A STUDY OF THE RETENTION OF DYESTUFFS ON PAPER MAKING FIBERS UNDER VARIOUS CONDITIONS

A thesis submitted by Ward Duncan Harrison B.S. in Chem. E. 1932, Iowa State College, M.S. 1934, Institute of Paper Chemistry in partial fulfillment of the requirements of the Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence College, Appleton, Wisconsin.

Ward D. Horrison

June 1936

TABLE OF CONTENTS

.

Chap	ter	Page
I	INT	RODUCTION 8
II	MET	HOD OF ATTACK 11
III	MAT	ERIALS, EQUIPMENT, AND PROCEDURES
	A.	Materials15
	B.	Equipment
	٥.	Experimental Procedures
		1. Method of Dyeing
		2. Method of Determining Dye Retention by
		the Use of Beer's Law
		3. Method of Determining Dye Retention by
		the Use of the Kubelka and Monk
		Equations
		4. Methods of Determining Chemical
		Constants for Pulps
IV	DIS	CUSSION OF EXPERIMENTAL PROCEDURE
	A.	Beer's Law
	B •	Correction for Turbidity of White Waters 30
	C.	Method of Determining Dye Retention by the
		Use of Beer's Law
	D.	Limits of Error in the Retention Method
		Using Beer's Law
	E.	Results 47
		1. Retention on Sulphite Pulp Bleached to
•	.,	Various Degrees

-1-

Chapter			Page
	2.	Retention on Kraft Pulp Bleached to	
		Various Degrees	55
	3.	Retention on Bleached and Unbleached	
		Sulphite and Kraft, Bleached Soda,	
		Groundwood and Rag Pulps	••63
	4.	Retention on Unbleached and Bleached	
		Sulphite and Kraft at Various pH's	••71
	5.	Retention on Unbleached and Bleached	
		Sulphite at Various Consistencies	92
	6.	Retention on Unbleached and Bleached	
		Sulphite at Various Temperatures	.102
	7.	Retention on Unbleached and Bleached	
		Sulphite at Various Reaction Times	.112
	8.	Retention on Unbleached Sulphite at	
		Various Freenesses	.121
	9.	Retention of Various Dyes on Un-	
		bleached Sulphite	.127
	10.	Retention on Unbleached Sulphite When	
		Various Acids were Used with and	
		without Size	.131
F.	App	licability of the Kubelka and Monk	
	Equ	ations for Determining Dye Retentions	133
	1.	Kubelka and Monk Equations	.134
	2.	Method of Determining Dye Retention by	
		the Use of the Kubelka and Monk	
		Equations	.137

.....137

-3-

Chap	ter			Page
		3.	Limits of Error in the Retention	
			Method Using the Kubelka and Monk	
			Equations	•144
	G.	App	licability of the Freundlich Adsorption	
		Equa	ation to the Dye Retention Results	•153
V	CON	CLUS	IONS	161
VI	SUM	MARY		165
VII	BIB	LIOGI	RAPHY	166
VIII	APPI	endi	X ·	
	A.	Calo	culations	.167
	В.	Dye-	-Standard Graphs	•227
	С.	Dye	Formulas	•252
	D.	Star	ndard White Water Data	•259

.

.

•

LIST OF ILLUSTRATIONS

Page

Figure	1.	Sheet Making Apparatus18
Figure	. 2.	Per Cent Retention of Du Pont Victoria Green SC as Per Cent Transmittance is Varied for Various Weight Dyeings41
Figure	3.	Per Cent Retention of Du Pont Brilliant Crocein FL as Per Cent Transmittance is Varied for Various Weight Dyeings42
Figure	.4.	Per Cent Retention of Pontamine Fast Red 8BL as Per Cent Transmittance is Varied for Various Weight Dyeings
Figure	5.	Retention of Du Pont Victoria Green SC on Sulphite Pulp at Various Degrees of Bleach
Figure	6.	Retention of Du Pont Brilliant Crocein FL on Sulphite Pulp at Various Degrees of Bleach
Figure	7.	Retention of Pontamine Fast Red 8BL on Sulphite Pulp at Various Degrees of Bleach
Figure	8.	Retention of Du Pont Victoria Green SC on Kraft Pulp at Various Degrees of Bleaching57
Figure	9.	Retention of Du Pont Brilliant Crocein FL on Kraft Pulp at Various Degrees of Bleaching
Figure	10.	Retention of Pontamine Fast Red 8BL on Kraft Pulp at Various Degrees of Bleaching
Figure	11.	Retention of Du Pont Victoria Green SC on Various Pulps
Figure	12.	Retention of Du Pont Brilliant Crocein FL on Various Pulps
Figure	13.	Retention of Pontamine Fast Red 8BL on Various Pulps

	Page
Figure 14.	
Figure 15.	Retention of Du Pont Brilliant Crocein FL at Various pH's on Unbleached Sulphite Pulp
Figure 16.	Retention of Pontamine Fast Red 8BL at Various pH's on Unbleached Sulphite Pulp77
Figure 17.	Retention of Du Pont Victoria Green SC at Various pH's on Bleached Sulphite Pulp.78
Figure 18.	Retention of Du Pont Brilliant Crocein FL at Various pH's on Bleached Sulphite Pulp
Figure 19.	Retention of Pontamine Fast Red 8BL at Various pH's on Bleached Sulphite Pulp80
Figure 20.	Retention of Du Pont Victoria Green SC at Various pH's on Unbleached Kraft Pulp81
Figure 21.	Retention of Du Pont Brilliant Crocein FL at Various pH's on Unbleached Kraft Pulp
Figure 22.	Retention of Pontamine Fast Red 8BL at Various pH's on Unbleached Kraft Pulp83
Figure 23.	Retention of Du Pont Victoria Green SC at Various pH's on Bleached Kraft Pulp84
Figure 34.	Retention of Du Pont Brilliant Crocein FL at Various pH's on Bleached Kraft Pulp.85
Figure 25.	Retention of Pontamine Fast Red 8BL at Various pH's on Bleached Kraft Pulp86
Figure 26.	Retention of Du Pont Victoria Green SC at Various Consistencies on Unbleached Sulphite Pulp94
Figure 27.	Retention of Du Pont Brilliant Crocein FL at Various Consistencies on Unbleached Sulphite Pulp

.

	Page
Figure 28.	Retention of Pontamine Fast Red 8BL at Various Consistencies on Un bleached Sulphite Pulp
Figure 29.	Retention of Du Pont Victoria Green SC at Various Consistencies on Bleached Sulphite Pulp
Figure 30.	Retention of Du Pont Brilliant Crocein FL at Various Consistencies on Bleached Sulphite Pulp
Figure 31.	Retention of Pontamine Fast Re d 8BL at Various Consistencies on Bleached Sulphite Pulp
Figure 32.	Retention of Du Pont Victoria Green SC at Various Temperatures on Unbleached Sulphite Pulp
Figure 33.	Retention of Du Pont Brilliant Crocein FL at Various Temperatures on Unbleached Sulphite Pulp
Figure 34.	Retention of Pontamine Fast Red 8BL at Various Temperatures on Unbleached Sulphite Pulp
Figure 35.	Retention of Du Pont Victoria Green SC at Various Temperatures on Bleached Sulphite Pulp
Figure 36.	Retention of Du Pont Brilliant Crocein FL at Various Temperatures on Bleached Sulphite Pulp
Figure 37.	Retention of Pontamine Fast Red 8BL at Various Temperatures on Bleached Sulphite Pulp
Figure 38.	Retention of Du Pont Victoria Green SC at Various Times on Unbleached Sulphite Pulp
Figure 39.	Retention of Du Pont Brilliant Crocein FL at Various Times on Unbleached Sulphite Pulp
Figure 40.	Retention of Pontamine Fast Red 8BL at Various Times on Unbleached Sulphite Pulp116

Page Figure 41. Retention of Du Pont Victoria Green SC at Various Times on Bleached Sulphite Figure 42. Retention of Du Pont Brilliant Crocein FL at Various Times on Bleached Figure 43. Retention of Pontamine Fast Red 8BL at Various Times on Bleached Sulphite Pulp..119 Figure 44. Retention of Du Pont Victoria Green SC at Various Freenesses on Unbleached Sulphite Pulp.....124 Figure 45. Retention of Du Pont Brilliant Crocein FL at Various Freenesses on Unbleached Sulphite Pulp......125 Figure 46. Retention of Pontamine Fast Red 8BL at Various Freenesses on Unbleached Sulphite Pulp......126 Figure 47. Relation of Per Cent Reflectivity to Calculated Grams of Du Pont Victoria

-7-

Figure	49.	Relation of Per Cent Reflectivity to
		Calculated Grams of Pontamine Fast Red
		8BL in a Sulphite Sheet149
Figure	50.	Equilibrium Adsorption Curves for
		Du Pont Victoria Green SC on Various P
		Pulps158
Figure	51.	Equilibrium Adsorption Curves for
		Du Pont Brilliant Crocein FL on Various
		Pulps159
Figure	52.	Equilibrium Adsorption Curves for

•

.

.

Pontamine Fast Red 8BL on Various Pulps...160

.

Page

• .

CHAPTER I

INTRODUCTION

Paper dyeing has increased considerably in the past decade, primarily because of the large growth in the speciality business. This growth, coupled with increased technical knowledge, has induced the dye manufacturers to continually increase their facilities for serving the paper maker. Due to the fact that it has long been recognized that this can be accomplished only when a technical viewpoint is taken. the use of dyes has been put on a greater scientific In the relentless search for new and better basis. colors, the dye companies have built up a wealth of technical knowledge which can not be overestimated. Out of this have come many new refinements of which the determinations of optimum physical and chemical conditions for the dyeing reaction are good examples.

Besides the dye manufacturers, other institutions have studied the dyeing reaction. The most notable probably are the textile research laboratories, and it should be pointed out that a great deal of knowledge in paper dyeing has been taken from these sources.

-8-

However, even though a great deal of work has been carried out in the paper dyeing field, there is an apparent scarcity of quantitative data concerning the retention of dyes. Work, for the most part, has been aimed in a direct way at the economics of the problem. This has been done by actually matching whatever was to be dyed using all possible dye formulas, within the limits of the shade, and then calculating the most economical one by taking into consideration the cost of each individual dye. If, however, the quantitative retentions of the various dyes available were known for the particular conditions of the problem, these data, along with their costs, would facilitate the elimination of some dyestuffs immediately in working out a color formula from an economic standpoint. In addition, and even more important in so far as this work is concerned, quantitative retention data obtained under well selected conditions should throw some light upon the trends to be expected in commercial practice. Also it is hoped that this work will be a stepping stone in the right direction for more complete understanding of the dyeing mechanism.

The study of the retention of dyestuffs on paper

-9-

making fibers under various conditions has been undertaken with the following objectives:

- 1. To develop a method for determining the retention of dye on paper making fibers.
- 2. To study the effect of variables on the retention of dye, such as type of dye and its concentration; temperature, pH, and consistency of the pulp; time of reaction; type of fiber, its chemical constants, and method of preparation; and type of acid used.
- 3. To point out the applicability of the retention data to theoretical equations.

CHAPTER II

METHOD OF ATTACK

Paper is ordinarily dyed by the addition of dye to the beater during the processing of the pulp. The pulp dyed at this stage is later formed into a sheet on the paper machine, at which time a considerable amount of water, commonly called white water, carrying with it fiber and dye, is removed from the pulp. The retention of the dye is the amount of dye left in the sheet. The problem may be attacked by two different methods. The first method consists in determining the amount of dye in the sheet after its manufacture, while the second method is to determine the amount of dye left in the white water. In the latter method, the amount of dye in the sheet may be calculated by subtracting the amount found in the white water from the amount added to the beater.

At first, no suitable way could be found for directly determining the amount of dye in the sheet. A colorimetric method for determining dye concentration in white waters using Nessler tubes was considered, but, due to its subjective nature, was discarded. An accurate objective method which would

-11-

show small differences in retention was necessary if reliable results were to be obtained. A spectrophotometric method, using "Beer's Law" as its fundamental principle for determining the amount of dye in the white water was then developed and found to be satisfactory.

When paper making fibers are dyed, the retention results obtained are dependent upon the conditions used during the dyeing operation. The most important of these conditions are type of fiber, its chemical constants, and method of preparation; type of dye and its concentration; temperature, pH, and consistency of the pulp; time of reaction; and type of acid used. With these conditions in mind, a systematic study was made in which one variable was considered at a time. within the limits that are ordinarily found in commercial practice. In order to have a base line for the results, standard conditions were set up and maintained, except for the variable under consideration, throughout the entire investigation. These standard conditions were 10 minutes reaction time, 20 degrees Centigrade temperature, 0.6 per cent consistency, unprocessed unbleached sulphite pulp, and 4.9 pH obtained by the use of sulphuric acid.

-12-

In connection with the retention of dyes under the conditions outlined above, it was thought desirable to study the applicability of the Kubelka and Monk equations, which involve an absorption coefficient, and the Freundlich adsorption equation to these data.

By the above method of attack it was hoped that retention results would be obtained which would facilitate the working out of scientific color formulas as well as throw some light upon the retention trends to be expected in commercial practice. It was also hoped that the results would be applicable to theoretical absorption and adsorption equations which, no doubt, in time to come, will help to solve more completely the dyeing mechanism.

Terms and phrases used in this investigation which might have several meanings are defined at this point.

DEFINITIONS

<u>Natural White Water</u>: White water obtained when no dye has been used in the sheet making process. <u>Natural Sheet</u>: Sheet obtained when no dye has been used in the sheet making operation.

-13-

<u>Transmission</u>: The process of transmitting rays of light, considered as a function of wavelength (in the range 400 to 700 millimicrons). Example: transmission curve of distilled water.

<u>Transmittance</u>: The relative capacity of a dye solution to pass rays of light of a specified wavelength. The wavelength used for any given dye is at the point where the transmittance is at its maximum deviation from the transmission curve of distilled water. <u>Reflection</u>: The process of throwing back rays of incident light, considered as a function of wavelength (in the range 400 to 700 millimicrons). Example: the reflection curve of a natural sheet.

<u>Reflectivity</u>: The relative capacity of a sheet of paper of infinite thickness to throw back rays of incident light of a specified wavelength. The wavelength used for any given dye is at the point where the reflectivity is at its maximum deviation from the reflection curve of a natural sheet.

<u>Scattering</u>: The process of deflecting light energy from its original direction.

<u>Absorption</u>: The process of disappearance of light upon passing through a medium.

-14-

CHAPTER III

MATERIALS, EQUIPMENT, AND PROCEDURES

In carrying out the work outlined in the method of attack the following materials, equipment, and procedures were used.

A. Materials.

The unbleached sulphite pulp used was a hard commercial pulp made from hemlock and as a result was on the red side in color. Bleached sulphite in five different grades was produced from this unbleached pulp by using 3, 6, 10, 20, and 30 per cent bleach (based on 35 per cent available chlorine) in a single stage, high density (12 per cent consistency, calcium hypochlorite treatment. In each case the pulp was well washed after complete exhaustion of the bleach liquors.

The unbleached kraft pulp used was an extremely hard grade of commercial jack pine kraft. This pulp was bleached to four different degrees using 5, 15, 30, and 40 per cent bleach (based on 35 per cent available chlorine) with calcium hypochlorite. The bleach using 5 per cent was carried out in a single stage at 12 per cent consistency; the 15 and 30 per cent bleaches were carried out in two stages, both at 12

-15-

per cent consistency, by adding two-thirds of the bleach in the first stage and one-third in the second; the 40 per cent bleach was carried out exactly the same as the 30 per cent bleach except that an additional 10 per cent of bleach was added in a third stage at 12 per cent consistency. In the case of multiple stage bleachings, the second or third stage was never started until after the chlorine from the previous stage was completely exhausted and the bleach residues were washed out.

The dyes used represented Du Pont Company products and are sold under the following trade names: Du Pont Victoria Green Small Crystals; Du Pont Rhodamine B; Du Pont Auramine Concentrated; Du Pont Methylene Blue ZX; Du Pont Basic Brown ER; Du Pont Safranine T Extra; Du Pont Methyl Violet NE; Du Pont Brilliant Crocein FL; Du Pont Anthraquinone Blue B; Du Pont Nigrosine WSB Powder; Du Pont Quinoline Yellow Concentrated; Du Pont Orange II Concentrated; Pontacyl Violet S4B; Pontamine Fast Red 8BL; Du Pont Purpurine 4B Concentrated; Pontamine Yellow SXP; Pontamine Fast Scarlet 4BS; Pontamine Black E; Du Pont Brilliant Paper Yellow Concentrated; and Pontamine Fast Yellow NNL. These dyes were used in 0.3 gram per liter solutions

-16-

which were freshly prepared each day.

Two types of acid, both of reagent grade, were used, namely, sulphuric acid and alum (aluminum sulphate).

The size used was neutral in a three per cent solution made from "G" gum rosin.

B. Equipment.

The sheet making apparatus, figure 1, consisted of an ordinary 6 inch Buchner funnel connected to a 2 liter suction flask carrying a vacuum of 14 inches of water. Auxiliary equipment used in connection with the sheet making apparatus consisted of a Hamilton Beach malted milk mixer, model 25, a 65 mesh wire to fit the Buchner funnel, drying plates and rings such as are used with the British sheet making apparatus⁷, a Jena glass funnel of 1G1 porosity, a good grade of white blotters, and a press capable of holding 7 by 7 inch sheets and exerting a pressure of 100 pounds per square inch.

The pH standards used were the ordinary colorimetric standards put out by the LaMotte Chemical Products Company.

An experimental Valley beater, of one pound capacity, was used for processing the pulp.

-17-

A General Electric Recording Color Analyzer, developed by Professor A. C. Hardy of the Massachusetts Institute of Technology, was used for the spectrophotometric measurement of transmittance and reflectivity. The operation of this instrument may briefly be described as follows: the light source. a ribbon filament projection lamp, is focused upon the entrance slit of a monochromator which is of the Abbé autocollimating type. The light beam leaving this system, comprising a wavelength band of ten millimicrons width, is split up into two beams. One beam passes to a flicker disk and is reflected one half of the time by the disk to a photoelectric cell, while the other beam passes through a small glass cell containing the liquid to be analyzed, is reflected off the surface of a block of magnesium carbonate, and is caught by the photoelectric cell when it is not viewing the previously mentioned beam. When the instrument is to be used for analyzing color in papers. the glass cell is removed and the paper is inserted in place of the magnesium carbonate. The current from the photoelectric cell is amplified by a three stage resistance coupled amplifier, the output of which feeds the grids of two thyratrons; the plates of these tubes

-19-

are in series with the field coils of a small motor. the armature of which is supplied from an independent source of the same frequency. With this arrangement the armature rotates in one direction when the beam from the specimen is the more intense and in the opposite direction when the beam that is reflected from the flicker disk is the more intense. When the intensities are equal, the field currents are equal and opposite thus stopping the motor. By causing the motor to control a sector diaphragm which varies the intensity incident upon the flicker disk, the two beams are automatically balanced. A pen operating on a rotating drum covered with a sheet of graph paper records the position of this diaphragm on the ordinate of the graph while the rotation of the drum, which is synchronized with the optical system, changes the wavelength of the spectral band admitted to the photoelectric cell and is recorded on the abscissa of the graph. When the instrument is to be used for analyzing the color of liquids for their transmittance, the result obtained is relative to the transmittance of the glass cell when filled with distilled water. On the other hand, when analyzing papers for their reflectance, the result obtained at any given wavelength with

-20-

a freshly prepared magnesium carbonate block is arbitrarily chosen as 100 per cent reflectivity. C. Experimental Procedures.

The following experimental procedures were used in carrying out the work of this investigation.

