluid “particles” equilibrate through 

collisions at the nodes. These fluid “particles” represent mesoscopic amounts of fluid and 

are described by a set of velocity distribution functions ),( tfi r , which give the mass 
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density of fluid “particles” propagating in the direction i  with velocity ic  at the lattice 

node r  and time t . The number of distribution functions corresponds to the number of 

fluid propagation directions in a given model. In our simulations, we use a three-

dimensional model with 19 streaming directions (D3Q19) as illustrated in Figure 2.1, 

which uses 19 distribution functions at each node (46). 

 

Figure 2.1 Schematic of the velocity distributions in a D3Q19 LBM model. The arrows 

represent the directions, ic . Note that 0 represents the stationary distribution The 

discrete velocities of fluid in the streaming directions are as follows: 
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 The hydrodynamic fields of the system are obtained by taking the moments of the 

distribution function, such that the mass density ,  the momentum ,j  and the momentum 

flux Π  are given as the following, where u  is the local fluid velocity: 

 ,ii f  (2.2) 

 ,iii fcuj    (2.3) 

 .iiii fccΠ   (2.4) 

 The time evolution of the distribution function is governed by the discretized Boltzmann 

equation (45): 

       tftftttf iiii ,,, rrcr   (2.5) 

 Here, the collision operator i  acts on the distribution functions at every simulation time 

step ,t  and represents the effects of collisions of fluid “particles” at each node. We use 

Ladd’s double relaxation time collision operator (46), which is given by 
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 Here, the weights ia  depend on the lattice speed in direction i , ,ic  and are given by 
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 The speed of sound is given by ,3 txcs   where x  is the uniform spacing between 

lattice nodes. In our simulations, we set both x  and t  to always be equal to 1. Thus, the 

LBM length scale is defined by the lattice. Dimensional lengths for physical systems can 

be calculated using scaling arguments. 

 The non-equilibrium momentum flux 
*
neqΠ  that appears in equation 2.6 is given as 

 
    

1
1 1 : ,

3
    *

neq neq neqΠ Π Π I I  (2.8) 

where  neq eqΠ Π Π  and 
neqΠ  is the traceless part of .neqΠ  The equilibrium momentum 

flux is given by 2 .sc  eqΠ I uu  The two relaxation parameters in this LBM model are 

  and ,  which are related to the shear and bulk viscosities, respectively, through the 

following relationships: 
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 In our simulations, we at times vary   so as to control the system viscosity. We set 

1,    giving a finite bulk viscosity, and thus a weakly compressible fluid. In order to 

model incompressible fluid flow and minimize potential compressibility effects, we keep 

the Mach number / sMa u c  sufficiently small, typically below 0.15. 

 As mentioned previously, the LBM algorithm is made up of two main steps, namely 

collision and streaming, as described below: 

1. Compute the post-collision distribution function at each lattice node:  

      * * , , , .i i i if f t f t f t     r r r  (2.11) 

2. Propagate the distribution function to the neighboring lattice node in its velocity 

direction, :ic  

   *, .i i if t t t f   r c  (2.12) 

 These two steps are repeated at each simulation time step. It is important to note that the 

collision portion of the algorithm requires most of the overall computation time, as the 

propagation step is very simple. However, since the collision step is performed locally at 

each node without requiring information from its neighbors, computations can be greatly 

accelerated by using parallel processing to simultaneously calculate the collision step at 

several nodes at once. 
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2.2 Scalar Transport LBM 

In order to efficiently solve the convection-diffusion equation and thus enable simulation 

of microfluidic mixing in the large domain required for modeling oscillating cilia, we use 

a scalar transport LBM (47, 48). In this method, we model the concentration of a solute in 

the fluid using a second distribution function, ( , ),ig tr  which experiences one-way 

coupling to the velocity field. This allows for concentration calculations to be performed 

alongside fluid mechanics calculations, requiring minimal additional computational effort, 

as compared to a significant computational effort to calculate trajectories of thousands and 

even millions of diffusive particles using the BD model described in section 2.4. Analogous 

to calculating density in the LBM, the solute concentration can be obtained from the 

relation 

 .i iC g   (2.13) 

 The time evolution of this second distribution function is governed by the following 

equation: 

        , 1 , , .
eq

i i c i c ig t t t g t g t      r c r r  (2.14) 

 Here, c  is the relaxation parameter governing the diffusion of the concentration of a 

solute, and is related to the diffusivity by 
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 The equilibrium distribution function is given as 
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2.3 Lattice Spring Method (LSM) 

We simulate the dynamics of solids using the LSM (49, 50), which has advantages over 

the widely used finite element methods (FEM) in that it has a simpler implementation, is 

more robust at large deformations, and typically requires less computational power. LSM 

has been shown to be equivalent to a simple case of FEM in which the springs form element 

boundaries (49, 51). LSM models elastic solids as a system of distributed mass points 

(nodes) connected by harmonic springs (49) arranged on a regular lattice. The mapping of 

this model to macroscopic properties depends on the structure of the lattice network used. 

It has been proven that both square and triangular lattices behave like isotropic elastic 

solids (52). Depending on the system being modeled, we either use a two-dimensional 

(2-D) triangular lattice representation of a solid surface, or a three-dimensional (3-D) 

square lattice representation of the internal structure of the solid object. In all cases, we 

design our lattice such that we can form triangulated boundary surfaces, since this allows 

for simple coupling of LSM and LBM for FSI (42). 
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Figure 2.2 a) 2-D triangular lattice with node i  at the center, surrounded by six equally-

spaced neighboring nodes. The solid lines represent springs connecting the nodes, and the 

dashed line is a unit cell associated with node .i  b) 3-D cubic lattice with node i   at the 

center, surrounded by 18 neighbors which are connected to it by springs 

 For a 2-D triangular lattice, each node is connected to each of its six nearest neighbors 

by a harmonic spring with spring constant ,sk  as shown in Figure 2.2a. Here, node i  is 

located at the center, and is surrounded by six equally-spaced neighboring nodes. The 

stretching spring force between neighboring nodes i  and j  is given by 

  , 0
ˆ .str

s ij s ij ijk r r  F r  (2.17) 

 Here, ijr  is the distance between a pair of neighboring nodes, îjr  is a unit vector from i  

to ,j  and 
0r  is the equilibrium spacing between LSM nodes. For this model, the Young’s 

modulus is given by 
2

.
3

sE k  For a simple isotropic 2-D triangular lattice, the Poisson 

ratio is 1 3.   
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 In order to model resistance of 2-D lattice structures to out of plane bending, we add 

bending springs at node .i  We define a bending unit as a collinear triplet jik , where nodes 

j  and k  are located opposite each other on either side of node ,i  as shown in Figure 2.2a. 

For each bending unit, a bending spring with stiffness 
bk  is placed at node i  so as to resist 

out of plane bending. The forces supplied by the bending spring on each of the nodes of 

the bending unit are given by 
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  , , , ,bend bend bend

s i s j s k  F F F  (2.20) 

where 
ijr  is a vector from node i  to node .j  Note that since each LSM node can be both 

a center point and an end point of a bending unit, it can feel multiple forces overall from 

all bending units with which it is associated. It has been proven that for a triangular lattice, 

this bending model yields a plate bending rigidity of  3 3 4bEI k (53). 

 We also use a simple isotropic 3-D cubic lattice to model elastic solids as a network of 

springs connecting 18 nearest and next-nearest neighbors (Figure 2.2b). In this model, 

stretching spring forces are calculated as in the 2-D model, giving a Young’s modulus of 

0

5
,

2
s

k
E

l
  where 

0l  is the equilibrium lattice spacing. This 3-D lattice model handles 
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bending of static structures naturally without the addition of bending springs, and the 

resulting EI  can be calculated from the Young’s modulus and geometric dimensions. 

 The spring forces, along with forces arising from momentum exchange with the fluid and 

additional externally applied forces (such as magnetic forces, which will be discussed in 

greater detail in chapter 3) combine to give the total force at each node, .iF  Motion of the 

solid nodes is determined through numerical integration of Newton’s second law,  

 2

2
.i

i i

d
m

dt


r
F  (2.21) 

 We perform the numerical integration using the velocity Verlet algorithm (54, 55). This 

method is second order accurate in time, and has been used widely in molecular dynamics 

codes. The basic algorithm for calculation of the position, velocity and acceleration at the 

following time step t t  is as follows: 

1. Calculate the velocity at time 2t t  using the known acceleration at time :t  

     , ,i i i it t t ma F r  (2.22) 

      2 2.i i it t t t t   v v a  (2.23) 

2. Calculate the new position at time t t  based on the velocity at time / 2 :t t  

      2 .i i it t t t t t    r r v  (2.24) 

3. Calculate the new acceleration and velocity at the new position and time: 
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     , ,i i i it t t t t m   a F r  (2.25) 

      2 2.i i it t t t t t t     v v a  (2.26) 

2.4 Brownian Dynamics Model 

We use a BD method (56, 57) to calculate mass transport of nano-particles for nano-particle 

deposition and microfluidic mixing. This method models diffusive mass-less particles 

whose trajectories are governed by the stochastic-differential equation: 

 ),(2),()( 0 tdDdtttd Wrur 
 

(2.27) 

where )(tr  is the particle location. The first term on the right describes the advection of 

particles by the local fluid velocity ),( tru , while the second term on the right represents 

the contribution of Brownian diffusion, where rTkD B 6/0   is the diffusion coefficient 

of the particle in the fluid and )(tdW  is the differential of a Wiener process with unit 

variance. Here, Bk  is Boltzmann’s constant, T  is the absolute temperature,   is the 

dynamic viscosity of the fluid, and r  is the diffusive particle radius. Equation 2.27 can be 

discretized as 

    ),(2)()( 0 tDttttt ΔWrurr 
 

(2.28) 

where ΔW  is a random number sampled from a truncated Gaussian distribution with unit 

variance and is obtained using the Ziggurat method (58). We obtain the local fluid velocity 
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at the location of individual particles through linear interpolation of the fluid velocity at 

neighboring LBM nodes.  

 For microfluidic mixing simulations, we use two sets, or “species,” of diffusive particles 

to represent two initially separated miscible fluids. Once the locations of the diffusive 

particles are determined, we calculate the particle concentration at each fluid node by 

comparing the number of particles of species A in the 111   bin surrounding the node to 

the total number of particles in that same bin, 

 
,A

A B

N
C

N N



 (2.29) 

where AN  and BN  are the number of particles of species A and B, respectively, in each 

bin. 

2.5 Boundary Conditions and FSI Coupling 

FSI coupling is performed through a procedure in which momentum is transferred between 

fluid and solid nodes through appropriate boundary conditions (42, 43). In this method, the 

LSM mass nodes are used to define surfaces of the solid structures, which define the 

boundary between the fluid and solid. In the LBM model, we apply no-slip and no 

penetration boundary conditions using a linear interpolated boundary rule (44). In this 

boundary condition implementation, the velocity distribution functions that propagate from 

the fluid across boundary surfaces are reflected back in the opposite direction and modified 

with an exchange of momentum based on the position and velocity at the interpolated 

location of the intersection of the distribution function with the solid surface. 
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 The momentum that is transferred to the fluid in this LBM bounce-back is then subtracted 

from the LSM nodes in the form of a hydrodynamic force applied in the integration of the 

LSM node position. This hydrodynamic force is distributed among the three LSM nodes 

that make up the boundary surface, while conserving forces on the interface. Details on 

this coupling procedure are found elsewhere (42). 

 In the scalar transport LBM, the solute concentration is coupled to the velocity field so 

as to model convection of a scalar quantity of solute. Note that no quantities related to the 

solute concentration appear in the equations governing the fluid flow, and thus it does not 

affect the flow. This is a valid approximation so long as the presence of the solute does not 

appreciably change the properties of the fluid. 

 A boundary condition of zero mass flux of solute is imposed at solid surfaces using an 

interpolated bounce-back rule (44, 59), analogous to the method used for boundary 

conditions on the fluid mechanics but with C  and ( , )ig tr  replacing   and ( , ),if tr  

respectively. 

 In order to couple the BD model to LBM, we use an interpolated fluid velocity in 

calculations of particle trajectories, as mentioned previously. We neglect the influence of 

diffusive particles on the fluid flow and any interactions between diffusive particles, 

including their agglomeration in the flow. We also neglect momentum exchange between 

the diffusive particles and the solid surfaces. These assumptions are valid for relatively 

dilute suspensions with particles much smaller than the solid structures. 

 As our boundary conditions for the BD model, we take all solid surfaces except those at 

which particles are deposited to be perfectly reflective of the particles, such that the 
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particles do not deposit on them. This condition is imposed by reflecting particles off of 

the solid surfaces by reversing the component of particle velocity that is normal to the 

surface. We also apply this reflective boundary treatment at the faces of the domain that 

represent non-adsorptive microchannel walls, and apply periodic boundary conditions for 

particles crossing the ends of the channel that are subject to periodic flow conditions. 

Particles that contact adsorptive surfaces are counted and removed from the simulation. 

This method and treatment of boundary conditions ensures conservation of the total 

number of diffusive particles suspended in the fluid or deposited on adsorptive surfaces.  

2.6 Summary 

Herein we have described the computational methodology which we use to simulate the 

solid and fluid mechanics of various microfluidic systems, as well as relevant mass 

transport phenomena. We use the LBM and LSM to model fluid and solid dynamics, 

respectively. In order to model mass transport, we use either a scalar transport LBM or a 

BD model. We use appropriate boundary conditions to couple the models. System-specific 

models which integrate these basic methodologies can be developed to capture the relevant 

physics of various microfluidic systems. 
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CHAPTER 3. MODELS OF MICROFLUIDIC SYSTEMS 

We use the methodology described in chapter 2 to create computational models that 

approximate two specific types of magnetically actuated microfluidic systems. Our 

computational simulations enable a detailed study of the physical mechanisms involved in 

the function of these systems and provides an efficient means of their optimization for 

application in microfluidic mixing and particle capture. Specifically, we modelled a system 

that uses superparamagnetic microbeads moved in controlled orbits around soft magnetic 

features patterned on the floor of a microchannel in order to provide for microfluidic 

mixing and particle capture. We also modelled bio-mimetic cilia that are utilized to 

enhance transport processes in microfluidic devices, providing microfluidic mixing, 

pumping and nano-particle capture. 

3.1 Orbiting Magnetic Microbeads 

3.1.1 Magnetic Bead Models 

Our first microfluidic device utilizes simple rotation of an externally applied magnetic field 

to drive superparamagnetic microbeads in controlled orbits around nickel-iron (NiFe) discs 

patterned on the bottom surface of a microfluidic channel (60, 61). A uniform horizontal 

external magnetic field, applied by a permanent magnet (Figure 3.1a), induces two 

magnetic poles located on opposite ends of the NiFe discs in alignment with the external 

magnetic field, as shown in Figure 3.1b. Superparamagnetic microbeads are drawn toward 

the poles, such that a magnetic microbead is located at each pole on the NiFe disc. Rotation 

of the permanent magnet results in rotation of the poles about the NiFe discs, and thus in 
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the movement of microbeads in controlled orbits on the patterned surface. Although 

multiple magnetic beads can follow each NiFe disc pole, at high rotation rates the fluid 

drag experienced by orbiting beads removes all beads but one, leaving a single bead to 

orbit at each pole. Since this configuration is stable and predictable and allows for 

flexibility of the rotation rate, we focus our investigation on the case where no more than 

one bead is located at each of the two NiFe poles. 

 

Figure 3.1 a) Experimental setup, with a permanent magnet rotating over the microfluidic 

chip, as designated by the red arrow. b) Diagram showing an instantaneous snapshot of 

magnetic microbeads (blue) located at the two magnetic poles generated on a NiFe disc 

(white) by a uniform horizontal external magnetic field, denoted by .B  Horizontal rotation 

of the uniform external magnetic field causes the magnetic poles to rotate about the NiFe 

disc so as to follow the external magnetic field, which results in the microbeads orbiting 

about the NiFe disc. c) Schematic of a periodic section of the microfluidic device, which 
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consists of a microchannel with magnetic microbeads orbiting around NiFe discs patterned 

on the microchannel floor 

 As shown in Figure 3.1c, we model the microfluidic device as a rectangular channel of 

width W and height cH  with solid walls in the y – (transverse) and z – (vertical) directions, 

and periodic boundaries in the x – (flow) direction, allowing for representation of a long 

channel. We model superparamagnetic microbeads of diameter a  in orbit around NiFe 

discs of diameter dD  and height h , separated by spacing S .  

 We model two types of flow in a microchannel: EOF and pressure-driven flow. 

Owen et al. (61) and Ballard et al. (60) used EOF in experiments, since it allows for simple 

and precise control of flow through the channel even at low flow rates without the 

drawbacks of flow pulsations or bubbles introduced into the fluid via syringe pumps (62, 

63) or the narrow range of flow rates available when using gravity driven flow. We perform 

simulations using EOF, so as to directly compare to experimental results. However, since 

EOF does not provide substantial pumping under certain ion concentrations likely to be 

seen in biological samples and is not a viable option with live cells (63-65), pressure driven 

flow is expected to be of most use in biological applications involving live cells and is thus 

used for the majority of simulations in this work. The plug-like EOF is simulated by 

assigning flow velocity through constant velocity boundary conditions at the channel 

walls (46). To simulate pressure-driven Poiseuille flow, we use a body force uniformly 

applied to the fluid in the microchannel (46). 

