
Execution Environment Support for Many Core Heterogeneous
Accelerator Platforms

Vishakha Gupta
Georgia Institute of Technology

vishakha@cc.gatech.edu

Sudhakar Yalamanchili
Georgia Institute of Technology

sudha@ece.gatech.edu

Jose Duato
Universidad Politecnica de Valencia,

Valencia, Spain
jduato@disca.upv.es

Abstract
We are seeing the advent of large scale, heterogeneous sys-
tems comprised of homogeneous general purpose cores in-
termingled with customized heterogeneous cores and inter-
connected to diverse memory hierarchies. The presence of
accelerators requires support for new programming abstrac-
tions and run-time environments that can efficiently harvest
platform resources comprised of general purpose and spe-
cialized processing cores, their diverse memory units and
memory management support, and communication links that
connect them. This paper describes an execution model and
systems infrastructure for modeling and supporting multi-
accelerator architectures in general and experiences with an
implementation for interconnected network of Cell Broad-
band engine processors in particular. The primary contri-
butions of this paper are i) a pooled accelerator execution
model for orchestrating computations on and data move-
ments across multiple accelerators, ii) an API for implement-
ing the model effectively and iii) a distributed simulation en-
vironment for modeling multiple, communicating Cell/B.E.
processors.

1. Introduction
The relentless progress of Moore’s Law has periodically in-
spired major hardware and software innovations at specific
points in time to keep performance growth at pace with tran-
sistor density. The industry has reached another such point
where one can see some inevitable trends including perfor-
mance scaling via replication of cores and the use of custom
accelerators. The Cell/B.E. [8] is an example of such a tech-
nology inspired architecture. Along with a transition from
highly pipelined, complex processors to simplified, more
power-efficient execution platforms, general purpose cores
are being enriched via additional asynchronous processing
units to accelerate the execution of certain workloads, in-
cluding GPUs, crypto units, and network processors. Cur-
rently, these units are externally connected to the multicore
chip via fast interconnects and there are ongoing efforts to
achieve tighter couplings (e.g., System on a Chip, SMP Co-
herency Busses, and AMD’s Torrenza Intitiative). Therefore

we can expect to see large scale, heterogeneous systems
comprised of homogeneous general purpose cores intermin-
gled with customized heterogeneous cores and connected to
diverse memory hierarchies.

Regardless of the degree of coupling, the presence of such
accelerators requires support for new programming abstrac-
tions and run-time environments that can efficiently harvest
platform resources comprised of general purpose and spe-
cialized processing cores, their diverse memory units and
memory management support, and communication links that
connect them. Substantial efforts have gone into making
it easier for applications to use accelerators, both by pro-
viding low-level runtime support and interfaces [17, 13]
used by custom codes, and by offering higher level libraries
[20, 12] for general use. Multiple working groups have de-
veloped interfaces and powerful libraries to reduce the com-
plexity of programming accelerators [9]. But efforts to date
have largely ignored the issues related to the support for
multi-accelerator systems. This paper describes an execu-
tion model and infrastructure for modeling and supporting
multi-accelerator architectures - specifically architectures
comprised of a large number of Cell Broadband engine pro-
cessors.

The primary contributions of this paper are i) a pooled ac-
celerator execution model for orchestrating computations on
and data movements across multiple accelerators, ii) an API
for implementing effective movement of data and control
information across multiple elements and iii) a distributed
simulation environment for modeling multiple, communicat-
ing Cell/B.E. processors. In particular, this simulation infras-
tructure, the Multi-Cell Simulator (MCS) is an easily config-
urable simulation tool useful for exploring a wide range of
issues of interest in multi-cell architectures including, devel-
opment of parallel multi-cell applications, communication
optimizations, interconnection network topologies, and al-
location/management algorithms. The size of the multi-cell
system that can be simulated and supported by the execution
model is only limited by number of physical cores available
to host parallel instances of the Cell simulator.

1 2010/5/4

Figure 1. Cell Processor Architecture

Section 2 covers the Cell/B.E Processor. Section 3 talks
about the execution model in general followed by a descrip-
tion of the execution model on the Cell/B.E. system in Sec-
tion 4. The remainder of this paper describes the prototype
that implements the execution model on a multi-cell simu-
lator followed by experience with some applications in Sec-
tions 5 and 6. The paper concludes with a discussion of re-
lated work in Section 7, enhancements to the MCS function-
ality and directions for future work in Section 8.

