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SUMMARY 

During a traumatic brain injury (TBI) an external force disrupts the brain tissue and the 

proper functioning of neuronal pathways. This initial insult activates multiple cellular 

mechanisms that further propagate the tissue damage causing a secondary injury that 

exacerbates neurological deficits. This phase, known as the secondary injury, opens a 

therapeutic window in which neuroprotective treatments that successfully contain the 

propagation of the initial damage could significantly reduce neurological deficits 

associated with TBI. Mesenchymal stem cell transplantation (MSC) after TBI has been 

found to ameliorate neurological deficits due to the ability of the stem cells to modulate 

inflammation and immune cells and to increase the expression of neurotrophic factors that 

promote the survival of the neuronal tissue surrounding the injury site. However, the active 

rejection of the transplanted MSC by the host immune system could strongly diminish the 

stem cell's survival and therapeutic effect.  

In this thesis,  we used immunosuppressive hydrogels, specifically designed to induce the 

apoptosis of cytotoxic CD8+ T cells, to enhance the survival of transplanted MSC in the 

injured brain. We demonstrated that creating localized immunosuppression near the MSC 

transplantation site resulted in a higher presence of MSC near the injury site. We also 

demonstrate that enhancing MSC survival by using immunosuppressive hydrogels 

increased the protein expression of the IL-1 receptor antagonist and the neurotrophic 

factors NGF and BDNF, which could lead to reduced neuronal damage. Therefore, the 

development of immune-suppressive hydrogels for stem cell transplantation could be a 

successful approach to enhance stem cell therapy after TBI.  



 1 

INTRODUCTION 

Traumatic brain injury (TBI) is defined as the disruption of the normal brain tissue and 

neuronal networks due to an external force [1]. In 2014, according to a CDC report, 

approximately 2.8 million visits to the emergency department, hospitalizations, and deaths 

in the United States were associated with TBI [1]. After the initial insult during a TBI, a 

complex biochemical and cellular cascade cause a secondary injury that further propagates 

the neuronal damage around the injury site. The mechanisms involved in the secondary 

injury include brain swelling, the disruption of the blood-brain barrier which can lead to a 

hypoxic environment and limited nutrients, the activation of an immune/inflammatory 

response, and the increase of oxidative stress, among others [2-4]. In addition to the 

complex brain pathology, the random nature of the events that cause TBI results in variable 

degrees of injury severity between TBI patients making it difficult to develop successful 

therapies that can ameliorate neurological deficits [2]. 

Mesenchymal stem cell (MSC) transplantation is a promising treatment for TBI due to the 

MSC's ability to coordinate the response of multiple cell types such as immune cells, 

endothelial cells, neuroglia, and neural progenitor cells to promote tissue repair [5]. 

Systemic delivery of MSCs after brain injury has been shown to alter the host peripheral 

immune profile and indirectly increase the regulatory T cell population near the injury site, 

which has been correlated with lower inflammation and decreased neuronal deficits [6-8]. 

Similarly, MSC has been shown to influence non-neuronal glial cells, such as astrocytes 

and microglia, which results in reduced inflammation and the expression of neurotrophic 

factors that promote the survival of the neuronal tissue surrounding the injury site [8-10]. 
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Moreover, a mechanism commonly reported in the literature to mediate the MSC 

neuroprotective effect is the increased expression of neurotrophic and growth factors [11-

14]. The MSC's ability to target multiple mechanisms involved in the secondary injury 

makes stem cell therapy an attractive candidate for the treatment of brain injury and other 

neurodegenerative diseases.    

In order to maximize the MSC therapeutic effect, it is necessary to deliver a large number 

of stem cells within a short therapeutic window following injury and to ensure its viability 

for a reasonably long period of time so as to reduce the deleterious impact of the secondary 

injury [15]. Unfortunately, the active rejection of the transplanted MSC by the host immune 

response could diminish stem cell survival and in consequence, its therapeutic impact. It 

has been demonstrated that MSC transplantation in the adult intact brain resulted in early 

graft rejection and graft infiltration by microglia and astrocytes along with few CD8+ 

cytotoxic T cells [16-18]. However, unlike the intact brain, the immune cell composition 

in the injured brain milieu includes a higher presence of peripheral leukocytes such as 

neutrophils, macrophages, and T cells due to the disruption of the blood-brain barrier [19]. 

The impact of the injured brain's immune composition on the survival and behavior of 

transplanted stem cells, including MSC, has not been completely elucidated. Therefore, 

systematic research is needed to understand how inflammatory signals and/or immune cells 

alter the MSC therapeutic efficacy in order to incorporate stem cell therapy as an alternative 

treatment during a brain injury acute phase.  

In this study, we explored the hypothesis that designing immunosuppressive hydrogels as 

stem cell carriers can enhance allogeneic MSC survival and therapeutic effect after 

transplantation in the injured brain of immunocompetent rats. Specifically, we sought to 
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determine if the targeted reduction of the cytotoxic CD8+ T cell population at the 

transplantation site could enhance the survival of the transplanted MSC near the injury site. 

In order to achieve this, we used an agarose based hydrogel to release FasL, a protein that 

plays an important role in T cell regulation by inducing the apoptosis of activated cytotoxic 

CD8+ T cells. We hypothesized that co-delivering FasL with allogeneic MSC will result in 

a decrease of the cytotoxic CD8+ T cell population near the transplantation site, which in 

consequence will lead to an increase in the MSC’s survival. We also investigated if 

enhancing MSC survival after transplantation resulted in a decreased neuronal pathology 

supporting the hypothesis that early MSC transplantation could be hindered by the harsh 

brain milieu.   

Our specific aims are as follows: 

Specific Aim 1: Determine the effect of FasL-hydrogels on the survival of the 

transplanted MSC. Our working hypothesis was that the survival of transplanted 

allogeneic MSC can be enhanced by suppressing the host immune response, specifically 

the cytotoxic CD8+ T cell response. Our objectives for this aim were to design a FasL 

releasing agarose based hydrogel that could induce the apoptosis of cytotoxic CD8+ T cells 

and to investigate the hydrogel effect on the survival of allogeneic MSC after 

transplantation in the injured brain of immunocompetent rats. The outcomes of this aim are 

discussed in Chapter 3. 

Specific Aim 2: Determine the effect of MSC transplantation using FasL-hydrogels 

on the injured brain environment. Our working hypothesis was that by using FasL 

hydrogels to enhance MSC survival after transplantation, we could enhance the MSC 
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neuroprotective effects in the injured brain. Our objective for this aim was to investigate if 

the use of FasL releasing hydrogels as carriers for MSC delivery could alter multiple 

regenerative signals such as the expression of neurotrophic factors, the volume size of the 

injured area, and the neuronal degeneration around the injury site. The outcomes of this 

aim are discussed in Chapter 4. 

  



 5 

LITERATURE REVIEW 

During a traumatic brain injury (TBI) an external force disrupts the neuronal tissue and the 

proper functioning of neuronal pathways [1, 4]. The initial insult triggers multiple cellular 

mechanisms that propagate the initial damage for a period of weeks or months exacerbating 

neurological deficits [2-4]. This phase, known as the secondary injury, creates a therapeutic 

window in which neuroprotective treatments that successfully contain the propagation of 

the secondary injury could significantly reduce the neurological deficits associated with 

TBI. Yet, the complex environment created by multiple cellular and biochemical pathways 

activated after a brain injury requires a multifunctional treatment approach that modulates 

multiple pathways simultaneously [20, 21]. Mesenchymal Stem cells (MSCs) have been 

shown to poses multiple neuroprotective capabilities making stem cell therapy an attractive 

candidate to treat diseases involving sustained neuronal degeneration such as TBI. 

Transplanted MSCs interact with the injured environment and release multiple cytokines 

and growth factors that enhance endogenous reparative mechanisms [11-14].  However, in 

order to develop a successful treatment, it is important to deliver a high number of stem 

cells within a short time frame after an injury and to ensure its viability after transplantation 

[15]. Early MSC transplantation after a brain injury could result in the limited survival of 

the transplanted stem cell due to the harsh environment near the site of injury which 

includes the presence of peripheral immune cells not usually abundant in the brain [19]. 

Therefore, the interaction between transplanted MSCs and the injured brain immune 

composition needs to be elucidated in order to promote the survival and healing phenotype 

of the transplanted stem cells.  
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In this chapter, we review the current scientific literature regarding the use of stem cell 

therapy as a treatment for TBI with an emphasis on the use of MSCs. In addition, we 

evaluate the literature available on the host immune response toward transplanted stem 

cells and its effect on stem cell survival. Finally, we explore the current use of biomaterials 

that modulate the immune response and/or create immunosuppressive environments, which 

could be potentially used as stem cell carriers for TBI.  

1.1 Traumatic brain injury (TBI) 

TBI is caused when an external force such as a blow or jolt to the head disrupt normal 

neuronal pathways and brain tissue; thus, creating a variety of neurological deficits 

depending on the severity and localization of the initial injury site [1, 4]. A TBI is usually 

divided into two phases known as primary injury and secondary injury [4]. During the 

primary injury or initial insult, a series of biochemical and cellular events are activated 

which leads to the propagation of neuronal damage for a period of weeks or months. These 

events include the disruption of the blood-brain barrier (BBB), the infiltration of peripheral 

leukocytes and increased inflammatory response, and neuronal overstimulation and 

apoptosis due to the spilled glutamate from the disrupted cells (Fig. 2.1) [2-4]. Therapies 

that modulate one or more mechanisms that mediate the secondary injury could potentially 

limit neuronal damage and the severity of neurological deficits.  

1.1.1 Immune and inflammatory response after TBI 

The brain is considered an immune-privileged site due to its low abundance of peripheral 

immune cells and limited access due to the blood-brain barrier (BBB), a layer of tightly 
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connected endothelial cells that control the entry of circulating immune cells, proteins, 

pathogens and other molecules from the blood into the CNS [22].  The main immune 

population in the healthy brain is the microglia, a specialized tissue macrophage usually 

confined in an immunosuppressive environment in the normal brain but highly activated 

and involved in the removal of dead tissue after a brain injury[22, 23]. In addition to 

microglia, peripheral macrophages have been found in the choroid plexus, meninges, 

 

Figure 2.1: Summary of the mechanisms involved in the propagation of the secondary injury 

following TBI. Multiple mechanisms are involved in the propagation of the secondary injury 

which significantly contribute to the development of neurological deficits. The release of 

cytoplasmic content into the extracellular matrix initiate multiple processes including the 

uncontrolled release of neurotransmitters (excitotoxicity), lipid degradation, mitochondrial 

dysfunction, and oxidative stress. Also, the disruption of the blood-brain barrier (BBB) result in 

the formation of an edema (increased water content) which can increase the intracranial pressure 

and reduce brain oxygen levels due to limited blood flow. BBB disruption also lead to the 

infiltration of peripheral immune cells which can increase the expression of inflammatory 

proteins. Successful treatment for TBI needs to target multiple mechanism of the secondary injury 

in order to contain the initial damage.  
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perivascular space, and ventricles while the cerebrospinal fluid (CSF) is highly rich in T 

cells [22]. It is believed that despite the limited immune presence, the brain is constantly 

monitored by macrophage and T cell sampling of the CSF [22]. 

After TBI, the BBB is temporary disrupted, which leads to the formation of edema that can 

increase the intracranial pressure and create a hypoxic environment [3]. BBB disruption 

also results in the infiltration of peripheral immune cells that can potentially increase the 

expression of inflammatory cytokines in the brain causing further damage [2, 24, 25]. The 

infiltration of peripheral immune cells into the brain is also elicited by the release of 

cytoplasmic content from the disrupted neuronal and glial cells into the ECM [26]. These 

molecules, such as S100B proteins and high mobility group box 1 (HMGB1),  are known 

as damage-associated molecular pattern molecules (DAMPs) and alert innate immune cells 

to initiate a process to clear damaged cellular debris and to sequester tissue-damaging 

irritants [24, 26, 27]. The initial response by resident glial cells and peripheral immune 

cells plays a significant role in the initiation of repair mechanisms and the containment of 

damage [24, 27]. However, sustained immune activation could lead to a prolonged 

inflammatory state and exacerbate the secondary injury.  

The infiltration of peripheral leukocytes such as neutrophils, T cells, and macrophages have 

been found to peak around 1-3 days post-injury in several brain injury rodent models [16, 

19, 28-30]. Neutrophils are recruited early to the injury site after TBI and have been shown 

to increase plasma leakage and induce edema formation during acute inflammation in 

peripheral tissue [30-32]. Kenne et al showed that neutrophil depletion decreases cell 

apoptosis in the brain cortex and attenuates microglia/macrophage activation after TBI 

[30]. On the other hand, the T cell effect on the development of a secondary injury depends 
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on the role of the different CD3+ T cell subtypes. T cells are classified as CD8+ cytotoxic 

T cells, CD4+ T helper cells, and CD4+CD25+FoxP3+ regulatory T cells according to their 

function. Total depletion of peripheral T cells, including both CD8+ and CD4+ T cells, has 

been shown to increase the infiltration of innate immune cells, such as neutrophils and 

inflammatory macrophages, in a hypoxia-ischemia brain injury model [33]. Moreover, it 

has been found that Regulatory T cells play an essential role in the downregulation of the 

inflammatory/immune response after brain injury [7, 8]. Specific depletion of regulatory T 

cells in a stroke model resulted in increased brain damage, deteriorated functional outcome, 

and increased activation of resident and invading inflammatory cells [8]. The 

neuroprotective role of CD4+ regulatory T cells was also shown in a focal cerebral ischemia 

model wherein systemic administration of these cells decreased cerebral inflammation and 

infiltration of peripheral inflammatory cells thus resulting in smaller infarct size [7]. On 

the other hand, the depletion of CD8+ cytotoxic T cells improved neurobehavioral 

performance and increased cortical neuronal density in a model of inflammation‐induced 

perinatal brain injury [34]. Other findings suggesting the implication of the immune system 

in the pathophysiology of TBI were observed in rats with ischemic brain injury that also 

underwent splenectomy or splenic irradiation. These rats showed a decrease in the size of 

the injury infarct cavity, which could be an indication of reduced neurological deficit [35, 

36] . Thus, the contribution of the multiple components of the peripheral immune response 

can be beneficial or detrimental to the brain after an injury, which offer multiple targets 

that could be exploited for the development of treatments.  

The increased infiltration of immune cells into the injured brain alters the brain milieu by 

increasing the expression of multiple inflammatory/anti-inflammatory cytokines.  Studies 
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have shown that the mRNA expression of inflammatory/anti-inflammatory cytokines such 

as IFN-y IL-1β, TNF-α, IL-6, IL-13, IL-4, and IL-10 is increased in the brain and 

cerebrospinal fluid (CSF) during the first 12-24 hours after TBI [37, 38].  Most of these 

cytokines reached near basal levels around 3 days post-injury [37, 38]. A common 

approach to ameliorate the secondary injury is the use of bioactive molecules that modulate 

the expression of cytokines, specifically to inhibit inflammatory proteins or to increase 

anti-inflammatory proteins. Extensive research has demonstrated that IL-1β contributes to 

neuronal damage after TBI [38-42]. Multiple studies have found that delivering the IL-1 

receptor antagonist (IL-1βRA) or antibodies against IL-β reduced neuronal damage and 

improved behavioral outcomes after brain injury [38-42].  On the other hand, IL-10 is an 

anti-inflammatory protein involved in the resolution of the inflammatory response. 

Delivering IL-10 after a brain injury has been found to improve neurological outcomes 

[43-45]. Therefore, efforts focused on the development of therapies that can shift the 

cytokine expression to create an anti-inflammatory milieu could be beneficial in 

ameliorating the secondary injury.  

1.2 Controlled cortical impact as an animal model of TBI 

One of the limitations during the development of treatments for TBI is the heterogeneous 

pathophysiology observed in patients, which can be the result of multiple factors such as 

the location, nature, and severity of the injury [46]. Various animal models have been 

developed in order to understand specific aspects of the secondary injury and to test 

potential treatments (Figure 2.2) [46-63]. In order to obtain a replicable secondary injury 

in an animal model, it is necessary to strictly control multiple parameters such as age, 

gender, genetic background, and injury parameters (strength, duration, localization) [46]. 
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Therefore, the ability of each TBI model to mimic most of the aspects of a human brain 

injury is limited and might restraint the translation of pre-clinical treatments to successful 

clinical trials. 

In this thesis, we used a controlled cortical impact (CCI) model to study allogeneic stem 

cell survival after TBI. In the CCI model, an impact tip controlled by a pneumatic or 

electromagnetic piston hits the exposed intact dura on the brain cortex of the animal [47, 

48]. The severity of the injury caused by the CCI model depends on various parameters 

including speed, impact tip diameter, depth of injury, duration of injury, and localization 

[53, 54]. An advantage of this injury model over other TBI models is the ease at which 

mechanical parameters (speed, depth of injury, duration, etc) can be controlled, which 

allows the adjustment of the injury severity to obtain the pathophysiological damage 

required for the experimental design. Some of the pathophysiological features that have 

been reported using the CCI model include cortical tissue loss, cavity formation, acute 

subdural hematoma, axonal injury, BBB dysfunction, neuroinflammation, and oxidative 

damage [47, 48, 58, 64-68]. The motor, cognitive and emotional deficits caused by the CCI 

model have been extensively characterized. Using the Morris water maze test, CCI has 

been reported to cause spatial memory deficits in mice and rats, which has been correlated 

to both the depth of deformation and the velocity of the impact [63, 69-71]. Also, emotional 

deficits after CCI have been found using the forced swim test, and elevated-plus maze [69]. 