 We calculate magnetic forces on the superparamagnetic beads using the method 

employed by Owen et al. (4). In this model, the magnetic field of the NiFe discs is taken to 

be in alignment with the external magnetic field due to the high permeability and low 
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coercivity of NiFe, which allow it to be readily magnetized and demagnetized. The 

superparamagnetic beads, which tend to align along the applied field, saturate at a much 

lower value, and thus their effects on the magnetic field are negligible. The magnetic field 

of a single cylindrical soft magnet in a uniform external magnetic field can be theoretically 

evaluated (4, 66). Due to the linearity of the magnetic field, we use superposition of the 

contribution from each individual disc in the array to calculate the total magnetic field in 

the microchannel (67). The magnetic force acting on the magnetic beads is  

  1
0 ,m   F M B  (3.1) 

where 
7

0 104    H/m is the permeability of free space, B  is the magnetic field vector, 

and 

 BM pV  (3.2) 

is the magnetic moment of a bead with volume pV  with the difference in magnetic 

susceptibility between the beads and the medium being  . In the case of saturation of bead 

magnetization, the magnetic force simplifies to (68) 

  1
0 .m pV  F B B  (3.3) 

 We used the aforementioned method to calculate mF  and applied it to solid surface nodes 

as a component of  irF  in Newton’s equation of motion (equation 2.21), so as to calculate 

bead trajectories, thereby enabling two-way coupling between the magnetic and 
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hydrodynamic forces. We found that for the range of velocities considered in our study, 

hydrodynamic forces are relatively small compared to magnetic forces and therefore do 

not affect magnetic control of microbeads. In this situation, the bead trajectories do not 

change appreciably with varied flow rates or bead velocities. Thus, we simplify simulations 

by first calculating trajectories of microbeads induced by a rotating magnetic field, and 

then removing the calculation of the magnetic forces and imposing the bead trajectories 

directly through prescribing their velocity. This allows simulations of mixing and particle 

capture to be significantly accelerated. 

 Since this microfluidic device operates at a low Reynolds number (Re 1) , the velocity 

of the net flow of the fluid down the channel and the linear velocity of the orbiting 

microbeads, ,bV  can be varied without affecting system behavior so long as pertinent 

dimensionless parameters are maintained constant. Thus, the ratio of these velocities, 

x bU V , rather than their absolute values, is important in the behavior of the system. 

Additionally, the bead Peclet number 0b bPe V a D , which gives the relative importance 

of advective transport due to the orbiting beads to transport due to molecular diffusion, 

defines the system behavior for mixing applications. 

3.1.2 Mixing Model 

We model microfluidic mixing using a BD model, as described in Section 2.4. Here, we 

model two discrete sets of diffusive point particles, with each set tracked as a separate fluid 

‘species.’ Two initially separated fluid streams of particles, as portrayed in Figure 3.2 as 

the different colored sections of the channel, were flowed in the x - direction down the 

microchannel. 
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Figure 3.2 Schematic of the device configured as a mixer. In the BD model, diffusive 

particles of two species are initially flowed in separate sides of the microfluidic channel, 

representing two fluid species 

 In this study, we use N35  particles, where N  is the number of fluid nodes in the 

simulation domain. This amounts to 1-20 million particles in each simulation, depending 

on the domain size. Once the locations of the diffusive particles are determined, we 

calculate the particle concentration at each fluid node by comparing the number of particles 

of species A in the 111   bin surrounding the node to the total number of particles in that 

same bin, 
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where iAN ,  and iBN ,  are the number of particles of species A and B, respectively, in bin 

.i  
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 To quantify the level of mixing in a given region of the microfluidic channel, we use a 

dimensionless degree of mixing 
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(3.5) 

where C  is the average particle concentration (manifest in experiments as fluorescence 

intensity) in the channel and N  is the number of pixels (from two-dimensional 

experimental images) or fluid nodes (from three-dimensional simulation data) in the region 

where mixing is measured. For the case of equal amounts of species A and B in the channel, 

1  indicates that the fluid species are fully separated, and when 0  they are 

uniformly mixed. Alternatively, the mixing parameter can be expressed as a percentage of 

mixing 

  1 100.P     (3.6) 

3.1.3 Particle Capture Model 

We model the dynamics of microscopic particles of similar size to that of the magnetic 

beads, which are suspended in the fluid, as shown in Figure 3.3. These particles are 

modelled using the LSM in identical fashion to the magnetic beads, except that they do not 

experience magnetic forces, allowing them to move freely with the fluid. As with other 

LSM structures, we use two-way coupling between the particles and the neighboring fluid. 

In order to reduce the effect of beads on each other and thus to model capture of a low 
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concentration of particles, we reduce the amount of particles per volume in the channel 

until further reduction does not appreciably affect simulation results. 

 

Figure 3.3 Schematic of the device configured for particle capture. In addition to orbiting 

magnetic beads, particles are suspended in the fluid and their dynamics calculated, so as to 

determine how far they move down the microfluidic channel before coming into contact 

with a microbead 

 Two types of micro-particles are used in the simulations. Rod-shaped particles with a 

length to diameter ratio of 4rr DL  were used to model salmonella bacteria. Spherical 

particles were also modeled, so as to compare to experiments and to assess the effect of 

particle shape on capture. These particles were scaled such that for magnetic microbeads 

of diameter ,8.2 ma   the rod-shaped particles have diameter mDr 5.0  and the 

spherical particles have diameter 1 ,sD m  corresponding to the actual size of salmonella 

and of particles used by Owen (69) in experiments, respectively. 
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 In order to model particle capture in an efficient manner, we make the following 

assumptions. We assume that the particles and beads must come into direct contact with 

each other for capture to occur, since their ligands and receptors are much smaller than the 

particles (tens of nanometers compared to a few microns). We assume that binding occurs 

more quickly than the bead orbit time scale, and that the binding force between particles 

and beads is much greater than the hydrodynamic forces pulling them apart. This leads us 

to assume that salmonella that come into contact with beads are irreversibly captured. 

While this assumption may not be completely valid for all potential experimental 

conditions, it allows us to determine the effectiveness of beads at coming into contact with 

particles, which is a necessary step in capture. This yields an upper limit on capture 

efficiency, so as to guide experiments and to assist in determining cases in which it would 

be beneficial to explore conditions leading to improved binding kinetics. 

 A Monte Carlo simulation is carried out to obtain statistical capture data on a large 

particle population. Particles are placed randomly in the simulation domain, and released 

into the system. When a particle is captured, the capture location is compared to its initial 

location to obtain a downstream distance to capture  .x  The values of x  for the particles 

in the population studied under specified conditions are used to estimate a cumulative 

distribution function as shown in Figure 3.4, which is used to determine the percentage of 

particles captured at various distances downstream. 
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Figure 3.4 Cumulative distribution function of the total number of captured particles 

plotted against the number of rows of beads that particles have travelled down the 

microfluidic channel 

3.2 Synthetic Cilia Models 

We model two different types of magnetically actuated synthetic cilia. The first type is a 

high aspect ratio flexible filament as can be fabricated from polydimethylsiloxane (PDMS) 

impregnated with magnetic particles, and is chosen due to both its simplicity and its 

potential to mimic behavior of biological cilia. The second is a long ribbon-shaped cilium 

with finite width and negligible thickness, and is chosen because such structures can be 

manufactured through simple deposition of a thin film of metal, maintaining high flexibility 

to allow for cilia-like behavior. 

3.2.1 Filament Cilia 

In the flexible filament cilia model (57), cilia are modeled as a system of LSM nodes 

arranged on a 3-D square lattice (70, 71), such that they form filaments of square cross 

section and an aspect ratio of 10, as portrayed in Figure 3.5. The two lowest rows of nodes 
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are fixed in space in order to impose a clamped boundary condition at the point of elastic 

cilium attachment to the microchannel wall. The cilia are arranged on the floor of a fluid-

filled microchannel in a rectangular pattern with horizontal spacing x  and z  in the x  

and z   directions, respectively (Figure 3.5a). Periodic boundary conditions are used to 

simulate a large array of cilia in an efficient manner. At the top of the simulation domain, 

either symmetry or no slip boundary conditions are used, so as to represent microchannels 

with either cilia on the top and bottom channel walls (Figure 3.5b) or with cilia on the 

bottom wall only (Figure 3.5c). The cilia are driven by a sinusoidal horizontal force applied 

either at their tips or distributed along their entire length, causing them to periodically 

oscillate from their vertical equilibrium position.  

 

Figure 3.5 a) Periodic simulation domain, consisting of single elastic cilium actuated by a 

periodic force applied horizontally either distributed across its length or concentrated at its 

tip. b) Schematic of a fluid-filled microchannel with periodic arrays of cilia on the top and 

bottom walls. c) Schematic of a fluid-filled microchannel with a periodic array of cilia on 

only the bottom wall 

 The bending pattern and deflection of the cilia are defined by two dimensionless 

parameters. The sperm number,  
0.25

,Sp L EI  shows the ratio of viscous to elastic 

forces on the oscillating cilia, and defines the bending pattern of the cilia. Here, L  is the 
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cilia length, ζ is the lateral drag coefficient of the cilia (defined here as  4 ),   is 

the kinematic velocity of the fluid,   is the driving force oscillation frequency, and EI  is 

the bending rigidity of the cilia. The dimensionless force, EIKFLA 2 , defines the 

deflection of the cilia, where F  is the amplitude of the oscillatory force driving the cilia 

and K  is a constant whose value depends on the location of the applied force ( 1 3K   

when the force is applied to the cilium tip, and 81K  when it is distributed across the 

cilium length). 

3.2.2 Ribbon Cilia 

The second type of ciliated system utilizes an array of long, thin ribbon-shaped cilia, which 

can be fabricated through deposition of a thin layer of soft ferromagnetic metal, such as 

NiFe. These cilia are fastened to the channel floor, and in the absence of external forcing 

have an upward curvature due to thermal stresses from the manufacturing process. In the 

presence of a uniform magnetic field, such as that provided by a permanent magnet, the 

cilia experience magnetic moments that serve to attempt to align them with the magnetic 

field. Thus, cilia can be manipulated through rotation of an external magnetic field. 

 We model each cilium as a 2-D triangular lattice array of mass points connected by 

harmonic springs, forming a continuous linearly elastic array of triangular thin surfaces as 

shown in Figure 3.6a. Our triangular lattice leads to isotropic behavior with Poisson ratio 

1/ 3,   stiffness sk , bending stiffness bk , and one-dimensional beam bending rigidity 

.EI  The ribbon-shaped cilia under consideration have an width of 0.1w L  and 

negligible thickness. They lay down horizontally, and curve upward under zero loading 
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conditions, as shown in Figure 3.6a. In order to model this curvature, we apply a constant 

internal bending moment on the LSM lattice using the method of Yeh and Alexeev (72). 

In this method, forces are applied to the nodes in each bending unit that is parallel to the 

cilium axis. For each such bending unit ,jik  centered on node i  as in Figure 2.2a, forces 

are applied to nodes j  and k  in the direction normal to the local cilium surface, and a 

force equal and opposite to the forces at nodes j  and k  is applied at node ,i  resulting in 

zero net force on the cilium, but yielding a moment that acts to give the cilium local 

curvature, as seen in Figure 3.6a. 

 

Figure 3.6 a) Model of ribbon-shaped cilium. b) Periodic simulation domain for pumping 

and dynamics simulations. The top and bottom sides of the domain are solid walls, while 

the remaining sides are periodic, representing a large array of cilia pumping in the x-

direction. c) Simulation domain for study of generation of circulatory flow in a channel of 

finite width. Here, the domain is periodic in the z   (axial-) direction, while there are solid 

walls on the edges in the x  (transverse) and y   (vertical) directions 
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 In order to model the magnetic actuation of cilia, we approximate our system to be 

subjected to a uniform magnetic field producing moments on the cilia. As will be seen in 

chapter 5, these approximations capture the major physical mechanisms in the system, 

although it is reasonable to expect some differences between experimental results and those 

obtained using our computational model. We model magnetic moments on the cilia as a 

series of dynamically changing moments applied locally in the same manner as explained 

in the previous paragraph. Here, the value of the moment is time-varying, proportional to 

 sin 2 ,   where   is the angle between magnetic field B  and the local axis of the 

cilium (13). More specifically, the applied magnetic moment is given by 

 sin 2 ,c mM A   where 
2 .m m

A Mn EI Lc  Mn  is the magneto-elastic number 

 
1 2

2

0 ,Mn L wT EI B  which gives the balance between magnetic and elastic forces on 

the cilia. Here, w  and T  are the width and thickness of the cilia, respectively, and 
0  is 

the permeability of free space. Finally, 
mc  is an empirical constant obtained through 

experiments due to uncertainties in experimentally applied forcing. 

 Additionally, cilia behavior is characterized once again using the Sperm number, 

 
0.25

,Sp L EI  where in this case   is the frequency of oscillation of the cilia. Due to 

the angle-moment relationship being proportional to  sin 2 ,  the cilium will beat two 

times for every rotation of the magnetic field. Collectively, Mn  and Sp  characterize the 

balance between the magnetic, elastic, and viscous forces on the cilia, thus accounting for 

the governing forces for this system, in which inertial forces are negligible due in great part 

due to its small size. 
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 We use this model in two basic configurations. In order to efficiently simulate cilia 

dynamics and microfluidic pumping, we use a periodic simulation domain (Figure 3.6b) 

where the top and bottom sides of the domain are solid walls, while the remaining sides 

are periodic, representing a large array of cilia patterned on the microchannel floor, 

pumping in the negative x-direction. Study of the generation of large-scale transverse 

circulatory flows requires a microfluidic channel with a finite width. Thus, we also perform 

simulations with a finite channel width with a varied number of cilia stretching across the 

floor of the channel (Figure 3.6c). Here, the domain is periodic in the z- (axial-) direction, 

while there are solid walls on the edges in the x- (transverse) and y- (vertical) directions. 

This allows the cilia to drive fluid across the channel, generating a transverse fluid flow. 

3.2.3 Mixing Model 

In order to investigate the use of filament cilia for mixing of vertically stratified fluid layers 

in a microfluidic channel with a ciliated bottom wall and a bare top wall, we use a scalar 

transport LBM to model transport of concentration of a solvent in the microfluidic channel. 

We use two initially stratified layers each with uniform concentration,  0 0iC   and 

 0 1iC   at each fluid node in the bottom and top halves of the microchannel, respectively, 

as depicted in Figure 3.7. Once we have calculated the concentration field in the system, 

we calculate the mixing level of the fluid in the system using equations 3.5 and 3.6. 
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Figure 3.7 Schematic of a microfluidic channel with a ciliated floor and bare ceiling filled 

with a viscous fluid. The fluid contains a solvent with initial concentrations of  0 0iC   

and  0 1iC   at nodes on the bottom and top halves of the channel, respectively 

3.2.4 Nano-Particle Deposition Model 

We model the effect of actuated synthetic filament cilia on deposition of nano-particles 

onto ciliated sensory surfaces (57) on the top and bottom walls of a microchannel 

(Figure 3.5b) using the BD model. In the simulations reported here, we use 410  particles. 

We assume that the cilia surface is perfectly reflective of the particles. In this case, the 

particles do not deposit on the cilia. To impose this condition, we reflect the particles off 

of the cilia by reversing the component of the particle velocity that is normal to the cilia 

surface. We apply a reflective boundary at the top of the domain, and periodic boundary 

conditions in the horizontal directions (Figure 3.5a). At the bottom of the domain 

representing the bottom microchannel wall, any particle that crosses the boundary is 

assumed to be deposited, thereby simulating perfectly adsorptive walls. This assumption is 

valid in the situations when the number of adsorption sites is much larger than the amount 

of deposited nano-particles and/or nano-particles can bind to each other forming 

continuous deposit layers. We track nanoparticle deposition and calculate the fraction of 

particles deposited on the microchannel walls in the course of the simulations to assess the 



 38 

effect of beating cilia on this process. The behavior of this system for particle transport can 

be characterized using the Schmidt number, 0 ,Sc D  which gives the relative 

importance of momentum diffusion to particle diffusion in mass transport within the 

system. 

3.3 Model Validation 

The hybrid LBM and LSM model has been extensively validated and used as an FSI model 

for the study of a variety of physical phenomena (42, 54, 55, 72-80), but herein we provide 

validation cases to show that this model can accurately capture large deformations of the 

cilia in our models, as well as to validate our mass transport models. For validation of the 

hybrid LBM and LSM model for flow over spheres, see the work of Mao (53). In addition 

to the validation cases provided in this section, in chapters 4 and 5 we provide comparison 

to experimental results, where applicable. 

3.3.1 Filament Cilia Deflection 

In order to understand the ability of our LSM model to capture the physics of our model 

filament cilia when they are subjected to forces large enough such that they experience 

large deformations, we performed validation tests in which we applied constant horizontal 

force F  to the tip of the vertical cilium, and calculated the resulting deflection. Although 

there is no closed-form analytical solution to the large-deflection cantilevered beam 

problem, it can readily be solved using an integral approach using the method of Chen (81). 