2. The Cell Broadband Engine Processor
Cell is a design solution based on the analysis of workloads
in areas such as cryptography, graphics transform and light-
ing, physics, fast-Fourier transforms (FFT), matrix opera-
tions, and scientific workloads [8, 6, 5]. The cell proces-
sor is capable of delivering 204.8 GFlop/sec single preci-
sion and 14.6GFlops/sec double precision floating point per-
formance [14]. It has an aggregate memory bandwidth of
25.6GB/s at 3.2GHz. Figure 1 shows the architecture of the
Cell/B.E. processor. It is a heterogeneous chip multiproces-
sor that consists of a 64-bit dual-threaded Power core, re-
ferred to as the Power Processing Element (PPE), augmented
with eight specialized high performance co-processors based
on a novel single-instruction multiple-data (SIMD) architec-
ture, referred to as Synergistic Processor Elements (SPEs).
The SPEs and PPE are connected to each other and to the
512KB L2 cache via a coherent on-chip element interface
bus (EIB) that consists of four sixteen-byte data rings with
64-bit tags.

PPE performs all the control tasks and the SPEs are re-
sponsible for taking care of the compute intensive tasks
giving the Cell processor tremendous computing capabili-
ties. These are simple RISC based, extremely power effi-
cient cores with a 128 register file of 128bit registers and
local store to which they can DMA data to and from the
main memory. The PPE accesses main storage (the effective-
address space) with load and store instructions, the contents
of which may be cached. The SPEs, in contrast, access main

storage with Direct Memory Access (DMA) commands that
move data and instructions between main storage and a pri-
vate local memory called local store(LS). Load-store data
and other instruction-fetches for an SPE access its private
LS rather than shared main storage, and the LS has no as-
sociated cache. PPE and SPEs can also communicate over
mailboxes and event channels. The onboard memory inter-
face controller (MIC) supports the Rambus XDR memory
standard. The Broadband Engine Interface (BEI) Unit man-
ages data transfers between the processor elements on the
Element Interconnect Bus (EIB) and I/O devices.

Programming Cell - SPE Management Library The SPE
Runtime Management Library (libspe) [13] is the standard-
ized low-level application programming interface (API) that
enables application access to the Cell/B.E. SPEs. This li-
brary provides an API that is neutral with respect to the un-
derlying operating system and its methods to manage SPEs.
In order to enable the use of multiple SPEs in parallel for
an application, it supports functions like a) Creating N SPE
contexts (logical representation of SPEs as seen by soft-
ware), b) Loading the appropriate SPE executable, c) Run-
ning N threads for N SPE contexts, d) Waiting for threads to
finish and then e) Destroying all N contexts, with the help
of some standard thread package. Our API leverages these
functionalities to provide a richer interface to one or multi-
ple Cell/B.E.s.

3. An Execution Model for Heterogeneous
Architectures

This section describes a general execution model for hetero-
geneous architectures, while a specific instantiation for the
Cell/B.E. is described later in this paper. An execution model
has two principal components: a resource view and a (often
implied) programming model. The execution model binds
program objects to hardware objects and specifies synchro-
nization and communication requirements and in general
how programs execute. We employ a stream programming
model as illustrated in Figure 2. Variations of this model
have been proposed elsewhere, and in general we adopt the
principal features of models from [1, 4]. Applications are
multithreaded implementations, where a thread orchestrates
the execution of streaming kernels. Each kernel processes in-
put data streams and produces output data streams, thereby
encapsulating the computationally intensive components of
the application. Threads execute on standard cores, while
kernels are mapped to accelerators. Some restrictions may
be placed on the form and structure of data types permitted
in a single stream as well as the structure of computations
permitted in a kernel. For example, pointers are generally
not supported in case of FPGA accelerator. Kernels form in-
dependent compilation units that are linked with host core
executables.

With respect to the resource component of the execution
model, the system architecture is viewed as a a pool of ho-

2 2010/5/4

Figure 2. Stream programming model

mogeneous cores and heterogeneous accelerators. In gen-
eral, compute accelerators such as GPUs, FPGAs, or Cel-
l/B.E. SPEs are connected to general purpose host cores via
high speed links such as AMD’s Hypertransport, PCIe, or in
the Cell/B.E. the EIB. Further the heterogeneous cores may
have access to an inter-processor switched network through
a host core or may have a direct interface to the network
while they share access to a common memory space with
the host. An accelerator platform is configured with one or
more cores coupled to one or more accelerators. A platform
may involve cores that span multiple chip and board bound-
aries with non-uniform inter-core communication latencies,
for example, an accelerator platform may be configured with
one PPE and 12 SPEs. The library API described in Section
4 provides the run-time communication infrastructure to im-
plement this execution model.