1. Method of Dyeing.

The dyeing procedure is carried out under well controlled conditions as follows: Exactly 3.0000 grams of pulp, calculated on the bone dry basis, are weighed out on an analytical balance. Sufficient distilled water of the correct temperature is placed upon the pulp so that when the dye and acid are added the mixture will be of the correct consistency. The pulp mixture is then placed in a malted milk mixer, the correct amount of dye run in from a burette, a stop watch started, and the acid used for setting the dye added. At the moment the reaction time is up, the dyed pulp is removed from the stirrer and immediately made into a sheet on the sheet making apparatus. The sheet formed in this way is removed by couching off on a smooth surfaced metal plate (British sheet mould drying plate). pressed between clean blotters at a pressure of 100 pounds per square inch for exactly one minute, air dried under tension (by the use of

British sheet mould drying rings), and stored in the dark for later spectrophotometric examination. The white water caught in the flask of the sheet making apparatus is filtered through a Jena filter to remove any fiber draining through from the sheet and set aside for later spectrophotometric examination.

2. Method of Determining Dye Retention by the Use of Beer's Law².

The determination of dye retention for any given dye is carried out in nine steps as follows:

a. Dye standards of known concentration are prepared by adding a known amount of dye to a known volume of distilled water. These standards are used for comparing the unknown dye solutions (white waters) and are adjusted to a corresponding pH. Solutions, in a range from no dye to one containing more dye than is expected in the white waters being examined, are prepared for each dye so that the amount in the unknown white water will fall within the range of the standards.

b. Transmission curves of the standard dye

solutions for the dye in question along with the transmission curve of distilled water are obtained by the use of the color analyzer. c. A point on the wavelength scale of the transmission curves is picked where maximum deviation occurs for the dye solution relative to distilled water. When the transmittance of a solution is stated, it is hereafter understood to be at this point. d. The logarithms of the transmittances of the standard dye solutions are plotted against their concentrations (Beer's law² is satisfied if the curves are straight lines). e. Transmission curves of the white water in question and a natural white water, i.e. no dye, are obtained by the use of the color analyzer.

f. The transmittances of the white water and the natural white water are determined at the wavelength of maximum deviation. This point remains the same for any given dye.

g. The transmittance of the white water, corrected for turbidity, is obtained by dividing the product of the transmittance of the white

-23-

water and the transmittance of the distilled water by the transmittance of the natural white water.

h. The logarithm of the corrected white water transmittance is determined and the concentration of the dye solution corresponding to this value is read from the standard graph as developed in (d) above.

i. From the concentration of the dye in the white water the per cent retention of the dye is determined.

3. Method of Determining Dye Retention by the Use of Kubelka and Monk Equations⁶.

The determination of dye retention for any given dye is carried out in eight steps as follows:

a. The reflection curves of the series of papers under consideration using the same furnish and dyed with the same dye in varying concentrations, as well as a natural sheet (i.e. no dye), are obtained with the help of the color analyzer.

b. The retention of dye for one of the papers is determined by the method using Beer's law. From this, the weight of dye in the sheet is determined.

c. A point on the wavelength scale of the reflection curve is picked where maximum deviation is obtained for the dyed paper relative to the natural sheet. When the reflectance of the paper is stated it is always considered to be at this point.

d. The K/S values for all the papers are determined by the use of the equation, K/S = $(R_{ep}-1)^2$ / $2R_{eb}$, where R_{eo} is the reflectivity of the paper (Kubelka and Monk equation). e. The K/S value for the natural sheet is subtracted from the K/S value for each of the other papers in order to get the K/S value due to the dye in each paper. It is assumed that the S values are not affected by the dyeing.

f. The weight of dye left in the sheet as determined by the method using Beer's law, see (b.) above, is set equal to the product of the corresponding K/S value and a constant. From this equation the value of the constant is determined. g. The product of the constant, as determined in (f.) above, and the K/S value for a given sheet is equal to the weight of dye in that sheet.

h. From the weight of dye in the sheet the per cent retention is calculated.

4. Methods of Determining Chemical Constants for Pulps.

The methods used in determining the chemical constants of the pulps are as follows:

a. Lignin is determined by the Modified Forest Products Laboratory Method⁴ (Institute Standard Method 13).

b. Alpha cellulose is determined by the T. A. P. P. I. Method T 203m¹⁰ (Institute Standard Method 421).

c. The permanganate number is determined by a method published by R.H. Wiles⁹ (Institute Standard Method 409).

d. The methoxyl content is determined according to the Viebock and Schwappach Method as published by E.P. Clark¹.

e. Total sulphur is determined by a micro chemical method as follows: The sample (3

grams) is placed in a large test tube. covered with concentrated nitric acid and heated gently until brown nitric acid fumes are evolved freely. Until the pulp is hydrolyzed, the reaction generates enough heat to maintain the rate of reaction. When the violent reaction subsides, heat is applied to complete the oxidation and boil off the excess acid. Small amounts of potassium chlorate are added occasionally to aid in the oxidation and furnish an alkali cation to combine with the sulphates formed by the oxidation. The test tube is boiled just to dryness to drive off all the nitric acid: the residue is then taken up in hydrochloric acid and analyzed for sulphates in the ordinary way using a micro chemical technique. This method is outlined by Holzer³ and differs only in the weight of sample taken.

f. Inorganic sulphur is determined microchemically by analyzing the ash for sulphates in the usual way.

g. Organic sulfur is calculated by subtracting the inorganic from the total sulphur.

-27-

CHAPTER IV

-28-

DISCUSSION OF EXPERIMENTAL PROCEDURE

As has already been pointed out, Beer's law² has been used as the fundamental principle in the determination of the retention of dyes. The use of this method is dependent upon dye standards, solutions of known concentration for each dye, and a method of accurately comparing dyed white waters with the standard solutions. Beer's law requires that the logarithm of the transmittance vary linearly with the concentration. With graphs of this type it has been possible to determine the dye concentration in white waters from their corrected transmittance data, hence the retention may be calculated.

A. Beer's Law.

In materials such as dye solutions which are homogeneous, the absorption of light by them depends upon the thickness in accordance with Bouger's law. Bouger set forth this law in 1729. It was further developed by Lambert and consequently is frequently called Lambert's law of absorption. Suppose that a layer of unit thickness transmits a fraction t of the light incident upon it. This layer will absorb a fraction (1 - t). Consequently a thickness x of the material will transmit the fraction t^{X} , and the intensity of the light transmitted is

 $I = I_0 t^X$

where I_0 is the intensity of the incident light. This expression may be written

$$I = I_{e}e^{-ax}$$

where a, the absorption coefficient, equals -log t. The absorption coefficient of a solution is in general proportional to the concentration of the solute. The absorption coefficient can therefore be written as

$$a = bc$$
,

where c is the concentration and b is the absorption coefficient for unit concentration. With this substitution, the equation becomes

$$I = I_0 e^{-bcx},$$

which is known as Beer's law. In the practical application of this law a cell of constant thickness was used to measure the transmittance, I / I_0 , of a dyed solution. Beer's law can therefore be written as

$$I / I_0 = e^{-KC}$$

where k equals bx. This expression may further be written as

 $\log I / I_0 = \log e^{-kc} = -kc$,

where I / I_0 is the transmittance by definition, or, in other words, the logarithm of the transmittance is a linear function of the concentration.

Dye standards for the dyes investigated were prepared and the logarithms of their transmittances were plotted against their concentrations for each dye. These results will be found in section B of the appendix. The resulting straight lines show that this law is applicable under the conditions of this investigation.

B. Correction for the Turbidity of White Waters.

The white water obtained from a natural sheet, that is, one to which no dye has been added, has a slightly cloudy appearance in comparison with distilled water even though it has been filtered. This fact shows up conclusively when the transmittance data of the two solutions are examined. For instance, the transmittance of unbleached sulphite white waters at 620 millimicrons is 83.0 per cent while that of distilled water is 97.4 per cent. (See section D of the appendix for natural white water data). A correction has to be made in order to put the white water data on a basis corresponding to that of the distilled water, and thus make the transmittance data of the white waters applicable to the graphical data set up by the

-30-

known dye standards. In determining the nature of this correction, dye in known amounts was added to a natural white water and its transmittance determined. It was found that the product of the transmittance of a dyed white water and a constant gave a corrected transmittance reading which, when applied to the graphical results obtained with the standard dye solutions, produced a result within one per cent of the amount of dye added. The constant in these calculations is obtained for any given pulp by dividing the transmittance of distilled water by the transmittance of the natural white water at the same wavelength used in determining the transmittance of the dyed white water. Experimental results in this connection are shown in table 1.

TABLE 1.						
ACTUAI	ACTUAL AND CALCULATED DYE CONCENTRATION IN WHITE WATERS					
Dye Added Grams per Liter	Grams per Transmittance Transmittance Corrected Grams per					
0	83.0	98,3*	1.993	0		
0.00375	64.0	75,9	1.880	0.00375		
0.00750	49 .7	58.9	1.770	0,90745		

Note *. The corrected transmittance for 0 grams dye added is the transmittance of distilled water.

The turbidity of white waters for any given pulp

-31-

is very nearly constant due to the fact that the white waters are put through a Jena filter of 1G1 porosity immediately after their separation from the pulp. Any deviation from the natural white water would throw the determination off because of an increase or a decrease in the scattering of light.

It has been noticed from transmittance data on dve standards that every dye solution has a transmittance equal to the transmittance of distilled water at some point in the visible wavelength band. For instance, it was noticed that a solution of Du Pont Victoria Green SC has exactly the same transmittance at 480 millimicrons as distilled water. Both Du Pont Brilliant Crocein FL and Pontamine Fast Red 8BL have transmittances equal to distilled water at 620 millimicrons. From this it may be postulated that a white water containing Du Pont Victoria Green SC should have the same transmittance at 480 millimicrons as its natural white water, that a white water containing Du Pont Brilliant Crocein FL should have the same transmittance at 620 millimicrons as its natural white water, etc. This has been found to be true with few exceptions. Exceptions, however, can be attributed only to a variation in turbidity because a white water is made up of only three things, distilled water, dye,

-32-

and the so-called turbidity or light scattering materi-If the deviations were in the dye or water. al. deviations would be seen in the dye standards at this point. These deviations may be corrected for without much loss in accuracy if the results do not show a greater variation than a few tenths of one per cent. For example, if the transmittance of a white water solution containing Du Pont Victoria Green SC is 0.2 per cent low at 480 millimicrons where it should coincide with the transmittance of the natural white water, then 0.2 per cent is added to the transmittance of this solution at 620 millimicrons which is the point used in calculating dye retentions for that particular dye. If, however, the transmittance is 0.2 per cent too high at the coinciding point, then 0.2 per cent is subtracted from the transmittance of the dye at 620 millimicrons, etc. Proof that small corrections of this nature do not impare the accuracy of the results was obtained by studying white waters with varying amounts of turbidity. The white water from a natural sheet of unbleached sulphite was divided into three equal parts. The first part was undiluted, the second part was diluted by one half of its volume with distilled water, while the third part was diluted by twice its volume. These solutions then contained amounts of turbidity per unit volume

-33-

in the ratios of one, two thirds, and one third. The transmittances of these solutions, along with distilled water, were then determined at 500 and 600 millimicrons. The results are tabulated in table 2. It is

TABLE 2.					
TRANSMITTANCE OF WHITE WATER WITH VARYING					
AMOUNTS OF TURBIDITY					
Turbidity Ratio	0	1/3	2/3	· 1	
Transmittance at 500 millimicrons	94.0	86.6	80.5	75.1	
Transmittance at 600 millimicrons	97.4	91.8	87.2	83.0	

apparent from table 2 that the difference in transmittance between the ratios of one and two thirds turbidity per unit volume is not the same at 500 and 600 millimicrons being 5.4 and 4.2 per cent respectively. If these differences had been equal, corrections of any magnitude could be made. However, in this case, a maximum correction of only 0.3 per cent can be made without reducing the accuracy of the method. A correction of 0.3 per cent amounts roughly to a 2 per cent change in the amount of turbidity present in the standard, and the assumption can be made for the purpose of a rough calculation that the turbidity

-34-

changes as a linear function of the transmittance. Then (0.3)(0.33)(100)/5.4 or 1.85 per cent change in turbidity is equal to a 0.3 per cent change in the transmittance. Now if a 0.3 per cent error was noticed at the coincidence point, 500 millimicrons for example, and corrected for at 600 millimicrons by adding to or subtracting from the transmittance at that point, an error would be introduced. Instead of a 0.3 per cent correction only (0.3)(4.2)/5.4 or 0.233 per cent correction should have been made. However, if a correction no larger than 0.3 per cent is used, the accuracy of the method will not be impaired. The points, 500 and 600 millimicrons, were arbitrarily chosen and the results obtained therefrom are typical of the results that would be obtained with any dye.

Due to the fact that the turbidity in white water settles out with time, it was found necessary to vigorously agitate the white water solution and to make the transmittance determination at a definite time after this agitation. Actual settling rates for the turbidity produced in an unbleached sulphite white water are shown in table 3 at wavelengths of 500 and 600 millimicrons.

-35-

SETTLING RATES	FOR TU	LE 3 RBIDITY WHITE W.		THELEAC	HED		
Time of settling Minutes 0 3 6 9 12							
Transmittance at 500 millimicrons							
Transmittance at 600 millimicrons	83.0	84.C	84.5	84.9	85.2		

C. Method of Determining Dye Retention by the Use of Beer's Law.

The determination of dye retention by the use of Beer's law has already been given. In addition, a discussion of the method will be given at this point in order to furnish a clear understanding of the way in which the retention calculations were handled. For the most part, dyeings were made at 0.6 per cent consistency by adding 3.0000 grams of pulp to 500 cubic centimeters of water. At other consistencies, the weight of pulp was varied, but the volume of water was always kept constant. The volume of white water obtained when these conditions were used amounted to 470 cubic centimeters.

The transmittance of the dyed white water was determined and corrected in the manner which has

already been discussed. Dye concentration corresponding to the corrected transmittance was then obtained from the plotted standard dye solution data. The concentration obtained in this way was converted into weight of dye present by multiplying by 470 (the volume of the white water in cubic centimeters) and dividing by 1000. The per cent retention of dye was determined by subtracting the amount in the white water from the amount originally used, dividing the result by the amount originally used, and multiplying by 100. Sample calculations, starting with the corrected transmission, are given in table 4 for Du Pont Victoria Green SC on unbleached sulphite. Complete calculations for all the work carried out in this investigation are tabulated in section A of the appendix.

	TABLE 4							
SAMPLE C.	ALCULATIO	NS FOR	THE DETE	ERMINATI	on of Pei	r cent		
DYE :	RETENTION	BY THE	METHOD	USING B	EER'S LA	W		
Cor- rected Trans- mittance		of White		Gms. of Dye Used	Gms. of Dye in Sheet	Per Cent Reten- tion		
98.3	1.993	0	0	0	0	100.0		
92.5	1.966	.000895	.000420	.0090	•00858	95.3		

-37-

D. Limits of Error in the Retention Method Using Beer's Law.

In examining the errors inherent in the retention method using Beer's law for determining dye retentions, it was found that dyed white water solutions could be produced under identical conditions which would not vary more than one tenth per cent in transmittance. It was also found that the color analyzer would reproduce results within one tenth per cent. With this in mind, the error in retention was determined when the transmittance was purposely changed by one tenth per cent for the $\frac{1}{2}$, 1, and 3 pound dyeings of Du Pont Victoria Green SC, Du Pont Brilliant Crocein FL, and Pontamine Fast Red 8BL on unbleached sulphite. These three dyes are representative of the three common classes of dyestuffs and give a general idea of the errors to be expected for any dye.

It was found in carrying out this calculation that as the transmittance of a given dye solution for a given weight dyeing was varied, the per cent retention varied as a linear function of the transmittance. In the light of this fact a change in the transmittance could be arbitrarily made to correspond to a possible error, the per cent retention determined, and then the change due to 0.1 per cent change in

-38-

transmittance calculated. Accuracy was conserved in this way. The calculations for Du Pont Victoria Green SC are shown in table 5. A sample calculation will be shown for a one half pound dyeing of this dye. The transmittance changes 14.0 per cent as the retention changes 79.0 per cent. Due to the fact that per cent retention is a linear function of transmittance as is shown graphically in figures 2, 3, and 4, the per cent change in retention due to one tenth per cent change in transmittance can be calculated by dividing 79.0 by 140. The result is 0.564 per cent. Calculations for Du Pont Brilliant Crocein FL and Pontamine Fast Red SBL are shown in tables 6 and 7 while a summary of all the data concerning errors to be expected with the dyes studied is shown in table 8.

-39-

		L	1							 ···		
	VARIED	PER CENT RETENTION	100.0	77.8	21.0		•••••	88.7	60.4	100.0	96-3	86 . 8
	PURPOSELY	GMS. DYE IN Sheet	0	.001166	• 000313	c	>	.002665	.001815	0	• 008665	•007815
	TRANSMITTANCE IS PURPOSELY VARIED	GMS. DYE USED	0	.0015	• 0015	C)	• 0030	• 0030	0	• 0090	• 0600
		CHAS. DYE IN WITER WATER	0	.000335	.001185	0	•	• 000335	.001185	0	.000335	.001185
TABLE 5	TEN SC AS	CONCEN- TRATION OF WHITE WATER	0	.000710	.002620	0		.000710	•002620	0	.000710	.002620
	VI OTORIA GREEN	LOG COR- RECTED TRANG- MISSION	1.993	1.971	1.914	1.993		1.971	1.914	1.993	1.971	1.914
	TN	COR- RECTED TRANS- MISSION	98.3	93.6	82.0	98.3		93.6	82.0	98.3	93.6	82.0
	RETENTION. OF DU PC	TRANS- MITTANCE R M	84.0	80 .0	70.0	84.0		80 . 0	70.0	8th . 0	80.0	70.0
	RETENTIC	POUNDS DYE PER 1000 POUNDS PULP				н						

.

•

.

•

-41-

PER CENT TRANSMITTANCE

				TABLE 6				
RETENTION	OF DU PONT	NT BRILLIANT	LANT OROGEIN	FL AS	TRANSMI T TANCE	SI	PURPOSELY VARIED	VARIED
POUNDS DYE PER 1000 POUNDS PULP	TRANG- MITTANGE	COR- RECTED TRANG- MISSION	LOG COR- RECTED TRANG- MISSION	CONCEN- TRATION OF WHITE WATER	GMS. DYE IN WHITE WATER	GMS. DYE USED	GMC. DYE In Sheet	PER CENT RETENTION
-1 C-	75.1	94.0	1.973	0	0	0	0	100.0
	72.2	90 . 4	1.956	.001350	.000635	• 0015	.000865	57.7
	68.5	85.7	1.933	•003190	.001500	•0015	0	0
Ч	75.1	94.0	1.973	0	0	0	Ō	100.0
	68.5	\$5.7	1.933	.003190	.001500	• 0030	• 001.500	50.0
	64.5	80.7	1.907	• 005200	• 002440	• 0030	• 000560	18.7
r.	75.1	94.0	1.973	c	0	. 0	0	100.0
	54.4	68.1	1.633	.011100	.005240	• 0600	•003760	4 1 .8
	50.0	62.6	1.797	000110.	•006580	0600 •	• 002420	26.9
		>		>>>++>•	•		• 002420	20•9

.

.

<u> 44 </u>

RETENTION OF PON	PONTAMINE F	FAST RED 8	TABLE 7 SBL AS TRI	7 Transmittanoe	18	PURPOSELY VAF	VARI ED
TRANS- MITTANCE	COR- COR- TREOTED MISSION	LOG COR- RECTED TRANS- MISSION	CONCEN- TRATION OF WHITE WATER	GMS. DYE IN WHITE WATER	GMS. DYE USED	GMS. DYE IN BHEET	PER CENT RETENTION
76.7	94.5	1.975	0	0	0	0	100.0
72.9	89.9	1.954	011340	•000630	.0015	.000870	58.0
69.5	58.6	1.932	•002750	•001290	•0015	.000210	14.0
7.97	94.5	1.975	0	0	c	0	100.0
68.5	84.9	1.929	•002940	•001380	•0030	.001620	54.0
62.8	4.77	1.889	•005520	.002595	•0030	.000405	13.5
76.7	94.5	1.975	0	, 0	0	0	100.0
64.8	60 .0	1.903	•004570	.002150	•0000	.006850	76.1
53.8	66.4	1.822	•009750	.004580	•0600	.004420	49.1

· ·

.