This method takes advantage of the fact that the curve length of the beam, ,s  is given by 
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where l  is the length of the curved beam in the y   (vertical-) direction. For a given value 

of ,l  this equation is readily integrated numerically, using a method such as the trapezoidal 

rule with sufficient spatial resolution. Thus, the arc length  s l  can be found for each 

value of .l  Since  s l  is a monotonic function of ,l  we can easily scan the entire range of 

l  by starting with a low value of l  and then increasing l  until we meet the condition 

  ,s l L  indicating that the arc length considered is the entire length of the beam. With 

the correct value of l  for the entire curved beam, the entire bending curve can be calculated 

through numerical integration of the following equation at each point :y  
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 As shown in Figure 3.8, our LSM model gives a reasonably good approximation of the 

deflection, ,  of a flexible beam, even up to a deflection of over 50%. For this high 

deflection, the tip deflection is underestimated by less than 5%. This difference can be 

attributed to a relatively small number of LSM nodes across the cilia. Indeed only 4 nodes 

were used in the simulations, so as to allow for efficient simulation of high-aspect-ratio 

cilia. Between this finding and the ability of our model to recreate cilia beating 
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phenomena (8, 70, 82) as will be shown in chapter 5, we determine that our filament cilia 

model is sufficient to model cilia mechanics with reasonable accuracy. 

 

Figure 3.8 Deflection    of a beam cantilevered in the vertical-  y   direction and 

subjected a force concentrated at the beam tip. This shows that LSM captures cilium 

deflections of over 50% with less than 5% relative error 

3.3.2 Ribbon Cilia Deflection 

Since the ribbon cilia are also subjected to forcing that results in large deformations, we 

perform similar validation on that model. As these cilia are not forced at the tip, but are 

instead actuated along their entire lengths, we performed validation tests of vertically 

cantilevered ribbon cilia subjected to constant and uniformly-applied force distribution ,F  

but with no internally-applied moments. A large-deflection beam theory can be applied in 

similar fashion as was done in section 3.3.1. However, in this case equations 3.7 and 3.8 

should be replaced by the following: 
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 As given in Figure 3.9, our LSM ribbon cilia model provides an accurate solution of the 

large deformation of cilia. In this case, there was even less error in the deflection solution 

than was seen with the filament cilia, as the deflection was overestimated by less than 3%. 

 

Figure 3.9 Deflection    of a beam cantilevered in the vertical-  y   direction and 

subjected a force distributed evenly along its length. This shows that LSM captures cilium 

deflections of over 50% with less than 3% relative error in the ribbon cilium model 
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3.3.3 Validation of Mass Transport Models 

In order to validate both the BD model and the scalar transport LBM model, we performed 

a simulation test case using both models. In this test case, we simulated a channel of 

appreciable width W  containing a viscous fluid with initial solute concentration of 

 2, 0 0C y W t    on one side and  2, 0 1C y W t    on the other, as seen in 

Figure 3.9a. Simulations were run in stagnant flow, and the resulting concentration profile 

evolution was compared to an analytical solution for cross-channel diffusion of particles 

in a dilute liquid solution at constant temperature and pressure with no reactions and zero 

fluid velocity. This analytical solution is derived from the diffusion equation with boundary 

conditions  , 0C y t   and  , 1C y t   and is given as 
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 As seen in Figure 3.10b, both the BD model and the scalar transport LBM model were 

able to accurately calculate the concentration profiles in the channel at a variety of points 

in time. Thus, we conclude that both models accurately calculate mass transport by 

diffusion. 
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Figure 3.10 a) Schematic of the initial concentration profile used in the test case to validate 

the mass transport models used in this work. b) Concentration profiles showing the time-

evolution of a solute in the microchannel, as calculated using the analytical solution, BD 

model and scalar transport LBM model. Each curve represents a separate point in time 

 In order to further validate the BD model for use in the study of synthetic cilia for 

enhancement of nano-particle deposition, we validated our model against an analytical 

solution of the deposition fraction of diffusive particles in a microfluidic channel by 

integrating a solution to the diffusion equation. The fraction of particles deposited on the 

channel walls, denoted by ,P  is given by 
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where 
2 2

0H D   is the diffusion time scale. The equation is obtained subject to 

boundary conditions of zero concentration at the channel walls (perfectly adsorptive walls) 

and an initial condition of a uniform concentration throughout the channel at time 0t  . 

 Figure 3.11 shows that the amount of deposited particles steadily increases with time. 

This figure also compares the theoretical predictions with the results of our BD model for 

the case of a microchannel without cilia at various values of .Sc  The results of simulations 
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match closely with the analytical solution, indicating that our computational model 

correctly predicts diffusive transport and particle deposition in a microchannel. This gives 

us a baseline for nano-particle deposition in a microchannel without cilia, and gives us 

confidence that our calculations of mass transport due to cilia will be accurate. 

 

Figure 3.11 Diffusive deposition of nano-particles in a microchannel without cilia. Here 

the analytical solution is compared to results obtained using the BD model at various values 

of Sc  

 Finally, in order verify that the BD model accurately tracks the movement of tracer 

particles without appreciable errors due to boundary conditions or velocity interpolation, 

we performed a test case designed to test the model’s ability to reproduce behavior seen at 

low Re  flows in which fluid has a ‘memory,’ and returns to its original location if subjected 

to time-reversible motion of a solid object in the fluid (3). 
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Figure 3.12 Time evolution of the locations of mass-less non-diffusive tracer particles 

subjected to a magnetic microbead orbiting clock-wise through them in the channel, then 

exactly retracing its complete path. a) Initial distribution of particles. b) Distribution of 

particles after 14 clock-wise orbits. c) Distribution of particles after the entire process 

 In the test case, a magnetic microbead was moved in an orbit crossing the interface 

between two regions that initially contained separated solutions of two different species of 

tracer particles (which did not experience diffusion), as shown in Figure 3.12a. The 

microbead was moved so as to complete 14 clock-wise orbits, and was observed to drag 

tracer particles in a circular pattern in its wake, as seen in Figure 3.12b. The bead trajectory 

was then exactly retraced, such that it moved in 14 counter-clockwise orbits. This resulted 

in the particles returning almost exactly to their original locations without any visibly 

noticeable changes, as seen in Figure 3.12c. At the end of this process, error in particle 

location was calculated to be only 0.06% as compared to the distance that the bead travelled 

before reversal. This indicates that our model accurately calculates the effect of flow 
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around moving solid structures on particle movement, and along with our validation of the 

model for calculating diffusion, gives us confidence that our model will accurately 

calculate diffusive mass transport in complicated flows around solid structures. 

3.4 Summary 

We developed computational models based on the methodologies in chapter 2 so as to 

approximate two specific types of magnetically actuated microfluidic systems. 

Specifically, we modelled orbiting magnetic microbeads for applications in microfluidic 

mixing and particle capture. We also modelled bio-mimetic cilia for use in microfluidic 

mixing, pumping and nano-particle capture. We validated our models using basic test 

cases, and are now ready for application of our models in a detailed study of the physical 

mechanisms involved in the function of these systems and of their optimization for 

application in microfluidic mixing and particle capture.  
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CHAPTER 4. MICROFLUIDIC MIXING AND PARTICLE 

CAPTURE USING ORBITING MAGNETIC MICROBEADS 

Herein, we use 3-D numerical simulations to study the dynamic behavior of a multi-

functional device that performs microfluidic mixing and microscale particle capture using 

magnetic microbeads which are moved in controlled orbits on the floor of a microfluidic 

channel. We study the physical mechanisms of mixing and capture, and determine the 

effect of system parameters on these processes. 

4.1 Beads Dynamics and Resulting Flow 

The magnetic microbeads under study are driven in controlled orbits around NiFe discs 

patterned onto a microfluidic channel floor, so as to sweep through the fluid in the channel. 

The beads are pulled magnetically to poles on the NiFe disc, such that they tend to 

equilibrium positions on either side of the disc. The locations of the magnetic poles on each 

NiFe disc rotate around the disc to maintain alignment with an applied external magnetic 

field, such that rotation of an external magnetic field results in rotation of the magnetic 

poles around each NiFe disc, and thus in controlled orbits of magnetic beads around each 

NiFe disc on the microchannel floor. Owen et al (4) previously demonstrated this method 

experimentally, and used a computational model to simulate microbead dynamics. They 

found that beads follow predictable trajectories in circular orbits around NiFe discs when 

the magnetic forces on the beads are greater than the hydrodynamic forces experienced by 

the orbiting beads. 
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 Our further analysis of the bead orbit trajectories shows that in the range of velocities for 

which hydrodynamic forces are relatively small compared to magnetic forces, which is 

required for reliable magnetic control of microbeads, the bead trajectories do not change 

appreciably with varied bead velocities or magnetic field flux densities. Our simulations of 

beads orbiting at rotation rates ranging from 2,500 – 10,000 RPM and driven by an external 

magnetic field with flux densities ranging from 0.088 - 0.18 T reveal that the beads with 

diameter 2.8a   orbit discs of diameter 3dD m  at a radius of approximately ,86.1 a  

which closely matches experimental findings. Thus, we can simplify simulations by first 

calculating trajectories of microbeads induced by a rotating magnetic field, and then 

imposing the bead trajectories directly through prescribing their velocity. This allows the 

simulations of mixing and particle capture to be significantly accelerated. 

 We examine the flow patterns generated by magnetic microbeads orbiting in a 

microfluidic channel to understand the physical origin of fluid mixing induced by rotating 

microbeads (60). Our simulations show that the orbiting magnetic beads create a time-

varying three-dimensional flow pattern, a snapshot of which is shown in Figures 4.1a-c. 

Beads drag fluid in the horizontal plane in which they orbit, and the effect of the beads on 

the flow is greatest in the direct vicinity of the beads, although the beads also drag to a 

lesser extent the fluid located at a height of several times the bead size. When a net flow 

down the channel is added, the combined effect of this net flow with the orbiting beads 

causes the generation of dynamically changing lanes of fluid (Figure 4.1a), resulting in 

flow winding back and forth between oncoming beads on subsequent rows and allowing 

much of the fluid to come in close contact with beads, which has implications in the 

effectiveness of particle capture. The ratio of the average axial flow velocity xU  to the 
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bead orbit velocity bV  has a profound effect on the generated flow patterns, as well as the 

effectiveness of the beads in microfluidic mixing and particle capture, as will be seen 

hereafter. 

 

Figure 4.1 Instantaneous velocity fields generated by beads orbiting counter-clockwise in 

a microchannel with flow giving 1.x bU V   a) Top view of the velocity field. Four pairs 

of beads are seen rotating counter-clockwise in a section of a microchannel, and velocity 

vectors at the half-height of the beads are given. b) Schematic showing the orientation of 

planes in which velocity fields are shown. c) Velocity field at a planar cross-section looking 

down the channel shows vertical flow due to magnetic microbeads 

 In addition to horizontal flow, the beads generate vertical flow (Figure 4.1c) due to the 

creation of regions of high and low pressure at the leading and trailing ends of the beads, 

respectively. This allows some of the fluid from the top of the channel to come down to 

the beads located at the bottom of the channel. 

 We find more insights into the generated flow pattern by examining the streamlines of 

the period-averaged velocity field of the flow created by orbiting microbeads. Beads 

orbiting in an otherwise stagnant fluid generate circulation patterns around NiFe discs, as 
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seen in Figure 4.2a. Additionally, the circulation pattern cells are linked by streamlines on 

which fluid is advected from cell to cell across the channel. Physically, this occurs due to 

the beads dragging fluid that is left in their wake and picked up by the wake of beads 

orbiting adjacent discs, bringing the fluid to the next circulation cell. As we discuss later, 

this is important to microfluidic mixing using orbiting magnetic microbeads. 

 

Figure 4.2 Streamlines of the period averaged fluid velocity at the plane located at the 

center height of the magnetic microbeads orbiting in a microchannel at the following 

velocity ratios: a) ,0bx VU  b) ,3.0bx VU  c) ,6.0bx VU  and d) 4.1bx VU  

 As a net flow velocity is introduced and the velocity ratio increases, fluid left in the wake 

of orbiting beads is advected downstream out of the trajectory of the oncoming bead, which 

leads the circulatory cells to shrink and streamlines linking cells across the channel to 

disappear by 0.3x bU V   (Figure 4.2b). As the velocity ratio is further increased, the 

circulatory cells continue to shrink (Figure 4.2c), and are almost non-existent at high 

velocity ratios (Figure 4.2d), leaving primarily axial period-averaged flow down the 
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channel. With the lack of period-averaged transverse flow, bulk advection of fluid across 

the channel is suppressed at higher velocity ratios. 

4.2 Microfluidic Mixing 

4.2.1 Mixing by Orbiting Beads 

In order to validate our numerical model, we compare our results with experimental data 

published by Ballard et al. (60). Those experiments were performed with fluid streams 

flowing via EOF at axial velocity 50xU   μm/s through a 300 μm-long region of a 

microfluidic channel containing magnetic microbeads orbiting at 4500 RPM, such that the 

ratio of the flow velocity to the bead linear velocity 
bV  was 0.03x bU V  . As seen in 

Figure 4.3a, separated streams of fluid with (white) and without (black) fluorescent nano-

particles were mixed rapidly over a compact mixing distance. Here, the streams had already 

blended somewhat due to molecular diffusion in the lengthy microchannel leading up to 

the mixing section, as is apparent from the gradual transition from white to black across 

the channel at the inlet. Mixing in this experimental device is visibly evident from the light 

and dark sections at the inlet merging in the mixing section, so that the fluid in the channel 

becomes grayer at the outlet. Additionally, experimental mixing resulted in circular rings 

of dark and light in the regions of bead orbit around discs (black spots in the image), leading 

across the channel. Numerical simulations (Figure 4.3b) of mixing under the same 

conditions as in the experiments of Figure 4.3a qualitatively match experimental results, 

with similar circular patterns across the channel and a mixing layer growing at a similar 

rate as was seen in the experiments. Non-uniformities in the experimental fluid led to a 

more jagged experimental mixing profile within the mixing section (Figure 4.3a) than was 
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seen in simulations (Figure 4.3b). In order to reduce the effect of these non-uniformities on 

further analysis, six separate experimental images taken under these conditions were 

analyzed and averaged for fluorescence intensity at each distance across the channel. As 

seen in Figure 4.3c, experiments and simulations yielded quantitatively similar 

concentration profiles (manifest as fluorescence intensity in experiments) across the 

channel at the outlet. 

 

Figure 4.3 a) Rapid mixing in an experimental micromixer. Streams of fluid with (white) 

and without (black) fluorescent nano-particles are mixed as they pass through a 300 μm 

mixing region. b) Simulation of mixing, made up of a series of images of the time evolution 

of the vertically averaged concentration field, each placed at the location corresponding to 

the distance fluid has moved downstream in the simulation. c) Profiles of concentration 

variation across the channel width at the inlet and outlet, shown for both experimental and 

simulation data. d) Summary of the calculated percentage of mixing, ,P  at the inlet and 

outlet of the mixing region for experiments, simulations, and a simulated channel with no 

microbeads, such that mixing occurs purely due to molecular diffusion over the length of 

the mixing region 
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 The levels of mixing calculated at the inlet and outlet in experiments and simulations, as 

well as for a channel without orbiting microbeads, are given in Figure 4.3d. In the 

experiments, the fluid streams entered the mixing section 32% mixed, and were 49% mixed 

at the outlet. Our simulations showed similar mixing levels, with the fluid streams 31% 

and 51% mixed at the inlet and outlet, respectively. In the absence of orbiting magnetic 

microbeads, very little mixing would occur over the short distance of the mixing region. 

Indeed, we calculated that without orbiting microbeads fluid streams entering the mixing 

region 31% mixed to still only be 32% mixed at the outlet.  

Thus, we see that orbiting magnetic microbeads mix fluid streams at a rate that is greatly 

accelerated compared to molecular diffusion, and that our numerical model yields results 

that both qualitatively and quantitatively match the experimental results. We must note that 

the conditions and mixing section length used in these experiments are not optimized for 

the fastest mixing, but instead provide a means of validating our computational model. 

Even more rapid mixing can be achieved by tuning flow conditions or the length of the 

mixing region, as will be discussed below. A detailed experimental investigation of fluid 

mixing by orbiting magnetic microbeads at the limit of low velocity ratios was published 

by Owen et al (61). 

 In order to utilize orbiting magnetic microbeads to most efficiently mix fluid streams in 

a microfluidic channel, it is important to understand how various parameters affect mixing 

performance.  In order to compare the effectiveness of orbiting microbeads to the mixing 

that occurs purely due to diffusion, we introduce a mixing enhancement parameter defined 

by 
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where 
PE  is the acceleration of mixing of the fluid streams to P  percent mixed by beads 

as opposed to mixing by diffusion alone, and 
Dt  and 

Et  are the amounts of time required 

to reach P  by diffusion alone and when mixing is enhanced by orbiting microbeads, 

respectively. The parameter definition is illustrated in Figure 4.4 for 70%P  . In this case 

the mixing enhancement by magnetic beads leads to 
70% 25.5E  , meaning that the orbiting 

microbeads cause the fluids to reach 70% mixing 25.5 times faster than would happen due 

to molecular diffusion alone. 

 

Figure 4.4 Plot of the degree of mixing over dimensionless time for the case of no 

microbeads (pure diffusion) and of mixing enhanced by orbiting magnetic microbeads. 