Presuming a large system with 10s to 1000s of acceler-
ators, we believe the accelerator platform abstraction sim-
plifies application development, is compatible with many
compilation chains, and forms an efficient execution envi-
ronment for many applications. In this paper we present the
design and implementation of the library for creating accel-
erator platforms for systems comprised of multiple Cell/B.E.
processors.

4. Execution Model: Implementation on the
Cell/B.E.

Consider a system comprised of multiple, interconnected
Cell/B.E. processors which presents a pool of cores (PPEs
and SPEs). A developer can specify an accelerator platform
that consists of one or more PPEs and one or more SPEs
forming a subset of the existing set of all PPEs and SPEs
in the cluster. No explicit consideration is given to chip
boundaries although the shared address space of the platform
is no longer coherent. For example, one can configure an
accelerator platform consisting of one PPE and 12 SPEs as
shown in Figure 3. The platform API supports deployment
of compute kernels on the SPEs, using an intermediate PPE
transparently if necessary. We argue that the main value of
this model is the ability to program large systems like those
comprised of 4 PPEs and 128 SPEs and to be able to view

Figure 4. Logical communication paths exported by the
API vs physical paths

this combination as a single accelerator platform rather than
having to explicitly manage a cluster of distinct Cell/B.E.s.

In addition to the platform abstraction, another advantage
offered by the library is a global name space for all the ele-
ments in the multi Cell system, thus making it easier for the
programmer to address local as well as remote elements uni-
formly. The programmer is not required to configure a plat-
form for element to element communication although he can
choose to do so if the application calls for it. The basic inter-
core communication mechanism supported in the Cell/B.E.
is abstracted and transparently optimized by the API imple-
mentation. For example, data can be transferred a) between a
PPE and an SPE on the same Cell via DMA, mailbox, chan-
nels or memory mapped I/O, b) between two PPEs on dif-
ferent Cell processors via communication calls provided by
the platform API, c) between PPE and some remote SPE via
communication through the remote PPE (transparently) and
d) between two mutually remote SPEs. Figure 4 depicts the
different logical and actual communication paths discussed
above.

The API is structured around the following elements:

1. Connection - Connection-based communication is em-
ployed where connection establishment also serves to
verify the presence and correctness of the communica-
tion endpoints.

2. Stream and Packet - The API supports both packet-based
and stream-based communication.

3. Element-Element and Group - Both point-to-point and
group communication semantics are supported. A group
is a named set of PPEs and/or SPEs and the collective
communication operations are patterned after MPI.

3 2010/5/4

Figure 3. Deriving a logical accelerator platform from the physical infrastructure

4.1 API Components
The function classes forming the library API can be classi-
fied into the following general categories:

• Platform Management - These functions are responsible
for creating platforms and servicing intra-platform com-
munication requirements. Figure 3 shows the sequence of
events for configuring a platform of accelerators within
a network of Cell/B.E. processors. The implementation
seeks to minimize fragmentation - i.e., use the minimum
number of Cell/B.E. processors (the current version just
looks at the round trip times and does not consider inter-
connect topology). Once the required platform has been
created, the programmer can work with the SPEs inde-
pendent of the physical connectivity and perform oper-
ations like loading executables, sending mailbox mes-
sages, querying SPE state etc. As of the current imple-
mentation, the programmer still needs to be aware of cor-
rect data partitioning so that memory gets allocated on
nodes as required. To make this simpler, there is a call to
query the rank of local elements within a platform.

• Group Management - Groups for collective communica-
tion may comprise of only PPEs, SPEs or contain both
types of cores. The implementation of groups allocates
members based on network proximity. Alternatively the
developer may specify members of a group. If the group

consists only of SPEs, there are still PPEs involved in the
implementation of group communication in order to per-
form the actual transfer between SPEs located on distinct
Cell/B.E. chips.