-45-

TABLE 8.						
SUMMARY OF ERRORS TO H	SUMMARY OF ERRORS TO BE EXPECTED WHEN					
TRANSMITTANCE VARIES	0.1 PER	R CENT				
Pounds Dye per 1000 Pounds Pulg	12	1	3			
Du Pont Victoria Green SC						
Difference in Transmittance (%)	14.0	14.0	·14.0			
Difference in Retention (%)	79.0	39.6	13.2			
Error in Retention Due to 0.1% Change in Transmittance (%)	0.564	0.282	0.094			
Du Pont Brilliant Crocein FL						
Difference in Transmittance (%)	6.6	10.6	25.1			
Difference in Retention (%)	100.0	81.3	73.1			
Error in Retention Due to 0.1% Change in Transmittance (%)	1.516	0.767	0.291			
Pontamine Fast Red 8BL						
Difference in Transmittance (%)	7.2	13.9	22.9			
Difference in Retention (%)	86.0	86.5	50.9			
Error in Retention Due to 0.1% Change in Transmittance	1,190	0.622	0.222			

.

.

.

.

:

÷

•

-⁄±6-

.

.

.

E. Results.

The results of this investigation may be divided up into ten sections, each section of which takes into consideration one of the variables that is important in the dyeing reaction while all the rest of the variables are held constant. In this way it has been possible to study the retention of the various dyes on various stocks under various conditions. The standard conditions used in this work were 0.6 per cent consistency. 4.9 pH obtained by the use of sulphuric acid, a temperature of 20°C., 10 minutes reaction time, and, unless otherwise stated, these conditions were held constant in each determination. Dyes, Du Pont Victoria Green SC, Du Pont Brilliant Crocein FL, and Pontamine Fast Red 8BL, which are basic, acid, and direct, respectively, were used as typical examples throughout the investigation. Sulphuric acid was used in most of the work because alum produced a flock in the white water which was undesirable. Results in part 10 of this section justify this use of sulphuric acid.

Before discussing these results in detail, one general conclusion, which is true in every part of this investigation, can be made, namely, that for any given

-47-

dye under identical conditions of time, temperature, consistency, etc., the one half pound dyeings are retained by a given pulp to a greater extent than those using more dye.

1. Retention on Sulphite Pulp Bleached to Various Degrees.

Unbleached sulphite pulp was bleached to five different degrees and dyed, in addition to the unbleached pulp, with the three typical dyestuffs in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, 1\frac{1}{2}, 1, 1\frac{1}{2}, 1$

It has been believed that basic dyestuffs attach themselves to lignified fibers much better than dyes of other classes. In addition, it has

-48-

	TABLE 9.							
PER C	PER CENT RETENTION ON SULPHITE PULP BLEACHED							
	TO	VARIOÚS DI	EGREES					
Per Cent Bleach	Pounds Dye per 1000 Pounds Pulp	Victoria	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent				
0	- ¹ /2 1 3	97.9 96.5 96.0 95.3	57.7 50.0 45.7 41.8	58.0 54.0 52.2 49.1				
3	- 1 1 3	98.9 98.2 97.6 96.7	54.0 44.9 40.1 35.0	48.4 44.3 42.3 39.1				
6	12 1 3	98.2 97.0 96.4 95.7	54.9 46.0 41.2 37.1	51.8 48.5 46.5 43.2				
10	12 1 3	97.3 96.0 95.1 94.2	56.4 47.1 42.8 39.1	56.8 52.6 50.9 48.4				
20	1 1 1 2 3	93.0 91.2 90.2 89.1	60.0 52.0 47.6 42.4	59.9 56.7 54.9 51.8				
30	1 1 1 2 2	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.2				

· · ·

·.

.

·

•

•

	TABL	E 10.				
CHEMICAL CON	STANTS	OF SU	LPHITE	PULPS		
BLEA CHED	TO VAL	RIOUS :	DEGREE	S		:
Per Cent Bleach	Per Cent Bleach 0 3 6 10 20 30					
Per Cent Lignin	2.45	1.83	0.88	0.42	0.35	0.26
Per Cent Methoxyl	1.34	1.15	0.86	0.62	0.54	0.45
Permanganate Number	17.4	15.7	13.2	11.8	6.3	4.7
Per Cent Alpha Cellulose	82.9	82.7	82.4	81.7	81.0	80.7
Per Cent Total Sulphur	1.96	1.66	1.41	1.10	0.54	0.21
Per Cent Inorganic Sulphur	0.20	0.17	0.12	0.94	0.03	0.02
Per Cent Organic Sulphur	1.76	1.49	1.29	1.06	0.51	0.19

further been accepted that the more lignin present, the better the dye retention. This, however, is not always the case as can be seen from figure 6. Du Pont Victoria Green SC is retained better on a lignified fiber which has been slightly bleached. It will be noticed that the retention increases from 97.9 per cent for the unbleached sulphite to 98.9 per cent for the same fiber bleached with three per cent bleach. Also it is noticed from table 2 that the lignin content of the slightly bleached

-53-

fiber was only 1.83 per cent while the unbleached fiber had a 2.45 per cent lignin content. The most plausible explanation for this result is that the lignin present in the slightly bleached pulp has been chlorinated and, in this condition, has a greater affinity for the basic dye. It must also be taken into account that the unbleached pulp was extremely hard, having a lignin content of 2.45 per cent, a permanganate number of 17.4, and a bleach consumption of 32 per cent. Rys⁵ has pointed out that more chlorination takes place during hypochlorite bleaching in hard pulps than in soft pulps. Another point which is evidence that the lignin in the slightly bleached pulp has been chlorinated is its brightness. The slightly bleached pulp has a lower brightness than the unbleached pulp even though its lignin content is lower. The brightness of the unbleached pulp as measured by the General Electric Reflection Meter. filter number 1, is 54.2 per cent while that of the slightly bleached pulp is only 50.8 per cent. As the brightness of the pulp is increased by the use of more bleach, a decided drop in retention is observed. In the light of these facts then, it can be said that basic dyes are attracted by lignin

-54-

but in different amounts depending upon the physical and chemical properties of the pulp.

In the case of Du Pont Brilliant Crocein FL and Pontamine Fast Red 8BL, exactly the opposite results are obtained. From figures 7 and 8 it can be seen that, when unbleached sulphite is bleached slightly, a decrease in the retentions are obtained with these dyestuffs. However, with further bleaching, the dyes are retained ever increasingly.

From these results then, it might be concluded that the amount of the lignin, as well as it's character, plays an important role in so far as dye retention on sulphite pulp is concerned. 2. Retention on Kraft Pulp Bleached to Various Degrees.

In studying the retention of dyes on kraft pulp bleached to various degrees, unbleached kraft pulp was bleached to four different degrees and dyed, in addition to the unbleached pulp, with the three typical dyestuffs in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, 1, 1\frac{1}{2}, 1)$ and 3 pound dyeings). The retention data are tabulated in table 11 and are shown graphically in figures 8, 9, and 10. The chemical constants of these pulps are tabulated in table 12.

-55-

[TABLE 11.							
RETENTION	N ON KRAFT F	ULP BLEAC	HED TO VARI	OUS DEGREES				
Per Cent Bleach	Pounds Dye per 1000 Pounds Pulp	Green SC	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent				
0	-1917 - 19 5	98.3 97.2 96.6 95.5	54.5 46.3 42.6 39.4	50.0 47.6 46.6 45.0				
5 Single Stage	12711	97.3 95.7 94.8 93.4	44.0 37.0 34.2 31.1	54.5 51.9 50.4 48.4				
15 Double Stage	121 121 3	94.2 92.6 91.6 90.7	46.4 39.8 37.0 34.0	56.8 54.2 52.8 50.7				
30 Double Stage	12 1 12 3	91.4 89.8 88.8 87.6	48.0 40.8 37.9 34.9	58.8 56.3 54.9 53.0				
40 Triple Stage	1 1 1 1 2 3	88.5 87.1 86.5 85.7	49.9 42.6 39.5 36.5	60.0 57.4 56.2 54.1				

On kraft pulp the basic dye was retained better than any other class of dyes. For one half pound dyeings, the retention of Du Pont Victoria Green SC varied between 88.5 per cent for highly bleached pulp and 98.3 per cent for the unbleached, figure 8. As the lignin decreases in the pulp,

TABLE 12.								
CHEMICAL CO	CHEMICAL CONSTANTS OF KRAFT PULPS BLEACHED							
	TO VARI	OUS DEGR	EES					
Per Cent Bleach	Per Cent Bleach 0 5 15 30 40							
Per Cent Lignin	8.7	5.7	4.2	2.7	2.0			
Per Cent Methoxyl	1.885	1.450	1.120	0.750	0.416			
Permanganate Number	Permanganate Number 26.0 22.4 17.9 8.1 5.0							
Per Cent Alpha Cellulose	- 1 - 1				78.5			
Per Cent Total Sulphur	0.0708	0.0670	0.0595	0.0414	0.0367			
Per Cent Inorganic Sulphur	0.0316	0.0300	0.0262	0.0173	0.0149			
Per Cent Organic Sulphur	0.0398	0.0370	0.0333	0.0241	0.0218			

the per cent retention of basic dyes decreases and in a uniform manner. If the character of the lignin had been changed by bleaching (which was apparently the case with sulphite pulp), slight bleaching of the kraft pulp did not produce a sufficient change in the lignin to cause better retention of the basic dye.

Du Pont Brilliant Crocein FL on kraft pulp bleached to various degrees, however, acted much differently than was expected in view of the

-66-

previous results. This dye is retained best on unbleached or highly bleached pulp and is retained the least on slightly bleached pulp as can be seen in figure 9. Sulphite pulp when treated in this same manner acted similarly except that its retention rose more rapidly upon bleaching. In order to explain why unbleached kraft pulp retained more dye than highly bleached pulps several details will have to be taken into consideration. From the experiments carried out on the various sulphite pulps it was concluded that both the character and the amount of lignin present were governing factors in dye retention. In the preceding part of this section it was shown that the character of the lignin in kraft pulp could not have been changed much, if any, because the basic dye used was retained to a greater extent by the lignified fibers. This would tend to show that the character of the lignin was about the same at various degrees of bleaching. In the light of this, then, it would be expected that acid and direct dyes would be retained less on the more lignified fibers. In actual results this was not the case for the acid dye. From the chemical constants tabulated in table 12 no clue could be

-61-

found which would lead to an explanation of the results. In addition to the considerations already made, the well known fact must be recalled that basic dyes have the greatest affinity, while acid dyes have the least affinity, for paper making fibers. One plausible explanation of these results is that the character of the lignin in kraft pulp is changed slightly by bleaching. Due to the fact that Du Pont Victoria Green SC is strongly attracted by the pulp, it is retained increasingly with increased lignin content without regard to the slightly changed character of the lignin, and produced results in agreement with those expected. However, in the case of the acid dye, Du Pont Brilliant Crocein FL, which has only a slight affinity for pulps, the lignin was able to attract and hold the dye producing the results that have been shown in figure 9. It should be pointed out, however, that the lignin in kraft pulp was not changed in character nearly so much as it was in the sulphite pulp during bleaching. In the case of sulphite pulp all three of the dves were affected in an ununiform manner when dved on slightly bleached pulp.

-62-

Pontamine Fast Red 8BL is apparently a strong enough dye to increase the retention upon bleaching. Bleached kraft pulps retain more of this dye than unbleached pulps as is shown in figure 10. For one half pound dyeings, the unbleached pulp retains 50.0 per cent of the direct dye while the bleached pulp retains 60.0 per cent.

From these results then, it may be concluded that the character of the lignin present in the kraft pulp, when only slightly changed by bleaching, has very little effect on the retention of dyes other than that which would be expected by its presence with the exception of acid dyes such as Du Pont Brilliant Crocein FL. The retention of Du Pont Brilliant Crocein FL is decreased in this case because it has only a slight affinity for paper making fibers. Du Pont Victoria Green SC is retained better on kraft pulp than Pontamine Fast Red 8BL, while Du Pont Brilliant Crocein FL is retained the least.

3. Retention on Bleached and Unbleached Sulphite and Kraft, Bleached Soda, Groundwood, and Rag Pulps.

The pulps most generally used in paper making operations, bleached and unbleached sulphite and

-63-

kraft, bleached soda, groundwood, and rag, were chosen for the pulp variable in this investigation. The various pulps were dyed with the three typical dyestuffs in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2},$ and 3 pound dyeings). The retention results are tabulated in table 13 and shown graphically in figures 11, 12, and 13. The chemical constants of the pulps are tabulated in table 14 except for sulphite and kraft which have already been given above in tables 2 and 4 respectively. The retentions of the sulphite and kraft pulps have been given in sections 1 and 2 above, but will be given here again for comparison with the other pulps. The bleached sulphite is the same pulp used in section 1 which was obtained by bleaching unbleached sulphite with thirty per cent bleach while the bleached kraft is the same pulp used in section 2 which was obtained by bleaching unbleached kraft with forty per cent bleach.

Du Pont Victoria Green SC, figure 11, shows that for one half pound dyeings, unbleached kraft retains the dye slightly better than unbleached sulphite, their retentions being 98.3 and 97.9 per cent respectively. Groundwood, unexpectedly, is next with a retention of 95.2 per cent. The

-64-

RETENTION ON VARIOUS PULPS							
Pulp	Pounds Dye per 1000 Pounds Pulp	Victoria	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent			
Unbleached Sulphite	<u>้</u> คา 1 <u>ร</u> ี 3	97.9 96.5 96.0 95.3	57.7 50.9 45.7 41.8	58.0 54.0 52.3 49.1			
Blezched Sulphite	1 1 3	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.3			
Unbleached Kraft	12 1 12 3	98.3 97.2 96.6 95.5	54.5 46.3 42.6 39.4	50.0 47.6 46.6 45.0			
Bleached Kraft	12 1 1 2 3	88.5 87.1 86.5 85.7	49.9 42.6 39.5 36.5	60.0 57.4 56.2 54.1			
Bleached Soda	12 1 12 3	80.7 79.0 78.9 78.0	60.0 54.0 49.5 42.0	55.0 52.0 50.1 45.5			
Rag .	1 1 1 2 3	74.7 73.3 72.6 71.0	66.0 59.5 55.0 47.2	63.8 60.0 58.0 55.3			
Ground- wood	12 1 1 ¹ 2 3	95.2 94.0 93.6 92.8	25.0 23.8 23.0 22.9	33.0 30.0 28.6 25.6			

.

.

١

.

CHEMICAL CONST.	TABLE 14. CHEMICAL CONSTANTS OF BLEACHED SODA, RAG,							
AND GROUNDWOOD								
Pulp	Bleached Soda	Rag	Groundwood					
Per Cent Lignin	0.4	0	27.1					
Per Cent Methoxyl	0.085	0.012	5.420					
Per Cent Alpha Cellulose	63.05	97.03	-					

lignin content of groundwood is 27.1 per cent but can not be considered in a relative way with the other lignified pulps because of its entirely different character. Bleached kraft and sulphite are next having retentions respectively of 88.5 and 87.9 per cent. Bleached soda and rag are last with retentions of 80.7 and 74.7 per cent respectively.

From these results it is evident that the various types of pulps have widely varying affinities for Du Pont Victoria Green SC, but, generally speaking, the amount and character of lignin present has a considerable influence in holding this dye to the fiber. In the case of groundwood, however, which is a mechanical pulp and not comparable with chemical pulps, it should be noticed that it is well up in the list in its affinity for basic dyes.

Du Pont Brilliant Crocein FL, figure 12, shows that for one half pound dyeings, for example, rag pulp has the best retention which is 66.0 per cent. Bleached sulphite and soda are next best with retentions of 57.7 and 54.5 per cent respectively. Then comes bleached kraft with a retention of 49.9 per cent. Here again we have this same acid dye on bleached kraft pulp which shows an unexpected result. As has already been explained in section 2, the lignin in this particular case has been changed in some way, even though it is present only to the extent of 2.04 per cent, so that it repels the acid dye. Then the highly lignified mechanical pulp was last with the extremely low retention of 25.0 per cent.

From these results it can be concluded that acid dyes show only a small attraction for these pulps, the best of which are those containing the highest amounts of alpha cellulose and the least lignin.

In the case of Pontamine Fast Red 8BL, figure 13, the one half pound dyeings were also retained better than those using greater quantities of dye.

-70-

Bleached sulphite, rag, and bleached kraft pulps retain this dye better than the other pulps. Bleached sulphite has a retention of 64.0, rag 63.6, and bleached kraft 60.0 per cent. Unbleached sulphite, bleached soda, and unbleached kraft are next in line with retentions of 58.0, 55.0, and 50.0 per cent respectively. The bleached soda was expected to be higher in the list but when its alpha cellulose content of only 63.0 per cent is taken into consideration it can be justified. Groundwood with this dye is also last with only 33.0 per cent retention.

These results indicate that the retention of this dye, even though better than that of Du Pont Brilliant Crocein FL, is much less than the retentions obtained with Du Pont Victoria Green SC. In addition, highly purified pulps show dye retentions which are considerably better than those of the more lignified pulps.

4. Retention on Unbleached and Bleached Sulphite and Kraft at Various pH's.

Sulphite and kraft pulps are the most important types of furnishes from a tonnage standpoint that are dyed so they alone were considered regarding the effect of pH on dye retention.

-71-

These pulps, both bleached and unbleached, were dyed at three pH's, 3.9, 4.9, and 5.9, with the three typical dyes in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, 1, 1\frac{1}{2}, 1)$ and 3 pound dyeings). The results are tabulated in table 15 for the sulphite and in table 16 for the kraft pulp. These same results are plotted graphically in figures 14 to 19 inclusive for the sulphite and 20 to 25 inclusive for the kraft pulp.

Du Pont Victoria Green SC on unbleached sulphite, figure 14, showed retentions, for example, for one half pound dyeings of 96.0, 97.9, and 97.7 per cent for 3.9, 4.9, and 5.9 pH's respectively. From these data it is apparent that the optimum pH to use with Du Pont Victoria Green SC in obtaining a maximum dye retention on unbleached sulphite pulp is somewhere near 4.9. The effect of higher pH's lowers the retention but not to any where near the extent that lower pH's do.

Du Pont Brilliant Crocein FL on unbleached sulphite, figure 15, showed no differences in retention for pH's of 3.9 and 4.9. Above that point, 5.9 for instance, the retention showed a large drop. For one half pound dysings the retentions 57.7 per cent for pH's of 3.9 and 4.9 and 50.1

-72-

	T.	ABLE 15.	<u> </u>]
RETENTION OF DYES ON UNBLEACHED AND BLEACHED				
SULPHITE PULP AT VARIOUS pH'S				
Hydrogen Ion Concentration and Pulp	Pounds Dye per 1000 Pounds Pulp	Victoria Green SC	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent
Unbleached Sulphite 3.9	1 1 1 2 3	96.0 94.5 94.1 93.8	57.7 50.1 45.6 41.9	58.2 54.1 52.2 49.1
Unbleached Sulphite 4.9	12 1 12 3	97.9 96.5 96.0 95.3	57.7 50.0 45.7 41.8	58.0 54.0 52.2 49.1
Unbleached Sulphite 5.9	1 1 1 2 3	97.7 96.2 95.9 94.9	50.1 42.2 38.1 34.1	56.1 52.4 50.4 47.3
Bleached Sulphite 3.9	12 1 12 3	85.8 84.8 84.2 83.2	62.0 53.5 48.9 43.1	64.4 61.5 59.4 56.8
Bleached Sulphite 4.9	121 112 3	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.2
Bleached Sulphite 5.9	1 1 1 2 3	87.8 86.3 85.6 85.1	54.0 44.7 40.5 36.1	62.1 58.9 57.3 54.3

.