70% mixing occurs at times 
Dt  and 

Et  for the pure diffusion and enhanced cases, 

respectively 

 The configuration of NiFe discs and orbiting microbeads in the microfluidic channel, as 

shown in Figure 3.2, affects the mixing performance of the magnetic micromixer. In order 
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to explore the effect of NiFe disc placement, we performed numerical simulations with the 

channel height, channel width and NiFe disc diameter fixed at 2 ,cH a  14W a  and 

dD a , respectively, with constant 500,bPe   and varied the edge to edge spacing S  

between NiFe discs and the offset angle   between rows of beads over a wide range of 

velocity ratios. Simulations show that mixing enhancement increases monotonically with 

decreasing S , as evidenced by the curves in Figure 4.5a. We note that in our simulations 

we consider configurations in which a pair of beads orbits each disc. The minimum possible 

spacing between neighboring discs is limited by the fact that the orbiting beads must have 

enough clearance to not hit adjacent discs or beads. Experiments showed that for two beads 

to orbit a single NiFe disc at opposite poles, as shown in Figure 3.2, there must be enough 

space between adjacent discs, 2S a , so that the beads will not collide with each other. 

For more tightly spaced NiFe disc arrays, only a single bead can orbit around each NiFe 

disc. Moreover, if the spacing is further decreased, then even single beads will not be able 

to orbit predictably around a NiFe disc due to the effect of adjacent discs.  

 As shown in Figure 4.5a, simulations performed over a wide range of velocity ratios 

show that decreasing the spacing to 2 ,S a  such that only one bead orbits each NiFe disc, 

significantly reduces mixing performance as compared to the case where two beads orbit 

each NiFe disc with an increased spacing of 2 .S a  This improvement is most exaggerated 

at high velocity ratios, where interactions between successive rows of beads are important. 

In this case, a second bead orbiting the discs passes by the first bead of the adjacent row, 

and serves to transport some of the fluid further across the channel, rather than allowing it 

to return back to its original location with the bead. We will therefore focus on the 

configurations allowing a pair of magnetic beads to orbit each NiFe disc. 
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Figure 4.5 Plots of mixing enhancement over a range of velocity ratios for different 

configurations. a) Arrays with channel height 2cH a  and two alternating offset rows of 

discs ( 26.6 )   with the following values of disc spacing:  2S a ,  2.5S a , 

 3S a , and  1.5S a  (one bead per disc). b) Arrays with channel height 2 ,cH a  

disc spacing 2S a  and discs offset at the following angles:  26.6   (two alternating 

offset rows of discs),  18.4    (three alternating offset rows of discs), 14.0    

(four alternating offset rows of discs), and   0    (square array of discs). c) Plot of 

mixing enhancement over a range of channel heights using arrays with 2S a  and 

26.6    at the following velocity ratios:  0,x bU V    0.3,x bU V    1.4x bU V   

 The angle between adjacent rows of beads has a significant effect on mixing 

performance. Figure 4.5b shows that there is an increase in mixing performance for the 

case of arrays with NiFe discs in angled patterns created by alternating different numbers 

of offset rows of discs orbited by two beads, as compared to similar arrays with square 

patterns of discs ( 0   on Figure 3.2), and that this improvement is exaggerated at high 

velocity ratios. The difference between mixing performance for these configurations is due 
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to the fact that angled configurations aid the beads in advecting fluid across the channel as 

fluid moves down the channel from one row of beads to the next offset row, where beads 

are located further across the channel. The physical mechanism of the increase in mixing 

performance at high velocity ratios will be discussed in section 4.2.2.  

 As seen in Figure 4.5b, there is a significant increase in mixing enhancement at high 

velocity ratios as long as there is a significant offset angle between rows of discs. Notably, 

the velocity ratio at which the maximum mixing enhancement occurs varies with  , as the 

optimal velocity ratio is governed by geometry, as discussed in section 4.2.2. In the rest of 

this study we focus on a simple array of two alternating rows of offset discs ( 26.6 )    

with spacing 2S a  where each disc is orbited by two microbeads. However, the trends 

found for this specific array can be directly extended to configurations with other offset 

angles between rows of discs. 

 As shown by the curve of squares in Figure 4.5a, the mixing enhancement by the beads 

in the selected configuration is strongly dependent on the velocity ratio. In the absence of 

flow through the channel, mixing enhancement is the highest with 
70% 25.5E  . This result 

shows that this mixer can effectively be used as a chamber or stop-flow mixer. When we 

introduce flow through the channel but the bead velocity is still much greater than the flow 

velocity (low velocity ratio), the mixing enhancement remains large, although it decreases 

rapidly with increasing velocity ratio. The mixing enhancement is weakest when 

0.3.x bU V   For velocity ratios greater than 0.3,x bU V   mixing enhancement increases 

with increasing velocity ratio up to a local maximum that is dependent on   and .S  This 

dependence is addressed in section 4.2.2. For the configuration used for the rest of our 
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work, the local maximum in mixing enhancement occurs at 1.4.x bU V   For higher 

velocity ratios, enhancement gradually decreases with increasing velocity ratio.  

 Since the effect of bead motion on the fluid will diminish with increasing distance to the 

beads, we would expect mixing enhancement to also be dependent on channel height. In 

order to investigate this dependence, we performed simulations with the channel width, 

NiFe disc diameter, spacing, and offset angle fixed at 14 ,W a  ,dD a  2S a  and 

26.6 ,    respectively, with constant 500,bPe   and varied the ratio of the channel height 

to the bead diameter, .cH a   

 As seen in Figure 4.5c, the mixing enhancement with flows at various velocity ratios 

decreases with increasing channel height. At 0x bU V   and 1.4,x bU V   which velocity 

ratios were previously found to be the local maxima for mixing enhancement for this 

geometrical configuration at 2,cH a   mixing enhancement was high for low ,cH a  but 

dropped dramatically with increasing channel height. However at 0.3,x bU V   which was 

found to be a local minimum for mixing enhancement, the drop in mixing enhancement 

with increasing channel height is less pronounced, since at this velocity ratio beads did not 

mix the fluid nearly as effectively at low 
cH a  as they did at other velocity ratios. Thus, 

we find that decreasing channel height with respect to the bead diameter increases mixing 

enhancement, but that the amount of increase is dependent on .x bU V  

4.2.2 Mixing Mechanisms 

Examining the concentration fields in microchannels with fluid streams being mixed by 

beads orbiting at various velocity ratios gives insights into what is occurring during mixing. 
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From Figure 4.6, which gives the vertically averaged concentration fields in the channel, it 

is apparent that beads orbiting in an otherwise stagnant fluid drag fluid across the channel 

in circular patterns similar to those seen experimentally at low velocity ratios (Figure 4.3a), 

stretching the fluid-fluid interface and resulting in rapid mixing, which can be seen by the 

greatly increased concentration uniformity in Figure 4.6b as compared to that in the case 

of mixing purely due to diffusion shown in Figure 4.6a. As flow down the channel increases 

in relation to the bead orbit velocity, interfacial stretching decreases and this flattened 

interface leads to the decline in mixing enhancement with increasing velocity at low 

velocity ratios, as seen in Figure 4.5a. At 0.3x bU V   (Figure 4.6c), the point of minimum 

mixing enhancement, the interface experiences the lowest deformation due to rotating 

beads. As the flow velocity ratio is further increased, interface deformation is still minimal, 

but a distinct mixing mechanism serves to increase mixing, as seen by the increasingly 

wide mixed regions at the middle of the channel in Figures 4.6c-e. 
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Figure 4.6 Vertically averaged concentration fields in microchannels after mixing a set 

amount of time 25 ,t T where T  is a fixed bead orbit period. a) Mixing due purely to 

diffusion (no beads). b – e) Mixing aided by orbiting microbeads at various velocity ratios: 

b) 0,x bU V   c) 0.3,x bU V   d) 0.6,x bU V   and e) 1.4x bU V   

 To better understand the physical mixing mechanisms and how they change at different 

velocity ratios, we performed simulations with non-diffusive tracer particles, thus 

decoupling particle movement due to advection from movement due to diffusion. 

Figure 4.7 shows the distribution of tracer particles in a microchannel after 75 orbits of the 

microbeads at various velocity ratios.  

 For the case of a microchannel with orbiting microbeads and otherwise stagnant fluid 

( 0),x bU V   the beads drag the fluid and accompanying tracer particles in circular streaks 

that transport the fluid across the channel. Thus, interfacial stretching is caused by 

advection due to the orbiting beads. This stretched interface then allows diffusion to act 

over a greatly increased interface length, leading to the high level of mixing enhancement 

seen at that velocity ratio in Figure 4.5a.  
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Figure 4.7 Horizontal view of the distribution of non-diffusive tracer particles from the 

entire height of the microchannel. a) Initial locations of tracer particles. b – e) Locations of 

tracer particles after 75 orbits of the magnetic microbeads in the channel at the following 

velocity ratios: b) 0,x bU V   c) 0.3,x bU V   d) 0.6,x bU V   and e) 1.4x bU V   

 As in the diffusive case, interface stretching with non-diffusive particles declines sharply 

with increasing velocity ratio. At 0.3,x bU V   the beads have minimal effect on cross-

channel fluid transport and the streams of tracer particles remain essentially separated. 

However, at an increased velocity ratio, the tracer particles appear to be randomly dispersed 

across the channel, and this dispersion is increased with increasing velocity ratio. The fact 

that this dispersion is seen even in the case of non-diffusive particles suggests that this 

dispersion is a consequence of the flow in the channel with orbiting beads. 

 Thus, we find that mixing enhancement by orbiting magnetic microbeads occurs due to 

two different physical mechanisms: interface stretching due to bulk advection of fluid and 

particles in circular patterns stretching across the channel at relatively low velocity ratio 

flows, and dispersion of fluid and particles across the channel at higher velocity ratio flows. 
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The causes of these mixing enhancement mechanisms are investigated below. 

 The cause of bulk advection of fluid and particles across the channel in circular patterns 

and its dependence on the velocity ratio are elucidated by examining the streamlines of the 

period-averaged velocity field generated by orbiting magnetic beads, as shown in 

Figure 4.2 and discussed in section 4.1. With no net flow down the channel, circulatory 

flow cells are created, and are connected by streamlines which cross the microchannel. 

This serves to advect fluid and particles across the channel en masse in circulatory patterns. 

As a net flow velocity is introduced and the velocity ratio increases, fluid left in the wake 

of orbiting beads is advected downstream out of the trajectory of the oncoming bead, which 

leads the circulatory cells to shrink and streamlines linking cells across the channel to 

disappear (Figures 4.2b-d). Thus, the mechanism of bulk advection across the channel is 

suppressed for higher velocity ratios. 

 Dispersion of small amounts of fluid occurs due to interactions between the fluid streams 

created by adjacent rows of beads. At velocity ratios high enough that fluid is carried 

downstream quickly enough that it is not advected en masse across the channel in a single 

row of beads, the timing of fluid reaching adjacent rows of beads becomes important. For 

dispersion to occur, some of the fluid that is dragged by the orbiting beads should escape 

the orbit at a point in its trajectory where the fluid is displaced horizontally across the 

channel. The amount of dispersion depends on the amount of fluid being carried further 

across the channel. Thus, for optimal dispersion this displaced fluid should travel to the 

adjacent row of beads at the suitable speed such that it reaches the adjacent bead as it is 

travelling in that same direction, so that the fluid will be displaced further across the 

channel. 
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 In the case of the geometry where 2S a  and ,dD a  the distance between a bead and 

the corresponding bead on the adjacent row is 3 ,a  while the distance a bead must travel to 

orbit half way around a disc (since there are two beads per disc) is also approximately 3 ,a  

as depicted in Figure 4.8a. Thus, if the fluid flows down the channel at the same speed as 

the beads orbit ( 1),x bU V   then the fluid will travel one bead row downstream (3 )a  for 

each bead half orbit. For some fluid to escape from an orbiting bead and continue 

downstream to be further displaced across the channel by the adjacent row of beads, rather 

than being dragged back so as to not travel further across the channel, it must travel fast 

enough to get past the next orbiting bead (1.5 )a  in the time it takes the beads to travel the 

distance of a half orbit (3 ),a  as depicted in Figure 4.8b. This corresponds to 

1.5 3 0.5,x ba a U V   where an increase in mixing enhancement was observed, as seen in 

Figure 4.5a.  

 

Figure 4.8 Schematic of the effect of geometry and velocities on mixing performance. 

a) Schematic of the geometry of two NiFe discs (grey circles) with 2S a  and 26.6 ,    

with their associated beads (blue circles). Beads travel approximately a distance of 3a  

during a half orbit around a NiFe disc. Fluid travels a distance of 3a  to get from one row 

of beads to the next. b) Schematic showing the critical distances for escape of fluid from a 

bead orbit (fluid must travel at least 1.5a  during one half orbit to get past the center of the 

bead as it returns) and for optimal mixing (fluid travels 2a  during one quarter orbit so as 

to be in front of bead on next row) 



 64 

 As depicted in Figure 4.8b, for optimal dispersion in the case of 26.6    the fluid 

should travel a distance of about 2a  in the time it takes the beads to travel the distance of 

a quarter orbit (1.5 ),a  so that the displaced fluid arrives at the adjacent bead as it begins to 

travel further across the channel, leading to the fluid being dragged further across the 

channel. This corresponds to 2 1.5 1.33,x ba a U V   close to the local maximum in mixing 

enhancement at 1.4x bU V   for this geometry. 

 For differently spaced and angled mixing arrays, the optimal speed that the fluid must 

travel to properly reach the adjacent bead varies, leading to a geometry-dependent optimal 

velocity ratio as shown in Figure 4.5a-b. Since with increased spacing, beads have to move 

further to get to the next row of beads in a given orbit time, one would expect the optimal 

velocity ratio to increase approximately linearly with .S  As seen in Figure 4.9a, 

simulations showed that this is in fact the case. The effect of offset angle on the optimal 

velocity ratio is less straightforward. As   is increased, the distance that a bead on a 

subsequent row should move before sweeping past fluid moving downstream from a 

previous row of beads is increased. Thus, the fluid will have more time to get from one 

row of beads to the next, and the optimal velocity ratio will be reduced. As seen in 

Figure 4.9b, the optimal velocity ratio does indeed decrease with increasing .  
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Figure 4.9 a) Effect of S  on optimal velocity ratio for mixing enhancement. b) Effect of 

  on optimal velocity ratio for mixing enhancement 

4.2.3 Mixing Distance 

 In continuous-flow microfluidic mixing applications, it is important to obtain a high 

degree of mixing over a short downstream distance. Thus, the mixing performance of a 

micromixer can be evaluated based on how far the fluid must travel to reach a desired 

mixing degree. In order to efficiently simulate microfluidic mixing, for simulations in this 

study a small periodic domain (two rows of NiFe discs) in the flow direction is used, and 

travel distance downstream is represented by simulated time using the scaling argument 

,xx U t   where x  is the travel distance downstream, 
xU  is the average axial fluid 

velocity, and t  is the simulation time, or the residence time of the fluid in the mixing 

region. In order to verify the accuracy of this approximation, mixing data were obtained 

for mixing in pressure-driven flows through microchannels with orbiting microbeads using 

this approximation and using a domain consisting of 20 rows of beads in the flow direction 

with separation of the fluid streams enforced at the inlet, such that the downstream distance 

could be measured directly. As seen in Figure 4.10a, the downstream evolution of the 

degree of mixing was almost identical at various velocity ratios using either method. Thus, 
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the small periodic domain can be safely used to evaluate downstream mixing distance for 

better computational efficiency. 

 

Figure 4.10 a) Mixing degree versus distance downstream from the inlet to the mixing 

section for various velocity ratios for the case of simulation of 20 rows of discs in the 

device (markers) and of simulation of a periodic domain that is two disc rows long, using 

time to estimate distance downstream (lines). b) Normalized distance downstream until the 

fluid reaches a level of 70% mixing under various conditions plotted against the velocity 

ratio. Inset shows a power-law increase in mixing distance (trend line in black) for low 

velocity ratios 

 One of the aims of this study is to gain an understanding of the expected mixing distances 

when system parameters are varied. This can be accomplished through non-

dimensionalization of the mixing distance by pertinent physical parameters and varying 

those parameters in simulations. As was established above, 
xx U t   is a good 

approximation of the downstream travel distance. Additionally, for each velocity ratio 

,x bU V  the relation 
x bU V  holds. Using a scaling argument, the residence time that the 

fluid is in the mixing section can be approximated by 
*2 .t W D  Here, 

*

0 bD D Pe   

is the transverse Taylor dispersivity (83) for transport in concentrated suspensions of 

rotating cylinders in which convective mass transport dominates diffusive mass transport 

( 1,bPe   in our case). Combining these relations, the downstream travel distance can be 

represented as 
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 Thus ,W  
bPe  and a  are expected to affect the mixing distance and are varied in 

simulations by varying ,W  
0 ,D  

bV  and a  over a wide range of velocity ratios. Once again, 

the geometric parameters 2cH a  and 
dD a  are kept constant, and here the 

configuration with 26.6    and 2S a  and two beads orbiting each disc is used. The 

distance 
70%x  required to reach 70% mixing, normalized by equation 4.2, is plotted 

against the velocity ratio in Figure 4.10b. With this normalization, the mixing distance for 

each of these cases collapsed onto a single curve over a wide range of velocity ratios, 

supporting our scaling argument and allowing for the prediction of the performance of this 

device when used in applications requiring various size scales, channel dimensions and 

working fluid solutions at different flow and rotation rates, provided that there is uniform 

bead coverage of the entire microfluidic mixing section, as was the case in our simulations. 