Similarly, motor deficits have been identified in the CCI model as quantified by the rotarod 

and beam walk test [70]. The model replicability, easy adjustment of parameters, and 

extensively characterized pathophysiology and functional deficits make the CCI model a 

good system for the initial testing of therapeutics for the injured brain.  
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1.3 Pre-clinical treatments for TBI 

Currently, emergency medical treatments for TBI focus on interventions to monitor and 

reduce intracranial cerebral pressure in order to stabilize cerebral perfusion [72]. If the 

intracranial pressure is not normalized and stabilized within a short span following injury, 

 

Figure 2.2: Summary of the multiple models developed to study TBI. Each model aims to 

mimic specific biomechanical aspects of a TBI. The strict control of the biomechanical 

parameters difficult the models ability to reproduce all aspect of the human TBI 

pathophysiology.  
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it can reduce cerebral blood perfusion and oxygen supply to the brain which has been 

associated with poor outcomes for the patients. Efforts to develop neuroprotective therapies 

for brain injury focus on the delivery of steroids to reduce the neuronal death caused by the 

secondary injury. Progesterone, a sex-related hormone, has been reported to attenuate 

neurological deficits and/or behavioral anxiety in rat models of TBI [73-77]. The 

neuroprotective effect of progesterone has been attributed to its anti-inflammatory 

properties as it has been shown that progesterone delivery after a brain injury reduces the 

expression of inflammatory cytokines such as IL-1β and TNF-α and the presence of cells 

related to neuroinflammation such as astrocytes and macrophages [73, 78]. Another 

hormone of interest for the treatment of brain injury is erythropoietin (EPO). Although 

EPO is commonly known as a key regulator of erythropoiesis, it also has been shown to 

have anti-apoptotic and immune-modulatory properties [79].  Studies have shown that 

early local or systemic EPO delivery has neuroprotective effects after brain injury reducing 

the volume of the injured area and increase neuronal density [46, 51, 80-82]. However, the 

beneficial effect found using EPO in pre-clinical models required an early delivery up to 6 

hours after an injury, which is a short window that difficult the translation of EPO delivery 

as a treatment for TBI [80, 82].  

Despite the extended scientific knowledge obtained using animal models, most 

drugs/treatments tested in clinical trials have failed to clearly show efficacy [83]. The 

diversity in brain injuries and the complexity of the biochemical and cellular processes that 

follow an injury are factors that challenge the translation of animal studies into successful 

treatments [20]. Hence, the use of combinatory treatments and/or stem cell therapy that can 
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target multiple aspects of the secondary injury are of interest in order to ameliorate 

neurological deficits associated with TBI.  

1.4 Stem Cell Therapy for TBI 

Stem cell (SC) transplantation has shown successful therapeutic consequences in TBI and 

stroke [21, 84]. SC are multipotent cells able to self-renew and to differentiate into multiple 

cell types. Immortalized progenitor cells, embryonic rodent and human neural stem cells, 

and bone marrow stem cells have been successfully transplanted in experimental models 

of TBI and have been shown to ameliorate the neurological status of the injury site [84]. In 

recent years there has been an increased interest in the use of MSC for transplantation after 

TBI due to the MSC’s ability to ameliorate neurological deficits [21, 25, 84, 85]. Although 

MSC transplantation has been shown to partially improve functional outcome following 

TBI in rodents, this may not be due to cell replacement since only a small population of 

transplanted MSC get engrafted in the brain tissue and among them, only a few differentiate 

into neurons [13, 86]. Thus, the MSC therapeutic effect is greatly mediated by a paracrine 

effect that alters the environment to protect the tissue surrounding the injury site. An 

important mechanism that mediates the MSC therapeutic effect is the increased protein 

expression of growth factors that promote neuronal survival around the injury site. MSCs 

have been shown to increase the expression of neurotrophic factors such as nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), and GDNF [11, 14]. The 

neuroprotective effect of NGF and BDNF in multiple models of brain injury has been 

extensively studied. Exogenous NGF administration has been correlated with reduced 

neurologic deficits and reduced neuronal cell damage/death [87-91].  Similarly, BDNF 
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delivery has also shown therapeutic effect after brain injury by promoting neuronal survival 

and neurogenesis [92-94].  

MSCs have also been found to modulate the cellular behavior of multiple cell types. 

Systemic MSC transplantation by intravenous injections alters the host peripheral immune 

profile increasing the number of regulatory T cells and indirectly increases the infiltration 

of regulatory T cells within the injury, which has been shown to be beneficial after brain 

injury [7, 8]. In addition to the immune response, non-neuronal brain resident cells such as 

microglia and astrocytes play important roles in tissue protection and repair. Microglia, 

similar to macrophages, is considered to have two opposite polarization, part of a spectrum, 

known as M1 (classically activated, inflammatory) and M2 (alternatively activated, anti-

inflammatory) [95].  Zanier et al found that MSC transplantation into the injured brain 

modulates microglia response towards an M2 phenotype, which is considered beneficial 

due to its pro-healing anti-inflammatory properties [10]. Also, in vitro studies confirm the 

MSC’s ability to reduce inflammatory cytokines on LPS activated microglia [9]. On the 

other hand, most studies on MSC-astrocytes interactions have been done in vitro. MSCs 

have been shown to reduce astrocyte apoptosis and to upregulate the astrocyte’s gene 

expression of trophic factors after an in vitro anaerobic insult [96]. In vivo, the 

transplantation of MSC after stroke has been correlated to an altered glial scar composition 

and the increased expression of glial-derived neurotrophic factor (GDNF) [12, 97]. The 

MSC's ability to modulate multiple cell types makes MSC therapy a promising 

multifunctional approach for TBI.  

1.4.1 Host Response after MSC Transplantation  
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Although the use of autologous MSC for brain injury would be an ideal scenario, harvesting 

and expanding patient-specific MSC has logistic, timing and economic constraints, and can 

introduce differences in cell therapeutic potency related to the patient’s age [98, 99]. 

Therefore, allogeneic MSC transplantation would be beneficial to ensure that stem cells 

possess an optimal therapeutic potential and are delivered into the brain in a timely manner 

after an injury. However, allogeneic MSCs could be susceptible to rejection by the host 

immune response thereby diminishing the beneficial effect of this treatment. Eliopoulos et 

al showed that allogeneic MSCs have a limited survival after transplantation within the 

skin since they are eliminated by CD8+ T cells, Natural killer T (NKT) and NK cells that 

infiltrate the graft [100]. Other studies using MSC as a treatment for Graft-versus-Host-

Disease (GVHD) showed that MSC transplantation failed to ameliorate GVHD and instead 

elicited a T cell response [101, 102]. Within the brain, various studies have shown that 

MSC transplantation in the non-injured adult brain results in graft rejection approximately 

14 days post-transplantation [16-18]. The MSC grafts were infiltrated mostly by microglia 

and astrocytes along with few CD8+ cytotoxic T cells [16-18]. Although T cell infiltration 

has been reported to be low in the intact brain, its infiltration into the injury site increases 

early after an injury thus making these cells a potential contributor to stem cell rejection 

after transplantation.  

1.5 Immuno-modulatory hydrogels for stem cell transplantation 

1.5.1  General Characteristics of Hydrogels 

Hydrogels are cross-linked polymers capable of absorbing high amounts of water thus 

serving as an appropriate bioengineering material that can support stem cell viability after 
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transplantation [103]. The high-water content promotes the exchange of ions, nutrients, 

and metabolites with the surrounding tissue, thus helping to maintain cell viability [104]. 

In addition, the facilitated diffusion allows the communication between the host tissue 

and the embedded cells by the release of cytokines and bioactive molecules. Hydrogels 

can also serve as delivery vehicles for bioactive molecules or chemical compounds, via 

passive diffusion or chemical conjugation [105]. Interestingly, hydrogels provide the 

ability to control the presentation of ligands or bioactive molecules which can direct stem 

cell behavior [106-108]. For example, it has been reported that RGD functionalized 

alginate hydrogels can alter MSC spheroids migration and osteogenic differentiation in 

vitro depending on the RGD density [109]. Another characteristic of hydrogels that can 

be used to alter stem cell fate is the matrix stiffness which can be tuned by either changing 

the concentrations of precursor and/or cross-linkers. Hydrogels with brain-like elasticity 

have been able to influence neural stem cell differentiation into neurons [110]. The ability 

to support cell viability and tunable characteristics make hydrogels a great platform to 

desing carriers for stem cell trasnplantation.  

1.5.3 Hydrogels for protein  delivery 

In addition to stem cell delivery, hydrogels have been used to deliver proteins that 

ameliorate neuronal damage after TBI. An important concern during protein delivery to 

treat brain injury or to enhance the survival of transplanted stem cells is to ensure the 

protein bioactivity and prolonged release to maximize its therapeutic effect. Hydrogels 

provide an excellent platform to design protein delivery systems due to the gentle 

preparation procedures usually used (aqueous environment, room temperature) that help to 

conserve the protein bioactivity [111]. Proteins can be physically incorporated in the 
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hydrogel matrix and their release is mediated by multiple mechanisms such as diffusion, 

swelling, degradation or the use of reversible protein−polymer interaction [111]. Hydrogels 

used for the controlled delivery of protein could be classified into two main categories: 

affinity-based delivery systems and reservoir-based delivery systems. In an affinity-based 

delivery system, the protein release is controlled by pre-existing or introduced functional 

binding sites in the hydrogel that interact with the protein using non-covalent bonding, 

hydrogen bonding, ionic bonding, and van der Waals forces [112]. On the other hand, 

reservoir-based delivery systems use physical barriers such as a hydrogel pore size to slow 

the diffusion rate of the proteins thereby slowing its release [112].  

Affinity-based delivery systems control protein release by using the binding affinity 

between the protein and hydrogel matrix [112]. This advantage allows tuning a protein 

release profile by testing binding sites with various affinities while minimally 

compromising other hydrogel characteristics such as stiffness or porosity. A common 

approach to create affinity-based delivery systems is to incorporate heparin, a sulfated 

glycosaminoglycan that is able to bind to many growth factors, into a hydrogel matrix [113, 

114]. In vitro, the incorporation of heparin to fibrin-based hydrogels matrixes has 

successfully slowed the release of NGF despite the lower affinity of NGF (in comparison 

to other growth factors) requiring an excess of heparin [115, 116]. Using a similar 

approach,  Li et al developed an heparin-poloxamer hydrogel to sustain the release of bFGF 

or NGF after a peripheral nerve injury, which resulted in an enhanced axonal regeneration 

and recovery of motor function [113]. Recently, the design of hydrogels using chondroitin 

sulfate (CS) as a matrix has gained interest. The CS negative charge can electrostatically 

sequester positively charged growth factors [117, 118]. CS particles have been successfully 
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synthesized to control the release of TGF-β1 in vitro [118]. In addition, CS-based hydrogels 

have been shown to control the release of FGF-β in vitro and to enhance the survival of 

neural stem cells after transplantation in the injured brain [119, 120]. However, the use of 

CS-based hydrogels to simultaneously deliver growth factors and stem cells in the injured 

brain has not been reported.  

In reservoir-based delivery systems, the physical characteristics of a hydrogel are 

controlled to create barriers that slow a protein diffusion rate [112]. Wang et al created a 

multicomponent (nanoparticles/microparticles/hydrogel) system to induce the sequential 

delivery of EGF and EPO in order to enhance endogenous neural stem cell repair 

mechanisms after a stroke brain injury [121]. They used a hyaluronan methylcellulose 

(HAMC) hydrogel to simultaneously deliver two sets of particles into the injured brain 

cortex: poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with pegylated 

endothelial growth factor (EGF-PEG), and biphasic microparticles comprised of a PLGA 

core loaded with EPO and a poly(sebacic acid) coating. This delivery system induced an 

initial release of EGF followed by the release of the EPO protein, which enhanced the 

proliferation of endogenous NSC and reduced neuronal damage [121]. Another approach 

using a multicomponent hydrogel system was developed by Meilander et al, in which lipid-

based microtubes were used to sustain the release of multiple proteins including NGF in 

vitro [122]. Lyophilized lipid microtubes can be rehydrated with a solution containing a 

high concentration of the desired protein in order to trap some of the protein inside the 

microtubes during the water absorption process [122]. Jain et al used this lipid 

microtubes/agarose hydrogel system to sustain the delivery of BDNF into the injured spinal 

cord [123]. An advantage of using lipid microtubes to sustain protein release is the system 
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flexibility which allows the easy loading of different proteins in a gentle procedure that 

preserves the protein's bioactivity.   

1.5.4 In situ gelling hydrogels for stem cell delivery in the injured brain 

In several injury situations, the injury site receiving stem cell transplantation has an 

irregular shape due to the initial insult and subsequent degenerative process. Therefore, 

the use of premade hydrogels is limited due to the hydrogel's inability to completely fill 

the space and minimize gaps between the hydrogels and the host tissue. Different 

variables such a temperature or pH can be used to control the hydrogel’s gelling process 

allowing the formation of the hydrogel in situ [124-126]. The in-situ gelling process 

results in the conformational filling of the transplantation site, which increases the 

hydrogel-tissue interface thereby improving the hydrogel integration with the host tissue. 

[124-126]. In addition, the design of hydrogels that gel in situ could allow the delivery of 

stem cells into the brain with minimal invasion minimizing the exacerbation of the 

secondary injury [127, 128].  Multiple in situ gelling hydrogels have been developed for 

stem cell delivery in various diseases (Figure 2.3) [127, 129-136]. In the context of brain 

injury, Tate et al developed thermosensitive collagen-based hydrogels functionalized with 

fibronectin or laminin proteins that enhanced the survival of neural stem cells delivered 

in the injured brain [127]. Further optimization of in situ gelling hydrogels to sustain or 

control protein delivery could lead to the development of minimally invasive 

multifunctional hydrogel carriers for stem cell delivery in the central nervous system.  

1.5.5 Hydrogels for stem cell delivery after brain injury 
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The survival of transplanted stem cells into the injured brain could be limited by multiple 

biochemical processes of the secondary injury such as the development of glutamate 

excitotoxicity, oxidative stress and the inflammatory response [137]. The use of hydrogels 

as stem cell carriers for transplantation provides the opportunity to tune or control the local 

stem cell microenvironment to enhance the cell's survival and/or therapeutic effect [138]. 

Efforts using hydrogels to enhance stem cell delivery have focused on the development of 

hydrogel matrixes that incorporate cues from the extracellular matrix (ECM), which can 

provide signals to enhance the survival,  proliferation, and migration of the transplanted 

 

Figure 2.3: In situ gelling hydrogels for stem cell delivery in vivo.  Thermoresponsive and 

photopolimerizable hydrogels have been widely used as injectable scaffolds for stem cell 

delivery.  The in-situ gelling process allows the conformational filling of the transplantation 

site increasing the hydrogel integration with the host tissue. A great variety of hydrogel 

materials and stem cells have been successfully tested in different in vivo scenarios.  
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stem cells or provide resistance to detrimental signals present in the injured milieu [138, 

139].    

Several strategies to develop biomimetic hydrogels have used hyaluronan (HA) and 

chondroitin sulfate (CS), two glycosaminoglycans that are major components of the brain 

ECM, as a matrix [140]. HA is a long, negatively charged, and heavily hydrated 

glycosaminoglycan that has been known to have a beneficial role in wound healing and 

that also plays an important role in the formation of CNS [141, 142]. The development of 

hyaluronan based hydrogels for neural tissue repair has been of interest due to the 

hydrogel's mechanical properties similar to the brain tissue, and ability to promote 

angiogenesis and to reduce scar formation due to astrocyte activation [143]. Also, the 

binding of HA to the cells surface receptors, such as the cluster determinant 44 (CD44) and 

the receptor for hyaluronan-mediated motility (RHAMM), can modulate stem cell 

proliferation and survival [139, 144]. In the intact brain, injectable HA-Gelatin hydrogels 

improved the survival of xenogeneic human neural stem cells after transplantation in 

immunodeficient mice [145]. Zhong et al tested the use of HA-Gelatin-Heparin hydrogels 

as neural stem cell (NSC) carriers in a stroke brain injury model [146].  He found that HA-

Gelatin-Heparin hydrogels can promote the survival of nutrient and growth factor deprived 

NSCs in vitro and also enhance the survival of NSCs in vivo after transplantation within 

the infarct cavity of a stroke [146].  In addition, it was found that the HA-Gelatin-Heparin 

hydrogels were able to reduce the infiltration of microglia within the NSC graft [146]. 

Therefore, the ability of HA-based hydrogels to enhance stem cell survival could be 

mediated by a modulation of the brain neuroglia immune-like response in addition to the 

HA binding to CD44 and RHAMM receptors on the transplanted stem cells.  
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Another component of the brain ECM recently explored to design stem cell carriers is the 

glycosaminoglycan chondroitin sulfate (CS). CS has been found to regulate NSC self-

renewal and proliferation by facilitating the endogenous enrichment and presentation of 

growth factors to the stem cells [120, 147].  Betancur et al studied the effect of  CS-based 

hydrogels on the survival of allogeneic NSCs after transplantation into the injured brain 

[119]. The study found that using CS-based hydrogels increased the presence of NSC near 

the transplantation site and also increased the percentage of transplanted cells showing the 

proliferation marker ki67 and stem cell markers (nestin and Sox1) [119]. The effect of CS-

based hydrogels on the NSC survival and proliferation was correlated with a higher binding 

of the endogenous growth factor FGF-b to the matrix, which promoted the survival and 

undifferentiation of the transplanted stem cells [119]. As the stem cell’s therapeutic effect 

is considered to be mediated by the release of cytokines and growth factors from the 

undifferentiated stem cells, developing hydrogel matrixes that can maintain the cell's 

“stemness” in vivo could be beneficial to enhance stem cell therapy after brain injury [148].   