	TABLE 16.						
RETENTIO	RETENTION OF DYES ON UNBLEACHED AND BLEACHED						
	KRAFT PULP AT VARÍOUS DH'S						
Hydrogen Ion Concentration and Pulp	Pounds Dye per 1000 Pounds Pulp	Victoria Green	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent			
Unbleached Kraft 3.9	1 1 1 2 3	97.5 96.5 96.0 94.9	54.8 46.6 42.9 40.0	50.1 47.6 46.8 45.0			
Unbleached Kraft 4.9	12 1 12 3	98.3 97.2 96.6 95.5	54.5 46.3 42.6 39.4	50.0 47.6 46.6 45.0			
Unbleached Kraft 5.9	1 1 1 2 3	98.2 97.1 96.4 95.4	50.0 42.6 38.1 35.1	48.3 45.9 44.3 43.1			
Bleached Kraft 3.9	1 1 1 3	88.2 87.1 86.4 85.4	50.2 43.0 40.0 36.9	60.1 57.8 56.8 54.7			
Bleached Kraft 4.9	1 1 1 2 3	88.5 87.1 86.5 85.7	49.9 42.6 39.5 36.5	60.0 57.4 56.2 54.1			
Bleached Kraft 5.9	- 1 ¹ /2 - 1 ¹ /2 3	88.5 87.0 86.5 85.5	44.6 37.8 34.4 32.1	57.8 55.0 53.9 51.9			

.

.

•

.

.

.

.

2

-78-

-79-

-81-

POUNDS DYE PER 1000 POUNDS PULP

-82-

-85-

• •

per cent for a pH of 5.9. It is apparent from these data that acid dyes require sufficient acid to set their color groups. From a pH of about 5.0 on down, however, more acid does not help.

Pontamine Fast Red 8BL on unbleached sulphite, figure 16, has approximately the same pH characteristics as Du Pont Brilliant Crocein FL on unbleached sulphite. No difference in retentions were shown for pH's of 3.9 and 4.9. At 5.9, however, the retention dropped a bit, but not nearly to the extent that it did with the acid dye. For one half pound dyeings, for example, the retentions were 58.2, 58.0, and 56.1 per cent for the pH's of 3.9, 4.9, and 5.9 respectively.

Du Pont Victoria Green SC, figure 17, showed a considerable drop in retention on bleached sulphite in relation to this same dye on unbleached sulphite. Retentions for pH's of 4.9 and 5.9 were for all practical purposes the same, but those for the pH of 3.9 were lower. For one half pound dyeings the retentions were 85.8, 87.9, and 87.8 per cent for pH's of 3.9, 4.9, and 5.9 respectively.

Du Pont Brilliant Crocein FL on bleached sulphite pulp, figure 18, showed the same general type of curves as for the the same dye on unbleached sulphite. The pH's of 3.9 and 4.9 showed the same retention while a pH of 5.9 showed a considerable

-87-

lowering in the retention. Retentions obtained on the unbleached stock were somewhat lower than those obtained on the bleached. For one half pound dyeings the retentions were 62.0 per cent for pH's of 3.9 and 4.9 and 54.0 per cent for a pH of 5.9.

Pontamine Fast Red 8BL on bleached sulphite pulp, figure 19, has a slightly higher retention for a pH of 3.9 than for a pH of 4.9. At a pH of 5.9 the retention is a bit lower. For example, for one half pound dyeings, the retentions are 64.4, 64.0, and 62.1 per cent for pH's of 3.9, 4.9, and 5.9 respectively. From these results it is apparent that the pH has very little effect on the retention of this dye.

Du Pont Victoria Green SC on unbleached kraft, figure 20, shows that practically the same retentions are obtained with pH's of 4.9 and 5.9. A lower pH, 3.9, produces lower retentions. For one half pound dyeings the retentions are 97.5, 98.3, and 98.2 per cent for pH's of 3.9, 4.9, and 5.9 respectively.

Du Pont Brilliant Crocein FL on unbleached kraft, figure 21, shows that for pH's of 3.9 and 4.9 the retentions are practically the same being 54.8 and 54.5 per cent respectively. At the pH

-88-

of 5.9 the retention is less, being 50.0 per cent.

Pontamine Fast Red 8BL on unbleached kraft, figure 22, shows practically no difference for pH's of 3.9 and 4.9 with only a small difference for a pH of 5.9. For example, with one half pound dyeings, the retentions are 50.1, 50.0 and 48.3 per cent for pH's of 3.9, 4.9, and 5.9 and in that order. The retention drop at 5.9 with this dye did not amount to any where near the drop experienced with the acid dye. Apparently, direct dyes are in general the least sensitive to pH.

Du Pont Victoria Green SC on bleached kraft, figure 23, showed a considerable drop in retention in relation to this dye on unbleached kraft. Retentions for pH's of 4.9 and 5.9 were for all practical purposes the same, with those for the pH of 3.9 being a bit lower. For one half pound dyeings the retentions were 88.2 per cent for the 3.9 pH and 88.5 per cent for the 4.9 and 5.9 pH's.

Du Pont Brilliant Crocein FL on bleached kraft, figure 24, showed the same type of curves on unbleached kraft. The dye at pH's of 3.9 and 4.9 was retained for all practical purposes in the same amounts for the same weight dyeings while the retention at a pH of 5.9 showed a considerable

-89-

lowering. For one half pound dyeings the retentions were 50.2, 49.9, and 44.6 per cent for pH's of 3.9, 4.9, and 5.9 respectively.

Pontamine Fast red 8BL on bleached kraft, figure 25, has the same retention for pH's of 3.9 and 4.9. At a pH of 5.9 the retention is a bit lower. For one half pound dyeings the retentions are 60.1, 60.0, and 57.8 per cent for pH's of 3.9, 4.9, and 5.9 respectively.

In summarizing the effect of pH on the retention of the three dyes when dyeing sulphite and kraft pulp it can be said that the acid dyes are by far the most affected by pH changes. Retention decreases rapidly above a pH of 5.0. Direct dyes are the least affected by pH changes while basic dyes, in general, have their optimum pH's near 5.0. In addition to these facts it has been apparent from the start that an unmistakable set of trends are present. For instance, with Pontamine Fast Red 8BL it has been noticed that the characteristics of its pH curves, when per cent retention is plotted against strength of dyeing, are always the same. For different pulps the retentions are different but the shape of the curves are the same. The retentions for the direct dye

. . .

at pH's of 4.9 and 5.9 are always about the same while the retention at a pH of 5.9 is always a bit lower. Even though these generalizations have been made for Pontamine Fast Red 8BL, the retention of the dye is only affected slightly by pH in comcarison with other dyes. The characteristics of the pH curves for Du Pont Brilliant Crocein FL are also similar regardless of the pulp being dyed. In every case the retentions for pH's of 3.9 and 4.9 are practically the same with the retention at a pH of 5.9 being lower. The characteristics of the pH curves for Du Pont Victoria Green SC are likewise similar, with the retentions at a pH of 4.9 and 5.9 in general being the same or with the pH of 4.9 being slightly higher. A dyeing made at a pH of 3.9 shows a lower retention. Only three dyes, one typical of each of the three main classes of dyestuffs, have been investigated and probably different dyes in the same class would act differently. However, in so far as this investigation is concerned, it can definitely be pointed out that for any given dye, the characteristics of its pH curves, when per cent retention is plotted against strength of dye, are always very nearly the same for all kinds of pulps.

a statistical statisti

5. Retention on Unbleached and Bleached Sulphite at Various Consistencies.

In the light of the facts brought out in section 4 above, it was decided that the use of unbleached and bleached sulphite alone would be sufficient to bring out the the trends in dye retention due to any of the variables in the dyeing reaction. In order to study the effect of consistency on the dyeing reaction, unbleached and bleached sulphite were dyed at three consistencies, 0.3, 0.6, and 1.0 per cent with the three typical dyes in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, and 3)$ pound dyeings). The retentions are tabulated in table 17 and are shown graphically in figures 26 to 31 inclusive. As was expected, the stock dyed at one per cent consistency showed the highest retention because it had the greatest amount of dye present per unit volume of stock. Due to the fact that the dye was not being taken up by so much water, it naturally had a better chance of being absorbed by the fiber under the conditions of the experiment. The 0.6 per cent stock showed the next best retention for a given pulp and strength of dye, while that of the 0.3 per cent stock gave the poorest retention. In each case the one half pound dyeings gave higher retentions than those

-92-

	<u> </u>	TABLE 17.				
RETENT	RETENTION OF DYES ON UNBLEACHED AND BLEACHED					
SULI	SULPHITE PULP AT VARIOUS CONSISTENCIES					
Per Cent Consistency	Pounds Dye per 1000 Pounds Pulp	Du Pont Victoria Green SC Per Cent	Du Pont Brilliant Crocein FL Pef Cent	Pontamine Fast Red 8BL Per Cent		
Unbleached Sulphite 0.3	1 1 1 3	96.3 95.4 94.9 94.0	53.3 46.0 43.0 39.6	46.4 42.8 41.8 37.8		
 Unbleached Sulphite 0.6	1 1 1 3	97.9 96.5 96.0 95.3	57.7 50.0 45.7 41.8	58.0 54.0 52.2 49.1		
Unbleached Sulphite 1.0	1 1 1 3	98.6 97.8 97.3 96.3	76.3 68.1 64.0 58.0	78.7 73.1 70.0 64.7		
Bleached Sulphite 0.3	1 1 3	86.1 85.1 84.6 83.9	58.8 50.8 46.8 42.0	52.4 47.2 45.7 41.7		
Blezched Sulphite 0.6	1211	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.2		
Bleached Sulphite 1.0	1 1 3	88.4 87.6 87.0 86.1	91.3 73.1 68.2 61.3	91.0 84.9 81.1 75.8		

.

.

.

.

-98-

:

LIBRARY Santitute of Paper Chemistre

dyeings which contained greater amounts of dye.

;

n Maria

ł

Du Pont Victoria Green SC on unbleached sulphite, figure 26, showed retentions for one half pound dyeings, for example, of 96.3, 97.9, and 98.6 per cent for 0.3, 0.6, and 1.0 per cent consistencies respectively. It was noticed that the drop from the 0.6 per cent consistency standard to the 0.3 per cent consistency was quite appreciable and the rise to 1.0 per cent consistency was worth while.

Du Pont Brilliant Crocein FL on unbleached sulphite, figure 27, shows considerably larger differences in retention due to the consistency changes. For one half pound dyeings, the retentions were 53.3, 57.7, and 76.3 per cent for the 0.3, 0.6, and 1.0 per cent consistency stocks and in that order. It might be pointed out that as the consistency is raised from 0.3 per cent the changes are not exceptionally large until after 0.6 per cent is reached. After this point, however, large gains are noticed. From these results it can be seen that consistency is an important variable in regard to the retention of acid dyestuffs.

Pontamine Fast Red 8BL on unbleached sulphite, figure 28, shows that differences due to consistence changes are on the same order as those obtained with Du Pont Brilliant Crocein FL. For one half pound

-100-

dyeings, the retentions are 46.4, 58.0, and 78.7 per cent for pulp of 0.3, 0.6, and 1.0 per cent consistency. The raise from 0.3 to 1.0 per cent consistency is more uniform in this case than it is with the acid dye.

Du Pont Victoria Green SC on bleached sulphite, figure 29, is comparable with the results found for this dye on unbleached stock except that considerably less retention was obtained. For one half pound dyeings only 86.1, 87.9, and 88.4 per cent retentions were obtained for the 3 consistencies, 0.3, 0.6, and 1.0 per cent respectively in comparison with 96.3, 97.9, and 98.6 per cent obtained with the unbleached pulp.

Du Pont Brilliant Crocein FL on bleached sulphite, figure 30, is likewise comparable with the results obtained with the same dye on the unbleached pulp. The increase in retention does not increase rapidly from 0.3 to 0.6 per cent consistency, but large changes were noticed when the consistency advanced to 1.0 per cent. For one half pound dyeings the retentions were 58.8, 62.0, and 81.3 per cent for 0.3, 0.6, and 1.0 per cent consistency respectively. As will be noticed these results are slightly higher than the results obtained with the unbleached stock which is in

-101-

accord with the findings in section three above.

Pontamine Fast Red 8BL on bleached sulphite. figure 31, shows results which are comparable with those obtained with the same dye on unbleached sulphite except that they are higher. For one half bound dyeings a much higher rate of increase in retention is noticed for the 1.0 per cent over the 0.6 per cent consistency dyeing than in the three pound dyeings for the same consistencies. The reason for this is that the low concentration of dye when put into the higher pulp consistency is taken up rapidly, but when the higher concentration of dye is put into stock of higher consistency, the resulting dye concentration is lowered with a decrease in retention. Retentions obtained for one half pound dyeings were 52.4. 64.0, and 91.0 per cent for 0.3, 0.6, and 1.0 per cent consistencies respectively. 6. Retention on Unbleached and Bleached Sulphite

at Various Temperatures.

In studying the retention of dyes on pulps at various temperatures, unbleached and bleached sulphite were chosen to bring out the trends in the dye retention due to this variable. These pulps were dyed at three temperatures, 20, 40, and 60° C.,

-102-

with three typical dyes in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, \text{ and } 3 \text{ pound dyeings})$. The retentions obtained are tabulated in table 18 and are shown graphically in figures 32 to 37 inclusive.

Du Pont Victoria Green SC on unbleached sulphite pulp, figure 32, shows that the retention of this basic dye at the temperatures studied does not vary much. It is not known why the retention shown by the 20 degree curve in figure 32 is between the 40 and 60 degree curves unless it is due to the limits of error in the procedure. For all practical purposes, the retentions of Du Pont Victoria Green SC on unbleached sulphite are constant in the range 20° to 60° C. For example, the retentions found for $1\frac{1}{2}$ pound dyeings are 96.0 per cent for temperatures at 20° and 60° C. and 95.9 per cent for a temperature of 40° C.

Du Pont Brilliant Crocein FL on unbleached sulphite, figure 33, shows that the higher the temperature of the dyeing reaction the higher the retention. For one half pound dyeings the retentions were 57.7, 58.6, and 60.0 per cent for 20°, 40°, and 60° C. temperatures respectively.

Pontamine Fast Red 8BL on unbleached sulphite, figure 34, also shows that increased temperature in

-103-

RETENTI(ABLE 18. NUNBLEACH	ED AND BLEA	HED
SULI	PHITE PULP A	T VARIOUS	TEMPERATURES	5
Temperature and Pulp	Pounds Dye per 1000 Pounds Pulp	Du Pont Victoria Green SC Per Cent	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent
Unbleached Sulphite 200	- <u>1</u> 21-1-2 -12 -12 -12 -12 -12 -12 -12 -12 -	97.9 96.5 96.0 95.3	57.7 50.0 45.7 41.8	58.0 54.0 52.2 49.1
Unbleached Sulphite 400	121 12 3	97.2 96.4 95.9 95.0	58.6 50.5 46.0 42.1	59.8 55.5 53.4 49.8
Unbleached Sulphite 60 ⁰	1 1 1 2 3	98.0 97.0 96.0 95.3	60.0 51.9 47.5 43.9	61.8 57.1 54.3 50.7
Bleached Sulphite 200	1 1 1 ¹ 2 3	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.2
Bleached Sulphite 40 ⁰	1 1 3	87.8 86.5 85.7 85.0	62.3 54.1 49.5 44.0	65.8 61.8 60.1 57.0
Bleached Sulphite 60 ⁰	1 1 1 3	87.5 86.5 85.9 85.4	63.8 55.2 51.1 45.0	68.4 64.4 62.3 59.5

•

dyeing produces higher retentions of this dye. This effect was not as great as was expected changing only from 58.0 to 59.8 to 61.8 per cent for one half pound dyeings respectively for 20, 40, and 60° C. reaction temperatures.

Du Pont Victoria Green SC on bleached sulphite, figure 35, shows that, for all practical purposes, these changes in temperature had no affect on the amount of dye retained. For one half pound dyeings the retentions were 87.9, 87.8, and 87.5 per cent respectively for 20°, 40°, and 60° C. dyeing temperatures.

Du Pont Brilliant Crocein FL on bleached sulphite, figure 36, shows that increased temperature produces only slightly higher retention of this dye. For one half pound dyeings the retentions are 62.0, 62.3, and 63.8 per cent for temperatures of 20° , 40° , and 60° C. respectively.

Pontamine Fast Red 8BL on bleached sulphite, figure 37, shows that greater increases in retention than for any of the other dyes studied were obtained when the temperature was raised. For one half pound dyeings the retentions were 64.0, 65.8, and 68.4 per cent respectively for temperatures of 20° , 40° , and 60° C. Results obtained by varying the temperature show that the retention of basic dyes are not affected from a practical standpoint by temperature; acid dyestuffs are retained very little better by increased temperatures of the dyeing reaction, while direct dyes are retained somewhat better at higher temperatures.

7. Retention on Unbleached and Bleached Sulphite at Various Reaction Times.

In studying the effect of time on the retention of dyes, unbleached and bleached sulphite pulp were dyed at different time periods, 10, 30, and 60 minutes, with the three typical dyes in four different concentrations $(\frac{1}{2}, 1, 1\frac{1}{2}, and 3 \text{ pound dyeings})$. In The results of the retentions under the various conditions are shown in table 19 and are shown graphically in figures 38 to 43 inclusive.

Du Pont Victoria Green SC on unbleached sulphite, figure 38, shows that time has very little effect on the retention of this dye. For one half pound dyeings the retentions were 97.9 per cent for the 10 and 30 minute reaction times and 98.0 per cent for the 60 minute reaction time. For all practical purposes the retention of this dye is the same for all time periods taken into consideration

		TABLE 19.	•					
RETENTION OF DYES ON UNBLEACHED AND BLEACHED								
SUL	PHITE PULP A	T VARIOUS	REACTION TIN	ÆS				
Time in Minutes and Pulp	Pounds Dye per 1000 Pounds Pulp	Du Pont Victoria Green SC Per Cent	Crocein	Pontamine Fast Red 8BL Per Cent				
Unbleached Sulphite 10	1 1 1 2 3	97.9 96.5 96.0 95.3	57.7 50.0 45.7 41.8	58.0 54.0 52.2 49.1				
Unbleached Sulphite 30	1 1 1 3	97.9 96.4 96.0 95.4	59.7 51.5 47.0 42.3	68.7 63.3 60.0 53.9				
Unbleached Sulphite 60	12 1 12 3	98.0 96.5 96.1 95.4	64.1 53.5 48.3 43.0	77.7 70.1 65.5 .57.0				
Bleached Sulphite 10	- 12 3	87.9 86.4 85.8 85.0	62.0 53.8 49.0 43.3	64.0 61.0 59.1 56.2				
Bleached Sulphite 30	-102-1-10 10 10	87.0 86.2 85.8 85.0	65.0 54.5 49.8 43.7	75.8 68.5 64.7 59.0				
Bleached Sulphite 60	1 1 1 3	87.9 86.4 86.0 85.3	67.3 55.2 50.7 44.0	86.1 77.4 71.3 61.1				

.

-113-

....

-118-

by this investigation.

Du Pont Brilliant Crocein FL on unbleached sulphite, figure 39, shows that, as the dyeing time increased, the retention is increased. For example, for one half pound dyeings, the retentions are 57.7, 59.7, and 64.1 per cent for the time periods of 10, 30, and 60 minutes respectively.