 As can be expected, the shortest mixing distance occurs at low velocity ratios, since in 

this regime the high bead velocity with respect to the flow velocity allows for the beads to 

orbit more times for a given downstream travel distance, thus transporting more fluid 

across the channel. Additionally, as shown earlier, the best mixing enhancement for a given 

residence time occurs at low velocity ratios, since here secondary flow transports fluid in 

bulk across the channel. As shown in the inset to Figure 4.10b, the mixing distance 

increases as  
3 2

x bU V  within the low velocity ratio range. A linear increase in mixing 

distance could be attributed to the decreased residence time per channel length, but the 
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nonlinearly decreasing mixing enhancement with increasing velocity ratio at small velocity 

ratios, as shown in Figure 4.5a, leads to a power law increase in mixing distance.  

 The mixing distance curve flattens out such that the mixing distance is relatively constant 

over the range of approximately 0.5 1.4,x bU V   since as seen in Figure 4.5a the mixing 

enhancement increases over this range due to fluid dispersion, such that this increase 

balances the decrease in residence time with increased flow velocity. This result is useful 

for high throughput applications, where a higher flow velocity is desired, but the rotation 

velocity can be limited by the increased hydrodynamic forces on the beads at high 

velocities, which can exceed the magnetic forces and cause magnetic bead detachment 

from the discs (4). We have experimentally observed that beads are stably controlled by 

NiFe discs at flow velocities at least up to 12 mm/s. The maximum velocities at which this 

method can be used will depend on the NiFe disc geometry and on the external magnetic 

field used in a specific device, since those affect the magnetic forces experienced by the 

beads.  

 The independence of the mixing distance from the velocity ratio for 0.5 1.4x bU V   

indicates that the flow velocity can be increased in this velocity ratio range without 

requiring a higher bead rotation speed or compromising mixing performance. As seen in 

Figure 4.10b, the mixing distance increases approximately linearly with velocity ratio 

above about 1.4,x bU V   since in this range the mixing enhancement decreases only 

gradually, leaving the linear relationship between velocity ratio and mixing distance for a 

constant residence time of fluid in the channel. 



 69 

 To compare these non-dimensional mixing distances to relevant physical dimensions, we 

consider an example of fluid streams with diffusivity
11

0 10D  m2/s flowed at 50 μm/s 

through a 150 μm wide channel with 2.8 μm diameter beads orbiting at 4500 RPM. In this 

scenario, 70% mixing would be expected at a distance on the order of a millimeter. If the 

same conditions are used but the flow velocity is increased to the range of approximately 

0.5 1.4xU  mm/s, then 70% mixing is still expected at a distance on the order of a 

centimeter. Thus, we conclude that this device provides most rapid mixing at low velocity 

ratios, but that if it is used at higher velocity ratios, it should be used at 1.4,x bU V   so as 

to increase throughput while maintaining good mixing performance. If further increases in 

throughput are desired, then ,a  ,S  and H  could all be increased so as to increase the 

channel cross section and also accelerate mixing for a given channel width. A drawback to 

increasing these dimensions is that it can be detrimental to micro-particle capture as will 

be seen in section 4.3.3, in that the particle size is effectively reduced as compared to the 

system size. 

4.3 Micro-Particle Capture 

4.3.1 Comparison to Experiments 

We now turn to our discussion of the use of orbiting magnetic microbeads to capture micro-

particles from a fluid sample. We compare the results using our model to those obtained 

experimentally by Owen (69) in a 400 µm-long microfluidic capture region. Here, beads 

of diameter 2.8a m  orbit around discs of diameter 6dD m  with spacing 10s m  

in a microchannel of width .W  In order to determine the ability of the system to capture 
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spherical particles in microchannels of varying height, capture experiments and 

simulations were performed in microchannels of height 2 ,cH a 3 ,a  and 4 .a  

 As seen in Figure 4.11, our simulations predict efficient particle capture. Our model 

predicts that in the shortest microchannel studied, with height 2 ,H a  almost 100% of the 

particles will be captured within the capture region for velocity ratios ranging from 

0.05 0.5.x bU V   When the channel height is increased, capture drops off with increasing 

velocity ratio, such that for both 3cH a  and 4cH a  capture is reduced to approximately 

65% for 0.5.x bU V   Interestingly, for a channel of this short length, there was not a 

significant difference in capture efficiency for channels of height 3cH a  as compared to 

those with height 4 .cH a  As will be shown below, in longer channels this height 

difference plays a stronger role in capture efficiency. 

 

Figure 4.11 Simulation results for the fraction of micro-particles flowed over a range of 

velocity ratios through a capture section of microchannels of varied height which are 

captured by orbiting magnetic microbeads. Here, it is assumed that all particles that come 

into contact with beads are captured 
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 Efficient particle capture occurs due to the fact that fluid at the height of the beads winds 

between oncoming beads, coming into close contact with magnetic beads as described in 

section 4.1. Particles are driven by the fluid, and thus particles at the height of the beads 

also come into close contact with magnetic beads, leading to rapid capture. Further, vertical 

flow due to the beads, as shown in Figure 4.1c, serves to draw particles down toward the 

beads for capture. Thus, microchannels with a height close to the diameter of the beads are 

best suited to efficient particle capture, but orbiting beads are able to draw downward and 

capture particles from channels even with somewhat increased height. 

 As described in section 3.1.3, our model operates under the assumption that all particles 

that come into contact with beads are instantly captured. However, in a physical system the 

binding kinetics of the specific system of interest depend on factors such as the types of 

target biological or synthetic particles, the antibodies used for specific binding, and the pH 

of the system, and can prevent permanent capture of some particles that come into contact 

with the beads. Indeed, Owen (69) observed that although there was a similar trend in 

capture with increasing velocity ratio, the actual capture values were significantly reduced 

from the simulation results shown in Figure 4.11.  

 As seen in the blue hollow circles in Figure 4.12, particle capture experiments in channels 

of height 2cH a  yielded particle capture as high as 90% at a velocity ratio of 0.1.x bU V   

The capture fraction decreased down to close to 50% at 0.5,x bU V   due to the decreased 

effect of the moving beads on capture. In taller microchannels, the decrease in capture 

efficiency with increasing velocity ratio was even more dramatic. As seen from the hollow 

red squares and green triangles in Figure 4.12, experiments showed capture efficiencies as 
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high as 80% for low velocity ratios in the range of 0.05,x bU V   decreasing to 

approximately 10% at 0.3.x bU V   This dramatic decrease in capture efficiency with 

increasing velocity ratios in taller channels is due to the fact that in addition to changes to 

the flow due to the decreased effect of magnetic beads, the residence time of the particles 

in the channel is decreased with increasing flow rate, giving them less time to be drawn 

down to the beads as they pass through the channel. 

 

Figure 4.12 Capture fraction of particles in channels of varying height subjected to flows 

at different velocity ratios. Here, particles are not assumed to be captured irreversibly on 

contact. Hollow markers denote capture fractions obtained in the experiments of 

Owen (69). Lines with solid markers represent predicted particle capture under the same 

conditions, assuming that particles have a 20% probability of irreversible capture on 

contact with beads 

 In order to compare results of simulations and experiments, we performed analysis on 

our simulation results such that only 20% of particles that come into contact with a 

magnetic bead were determined to be captured. If a particle contacts a bead but is 

determined by comparison of a random number generated from a uniform distribution to 

the capture probability of 0.2 to not be captured, then the distance that it traveled 
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downstream is stored and added to the downstream travel distance of the next contacted 

particle. This is repeated until a particle is deemed to have been captured. As seen by the 

lines with solid markers in Figure 4.12, when only 20% of contacted particles are deemed 

to have been irreversibly captured, the computationally predicted capture fractions are 

similar to the experimental results described in the preceding paragraph, validating the 

ability of our model to decipher the experimental trends in capture performance. 

 In addition to the generally decreasing capture fraction with increasing velocity ratio, it 

is interesting to note that for capture in channels of height 2cH a  the capture fraction is 

decreased at about 0.05x bU V   as compared to that achieved at 0.1.x bU V   This was 

observed in both the experimental and computational capture data. This is related to the 

fact that as seen in Figure 4.2a, at low velocity ratios fluid in the channel on average moves 

in circulatory patterns around NiFe discs, enabling particles to follow the beads in their 

orbits, thus avoiding direct contact. However, for larger velocity ratios (Figure 4.2b-d) 

these flow cells are reduced, leaving the beads to flow down the channel weaving between 

oncoming beads as described previously, increasing the probability of contact between 

particles and beads. 

 Since the probability of capture is highly dependent on the binding kinetics in the specific 

capture system, the remainder of our study will focus on capture using the assumption that 

particles are captured irreversibly on contact. This serves to give an upper limit on capture 

performance so as to understand how to design efficient capture devices, independent of 

further improvements that can be made in the binding kinetics of the system. 
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4.3.2 Distance to Particle Contact 

In the remainder of this chapter, we use simulations to determine the length of continuous-

flow device required to capture a desired percentage of particles from a fluid sample, and 

to study the effect of various system parameters on the capture distance. This allows us to 

guide the design of compact and efficient devices capable of a high probability of particle 

capture. 

 In order to understand the effect of NiFe disc spacing on capture of spherical particles, 

we collected computational capture data using capture regions patterned with varied NiFe 

edge to edge disc spacing S  in channels with height 2cH a  over a range of velocity 

ratios. We varied S  so as to correspond to a range from 8 µm to 14 µm. As seen in 

Figure 4.13, devices with all studied values of S  followed a general trend of increasing 

distance required for particle capture with increasing velocity ratio, except in the case of 

very low velocity ratio, where capture performance is diminished as explained previously. 

Note that for all of these configurations, capture of 95% of the particles is achieved within 

a compact capture region of approximately 10-40 rows of beads (based on a spacing of 

10S m ), corresponding to a distance of 200-600 µm. Additionally, the increase in 

capture distance with increased velocity ratio is dependent on .S  While all three 

configurations yielded approximately the same capture performance at low velocity ratios, 

capture arrays with greater spacing required a significantly greater capture distance at 

increased velocity ratio. This is due to the fact that this increased spacing gives more space 

for particles to pass by the beads without contact when they are traveling down the channel 

in the moderate to high velocity ratio regime described previously. Thus, devices with tight 
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spacing are recommended for increasing capture performance so as to capture particles 

over a minimal capture distance. However, one must consider the fact that if a device is 

designed with extremely tight spacing, the magnetic beads and their captured particles can 

collide with each other. Owen (69) found experimentally that in arrays with 8 ,S m  

beads were prone to collide with particles attached to neighboring orbiting microbeads, 

resulting in the formation of clumps of beads and particles. In order to maximize capture 

efficiency while avoiding geometries that would lead to clumping, we perform the rest of 

our study using 10 .S m  

 

Figure 4.13 Distance required for capture of 95% of spherical particles in a microchannel 

of height 2cH a  with NiFe disc spacing 14 ,S m  10 ,m  and 8 m  over a range of 

velocity ratios 

 In order to study the effect of the microchannel height, ,cH  on capture distance, we 

performed simulations to collect data on the distance required to capture spherical particles 

in capture arrays with constant 10S m  under flow conditions at 0.5.x bU V   As seen 

in Figure 4.14, we found that the distance to capture increases exponentially with channel 

height, although capture of 95% of the particles is still possible in channels up to six times 
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taller than the bead diameter. Above this height, the beads did not sufficiently affect all of 

the fluid in the channel so as to draw particles from all regions of the channel down to the 

beads for capture.  

  

Figure 4.14 Distance to capture of 95%, 90%, 80% and 70% of spherical particles 

subjected to flow at 0.5x bU V   by beads in a capture region with 10 .S m  The channel 

height, ,cH  is varied so as to determine the effect of channel height on capture distance 

The dependence of capture distance on channel height is linked to the requirement 

of particles to move downward to the array of beads in order to be captured. As the channel 

height is increased, an increasing proportion of particles is located at a height away from 

the beads, and they must be drawn down over greater distances to the beads by fluid flow 

which weakens with increasing distance from the beads. Thus we confirm the dependence 

of capture performance on channel height as seen in Figures 4.11 and 4.12, and further find 

that this has an especially strong effect on capture distance as compared to the capture 

fraction after a short distance. This is because in the case of determining a capture distance, 
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a large percentage of the particles must be captured, requiring particles to be captured from 

the entire height of the channel. 

4.3.3 Capture of Non-Spherical Particles 

Up to this point, our study has focused on capture of spherical particles. While many 

particles of interest for detection come in nearly spherical shapes, we also desire the 

capability of capturing particles of other shapes. For example, bacteria often come in the 

shape of rods, as is the case with salmonella. In order to understand the effect of particle 

shape on capture performance, we performed simulations on the capture of rod-shaped 

particles, such as those shown in Figure 3.3 and described in section 3.1.3. We calculated 

the distance required to capture 80% and 95% of rod-shaped particles in a device with 

10S m  and 2cH a  over a range of velocity ratios, and compared it to capture data on 

spherical particles under the same conditions. As seen by the green and light blue curves 

in Figure 4.15, we found no appreciable difference between the distance required to capture 

80% of rod-shaped particles and the distance required to capture 80% of spherical particles. 

By contrast, we observed that changing the diameter of spherical particles has a substantial 

effect on capture performance, with larger particles being captured more rapidly than 

smaller ones. We observed that rod-shaped particles do not move in a simple tumbling 

motion in the flow generated by orbiting beads, which explains why they are not captured 

as effectively as spheres of diameter equal to the rod length. While we found little effect 

of particle shape on capture distance for 80% capture, it required a significantly increased 

distance to capture 95% of rod-shaped particles from the microchannel than it did to 

capture the same percentage of spherical particles.  
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Figure 4.15 Distance required to capture 80% and 95% percent of spherical and rod-shaped 

particles in a microfluidic channel with 10S m  and 2cH a  over a range of velocity 

ratios 

 Closer examination of particle trajectories revealed that while spherical particles weaved 

down the channel as they passed rows of microbeads, they did not generally migrate across 

the channel. However, rod-shaped particles were observed to migrate laterally across the 

channel as they weaved past rows of microbeads. This resulted in a minority of the rod-

shaped particles migrating to the sides of the microchannel, allowing them to flow past 

small gaps at the edges of the capture array, where magnetic microbeads are unable to orbit 

without running into the walls. Thus, while the effectiveness of our system at contacting 

the majority of particles is not strongly dependent on particle shape, lateral migration of 

rod-shaped particles can affect capture of a minority of the particles. If a high probability 

of capture of rod-shaped particles is required, then steps should be taken to ensure that 

particles cannot pass through the microchannel at the channel sides, allowing them to 

escape undetected. Additionally, particle shape could affect binding of particles to the 
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magnetic beads, since it can affect the available surface area of the particle for binding, as 

well as fluid shear forces which can separate particles from the beads. 

4.4 Summary 

A microfluidic device that utilizes magnetic microbeads orbiting around NiFe discs 

patterned on a microchannel floor to provide for microfluidic mixing and micro-particle 

capture was investigated computationally and validated by comparison with experiments. 

Three-dimensional numerical simulations were developed to model the dynamics of the 

system, and showed close agreement with the experiments, thereby validating our 

computational models. 

 We showed that orbiting microbeads can lead to rapid fluid mixing in low Reynolds 

number flow, and identified two distinct mixing mechanisms. Bulk advection of fluid 

across the channel occurs due to the flow pattern that is developed when the ratio of flow 

velocity to bead velocity is low, and leads to rapid mixing. At higher velocity ratios, 

dispersion of small amounts of fluid across the channel occurs, and results in increased 

mixing. We used simulations to investigate the effect of system parameters on mixing 

performance, so as to guide the effective design of such microfluidic devices for 

microfluidic mixing applications. 

 Further, we investigated the ability of orbiting magnetic microbeads to capture particles 

from fluid samples. We found that orbiting beads are effective at promoting contact 

between beads and target particles, allowing for efficient particle capture in short distances. 

Flow patterns created by beads assist them in drawing particles down to the height of the 

beads, enabling capture from channels up to six times as tall as the beads. We investigated 
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the effect of system parameters on the distance required for sufficient particle capture, 

enabling an understanding of how to best use the device for efficient micro-particle capture. 

 Magnetic beads dissipate little energy through viscous drag (on the order of picowatts to 

femtowatts), such that their power consumption is low even compared to the power 

required to drive flow through a microfluidic channel even without the use of a passive 

mixer (on the order of nanowatts to picowatts). The majority of power dissipation in such 

a system is expected to be due to inefficiencies in motors driving the rotating magnet and 

the syringe pump (on the order of one watt). 

 The major limitation to the use of orbiting magnetic microbeads is that it requires 

microchannels of limited height, since the beads must be able to affect fluid from the entire 

height of the channel, yet the beads are constrained to 2-D motion on the microchannel 

floor. This presents a limitation in the throughput of such a device. In order to overcome 

this limitation, if high volume throughput is required then either multiple microchannels 

should be used in parallel or orbiting microbeads should be combined with another method 

of large-scale circulation generation (such as that presented in chapter 5) to bring more 

fluid to the beads for processing. 