1.5.6 Immuno-modulatory hydrogels for cell transplantation 

During the stem cell transplantation process, the host immune response could be induced 

by various factors such as the delivery process, and the biomaterial and/or transplanted 

stem cells immunogenicity. Therefore, the development of biomaterials that can modulate 

the immune response in a localized manner is of interest in order to enhance the survival 

and efficacy of transplanted cells. Our body provides us various examples of localized 

immunosuppression such as the eye and testis, which induce localized immunosuppression 

by the release of soluble cytokines like TGF-β2 and IL-10 among others, and the expression 

of FasL [35-37]. In addition, various types of stem cells such as mesenchymal stem cells 
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(MSC) and retinal progenitor cells (RPC) exhibit immune-modulatory properties [149-

151]. Although the mechanisms for MSC-mediated immune-modulation are not fully 

understood, it is known that MSCs express low levels of human MHC class I and lack 

human MHC class II, two important molecules in the antigen presentation pathways [150, 

151]. RPCs transplanted into a kidney pouch model using poly (lactic-glycolic acid) 

(PLGA) polymers showed an enhanced survival even in the presence of the pro-

inflammatory cytokine interferon γ (IFNγ) [149]. The survival of RPCs has been shown to 

be due to the production of immune-suppressive factors such as TGF-β2, and Fas ligand 

[149].  All these examples found in nature serve as inspiration for the development of 

immune-modulatory biomaterials.  

During the development of an immune response,  various checkpoints could be targeted to 

direct the immune response towards the desired phenotype (e.g. inflammatory versus anti-

inflammatory milieu) (Figure 2.4). For instance, an important step during an immune 

response is the presentation of antigens to the T-cells by antigen-presenting cells (APCs) 

such as macrophages and dendritic cells. The generation of the T-cells to maintain a 

tolerogenic state towards a specific antigen can be achieved by the presentation of the 

antigen in the presence of stimulatory molecules such as TGF-β1 and interleukin-10 (IL-

10) [152]. On the other hand, the antigen presentation in the presence of cytokines like 

interleukin-6 (IL-6) and interleukin-23 (IL-23) leads to an immunogenic T-cell response 

[152].  Hume et al demonstrated that functionalized poly (ethylene glycol) hydrogels with 

immobilized TGF-β1 and IL-10 decreased activation markers on dendritic cells and 

reduced their ability to activate T cells in vitro [153]. Thus, functionalizing hydrogels with 

cytokines that promote tolerogenic responses could be a tool to create localized immune- 
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Figure 2.4: Checkpoints during the immune response that can be used to suppress the 

immune response and to enhance stem cell survival. An important step during the immune 

response is the activation of antigen presenting cells, such as macrophages and dendritic cells, 

and the subsequent antigen presentation to T-cells.  Different cytokines can be used to shift the 

macrophages phenotypes from a pro-inflammatory (classically activated, M1) to an anti-

inflammatory (alternative activated, M2) phenotype. In addition, blocking to cells receptor can 

decrease the dendritic cells maturation, which promotes the formation of regulatory T-cells. 

These T-cells play an important role suppressing effector T-cells (cytotoxic) in order to avoid 

an exacerbated immune reaction that may damage healthy body tissue. Another approach to 

obtain a localized immune response is the synthesis of immune-barrier around the transplanted 

cells. For example, hydrogels coated with FasL can induce the apoptosis of effector T-cells at 

the transplantation site. 
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privileged zones at the stem cell implantation site in order to enhance the survival of the 

transplanted stem cells.  

The design of hydrogels to create immune-barriers has been explored in the transplantation 

of pancreatic islets to treat Diabetes Mellitus Type I. Initial efforts to immune-isolate 

pancreatic islets were focused on the use of hydrogels as physical barriers that constraint 

the infiltration of immune cells and/or inflammatory cytokines [154, 155]. The physical 

isolation of pancreatic islets is mainly achieved by reducing the hydrogel pore size which 

limits the infiltration of cells by size exclusion. However, reducing the hydrogels pore sizes 

not only can result in the poor transfer of nutrients but also limits the interaction of the 

transplanted cells with the host. Within the context of stem cell therapy, the therapeutic 

effect of transplanted stem cells could be hindered if the needed molecules, cytokines or 

growth factors, cannot reach the target tissue. In order to overcome this, scientists have 

focused on the development of bioactive hydrogels that can suppress immune cells with 

special attention to the suppression of cytotoxic CD8+ T cells. Hume et al designed 

immune-active polymer coatings on poly (ethylene glycol) (PEG) hydrogels to create 

immune-protective carriers for cell encapsulation and delivery [156]. In this study, a 

bifunctional coating was synthesized functionalizing PEG hydrogels with an anti-Fas 

antibody and the cell adhesion molecule ICAM-1, which resulted in the apoptosis of Jurkat 

T-cells [156]. Similarly, Shendi et al designed anti-Fas functionalized hyaluronic acid-

based hydrogels for the encapsulation of neural stem cells [157]. These hydrogels were 

able to maintain NSC viability while inducing the apoptosis of Jurkat T cell in vitro [157]. 

Despite the successful development of immuno-suppressive hydrogels for cell 

encapsulation, there are few reports of their use in vivo.  Headen et al pioneered the use of 
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immune-suppressive hydrogel to enhance the survival of pancreatic islets in vivo [158]. 

The study showed that using FasL functionalized hydrogels for pancreatic islets 

encapsulation prolonged the survival and function of the pancreatic islets in a diabetic mice 

model [158]. The development of hydrogels to created localized immune-suppression at a 

transplantation site may potentially reduce or eliminate the need for systemic immune 

suppression, which has multiple side effects including the susceptibility to pathogens and 

the development of cardiovascular diseases [153, 159, 160]. However, it is critical to 

elucidate the short and long-term interactions between the transplanted cells and the host 

tissue and to design immunomodulatory hydrogels that could target multiple aspects of the 

complex in vivo immune response that include a variety of immune and non-immune cells 

(e.g. neuroglia). In this thesis, we explored the use of FasL releasing hydrogels to enhance 

the survival of transplanted allogeneic MSC in the injured brain of immunocompetent rats. 

Our goal is to examine if targeting the CD8+ cytotoxic T cell population near the 

transplantation site could enhance the viability and therapeutic effect of the transplanted 

MSCs. 
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 FASL-RELEASING HYDROGELS PROMOTE THE SURVIVAL OF 

TRANSPLANTED MSC AND MODULATE HOST T-CELL AND 

INFLAMMATORY RESPONSE IN TBI 

1.6 Introduction  

The development of multifunctional therapies that can target multiple pathways involved 

in the propagation of a TBI secondary injury could potentially ameliorate neurological 

deficits after brain injury [21]. The development of stem cell therapies as a treatment for 

TBI has gained the interest of the scientific community due to the functional plasticity of 

multiple stem cell types [21, 148]. Mesenchymal stem cell (MSC) transplantation is a 

promising treatment for TBI due to the cell's ability to modulate multiple pathways that 

can potentially minimize the propagation of a secondary injury after TBI. MSC have been 

shown to increase the expression of neurotrophic factors that promote neuronal survival 

around the injury site [11, 13, 161]. In addition, MSC has been shown to modulate the 

activation of the brain neuroglia (astrocytes and microglia) and peripheral immune cells 

which result in a reduced inflammatory response after TBI [6, 9, 10, 162]. In order to 

maximize the neuroprotective effect of transplanted MSC, it is important to deliver a high 

number of stem cells within a short time frame after injury and to ensure its viability after 

transplantation [15]. However, multiple factors such as the stem cell delivery process,  the 

harsh environment of the injured brain (hypoxic conditions, limited nutrients) and the 

active rejection by the host immune system could potentially limit the survival of 

transplanted MSC in the injured brain [137].  
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Although the use of autologous MSC for brain injury would be an ideal scenario, harvesting 

and expanding patient-specific MSC has logistic, timing and economic constraints, and can 

introduce differences in cell therapeutic potency related to the patient’s age [98, 99]. 

Therefore, allogeneic MSC transplantation provides an opportunity to ensure that stem 

cells of interest have an optimal therapeutic potential and are delivered in a timely manner 

into the brain after an injury. However, allogeneic MSC could be susceptible to rejection 

by the host immune response thereby diminishing the beneficial effect of this treatment 

[17, 163-165]. Within the brain, various studies have shown that MSC transplantation in 

the non-injured adult brain results in graft rejection approximately 14 days post-

transplantation [16-18]. MSC grafts were infiltrated mostly by microglia and astrocytes 

along with few CD8+ cytotoxic T cells [16-18]. Similarly, allogeneic MSC transplantation 

within the spinal cord also induced an immune rejection by the host that could be 

ameliorated by using the immunosuppressant cyclosporin A [164].  Outside the central 

nervous system, Eliopoulos et al showed a limited survival of allogeneic MSCs after 

transplantation within the skin, which was correlated with high infiltration of  CD8+ T 

cells, Natural killer T (NKT), and NK within the graft [100]. Another study using MSC as 

a treatment for Graft-versus-Host-Disease (GVHD) showed that MSC transplantation 

failed to ameliorate GVHD and instead elicited a T cell response [100-102]. Therefore, the 

role of the host T cell response after MSC transplantation in the injured brain still needs to 

be elucidated in order to understand its contribution to the MSC survival after 

transplantation in the injured brain.  

The development of stem cell carriers that can improve the survival of MSC during and 

after transplantation in the injured brain could potentially enhance the beneficial effect of 
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stem cell therapy after TBI. Hydrogels are cross-linked polymers with multiple 

characteristics that make them suitable to bioengineer stem cell carriers. The hydrogel's 

high-water content allows the exchange of, oxygen, nutrients, and biomolecules between 

the host tissue and transplanted stem cells, which facilitate an active interaction that 

influences the phenotypic cellular behavior of both the host and the transplanted cells [103-

105]. An important characteristic of hydrogels is their ability to be optimized to deliver 

bioactive molecules either by passive diffusion, non-covalent binding or chemical 

conjugation [103-105]. Therefore, hydrogels offer a great platform to design immuno-

modulatory stem cell carriers that modulate or suppress the local immune response at an 

injury and/or transplantation site.  

The immune system has multiple checkpoints that researchers have exploited to modulate 

the host immune response in order to favor endogenous repair processes or to enhance cell 

transplantation [156, 158, 166, 167]. In order to enhance peripheral nerve regeneration, 

Mokarram et al used agarose hydrogels to deliver IL4 or fractalkine which enriched the 

anti-inflammatory (M2) macrophage population near the site of injury and created a 

permissive environment for tissue repair [166, 167]. The use of hydrogels to create 

immunosuppressive environments has also been tested. For example, Hume et al decreased 

activation markers on dendritic cells in order to reduce the ability of these cells to activate 

T cells by functionalizing poly (ethylene glycol) hydrogels with TGF-β1 and IL-10 [41].  

Another approach that has been tested is the development of bioactive polymer/hydrogels 

that exploit the Fas/FasL apoptotic pathway to induce T cell apoptosis [156-158]. The Fas 

receptor (also known as CD95) is a Type I integral membrane protein expressed in the cell 

surface of multiple immune cells including T cells, NK cells, neutrophils, and 
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macrophages, and is capable of inducing apoptosis once it binds to its cognate ligand FasL 

[166-172]. The Fas/FasL pathway eliminates excess effector T cells during an immune 

response as part of a negative feedback mechanism called propriocidal regulation [172-

174]. Thus, this mechanism plays an essential role in balancing the proliferation of 

activated effector immune cells that could be damaging to the host during the development 

of an immune response against a pathogen [172]. Various approaches have been used to 

use hydrogels to engage the Fas receptor pathway in order to suppress an immune response 

against transplanted allogeneic cells.  Hume et al designed immune-active polymer 

coatings by attaching an anti-Fas monoclonal IgG antibody into poly (ethylene glycol) 

hydrogels, which successfully induced the apoptosis of Jurkat T cells in vitro.  In vivo,  

Headen et al used FasL presenting hydrogels to enhance the survival of allogeneic 

pancreatic islets in a diabetic mice model [158]. The use of hydrogels that deliver FasL for 

stem cell transplantation in the injured brain has not been tested. In this project, we aim to 

determine if FasL delivering hydrogels could create an immunosuppressive environment 

near the stem cell transplantation site and enhance the survival of transplanted MSCs in the 

injured brain (Fig 3.1)  

In order to achieve our goal, we used agarose hydrogels embedded with FasL loaded lipid 

microtubes as MSC carriers for transplantation in the injured brain of immunocompetent 

rats (Figure 3.2).  In order to induce apoptosis, a FasL trimer triggers the formation of Fas 

signaling-competent trimers and the assembly of the death-inducing signaling complex 

(DISC) [172].  In vivo, FasL protein exists in two versions: a membrane-bound FasL 

version and a soluble FasL version. Soluble FasL is not efficient inducing cell apoptosis 

but has been associated with other functions such as the chemotactic recruitment of 
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neutrophils in vivo [172, 175]. In this project, we used an engineered FasL protein in which 

two FasL trimers are fused using the collagen domain of ACRP30 [176]. This soluble FasL 

protein, commercially known as multimeric FasL (Adipogen Company), is highly efficient 

inducing the apoptosis of Jurkat T cells (Appendix A.1). In order to slow the diffusion of 

multimeric FasL and maximize its immunosuppressive effect with used an agarose/lipid 

microtubes system previously developed in our lab [122]. Lipid microtubes are self-

assembled structures in which water-soluble compounds can be loaded in the hollow inner 

part of the tubes by capillarity; a process without heat that keeps the protein bioactivity 

 

 

Figure 3.1: Immune-suppressive hydrogels for MSC delivery into the injured brain.  

Cytotoxic T cells near the injury and/or transplantation site could reduce the survival of 

transplanted MSC. Using hydrogels stem cells carriers that release FasL, a protein that induce the 

apoptosis of activated cytotoxic T cells, near the transplantation site could could reduce the 

cytotoxic T cell population near the transplantation site, and in consequence, potentially increase 

the survival of the transplanted MSC.  
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[122, 177]. Our lab has previously used lipid microtubes to sustain the release of multiple 

proteins such as chondroitinase ABC, Rho GTPases,  and BDNF within the spinal cord 

after an injury [123, 178].  Rat MSCs and FasL loaded microtubes were embedded within 

injectable agarose hydrogels and delivered into the injured brain of immunocompetent rats. 

We explored the effect of these FasL releasing agarose hydrogels on the survival of the 

transplanted MSC and the host T cell response. Also, we determined if altering the host T 

cell response and/or MSC survival could indirectly alter the expression of pro-

inflammatory and anti-inflammatory cytokines near the site of injury, which could 

influence the development of a secondary injury after TBI. 

 

Figure 3.2: Immune-suppressive hydrogels for MSC delivery into the injured brain.  

Cytotoxic T cells near the injury and/or transplantation site could reduce the survival of 

transplanted MSC. Using hydrogels stem cells carriers that release FasL, a protein that induce the 

apoptosis of activated cytotoxic T cells, near the transplantation site could could reduce the 

cytotoxic T cell population near the transplantation site, and in consequence, potentially increase 

the survival of the transplanted MSC.  
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1.7 Methods 

1.7.1 FasL release from Lipid Microtubes embedded in Agarose hydrogel 

Lipid Microtubes Synthesis 

Lipid microtubes were fabricated as previously described [122]. Briefly, 1,2-bis-(tricosa-

10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC, Avanti Polar Lipids, Alabaster, 

AL) was dissolved in 70% ethanol at a concentration of 1 mg/mL. The lipid was placed in 

a water bath with the temperature programmed to decrease from 50°C to 20°C over 48 

hours and then stored at room temperature to facilitate self-assembly of lipid microtubes. 

Trehalose (18.9 mg/mL) was added to the lipid microtubes solution. Then, the lipid 

microtubes were lyophilized and stored at room temperature until further use.  

FasL release form lipid microtubes 

In order to study the release of FasL in our Lipid microtubes/Agarose hydrogel system four 

experimental groups were used. The first group, known as “In vivo parameters,” shows 

FasL release as we used it in our in vivo studies, in which we did not remove the FasL not 

absorbed by the lipid microtubes during the rehydration process. In the second group, 

“Lipid microtubes”, we removed most of the FasL not absorbed by the lipid microtubes 

during the rehydration process in order to determine the contribution of the lipid microtubes 

to FasL release from the Lipid microtubes/Agarose hydrogel system. Because the protein 

uptake by the lipid microtubes is around 60-70% of the initial protein, we used two agarose 

controls in which 60% or 80% of the initial total protein (4ug) mixed with plain agarose 

(without lipid microtubes).  

“In vivo parameters” experimental group preparation: 



 35 

In this group, .375mg of lipid microtubes were reconstituted using 15uL of an 800ug/mL 

FasL solution and left in ice for one hour. Then, 15uL of plain DMEM media was added 

to the lipid microtubes in order to obtain a total volume of 30uL. This 30uL solution was 

mixed with 30uL of 3% agarose in order to obtain 1.5% lipid microtubes/agarose 

hydrogels. The 60uL of the 1.5% lipid microtubes/agarose hydrogel solution was aliquoted 

in three separate wells of a 96 well plate (20uL per well). The plate was placed at 4C 

degrees for 3 minutes to promote the gelling of the agarose mix. Finally, 100uL of a 3% 

BSA solution was used to wash the hydrogels overnight. The washing solution was 

changed every day for 13 days.  

“Lipid microtubes” experimental group preparation: 

Similarly, .375mg of lipid microtubes were reconstituted using 15uL of an 800ug/mL FasL 

solution and left in ice for one hour. Then, the solution was centrifuged at 3,000g for 5 

minutes and the supernatant was removed as much as possible. The pellet was reconstituted 

in 30uL of plain DMEM media and mixed with 30uL of a 3% agarose solution in order to 

obtain 1.5% lipid microtubes/agarose hydrogels. The 60uL of the 1.5% lipid 

microtubes/agarose hydrogel solution was aliquoted in three separate wells of a 96 well 

plate (20uL per well). The plate was placed at 4C degrees for 3 minutes to promote the 

gelling of the agarose mix. The washing step was done exactly as explained in the “In vivo 

parameters” experimental group.  