Pontamine Fast Red SBL on unbleached sulphite, figure 40, shows that this dye is considerably affected by the time variable. The increases due to increased time of reaction are sizeable and can not go unnoticed. For one half pound dyeings the retention is increased from 58.0 to 68.7 to 77.7 per cent by changes in the time from 10 to 30 to 60 minutes respectively.

Du Pont Victoria Green SC on bleached sulphite, figure 41, shows the same type of results that were obtained with the unbleached pulp except that the retentions on bleached pulp are in general 10 per cent lower. The retention of this dye apparently is affected very little by time. For example, one half pound dyeings are retained 87.9 per cent for reaction times of 10 and 60 minutes, and 87.0 per cent for a reaction time of 30 minutes. From a practical standpoint the retention is the same in each case.

-120-

Du Pont Brilliant Crocein FL on bleached sulphite, figure 42, shows that with increased time of reaction the retention also increases just as was found for this dye with unbleached sulphite. For one half pound dyeings the retention is 62.0, 65.0, and 67.3 per cent respectively for 10, 30, and 60-minute reaction times.

Pontamine Fast Red 8BL on bleached sulphite, figure 43, shows that a sizeable change in retention can be obtained with this dye by allowing sufficient time to permit the dye to react with the fiber. For one half pound dyeings, for example, the retention was raised from 64.0 per cent for a 10-minute reaction time to 86.1 per cent for a 60-minute reaction time.

The results of this retention study, with time as a variable, show that Du Pont Victoria Green SC is not affected to any great extent by time of reaction. Du Pont Brilliant Crocein FL is somewhat affected, giving higher retentions for longer times, while Pontamine Fast Red 8BL produces sizeable increases in retention when the reaction time is lengthened. 8. Retention on Unbleached Sulphite at Various Freenesses.

To study the retention trends as the freeness

-121-

of the pulp was varied, unbleached sulphite was dyed at six different freenesses with the three typical dyes in just one strength, three pound dyeings. The results of the retentions under these conditions are tabulated in table 20 and are shown graphically in figures 44 to 46 inclusive.

Du Pont Victoria Green SC, figure 44, is retained only slightly better as the freeness of the pulp is decreased. For example, the retention increases from 95.3 to 98.3 per cent when the freeness of the pulp is changed from 860 to 250.

Du Pont Brilliant Crocein FL, figure 45, is retained better at lower freenesses than at high freenesses. The increase is considerable, changing steadily from 41.8 per cent retention at 860 freeness to 68.0 per cent at 250 freeness.

Pontamine Fast Red 8BL, figure 46, relative to the other dyes is retained to a much greater extent as the freeness is lowered. In this particular case the retention was only 49.1 per cent at a freeness of 860, but at a freeness of 250 the retention jumped to 84.5 per cent, all other conditions being equal.

The results of this part of the investigation show that in every case the retention of a dye may

-122-

be increased by lowering the freeness of the pulp. Direct dyes such as Pontamine Fast Red 8BL are affected the most by freeness changes, acid dyes such as Du Pont Brilliant Crocein FL are next, while basic dyes such as Du Pont Victoria Green SC are affected the least.

TABLE 20.							
RETENTION OF DYES ON UNBLEACHED SULPHITE AT VARIOUS FREENESSES							
Time Minutes	Freeness	Green SC	Du Pont Brilliant Crocein FL Per Cent	Pontamine Fast Red 8BL Per Cent			
0	860	95 . 3	41.8	49.1			
10	31 0	95.8	47.5	53.4			
20	705	96.7	54.0	62.5			
30	560	97.4	59.5	72.0			
40	400	97.9	63.5	79 . 3 ·			
50	250	98.3	68.0	84.5			

-125-

1

-126-

9. Retention of Various Dyes on Unbleached Sulphite.

In studying the retention of various dyes, three pound dyeings on unbleached sulphite were made with twenty different types of dyes obtained from the three main classes of dyestuffs. The results of the retentions are tabulated in table 21.

In picking the dyes, one and sometimes two were picked from each of the most important types of dyestuffs in each class as follows:

Basic Dyes

Du Pont Victoria Green SC Triphenyl Methane Grouping

Du Pont Rhodamine B Xanthene: Grouping

Du Pont Auramine Conc. Ketonamine Grouping

Du Pont Methylene Blue ZX Thizzine Grouping

Du Pont Basic Brown BR Disazo Grouping from Diamines

······	
TABLE 21	
RETENTION OF VARIOUS DYES ON UNBLEACHE	D SULPHITE
Dye	Per Cent Retention
Basic Dyes	
Du Pont Victoria Green SC	95.3
Du Pont Rhodamine B	85.4
Du Pont Auramine Conc.	94.8
Du Pont Methylene Blue ZX	96.3
Du Pont Basic Brown BR	53.8
Du Pont Safranine T Extra	94.8
Du Pont Methyl Violet NE	91.8
Acid Dyes	
Du Pont Brilliant Crocein FL	41.8
Du Pont Anthraquinone Blue B	5.6
Du Pont Nigrosine WSB Powder	15.9
Du Pont Quinoline Yellow Conc.	11.7
Du Pont Orange II Conc.	14.2
Pontacyl Violet S4B	36.1
Direct Dyes	
Pontamine Fast Red 8BL	49.1
Du Pont Purpurine 4B Conc.	76.1
Pontamine Fast Scarlet 4BS	55.7
Pontamine Black E	39.6
Du Pont Brilliant Paper Yellow Conc.	30.6
Pontamine Yellow SXP	25.9
Pontamine Fast Yellow NNL	58.3

.

-128-

.

.

.

Du Pont Safranine T Extra Azine Grouping

Du Pont Methyl Violet NE Triphenyl Methane Grouping

Acid Dyes

Du Pont Brilliant Crocein FL Monoazc Grouping

Du Pont Anthraquinone Blue B Anthraquinone Acid Grouping

Du Pont Nigrosine WSB Powder Very Complex Unknown Structure

Du Pont Quinoline Yellow Conc. Quinoline Grouping

Du Pont Orange II Conc. Monoazo Grouping

Pontacyl Violet 48B Triphenyl Methane Grouping Direct Dyes

Pontamine Fast Red 8BL Disazo Grouping

X-N=N-X

X-N=N-R-N=N-X'

Du Pont Purpurine 4B Conc.

Disazo Grouping from Diamines

Pontamine Black E Trisaze Grouping

Du Pont Brilliant Paper Yellow Concentrated Mono Stilbene Grouping

Pontamine Fast Scarlet 4BS Disazo Grouping

Pontamine Yellow SXP Di Stilbene Grouping

Pontamine Fast Yellow NNL Thizzole Grouping C-N.C-

Complete structural formulas of these dyes are given in section C of the appendix. These dyes were picked so as to have a dye from each important grouping and at the same time have them overlap enough so as to determine whether or not dyestuffs having the same groupings would have approximately the same retentions.

The results show that dyes having the same groupings do not necessarily have the same retentions. For example, Du Pont Orange II Concentrated and

X-N-N-R-N-N:

A-N=N-B-N=N-C-N=N-D

Du Pont Brilliant Crocein FL both have monoazo groupings but have widely differing retentions, 14.2 and 41.8 per cent respectively. All the basic dyes used in this investigation have retentions above 91.0 per cent except for Du Pont Rhodamine B which had a retention of 85.4 per cent and notably Du Pont Basic Brown which has the exceptionally low retention of 53.8 per cent. The acid dyestuffs have the lowest retentions of any class varying between 5.6 per cent for Du Pont Anthraguinone Blue B and 41.8 per cent for Du Pont Brilliant Crocein FL. The direct dyestuffs as a class are retained better than the acid dyes but not as well as the basic dyes. Du Pont Purpurine 4B Concentrated is exceptionally high with a retention of 76.1 per cent. 10. Retention on Unbleached Sulphite When Various Acids were Used With and Without Size.

In studying the retention of dyes when various acids were used with and without size, three pound dyeings were made with the dyes, Du Pont Victoria Green SC, Du Pont Brilliant Crocein FL, Du Pont Orange II, and Pontamine Fast Red 8BL, on unbleached sulphite. The acids investigated were sulphuric acid and alum (aluminum sulphate). In addition, the increase in retention obtained when size and

-131-

alum are both used was investigated. The results of the dye retentions obtained in this study are tabulated in table 22.

TABLE 22.						
RETENTION OF DYES ON UNBLEACHED SULPHITE						
	WITH V	ARIOUS ACID	5			
Acid		Du Pont Brilliant Crocein FL	Du Pont Orange II	Pontamine Fast Red 8BL		
Sulphuric Acid	95.3	41.8	14.2	49.1		
Alum	95.2	41.9	14.7	48.2		
Size and Alum	95.3	43.1	19.8	50.3		

These results show quite conclusively that the retentions are the same, from a practical standpoint, when either alum or sulphuric acid are used. The use of size in connection with alum increases the retentions of the dyes except in the case of Du Pont Victoria Green SC, which is not affected. In the case of acid dyes, Du Pont Orange II shows a marked increase in its retention, changing from 14.7 per cent without size to 19.8 per cent with size. Du Pont Brilliant Crocein FL shows only a moderate increase, changing from 41.9 to 43.1 per cent retention. Pontamine Fast Red 8BL is also increased slightly by the addition of size to the

-132-

furnish. Size and alum were investigated in order to determine their effects on retention results. Sulphuric acid was used for the most part of this investigation because it produced results which were similar to those obtained with alum as has been shown above, and in addition, did not produce a flock in the white water. Alum did produce a flock in the white waters which necessitated an exceptionally large correction in the transmittance when examined spectrophotometrically and therefore was objectionable.

In summing up these results it can be said that the retentions obtained, when either sulphuric acid or alum is used, are the same from a practical standpoint. The use of alum and size together, however, produces an increase in the retention, the amount of which depends upon the dye under consideration

F. Applicability of the Kubelka and Monk Equations for . Determining Dye Retentions.

In proving the applicability of the Kubelka and Monk equations, it appears that the best approach is to use the equations for determining dye retention. Such a method was developed and the results checked very well with those obtained by the retention method

-133-

using Beer's law. Since it was not necessary to check all the results obtained by the retention method using Beer's law to prove the applicability of the Kubelka and Monk equations, only $\frac{1}{2}$, 1, $1\frac{1}{2}$, and 3 pound dyeings of the three typical dyes on unbleached and bleached sulphite were considered in this part of the investigation. Hand sheets obtained when white waters were produced for these conditions were saved for this determination. The following section will consider in detail the equations, procedure, results, and errors of the method.

1. Kubelka and Monk Equations.

Steele⁶ has used the Kubelka and Monk equations to good advantage in studying the optical characteristics of paper. Due to the fact that the amount of dye in a sheet of paper affects the optical properties of the sheet, these equations have been studied in connection with this investigation. When light enters a diffusing medium, such as a sheet of paper, part of it is reflected, part of it is absorbed, and part of it is transmitted. In dealing with the color of paper, the light reflected is of primary importance. This is a function of the scattering and absorption char-

-134-

acteristics of the paper together with the thickness of the sheet and the reflecting characteristics of the background. Steele gives the derivation of the Kubelka and Monk equations concerning the reflection of light from diffusing media as follows:

"In a sheet of a translucent diffusing substance, such as paper, of a finite thickness, X, let us consider an element parallel to the surface of thickness dx and at x distance from the bottom. Let I_0 be the intensity of illumination on the top, i_T the intensity of illumination on the element dx from the top due to transmission and i_R the intensity on the bottom of dx due to reflection from lower layers. Then in passing through dx, i_T is decreased by i_T (S + K)dx and, i_R is decreased by i_R (S + K)dx, by definition, where S is the scattering coefficient and K is the absorption coefficient.

Similarly,

iT is increased by SiRdx, and iR is increased by SiTdx. Then -diT = -(S + K)iTdx + SiRdx, and diR = -(S + K)iRdx + SiTdx. Dividing by iT and iR respectively, and adding.

$$\frac{di_{R}}{i_{R}} - \frac{di_{T}}{i_{T}} = d\underline{ln}\frac{i_{R}}{i_{T}} = -2(S + K)dx + S\left(\frac{i_{T}}{i_{R}} + \frac{i_{R}}{i_{T}}\right)dx.$$
When I = intensity of reflected light, let
$$\frac{I}{i_{0}} = R.$$
Then
$$\frac{i_{R}}{i_{T}} = r, \text{ by analogy. Then, since}$$

$$\frac{d\underline{ln}r}{i_{T}} = \frac{dr}{r},$$

$$dr = \left(-2(S + K)r + S + Sr^{2}\right)dx;$$

$$\int_{R^{1}}^{R} \frac{dr}{r^{2}} - \frac{2(S - K)r}{S} + 1 = S\int_{0}^{K} dx$$

which, when integrated between the limits shown gives R, the reflectance of the sheet, in terms of X, the thickness, and R[‡] the reflectance of the background. Substituting

$$\frac{S+K}{S} = 1 + \frac{K}{S} = a,$$

and integrating between limits,

$$\frac{\ln (R - a - \sqrt{a^2 - 1})(R' - a \sqrt{a^2 - 1})}{(R' - a - \sqrt{a^2 - 1})(R - a \sqrt{a^2 - 1})} \quad 2SI\sqrt{a^2 - 1}.$$

When $X = \infty$, $R^{\dagger} = R = R_{\infty}$, and

$$R_{\infty} = a - Va^2 - 1$$

giving, finally

$$R_{\infty} = 1 + \frac{K}{S} - \sqrt{\frac{K^2}{S^2} + 2\frac{K}{S}}$$
, which is the general

equation for reflectance at infinite thickness." Rearranging and solving for $\frac{K}{S}$,

$$\frac{K}{S} = \frac{(R. - 1)^2}{2R}$$
 is obtained.

This equation has been the basis of the method using the Kubelka and Monk equations for determining the retention of dyes.

2. Method of Determining Dye Retention by the Use of the Kubelka and Monk Equations.

The reflectance of a sheet of paper is dependent upon the optical properties of the materials present in it. Of all the materials that go into a sheet of paper, dye is one of the most important in this connection. The more dye in a sheet, the less the reflectance and vice-versa. Kubelka and Monk have derived a formula which shows the scattering and absorption coefficients of a sheet to be a function of its reflectance. With the help of this equation, another method of determining the dye retention has been developed. This method has already been given under "Procedures" but will be discussed at this point in order to furnish a

-137-

clear understanding of the way in which the calculations were made. Kubelka and Monk have used a quantity in their equation which is the absorption coefficient divided by the scattering coefficient for a given wavelength and is given the notation of K/S. This K/S value for a sheet can be calculated from its reflectivity, as derived above, and is dependent upon the material of which the sheet is made. With this in mind, it is assumed that the K/S value for the dye in a sheet may be determined by subtracting the K/S value of a natural sheet from the K/S value of a dyed sheet providing conditions, other than dye, have been kept equal. At this point a result from the method using Beer's law was used in order to obtain a constant. The product of the K/S value for the dye and a constant was set equal to the weight of dye known to be in that sheet as determined by the retention method using Beer's law. The constant is calculated from this equation and may be used for determining the weight of dye in any sheet using the same furnish and dye by simply multiplying it by the K/S value of the sheet in question. In tables 23, 24, and 25 are shown the calculations of the retentions for

-138-

Du Pont Victoria Green SC, Du Pont Brilliant Crocein FL, and Pontamine Fast Red 8BL respectively on unbleached and bleached sulphite pulp when $\frac{1}{2}$, 1, $1\frac{1}{2}$, and 3 pound dyeings were made. The constant in each case was determined from the results obtained for a one half pound dyeing by the retention method using Beer's law.

In table 26 is shown a summary of data determined by the retention method using the Kubelka and Monk equations along with the corresponding data determined by the retention method using Beer's law.

TABLE 23. CALCULATION OF RETENTION OF DU PONT VICTORIA GREEN SC ON UNBLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS							
Pounds Dye per 1000 Pounds Pulp	Reflecti- vity at 620 milli- microns	S	<u>K</u> S Due to Dye	Gms, Dye Used	Calc. Gms. Dye in Sheet	Calc. Per Cent Reten- tion	
0	71.0	0.059	0	0	0	100.0	
12	22.3	1.352	1.293	0.0015	0.001469	97.9	
1	14.1	2.616	2.557	0.0030	0.002900	96.7	
1늘	10.5	3.814	3.755	0.0045	0.004250	94.7	
3	6.0	7.363	7.304	0.0090	0.008290	92.2	

TABLE 23A.							
CALCULATION OF RETENTION OF DU PONT VICTORIA GREEN SC ON BLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS							
Pounds DyeReflecti-KKGms. DyeCalc. Gms.Calc.per 1000vity atSSUsedDye inPer CentPounds620 milli-ValueDue toSheetReten-PulpmicronsDyeDyetion							
0	83.2	0.017	0	0	0.	100.0	
1 2	24.2	1.187	1.170	0.0015	0.001320	87.9	
1	15.4 2.323 2.306 0.0030 0.002600 86.6						
1 1	11.7	3.332	3.315	0.0045	0.003740	83.1	
3	6.6	6.609	6.592	0.0090	0.007430	82.6	

TABLE 24.

CALCULATION OF RETENTION OF DU PONT BRILLIANT CROCEIN FL ON UNBLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS

ounds Dye per 1000 Pounds Pulp	Reflecti- vity at 500 milli- microns	<u>K</u> S Value	<u>K</u> S Due to Dye	Gms. Dye Used	Calc. Gms. Dye in Sheet	Calc. Per Cent Retention
0	56.5	0.168	0	0	0	100.0
1/2	42.1	0.398	0.230	0.0015	0.000865	57.7
1	36.2	0,562	0.394	0.0030	0.001480	49.3
11/2	32.3	0.710	0.542	0.0045	0.002040	45.5
3	24.9	1.133	0.965	0.0090	0.003630	40.4

TABLE 24A.

.

CALCULATION OF RETENTION OF DU PONT BRILLIANT CROCEIN FL ON BLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS

Pounds Dye per 1000 Pounds Pulp	Reflecti- vity at 500 milli- microns	<u>K</u> S Value	<u>K</u> S Due to Dye	Gms. Dye Used	Calc. Gms. Bye in Sheet	Calc. Per Cent Retention
0	71.0	0.059	0	0	0	100.0
12	46.1	0.315	0.256	0.0015	0.000931	62.0
l	38.0	0.506	0.447	0.0030	0.001627	54.2
112	33.6	0.656	0.597	0.0045	0.002170	48.2
. 3	24.9	1.133	1.074	0.0090	0.003812	42.4

	TABLE 25.							
CALCULATION OF RETENTION OF PONTAMINE FAST RED 8BL ON UNBLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS								
Pounds	Reflecti- vity at 520 milli- microns	<u>K</u> S Value	<u>K</u> S Due to Dye	Gms. Dye Used	Calc. Gms. Dye in Sheet	Calc. Per Cent Retention		
0	57.5	0.157	0	0	0	100.0		
1 2	35.0	0.603	0.446	0.0015	0 .00 0870	58.0		
1	26.8	1.000	0.843	0.0030	0.001645	54.8		
1 <u>1</u>	22.5	1.335	1.178	0.0045	0.002300	51.2		
3	15.0	2.408	2.251	0.0090	0.004390	48.8		

TABLE 25A. CALCULATION OF RETENTION OF PONTAMINE FAST RED 8BL ON BLEACHED SULPHITE BY THE METHOD USING THE KUBELKA AND MONK EQUATIONS						
Pounds DyeReflecti-KKGms. DyeCalc. Gms. Calc.per 1000vity atSSUsedDye inPer CentPounds520 milli-ValueDue toSheetRetentioPulpmicronsDyeDyeSheetRetentio						
0	73.0	0.050	0	0	0	190.0
12	38.4	0.494	0.444	0.0015	0.000960	64.0
1	. 28.7	0.886	0.836	0.0030	0.001808	60.2
1 <u>1</u>	23.4	1,253	1.203	0.0045	0.002600	57.8
• 3	15.5	2.303	2.253	0.0090	0.004880	54.2

.