• Data Communication - In addition to source/destination
specification, communication functions also enable spec-
ification of the data transfer patterns. As mentioned ear-
lier in this section, data transfers can be unicast or mul-
ticast (group) and may have additional associated se-
mantics. For example, transfers may be blocking/non-
blocking or in-order/out-of-order. The API implementa-
tion itself is multi-threaded and the degree of concur-
rency can be specified as a configuration parameter.

• Memory Management - When transferring large buffers
locally or remotely there are requirements such as mem-
ory alignment and page sizes. The memory management
module serves to hide these complexities from the pro-
grammer who can just specify the size of buffer, align-
ment and optionally provide sharing information.

• Timing and Synchronization - Although not complete
yet, this module is designed to provide timing informa-
tion to all instances and synchronization services such as
barriers taking into account the SPE primitives. In partic-
ular, this will be valuable for cycle accurate parallel simu-
lation of multicell systems - the current parallel simulator

4 2010/5/4

is only functionally accurate due to the use of functional
models of the inter-Cell communication.

4.2 An Example
Platform creation and removal is similar to group manage-
ment, however they operate in a distributed manner with
minimal communication of information across nodes. For
example, when a programmer calls mcs platform create, he
can specify the number of PPEs and SPEs and even provide
a list of their identifiers. The call verifies whether the system
comprises of the required number of elements. This infor-
mation is requested from all nodes by the master through
exchange of messages. The specified number of elements
sent to the Master node by slaves are committed on all
Cell/B.E.s until the Master node informs them of the ac-
tual number of elements they are expected to contribute to
the platform being formed. Participating nodes then save
this information. Once this function returns successfully, the
mcs platform spe context create call allocates spe contexts
only for local spes on each participating node per platform
on a distributed basis. The programmer can now invoke
mcs platform spe program load to load the SPE image on
all the SPEs without looping. Other calls for platform man-
agement including the mailbox send and receive calls work
in a similar fashion, thus reducing the overall communica-
tion overhead in the system and reducing the number of calls
a programmer typically has to make to create traditional Cel-
l/B.E. applications.

Data Communication The communication primitives are
inspired by and are closely patterned after the MPI library
[16] for message passing systems. The library exports an ac-
celerator independent interface providing a consistent view
of a pool of accelerators for parallel application programs
covering basic functionality such as initialization, address-
ing, group communication, and transparency across chip and
board boundaries. The list of function calls in the Appendix
shows some of the functions forming the API.

5. Prototype Environment
We have built a parallel cell simulator to advocate the ap-
proach described in the paper. In this multi Cell Simulator
(MCS), the host side simulator configuration and boot mod-
ule have been implemented with components as shown in
Figure 5. The Host Side setup components are implemented
in order to boot up the multiple Mambo instances using con-
figuration parameters as specified by the user or provided
as default and execute the selected parallel application. The
API components are implementations of those described in
Section 4. The library has been structured to distinguish be-
tween (local) fast path and remote communication. The im-
plementation of the sample API function calls enlisted in
the Appendix checks for correctness of the arguments, de-
ciphers whether the call pertains to local components or re-
mote components and then calls the correct local or inter-

connect functions. Error codes indicating reason(s) for fail-
ure are returned if any of the functions fail thus making it
easier to debug massively parallel applications.

We have implemented the API and tested it on a cluster of
multiple Cell/B.E. simulators [10] (or Mambo as it is com-
monly referred as) which can serve the role of actual Cell
processors. The MCS software stack is shown in Figure 5.
Applications utilize the MCS library and execute within a
Linux environment booted on IBM’s Mambo execution envi-
ronment. The communication between Mambo and the host
machine is carried through the virtual TUN device [15]. This
software stack is replicated on all the machines participating
in the cluster that host the simulator instances. The applica-
tion needs to link against the library to be able to use it. We
rely on the TAP forwarding capabilities of the Linux ker-
nel to enable communication between elements on different
simulators on the same host or on different hosts.

The library is written in C and can be compiled using gcc.
The first version provides most of the calls except the group
based communication and synchronization functionality [7].
We use the pthreads API for implementing threads in the
library. As of the present implementation, the network com-
munication uses the socket API and data is transferred over
Ethernet.