Agarose control experimental groups preparation: 

In order to prepare the 60%  and 80% agarose control groups, 7.2ug or 9.6ug of FasL were 

diluted to a total volume of 30uL using plain DMEM media. Each solution was mixed with 

30uL of 3% agarose in order to obtain 1.5% lipid microtubes/agarose hydrogels. The 60uL 
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of the 1.5% lipid microtubes/agarose hydrogel solution was aliquoted in three separate 

wells of a 96 well plate (20uL per well). The plate was placed at 4C degrees for 3 minutes 

to promote the gelling of the agarose mix. The washing step was done exactly as explained 

in the “In vivo parameters” experimental group.  

The wash supernatants from each experimental group were stored at -80C and a rat FasL 

ELISA kit (R&D Systems) was used to quantify the FasL concentration.  

1.7.2 Lentiviral transduction of MSC to express GFP and transplantation of these cells 

after CCI 

Rat MSC derived from the bone marrow of Fischer 344 rats were obtained from Cyagen 

and, cultured used the manufacturer recommended media kit (OriCellTM Mesenchymal 

Stem Cell Growth Medium) at 37 °C and 5%CO2. GFP expressing lentiviral preps were 

made at Duke Viral Vector Core Lab by transducing 293T cells with a lentiviral plasmid 

(pCCLc-MNDU3-Luciferase-PGK-EGFP-WPRE) that was purchased from Addgene (# 

89608). The concentrated viral supernatant was used to transduce rat MSCs grown in a 24-

well plate. Cells that were GFP positive were sorted using FACS and expanded. Aliquots 

of GFP+MSC  cells were frozen and kept in liquid nitrogen until further use.  

Rat GFP+MSCs were validated using flow cytometry to determine the expression of the 

surface markers CD90 and CD45. Also, a MSC functional differentiation kit (R&D 

Systems) was used to test the MSC multipotency in vitro by examining the expression of 

osteocalcin and FABP4, markers of osteogenic and adipogenic differentiation respectively. 

Briefly, MSCs were cultivated for 14 days using an osteogenic or adipogenic media 

according to the manufacturer’s instructions. Then, the MSC were fixed with 4% 
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paraformaldehyde for 10 minutes and permeabilized with 4% goat serum blocking 

solution. The cells were stained with a mouse Anti-Human Osteocalcin or Goat Anti-

Mouse FABP4 overnight at 4°C degrees followed by a 594 Alexa Fluor anti-mouse IGg or 

anti-goat IGg secondary antibody.  

1.7.3 Controlled Cortical Impact (CCI) of adult Sprague Dawley rats 

All procedures involving animals were performed according to the guidelines set forth in 

the Guide for the Care and Use of Laboratory Animals (U.S. Department of Health and 

Human Services, Pub no. 85-23, 1985) and was approved by the Georgia Institute of 

Technology’s and Duke University’s Institutional Animal Care and Use Committees. Male 

Sprague-Dawley rats (8 weeks; Charles River) were housed in plastic cages and kept on a 

12-h light-dark cycle. Food and water were available ad libitum. Rats were induced into 

anesthesia using 5% isoflurane for 3-5 minutes and kept under 2-3% isoflurane for the 

duration of the surgical procedure. Rats were mounted in a stereotaxic device after shaving 

the head area. The incision area was cleaned using chlorhexidine and 70% ethanol. A 

sagittal incision was made in the scalp and the fascia retracted to expose the cranium. A 5-

mm craniotomy was made over the left frontoparietal cortex using a 5mm diameter dental 

drill (center: -3.0 mm AP, +2.0 mm ML from bregma). After removal of the bone, 

unilateral contusions of the lateral frontoparietal cortex were created using a controlled 

cortical impact (CCI) device. Briefly. the injury was produced by activating a pneumatic 

piston (3mm diameter tip) positioned 10 grades from vertical in the coronal plane to a depth 

of 2 mm (4m/s velocity, 100ms duration). Following the injury, the wound cavity was 

thoroughly cleaned, and all bleeding stopped before suturing the incision.  
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1.7.4 GFP-MSC transplantation 2 days post-injury 

Just before transplantation, GFP-MSC (passage 6) were harvested and counted and 

hemocytometer and Trypan Blue. 5uL aliquots containing approximately 500,000 cells 

were prepared and kept on ice until transplantation. The rats were randomly separated in 

the following experimental groups and 5uL of the MSC aliquot was mixed according to 

the described formulation: 1) Agarose group- 10uL of 2% agarose hydrogel + 5uL plain 

DMEM media, 2) Agarose-FasL group- 10uL of 2% agarose hydrogel + 5uL of 

FasL/Lipid microtubes (4ug FasL), 3) Agarose-MSC group- 10uL of 2% agarose 

hydrogel + 5uL of plain media, and 4) Agarose-MSC-FasL group-10uL of Agarose 

hydrogel + 5uL FasL/Lipid microtubes (4ug FasL). All the injections were done using a 

50uL Hamilton syringe with a 26-gauge needle at a rate of 2 uL per minute and a 3mm 

depth in the middle of the injury site. The syringe was cooled using ice for 3 minutes before 

the injection in order to initiate the agarose gelling process. Following the injection, the 

wound cavity was thoroughly cleaned, and all bleeding (if any) stopped before suturing the 

incision. 

1.7.5 Flow cytometry analysis 

At 6 days post-transplantation, the brain tissue around the injury site was harvested after a 

PBS cardiac perfusion following appropriate protocols laid out by IACUC. The tissue was 

then processed to obtain a single-cell suspension. Briefly, the tissue was crushed into a 

50mL tube using a 100um nylon cell strainer. The solution was centrifuged at 300g for 5 

minutes, resuspended in 1mL of a Liberase low TM/PBS solution and incubated for 30 

minutes at 37C. The samples were diluted using a DNAse/FBS in PBS solution (600U 
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DNAse, 10% FBS), passed through a 70um nylon cell strainer into a 50mL tube and 

thoroughly washed with a 10% FBS/PBS solution. The solution was centrifuged at 300g 

for 5 minutes, resuspended in a 25% isotonic Percoll solution, and centrifuged at 521g for 

20 minutes. After centrifugation, the cell pellet was washed twice with 10mL of 10% FBS 

made in PBS. In order to remove red blood cells, the cell pellet was resuspended in 1mL 

of red blood cells lysis buffer for 1 minute,  washed with a 10% FBS/PBS solution, and 

centrifuged for at 300g for 5 minutes. The resulting pellet was resuspended in 200uL of 

flow cytometry buffer and stained with the following antibodies CD3-APC, CD8-PE, CD4-

APC-Cy7, and CD95-PE-Cy7 using 1ug of antibody per 100uL of flow buffer for 30 

minutes in dark.  After two washes with flow cytometry buffer, the cells were analyzed 

using a Novus Flow Cytometer.  

1.7.6 RT-PCR Analysis  

Brain tissue for RT-PCR analysis was obtained at two days post-transplantation (4 days 

after TBI) after cardiac perfusion using PBS and following appropriate protocols as laid 

out by IACUC. The harvested tissue from the ipsilateral side of the injury was rapidly 

frozen in liquid nitrogen. RNA was extracted using RNeasy Maxi Kit (Qiagen) according 

to the manufacturer's instruction. Reverse transcriptase PCR was performed to synthesize 

cDNA using the RT2 First Strand Kit (Qiagen). qRT-PCR was performed using SYBR 

green assay for genes encoding the following pro-inflammatory and anti-inflammatory 

cytokines: IFN, IL12β, TNFα, IL-1, IL-4, IL-10, TGFβ and IL-1RA. Primers against 

GADPH and HRPT were used as housekeeping genes. The Ct analysis method to obtain 

the relative mRNA expression with respect to a Naïve group.   
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1.7.7 Protein Analysis  

Brain tissue for protein extraction was obtained at two days post-transplantation after 

cardiac perfusion using PBS and following the appropriate protocol laid out by IACUC. 

The harvested tissue was rapidly frozen in liquid nitrogen. For total protein extraction, we 

used a modified protocol adapted from methods previously described for the analysis of 

cytokine/chemokine in the brain [179]. The extracted brain tissue was weighed and 

homogenized with the Tissue Ruptor II (Qiagen) using 10mL/g of tissue using an extraction 

solution consisting of N-PER reagent with a protease inhibitor. The homogenized solution 

was centrifuged three times at 3000g for 15 minutes to remove broken cell debris. The final 

supernatant or homogenous tissue lysate was aliquoted in fresh tubes and stored at -80 until 

further use. For protein quantification, Bicinchoninic Acid (BCA) assay was used to 

calculate the total protein concentration. ELISA was performed after normalizing the 

amount of protein used for each sample. The following cytokines were estimated: IL-10, 

TNFα, IL-12β, TGF-, IL-1 and IL-1βRA following the manufacturer’s protocol.  

1.7.8 Statistics  

The statistical analysis used consisted of an initial Brown-Forsythe analysis to test the 

assumption of equal variances between the experimental groups. If the assumption of equal 

variances between the experimental groups was confirmed an ANOVA test was performed 

to identify any potential significant difference in an experimental data set. A Tukey’s 

multiple comparison test was used to identify specific significant differences between 

experimental groups if the ANOVA result suggested a significant difference in the 

experimental data set. However, if the assumption of equal variances between the 
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experimental groups was rejected two data analyses options were used. In the first option, 

a Log10 transformation of the data set was used to eliminate the significantly different 

variances between the groups and it was confirmed by repeating a  Brown-Forsythe test. If 

the variances between the groups were no longer significant, the data set was analyzed 

using an ANOVA and  Tukey’s multiple comparison test as explained above. In the second 

option, the original data set was analyzed using a non-parametric Kruskal-Wallis test to 

identify any potential significant difference in the data set. Then, a Dunn's multiple 

comparisons test was used to identify specific significant differences between experimental 

groups if the Kruskal-Wallis test result suggested a significant difference in the 

experimental data set. 

1.8 Results 

1.8.1 FasL release from lipid microtubes/agarose hydrogels 

In order to maximize the effect of FasL after transplantation, we used lipid microtubes to 

slow the release of FasL from the agarose hydrogels (Figure 3.3.). Lyophilized lipid 

microtubes were reconstituted using  20uL of an 800ug/mL FasL solution and centrifuge 

after an hour to remove the supernatant with the FasL not absorbed by the microtubes. 

Then, the lipid microtubes were embedded in agarose hydrogels and washed every 24 hours 

using a BSA/PBS solution. We also used agarose hydrogels without lipid microtubes that 

were mixed with 60%, and 80% of the original total protein in order to determine the 

contribution of the agarose hydrogel to the FasL release. We found that the concentration  
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Figure 3.3: FasL release from the lipi/microtubes/agarose system used to as a stem cell 

carrier. A:  According to the decreased protein concentration in the supernatant of the reconstituted 

lipid microtubes, around 70% of the total protein was trapped inside the lipid microtubes. B: The 

cumulative release from the lipid microtubes/agarose hydrogels was significantly lower than the 

80% and in vivo parameters groups at all time points according to a Repeated measures two-way 

ANOVA (p = .01) and a Tukey’s multiple comparison test (all p values were equal or less than 

.01). 

 

 



 43 

of FasL from the original loading solution (800ug/mL) decreased to approximately 

230ug/mL after the reconstitution of the lyophilized lipid microtubes. Thus, the lipid 

microtubes trapped around 71% of the total initial protein (8.55ug out of 12ug). In addition, 

we calculated the cumulative percentage of released protein with respect to the total protein 

initially loaded (Figure 3.3, Graph B). The lipid microtubes/agarose hydrogels released 

around 31% of the loaded protein, while the 60%, 80% agarose and in vivo parameter 

groups released 48%, 55%, and 64% respectively. The cumulative release from the lipid 

microtubes/agarose hydrogels was significantly lower than the 80% and in vivo parameters 

groups at all time points according to a two-way repeated-measures ANOVA (p = .01) and 

a Tukey’s multiple comparison test (all p values were equal or less than .01).  

1.8.2 FasL agarose hydrogels reduce the cytotoxic T-cells in vivo two days post-

transplantation.  

The effect of FasL hydrogels on the host T-cell response after a brain injury was tested 

using flow cytometry. Agarose-FasL or Agarose hydrogels (n=4 per experimental group) 

were transplanted two days post-injury and flow cytometry was used two days post-

transplantation to profile the T cell population around the site of injury (Figure 3.5). The 

gating strategy used aimed to analyze the general T cell population using the pan marker 

CD3 and then, to determine the percentage of CD8+ cytotoxic T cells and CD4+ Helper T 

cells/Regulatory T cells within the total T cell population (Figure 3.4). Agarose-FasL 

hydrogels did not significantly change the percentage of the general CD3+ T-cell 

population around the site of injury in comparison to Agarose hydrogels according to an 

unpaired t-test (p=.66). However, the percentage of CD8+ cytotoxic T cells within the total 
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T-cell population was significantly reduced according to an unpaired t-test (p= .02). 

Agarose FasL hydrogels did not significantly change the percentage of the CD4+ t-cell 

population in comparison to Agarose hydrogels (p =.08).  

1.8.3 FasL agarose hydrogels increase MSC presence near the injury site at 6 days 

post-transplantation  

The effect of the immunosuppressive FasL-agarose hydrogels on the survival of 

transplanted MSC was studied in an allogeneic model in which rat GFP+MSC were 

transplanted into immunocompetent Sprague-Dawley rats two days after TBI (Figure 3.7). 

The GFP+MSCs used in these experiments were validated using flow cytometry and an in 

vitro functional differentiation test (Figure 3.6). As expected, the GFP+MSCs showed 

negative staining of the pan leukocyte marker CD45 and were positive for the surface 

marker CD90. In addition, the GFP+MSCs showed the expression of the differentiation  

 

Figure 3.4: Flow cytometry gating strategy to determine host T-response near the 

transplantation site.  An initial gating using a SSC-H versus FSC-H graph was used to 

removed cell debris followed by a second gating using a FSC-H versus FSC-A graph to remove 

cell duplets. The cells were gated using the CD3+ biomarker to determine the general T cell 

population and within the CD3+ T cell population the CD8+ and CD4+ markers were used to 

identify T cell subtypes.  
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Figure 3.5: FasL hydrogels reduce the CD8+ cytotoxic T-cell population in vivo 2 days 

post-transplantation (4 days post-injury). A: Representative flow cytometry data showing the 

effect of FasL-hydrogels on the host general CD3+ T cell population (red square) B: 

Quantification of the % of CD+ T cells near the injury site. An unpaired t-test did not show a 

significant difference (p = .67) between the groups. C: Representative flow cytometry data 

showing the effect of FasL-hydrogels on the host CD3+CD8+ cytotoxic T-cell population (red 

square) and CD3+CD4+ T cell population (back square). D: Quantification of the % of CD8+ 

cytotoxic T cells within the general T cell population. An unpaired t-test showed a significant 

difference between the groups (p = .02). E: Quantification of the % of CD4 T cells within the 

general T cell population. An unpaired t-test did not show a significant difference (p = .08) 

between the groups. 
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markers osteocalcin or FABP4 (adipocyte) after exposure to an osteogenic or adipogenic 

differentiation media, respectively. The survival of transplanted GFP+MSCs within the 

injury site was analyzed at 6 days post-transplantation using flow cytometry (n=8 per 

experimental group). The pan leukocyte marker CD45 was used to avoid the quantification 

of GFP positive signals coming from phagocytic cells, such as macrophages, that could 

potentially engulf dying MSC (Figure 3.7). The Agarose-MSC-FasL group showed an 

increased presence of CD45-GFP+ MSC cells (3.61 ± 0.51) compared to the Agarose-MSC 

(2.183 ± 0.59) experimental group according to an ANOVA (p=.0002) and Tukey’s 

multiple comparison test (p=.01)(Figure 3.8). Due to the significantly different in the 

variance of the experimental groups, the data in Figure 3.8 was analyzed using a Log10 

transformation of the original data. The original data and analysis are available in appendix 

A.3.  

1.8.4 GFP+MSC transplantation in the injured brain increases the general T cell population 6 

days post-transplantation.   

 In order to determine if FasL hydrogels could create localized immunosuppression near 

the MSC transplantation site, we used flow cytometry to characterize the host T cell 

response  (Fig 3.9 and 3.10)(n =6 per experimental group). The gating strategy was similar 

to the previously used in Figure 3.4 and the FMOs (fluorescence minus one) control 

stainings used to establish the gates are available in appendix A.5. The Agarose-MSC 

(34.1%10.59) and Agarose-MSC-FasL (33.27%7.317) showed a significant increase in 

the  CD3+ T cell population in comparison to the groups injected with Agarose 

(16.49%3.82) or Agarose-FasL (15.46%2.28) according to an ANOVA (p < 0.0001) and  
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Figure 3.6: GFP+MSC validation in vitro.  A. Representative flow cytometry data showing 

the MSC expression of the CD90 surface marker. As expected, MSC did not express the CD45 

surface marker. B:  Representatives images showing the GFP+MSC differentiation potential into 

osteoblast and adipocytes. GFP+MSC expressed the markers osteocalcin and FABP4  

(adipocytes) after exposure to the respective differentiation media for osteoblast or adipocytes 

differentiation.     
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Tukey’s multiple comparison test (p values reported in graph B, Figure 3.9). The 

experimental group injected with Agarose-MSC showed a significantly greater percentage 

of CD8+ cytotoxic T cells (46.17%4.64) compared to the Agarose (26.32%10.27) and 

Agarose-FasL group (24.00%10.90) according to an ANOVA (p = .001) and Tukey’s 

multiple comparison test (Agarose-MSC versus Agarose: p =.004; Agarose-MSC versus 

Agarose-FasL: p =.001). The group injected with Agarose-MSC-FasL (31.31%6.576) 

showed a significant decrease in the  CD8+ cytotoxic T cells in comparison to the Agarose-

MSC group according to an ANOVA (p = .001)  and a Tukey’s multiple comparison test 

(p = .042). In addition, the Agarose-MSC-FasL showed a significant increase in the 

percentage of (42.79% 7.94) CD4+ T cells in comparison to the Agarose (25.76%7.83) 

and Agarose-FasL (23.87%7.91) groups but not the Agarose-MSC group (34.85%4.04) 

according to an ANOVA (p = .0006) and a Tukey’s multiple comparison test (Agarose- 

 

Figure 3.7: Flow cytometry gating to detect CD45-GFP+MSC near the transplantation site. 