.

· .

.

TABLE 2	36,							
SUMMARY OF PER CENT RETENTION DATA DETERMINED BY THE METHOD USING BEER'S LAW AND THE CORRESPONDING DATA OBTAINED BY USING THE KUBELKA AND MONK EQUATIONS								
Pounds Dye per 1000 Pounds Pulp	1 4N	l	1 년	3				
Victoria Green SC Unbleached Sulphite Method Using Beer's Law	97.9	96.5	96.0	95.3				
Method Using K. & M. Eq.	97.9	96.7	94.7	92.2				
Bleached Sulphite Method Using Beer's Law	87.9	86.4	85.8	85.0				
Method Using K. & M. Eq.	87.9	86.6	83.1	82.6				
Brilliant Crocein FL Unbleached Sulphite Method Using Beer's Law	57.7	50.0	45.7	41.8				
Method Using K. & M. Eq.	57.7	49.3	45.5	40.4				
Bleached Sulphite Method Using Beer's Law	62.0	53.8	49.0	43.3				
Method Üsing K. & M. Eq.	65.0	54.2	48.2	42.4				
Fast Red 8BL Unbleached Sulphite Method Using Beer's Law	58.0	54.0	52.2	49.1				
Method Using K. & M. Eq.	58.0	54.8	51.2	48.8				
Bleached Sulphite Method Using Beer's Law	64.0	61.0	59.1	56.2				
Method Using K. & M. Eq.	64.0	60.2	57.8	54.2				

•

.

۰.

.

3. Limits of Error in the Retention Method Using the Kubelka and Monk Equations.

In examining the errors inherent in the method for determining dye retentions by using the Kubelka and Monk Equations, it was found that dyed paper could be produced experimentally under identical conditions which would not vary more than 0.1 per cent in reflectivity if the proper precautions were taken. The results in table 27 bear this point out. Reflectivities were taken at different points on each of five sheets dyed with one pound of Du Pont Brilliant Crocein FL and five sheets dyed with three pounds of the same dye.

	·		TAI	BLE 27	, .		· · ·		··	
REFLECTAN	ICES (OF VAF	NIOUS	SHEEI	'S DY	ed uni	DER II	DENTI	CAL	
CONDI	TIONS	S WITH	I DU 1	PONT E	RILL	LANT (CROCE:	IN FL		
ight of Dyeing		1.	Pound	1			3	Pound	1	
eet Number	1	2	3	4	5	1	2	3	4	5
flectance	36.3	36.3	36.1	36.2	36.3	24.9	24.9	25.0	24.7	24.9
	36.2	36.2	36.2	36.2	36.2	24.9	24.8	24.9	24.8	24.9
	36.2	36.3	36.2	36.2	36.2	84.8	24.8	25.0	24.8	24.9
	36.2	36.3	36.2	36.2	36.2	24.8	24.8	24.9	24.8	24.9
	36.2	36.2	36.2	36.2	36.2	24.8	24.9	24.9	24.8	24.9
erage	l Pou	ind Dy	reings	36.	204	3 Poi	ind D	yeing	s 2 4.	860

-144-

It was also found that for any given point on a sheet, the color analyzer would reproduce itself exactly. With the above results in mind, the error in retention was determined when the reflectance was purposely changed by one tenth per cent for $\frac{1}{2}$, 1, $1\frac{1}{2}$, and 3 pound dyeings of Du Pont Victoria Green, Du Pont Brilliant Crocein FL, and Pontamine Fast Red 8BL on unbleached and bleached sulphite pulp. These three dyes were picked to be representative of the three common classes of dyestuffs and give a general idea of the errors to be expected with any dye. It was found in carrying out these calculations that the calculated amount of a given dye in a given sheet varied with the reflectance on a smooth curve. This is graphically shown in figures 47, 48, and 49. In the light of this fact, it is apparent that the per cent error at different reflectances will be different. The calculations of these errors and the results are shown in tables 28, 29, and 30 for Du Pont Victoria Green SC, Du Pont Brilliant Crocein FL, and Pontamine Fast Red 8BL respectively. The errors due to a one tenth per cent change in reflectance are, for the most part, less than six tenths per cent in retention with the notable exception of Du Pont Victoria

-145-

Green SC. Larger errors in the case of this dye are due to its high retention which necessitates extremely high K/S values and therefore pulls the curve out as shown in figure 50 until a slight change in reflectance indicates a large change in the weight of dye in the sheet.

			TABLE 2	8.		
CALCULATIO	n of Error	OF RET	ENTION O	F DU PONT '	VICTORIA GF	EEN SC
ON UNBLEA	CHED SULPH	ITE AS	REFLECTI	VITY IS VAL	RIED 0.1 PE	CR CENT
Pounds Dye per 1000 Pounds Pulp	Reflecti- vity	K i to	<u>K</u> S Due to Dye	Gms. Dye in Sheet	Per Cent Retention	Error
1.2	22.3 22.4	1.352 1.342	1.293 1.283	0.001469 0.001457	97.9 97.3	0.7
l	14.1 14.2	2.616 2.592	2.557 2.533	0.002900 0.002870	96.7 95.7	1.0
1 <u>1</u>	10.5 10.6	3.814 3.770	3.755 3.711	0.004260 0.004210	94.7 93.6	1.1
3	6.0 6.1	7.363 7.227	7.304 7.168	0.008290 0.08140	92.2 90.5	1.70

CALCULATIO				F DU PONT		
Pounds Dye per 1000 Pounds Pulp		e as re <u>K</u> S	<u>K</u> S Due to Dye	Gms. Dye in Sheet	ES 0.1 PER Per Cent Retention	Error
· <u>1</u> · 2	24.2 24.3	1.187 1.179	1.170 1.162	0.001320 0.001311	87.9 87.4	0.5
1	15.4 15.5	2.323 2.303	2.306 2.286	0.002600 0.002578	86.6 86.0	0.6
112	11.7 11.6	3.332 3.368	3.315 3.351	0.003740 0.003780	83 . 1 84.0	0.9
3	6.6 6.5	6.609 6.725	6.592 6.708	0.007430 0.00756	82.6 84.0	1.4

..... 00

-150-

:

۰.

.

ı

CALCULATION				F DU PONT		ROCEIN
Pounds Dye per 1000 Pounds Pulp			<u>K</u> S Due to Dye	Cms. Dye in Sheet	Per Cent Retention	Error
12	42.1 42.0	0.398 0.401	0.230 0.233	0.000865 0.000876	57 .7 58 . 3	0.6
1	36.2 36.3	0.562 0.559	0.394 0.391	0.001480 0.001469	49.3 49.0	0.3
1 ¹	32.3 32.4	0.710 0.705	0.542 0.537	0.002040 0.002020	45.3 44.9	0.4
3	24.9 25.0	1.133 1.125	0.965 0.957	0.003630 0.003600	40.4 40.0	0.4

		9A.	TABLE 2			
ROCEIN	BRILLIANT C	F DU PONT	ENTION C	OF RET	N OF ERROR	CALCULATIO
ER CENT	RIED 0.1 PE	VITY IS VA	REFLECTI	ITE AS	CHED SULPH	FL ON BLEA
Error	Per Cent Retention	Gms. Dye in Sheet	K S Due to Dye	K]8	Reflecti- vity	Pounds Dye per 1000 Pounds Pulp
0.4	62.0 62.4	0.000931 0.000938	0.256 0.258	0.315 0.317	46.1 46.0	12
0.4	54.2 53.8	0.001627 0.001616	0.447 0.444	0.506 0.503	38.0 38.1	1
0.4	48.2 48.6	0.002170 0.002190	0.597 0.601	0.656 0.660	33.6 33.5	11/2
0.7	43.1 42.4	0.003877	1.066 1.074	1.125 1.133	25.0 24.9	3

.

-151-

			TABLE 3	0.		
CALCULATIO	N OF ERROR	of ret	ENTION O	F PONTAMII	NE FAST REI	0 8BL ON
UNBLEAC	HED SULPHI	TE AS R	EFLECTIV	ITY IS VAL	RIED 0.1 PI	ER CENT
Pounds Dye per 1000 Pounds Pulp	Reflecti- vity	м і ю	<u>K</u> S Due to Dye	Gms, Dye in Sheet	Per Cent Retention	Error
12	35.0 35.1	0.603 0.600	0.446 0.443	0.000870 0.000863	58.0 57.5	0.5
1	26.8 26.9	1.000 0.993	0.843 0.836	0.001645 0.001630	54.8 54.3	0.5
112	22.5 22.6	1.335 1.325	1.178 1.168	0.002300 0.002280	51.2 50.7	0.5
3	15.0 15.1	2.408 2.387	2.251 2.230	0.004390 0.004350	48.8 48.3	0.5

CALCULATIO				F PONTAMI		
Pounds Dye per 1000 Pounds Pulp			<u>K</u> S Due to Dye		ED 0.1 PER Per Cent Retention	Error
12	38.4 38.5	0.494 0.491	0.444 0.441	0.000960 0.000954		0.5
1	28.7 28.8	0.886 0.880	0.836 0.830	0.001808 0.001693	60.2 59.7	0.5
12	23.4 23.5	1.253 1.245	1.203 1.195	0.002600 0.002580	- • -	0.5
3	15.5 15.6	2.303 2.283	2.253 2.233	0.004880 0.004830	54.2 53.7	0.5

G. Applicability of the Freundlich Adsorption Equation to Dye Retention Results.

The exact mechanism of the adsorption of dye on fiber is still a matter of dispute. Some of the available evidence shows that adsorption is due to chemical combination of the dye with the free valences of atoms on the surface of the fibers, while in other cases, the evidence indicates that adsorption is due to the retention of the dye by capillary action in the exceedingly fine pores of the fiber. No doubt, in some cases, the two phenomena coexist.

Whatever the mechanism of adsorption, the equilibrium between the dye and the adsorbing fiber has been expressed by the Freundlich equation⁸,

$a = xc^{1/n}$

where a is the amount of dye adsorbed per unit mass of adsorbing material, and c is the amount of dye in the white water which is in equilibrium with the reacting materials; x and n are constants. For convenience in this investigation a and c will be expressed in grams of dye. The value of n determines the firmness of the dye retention and x is proportional to the active surface of the fiber. While it has been claimed that this equation has theoretical basis, it is probably safer to regard it as empirical in

-153-

character. From the form of the equation, it is obvious that if one plot the logarithm of the weight of dye in a sheet against the logarithm of the weight of dye in the white water, the equation demands that the data follow a straight line, the slope of which is equal to the exponent, 1/n. This offers a ready means of testing the applicability of the Freundlich equation to any given set of data.

The quantitative data obtained in this investi-g gation has given itself very favorably in application to this equation. Straight lines were obtained in every case with the exception of a few very slight deviations. As illustrations, the adsorption isotherms of seven pulps dyed with the three typical dyes in four different strengths $(\frac{1}{2}, 1, 1\frac{1}{2}, 2)$ and 3 pound dyeings) have been calculated. The calculated data are tabulated in tables 31, 32, and 33, and are shown graphically in figures 50, 51, and 52.

These results are typical of those which would be obtained under any of the conditions in this investigation and do show that the Freundlich adsorption equation represents the retention data.

		TABL	5 31.		
CALCULATIO	ON OF RETENT	ION DATA	FOR DU POI	NT VICTORI	A GREEN SC
ON VARIOUS	PULPS IN CO	NNECTION 1	NITH THE 1	FREUNDLICH	ADSORPTION
	•	EQUA	r I ON		
Pulp	Pounds Dye per 1000 Pounds Pulp	Gms. Dye in Sheet(a)	Gms. Dye in White Water(6)	Logarithm 10000(a)	Logarithm 10000(c)
Soda	121 1 <u>1</u> 2 3	.00121 .00237 .00355 .00702	.00029 .00063 .00095 .00192	1.0828 1.3747 1.5502 1.8463	0.4624 0.7993 0.9777 1.2833
Reg	1 1 1 2 3	.00112 .00220 .00327 .00639	.00038 .00080 .00123 .00261	1.0492 1.3424 1.5145 1.8055	0.5798 0.9031 1.0899 1.4166
Ground- ₩ood	1 1 1 2 1 2 3	.00143 .00282 .00422 .00834	.00007 .00018 .00028 .00066	1.1553 1.4502 1.6253 1.9212	-1.8451 0.2553 0.4472 0.8195
Unbleached Sulphite	12 1 12 3	.00147 .00289 .00432 .00858	.00003 .00011 .00018 .00042	1.1673 1.4609 1.6355 1.9335	-1.4771 0.0414 0.2553 0.6232
Bleached Sulphite	1 1 1 2 3	.00132 .00259 .00386 .00765	.00018 .00041 .00064 .00135	1.1206 1.4137 1.5866 1.8837	0.2553 0.6096 0.8062 10.1303
Unbleached Kraft	1 1 1 2 3	.00148 .00292 .00434 .00859	.00003 .00008 .00016 .00041	1.1688 1.4654 1.6375 1.9340	-1.3979 -1.9031 0.2041 0.6128
Bleached ⁻ Kraft	1 1 1 2 1 2 1 2 3	.00133 .00261 .00389 .00771	.00017 .00039 .00061 .00129	1.1212 1.4166 1.5899 1.8871	0.2355 0.5911 0.7853 1.1106

		TABL	E 32.		
CALCULATI	ON OF RETENT	ION DATA	FOR DU POI	NT BRILLIAI	NT CROCEIN
FL ON	VARIOUS PULP	s in conn	ECTION WI	TH THE FREU	JNDLICH
		ADSORPTIO	N EQUATION	N	
Pulp	Pounds Dye per 1000 Pounds Pulp	Gms. Dye in Sheet(a)	in White	Logarithm 10000(a)	Logarithm 10000(c)
Soda	1 1 1 2 1 2 1 2 1 2 1 2 3	.00090 .00162 .00223 .00378	.00060 .00138 .00227 .00522	0.9542 1.2095 1.3485 1.5775	0.7782 1.1399 1.3560 1.7177
Reg	1 1 1 2 1 2 1 2 3	.00099 .00179 .00248 .00424	.00051 .00122 .00202 .00476	0.9956 1.2516 1.3945 1.6274	0.7076 1.0855 1.3054 1.6776
Ground- wood	1 1 1 ^{1/2} 3	.00038 .00071 .00104 .00206	.00112 .00229 .00346 .00694	0.5740 0.8537 1.0151 1.3139	1.0512 1.3588 1.5397 1.8414
Unbleached Sulphite	1 1 1 2 3	.00086 .00150 .00206 .00376	.00064 .00150 .00244 .00524	0.9370 1.1761 1.3139 1.5752	0.8028 1.1761 1.3874 1.7193
Bleached Sulphite	121 112 3	.00093 .00161 .00221 .00390	.00067 .00139 .00229 .00510	0.9685 1.2080 1.3444 1.5611	0.8261 1.1415 1.3598 1.7076
Unbleached Kraft	1 1 1 3	.00082 .00139 .00192 .00355	.00068 .00161 .00258 .00545	0.9128 1.1430 1.2821 1.5502	0.8338 1.2068 1.4123 1.7364
Bleached Kraft	1 1 1 2 1 2 1 2 3	.00075 .00128 .00178 .00329	.00075 .00172 .00272 .00571	0.8750 1.1060 1.2504 1.5166	0.8750 1.2360 1.4046 1.7570

1

•

r	•		<u>.</u>		·
		TABLE	33		
CALCULATI	ON OF RETENT	ION DATA	FOR PONTAL	AINE FAST	RED 8BL
ON VAR	IQUS PULPS I	N CONNECT	ION WITH 7	HE FREUND	LICH
	AD	SORPTION 1	EQUATION		
Pulp	Pounds Dye per 1000 Pounds Pulp	Gms. Dye in Sheet(a)	Gms. Dye in White Water(c)		Logarithm 10000(c)
Soda	1 1 1 2 3	.00082 .00156 .00226 .00409	.00068 .00144 .00224 .00491	0.9165 1.1931 1.3541 1.6117	0.8293 1.1584 1.3504 1.6911
Rag	12 1 12 3	.00096 200180 .00261 .00498	.00054 .00120 .00189 .00402	0.9814 1.2553 1.4166 1.6972	0.7340 1.0792 1.2765 1.6042
Ground- wood	12 12 3	.00049 .00090 .00129 .00230	.00101 .00210 .00321 .00670	0.6949 0.9542 1.1106 1.3617	1.0022 1.3222 1.5065 1.8261
Unbleached Sulphite	1 2 2 1 2 3	.00063 .00138 .00215 .00458	.00087 .00162 .00235 .00442	0.7993 1.1399 1.3324 1.6609	0.9395 1.2095 1.3711 1.6454
Bleached Sulphite	1 1 1 2 3	.00054 .00117 ,00184 .00395	.00096 .00183 .00266 .00505	0.7324 1.0682 1.2648 1.5966	0.9832 1.2625 1.4249 1.7033
Unbleached Kraft	12 1 1 <u>1</u> 2 3	.00075 .00157 .00241 .00496	.00075 .00143 .00209 .00404	0.8751 1.1847 1.3820 1.6955	0.8751 1.1553 1.3201 1.6064
Bleached Kraft	1 1 1 ¹ /2 3	.00060 .00128 .00197 .00413	.00090 .00172 .00253 .00487	0.7782 1.1072 1.2945 1.6160	0.9542 1.2355 1.4031 1.6875

CHAPTER V

CCNCLUSIONS

In reviewing the retention data obtained above by analyzing white waters spectrophotometrically, a number of conclusions can be made.

At very low dye concentrations, relatively large percentages of dye are held on the fiber. As the dye concentration is increased, the amount held on the fiber at the end of a given time also increases, but at a much less rapid rate than would correspond to linear distribution.

Basic dyestuffs are attracted strongly by lignified fibers giving dye retentions above ninety per cent. These fibers, however, when bleached, attract this dyestuff to a lesser extent except when the character of the lignin has been changed by the addition of small amounts of bleach. It can be said without reservation that the fiber is the most important variable in so far as basic dyes are concerned. The temperature, time, and hydrogen ion concentration of the reaction mixture have very little effect on the retention of this class of dyestuff while increased consistencies and lower freenesses show considerable increases in retention.

-161-

With acid dyestuffs, the fiber variable is not so important to dye retention. Relatively small changes are obtained when the fiber is changed giving higher retentions for the purer pulps except in the case where the lignin present has been changed by the action of small amounts of bleach. The temperature of the reaction apparently has very little affect on the retention of acid dyes. Hydrogen ion concentration affects the retention probably more than any other variable, giving the higher results at a pH of less than five. With high consistencies and low freenesses, increases in retention are noticed, while increases in time have only small effects.

The retention of direct dyestuffs are affected some by the type of pulp being dyed. Bleached and refined pulps produce slightly higher retentions than the highly lignified pulps. If lignin is present, its character when slightly bleached decreases the retention to some extent when chlorinated. The hydrogen ion concentration and the temperature of the reaction mixture have very little effect on the retention. Increased time of reaction, increased consistency, and decreased freeness, however, produce considerable increases in the retention of this class of dyestuff.

-163-

In addition, a method for determining dye retention was developed which uses the Kubelka and Monk equation as its fundamental principle. The results obtained by this method were in good agreement with those obtained by the method using Beer's law. From this it can be concluded that the Kubelka and Monk equation, which shows scattering and absorption coefficients as a function of reflectivity, is sound from the standpoint of applicability.

With proof of the validity of this equation certain, it may possibly be used as a stepping stone in developing a method for predicting the shade which would be obtained for various dyes on various stocks. In addition, it is not at all impossible to conceive that this equation could be used in control work, especially in the case of coated papers where one hundred per cent retention is obtained.