6. Evaluation
Testbed and Benchmarks: We have tested our benchmarks
on varying number of simulator instances ranging between
two and eight. Each of the simulator instance currently sim-
ulates 1 PPE and 8 SPEs. The operating system used on the
host side as well as on the simulator is Fedora Core 6 because
the version of IBM SDK we have used had been tested on
Fedora Core 6 and it provides the same system image to boot
on the simulator as well. There is a host side script which
asks the programmer for configuration information such as
the number of simulators required, the type of communica-
tion protocol (TCPIP/Infiniband etc) to use and other such
parameters and then boots all the simulator instances. These
simulators can be booted on one host or multiple hosts The
process of creating routing tables relevant to simulator net-
work has not been automated yet and it is left to the pro-
grammer and the operating system (because of TUN/TAP
forwarding) to make sure that one virtual tap interface can
communicate with another. We have used IBM SDK2.1 [11]
for providing the Mambo simulator and the SPE manage-
ment calls.

The following benchmarks have been used to test the
multi Cell simulator:

Chained Matrix Multiplication : Matrix chain multiplica-
tion [19] is an optimization problem that can be solved us-
ing dynamic programming. We have many options because
matrix multiplication is associative. However, the order in
which we parenthesize the product affects the number of

5 2010/5/4

Figure 5. Software components for Multi Cell Simulation

simple arithmetic operations needed to compute the prod-
uct, or the efficiency. Consider the example where we need
to multiply four matrices A, B, C and D on two nodes. The
optimum ordering in this case could be ((AB)C)D. But this
would imply less parallelism as compared to (AB)(CD). We
employ this simple technique and present this problem as a
proof of concept for our communication API.

We deploy two to eight simulators to multiply 4 to 16 ma-
trices of size 256x256 using single precision floating point
arithmetic. The matrix multiplication benchmark present in
the Cell SDK has been modified to include the required
changes. All Cell processors (represented by the Mambo in-
stances) generate the input data for pairs of matrices being
multiplied in this example. The processors with odd rank
send their output to the even rank which in turn send the
intermediate output to the higher in rank processor. Table
1 shows the overhead imposed by the library against the
amount of data being transmitted by the application for dif-
ferent data sets.

Matrices # Cells Overhead (Bytes) Matrix data (KB)
4 2 28 256
8 4 84 768
16 8 196 1792

Table 1. Communication overhead introduced by the API

Black Scholes : The Black-Scholes option pricing formula
prices European call or put options on a stock that does
not pay a dividend or make other distributions. The formula
assumes that the underlying stock price follows a geometric
Brownian motion with constant volatility. It is historically
significant as the original option pricing formula published
by Black and Scholes in their landmark paper [2].

Our implementation creates a platform using the platform
API, splits the entire data among the required number of
SPEs and triggers the SPEs to calculate the option prices
using the Black Scholes equation. We use this benchmark

as a proof of concept for the platform API that transpar-
ently moves data across chip boundaries. Platform creation
results in exchange of information between the master and
slaves. While creating the platform, the slaves first inform
the master of the number of SPEs (PPEs can be multiplexed
but SPEs have to be available for use) and the master then
has to respond with platform related information such as
the rank of a particular slave in the platform, the number of
SPEs contributed from that Cell. This results in 88Byte net-
work messages per slave independent of the application and
is proportional to the number of slaves present in the system.

Discussion of Results The library initialize function re-
sults in exchange of messages between slaves and master (in
this case, Mambo instance with rank 0) informing the mas-
ter about certain parameters like number of usable spes, total
ppes etc. The master also measures round trip time (RTT)
to slaves while exchanging these messages in order to keep
track of the topologically ”closer” slaves. This flow of infor-
mation results in 112Bytes of network messages from each
slave to the master, thus increasing linearly with the number
of slaves.

As seen from the two benchmarks presented, the overhead
introduced by the library is negligible. We intend to mea-
sure runtime information and execution time overhead intro-
duced by the library once we incorporate the cycle accurate
network simulator with MCS. But from a functional point
of view, the advantage for the programmer is the increased
data set size made possible due to increase in the number
of Cell processors that can now be tested using this assem-
bly of simulators. One instance of Mambo can at most boot
2 PPEs and 16 SPEs if configured in the blade mode but
with MCS, we can increase the number to as many as de-
sired. The only limitation imposed is by the physical hosts
and their network connectivity. Once we have a setup with
multiple Cell blades, we intend to test the API and the par-
allel benchmarks so that we get an estimate of their timing
behavior. The low overhead introduced by the library is more

6 2010/5/4

than compensated for by the simplicity of a global address
space for all accelerators and the platform abstraction.