An initial gating using a SSC-H versus FSC-H graph was used to removed cell debris followed 

by a second gating using a FSC-H versus FSC-A graph to remove cell duplets. Then a CD45 

versus GFP graph was used to gate the CD45-GFP+ MSC cell population.  
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Figure 3.8: FasL hydrogels increase the presence of GFP+MSCs after transplantation into 

the injured brain. A. Representative flow cytometry data showing the effect of FasL-hydrogels 

on the survival of the transplanted GFP+ MSC (red square) 6 days post transplantation B: 

Quantification of Log10 Total CD45- GFP+ MSC cell population. A general ANOVA showed a 

significant difference between the experimental groups (p < 0.0001) and a Tukey’s multiple 

comparison test showe a significant difference between the Agarose-MSC and Agarose-MSC-

FasL groups (p < 0.0001). C:  Quantification of the normalized percentage of CD45-GFP+ MSC 

cell population with respect to the total number of cells analyzed. A general ANOVA showed a 

significant difference between the experimental groups (p < 0.0001) and a Tukey’s multiple 

comparison test showed a significant difference between the Agarose-MSC and Agarose-MSC-

FasL groups (p < 0.001). The original non-transformed data is available in the appendix A.3. 
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MSC-FasL versus Agarose: p = .003; Agarose-MSC-FasL versus Agarose-FasL: p = .0009; 

Agarose-MSC-FasL versus Agarose-MSC: p = .25)  (Fig 3.11, Graph C). 

Our original hypothesis is that using FasL hydrogels we could create localized 

immunosuppression near the MSC transplantation site by inducing the apoptosis of 

cytotoxic CD8+ T cells that express the Fas receptor (also known as CD95). We tested if 

using FasL hydrogel can alter the T cell population that specifically express the Fas 

receptor using flow cytometry (Figures 3.12 and 3.13). To achieve this, the gating strategy 

after flow cytometry included the use of a CD95 antibody to determine which percent of 

the general T cell population was positive for the Fas receptor (Figure 3.10). The Agarose-

MSC (15.71% 4.32) and the Agarose-MSC-FasL (18.00% 9.12)  groups showed a lower 

percentage of  T cells expressing the CD95 receptor in comparison to the Agarose 

(45.03% 12.23) and Agarose-FasL (45.40% 16.20) groups according to an ANOVA (p 

= .0001)  and a Tukey’s multiple comparison test (Agarose-MSC-FasL versus Agarose: p 

= .004; Agarose-MSC versus Agarose: p = .002; Agarose-MSC-FasL versus Agarose-

FasL: p = .003; Agarose-MSC versus Agarose-FasL: p= .001) (Figure 3.12) . We observed 

that there was a significant increase in the percentage of CD95+CD8+ cytotoxic T cells in 

the Agarose-MSC group (22.24%8.88) in comparison to the Agarose (8.17%7.41)  and 

Agarose-MSC (5.08%3.56)  groups according to an ANOVA (p = .002) and a Tukey’s 

multiple comparison test (Agarose-MSC versus Agarose: p = .01; Agarose-MSC versus 

Agarose-FasL: p = .002). The use of FasL for MSC delivery (Agarose-MSC-FasL) did not 

reduce the percentage of CD95+CD8+ cytotoxic T cells in comparison to the Agarose-MSC 

group (p=.12). Also, we did not find any difference between the CD95+CD4+ T cell 

population of all the experimental groups according to an ANOVA (p = .35). 
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Figure 3.9: MSC transplantation increases T cell infiltration into the injured brain at 6 

days post-transplantation. A: Representative cytometry data for the CD3+ general T cell 

population (red square) near the injury site at 6 days post-transplantation. B: Quantification of 

the percentage of CD3+ T cells with respect to the total analyzed cells from the brain. An 

ANOVA showed a significant difference between the experimental groups (p < 0.0001) and a 

Tukey’s multiple comparison test showed the significant differences reported in the graph.   
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Figure 3.10: MSC delivery using FasL hydrogels decrease the CD8+ cytotoxic T cell 

population within the injured brain at 6 days post-transplantation. A: Representative flow 

cytometry data for the T cell phenotypes (red square represents the CD8+ cytotoxic T cell 

population, black square represents the CD4+ T cell population). B: Quantification of the percentage 

of CD8+ cytotoxic T cell population within the general T cell population. A general ANOVA showed 

a significant difference between the experimental groups (p = 0.001) and a Tukey’s multiple 

comparison test showed the significant difference reported in the graph. C: Quantification of the 

percentage of CD4+ T cell population within the general T cell population.  A general ANOVA 

showed a significant difference between the experimental groups (p = 0.0006) and a Tukey’s 

multiple comparison test showed the significant differences reported in the graph.  
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3.3.3 MSC-FasL agarose hydrogel modulate pro-inflammatory and anti-inflammatory 

cytokines in vivo 4 days after TBI and 2 days after transplantation 

We tested if MSC transplantation or the use of FasL hydrogels could alter the expression 

of pro-inflammatory and anti-inflammatory markers. Using RT-PCR, we estimated the 

relative fold change in the mRNA levels of the following cytokines: IFN, IL12β, TNFα, 

IL-1, IL-4, IL-10, TGFβ, and  IL-1RA (Figures 3.14 and 3.15). Results are expressed as 

the relative mRNA expression compared to a Naïve group (no TBI) baseline. Among the 

pro-inflammatory cytokines tested, the Agarose-MSC-FasL group showed a significant  

 

Figure 3.11: Flow cytometry gating to detect the effect of FasL-hydrogels in the host T Cell 

Response. The cells were gated using the CD3+ biomarker, then the CD95 marker was used to 

determine the FasL target population. Finally, the CD8+ and CD4+ markers were used to identify 

the T cell subtypes within the CD3+CD95+ population. 
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Figure 3.12: MSC transplantation shifts the CD3+CD95+ T cell population in the injured 

brain. A: Representative cytometry data for the CD3+CD95+ T cell population (red box) near the 

injury site at 6 days post-transplantation. B: Quantification of the percentage of CD3+CD95+ T 

cells within the general CD3+ T cell population.  A general ANOVA showed a significant 

difference between the experimental groups (p = 0.0001) and a Tukey’s multiple comparison test 

showed the significant differences reported in the graph. 
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Figure 3.13: FasL hydrogels did not alter the CD3+CD95+ T cell population 

phenotypes in the injured brain after MSC transplantation. A: Representative flow 

cytometry data for the CD3+CD95+T cell phenotypes (red square represents the 

CD3+CD95+CD8+ cytotoxic T cell population, black square represents the 

CD3+CD95+CD4+ T cell population) at 6 days post-transplantation. B: Quantification of 

the percentage of CD3+CD95+CD8+ cytotoxic T cell population within the CD3+CD95+T 

cell population. A general ANOVA showed a significant difference between the 

experimental groups (p = 0.002) and a Tukey’s multiple comparison test showed the 

significant differences reported in the graph. C: Quantification of the percentage of 

CD3+CD95+CD4+ T cell population within the CD3+CD95+T cell population. An ANOVA 

did not shown any significant difference between the groups (p = .35). 
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increase in the mRNA expression for IL-1, TNF, and IL-12 in comparison to the 

Agarose and Agarose-MSC groups (Figure 3.14 statistical analysis: TNF-α was analyzed 

using an ANOVA (p < .0001) and a Tukey’s Multiple Comparison Test (p values reported 

in graph); IL-12β and IL- β were analyzed using a non-parametric Kruskal-Wallis Test (IL-

12β: p < .0001; IL-1β: p = .0001) and a Dunn’s Multiple Comparison Test(p values 

reported in graphs)). The TNF- genetic expression of the Agarose-MSC was also 

significantly higher than the Agarose group according to an ANOVA (p < .0001) and a 

Tukey’s Multiple Comparison Test (p = .04). Among the anti-inflammatory cytokines 

tested, the Agarose-MSC-FasL group showed a significant increase in the genetic 

expression of IL-1βRA in comparison to the Agarose group according to using a Kruskal-

Wallis Test (p < .0001) and a Dunn’s Multiple Comparison Test (p < .0001) (Figure 3.15). 

The IL-1βRA genetic expression of the Agarose-MSC group was not significantly different 

from the Agarose group a Kruskal-Wallis Test (p < .0001) and a Dunn’s Multiple 

Comparison Test (p=.12). In addition, IL-10 also showed significantly higher gene 

expression in the Agarose-MSC-FasL group compared to the Agarose group according to 

an ANOVA (p = .003) and a Tukey’s Multiple Comparison Test (p = .002). 

In order to corroborate the gene expression data,  the protein expression of IL-10, TNF-α, 

IL-12β, IL-1β, IL-1βRA, and TGF-β was determined using ELISA assays according to the 

manufacturer’s instructions (Figure 3.16). The protein concentrations of the anti-

inflammatory cytokine IL-10 was lower in all the experimental groups with a brain injury 

according to an ANOVA (p<.0001)and Tukey’s multiple comparison test (all p values were 

lower than .0001). The pro-inflammatory cytokines TNF- was significantly lower in all 

experimental groups with a brain injury compared to the Naïve group according to an 



 57 

ANOVA (p<.0001)and Tukey’s multiple comparison test (all p values were equal or lower 

than .0001). The protein expression of the pro-inflammatory cytokine IL-1 was 

significantly lower in the treatment groups Agarose-FasL, Agarose-MSC, and Agarose-

MSC-FasL in comparison to both the Naïve group(ANOVA p<.0001, Tukey’s multiple 

comparison test p equal or lower than .007)  and the Agarose group (ANOVA p<.0001, 

Tukey’s multiple comparison test p equal or lower than .003). Interestingly, the protein 

expression of the anti-inflammatory protein IL-1 RA was significantly higher in the 

Agarose-MSC-FasL experimental group in comparison to the Naïve (ANOVA p<.0001, 

Tukey’s multiple comparison test p<.0001),  Agarose group (ANOVA p<.0001, Tukey’s 

multiple comparison test p<.0001),  and Agarose-MSC group (ANOVA p<.0001, Tukey’s 

multiple comparison test p<.004).  

1.9 Discussion 

The disruption of the BBB following a brain injury results in the infiltration of peripheral 

immune cells into the brain which contribute to the development of an inflammatory 

response and the propagation of the secondary injury [19, 37, 38, 179]. MSCs transplanted 

during the acute phase of a TBI will be exposed to a tremendously harsh environment that 

could potentially limit the stem cells' survival or alter its functional plasticity diminishing 

the cell's therapeutic effect. MSC has been found to have a limited survival after 

transplantation in the non-injured brain, in which MSC grafts were highly infiltrated by 

microglia and astrocytes along with few CD8+ cytotoxic T cells [16-18]. The infiltration of 

peripheral immune cells caused by a brain injury might contribute to the survival of 

transplanted MSCs as it has been showed that allogeneic MSCs are eliminated by infiltrated  
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Figure 3.14. MSC delivered along with FasL significantly increases the genetic expression 

of pro-inflammatory 4 days after TBI (2 days after transplantation). A:The injection of MSC 

using FasL hydrogels significantly increased the genetic expression of TNF-, IL-12β, and IL-

1β. Statistical Analsysis: TNF-α was analyzed using ANOVA (p < .0001) and a Tukey’s Multiple 

Comparison Test for the p values reported in the graph; IL-12β was analyzed using a non-

parametric Kruskal-Wallis Test (p < .0001) and a Dunn’s Multiple Comparison Test for the p 

values reported in the graph; IL-1β was analyzed using a non-parametric Kruskal-Wallis Test (p 

= .0001) and a Dunn’s Multiple Comparison Test for the p values reported in the graph; IFN-ϒ 

was analyzed using ANOVA (p = .98).  B: Summary of the fold changes in the gene expression 

data. 

 

 

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

-4

-2

0

2

4

IF N g

R
e

la
ti

v
e

 m
R

N
A

 e
x

p
r
e

s
s

io
n

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

-1

0

1

2

3

4

IL -1 2 

R
e

la
ti

v
e

 m
R

N
A

 e
x

p
r
e

s
s

io
n

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

2

4

8

T N F -

R
e

la
ti

v
e

 m
R

N
A

 e
x

p
r
e

s
s

io
n

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

-5

0

5

1 0

1 5

IL -1 

R
e

la
ti

v
e

 m
R

N
A

 e
x

p
r
e

s
s

io
n

Experimental Group IFN-ϒ IL-12β TNF-α IL-1β

Agarose -0.79 0.83 -0.18 0.03 2.98 0.49 1.51 0.28

Agarose-MSC -0.69 0.71 0.06 0.27 3.71 0.50 4.82 2.82

Agarose-MSC-FasL -0.76 1.69 1.69 1.03 4.95 0.71 8.63 0.95

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

-2

-1

0

1

2

3

G ra n z y m e B

L
o

g
2

(F
o

ld
 C

h
a

n
g

e
)

Agarose

T
B

I-
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

0

1

2

3

%
 G

F
P

Agarose-MSC-FasL

T
B

I -
A

g
a

T
B

I-
A

g
a
-M

S
C

T
B

I-
A

g
a
-M

S
C

-F
a
s
L

0

1

2

3

%
 G

F
P

Agarose-MSC

A

B

p < 0.0001

p = 0.0009
p = 0.04

p < 0.0001

p < 0.0001

p = 0.03



 59 

  

 

Figure 3.15. MSC delivered along with FasL significantly increases the genetic expression 

of the anti-inflammatory cytokines IL-1βRA 2 days after transplantation. A: The injection 

of MSC using FasL hydrogels significantly increased the expression of IL-10 and IL-1-RA. 

Statistical Analysis: IL-10 was analyzed using ANOVA (p = .003) and a Tukey’s Multiple 

Comparison Test for the p values reported in the graph; IL-1-RA was analyzed using a non-

parametric Kruskal-Wallis Test (p < .0001) and a Dunn’s Multiple Comparison Test for the p 

values reported in the graph. B. Summary of the fold changes in the gene expression data.  
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CD8+ T cells, Natural killer T (NKT) and NK after transplantation within the skin [100]. 

In this chapter, we explored if targeting the CD8+ cytotoxic T-cell population could 

enhance the survival of transplanted MSC in the injured brain.  In order to achieve this, we 

designed FasL releasing agarose hydrogels that could potentially induce the apoptosis of 

Fas-receptor expressing CD8+ cytotoxic T cells near the site of stem cell transplantation 

and thereby, alleviate the active rejection of the transplanted MSC by the host immune 

system. In order to increase the probability of FasL inducing apoptosis on  CD8+ cytotoxic 

T cells, we used lipid microtubes to prolong the release of FasL from the agarose hydrogels. 

This lipid microtubes/agarose hydrogel protein delivery system has been previously 

developed in our lab and successfully used to deliver chondroitinase ABC, Rho GTPases,  

and BDNF within the spinal cord after an injury [123, 178].  In vitro, we were able to 

prolong the release of FasL on lipid microtubes/agarose hydrogels in comparison to FasL 

loaded agarose hydrogels without lipid microtubes. A potential limitation of this delivery 

system is the extremely high concentrations of FasL used to load the lipid microtubes right 

before transplantation. MSCs express the Fas receptor but have shown resistance to FasL 

mediated cell death [180-182]. We tested the effect of FasL on the MSC survival and did 

not find a significant decrease in MSC viability but it did inhibit MSC proliferation 

(Appendix A.2). In vitro, we tested up to 400ng/mL while the initial concentration used 

right before in vivo transplantation is 200ug/mL. Although according to our FasL release 

experiments in vitro we expect an initial burst release of FasL in the first 24 hours, more 

testing is needed to verify the effect of extreme FasL concentrations on the MSC behavior. 

Hydrogel delivery systems that reduce FasL diffusion more efficiently than lipid 
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microtubes and therefore, require lower initial FasL concentrations could be beneficial to 

circumvent this  
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Figure 3.16. MSC delivery using FasL hydrogels increased the expression of IL-1 RA at 

2 days post-transplantation. A, B and D: Effect of MSC transplantation using FasL hydrogels 

on the protein expression of inflammatory/anti-inflammatory proteins. Brain injury significantly 

decreased the expression of IL-10, TNF- and IL-1 in comparison to the Naïve group. 

Statistics: All proteins were analyzed using ANOVA (IL-10 p <.0001; , TNF- p <.0001; IL-

1 p<.0001). A  Tukey’s multiple comparison test was used to obtain the p values reported in 

the graph. E: MSC delivering using FasL hydrogels significantly increased the protein 

expression of IL-1 RA. Statistics: IL- RA was analyzed using ANOVA (p <.0001). A  

Tukey’s multiple comparison test was used to obtain the p values reported in the graph. C and 

F: No significant differences were found in the protein expression of IL-12β (p = .19) and TGF-

β (p = .36).  
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limitation. Furthermore, the observed MSC resistance to FasL mediated apoptosis in vitro 

could be decreased in vivo due to the harsh environment near the transplantation site which 

could expose the stem cells to multiple stressors (oxidative stress, hypoxia) simultaneously 

[183]. It would be interesting to perform similar experiments in vivo to test the survival of 

MSCs with a knockout of the Fas receptor in order to determine any potential toxicity of 

FasL under in vivo conditions.  