 The use of orbiting magnetic microbeads enables mixing of complex fluid samples 

without blocking particulates such as cells from passing through the microchannel. 

Additionally, microbeads can be functionalized and used to capture particles such as live 

cells from fluid samples, and can then be readily extracted from the device using a magnetic 

field for further analysis. Thus, orbiting magnetic microbeads can provide for multiple 

functionalities in a single device.  
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CHAPTER 5. MICROFLUIDIC MIXING AND PARTICLE 

CAPTURE USING MAGNETICALLY ACTUATED SYNTHETIC 

CILIA 

Cilia are flexible, high aspect ratio structures that are used by a variety of biological 

organisms for transport of fluid and particles at a low Reynolds number (5, 6). As 

mentioned in section 3.2.1, the bending patterns of cilia are defined in large part using the 

non-dimensional sperm number .Sp  Cilia are of interest for microfluidic applications, as 

when used with a moderate value of Sp  on the order of one, they bend in patterns that are 

time-irreversible, thereby enabling transport in the low Reynolds number microfluidic 

environment. When used at too low or too high ,Sp  they move either in a nearly time-

reversible manner or with minimal deflection, respectively, and are not particularly useful 

in microfluidic applications. Ghosh et al (70) showed that cilia oscillating at 3Sp  and 

5Sp  exhibit interesting bending patterns, which correspond to the first two oscillatory 

modes of a beating flagellum (8), with cilia oscillating at 3Sp  displacing an order of 

magnitude further than those at 5Sp  for the same driving force. These two bending 

patterns exhibit travelling waves, which transport fluid along the cilia (8, 82). We use these 

findings to guide the design of magnetically actuated synthetic cilia, so as to create flow 

patterns enabling a large-scale flow transport in a microchannel. 

 We simulate two distinct types of magnetically actuated synthetic cilia to understand 

their dynamics and their utility in microfluidic applications such as mixing and particle 
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capture. We first discuss our findings on dynamics of high aspect ratio flexible filaments, 

and then turn to discussion of ribbon-shaped cilia. 

5.1 Filament Cilia 

We use computational modeling to probe the utility of actuated synthetic cilia lining walls 

of a microfluidic channel for enhancing microfluidic mixing and capture of nano-particles 

dispersed in a viscous fluid filling the channel, as shown in Figure 3.5. We demonstrate 

that elastic cilia actuated by a sinusoidal force generate circulatory secondary flows 

facilitating transport. We investigate the effect of operational conditions on cilia transport. 

Our findings guide the optimal design of ciliated microfluidic systems for uses such as 

deposition of particulates onto sensory surfaces and microfluidic mixing. 

5.1.1 Cilia Dynamics and Flow Generation 

We start by examining the dynamics of the flexible filament cilium. In order to understand 

the effect of Sp  and A , as defined in section 3.2.1, on cilia dynamics, we performed 

numerical simulations of high aspect ratio cilia of square cross-section in a viscous fluid. 

Here, we applied a sinusoidal oscillating horizontal force to the cilia tips, and varied the 

frequency and amplitude of this actuation force. While we present results for cilia actuated 

at the tip, we have found that most of the behavior exhibited by cilia oscillated at their tips 

is also seen in cilia oscillated by a distributed force applied along the cilium length. 

 In our simulations, we observed that cilia exhibit bending patterns at 1A  similar to 

those reported by Ghosh et al (70). We focus our study on the effect of Sp  on fluid flow. 

Figure 5.1 shows the period-averaged flow fields for various Sp . The flow fields are 
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calculated using the period-averaged velocity of non-diffusive tracer particles. Due to 

symmetry, a slice yx   plane at the center of the cilia in the z - direction is given only for 

the bottom half of the channel from the middle plane between cilia in the x - direction and 

the left side of the cilia (Figure 5.1). 

 

Figure 5.1 Period-averaged velocity in the x y  (cilia motion) plane (see Figure 3.5a) 

with 1,A   / 1,x L   and a) 2,Sp   b) 3,Sp   c) 4,Sp   d) 5.Sp   For clarity, velocity 

magnitudes for 2,Sp   4, and 5 are scaled up by a factor of ten as compared to those for 

3.Sp   3Sp   results in the most significant circulatory flow patterns 

 In all cases presented in Figure 5.1, oscillating cilia induce secondary flows in the 

microchannel. However, among all these cases 3Sp  induces the fastest secondary flow 

with the velocity about an order of magnitude greater than for the other cases. We also find 

that the structure of flow is different for ciliated channels with 2Sp  and 3Sp  versus 

that with 4Sp  and .5Sp  When oscillated at 2Sp  and ,3Sp  the cilia create a 

large circulating flow pattern (Figure 5.1a-b) that transports fluid upward near the cilia and 

downward in the center between neighboring cilia. On the other hand, when cilia 
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oscillations are characterized by 4Sp  and ,5Sp  the period-averaged flow includes 

multiple smaller vortices that locally transport fluid, and fluid is generally transported 

upward in the center between neighboring cilia. 

 We investigated the effect of the magnitude of the cilia actuation force on cilia and fluid 

dynamics by setting 3Sp  and varying A . Cilia displacement and flow circulation 

patterns increase with increasing A  up to 12A , above which cilia displacement is 

geometrically limited and further increases in A  do not lead to significantly greater cilia 

displacement or flow circulation. 

 We also find that cilia can exhibit transition from a 2-D to 3-D beating pattern when the 

oscillating force amplitude exceeds a critical value crA  (Figure 5.2). When driven by 

relatively small oscillatory forces, cilia beat in a periodic 2-D non-reciprocal pattern, as 

shown for 6A  in Figures 5.2a-b. However, when the driving force is increased to ,8A  

the beating cilia exhibit a periodic 3-D pattern, as shown for 8A   in Figures 5.2a-b. The 

3-D motion of cilia with 8A  is further illustrated in Figures 5.2c-d, showing a sequence 

of projections of the cilium centerline on the yx   and zx   planes, respectively, during 

an oscillation period. Our simulations show that the critical amplitude of the oscillatory 

force causing the transition for 3Sp  is .7crA  

 The 3-D bending of cilia is caused by a buckling instability (84-86). Buckling occurs 

when the oscillating force crAA   bends the cilia to the side, and then drives them in the 

opposite direction, as shown in Figure 5.2e. Buckling causes cilium bending in the zx   

plane, thereby inducing 3-D motion of the oscillating cilia. This behavior resembles Euler’s 
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buckling instability of columns. We can estimate the critical force leading to cilium 

buckling by considering an axially-loaded long column with unsupported length of ,75.0 L  

which is approximately equal to the length of the horizontal section of cilia in our 

simulations at the onset of buckling. Replacing the oscillatory external force with a 

constant compressive force and using Euler’s formula for the critical force for a column 

with fixed-free end conditions (87), we estimate the magnitude of the dimensionless force 

required to induce buckling to be approximately 1.5. This value is close to the 

instantaneous external force experienced by cilia at the onset of buckling, which is found 

in simulations to be approximately 4, indicating that the 3-D motion is indeed a result of 

cilium buckling during the beating cycle. 
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Figure 5.2 Cilium tip trajectory for 3Sp  and 1/ Lx   a) in the yx   plane, and b) in 

the zx   plane. Cilia movement is two-dimensional when the driving force amplitude is 

,6A  but becomes 3-D when the driving force amplitude is increased to .8A  Panels 

c) and d) show centerlines of cilia with 8A  at different instants of cilium beating in the 

yx   and zx   plane, respectively. e) 3-D motion is a result of cilia buckling, due to a 

compressive force applied to the cilium end when it is bent over horizontally 

5.1.2 Asymmetric Cilia Actuation 

Additional control over net flow at a low Reynolds number can be obtained by using 

asymmetric forcing applied to cilia. Biological cilia achieve this through the use of 

complex beating patterns (82, 88) which include an effective stroke and a recovery stroke 

in their beat cycles. We seek to demonstrate fluid manipulation using a simplified beating 

pattern with effective and recovery strokes, which pattern is created through magnetic 

actuation of cilia using a modulated sinusoidal oscillating magnetic force. Such cilia have 
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application not only in pumping fluid along a microchannel, but also in creating large-scale 

circulatory patterns across a microchannel, enabling effective and controllable microfluidic 

mixing and particle capture. 

 In order to probe the effect of modulating the oscillating magnetic force, we performed 

simulations in which we modulated the oscillating distributed force applied on an elastic 

filament cilium such that the amplitude and/or period of the section of the force waveform 

during the effective stroke was different from that applied during the recovery stroke. We 

found that both force modulations can cause cilia to beat in asymmetric patterns that cause 

fluid pumping. A representative example is the case where the forces applied during the 

effective and recovery strokes were not equal. To characterize the level of asymmetry of 

these forces, we define the force ratio ,ERF FFR   where RF  is the magnitude of the 

force applied on the recovery stroke, and EF  is the magnitude of the force applied during 

the effective stroke. As a baseline, we simulated a cilium that is driven at 3Sp  and 45A  

with ,1FR  and found that the beating pattern is symmetric, as seen in Figure 5.3a-b. For 

the case of ,5.0FR  we found that cilia beat in a highly asymmetric pattern similar to 

the patterns of biological cilia. In this pattern, as shown in Figure 5.3c-d, cilia are erect 

during their effective stroke, and are bent over during their recovery stroke. This type of 

stroke allows cilia to produce net pumping along a ciliated surface, as they push more fluid 

in their erect effective stroke than they pull back as they are bent over during their recovery 

stroke. To quantify their pumping effect, we define the pumping effectiveness, 

3

,pump strokeV L  , where strokepumpV ,  is the volume of fluid pumped for each stroke cycle. 
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We found that for the symmetric case where ,1FR  the pumping effectiveness was 0 

, while we calculated a high pumping effectiveness of 0.74   for the case of .5.0FR  

 

Figure 5.3 Trajectories of cilia modeled as flexible filaments driven by symmetric and 

asymmetric oscillatory distributed forces at 3Sp  and .45A  Red lines are the tip 

trajectories, black lines are snapshots of the cilium centerline during the effective stroke, 

and blue lines are snapshots of the cilium centerline during the recovery stroke. 

a) Trajectory of the cilium tip for the case of ,1FR  b) Snapshots of the cilium for the case 

of ,1FR  c) Trajectory of the cilium tip for the case of ,5.0FR  d) Snapshots of the 

cilium for the case of 5.0FR  

5.1.3 Nano-Particle Capture 

Nano-particle capture can be a slow process if left entirely up to diffusion to bring particles 

to sensory surfaces. In order to evaluate the utility of magnetically actuated synthetic cilia 

for capture of nanoscale particles onto sensory surfaces, we performed simulations using 

the model of a channel with ciliated top and bottom walls, as described in section 3.2.1 and 

shown in Figure 3.5a-b. We characterized deposition enhancement due to oscillating cilia 

through comparison to deposition due purely to diffusion, as given by the analytical 
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solution of equation 3.12 and data for the analytical solution and simulations in non-ciliated 

channels as given in Figure 3.11, which showed that the fraction of nano-particles 

deposited on channel walls, ,P  increases steadily with time even without the use of cilia. 

 When we introduce elastic cilia that are driven by a horizontally oscillating force applied 

at the cilia tips, the deposition rate increases. Figure 5.4 shows a plot of P  over time for 

both the case of oscillating cilia (solid line) and for the case with no cilia (dashed line). The 

amount of deposited particles increases more quickly when the fluid is agitated by 

oscillating cilia, indicating that beating cilia enhance nano-particle deposition by creating 

convective fluid flows. 

 

Figure 5.4 Deposition of nano-particles  4000Sc  on microchannel walls without cilia 

and with cilia beating at ,3Sp  ,1/ Lx  and .1A  The time required to achieve 90% 

deposition is shown for each case, and is denoted by Dt  and ,Ct  respectively 

 In order to quantify the enhancement of deposition, we introduce a deposition 

enhancement factor ,P D CE t t  where Dt  is the time required to reach the desired 

deposition P  without cilia, and Ct  is the time required to reach the same P  with 

oscillating cilia. For the case shown in Figure 5.4b, the deposition enhancement for 90% 
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deposition, denoted by ,9.0E  was found to be 1.86. This means that 90% of particles will 

be deposited almost two times faster using oscillating cilia as compared to the deposition 

in a plain channel. 

 The value of E  depends upon ,P  as shown in the plots of E  versus P  for varying Sp  

and A  given in Figures 5.5a and 5.5b, respectively. For relatively short times ,t  

deposition is limited to those nano-particles that are near the walls, in which case 

enhancement due to oscillating cilia is relatively weak. However, as the deposited P  

increases, E  also increases. This can be explained by considering that the initial 

concentration of particles throughout the channel is uniform and particles located close to 

the walls can deposit quickly due to molecular diffusion. As more particles deposit on the 

channel walls, the concentration of particles near the walls is reduced as compared to the 

center of the channel. This causes the deposition rate to slow as P  increases (Figure 5.5). 

If beating cilia are used to agitate the fluid, then the fluid from the center of the channel, 

which contains a higher concentration of particles, is brought closer to the walls, increasing 

the amount of particles that are near the walls, thereby facilitating their deposition. Thus, 

the influence of beating cilia on deposition increases with time as the concentration of 

particles in the channel drops. 

 We find that E  increases monotonically for different values of ,Sp  as shown in 

Figure 5.5a. Among three values of Sp  shown in this figure, 3Sp  yields a consistently 

larger E  than somewhat larger and smaller values of Sp  indicating a non-trivial 

dependence of E  on .Sp  We also find that an increase in amplitude can enhance the 
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deposition as indicated by increasing E  in Figure 5.5b. Below, we examine the 

dependence of E  on Sp  and A  in more detail. 

 

Figure 5.5 Deposition enhancement E  in ciliated microchannels with 1/ Lx  for nano-

particles with .4000Sc  a) Cilia beating with different Sp  and .1A  b) Cilia beating 

with different A  and 3Sp  

 We first investigate the effect of Sp  on the deposition of nano-particles in a ciliated 

microchannel. As seen in Figure 5.6, the dependence of E  on Sp  is non-monotonic, with 

two maxima at around 3Sp  and ,5Sp  respectively. The maximum at 3Sp  is 

significantly larger than at 5Sp  and, therefore, characterizes the beating regime that is 

optimal for enhancing nano-particle deposition. We find a similar dependence of E  on Sp  

for different values of the Schmidt number ,Sc  as defined in section 3.2.4. Our simulations 

show that the enhancement is more significant for larger .Sc  Because Sc  relates the effects 

of fluid convection on mass transport to that of diffusion, an enhancement for larger Sc  

means that the effect of cilia on deposition will be more significant for larger, less diffusive 

particles, as well as for systems at lower temperatures, for which transport by diffusion is 

relatively slow. 
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 The non-trivial relationship between E  and Sp  results from the flow patterns generated 

by cilia oscillating with different ,Sp  as discussed in section 5.1.1 and shown in Figure 5.1. 

In all cases presented in Figure 5.1, oscillating cilia induce secondary flows in the 

microchannel. However, among all these cases 3Sp  induces the fastest secondary flow 

with the velocity about an order of magnitude greater than for the other cases. Additionally, 

cilia oscillating at 3Sp  create large circulatory patterns. Thus, we find that cilia with 

3Sp  are optimal for enhancing nano-particle deposition.  

 

Figure 5.6 Dependence of E  at 90% deposition on cilia sperm number .Sp  The force 

amplitude is 1A  and cilia separation is 1/ Lx  

 To investigate the effect of cilia coverage density on deposition enhancement, 

simulations are performed in which we vary spacing between cilia. The results are shown 

in Figure 5.7. We find that E  varies non-monotonically with cilia spacing, showing 

maximum enhancement at about .1.1 Lx   This optimal density of cilia coverage is 

independent of the Schmidt number. A similar optimal spacing has been previously 

reported for heat transport enhancement by tilted oscillating cilia (76), in which case the 
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optimal spacing was related to the formation of flow structures in the ciliated layer. Smaller 

inter-cilial spacing prevents the development of circulatory flow currents, whereas 

excessive separation between neighboring cilia leaves parts of the fluid un-agitated. 