7. Related Work
IBM has released a generic acceleration programming frame-
work ALF [9] and intends to make it a standard for accel-
erator programming. While designing a massively parallel
application that can run threads on the heterogeneous cores
available on the same chip, as well as distribute data across
multiple such chips, the issues to be handled are two fold -
a) Level 1 distribution of data and control across processors
and b) Level 2 distribution of data and tasks so that work can
be divided among the compute efficient on-chip cores. The
API presented in this paper is primarily intended for the first
part and by providing the platform abstraction, makes it easy
for the programmer to focus on the actual data division logic
among the compute-efficient cores required by the second
part. ALF on the other hand is designed to help the program-
mer think about how an application can be split into parallel
tasks and what data could form input to these tasks. So ALF
could actually replace the SPE library currently being used
by our API in order to provide a richer set of functionality
for the programmer.

The other class of related work is in the area of cluster
management systems like Conga [18]. Conga provides man-
agement functions useful more from an administrator’s per-
spective than a programmer’s perspective whereas MCS has
been built as a tool to experiment with heterogeous multi-
core and multi processor environments. The API we propose
differs from the multi-processor programming environments
such as MPI [16] and Open MPI [3] with respect to the over-
all goal we are trying to achieve. As we have mentioned ear-
lier, the API is targeted to reduce complexity while maintain-
ing functionality of heterogeneous multi-processor systems.

8. Conclusion and Future Work
This paper has documented preliminary work on a acceler-
ator platform API that is proposed to enable creation and
management of compute clusters comprised of homoge-
neous cores augmented with heterogeneous accelerators.
The first implementation of the API has been on the Cel-
l/B.E. facilitated by a multi-cell simulator(MCS) that can
model execution for systems of interconnected Cell/B.Es.

Several avenues for future work are immediately appar-
ent. We plan to port the API to multi-cell blade systems
to assist application development. This will involve porting
the communication layer to alternative interconnects, in this
case to Infiniband, in addition to ethernet. While the group
communication semantics have been defined, the implemen-
tation and testing of all of the calls has not been completed.
We also have an ongoing effort for the development of a cy-
cle accurate parallel simulator for interconnection networks.
We plan to integrate that with the MCS to enable experi-
mentation with interconnection architectures for multi-cell

systems. We anticipate augmenting the Cell/B.E. experience
with a port of the API to a compute cluster comprised of
GPUs or FPGAs. Finally, we observe that the MCS may find
great value in experimenting with multicell applications.

References
[1] DAS, A., DALLY, W. J., AND MATTSON, P. Compiling

for stream processing. In PACT ’06: Proceedings of the
15th international conference on Parallel architectures and
compilation techniques (New York, NY, USA, 2006), ACM,
pp. 33–42.

[2] FISCHER, B., AND SCHOLES, M. The pricing of options and
corporate liabilities. In Journal of Political Economy (1973),
pp. 81:637–659.

[3] GABRIEL, E., FAGG, G. E., ET AL. Open MPI: Goals,
concept, and design of a next generation MPI implementa-
tion. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting (Budapest, Hungary, September 2004), pp. 97–104.

[4] GOKHALE, M. B., STONE, J. M., ARNOLD, J., AND

KALINOWSKI, M. Stream-oriented fpga computing in the
streams-c high level language. In FCCM ’00: Proceedings of
the 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines (Washington, DC, USA, 2000), IEEE
Computer Society, p. 49.

[5] GSCHWIND, M. Chip multiprocessing and the cell broadband
engine. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers (New York, NY, USA, 2006), ACM
Press, pp. 1–8.

[6] GSCHWIND, M., HOFSTEE, P., ET AL. Synergistic
processing in cell’s multicore architecture. IEEE Micro 26, 2
(March 2006).

[7] GUPTA, V., AND YALAMANCHILI, S. MCS API docu-
mentation. http://www.cc.gatech.edu/~vishakha/

projects.php#MCS.

[8] HOFSTEE, H. P. Power efficient processor architecture and
the cell processor. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture (Washington, DC, USA, 2005), IEEE Computer
Society, pp. 258–262.

[9] IBM CORPORATION. Accelerated library framework
programming guide. http://www-01.ibm.com/chips/

techlib/techlib.nsf/techdocs/41838EDB5A15CCCD0.

[10] IBM CORPORATION. Full-system simulator user’s guide.
http://www-01.ibm.com/chips/techlib/techlib.

nsf/techdocs/B494BF3165274F67002573530070049B.