Using flow cytometry, we studied the survival of transplanted GFP+MSC delivered into 

the injured brain using Agarose-FasL hydrogels. GFP+MSC were transplanted into the 

injured brain of immunocompetent rats 2 days-post-injury and the stem cell presence near 

the injury site was determined 6 days post-transplantation. We found that MSC delivery 

using Agarose-FasL hydrogels (Agarose-MSC-FasL group) significantly increased the 

presence of transplanted stem cells near the injury site in comparison to MSC transplanted 

using Agarose hydrogels (Agarose-MSC group), which suggest a potential increase in the 

survival of the transplanted stem cells (Figure 3.8). The use of FasL-hydrogel could have 

potentially delayed the death and/or clearance of the transplanted MSCs suggesting that 

inducing localized immunosuppression at the site of transplantation could enhance stem 

cell therapy after brain injury. It is important to emphasize that although we observe an 

increased presence of GFP+MSCs after delivery using FasL-hydrogels, we do not have 

knowledge about the functional status of the transplanted stem cells.  MSC has been found 

to have a phenotype paradigm, similar to macrophages, in which environmental signals 

could induce a pro-inflammatory (MSC1) or anti-inflammatory (MSC2) phenotype [184, 

185].  Interestingly, Naftali-Shani et al found that the environmental signals found in the 

infarcted myocardium switched MSC toward an inflammatory phenotype and exacerbated 
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the damage to the heart [186]. They found that knocking out the Toll-Like Receptor 4 

(TLR4) favored the MSC anti-inflammatory phenotype and enhanced the stem cell 

therapeutic effect [186]. Commonly, stem cell transplantation research focuses on the 

effect of the transplanted stem cell on the injured brain milieu with some emphasis on stem 

cell survival.  However, more research is needed to understand the effect of the injured 

brain milieu on the MSC functional phenotype and therapeutic potential in order to move 

forward the development of cell therapies for TBI.  

An important limitation in this study is the use of GFP as a fluorescence label in order to 

track the transplanted rat MSCs in vivo. GFP labeling could elicit an immunogenic 

response depending on multiple factors such as GFP variant, labeled-cell transplantation 

route, and mice/rat strain[187-190]. Various studies found that transplantation of GFP-

labeled cells was correlated with an increased T cell infiltration, specifically with a 

generation of a  cytotoxic T lymphocyte (CTL) response [188, 189]. However, Moloney et 

al compared the immunogenicity of GFP+MSCs obtained from the “green rat” (SD-Tg 

[CAG-EGFP] CZ-004Osb) and non-labeled MSC after transplantation in the intact adult 

brain of rats, and found no significant difference in the volume of the transplanted grafts  

(with or without GFP labeling) and the activation of the brain neuroglia (astrocytes and 

microglia) [18]. Nevertheless, there still the possibility that the altered brain's immune 

environment after a brain injury could lead to an exacerbated immune response against 

GFP labeled MSCs. An alternative to the use of GFP-MSCs is to perform similar studies 

using rat females as immunocompetent hosts and male rats as donors in order to use 

antibodies against the Y chromosome to identify the transplanted stem cells. However, the 

female hormone progesterone has been found to be neuroprotective after brain injury and 
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therefore, the female estrous cycle needs to be taken into consideration during the study of 

TBI using female rats [191].  

Multiple studies exploring the survival of allogeneic MSC in the brain have used a non-

injured brain model and focused on the infiltration of microglia and astrocytes within the 

transplanted grafts [17, 18, 163].  We found that GFP+MSC transplantation after in the 

injured brain of immunocompetent rats leads to an increase in the general CD3+ T cell 

population near the injury site which suggests a delay in the usual resolution of host 

immune response after TBI [19]. We also found that the transplantation of MSC 

significantly increases the percentage of CD3+CD8+ cytotoxic T cells, but the use of FasL 

hydrogels as MSC carriers reversed this effect. As mentioned previously, the use of GFP 

as a label to track MSC could elicit an independent immune response exacerbating the host 

allogeneic response towards the transplanted stem cells [187-190]. Therefore, further 

studies using non-labeled MSCs are needed to determine if the increased infiltration of 

CD3+ T cells, including the increase in the CD8+ T cell population, could be due to a host 

response against GFP. However, even with the possibility of a stronger immune response 

caused by the GFP+MSCs, the FasL hydrogels were able to prolong the presence of the 

transplanted stem cells near the injury site and to reduce the increase in the CD8+ T cell 

population. These results suggest that creating localized immune-privileged zones near the 

stem cell transplantation site could be a strategy to enhance stem cell survival after 

transplantation in the injured brain. 

We also observed that the animal injected with MSCs using FasL hydrogels showed an 

increased percentage of CD3+CD4+ T cell population in comparison to the groups injected 

without MSCs (Agarose and Agarose-FasL)  but not in comparison to the Agarose-MSC. 
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Previous studies have shown that an increase in regulatory T cells can reduce neural 

damage after brain injury [7, 8]. Some of the population of the increased CD3+CD4+ T cells 

observed in our study might be comprised of regulatory T cells and could potentially help 

in the post-injury repair processes. Therefore, it is important to emphasize that using FasL 

as our immunosuppressive agent allows us to selectively eliminate an undesired component 

of the immune response such as the CD8+ cytotoxic T cells population without 

compromising other desirable components such as the CD4+ regulatory T cell population.  

The pathophysiological changes caused due to the secondary injury and the MSC 

transplantation to the injury site with or without FasL could alter the host inflammatory 

response.  MSC have been shown to possess immunomodulatory properties that alter the 

inflammatory response in the acute phase of a brain injury  [162]. We have shown in our 

study that MSC transplantation in agarose –FasL hydrogels altered the genetic and protein 

expression of inflammatory cytokines after TBI. The Agarose-MSC-FasL group showed 

greater mRNA levels for IL-1, TNF-, IL-1-RA compared to the Agarose group. 

Surprisingly, although the mRNA levels of IL-1β and TNF- were significantly increased, 

the protein expression of both was significantly lower in the animal subjected to a brain 

injury in comparison to Naïve levels. Moreover, the Il-1 protein expression on the rats 

treated with FasL, MSC or both was significantly lower than the injured animals without 

treatment. Interestingly, the transplantation of Agarose-MSC-FasL significantly increased 

the protein concentration of the IL-1 RA compared to the Naïve, Agarose and Agarose-

MSC groups. IL-1 RA has been shown to be an important regulator of the IL-1 pro-

inflammatory cytokine and has been shown to reduce neuronal damage in various models 

of brain injury including TBI and Ischemic stroke [39-42]. 
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As a final comment, in this project, we specifically targeted the host cytotoxic T cell 

response in order to enhance the survival of transplanted MSCs. However, the survival of 

transplanted stem cells can be affected by other factors non-related to the host immune 

response such as hypoxia and limited nutrients among others [137]. A strategy to enhance 

the survival of transplanted stem cells using hydrogels is the incorporation of ECM cues 

into the hydrogel matrix, which can provide signals to enhance the survival,  proliferation, 

of the transplanted stem cells or provide resistance to detrimental signals present in the 

injured milieu [138, 139].  A disadvantage of the agarose hydrogel system used in this 

study is the lack of ECM contact sites, which could limit stem cell survival. Further studies 

could design bifunctional hydrogels that provide the stem cells a direct survival stimulus 

using ECM cues while simultaneously suppressing the host immune system. Hyaluronan 

or chondroitin sulfate hydrogels could be modified to sustain the release of FasL or other 

immunomodulatory proteins in order to enhance stem cell survival using a multi-targeted 

approach [119, 146].  

1.10 Conclusion 

The initial insult during TBI leads to the creation of a complex environment that includes 

the infiltration of multiple immune cells, which could jeopardize the survival of 

transplanted allogeneic MSC. Our goal in this chapter was to explore the role of the T cell 

response on the MSC survival after transplantation in the injured brain and to determine if 

T cell suppression could lead to enhance MSC survival. To achieve this, we used FasL 

releasing hydrogel that induces the apoptosis of cytotoxic CD8+ T cells near the site of 

MSC transplantation. We showed that the injection of MSC into the injured brain leads to 

an increased T cell population near the injury site, including an increased percentage of 
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CD8+ cytotoxic T cells. However, MSC injection using FasL hydrogels was able to reduce 

the percentage of the CD8+ cytotoxic T cells without compromising the CD4+ T cell 

population. The selective decrease of the CD8+ T cell allows us to protect the MSC without 

losing the potential beneficial effect of CD4+ regulatory T cells. We were able to show that 

FasL-agarose hydrogels enhance the presence of MSCs after transplantation in the injured 

brain whereas the injection of MSC without FasL resulted in the almost complete 

elimination of the transplanted cells. The altered immune response observed after MSC 

transplantation using FasL hydrogels could alter the expression of inflammatory cytokines. 

We found that injecting MSC using FasL hydrogels resulted in an increased protein 

concentration of IL-1-RA, a cytokine that has been shown to reduce neuronal damage 

after brain injury due to its anti-inflammatory properties. Therefore, the combination of 

MSC transplantation with FasL delivery could be enhancing the MSC therapeutic through 

the inhibition of the IL-1 pathway. However, further studies are needed in order to 

characterize the functional status of the MSCs after transplantation in the injured brain in 

order to improve the design of hydrogel carriers that enhance stem cell therapy after TBI.  

  



 69 

EVALUATE THE EFFECT OF MSC TRANSPLANTATION USING FASL- 

HYDROGELS ON THE INJURED BRAIN ENVIRONMENT.  

1.11 Introduction 

A unique property of MSC therapy for brain injury is the stem cell's ability to target 

multiple mechanisms of the secondary injury in order to contain neuronal damage. The 

release of cytokines and chemokines due to the initial injury attract and stimulate MSCs, 

which can coordinate the response of multiple cell types such as immune cells, endothelial 

cells, neuroglia and neural progenitor cells to promote tissue repair [5]. Systemic MSC 

transplantation by intravenous injections has been shown to alters the host peripheral 

immune profile increasing the number of Regulatory T cells and indirectly increasing the 

infiltration of regulatory T cells within the injury site, which has been proved to be 

beneficial after brain injury [7, 8]. In addition to the immune response, non-neuronal brain 

resident cells such as microglia and astrocytes play important roles in tissue protection and 

repair. Microglia, similar to macrophages, is considered to have two opposite polarization, 

part of a spectrum, known as M1 (classically activated, inflammatory) and M2 

(alternatively activated, anti-inflammatory).  Zanier et al found that MSC transplantation 

into the injured brain modulates the microglia response towards an M2 phenotype, which 

is considered beneficial due to its pro-healing anti-inflammatory properties [10]. Also, In 

vitro studies confirm the  MSC's ability to reduce inflammatory cytokines on LPS activated 

microglia [9]. MSCs have been shown to reduce astrocyte apoptosis and to upregulate the 

astrocyte’s gene expression of trophic factors after an in vitro anaerobic insult [96]. In vivo, 

the transplantation of MSC after stroke has been correlated to an altered glial scar 
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composition and increased expression of the glial-derived neurotrophic factor (GDNF) [12, 

97]. The MSC's ability to modulate multiple cell types makes MSC therapy a promising 

multifunctional approach for TBI.  

Another mechanism reported in the literature to mediate the MSC therapeutic effect is the 

increased protein expression of growth factors that promote neuronal survival around the 

injury site. Studies have reported an increased expression of vascular endothelial growth 

factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and 

insulin-like growth factor (IGF) [11]. In addition, MSC has been shown to increase the 

expression of neurotrophic factors such as nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), and GDNF [11, 14]. The neuroprotective effect of NGF and 

BDNF in multiple brain injury models has been extensively studied in the literature. 

Exogenous NGF administration has been correlated with reduced neurologic deficits and 

reduced neuronal cell damage/death [87-91].  Similarly, BDNF delivery has also shown 

therapeutic effect after brain injury by promoting neuronal survival and neurogenesis [92-

94].  

Stem cell therapy efficiency depends on multiple factors including cell source, culture 

conditions and delivery route [43, 44}. Pre-clinical studies testing MSC therapeutic effect 

after TBI usually used two main routes of cell delivery: intravenous injections and 

intracerebral injection. Intravenous injection, although minimally invasive limit the 

amount of cell that reaches the cerebral cortex. [85, 192, 193]. On the other hand, 

intracerebral injection delivers the MSC to a potentially harsh environment that might 

hinder the cells’ survival and therapeutic effect.  In order to optimize MSC transplantation, 

multiple questions still need to be addressed. Does prolonged MSC survival enhance the 



 71 

stem cell's therapeutic effect? What is the minimum stem cell dosage needed for a 

successful treatment?  Does the injured brain environment alter the MSC functional 

phenotype?  

In the previous chapter, we demonstrated that MSC transplantation increases the 

infiltration of T cells and the percentage of CD8+ cytotoxic T cells within the injury site. 

Also, using FasL-agarose hydrogels as stem cell carriers reversed the increase in the CD8+ 

cytotoxic T cell population. We also showed that using FasL hydrogels as MSC carriers 

after TBI results in an increased MSC presence around the injury site. In this chapter, we 

evaluate if the enhanced MSC presence near the injury site ameliorates the neuronal 

pathophysiology after TBI. We will determine the effect of MSC transplantation using 

FasL hydrogels on the protein expression of multiple growth factors previously reported to 

mediate the MSC therapeutic effect. In addition, we will use MRI and examine various 

histological markers to determine the neurodegenerative state around the injury site after 

MSC transplantation using FasL hydrogels.  

1.12 Methods 

1.12.1 Controlled Cortical Impact (CCI) 

All procedures involving animals were performed according to the guidelines set forth in 

the Guide for the Care and Use of Laboratory Animals (U.S. Department of Health and 

Human Services, Pub no. 85-23, 1985) and was approved by the Georgia Institute of 

Technology’s and Duke University’s Institutional Animal Care and Use Committees. Male 

Sprague-Dawley rats (8 weeks; Charles River) were housed in plastic cages and kept on a 

12-h light-dark cycle. Food and water were available ad libitum. Rats were induced into 
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anesthesia using 5% isoflurane for 3-5 minutes and kept under 2-3% isoflurane for the 

duration of the surgical procedure. Rats were mounted in a stereotaxic device after shaving 

the head area. The incision area was cleaned using chlorhexidine and 70% ethanol. A 

sagittal incision was made in the scalp and the fascia retracted to expose the cranium. A 5-

mm craniotomy was made over the left frontoparietal cortex using a 5mm diameter dental 

drill (center: -3.0 mm AP, +2.0 mm ML from bregma). After removal of the bone, 

unilateral contusions of the lateral frontoparietal cortex were created using a controlled 

cortical impact (CCI) device. Briefly. the injury was produced by activating a pneumatic 

piston (3mm diameter tip) positioned 10 grades from vertical in the coronal plane to a depth 

of 2 mm (4m/s velocity, 100ms duration). Following the injury, the wound cavity was 

thoroughly cleaned, and all bleeding stopped before suturing the incision.  

1.12.2 MSC transplantation after CCI 

Just before transplantation, GFP-MSC (passage 6) were harvested and counted and 

hemocytometer and Trypan Blue. 5uL aliquots containing approximately 500,000 cells 

were prepared and kept on ice until transplantation. The rats were randomly separated in 

the following experimental groups and 5uL of the MSC aliquot was mixed according to 

the described formulation: 1) Agarose group- 10uL of 2% agarose hydrogel + 5uL plain 

DMEM media, 2) Agarose-FasL group- 10uL of 2% agarose hydrogel + 5uL of FasL/Lipid 

microtubes (4ug FasL), 3) Agarose-MSC group- 10uL of 2% agarose hydrogel + 5uL of 

plain media, and 4) Agarose-MSC-FasL group-10uL of Agarose hydrogel + 5uL 

FasL/Lipid microtubes (4ug FasL). All the injections were done using a 50uL Hamilton 

syringe with a 26-gauge needle at a rate of 2 uL per minute and a 3mm depth in the middle 
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of the injury site. The syringe was cooled using ice for 3 minutes before the injection in 

order to initiate the agarose gelling process.  

1.12.3 Protein Analysis   

Brain tissue for protein extraction was obtained at two days post-transplantation after 

cardiac perfusion using PBS and following the appropriate protocol as laid out by IACUC. 

The harvested tissue was rapidly frozen in liquid nitrogen. For total protein extraction, we 

used a modified protocol adapted from methods previously described for the analysis of 

cytokine/chemokine panels in the brain [179]. The extracted brain tissue was weighed and 

homogenized with the Tissue Ruptor II (Qiagen) using 10mL/g of tissue of N-PER reagent 

with a protease inhibitor as an extraction solution. The homogenized solution was 

centrifuged three times at 3000g for 15 minutes to remove broken cell debris. The final 

supernatant or homogenous tissue lysate was aliquoted in fresh tubes and stored at -80 until 

further use. For protein quantification, Bicinchoninic Acid assay was used to calculate the 

total protein concentration. ELISA was performed after normalizing the amount of protein 

used for each sample. The following cytokines were estimated: NGF, BDNF, IGF, and 

VEGF following the manufacturer’s protocol.  

1.12.4 Tissue processing for Immunocytochemistry  

Brain tissue was obtained at 3 weeks post-transplantation, after cardiac perfusion with PBS 

and 4% Paraformaldehyde following the appropriate protocol as laid out by IACUC. The 

brains were left in 4% Paraformaldehyde overnight and in a .5% ProHance solution for 14 

days. After MRI imaging, the brains were placed in a 30% sucrose solution for 4 days. 

Then, the brains were placed in OCT cryosectioning media, frozen in liquid nitrogen and 
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kept in -80C until further use. The brains were placed at -20C the night before sectioning. 

On the day of sectioning, the brains were cut in 12um sections and kept at -20 until the 

immunostaining protocol.   