In the course of this investigation the dye retention results were applied to the Freundlich adsorption equation. It was found that, when the logarithm of the weight of dye adsorbed is plotted against the logarithm of the weight of dye left in the white water, straight adsorption isotherms were obtained. No definite generalization concerning the

-163-

behavior of adsorption can be formulated, but, with such good agreement of these results with the equation in question, it is believed that the method as studied and described will be of value in future work dealing with a study of the mechanism of paper dyeing.

CHAPTER VI

SUMMARY

1. A spectrophotometric method for determining dye retention was developed which uses Beer's law as its fundamental principle.

2. Dye retentions for twenty dyes were determined on fourteen pulps under varying conditions of hydrogen ion concentration, consistency, temperature, time, and freeness.

3. A spectrophotometric method for determining dye retention was developed which uses the Kubelka and Monk equation as its fundamental principle. The results obtained by this method checked the results obtained by the method outlined above, thereby establishing the validity of the applicability of this equation.

4. The Freundlich adsorption equation was found to represent the retention data.

CHAPTER VII

-166-

BIBLIOGRAPHY

 Clark, E.P., J. Assoc. Official Agr. Chem., 15: 136-40 (1932). C.A. 26: 2395 (1932).

. .

4

- Hardy, A.C. and Perrin, F.H., "The Principles of Optics," page 24-5, New York, McGraw-Hill Book Company, Inc., 1932.
- Holzer, W.F., Tech. Assoc. Papers, 18, no. 1: 517-29 (1935).
- 4. Ritter, G.J., Seborg, R.M., and Mitchell, R.L., Ind. Eng. Chem. Anal. Ed., 4: 202-4 (1932).
- 5. Rys, S., Tech. Assoc. Papers, 11, no. 1: 181-7 (1928).
- Steele, F.A., Tech. Assoc. Papers, 18, no. 1: 299-304 (1935).
- 7. T. A. P. P. I. Standard T 205m.
- Walker, W.H., Lewis, W.K., and McAdams, W.H.,
 "Principles of Chemical Engineering," page 645-7,
 New York, McGraw-Hill Book Company, Inc., 1927.
- 9. Wiles, R.H., Tech. Assoc. Papers, 17, no. 1: 146-8 (1934).
- 10. Willetts, W.R., Tech. Assoc. Papers, 14, no. 1: 121 (1931).

APPENDIX A

CALCULATIONS

	B PERCENT RETEN- TION	70 97.99 200996.59 95.39	85 965 966 976 976 976 976 976 976 976 976 976	72 100.0 10 97.0 95.7
	GRAMS DYE IN Sheet	0014 0028 0028 0043	0014 00294 00290	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
green Es	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0095	0 • 0015 • 0030 • 0045
VI CTORIA GREI OUS DEGREES	GRAMG DYE IN WHITE WATER	0 •000030 •000110 •000180	0 • 000015 • 000055 • 000110 • 000300	0 • 000028 • 000090 • 000160
A DU PONT TO VARI	CONCEN- TRATION OF WHITE WATER	0 • 000064 • 000234 • 000383 • 000383	0 .000032 .000117 .000234	0 .000059 .000191 .000340
TABLE 1/ ENTION OF I P BLEACHED	LOG COR- RECTED TRANS- MISSION	11-999 999 965 965 1993 965 1993 965	чччч 8899 8896 8898 8898 8898 8898 8898	1.993 1.993 1.9887 1.9887 1.9682 882
ON OF RETEN	COR- RECTED I TRANS- MISSION	8000000 8000000 20000000000000000000000	800000 20000 2011 2012 2012 2012 2012 20	92.99 97.9 92.99
CALCULATIO ON SULF	TRANS- MISSION	21.0 201.0 2	81112 811734 811734	888888 734 0000 0000 0000
CAI	POUNDS DYE PER 1000 POUNDS PULP	0-40		
	₿⊔ЕАОН	0	ĸ	. 9

(Continued)

	MS PERCENT E RETEN- TION ET	0 1460 2880 97.3 97.3 96.0 95.1 94.2	395 395 740 060 90.2 89.1	320 320 593 850 850 850 850 850 850 850 850 850 850
	B GRAMS DYE IN SHEET	00000 00000	0013 00213 00400 008013	02000 000010 000010
	GRAMS DYE USED	00000	00000	00000
	GRAMS DYE IN WHITE WATER	0 • 000040 • 000120 • 000220	0 • 000260 • 000260	0 000180 0000407 000640
(Continued) r	CONCEN- TRATION OF WHITE WATER	0 • 000085 • 0002555 • 0001468	000223 000553 0000553	000383 000383 000866 001360
TABLE 1A (C	LOG CO RECTE TRANS MISSIO	11.9999 9785 9785	11.993 936 936 936 930 44 930	11-993 1999 1995 1993 1993 1993
TAJ	COR- RECTED TRANS- MISSION	80000 8700 8700 8700 8000	80000 800408 800408	0000000 000000 000000
	TRANS- MISSION	8888888 7010 7010 7010 7010 7010 7010	01-92-00 - 1-92-0-0 - 1-92-0-0	人 86 86 86 7 4 70 75 88 12 人 7 86 88 88 70
	POUNDS DYE PER 1000 POUNDS PULP	어수 다 다 ろ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ortor H M
	BLEACH	10	50	30

-179-

CALGULATION CALGULATION BLEACH PER 1000 TRANS POUNDS DYE PULP NISSI 72.2 3 72.5 54.4	I OF RETENTION LPHITE PULP BI COR- LOG RECTED RI ON TRANG- TH MISSION MIS 90.4	TABLE TABLE BLRACHEL BLRACHEL RECTED TRANS- MISSION 1.973 1.973	ZA TO TO TRATI WATH	CRANDOUS DB CRANDOUS DB CRANDING CRANDIN CRANDIN CRANDIN CRANDIN CRANDIN CRANDIN CRA	20	Ĩ.	
CALGUI LEACH PER 1000 POUNDS DYE PULP 9 1 1 3 3 9 3 9	OF RETENT PHITE PULI OCR RECTED MISSION 90.44	DI CON OF DU BLEACHEI BLEACHEI LOG COR- RECTED TRANS- MISSION 1.973 1.973	PONT TO TO TO TO TO TO TO TO TO TO TO TO TO	LLIANT OR DUS DEGRE GRAMS DYE IN WATER WATER		ŗL	
LEACH PER 1000 PER 1000 POUNDS PULP 3 3 3 9	N TRANS- MISSION 94.0 85.7	LOG COR- RECTED TRANS- MISSION 1.973 1.973	ا شعده	GRAMS DYE IN WHITE WATER O	GRAMS		
	400	266		0	UBED UBED	GRAMG DYE IN CHEET	PERCENT RETEN- TION
	(.001350 .003190	.000635	.0015 .0030	.000865 .001500	100.0 57.7 50.0
0-	ົ້ສັ	2.60	0520 1110	.0052440	• 0090	0.0	ந்ப
	9090 4004 0400 4000	1.955 1.955 1.929 1.929	0 .001470 .003520 .005730	0 .000690 .001652 .002695	0 0015 0030	0 000810 001348	1000 100 100 100 100 100 100 100 100 10
m 0	بر بر	61	.012400	00585 0	600	0031	35.
	800 90 10 80 10	1.955 1.955	.001440	0067 0162	.0015	000824	100.0
314	000	S &	•005640 •012000	•002650 •005660	00045	•001850 •003340	41.2

(Continued)

	PERCENT RETEN- TION	1000.0 566.4 399.1	1000.0 600.0 1477.0 147	100.0 62.0 53.8 49.0
	GRAMS DYE IN BHEET	0 001410 001930 003520	0 000900 001560 002140	0 •000930 •001615 •002210 •003900
	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0090	0 •0015 •0030 •0045
	GRAMS DYE IN WHITE WATER	0 • 000654 • 001590 • 002570 • 005480	0 000600 001440 002360	0 •000670 •001385 •002290 •005100
(Continued)	CONCEN- TRATION OF WHITE WATER	0 001390 003380 005470 005470	0 001276 003060 005020	0 • 001425 • 002940 • 004870
24	LOG COR- RECTED TRANS- MISSION	1.956 1.956 1.931 1.826	1.973 1.957 1.935 1.835 1.835	1.973 1.955 1.937 1.836
TABLE	COR- RECTED TRANS- MI SSION	94 80 80 80 80 80 80 80 80 80 80 80 80 80	94 830.00 88 890.00 70 80 80 80 80 80 80 80 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	94.0 860.0 681.0 7.7 7.0
	TRANS- MISSION	78.0 75.0 55.5	779-75 578-65 578-65	81. 755.52 79.60 79.70 70 70 70 70 70 70 70 70 70 70 70 70 7
	FOUNDS DYE PER 1000 POUNDS PULP	OH&		Orto 더 다 ろ
	BLEACH	10	50	о́£

,--

-181-

the second second second

a la sur la sector de la sector d

PERCENT RETEN-TION .00127 .001330 .001905 .002090 .002090 .000870 .002350 60 IN SHEET GRAMB .00077 DYE 0 0 0 0015 0070 0070 0000 0015 0070 0045 0090 0015 0070 0070 0070 GRAMS DYE USED SBL 0 0 0 RETENTION OF PONTAMINE FAST RED (PULP BLEACHED TO VARIOUS DEGREES 000630 001380 002150 .000722 .001545 .002410 0 •000773 •001670 •002595 DYE IN WHITE WATER .005110 GRAMS 0 0 OF WHITE .001340 .002940 .0024570 .001535 .003290 .005130 .010900 0 • 001640 • 0035520 • 011650 CONCEN-TRATION WATER 0 0 3A LOG COR-RECTED TRANS-MISSION TABLE 545568 565558 666558 66668 1.975 1.975 1.919 1.793 1.793 1.975 1.975 1.951 1.895 1.895 COR-RECTED TRANS-MISSION 202200 202200 20200 2000 2000 2000 2000 2000 2000 2000 0000000 40000 700000 ON BULPHITE CALCULATION OF TRANS_ MISSION 20504 20504 20504 POUNDS DYE PER 1000 POUNDS PULP Orter of the Ortard rd M BLEACH m 9 0

(Continued)

-182-

			TABLE	3A	(Continued)				
BLEACH	POUNDS DYE PER 1000 POUNDS PULP	TRANS- MISSION	COR- RECTED TRANS- MISSION	LOG COR- RECTED TRANG- MISSION	CONCEN- TRATION OF WHITE WATER	GRAMS DYE IN WHITE WATER	GRAMS DYE USED	GRAMS DYE IN SHEET	PERCENT RETEN- TION
10	0-4v-T -T M	79.99 715-78 567-78 567-78	468 467 70 70 70 70 70 70 70 70 70 70 70 70 70	1.975 1.953 1.928 1.928 1.824	0 001380 003020 004700	0 •000648 •001420 •002210	0 0015 00045 0090	0 • 001580 • 001580 • 001580	1 100 100 100 100 100 100 100 100 100 1
50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2007-70 28/07-71 28/07-71 28/07-71	000000 40000 00000 0000000000000000000	1.955 1.955 1.952 1.952	0 001280 002770 004320	0 000601 0002030 004340	0 00015 00030 00045	000899 001700 0024700	1 00 00 00 11 10 00 00 00 00 00 00 00 00
30	OH~ 다.	83.1 79.7 72.9 61.31 61.31	944-55 866-3 692-03 692-03	1.975 1.957 1.956 1.936 1.843	0 • 001150 • 002490 • 003910	0 • 000540 • 001170 • 001840 • 003950	0 0015 0030 0045 0090	0000960 001830 002660	100.0 64.0 56.1 76.2

	PERCENT RETEN- TION	1000 976.00 976.00 976.00	100.0 97.3 93.5 93.5 93.5 7	100.0 94.2 92.6 91.6 90.7	
	GRAMS DYE IN SHEET	0 001475 002920 004340	0 001460 002870 004270	0 002780 002780 004130	
GREEN SO	GRAMS DYE USED	0 00015 00030 00045	0 0015 0030 0045 0090	0 •0015 •0030 •0045	
TORIA	ARAM6 DYE IN WHITE	0 • 000025 • 000080 • 000160 • 000410	0 • 000040 • 000130 • 000230 • 000230	0 • 000087 • 000220 • 000370 • 000840	
4A DU PONT		0 000053 000170 000340	0 000085 0000276 000490	0 • 000185 • 000468 • 000788	10
ELEAT TABLE	LOG COR- RECTED TRANS- MISSION	1.9993 9889 9889 9889 9889 9889 9889 9889	1111 999 95789 95789 9578	1.993 1.987 1.978 1.939	((, , , , , , , , , , , , , , , , , ,
	MIRCO MIRCO	925-59 92-59 92-59 92-59	9999998 2005-4 2005-4	957.0 97.0 93.1 93.9 93.9	
CALCULATION	TRANS	80.1 79.7 75.1	882 881.6 79.5 739.5	84 833.0 87.7 74.4 7	
CAL	POUNDS DYE PER 1000 POUNDS PULP	0-40: - 1 - 1 M	Orth H H M	о-ф:	
	<i>ж</i> ВLEACH	0	Σ	15	

(Continued)

.

-184-

۰.

ċ

	PERCENT RETEN- TION	100.0 891.4 888.88 87.6	100.00 887.5 856.75 856.75
	GRAMS DYE IN SHEET	0 0002690 0004000	0 • 001 328 • 002610 • 003890
	GRAMS DYE USED	0 • 0015 • 0030 • 0045 • 0090	0 •0015 •0030 •0045
	GRAMS DYE IN WHITE WATER	0 • 000130 • 000500 • 001120	0 000172 000390 000610
(Continued)	CONCEN- TRATION OF WHITE WATER	0 • 000276 • 000660 • 001064	0 • 000366 • 000830 • 001300
TABLE 4A (Co	LOG COR- RECTED TRANS- MISSION	1.993 1.984 1.973 1.973 1.921	1.993 1.9582 1.9588 1.9553 1.910
TAB	COR- RECTED TRANS- MISSION	80000 20140 20140 2014	000000 000000 000000
	TRANS-	5052 23052 23054 20054 2005000 200550 200500 200500 200500 200500000000	808080 80000 90000
	POUNDS DYE PER 1000 POUNDS PULP	어수: 다 다 ろ	О-ф.:
	BLEACH	30	9 1

.

.

.

.

	1		r		
		PERCENT RETEN- TION	100.0 154.5 39.4 39.4	100.0 444.0 37.0 31.1	1000 460 3700 3700 3700
	FL	GRAMS DYE IN SHEET	0 •000818 •001390 •001915	• 000660 • 001110 • 001570	000696 001195 001665
	ORO CEIN F	GRAMS DYE USED	0 •0015 •0030 •0090	0015 0030 0045 0090	0 •0015 •0045 •0045
		GRAMS DYE IN WHITE WATER	0 •000682 •001610 •002585 •005450	000840 000840 001890 002930	0 • 000804 • 001805 • 002835 • 005940
5A	PONT BRILLIANT VARIOUS DEGRE	CONCEN- TRATION OF WHITE WATER	0 • 001450 • 005500 • 011600	0 001785 004020 006240	0 001710 003840 006030 012640
TABLE	NTION OF DU BLEACHED TO	LOG COR- RECTED TRANS- MISSION	1.9555 9555 82630	1111 959 895 8092 7008 7008 7008 7008 7008 7008 7008 700	1.973 1.952 1.952 1.897 1.813
	RETEI PULP	COR- RECTED TRANS- MISSION	904 905 001 001 00 100	00000000000000000000000000000000000000	94.0 894.0 678.1 678.0
	CALOULATION OF ON KRAFT	TRANS- MISSION	20.0 20 20 20 20 20 20 20 20 20 20 20 20 20	200000 20000 20000	75.1 71.5 67.2 63.0 51.9
	CALOUI	POUNDS DYE PER 1000 POUNDS PULP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0-4~1-17 -4~	04 1 T N
		BLEACH	0	Ŋ	15

,

(Continued)

• • • • •

		·····	······································	1
	PERCENT RETEN- TION	100.0 148.0 37.9 34.9	100.00 739.00 76.55 76.55	
	GRAMS DYE IN SHEET	0 •00720 •001225 •001705	0 •000749 •001278 •001780	
	GRAMS DYE USED	0 0015 0030 0045 0090	0 •0015 •0030 •0045	
	GRAMS DYE IN WHITE WATER	0 •000780 •001775 •002795 •005860	0 • 000751 • 001722 • 002720 • 005713	
(Continued)	OON OEN- TRATION OF WHITE WATER	0 .001660 .003770 .005950 .012450	001595 .001595 .003660 .005780	
BA	LOG COR- RECTED TRANG_ MISSION	1.973 1.952 1.952 1.898 1.816	1.973 1.953 1.927 1.900	· ·
TABLE	COR- RECTED TRANS- MISSION	90 90 90 90 90 90 90 90 90 90 90 90 90 9	894.0 899-0 79-7 659-4	
	TRANS- MISSION	7700 7700 7600 7600 7600 7600 7600 7600	80.1 76.4 56.6 56.6	
	POUNDS DYE PER 1000 POUNDS PULP	Orto: 다 다 ろ	оф н т т М	
	BLEACH	30	01	

· ·

.

.

..

-187-

		PERCENT RETEN- TION	10000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 56 50 70 70 70 70 70 70 70
		GRAMS DYE IN SHEET	000750 0001430 002090	000818 001556 001556	0 • 000853 • 001625 • 002380 • 004560
	D &BL	GRAMS DYE USED	0015 0015 0090	0 0015 0030 0045	0 •0015 •0030 •0045 •0090
	FAST RED DEGREES	GRAMS DYE IN WHITE WATER	000750 001570 002410	000782 000782 001444	0 • 000647 • 001375 • 002120
6A	PONTAMINE TO VARIOUS	CONCEN- TRATION OF WHITE WATER	.001590 .003340 .005130 .010540	0010100 010100 010100	0 • 001375 • 002930 • 004510
TABLE	RETENTION OF	LOG COR- RECTED TRANS- MISSION	1.975 1.950 1.953 1.895 1.810	1.975 1.949 1.927 1.927 1.817	1.975 1.954 1.929 1.929
	OF RET T PULP	COR- RECTED TRANS- MISSION	90 40 70 70 70 70 70 70 70 70 70 70 70 70 70	2000 2000 2000 2000 2000 2000 2000 200	94.5 90.09 884.9 67.1
	CALOULATION ON KRAF	TRANS- MISSION	66671 1993-189 1993-189	75.0 67.1 63.1	045850 04570 045850 04570 045850 04570 04570 045700 04700 0470000000000
	CAI	POUNDS DYE PER 1000 POUNDS POUNDS	O-#፡	0-40:H H M	0-40
		PERCENT BLEACH	0	ŝ	15

-188-

	PERCENT RETEN- TION	100 100 100 100 100 100 100 100 100 100	1000 1000 1000 1000 1000
	GRAMS DYE IN BHEET	0 0 000882 001690 002470	0 000900 001720 002530
	GRAMS DYE USED	00015	0015
•	GRAMS DYE IN WHITE WATER	0 • 000618 • 001310 • 002030	0 • 000600 • 001280 • 001970
(Continued	CONCEN- TRATION OF WHITE WATER	0 001315 002790 004320	0 001275 002720 004190
TABLE 6A	LOG COR- RECTED TRANG- MISSION	1.975 1.955 1.9354 1.9371 834	44444 6666 76666 76666 766666 766666
	COR- RECTED TRANS- MISSION	90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	000000 00000 000000 000000
	TRANS- MISSION	79 75 87 57 57 57 57 57 57 57 57 57 57 57 57 57	877700 9004090 900000
	POUNDS DYE PER 1000 T POUNDS M PULP	りきょうち	Ortor of the
	PERCENT BLEACH	30	01

۰.