[11] IBM CORPORATION. IBM cell broadband engine software
development kit. http://www.alphaworks.ibm.com/

tech/cellsw.

[12] IBM CORPORATION. SIMD math library specifica-
tion for cell broadband engine architecture. http:

//www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/6BFB9899CEA5456800257360001938B3.

[13] IBM CORPORATION. SPE management library. Part of Cell
Broadband Engine SDK Documentation.

7 2010/5/4

[14] KISTLER, M., PERRONE, M., AND PETRINI, F. Cell
multiprocessor communication network: Built for speed.
In IEEE Micro (May/June 2006), IEEE Computer Society.

[15] KRASNYANSKY, M. Universal tun/tap device driver.
http://www.kernel.org/pub/linux/kernel/people/

marcelo/linux-2.4/Documentation/networking/

tuntap.txt.

[16] MPI FORUM. MPI: A message-passing interface standard.
http://www.mpi-forum.org/docs/mpi-11-html/

mpi-report.html.

[17] NVIDIA CORPORATION. NVIDIA CUDA revolution-
ary gpu computing. http://developer.nvidia.com/

object/cuda.html#documentation.

[18] REDHAT ENTERPRISE LINUX. Conga - a management plat-
form for cluster and storage systems. http://sourceware.
org/cluster/conga/spec/.

[19] WIKIPEDIA. Matrix chain multiplication. http://en.

wikipedia.org/wiki/Chain_matrix_multiplication.

[20] WOO, M., NEIDER, J., DAVIS, T., AND SHREINER,
D. OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

A. Example Functions from MCS API
Following is a list of important functions forming the MCS
API. Detailed description, an exhaustive list of these func-
tions and state of their implementation can be found at [7]

L i b r a r y I n i t i a l i z e and Cleanup :
INT m c s i n i t (BOOL n e e d p l a t f o r m , BOOL

n e e d s l a v e s) ;
INT m c s d e s t r o y () ;

P l a t f o r m :
INT m c s p l a t f o r m i n i t () ;
PLATFORM ID m c s p l a t f o r m c r e a t e (ELEMENT ID

∗ppes , ELEMENT ID ∗ spes , INT num ppes , INT
num spes) ;

INT m c s p l a t f o r m c p u i n f o g e t (PLATFORM ID p l i d ,
UINT i n f o r e q u e s t e d , INT cpu node) ;

INT m c s p l a t f o r m g e t r a n k (PLATFORM ID p l i d , UINT
i n f o r e q u e s t e d) ;

INT m c s p l a t f o r m s p e c o n t e x t c r e a t e (PLATFORM ID
p l i d , p p u p t h r e a d d a t a t ∗ d a t a s , UINT f l a g s ,
s p e g a n g c o n t e x t p t r t gang) ;

INT m c s p l a t f o r m p r o g r a m l o a d (PLATFORM ID p l i d ,
s p e p r o g r a m h a n d l e t ∗ s p u e x e c) ;

INT m c s p l a t f o r m t h r e a d c r e a t e (PLATFORM ID p l i d ,
void ∗ (∗ s t a r t f n) (void ∗) , void
∗ t h r e a d p k g) ;

INT m c s p l a t f o r m i n m b o x s e n d (PLATFORM ID p l i d ,
UINT ∗∗mbox data , INT count , UINT b e h a v i o r) ;

INT m c s p l a t f o r m o u t m b o x r e c v (PLATFORM ID p l i d ,
UINT ∗∗mbox data , INT c o u n t) ;

INT m c s p l a t f o r m s p e w a i t (PLATFORM ID p l i d , void
∗∗ v a l u e p t r) ;

INT m c s p l a t f o r m c o n t e x t d e s t r o y (PLATFORM ID
p l i d) ;

INT m c s p l a t f o r m d e s t r o y (PLATFORM ID p l i d) ;

Group Management (i n p r o g r e s s) :

GROUP ID m c s c r e a t e g r o u p (ELEMENT ID ∗ppes , UINT
num ppes , ELEMENT ID ∗ spes , UINT num spes) ;

INT mcs modi fy group (GROUP ID g r p i d , INT
o p e r t y p e , UINT num ppes , UINT num spes) ;

INT m c s d e s t r o y g r o u p (GROUP ID g r p i d) ;
INT m c s g e t g r o u p s i z e (GROUP ID g r p i d , INT