1.12.5 Statistics  

The statistical analysis used consisted of an initial Brown-Forsythe analysis to test the 

assumption of equal variances between the experimental groups. If the assumption of equal 

variances between the experimental groups was confirmed an ANOVA test was performed 

to identify any potential significant difference in an experimental data set. A Tukey’s 

multiple comparison test was used to identify specific significant differences between 

experimental groups if the ANOVA result suggested a significant difference in the 

experimental data set. However, if the assumption of equal variances between the 

experimental groups was rejected two data analyses options were used. In the first option, 

a Log10 transformation of the data set was used to eliminate the significantly different 

variances between the groups and it was confirmed by repeating a  Brown-Forsythe test. If 

the variances between the groups were no longer significant, the data set was analyzed 

using an ANOVA and  Tukey’s multiple comparison test as explained above. In the second 

option, the original data set was analyzed using a non-parametric Kruskal-Wallis test to 

identify any potential significant difference in the data set. Then, a Dunn's multiple 

comparisons test was used to identify specific significant differences between experimental 

groups if the Kruskal-Wallis test result suggested a significant difference in the 

experimental data set. 

1.13 Results 
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1.13.1 Effect of FasL hydrogels on the growth factors protein expression 2 days post-

transplantation. 

In order to determine the effect of using FasL-agarose hydrogels as MSC carriers for TBI, 

we determined the protein expression of the following growth factors: NGF, BDNF, IGF, 

and VEGF using ELISA (Figure 4.1)(n=8 per experimental group). Agarose-MSC-FasL 

was the only experimental group in which the NGF protein expression was significantly 

higher than the Naïve and Agarose-FasL groups according to a Kruskal-Wallis test (p = 

.005) and a Dunn's multiple comparisons test (p values reported in Figure 4.1). In addition,  

the BDNF protein expression was significantly higher in the Agarose-MSC-FasL group in 

comparison to all other experimental groups (Naïve, Agarose, Agarose-FasL, Agarose-

MSC) according to an ANOVA (p = 0.0007) and a Tukey’s multiple comparison test (all 

p values were equal or less than .01). The injection of FasL increased the IGF protein 

expression as the Agarose-FasL and Agarose-MSC-FasL had significantly higher protein 

expression than the Naïve group according to a Kruskal-Wallis test (p = 0.004) and a 

Dunn's multiple comparisons test (p values reported in Figure 4.1). The protein expression 

of VEGF in the Agarose-MSC-FasL was significantly lower than the Naïve and Agarose 

groups according to an ANOVA (p = 0.007) and a Tukey’s multiple comparison test (p 

values reported in Figure 4.1).  

1.13.2 Effect of FasL hydrogels on the injury volume and the host neural milieu three 

weeks post-transplantation.  

The effect of MSC transplantation using FasL hydrogels on the volume of the injured 

region and neuronal degeneration was studied three weeks post-transplantation. MRI  
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Figure 4.1: MSC injection using FasL-hydrogels increase the protein expression of NGF and 

BDNF. A) NGF protein expression in the Agarose-MSC-FasL was significantly higher than the 

Naïve and Agarose-FasL groups according to a Kruskal-Wallis test (p = .005) and a Dunn's 

multiple comparisons test (p values reported in the graph). BDNF protein expression was also 

significantly increased in the Agarose-MSC-FasL in comparison to all other experimental groups 

according to an ANOVA (p = 0.0007) and a Tukey’s multiple comparison test (all p values were 

equal or less than .01). IGF protein expression was significantly increased in the Agarose-FasL 

and Agarose-MSC-FasL groups in comparison to the  Naïve group according to a Kruskal-Wallis 

test (p = 0.004) and a Dunn's multiple comparisons test (p values reported in graph). B: Summary 

of the protein concentration results. VEGF protein expression was significantly reduced in the 

Agarose-MSC-FasL group in comparison to the Naïve and Agarose groups according to an 

ANOVA (p = 0.007) and a Tukey’s multiple comparison test (p values reported in graph).  
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imaging was used to determine the volume of the injured region (n=7 for Agarose group, 

n=8 for Agarose-MSC and Agarose-MSC-FasL groups). MSC transplantation with or 

without FasL hydrogels (Agarose-MSC and Agarose-MSC-FasL groups) significantly 

decreased the injury volume in comparison to the control Agarose group according to an 

ANOVA (p = .03) and a Tukey’s multiple comparison test (p values reported in Figure 

4.2). In addition, the neuronal milieu was examined using multiple cellular markers and 

histological examination (n=5 for Agarose and Agarose-MSC groups, n = 4 for Agarose-

MSC-FasL).  The neuronal density within the scar tissue in the injury site and surrounding 

limits was indirectly determined by calculating the percentage area expressing the neuronal 

nuclei marker NEUN. The experimental groups injected with MSCs (Agarose-MSC and 

Agarose-MSC-FasL) did not show a significant increase in the percentage area of NEUN+ 

tissue in comparison to the Agarose control group according to an ANOVA (p = .13).  We 

also analyzed the tissue degeneration around the injury site using an antibody against 

cleaved poly (ADP-ribose) polymerase (cleaved PARP) as an apoptosis marker. None of 

the experimental groups injected with MSCs (Agarose-MSC and Agarose-MSC-FasL) 

showed a significant decrease in the percentage area expressing cleaved PARP in 

comparison to the Agarose group according to an  ANOVA (p = .3).  We also analyzed the 

potential effect of MSC transplantation using FasL hydrogels on the recruitment of neural 

progenitor cells to the injury site by using nestin as a neural stem cell marker. The Agarose-

MSC and Agarose-MSC-FasL groups did not show a significant difference in the 

percentage area of nestin+ tissue according to an ANOVA (p = .37).  In addition, we did 

not find any difference in the expression of neuroglial markers GFAP for astrocytes and 

IBA1 for microglia. 
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1.14 Discussion 

MSC transplantation after brain injury has been shown to reduce neuronal damage by 

targeting multiple mechanisms of the secondary injury [13, 85, 86, 89, 194-197]. Multiple 

factors such as the cell preparation and delivery process, time of transplantation, and 

dosage could affect the stem cell’s survival and therapeutic effect [198-200]. Bone marrow 

stromal cells and neural stem cells have shown a dose-dependent functional recovery in 

 

Figure 4.2: MSC injection decreased the size of the injury cavity at 3 weeks post-

transplantation. A) Representative MRI images of each experimental group. B) Quantification 

of the volume of the injured tissue. The injection of MSC with or without FasL significantly 

decreased the volume of the injured tissue in comparison to the Agarose group according to an 

ANOVA (p = .03) and  Tukey's multiple comparisons test (p values reported in graph). C) 

Summary of the injured tissue volume results.  
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stroke models of brain injury [198, 199]. This dosage-dependent therapeutic effect could 

be due to a higher probability of stem cell engraftment at higher dosages in comparison to 

lower dosages. In the previous chapter, we found an increased presence of CD45- GFP+ 

MSC after transplantation in the injured brain using FasL-hydrogels. In this chapter, we 

aimed to determine if the increased presence of MSCs near the transplantation site can 

result in an enhanced therapeutic effect as measure by protein and histological analysis.  

MSCs have been reported to increase the protein expression of neurotrophic and growth 

factors that reduce cell apoptosis,  promote neurogenesis, and alleviate neurological deficits 

[13, 14, 195, 201, 202]. Thus, we used ELISA  assays to determine the protein expression 

of NGF, BDNF, VEGF,  and IGF after MSC transplantation in the injured brain.  We found 

that MSC transplantation using Agarose-FasL hydrogels increased the protein expression 

of the neurotrophic factors NGF and BDNF while MSC transplantation without FasL failed 

to do so. Also, delivering FasL alone to the injured brain did not increase NGF or BDNF 

protein expression suggesting that the increased expression of neurotrophic factors is 

specifically MSC mediated. The increased expression of NGF and  BDNF could lead to 

increased neuronal survival around the injury site due to the activation of the PI3K-AKT 

pathway which is involved in cell survival and proliferation [203]. As a result, we could 

suggest that using FasL hydrogels as MSC carriers enhances the stem cell ability to induce 

the protein expression of neurotrophic factors, which could reduce neuronal damage 

around the injury site. 

In addition, we found that FasL delivery with or without MSC increased the protein 

expression of IGF, a polypeptide hormone which delivery to the injured brain has been 

correlated with reduced neuronal loss and infarct volume, enhanced neurogenesis, and  
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Figure 4.3: MSC injection using FasL-hydrogels did not significantly increased NEUN 

expression. A; Representative image of Neun+ staining at the injury site 3 weeks post-

transplantation. B: Quantification of the Area percentage expressing Neun. C: Summary of the 

quantification results. 
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improved functional recovery [201, 204].  The FasL mediated increase of the IGF protein 

expression brings up the question of how FasL delivery into the injured brain is affecting 

other Fas receptor-expressing host cells in addition to the targeted cytotoxic CD8+T cells. 

Although FasL is commonly associated with cell apoptosis, it has been found to be 

involved in other cellular processes such as cell differentiation [182, 205, 206]. FasL has 

been found to have different effects on Fas receptor-expressing neuroglial cells such as 

astrocytes and microglia [206, 207]. Microglia up-regulates the expression of the Fas 

receptor under the presence of the cytokines TNF-α and IFN-ϒ and is susceptible to FasL 

mediated apoptosis [206]. On the contrary, astrocytes express high constitutive levels of 

the Fas receptor and its activation induce the expression of the chemokine macrophage 

inflammatory protein-1b (MIP-1) but do not induce cell apoptosis [206]. Interestingly, 

neural progenitor cells also express the Fas receptor and FasL activation enhances the stem 

cell's survival [208]. Moreover, Corsini et al found that mice with mutations in the Fas 

receptor (loss of function) showed reduced neurogenesis and deficits in the working 

memory [209]. Therefore, the delivery of  FasL into the injured brain could be modulating 

the cellular behavior of unintended targets. It would be interesting to perform an in-depth 

characterization in vitro of the FasL effect on neuronal cells, glial cells, and neural stem 

cells in the presence of cell stressors such as hypoxia, oxidative stress, or inflammatory 

cytokines that mimic the injured brain. These studies could help us to determine both the 

beneficial and detrimental effects of FasL if used as an agent to create localized 

immunosuppression.  

Lastly, Chen et al reported that intravenous administration of MSC induced angiogenesis 

after transplantation in a stroke model of brain injury [202]. In this project, we did not  
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Figure 4.4: MSC injection using FasL-hydrogels did not significantly reduce the expression 

of the apoptotic marker cleaved PARP. A; Representative image of cleaved PARP+ staining 

at the injury site 3 weeks post-transplantation. B: Quantification of the Area percentage 

expressing cleaved PARP. C: Summary of the quantification results. 
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observe any change in the protein expression of the angiogenic factor VEGF in the animal 

transplanted with MSC without FasL. This could be due to the different transplantation 

route (intracerebral) used in our project that could alter the MSC therapeutic mechanism. 

Injection of FasL alone also did not change the VEGF protein expression in the injured 

brain. However, VEGF protein expression was unexpectedly reduced in the Agarose-MSC-

FasL group in comparison to the Naïve and Agarose groups. Therefore, an unknown 

interaction between FasL, the transplanted MSC, and/or the transplantation environment is 

limiting the expression if this angiogenic factor.  

In order to determine if the increased NGF and BDNF protein expression translated into a 

healthier brain milieu after an injury, we examined the injury volume using MRI and 

explored the expression of multiple cellular markers using histological examination three 

weeks post-injury. MSC transplantation with and without FasL significantly decreased the 

volume of the injury cavity at three weeks post-injury suggesting the potential 

neuroprotective effect of the MSC. No difference was observed between the Agarose-MSC 

and Agarose-MSC-FasL groups suggesting that the increased MSC survival in the 

Agarose-MSC-FasL could not induce a greater rescue of the tissue surrounding the injury 

site. However, it should be noted that in this project we are using a severe injury model and 

that any neuronal and glial cell destruction caused by the initial impact (primary injury) 

cannot be reversed. MSC transplantation can only rescue the tissue damage caused by the 

secondary injury, which could limit the stem cell’s maximum potential effect on the injury 

volume and difficult the analysis of the effectiveness of MSC delivery using FasL-Agarose 

hydrogels.  
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Figure 4.5: MSC injection using FasL-hydrogels did not significantly increase the 

expression of the neuronal stem cell marker nestin. A; Representative image of nesitn+ 

staining at the injury site 3 weeks post-transplantation. B: Quantification of the Area percentage 

expressing nestin+. C: Summary of the quantification results. 
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We also studied the neuronal degeneration near the injury site by using the neuronal marker 

Neun and the apoptotic marker cleaved poly(ADP-ribose) polymerase (cleaved PARP). 

Although the Agarose-MSC-FasL has a higher average of Neun+ tissue within the injury 

site it was not significantly different. Similarly, the average expression of cleaved PARP 

in the Agarose-MSC-FasL was not significantly lower than the Agarose group. It has to be 

noted that in this study we used a 3 weeks post-injury endpoint in order to calculate the 

injury size using MRI. However, neuronal degeneration and apoptosis markers have been 

found to have higher expression around 1-7 days post-injury [210, 211]. Therefore, an 

earlier characterization of neuronal degeneration after TBI might be needed to determine 

the effect of using FasL hydrogels as stem cell carriers.  

In addition, we determined the effect of MSC transplantation using FasL-Agarose 

hydrogels on the expression of the neural progenitor cell marker nestin, as MSC has been 

reported to increase neural stem cell survival in a stroke model [194].   However, we did 

not found a significant difference in the expression of the nestin marker between the 

experimental groups at 3 weeks post-injury. An important limitation found during the 

histological examination was the high variability within the groups' variance, which 

difficulted the statistical analysis. This variability could be related to the controlled cortical 

injury model, specifically to minor changes in the positioning and baseline of the 

pneumatic impactor tip during the set up to perform a brain injury. Minor changes in the 

positioning of the tip could cause large variability due to the potential diverse damage of 

the blood vessels near the injury site and the potential variability in the injury depth, which 

in consequence can alter the severity of the molecular response after TBI. Another source 

of variability in this project is the MSC injection process in which small leakages of the 
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hydrogel matrix out of the brain could lead to a lower cell and/or FasL concentration within 

the site of injury and therefore, a variable therapeutic effect. Although the regenerative 

signals (neuronal death and neural stem cell recruitment) in the histological analysis were 

not significant, the observed increase in the protein expression of the neurotrophic factors 

NGF and BDNF, and the reduced volume of the injured region suggest that improving 

MSC survival after transplantation could enhance its therapeutic effect. However, more 

histological analysis at earlier endpoints is needed to corroborate this hypothesis. In 

addition, this project did not address if using FasL hydrogel as MSC carriers could translate 

to decreased neurological deficits, which is the ultimate functional outcome goal during 

the design of hydrogels to enhance stem cell survival. Therefore, future experiments should 

focus on the neurobehavioral characterization of the use of immune-suppressive hydrogel 

as stem cell carriers.  

1.15 Conclusion 

In this chapter, we explored if enhancing MSC survival using Fasl-Agarose hydrogels 

could enhance the MSC therapeutic effect. We found that MSC transplantation using FasL-

Agarose hydrogels significantly increased the expression of the neurotrophic factors NGF 

and BDNF, which suggests a potential enhancement of the therapeutic effect of the MSC.  

In addition, we found that MSC transplantation with or without FasL reduced the volume 

size of the injured region which might be related to the higher expression of neurotrophic 

factors that can enhance the survival of neurons around the injury site [11, 14]. However, 

we did not found any significant difference in the neuronal or survival according to 

histological examination using the neuronal marker Neun and the apoptosis marker cleaved 

PARP at 3 weeks post-injury. We also did not find any significant difference in the 
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expression of the neural stem cell marker nestin. Therefore, more studies, including an 

earlier(1-7 days post-injury) histological examination and behavioral testing, should be 

done to verify if the MSC improved survival found using FasL hydrogels as stem cell 

carriers can significantly enhance the stem cell therapeutic effect.   
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CONCLUSIONS AND FUTURE DIRECTIONS  

1.16 Key Findings and Conclusions 

During TBI, the initial insult triggers multiple cellular mechanisms that create a complex 

brain environment and propagate the initial damage.  Stem cell transplantation, specifically 

MSC, has been shown to reduce neuronal damage and improve neurological deficits after 

TBI by modulating multiple aspects of the secondary injury. However, immune cells, 

infiltrated within the injury site after an injury could potentially limit the MSC survival. 

Our goal in this project was to explore the role of the T cell response on the MSC survival 

after transplantation in the injured brain and to determine if T cell suppression could lead 

to enhance MSC survival. To achieve this, we used FasL releasing hydrogels that induce 

the apoptosis of CD8+ T cells near the site of MSC transplantation. We showed that FasL-

agarose hydrogels enhance the survival of MSC after transplantation in the injured brain 

whereas the injection of MSC without FasL resulted in the rapid elimination of the 

transplanted cells.  Also, we found that MSC transplantation into the injured brain leads to 

an infiltration of the general T cell population increase the percentage of the CD8+ 

cytotoxic T cell population. However, MSC injection using FasL hydrogels was able to 

reduce the number of CD8+ cytotoxic T cells without compromising the CD4+ T cell 

population, which could be beneficial to reduce neurological deficits due to the presence 

of regulatory T cells. MSC transplantation using FasL hydrogels altered the expression of 

inflammatory cytokines by increasing the protein expression of IL-1-RA, a cytokine that 

has been shown to reduce neuronal damage after brain injury due to its anti-inflammatory 

properties. Therefore, the combination of MSC transplantation with FasL delivery could 
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be enhancing the MSC therapeutic through the inhibition of the IL-1 pathway. We also 

explored if enhancing MSC survival using Fasl-Agarose hydrogels could enhance the MSC 

therapeutic effect. We found that MSC transplantation using FasL-Agarose hydrogels 

significantly increased the expression of the neurotrophic factor NGF and BDNF, which 

suggests a potential enhancement of the therapeutic effect of the MSC.  In addition, we 

found that MSC injection with or without FasL reduced the volume size of the cavity injury, 

suggesting the neuroprotective effect of the MSC. However, we did not found any 

significant difference in the neuronal survival or density according to histological 

examination using the neuronal marker Neun and the apoptosis marker cleaved PARP. 