 

Figure 5.7 Dependence of E  at 50% deposition on cilia spacing .Lx  The simulation 

parameters are ,3Sp  ,1A and 2xz    

 Finally, we investigate the effect of the magnitude of the cilia actuation force on 

deposition enhancement. As seen in Figure 5.8, E  increases with increasing driving force 

amplitude for .12A  For larger values of ,A  E  saturates or even slightly decreases. In 

other words, an additional increase of the oscillating force beyond 12A  is unable to 

further enhance the deposition of nano-particles. We can explain this by examining the 

displacement of oscillating cilia. We find that cilia displacement approaches a limiting 

cycle as the driving force is about 12.A   Further increase of the force magnitude 

essentially does not affect the cilium displacement and, therefore, has a weak effect on 

nano-particle deposition. 
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Figure 5.8 Dependence of E  at 90% deposition on oscillation amplitude E  for various 

,Sc ,3Sp  and Lx  

5.1.4 Microfluidic Mixing 

In order to demonstrate local microfluidic mixing by oscillating flexible filaments, we 

simulated cilia beating at 3Sp  and 4A  due to an oscillating distributed force in a 

microchannel filled with a fluid initially containing two stratified concentration layers as 

described in section 3.2.3 and Figure 3.7. As seen in Figure 5.9a, the circulatory patterns 

created by these oscillating cilia produce local mixing, as is evident by the large region of 

light-colored fluid with circular streaks, located between the red and blue layers after 

several cilia oscillations. Figure 5.9b gives the degree of mixing over time for the case of 

mixing purely due to diffusion versus mixing enhanced by oscillating cilia, and we find 

that when cilia are used at 3,Sp   8,A   and 2000,Sc   80% mixing is reached 8 times 

faster than would happen if relying purely on diffusion.  
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Figure 5.9 a) Concentration field in a microfluidic channel containing an array of flexible 

filaments driven by an oscillating distributed force at 3,Sp   8,A   and 2000.Sc   Before 

mixing, the microchannel contained a layer of fluid with 0C   (blue) and an equally thick 

layer with 1C   (red). b) Time evolution of the degree of mixing of fluid layers in the case 

of Figure 5.9a (with cilia) and in a microchannel without cilia 

 We quantify mixing enhancement using a mixing enhancement parameter, which is once 

again given by P D CE t t  giving the acceleration of mixing over mixing due purely to 

molecular diffusion. We found that as was the case with nano-particle deposition, mixing 

enhancement increases monotonically with increasing ,A  as seen in Figure 5.10. It is 

expected that local mixing enhancement of stratified fluid layers will behave similarly to 

nano-particle deposition, since the physical mechanism of local circulatory flows 

transporting fluid and particles vertically across the channel is shared by both processes. 

Thus, we do not devote further discussion to local microfluidic mixing, and instead focus 

on the use of asymmetric cilia oscillations for large-scale transport. The ribbon cilia were 

designed with this goal in mind. 
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Figure 5.10 Mixing enhancement in a microfluidic channel containing an array of cilia 

driven by an oscillating distributed force at 3Sp   and 2000Sc   with varied A  

5.2 Ribbon Cilia 

We now turn our discussion to a numerical study of a second type of ciliated system which 

uses a simple asymmetric geometry of a flexible thin soft magnetic ribbon and a rotating 

magnetic B-field (Figure 3.6a) to create large-scale flow for microfluidic applications. We 

first study the dynamics of such a system to understand how the asymmetry inherent in the 

system results in a net fluid flow, and to determine how to best use the system to maximize 

time-irreversibility and asymmetry. We then investigate how the system can be utilized for 

microfluidic pumping. Finally, we explore the use of such cilia for creating large-scale 

transverse circulatory flow in a microchannel, so as to facilitate microfluidic mixing and 

particle capture applications. 

5.2.1 Cilia Dynamics 

In order to understand the dynamics of magnetically actuated ribbon-shaped cilia and its 

dependence on the balance between magnetic, elastic and viscous forces, we performed 
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simulations using the model described in section 3.2.2 and compared our results to recently 

obtained experimental images of similar cilia. We illustrate cilia dynamics using a series 

of experimental images that show the position of a cilium at several instances of time 

(Figure 5.11a), as well as a similar set of cilium positions obtained using our numerical 

model (Figure 5.11b). These cilia are driven by a uniform magnetic field that is rotating in 

the x-y plane. When the soft magnetic cilia are in a uniform magnetic field, they feel local 

magnetic moments acting to align the cilia with .B  As B  rotates counter-clockwise 

(CCW), the cilia are forced to maintain alignment with ,B  and are thus driven from right 

to left in a power, or forward stroke (black arrows on the trajectory of the cilium tip shown 

in Figures 5.11a-b) which is dominated by the magnetic moment. When the cilia deflect 

sufficiently far that their internal elastic forces overcome the magnetic forces, the cilia no 

longer follow the rotating magnetic field, but instead rapidly snap back to the right in a 

recovery stroke (white and blue arrows in Figures 5.11a and 5.11b, respectively), due in 

large part to an elastic restoring force balanced by the viscous drag arising from the 

surrounding fluid. As seen from the tip trajectory in Figures 5.11a-b, the cilia follow highly 

asymmetric and time-irreversible stroke patterns in which the tip traces through an air-foil-

shaped trajectory, due to the difference in the forces governing the forward and recovery 

strokes. This asymmetric beating pattern gives these cilia the capability of creating large-

scale net flows, as will be shown in sections 5.2.3-4. In this case, the cilia push fluid to the 

left, and then bend down as they return to the right in their recovery stroke, pulling back 

less fluid and resulting in net fluid transport to the left. 
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Figure 5.11 a) Series of experimentally-captured images of cilia at various instances of 

time throughout an oscillation cycle driven by CCW rotation of a magnetic B-field. The 

trajectory of the tip is denoted by the black and white dashed lines, which indicate the 

forward and recovery portions of the stroke, respectively. b) Similar images of cilia 

positions obtained using our numerical model 

 When the cilia have recovered to the point where they are aligned with the opposite pole 

of the B-field, they follow B  to repeat this oscillating cycle. This ability to follow the 

opposite pole occurs due to the soft magnetic cilia rapidly flipping their magnetization, and 

results in two oscillations of the cilia for every rotation of the magnetic field. As seen in 

Figure 5.11, simulation results (Figure 5.11b) capture the basic dynamics seen in images 

of experimental magnetic cilia (Figure 5.11a). 

 In order to better understand the complex dynamics of the cilia oscillation cycle, we 

consider the magnetic forcing experienced by the cilia throughout this cycle in more detail. 

As described in section 3.2.2, the magnetic moments experienced locally by each part of 

the cilia can be modelled to be proportional to  sin 2 ,  where   is the angle between 

magnetic field B  and the local axis of the cilium, as shown in Figure 3.6a. This captures 

the fact that cilia experience local moments driving them toward alignment with either the 
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direction of B  or ,B  whichever is closer, which occurs due to the ability of the cilia to 

change their magnetization such that it aligns with .B  Thus, if the local cilium axis is in 

alignment with B  or with ,B  then it will feel no local magnetic moment and will remain 

aligned with the field. As    increases, the magnetic moment increases up to a maximum 

at 45°, before decreasing until there is no moment at 90 .    As   increases further, 

the local cilium axis is now closer to B  and thus feels a moment driving it toward 

alignment with that direction. 

 We illustrate this forcing by considering the direction of B  when the cilium is at various 

positions throughout an oscillation cycle in the case of slow cilium oscillation, such that 

viscous drag is not sufficiently high to significantly alter cilia dynamics during the forward 

stroke. When the cilium begins its forward stroke at position a in Figure 5.12, the cilium is 

close to its equilibrium position (the position which the cilium assumes with no magnetic 

field) and much of the cilium (that is, all but the cilium base) is held in good alignment 

with B  by magnetic moments. As the field rotates CCW, the cilium remains mostly aligned 

with the field and follows it through positions b and c, driven  by magnetic moments on 

the base of the cilium (bottom plots in Figure 5.12), which is primarily oriented less than 

90° out from .B  As the cilium continues to follow the field to position d, most of the cilium 

still remains in alignment with ,B  but the base of the cilium now has 90 ,    resulting in 

a moment acting to align that part of the cilium with .B  This results in the cilium being 

pulled by its base back to the right, even though the cilium tip remains aligned with .B  

The amount of the cilium that experiences a moment toward B  increases as the cilium 

moves to positions e and f, where the cilium tip is now increasingly lagging behind .B   
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Figure 5.12 Cilium positions a-h at select times throughout the oscillation cycle given by 

black lines. For each cilium position, the corresponding B-field direction is given by a red 

arrow. The cilium tip (blue dots) traces out the tip trajectory through the forward and 

recovery strokes, as given in the top plot by the blue solid and dashed lines, respectively. 

At bottom, the magnitude and direction of the applied magnetic moment along the cilium 

length is given in red as a distribution plotted normal to the local cilium axis for the 

corresponding cilium positions at the given times .t T  While plotting the distribution 

normal to a curved axis gives the illusion of a sharp changes in the distribution, the 

magnetic moment and its spatial derivative both vary continuously along the cilium length 

 Shortly after position f, the cilium reaches a critical threshold where the magnetic 

moment pulling the cilium tip toward alignment with B  is no longer strong enough to 
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overcome the increasing elastic force due to bending of the cilium whose base is being 

pulled by magnetic moments toward .B  At this critical point, the cilium snaps back in its 

recovery stroke, releasing its accumulated elastic energy as it relaxes through positions g 

and h. The rate of the recovery stroke is defined by the viscous drag on the cilium from the 

surrounding fluid. Once the elastic forces have driven the cilium through much of its 

recovery stroke, the cilium is now mostly aligned with ,B  and is driven by magnetic 

moments toward alignment with the field. The oscillation cycle then repeats. 

 Note that the recovery stroke is rapid as compared to the forward stroke, as evidenced by 

the large time difference between cilium positions a-f in Figure 5.12 as compared to those 

for positions f-h. The time stamps for each cilium position given at the bottom of 

Figure 5.12 are given as ,t T  where t  is the time from the beginning of the oscillation 

cycle until the cilium is at a given position, and T  is the cilium oscillation period. 

5.2.2 Characterizing Cilia Stroke Patterns 

Now that we have a basic understanding of cilia dynamics and its governing forces, we 

investigate the effect of the balance of these forces using the dimensionless parameters 

described in section 3.2.2. These parameters are ,Mn  which gives the balance between 

magnetic and elastic forces, and ,Sp  which gives the balance between viscous and elastic 

forces. 

 We begin by comparing the trajectories of the tips of cilia driven at different values of  

Mn  by varying the magnitude of .B  The various curves on Figure 5.13a and 5.13b give 

cilia trajectories for varied values of Mn  obtained from experiments and simulations, 
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respectively. We find that cilia oscillated at high values of Mn  move in such a way that 

they reach large deflections since in this case magnetic forces are strong as compared to 

elastic forces. As Mn  is decreased, the cilia follow a similar trajectory as they did with 

high ,Mn  but the deflection of the cilia is decreased due to the reduced magnetic moments 

with respect to the elasticity of the cilia. As seen in Figure 5.13b, the simulations captured 

the experimentally-observed changes in cilia trajectories shown in Figure 5.13a. 

 

Figure 5.13 Cilia tip trajectories for varied values of Mn  obtained by varying the 

magnitude of B  in a) experiments, and b) numerical simulations. Each colored curve 

represents a tip trajectory for a given value of Mn  

 We study the effect of the balance between viscous forces and magnetic and elastic forces 

by investigating the effect of Sp  on cilia behavior. In order to do so, we first characterize 

cilia dynamic behavior through consideration of the time scales of the forward and recovery 

strokes. Specifically, we consider a dimensionless stroke irreversibility time, 
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where powert  is the time it takes a cilium to complete the power stroke portion of the 

oscillation cycle, and covre eryt  is the time in which the cilium completes its recovery stroke. 

This gives a simple way of characterizing the stroke irreversibility, as a large difference in 

the time taken to do the power stroke as compared to the recovery stroke indicates that the 

strokes are very different, due to a significant difference in the forcing for the respective 

parts of the oscillation cycle. Thus, a value of this dimensionless time approaching 1sT   

denotes a highly-irreversible stroke, while a low value approaching 0sT   corresponds to 

a stroke in which the power and recovery strokes are similar to each other. 

 We now consider the effect of Sp  on cilia dynamics by examining how 
sT  changes with 

changing .Sp  As seen in in Figure 5.14a, simulations using varied ,  EI  and   showed 

that sT  decreases with increasing Sp  for each given .Mn  This is due to the increase in 

viscous forces with respect to elastic and magnetic forces, serving to dampen the velocity 

of the cilium and smooth out its stroke, reducing the ability of the cilium to closely follow 

B  during the power stroke and providing resistance to the elasticity-driven recovery stroke. 

In the limit of low values of ,Sp  viscous forces are low enough that they do not hamper the 

ability of the cilium to follow ,B  allowing for an extended power stroke. In this case, low 

viscous forces allow for a rapid recovery stroke. This results in a dimensionless stroke time 

approaching 1.sT   At high values of ,Sp  viscous forces provide for significant damping 
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in both strokes. Viscous drag causes the cilium to lag behind B  during the power stroke, 

decreasing the angle at which the cilium can no longer follow B  and shortening the power 

stroke. Viscous forces also act to dampen cilium motion during the recovery stroke, leading 

to an increased recovery stroke time. This combined effect leads to a low value of sT  at 

low .Sp  In fact, in the limit of high ,Sp  high viscous drag results in cilia oscillating with 

very low deflection with little difference between the motion in forward and recovery 

strokes. 

 

Figure 5.14 Characterization of the effect of Sp  and Mn  on cilia behavior. Blue and red 

curves represent characteristic non-dimensional values obtained from simulations with 

varied ,  EI and   at two values of Mn  over a wide range of .Sp  a) Effect on the non-

dimensional stroke irreversibility time, .sT  b) Effect on the normalized cilium 

displacement, s  

 As seen in Figure 5.14a, sT  is also dependent on .Mn  This is due to the fact that 

increasing Mn  results in an increased ability of the cilium to follow ,B  resulting in a longer 

power stroke to a larger deflection, which gives a larger elastic force to drive the recovery 

stroke.  
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 In addition to ,sT  the extent of the deflection of cilia is important to their dynamics. We 

characterize this deflection using a normalized deflection, max ,s L   where max  is the 

maximum distance between cilium tip points on the tip trajectory, such as points a and d 

on Figure 5.12 and L  is the cilium length. As shown in Figure 5.14b, simulations showed 

that increasing Sp  acted to decrease the deflection of cilia, due to increased fluid resistance 

to cilia movement.  

5.2.3 Microfluidic Pumping 

With an understanding of how ribbon-shaped cilia can be actuated to create high-amplitude 

highly irreversible and asymmetric strokes, we turn to the study of how this affects large-

scale fluid transport. We begin by studying the creation of a net pumping flow down a 

microchannel. We do this using a simulation domain consisting of a single cilium, with 

periodic boundary conditions in the horizontal ( x  and z  ) directions, and solid walls on 

the top and bottom of the domain, as seen in Figure 3.6b. This simulates an infinitely wide 

and long microchannel, and gives us a simple and efficient way of investigating the use of 

cilia for microfluidic pumping. 

5.2.3.1 Effect of Cilia Stroke Pattern 

It has been shown that the amount of fluid propelled by a cilium is proportional to the area 

swept by the cilium in its oscillation cycle (89, 90). This is physically intuitive, since this 

area multiplied by a width represents the difference in the volume of fluid pushed forward 

(in the negative x direction) in the power stroke as compared to the amount pulled 

backward (in the positive x direction) in the recovery stroke. This allows us to 



 106 

approximate the ability of the cilia to perform microfluidic pumping by measuring the area 

swept by its tip throughout its trajectory, as seen by the cilium tip trajectory curves in 

Figures 5.11-13. 