∗num spe , INT ∗num ppe) ;
INT m c s g e t g r o u p i n f o (GROUP ID g r p i d ,

g r o u p i n f o t g r p i n f o) ;

Data Communicat ion :
CONNECTION ID m c s c o n n e c t s e n d e r (ELEMENT ID

r e c e i v e r , INT r e c v p o r t , ELEMENT ID sende r ,
INT s e n d p o r t , INT conn type , INT t i m e o u t) ;

CONNECTION ID m c s c o n n e c t r e c e i v e r (ELEMENT ID
r e c e i v e r , INT r e c v p o r t , INT c o n n t y p e) ;

INT mcs send (CONNECTION ID conn id , void ∗ buf f ,
UINT s i z e , INT d a t a t y p e , INT t i m e o u t , UINT
f l a g s) ;

INT m c s s t r e a m s e n d (CONNECTION ID conn id , void
∗ i n f o , INT d a t a t y p e , INT t i m e o u t , UINT
f l a g s) ;

INT mcs recv (CONNECTION ID conn id , void ∗ buf f ,
UINT s i z e , INT t i m e o u t , UINT f l a g s) ;

INT m c s s t r e a m r e c v (CONNECTION ID conn id , void
∗ i n f o , INT t i m e o u t , UINT f l a g s) ;

INT m c s t r a c k c o n n (CONNECTION ID conn id ,
c o n n i n f o t ∗ c o n n i n f o) ;

c o n n i n f o t ∗m c s q u e r y d a t a (CONNECTION ID c i d) ;
INT m c s t r a c k g r o u p c o n n (GROUP ID g r o u p i d ,

g r o u p i n f o t ∗ g r o u p i n f o) ;
INT mcs wa i t (CONNECTION ID c o n n i d) ;
INT m c s c l o s e (CONNECTION ID c o n n i d) ;
INT m c s c o n n e c t s e n d e r g r o u p (GROUP ID r e c e i v e r s ,

INT r e c v p o r t , ELEMENT ID sende r , INT
b a s e s e n d p o r t , INT conn type , INT t i m e o u t) ;

INT m c s g r o u p s e n d (GROUP ID g r p i d , void ∗ buf f ,
UINT s i z e , INT d a t a t y p e , INT t i m e o u t , UINT
f l a g s) ;

INT m c s g r o u p s t r e a m s e n d (GROUP ID g r p i d , void
∗ buf f , UINT s i z e , UINT s p l i t s i z e , INT
d a t a t y p e , INT t i m e o u t , UINT f l a g s) ;

INT m c s g r o u p r e c v (GROUP ID g r p i d , void ∗∗ buf f ,
UINT s i z e , INT t i m e o u t , UINT f l a g s) ;

INT m c s g r o u p s t r e a m r e c v (GROUP ID g r p i d , void
∗∗ buf f , UINT s i z e , INT t i m e o u t , UINT f l a g s) ;

INT m c s g r o u p w a i t (GROUP ID g r o u p i d) ;
INT m c s g r o u p c l o s e (GROUP ID g r o u p i d) ;

Memory Management :
void ∗m c s a l l o c (s i z e t s i z e , void ∗ s h a r e i n f o) ;
void ∗ m c s a l l o c a l i g n (s i z e t s i z e , INT

a l i g n m e n t , void ∗ s h a r e i n f o) ;
void ∗ m c s p l a t f o r m a l l o c a l i g n (PLATFORM ID p l i d ,

s i z e t c h u n k s i z e , INT a l i g n m e n t) ;
INT m c s d e a l l o c (void ∗ a r e a) ;
INT m c s d e a l l o c a l i g n (void ∗ a r e a) ;

Timing and S y n c h r o n i z a t i o n (i n p r o g r e s s) :
TIME T m c s m e a s u r e r t t (UINT s r c s i m i d , UINT

d s t s i m i d) ;
TIME T m c s g e t h o s t t i m e () ;
TIME T m c s g e t a p p t i m e () ;
INT m c s b a r r i e r (GROUP ID g r p i d) ;
INT m c s g e t g r o u p t i m e (GROUP ID g r p i d , TIME T

∗mean , TIME T ∗ s t d d e v) ;
INT m c s s y n c g r o u p t i m e (GROUP ID g r p i d , TIME T

∗mean , TIME T ∗ s t d d e v) ;

8 2010/5/4