Therefore, more studies, including behavioral testing, should be done to verify if MSC 

enhanced survival can significantly enhance the stem cell therapeutic effect.  

1.17 Future Directions  

1.17.1 Effect of the innate immune response on MSC survival 

The MSC healing properties have been explored in multiples scenarios such as cardiac 

infarction, and brain injury among others. Despite the bidirectional communication 

between the injured tissue and the transplanted MSC, studies commonly focus on the MSC 

therapeutic effect on the injured environment without too much emphasis on the 

environmental effect on the MSC survival or functional phenotype. In this project, we 

found a rapid clearance of the transplanted MSC as early as 6 days post-transplantation. 

Although we found that reducing CD8+ cytotoxic T cells near the transplantation site lead 

to an increased MSC presence, other components of the host immune system could be 

contributing to the stem cell's survival. Specifically, the host innate immune response might 
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play an important role in stem cell's survival after early transplantation in the injured brain. 

The innate immune response is a fast-acting and non-specific response activated 

immediately after an injury in order to remove foreign agents and pathogens with a limited 

capacity. The innate immune system includes the activation of the complement cascade 

and the recruitment of multiple immune cells including cellular effectors such as 

phagocytes (e.g., neutrophils, macrophages, and dendritic cells), granulocytes (e.g., 

eosinophils, basophils, mast cells, and neutrophils), and innate lymphoid cells (e.g., natural 

killer cells) [95]. In addition, within the brain neuroglial cell such as microglia and 

astrocytes can have immune properties and influence MSC survival. In fact, various studies 

have shown that MSC grafts in the intact brain are surrounded and/or infiltrated by 

neuroglial cells and have limited survival [10, 84]. However, multiple other components 

of the innate immune response could be contributing to the limited MSC survival observed 

in this project.   

The component cascade encompasses more than 30 proteins that are usually circulating the 

blood as inactive precursors (zymogen) that form a membrane attack complex (MAC) after 

activation due to an injury or pathogen. This MAC complex can insert into the membranes 

causing cell lysis [96, 97]. It has been found that the complement cascade induces cellular 

injury on MSC in vitro and that covalent binding on the MSC surface of the complement 

inhibitor heparin enhances the stem cell survival in vivo [98, 99].  Another innate 

component that has been found to affect MSC survival is the natural killer cells (NK cells). 

Studies have found a cross-modulation between MSC and NK cells. In vitro,   IL-2 

activated NK cells can induce the generation of reactive oxygen species within MSC and 

induce stem cell lysis [100]. On the other hand, MSC can alter NK cell's behavior by 
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reducing the proliferation of resting NK cells, increase their release of perforin and 

granzymes (degranulation process), and up-regulated their secretion of IFN-γ and TNF-α 

[100, 101]. Therefore, although MSCs have been shown to have a neuroprotective effect 

after transplantation in the injured brain, its transplantation could trigger the innate immune 

response potentially causing unintentional damage.   

Except for a few studies, most of the interaction between the MSC and innate system has 

been studied in vitro and none of the studies has been done within a brain injury context. 

Despite the potential benefits of using stem cell therapy after a brain injury, it is important 

to determine if a potential activation of the host innate and immune response could be 

counteracting the therapeutic effect of the transplanted stem cells. Transplantation models 

that hinder the MSC interactions with specific immune cells without strongly affecting 

other components of the innate response could provide insight into the potential collateral 

damage (and activated mechanisms) caused by the MSC transplantation. In order to 

enhance MSC therapeutic effect within the brain, it will be needed to keep the stem cells 

neuroprotective effect such as the release of NGF and BDNF while reducing the potential 

collateral damage caused by the MSC derived activation of the host innate response. 

1.17.2 MSC healing phenotype 

The environmental cues in an injured environment could not only affect MSC survival but 

also their functional therapeutic phenotype. It has been found that similar to macrophages, 

MSC can have alternative pro-inflammatory (MSC1) or anti-inflammatory (MSC2) 

phenotypes that can be induced by signals in the inured environment [184, 185].  MSC 

express Toll-like receptors (TLRs, specifically TLR3 and TLR4, that recognize danger 
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signals from the injured environment and the MSC immune-modulatory properties can be 

affected by the specific engagement of each receptor.  Stimulation of the TLR3 receptor 

leads to the secretion immune-suppressive factors including IL-1RA while stimulation of 

the TLR4 receptor leads to the secretion of more pro-inflammatory such as IL-8 and IL-6 

[185]. The MSC polarization after transplantation into the injured brain has not been 

determined. It would be interesting to explore if the injured brain environment can 

preferentially induce an MSC1 or MSC2 phenotype which could influence the stem cell 

therapeutic potential. The development of biomaterials that induce and/or sustain the 

MSC2 anti-inflammatory phenotype could potentially prolong the MSC therapeutic effect 

and counteract potential collateral damages caused by the host response to the transplanted 

stem cells.  

1.17.3 Multifunctional hydrogels to enhance stem cell transplantation 

In addition to the host immune response, stem cell survival after transplantation in the 

injured brain can be affected by multiple factors such as limited oxygen (hypoxia) and 

nutrients supply or the development of oxidative stress [137]. Current efforts using 

hydrogels to enhance stem cell delivery have focused on the development of hydrogel 

matrixes that incorporate cues from the extracellular matrix (ECM), which can provide 

signals to enhance the survival,  proliferation, and migration of the transplanted stem cells 

or provide resistance to detrimental signals present in the injured milieu [138, 139]. As an 

example, hydrogels based on hyaluronan or chondroitin sulfate, two glycosaminoglycans 

highly abundant in the brain ECM,  have been found to enhance the survival of neural stem 

cells transplanted in the injured brain. In this project, we used agarose based hydrogels that 

lack the binding sites required to promote stem cell-hydrogel interactions that could result 
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in the activation of survival mechanisms in the transplanted stem cells. Therefore, it would 

be interesting to explore the design of hyaluronan or chondroitin sulfate hydrogels that 

deliver FasL or other immune-modulatory cytokines for stem cell delivery. The 

development of multifunctional hydrogels that can increase stem cell survival by providing 

survival signals to the transplanted stem cells while simultaneously modulating the host 

immune response could be the next step to enhance stem cell therapy. In addition, 

multifunctional hydrogels could be engineered to enhance stem cell efficacy by controlling 

stem cell differentiation (promoting an undifferentiated state) or directing the stem cells 

toward specific functional phenotypes associated with wound healing or tissue 

regeneration [119, 185].  
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APPENDIX A. SUPPLEMENTARY DATA 

A.1 Hydrogels releasing multimeric FasL induced the apoptosis of Jurkat T cells.  

  

The ability of solubilized multimeric FasL to induce the apoptosis of Jurkat T cells was 

tested in vitro using a calcein Am/ ethidium homodimer (live/death cells) staining. 100,000 

Jurkat T cells were encapsulated on 300uL of an Agarose hydrogel with or without 

multimeric FasL (50ng/mL)(n=4 per experimental group). The toxin Staurosporine was 

used as a positive control. After 24 hours a calcein Am/ethidium homodimer was 

 

Figure A.1: Multimeric FasL efficiently induce the apoptosis of Jurkat T cell encapsulated 

in agarose hydrogels. A. Representative images showing the survival of Jurkat T cell 

encapsulated on hydrogel releasing multimeric FasL. Scale bar = 100um. B Quantification of the 

of Jurkat T cell viability on FasL releasing hydrogels. A general Anova showed a significant 

difference between the experimental groups (p < .0001) and a Tukey’s multiple comparison test 

was used for the p value reported on the graph.   
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performed and the hydrogels were imaged using confocal microscopy.  Soluble multimeric 

FasL significantly reduced the Jurkat T cell viability in comparison to the control group 

according to an ANOVA (p < .0001) and a Tukey’s multiple comparison test (p < .0001). 

A.2. MSC survival in vitro 

 

Figure A.2: Multimeric FasL did not reduce MSC viability in vitro. A: Representative 

image of the MSC viability after injection in vitro (green represent calcein AM, red represent 

ethidium homodimer). B: Quantification of the effect of the agarose percentage on the MSC 

viabililty. MSCs injected using 1.5% agarose had significantly lower viability according to an 

unpaired t-test (p= .01). C: Quatification of the effect of FasL concentration on MSC viability 

using an MTS assay. Higher concentrations of FasL (400ng/mL) inhibited MSC proliferation 

in comparison to lower concentrations (1ng/mL-100ng/mL) according to a two-way repeated 

measure ANOVA (p<.0001) (see paragraph below for additional statistical information).  
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We mimicked the in vivo parameters used to inject the MSC into the injured brain to 

determine the effect of the injection process on the MSC survival in vitro. MSCs (5x10^5 

total cells) were injected into an agarose hydrogel (to mimic brain tissue) using a 50uL 

Hamilton syringe with a 26-gauge needle at a rate of 2 uL per minute. The syringe was 

cooled using ice for 3 minutes before the injection in order to initiate the agarose gelling 

process. Then, the MSCs were stained using a calcein am/ethidium homodimer cell 

viability kit and imaged using fluorescence microscopy. We found that that increasing the 

agarose from 1% to 1.5% significantly decreased the cell viability from 76% to 71% 

according to an unpaired t-test (p=.01). However, due to the negligible biological 

difference (5% decrease), we used 1.5% agarose hydrogels for the in vivo in order to 

maximize the probability of prolonging FasL protein release in the injured brain.  

The effect of multimeric FasL on the MSC’s viability was examined using an MTS assay 

that measures the cell metabolic activity. MSCs (4x10^4 per well) were seeded in a 96-well 

plate and exposed to various concentrations of FasL (0, 1, 25, 50, 100, 200, and 400 ng/mL) 

and the cells metabolic activity was measured at 4 and 24 hours post-exposure. 

Staurosporine was used as a positive control in order to induce cell apoptosis. At 4 hours 

we did not find any significant difference in the MSC metabolic activity. At 24 hours the 

MSC exposed to 400ng/mL of FasL showed significantly lower metabolic activity than the 

other experimental groups (0, 1, 25, 50, 100, 200 ng/mL) according to a two-way repeated-

measures ANOVA (p= .0002) and a Tukey’s multiple comparison test (all p values equal 

or lower than .01). However, the cell’s metabolic activity in the 400ng/mL experimental 

group was similar at 4 and 24hours suggesting than the FasL exposure did not necessarily 

cause cell apoptosis but inhibited cell proliferation. These results are consistent with the 
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literature in which has been reported that high FasL concentrations can inhibit MSC 

proliferation despite the MSC resistance to FasL mediated apoptosis  [182]. 

A.3 Original data of MSC survival after transplantation in the injured brain.   

 

Figure A.3: FasL hydrogels increase MSC presence after transplantation into the injured 

brain. A. Representative flow cytometry data showing the effect of FasL-hydrogels on the 

survival of the transplanted GFP+ MSC (red square) at 6 days post transplantation B: 

Quantification of the total CD45- GFP+ MSC cell population. The Agarose-MSC-FasL group 

showed significantly higher GFP+MSC presence near the transplantation in comparison to the 

Agarose-MSC group according to a Kruskal-Wallis test (p= .0003) and a Dunn's multiple 

comparisons test (p=.04). C:  Quantification of the normalized percentage of CD45-GFP+ MSC 

cell population with respect to the total number of cells analyzed. The Agarose-MSC-FasL group 

showed significantly higher of the normalized percentage of GFP+MSC presence near the 

transplantation in comparison to the Agarose-MSC group according to a Kruskal-Wallis test (p= 

.0009) and a Dunn's multiple comparisons test (p=.03). 

 

 



 98 

A.4. Effect of Lipid Microtubes on the MSC survival in vivo.  

 

Figure A.4: FasL loaded Lipid microtubes/agarose hydrogels increase the presence of 

CD45-GFP+ MSC at 6 days post-injury. A. Representative flow cytometry data showing the 

effect of  Lipid microtubes/agarose and agarose hydrogels on the survival of the transplanted 

GFP+ MSC (red square) at 6 days post transplantation B: Quantification of the total CD45- GFP+ 

MSC cell population. FasL loaded lipid microtubes/agarose hydrogels significantly increased the 

presence of CD45-GFP+ MSC in comparison to FasL agarose hydrogels without lipid microtubes 

according to a unpaired t-test (p = .0004). 
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In chapter three, we showed that FasL loaded lipid microtubes/agarose hydrogels increased 

the presence of GFP+MSCs near the transplantation site in comparison to lipid 

microtubes/agarose hydrogels without FasL. However, the effect of the lipid microtubes 

on the FasL effect in vivo was not determined. The use of lipid microtubes should slow 

FasL release from the agarose hydrogels resulting in potentially longer bioactivity and 

longer MSC survival. In order to examine if using lipid microtubes alter FasL effectiveness 

in vivo,  we determined the survival of GFP+MSCs transplanted into the brain using FasL 

loaded lipid microtubes/agarose hydrogels or FasL loaded agarose hydrogels (no lipid 

microtubes) (n=6 per experimental group).  The animals injected with GFP+MSC using 

FasL loaded lipid microtubes/agarose showed a higher presence of  CD45-GFP+ MSCs at  

6 days post-transplantation in comparison to the animals injected with FasL agarose 

hydrogels (no lipid microtubes) according to an unpaired t-test ( p=.0004). This result 

suggests that using lipid microtubes helps to promote the sustained release of FasL and/or 

to prolong the protein bioactivity which leads to an increased presence of GFP+MSC near 

the transplantation site.  
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A.5. Effect of Lipid Microtubes on the host T cell response.  

 

Figure A.5: Lipid microtubes/agarose hydrogels did not alter the host T cell response after 

transplantation in the injured brain. A. Representative flow cytometry data showing the effect 

of  lipid microtubes/agarose hydrogels on the host general T cell response (CD3+ T cells). B: 

Quantification of the percentage of CD3+ T cells. No significant difference was found according 

to an unpaired t-test with Welch's correction (p = .66). C: Representative flow cytometry data 

showing the effect of lipid microtubes/agarose hydrogels on the T cell phenotypes (red square 

represent the CD8+ cytotoxic T cell population, black square represent the CD4+ T 

helper/regulatory T cell population). D: Quantification of the percentage of CD8+ cytotoxic T 

cells. No significant difference was found according to an unpaired t-test (p = .05). E: 

Quantification of the percentage of CD4+ T helper/regulatory T cell population. No significant 

difference was found according to an unpaired t-test (p = .60). 
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In this project, we used an agarose-based hydrogel matrix to simultaneously deliver rat 

MSC and FasL in the injured rat brain. The injection of a hydrogel matrix into the brain 

could potentially induce an immune response due to the hydrogel's inherent properties 

and/or the small injury caused by the injection procedure. We tested if injecting lipid 

microtubes/agarose hydrogels into the injured brain elicited an immune response in the 

injured brain by using flow cytometry at 6 days post-transplantation (Figure A.5) (n=6 per 

experimental group). We did not find a significant difference in the host T cell response of 

animals injected with lipid microtubes/agarose hydrogels in comparison to the animals with 

a brain injury without any injection. The results suggest that the lipid microtubes/agarose 

hydrogels properties did not elicit an immune response after transplantation making this 

hydrogel a suitable alternative for the MSC delivery in the injured brain.  
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A.6. Expression of neuro-inflammatory markers in the injured brain at 3 weeks post-

injury.   

A.6.1 GFAP expression in the injured brain at 3 weeks post-injury.   

The expression of the astrocyte marker GFAP was examined 3 weeks post-injury (n=5 for 

the Agarose and Agarose-MSC groups, n=4 for the Agarose-MSC-FasL group). A 

qualitative analysis showed limited staining of the GFAP marker within the injury site and 

surrounding tissues. Most of the animal subjects in each experimental group with a brain 

injury (Agarose, Agarose-MSC, Agarose-MSC-FasL) showed similar GFAP expression 

suggesting a similar astrocyte response.  

 

 

 

Figure A.6.1: MSC transplantation using FasL hydrogels did not alter GFAP expression 

in the injured brain at 3 weeks post-injury. A. Representative images of GFAP expression at 

3 weeks-post-injury.  
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A.6.2 IBA-1 expression in the injured brain at 3 weeks post-injury.   

 

 

The expression of the microglial marker IBA-1 was analyzed 3 weeks post-injury (n=5 for 

the Agarose and Agarose-MSC groups, n=4 for the Agarose-MSC-FasL group). A 

qualitative analysis showed some staining of the IBA-1 marker within the injury site and 

surrounding tissues. Animal subjects in each experimental group with a brain injury 

(Agarose, Agarose-MSC, Agarose-MSC-FasL) showed similar expression of the IBA-1 

marker suggesting a similar microglial response.  

  

 

Figure A.6.2: MSC transplantation using FasL hydrogels did not alter IBA-1 expression 

in the injured brain at 3 weeks post-injury. A. Representative images of GFAP expression at 

3 weeks-post-injury.  
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A.7. FMO stainings used to set gates in the T-cells gating strategy  

CD3 FMO  

CD95 FMO 
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A.8. Primers sequences (qRT-PCR) 

Name Sequence 5'-3' 

IFNg-F GATCCAGCACAAAGCTGTCA 

IFNg-R GACTCCTTTTCCGCTTCCTT 

IL-4-F TGTACCTCCGTGCTTGAAGA 

IL-4-R GTGAGTTCAGACCGCTGACA 

IL-12-F AGGTGCGTTCCTCGTAGAGA 

IL-12-R CCATTTGCTGCATGATGAAT 

IL-1b--F AAAGAAGAAGATGGAAAAGCGGTT 

IL-1b-R GGGAACTGTGCAGACTCAAACTC 

Il-1RA-F GAGACAGGCCCTACCACCAG 

IL-1RA-R CGGGATGATCAGCCTCTAGTGT 
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