 In order to demonstrate that the swept area is in fact proportional to the volume of fluid 

pumped by an oscillating cilium, we performed simulations with cilia oscillating at varied 

Mn  in a periodic array with x  and z   direction spacing of 1.2x L   and 0.2 ,z L   

respectively, in a channel of height / 1.1.H L   We tracked the tip trajectory so as to 

calculate a swept area, and also calculated the amount of fluid pumped in the negative x

direction by each cilium during each oscillation. As seen in the red curve in Figure 5.15, 

the area enclosed by the cilium tip trajectory, which we normalize by 
2L  and denote as 

,enclosedA  increases linearly with increasing .Mn  This is also evidenced by the increasingly 

small tip trajectories shown in Figure 5.13b, and is in line with the fact that increasing Mn  

increases both stroke irreversibility and deflection, as seen in the difference between the 

blue and red curves in Figures 5.14a-b. The volume of fluid pumped by a cilium in each 

oscillation was also linear, as evidenced by the pumping effectiveness shown in the blue 

curve in Figure 5.15. Indeed, when 
enclosedA  is scaled by a factor of 1/4, it shows close 

correlation to the pumping effectiveness, as defined in section 5.1.2 and shown by the green 

curve in Figure 5.15. Thus, 
enclosedA  is indeed proportional to pumping in our system, and 

can be used to investigate the effect of Sp  on microfluidic pumping. 
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Figure 5.15 Measures of pumping per cycle by each cilium a periodic array of cilia 

oscillating at 2Sp   for varied Mn  in a channel with 1.1.H L   The red and green curves 

give 
enclosedA and 4,enclosedA  respectively. The blue curve is the pumping effectiveness,   

 In order to understand the effect of Sp  on cilia pumping, we performed simulations with 

cilia oscillating at varied frequencies in a periodic array with x  and z   direction spacing 

of 1.2x L   and 0.2 ,z L   respectively, in a channel of height / 1.1.H L   We 

calculated 
enclosedA  and found that it generally decreases with increasing ,Sp  as shown in 

Figure 5.16a. This is due to the decrease in stroke irreversibility and deflection as shown 

in Figure 5.14a-b, respectively. Thus, we expect that the amount of fluid pumped by a 

cilium in one oscillation cycle will generally decrease with increasing .Sp  
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Figure 5.16 Approximation of pumping in a microchannel with cilia oscillating at varied 

Sp  for two values of .Mn  a) 
enclosedA  as a function of ,Sp  giving an approximation of the 

amount of fluid pumped by each cilium oscillation. b) .,approxQ  which approximates the 

volumetric flow rate of fluid pumped by cilia 

 In order to approximate the volumetric flow rate achieved by oscillating cilia, one must 

also take into account the oscillation rate of the cilia, so as to arrive at a volume pumped 

per unit time. Thus, we approximate the volumetric flow rate as . 1 ,approx enclosedQ A    

where 
1  is the oscillation frequency at 1Sp   for a given parameter set. This serves to 

keep the resulting parameters dimensionless and to make the result dependent on Sp  but 

not on specific system parameters that go into .Sp  Since   increases as Sp  to the fourth 

power, it is to be expected that at least some of the decrease in pumping for a single 

oscillation will be offset by the increased stroke frequency. As seen in Figure 5.16b, there 

is indeed a non-monotonic relationship between .approxQ  and ,Sp  with peaks near 3Sp   

and 5.Sp   This understanding helps us to know how microfluidic pumping can be 

controlled directly through control of the oscillation frequency. 
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5.2.3.2 Effect of Channel Geometry 

In order to understand the effect of the height of a microchannel on the ability of oscillating 

cilia to induce pumping therein, we performed simulations with cilia oscillating at 2Sp   

in a periodic array with x  and z   direction spacing of 1.2x L   and 0.1 ,z L   

respectively, in channels of varied height, and calculated the volume of fluid pumped per 

cycle so as to determine the pumping effectiveness. As seen in Figure 5.17a, the pumping 

effectiveness increases almost linearly with increasing channel height. This suggests that 

the average velocity of fluid pumped through the channel is fairly constant with changes 

in .H L  In order to study the effect of H L  on the average pumping velocity, we introduce 

a channel-area normalized pumping effectiveness, , ,ch pump strokeV zHL   which gives the 

volume of fluid pumped per cycle normalized by the cilium length and the channel cross-

sectional area. The parameter 
ch  represents the normalized average displacement of fluid 

in the pumping direction during an oscillation cycle, and can be used to find the average 

fluid velocity for a given oscillation frequency and cilium length. For example, a cilium of 

length 480L m  oscillating at 100 Hz would be expected to generate flow at around 

2 cm/s. As seen in Figure 5.17b, we found that for cilia oscillating at two different values 

of ,Mn  
ch  is relatively constant with varied .H L  There are variations in 

ch  with 

changing H L  especially in short channels in which the channel height is close to the 

cilium length, but in the limit of high H L  there is not much dependence of 
ch  on .H L  



 110 

 

Figure 5.17 Calculated pumping effect of oscillating cilia. a) Effect of H L  on pumping 

effectiveness .  b) Effect of H L  on channel-area normalized pumping effectiveness 
ch  

 In order to understand why there is not much change in 
ch  with varied channel height, 

we consider the variation in period-averaged fluid velocity along the channel height, as 

shown in Figure 5.18a-b. Figure 5.18a gives the profile of the period-averaged velocity in 

the pumping (negative x ) direction, ,xU  normalized by a reference velocity, ,refU  

chosen to be the maximum velocity at this cross-section of a channel with 6.H L   Here, 

the velocity profile is highly nonlinear in the section of the channel approximately up to 

the height of the cilia, which is denoted by the horizontal line at 1,H L   but becomes 

linear above that. The negative pumping velocity transitioning to a peak positive velocity 
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profile at the bottom of the channel is due to the fact that the oscillating cilia create local 

CCW circulatory flow patterns in their vicinity. Above the local circulatory flow patterns, 

the velocity profile is linear. This is because fluid must meet no-slip conditions causing it 

to have the circulatory flow velocity at the top of the circulatory flow pattern, while having 

zero velocity at the stationary wall at the top of the channel. The velocity boundary 

conditions at the bottom and top of this section of fluid, similar to the classical Couette 

flow, results in the linear velocity profile present in shear flows. This linear velocity profile 

in the fluid above ciliated surfaces has been observed in experimental and physiological 

ciliated flows (91, 92). 

 

Figure 5.18 Profiles of the normalized velocity in the pumping (negative x ) direction 

for a) 6H L   and b) 2H L   

 As seen in Figure 5.18b, channels with 2H L   have a similar velocity profile, except 

that the maximum velocity (and thus the velocity at the top of the circulation pattern) is 

decreased slightly due to the proximity of the top wall. The decreased distance to the top 

wall gives an increased fluid shear stress to resist circulatory flow, since the flow velocity 

decreases over a much shorter distance than in the case of 6.H L   Since the velocity 
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profile is nearly linear in a significant portion of the channel, the average velocity can be 

estimated as half of the velocity at the edge of the circulation pattern. This explains why 

the fluid velocity does not change much with increasing ,H L  especially in the limit of 

large .H L  This nearly-constant average fluid velocity leads to the volumetric flow rate 

scaling linearly with the channel cross-sectional area and thus with the channel height. It 

is important to note that the dependence of pumping effectiveness on channel height as 

studied here applies specifically to a large array of cilia covering the microchannel floor of 

the entire channel in which fluid is to be pumped, and does not necessarily reflect behavior 

in different configurations. For example, less pumping would be expected in a channel in 

which a small region of cilia drives fluid through a longer section of channel, due to the 

increased fluid resistance in the extended channel length. 

 In addition to microfluidic applications, these findings are important to understanding the 

effect of cilia on transport in biological applications. The transport of a layer of fluid on 

top of circulatory flow regions in the vicinity of oscillating cilia has implications in a 

variety of biological and physiological applications, including mucociliary clearance. 

5.2.4 Generating Large-Scale Circulatory Flow 

In order to use oscillating cilia for microfluidic mixing and particle capture in continuous-

flow devices, it can be desirable to controllably generate large-scale transverse circulatory 

flows. This helps to stretch fluid interfaces for mixing and to move fluid and particles past 

capture surfaces in applications such as bio-detection. Thus, we investigate the effect of 

channel geometry and cilia placement on generation of transverse flow by simulating cilia 

stretching across a microchannel of finite width 5.6 ,L  as depicted in Figure 3.6c. Cilia 
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oscillate at 2Sp   and 5.2,Mn   and we vary the channel height and number of equally-

spaced cilia across the channel. We use periodic boundary conditions in the axial ( )z  

direction, simulating a long microchannel with finite height and width. 

 We quantify generation of transverse flow across the channel as a normalized mean 

transverse velocity, ,x xU U Lf   where xU  is the mean period-averaged velocity in the 

x direction of fluid that is located above the height of the cilia and f  is the frequency of 

cilia oscillation. We consider only the fluid above the height of the cilia since if we 

considered the entire channel height, then the average velocity would be zero due to 

conservation of mass. 

 As seen from comparison of the curves for one, two, three and four cilia across a 

microchannel in Figure 5.19, the transverse flow generation increases with increasing the 

number of cilia. This is in large part due to the fact that an increased number of cilia 

increases the ability to push fluid against resistance such as the viscous friction at the 

channel walls.  
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Figure 5.19 Normalized mean transverse velocity of flow generated by oscillating cilia 

oriented so as to push fluid across a microchannel. The four curves represent velocities for 

configurations using one, two, three or four cilia stretching across the channel with varied 

H L  

 The lack of xU 
 when using a single cilium across the width of the channel in geometries 

with 1.1H L   and 1.25,H L   as seen in the green curve in Figure 5.19, results from 

the generation of a single pair of counter-rotating vortices each filling the entire height of 

the channel. When this happens, fluid is not able to travel across the entire height of the 

channel. Instead, fluid resides in either the vortex created by the oscillating cilium, or in its 

counter-rotating partner vortex. If more cilia are used in the channel, the size of vortices is 

reduced such that they do not occlude the entire height of the channel, and thus allow a net 

transverse flow at the top of the channel. Alternatively, if the channel height is increased 

to at least 1.5,H L   then the vortex created by the oscillating cilium does not reach the 

top of the channel, and it drives a large-scale circulation of fluid stretching across the entire 

width of the channel.  
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 As seen in Figure 5.19, for all configurations xU 
 is relatively low when the channel 

height is close to the cilium length, increases to a maximum value at around 

1.5 1.75,H L   and then decreases as the channel height is further increased. The 

inability of cilia to provide for much transverse flow in the case of low H L  can be 

explained by the law of conservation of mass. Although the cilium stroke serves to push 

fluid, the fluid must have somewhere to go in order to be pumped, and if it does not then 

the cilium will not be able to displace it. In the case of pumping fluid in the transverse 

direction toward a solid wall, the problem is different than it was for axial pumping down 

a microchannel, since in the case of the solid wall the fluid needs to have space to return in 

the opposite direction. 

 One option for an avenue of returning fluid is to have enough space at the top of the 

channel in which fluid can return. Figure 5.20a gives the streamlines of a slice of the 

period-averaged velocity field at the centerline of cilia for the case of 4 cilia across a 

channel with 1.1.H L   The cilia drive fluid in circulatory patterns, apparent here as the 

four large vortices. However, since the cilia are driving the fluid toward the left wall and 

the fluid does not have space to flow above the vortices, there is little large-scale 

circulation.  

 However, if the channel height is increased to 1.5,H L   there is significant transverse 

flow, as seen in Figure 5.20b. Once again, the cilia create local circulatory patterns as seen 

by the four circular vortices located in the bottom half of the channel. There is also a 

significant amount of transverse flow weaving up and down between vortices and across 

the channel from right to left. This transverse flow is made possible by the flow of fluid 
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returning from left to right in the top portion of the channel, completing a large-scale 

transverse circulatory pattern of fluid stretching across the entire width of the channel. This 

allows for generation of transverse flow at significant and controllable velocities. For 

example, if this microchannel was used with four rows of cilia of length 480L m  

stretching across a channel with 1.5,H L   and were oscillated at 100 Hz, then transverse 

flow with an average velocity of over 7 mm/s would be expected. One could further 

optimize the use of a specific device for generation of transverse flows using the findings 

of section 5.2.3.1. 

 

Figure 5.20 Plot of streamlines of a slice of the period-averaged velocity field at the 

centerline of cilia for the case of 4 cilia across a channel with a) 1.1,H L   and 

b) 1.5.H L   Cilia oscillate at the locations of the circulatory flow cells at the bottom of 

the channels, and arrows indicate the direction of flow 
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5.3 Summary 

We used computational simulations to study the dynamics of two distinct types of 

magnetically actuated synthetic cilia, and investigated how to best use them for 

microfluidic transport applications. 

 We showed using a model of high-aspect-ratio cilia that cilia behavior is dependent on 

two dimensionless numbers: the sperm number Sp  and force number .A  Oscillating cilia 

create circulation patterns that are largest and strongest at 3.Sp   These cilia can be caused 

to create a net pumping effect if driven in asymmetric strokes using a modulated 

asymmetric forcing. We demonstrated that the flow circulation patterns generated by these 

cilia can be used for microfluidic mixing, and showed how to best use such cilia for capture 

of nanoscale particles on sensory surfaces. 

 We developed a model of high-aspect-ratio ribbon-shaped cilia, and explored the time-

irreversible asymmetric cilium dynamics that these cilia exhibit when exposed to a rotating 

uniform magnetic field. Our model captures cilia behavior seen experimentally, and is used 

to understand the physics of the cilia-fluid interactions. We show that the behavior of these 

cilia is dependent on two dimensionless numbers: the sperm number Sp  and the magneto-

elastic number .Mn  We characterize the time-irreversibility and deflection of cilia 

oscillations at various values of these dimensionless numbers, and show that fluid pumping 

can be approximated using the area swept by the cilia. Further, we investigate the effect of 

channel configuration on the generation of axial microfluidic pumping and transverse 

circulatory flow using oscillating cilia, and show that significant fluid transport can be 

created by use of these cilia. These cilia require power input on the order of a microwatt, 
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which is approximately greater than the power required to drive flow through a 

microchannel, but still much lower than the power lost to heat in a typical motor as would 

be used to rotate the magnet used for the magnetic field. 

 Our findings not only guide the efficient design of microfluidic devices utilizing 

oscillating synthetic cilia, but can be applicable in understanding the behavior of biological 

cilia and their effect on fluid transport. 
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CHAPTER 6. CONCLUDING REMARKS AND OUTLOOK 

In this dissertation, we have studied the fluid and solid dynamics of two different types of 

magnetically actuated structures for use in microfluidic devices with mixing and particle 

capture applications. Specifically, we studied the behavior and application of a system that 

uses superparamagnetic microbeads moving in controlled orbits through a fluid sample, so 

as to mix the fluid and capture particles therefrom. We also studied the dynamics of 

actuated synthetic cilia, and investigated their use in microfluidic applications. We studied 

these systems using fully coupled 3-D computer simulations which modeled fluid and solid 

dynamics as well as mass transport phenomena, allowing for an in-depth investigation of 

system behavior and for the study of these systems in a wide variety of geometries and 

conditions. 

 A microfluidic device that utilizes magnetic microbeads orbiting around NiFe discs 

patterned on a microchannel floor to provide for microfluidic mixing and micro-particle 

capture was investigated computationally and validated by comparison with experiments. 

We showed that orbiting microbeads can lead to rapid fluid mixing in low Reynolds 

number flow, and identified two distinct mixing mechanisms. Bulk advection of fluid 

across the channel occurs due to the flow pattern that is developed when the ratio of flow 

velocity to bead velocity is low, and leads to rapid mixing. At higher velocity ratios, 

dispersion of small amounts of fluid across the channel occurs, and results in increased 

mixing. We used simulations to investigate the effect of system parameters on mixing 

performance, so as to guide the effective design of such microfluidic devices for 

microfluidic mixing applications. 
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 Further, we investigated the ability of orbiting magnetic microbeads to capture particles 

from fluid samples. We found that orbiting beads are effective at promoting contact 

between beads and target particles, allowing for efficient particle capture in short distances. 

Flow patterns created by beads assist them in drawing particles down to the height of the 

beads, enabling capture from channels up to six times as tall as the beads. We investigated 

the effect of system parameters on the distance required for sufficient particle capture, 

enabling an understanding of how to best use the device for efficient micro-particle capture. 

 Additionally, we used computational simulations to study the dynamics of two distinct 

types of magnetically actuated synthetic cilia, and investigated how to best use them for 

microfluidic transport applications. 

 We showed using a model of high-aspect-ratio filament cilia that cilia behavior is 

dependent on two dimensionless numbers:  the sperm number Sp  and force number .A  

Oscillating cilia create circulation patterns that are the largest and strongest at 3.Sp   

These cilia can be caused to create a net pumping effect if driven in asymmetric strokes 

using a modulated asymmetric forcing. We demonstrated that the flow circulation patterns 

generated by these cilia can be used for microfluidic mixing, and showed how to best use 

such cilia for capture of nanoscale particles on sensory surfaces. 

 We developed a model of high-aspect-ratio ribbon-shaped cilia, and explored the time-

irreversible asymmetric dynamics that these cilia exhibit when exposed to a rotating 

uniform magnetic field. Our model captures cilia behavior seen experimentally, and is used 

to understand the physics governing cilia kinematics. We show that the behavior of these 

cilia depends on two dimensionless numbers: the sperm number Sp  and the magneto-
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elastic number, .Mn  We characterize the time-irreversibility and deflection of cilia 

oscillations at various values of these dimensionless numbers, and show that fluid pumping 

can be approximated using the area swept by the cilia. Further, we investigate the effect of 

channel configuration on the generation of axial microfluidic pumping and transverse 

circulatory flow using oscillating cilia, and show that significant fluid transport can be 

created by use of these cilia. 

 Our findings on the use of orbiting microbeads demonstrate that they can effectively be 

used for both microfluidic mixing and micro-particle capture, and provide important 

understanding of the system and how to best use it in microfluidic applications. Orbiting 

magnetic microbeads, when functionalized, can be used in multi-functional devices for 

both microfluidic mixing and for specific detection of even small concentrations of 

microscale particles that can be readily extracted for further analysis, with important 

implications in bio-detection. Further efforts on study of such a device would be well 

served to focus on capture of live cells, so as to understand how the binding kinetics of 

specific target cells in sample fluids will affect capture, and to put this device to use in its 

intended function. Further, work should be done to scale up the throughput of this device 

by using multiple micro-channels in parallel on a device such as a lab-on-a-disc. Finally, 

this device should be incorporated into an overall device design so as to include the entire 

process from sample preparation and possible filtering, through capture, and finally to 

detection and quantification of captured cells. 

 Our findings on magnetically actuated cilia not only guide the efficient design of 

microfluidic devices utilizing oscillating synthetic cilia, but can be applicable in 

understanding the behavior of biological cilia and their effect on fluid transport. A valuable 
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extension of this work could be done to improve our understanding of how cilia can pump 

non-Newtonian fluids and stratified layers of fluids, with applications in areas such as 

muco-ciliary clearance. The ribbon-shaped cilia should further be investigated for use in 

capture of small concentrations of microscale particles, since they allow for the use of 

channel of large cross-section for significant sample throughput. Finally, ribbon-shaped 

cilia should be studied in continuous-flow applications to quantify their ability to use 

generated transverse flow for microfluidic mixing applications, and to determine how well 

a small array of cilia can pump fluid through channels of extended length. 
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