.

	PERCENT RETEN- TION	100.0 80.7 79.0 78.9	100.00 74-7 722.6 7100 71200	100.0 95.2 924.0 924.6 9
	GRAMS DYE IN SHEET	0 0012100 0023500 0035500	001120 002200 003270	0 001430 002820 004220
GREEN SO	GRAMS DYE USED	0015 0015 00045	00015 00015 000450 00950	0 0015 0030 0045 0090
ADU	GRAMS DYE IN WHITE WATER	0 • 000290 • 000630 • 001920	0 • 000380 • 000800 • 001230 • 002610	0 • 000070 • 000180 • 000280 • 000660
7A DU PONT VICTORI AND GROUNDWOOD	CONCEN- TRATION OF WHITE WATER	0 000617 001340 002020	0 •00810 •001700 •002620	0 •000149 •000383 •000595
TABLE RETENTION OF	LOG COR- RECTED TRANS- MISSION	н. 997 1. 997 1. 9352 1. 872	1.993 1.993 1.9941 8223 1.8223	1.993 1.993 1.958 1.975
OF RETEI ACHED SOI	COR- RECTED TRANS- MISSION	89998 84985 20104 20101	088008 088000 087000	999998 2007-41 2007-41
CALOULATION ON BLE	TRANG- MI SSION	84 81.1 77.0 633.66	827.00 87.00 76.66 62.66	77. 755.0 755.0 69.99
QALC	POUNDS DYE PER 1000 POUNDS PULP	Ort: 다 다 P	으 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ort IIN
	PULP	80 ರೆಡಿ	Rag	Ground- wood

		• • · · ·		
	PERCENT RETEN- TION	100.0 60.0 7 7 7 7 7 7 7 0 0 0 100 100 100 100 10	10000 1000 1000 1000 1000 1000 1000 10	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L H	GRAMS DYE IN SHEET	0 000900 001620 002230	0 • 000990 • 001785 • 002480	0 000375 0000714 001035
B B	GRAMS DY E USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0045	0 • 0015 • 0030 • 0045
LLI ANT CROC	GRAMS DYE IN WHITE WATER	0 000600 001380 002270 005220	000510 0001215 0002020	0 • 001125 • 002286 • 003465
E BA DU PONT BRILLIANT AND GROUNDWOOD P	CONCEN- TRATION OF WHITE WATER	001275 002940 004830	0 001084 002590 004300	0 002390 004870 007370
TABU OF I RAG,	LOG COR- RECTED TRANS- MISSION	1.973 1.957 1.937 1.912 1.833	1.973 1.959 1.959 1.8459 8459	1.973 1.943 1.912 1.860 1.786
N OF RETENTION LEAGHED SODA, 1	COR- RECTED TRANS- MI SSION	94.0 890.6 881.7 681.7	466 2010 2010 2010 2010 2010 2010 2010 20	94.0 87.7 81.7 75.9 75.9
CALCULATION O	TRANG- MISSION	57-7-781 59-1-29 39-1-29	641-4 68 68 641-4 68 53 7 6 68 53	74.1 69.2 59.8 78.2
OALCU	POUNDS DYE PER 1000 TR POUNDS MI PULP		しまうます	Otentan
	dınq	goda	Rag	Ground- wood

TABLE 9ACALCULATION OF RETENTION OF PONTAMINE FAST RED &BLCALCULATION OF RETENTION OF PONTAMINE FAST RED &BLPOUNDS DYEGRAMSPOUNDS DYECOR-PER 1000TRANS-PER 1000TRANS-POUNDSMISSIONMISSIONMISSIONMISSIONMISSIONPULPWHITEPULPMISSIONMISSIONMISSIONMISSIONMISSIONMISSIONMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPMISSIONPULPPULPPULPMISSIONPULPMISSIONPULPMISSIONPULPP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
394.5 1.975 0 1.975 0 100 6 84.5 1.975 001435 000575 00155 001560 6 84.5 1.952 001470 0030675 001560 100 79.4 1.927 003060 0014140 0030 001560 100 6 64.9 1.812 004770 001910 0090 004090 10560 79.4 1.927 001430 0014910 00090 001560 155 6 94.5 1.975 001430 0014910 009056 155 6 94.5 1.975 001500 001910 009056 100 6 96.3 1.975 001500 001200 0009056 100 6 90.6 1.975 001200 001200 0009056 100 6 1.975 0001500 001500 0009056 100 100 6 1.975 0001500 001500 0009056 100 100 6 90.6 00090560 <t< td=""><td></td></t<>	

•

.

.

РЕКИИ РЕКИИ РЕКИИ РЕКИИ РЕКИИ РОЦИИ РОЦИИ РОСИН РОСИНО РОСИНО РОСИНО РОСИНО РОСИНО РОСИНО РОСИНО РОСИНО РОСИНО РОСИИ РОСИ РОС

· ·	GRAMS PERCENT DYE RETEN- IN TION SHEET	001 2525 3785 84 84	0 1318 35590 35590 850 850 8550 8550 8550	0 1316 2537 3850 85 85 85
De Ni	GRAMS DYE DYE USED IN SHEE7	015 015 090 095 002 095	90000 00000 00000	90000
A GREEN ph's		000000	0000	45000
VI OTORI ARIOUS	GRAMS DYE IN WHITE WATER	12000 12000 12000 12000	0 •0001 <i>82</i> •000410 •001350	0 • 000181 • 0000650
DU PONT PULP AT 1	CONCEN- TRATION OF WHITE WATER	0 •000453 •001010 •001520 •003210	0 000387 000872 001360 002870	0 •000391 •000880 •001380
TABLE 11A ON OF RETENTION OF BLEACHED SULPHITE]	LOG COR- RECTED TRANS- MISSION	1-993 9629 9629 9622 9647 9647 9647	11-9966 99893 996611-9966	1.993 1.966 1.951 1.951
	COR- RECTED TRANS- MISSION	98.3 915.6 88.5 78.7	8000088 600000 600000	8000088 000000 000000
CALOULATIO ON B	TRANG. MISSION	91.2 885.04 875.0 73.0	18889 7888 7888 7888 7888 7888 7888 7888	188891 1807881 888800
CA	POUNDS DYE PER 1000 POUNDS PULP	0-40-1-1-M	여행 이 수영 대 대 M	어주 다 다 ア
	Hd	3.9	6•4	5.9

				TABLE	1.2A				
		OALOULATI ON UNBI	LATION OF RI JNBLEACHED E	RETENTION (SULPHITE]	OF BRILLIANT CROCEI PULP AT VARIOUS PH	NNT CROCE	TH NI		
Hd	POUNDS DYE PER 1000 POUNDS PULP	TRANS MI 891 on	COR- RECTED TRANS- MISSION	LOG COR- RECTED TRANS- MISSION	CONCEN- TRATION OF WHITE WATER	GRAMS DYE IN WHITE WATER	GRAMS DYE USED	GRAMS DYE IN Sheft	PERCENT RETEN- TION
3°.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	775 683.6 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54	900 900 800 90 90 90 90 90 90 90 90 90 90 90 90 9	1.973 1.956 1.956 1.934	0 •001350 •003180 •005220	0 000635 001495 002450	0 0015 0030 0045 0090	0 • 000865 • 001505 • 002050	100 570.1 45.61 66.11 66.11 66.11 700
4° ð	0-40-H-M	5668201 5668201 5668201	0000000 400000 040000	11.956 11.956 11.952 13.832	0 •001350 •003190 •005200	000635 000635 001500 002445	0 0015 0030 0045 0090	000865 001500 002055	100.0 57.0 450.0 4450.0
5.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	223-22 223-223-	988870 4989670 050700	1-953 953 1-953 1-8987 1-814	0 • 001590 • 003690 • 005930	0 • 000748 • 001735 • 002785	0 0015 0030 0045	0 • 000752 • 001265 • 001715	100.0 738.1 34.1 34.1

	PERCENT RETEN- TION	н 000 00 00 00 00 00 00 00 00	100 20 20 20 20 20 20 20 20 20 20 20 20 2	100.0 744.0 36.5
	GRAMS DYE IN SHEET	0 000930 001605 002200	0 000930 001615 002205	0 000810 001340 001820 003250
EN FL	GRAMS DYE USED	0 0015 0030 0045	0 0015 0030 0045	0 • 0015 • 0030 • 0045
LI ANT CROCEIN VARIOUS PH'S	ORAMS DYE IN WHITE WATER	0 •000570 •001395 •002300	0 000570 001385 002295	0 000690 001660 002680
LB 13A 1 OF BRILLIANT FULP AT VARIO	CONCEN- TRATION OF WHITE WATER	001200 .001200 .002970 .004900	0 001210 002950 004880 010850	001470 003530 005700.
TABL ^{IB} RETENTION C SULPHITE PL	LOG COR- RECTED TRANG- MISSION	1.973 1.958 1.956 1.936 1.835	11.9358	1.973 1.955 1.929 1.929 1.819
ATION OF RE BLEACHED SU	COR- RECTED TRANS- MISSION	90 880 880 985 985 985 985 985 985 985 985 985 985	900 440 880 880 880 80 80 80 80 80 80 80 80 80	94.0 90.2 194.0 90.2 90.2 90.2 90.2 90.2 90.2 90.2 90
OALOULAT	TRANS- MI SSION	81.4 781.4 778.7 778.7 778.7 778.7 778.7 7	20-40 20-400	81. 78.0 53.0 57.00
	POUNDS DYE PER 1000 POUNDS PULP	0-40:	Ortor 다 ち	040:H H M
	Hd		6 • 1	5.0

-196-

.

•

		PERCENT RETEN- TION	100.0 58.2 54.1 29.1 19.1	100.0 100.0 192.00 192.00	1000 1000 1000 1000 1000 1000 1000 100
		GRAMS DYE IN SHEET	0 •000873 •001622 •002350	0 • 000870 • 001620 • 001750	001574 001574 1002270
	8 B	GRAMS DYE USED	0 •0015 •0030 •0045	0 •0015 •0030 •0045	0 •0015 •0030 •0045
	T RED SBL ARIOUS PH	GRAMS DYE IN WHITE WATER	0 • 000627 • 001378 • 002150	0 • 000630 • 001380 • 002150	0 000659 001426 002230
TABLE 14A	F FA8 AT V	CONCEN- TRATION OF WHITE WATER	.00134 .00293 .00293 .00458	.00134 .00294 .00294	00140 00303 00474 00474
	F RETENTION O SULPHITE PULP	LOG COR- RECTED TRANS- MI BSION	1.975 1.954 1.929 1.923	1.929 1.929 1.929 1.823	1.975 1.953 1.957 1.927 1.817
	°_	COR- RECTED TRANS- MISSION	94 94 66 66 6 7 0 0 0 0 0 0 0 0 0 0 0	9004000 4004000 700000	94-5 89-7 84-5 59-6 59-6
	CALOULATION UNBLEACHE	TRANS- MI SSION	76 688 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-88 54-89 54 54 54 54 54 54 54 54 54 54 54 54 54	746 54 54 54 54 54 54 54 54 54 54 54 54 54	76.7 68.5 64.5 53.2 53.2
		POUNDS DYE PER 1000 POUNDS PULF	ᅌᢦᡧ᠂᠇᠇ᢪᠬ	0-40 H H M	0-4: -1 - M
		Hợ	3.9	4.9	5° 0

.

. .

	PERCENT RETEN- TION	1 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	1000.0 64.00 591.00 26.10	100.0 62.1 757.3 7.4 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7
	GRAMS DYE IN SHEET	0 000965 001845 002670 002670	000960 001830 002660	0 • 000932 • 001769 • 002580
NO	GRAMS DYE USED	0 • 0015 • 0030 • 0045 • 0090	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045
gBL pH ¹ 8	GRAMS DYE IN WHITE WATER	0 • 000535 • 001155 • 001830 • 003890	0 • 000540 • 001170 • 001840	0 .000568 .001231 .001920 .004110
LEA LP AT VARIOUS	CONCEN- TRATION OF WHITE WATER	0 00245 00246 00246 00246 00827	0 00115 00249 00392 00840	0 • 00121 • 00262 • 00409
TABLE 1	LOG COR- RECTED TRANS- MISSION	1.975 1.957 1.957 1.914 1.846	1.9575 9975 9975 1.936	1.975 1.956 1.954 1.834
e ne Bu	COR- RECTED TRANS- MISSION	94.5 904.5 860.5 822.0	9008890 400190 700088	900 400 00 00 00 00 40 00 00
CALOULATION BLEACHED	TRANG MISBION	83.1 79.6 76.0 72.1 61.6	87 799 61 75 61 75 61 79 61 79 61 79 61 79 61 79 70 70 70 70 70 70 70 70 70 70 70 70 70	83.1 759.4 715.55 60.6
	POUNDS DYE PER 1000 POUNDS PULP		Ortori rito	0-4-1-1-17
	Ηď	3.9	р. 9	5.9

		PERCENT RETEN- TION	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1 986 7.6 0 7.00 0 7.6 0 0 7.00 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100.0 98.2 96.4 95.4	
	BC	GRAMS DYE IN SHEET	001461 0002900 0004320	001475 001475 002920 004340	001472 002910 004330	
	GREEN E	GRAMS DY E USED	0 • 0015 • 0030 • 0045 • 0090	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045	
1	ARIOUS PH	GRAMS DYE IN WHITE WATER	0 •000100 •000180 •000180	0 •00025 •000160	0 • 000028 • 0000170 • 000170	
4	ON OF RETENTION OF DU PONT V UNBLEACHED KRAFT PULP AT VAF	DU PONT ULP AT V	CONCEN- TRATION OF WHITE WATER	0 •00083 •000213 •000383	0 •000053 •000170 •000340	0 •000059 •000191 •000362
		LOG COR- RECTED TRANS- MISSION	1.993 9993 9886 1.9886 1.9880	11111 • • • • • • • • • • • • • • • • •	11111 9689 9687 9687 9687	
		COR- RECTED TRANS- MISSION	999999 1797 2778 27870	00000 200000 2000000000000000000000000	800000 800000 800000	
	CALOULATIO	TRANS- MI SSION	887 887 887 887 887 887 87 87 87 87 87 8	288884 2823 2823 2823 2823 2823 2833 283	1888884 1822 1822 1822 1820 1820 1820 1820 1820	
	GAI	POUNDS DYE PER 1000 POUNDS PULP	Ortoration		Orturi ri M	
		Hd	3•9	6 • 1	5.9	

-199-

• •

...

~

	PERCENT RETEN- TION	1000 8867 567 7	1 888888 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ö	GRAMS DYE IN BHEET	001324 002615 002815 003890	001328 001328 002615 003895	001328 002610 003895 007690
GREEN S	GRAMS DYE USED	0 00015 00045 00045	0 0015 00915 009030	0 0015 0030 0045 0090
PONT VICTORIA	GRAMS DYE IN WHITE WATER	0 000176 000385 000610	000172 000385 000505 001280	000172 000390 000605
DC TA	CONCEN- TRATION OF WHITE WATER	000374 000374 0001300 001300	0 000366 000819 001290 002720	0 000830 000830 001290
TABLE RETENTION OF I HED KRAFT PULP	LOG COR- RECTED TRANS- MISSION	1.993 1.958 1.958 1.953 1.953	1.9933 9582 1.9588 1.954	1.993 1.982 1.967 1.954
E 0	COR- RECTED TRANS- MISSION	000088 000088 000000000000000000000000	00008 80000 00000	95.99 92.7 80.9
CALOULATION O	TRANS- MISSION	91.2 888.7 856.1 75.0 75.0	28885 2336 2336 292 292 292 292 292 292 292 292 292 29	91. 2 88. 9 85. 0 83. 5 75. 1
OA)	POUNDS DYE PER 1000 POUNDS PULP	Ortor 다 で	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O-fix-1-Tim
	Hd	6 • K	4.9	5•9

.* •

	GRAMS PERCENT DYE RETEN- IN SHEET SHEET	0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0817 1390 1390 14.5 7550 39.42.6 39.42.6	0 0750 1280 7150 38.1 3160 35.1
IN FL		15 .0008 .0014 .0019 .00360	00000 00100 001000	00000
2	GRAMS DYE USED	•8888	1000 1000 1000 1000	000000000000000000000000000000000000000
BRI LLI ANT	RIOUS PH GRAMS DYE IN WHITE WATER	000679 .001600 .001600	0 •000683 •001610 •002585	0 • 000750 • 001720 • 002785
18A PONT		001440 003400 005470	0 .001450 .005500 .011600	0 • 001590 • 003660 • 005920
TAR	AFT CTEL ANS-	1.9335 1.9335 1.9335 1.9335 1.9325 1.93555 1.93555 1.93555 1.93555 1.93555 1.935555 1.935555 1.9355555 1.93555555555555555555555555555555555555	1111 2000 200 2000 2	1.973 1.953 1.953 1.989 7.839 8198 7.13
OF RETENTION	COR- COR- RECTED TRANS- MISSION	900 110 100 100 100 100 100 100	64200 6700 6700	946 889 679 679 679 70 70 70 70 70 70 70 70 70 70 70 70 70
OALGULATION	RÂNS- 19810	80000 2400 2400 2400 2400	5338001 2338001	566711 52.55711
OALOI	POUNDS DYE PER 1000 T POUNDS M	0-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Official The Participation of	040-42 72
	Hď	3.9	6 • 1	5.9

. .

- 201-

. .

.

/

	PERCENT RETEN- TION	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100.0 44.6 37.8 34.4 32.1
г. Г	grams dy e in Sheet	0 001290 001290 001800	0 • 000749 • 001280 • 001778	0 •000668 •001135 •001550 •002890
ORO CEI N B	GRAMS DYE USED	0 0015 0030 0045 0090	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045
BRILLIANT O ARIOUS PH'S	GRAMS DYE IN WHTTER WATER	0 • 000747 • 001710 • 002700	000751 000720 002722 005710	0 000832 001865 002950 006100
9A PONT AT V	CONCEN- TRATION OF WHITE WATER	0 001585 003640 005750	0 • 001595 • 003660 • 005780	0001770 • 003970 • 006270 • 013000
TABUE 1 TON OF DU 1 KRAFT PULP	LOG COR- RECTED TRANS- MISSION	1.973 1.953 1.958 1.900 1.900	1.953 1.953 1.927 1.927 1.819	1.973 1.951 1.8923 1.808
OF RETENTION BLEACHED KRA	COR- RECTED TRANS- MISSION	94.0 89.7 84.7 79.4 79.4 79.4	988 97 97 97 97 97 97 97 97 97 97 97 97 97	40887-0 40587-0 05887-0 05887-0
CALGULATION C	TRANS- MISSION	81 777 57 88 7 88 7 88 7 88 7 88 7 88 7	81 777 57 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 88 57 57 57 57 57 57 57 57 57 57 57 57 57	81.4 77 77 55 55 55 7 55
OALOI	POUNDS DYE PER 1000 PULP		oria: Fi Fi	О-40 H M
	Ħď	3•9	4.9	5•9

.

.

និងរ	MS GRAMS PERCENT E DYE RETEN- D IN TION SHEET	15 000752 100 100 100 100 100 100 100 10	0 000750 001430 002095 004050	15 .000725 148 30 .001450 145 445 .001995 144 445 .001995 144
AMINE FAST RED S VARIOUS PH'S	GRAMS GRAMS DYE IN WHITE WATER	0 0 000748 001570 0003990 0045 0045 0045 0045	0 001570 001570 001570 001570 001570 001570 0045 0045 0045	0 • 000775 • 001550 • 001550 • 0030 • 003120 • 0030
E 20A OF PONTAMIN PULP AT VAR	CONCEN- TRATION OF WHITE WATER	0 • 001590 • 003340 • 005090	0 001595 003340 005120	• 00165 • 00330 • 00533
	LOG COR- RECTED TRANS- MISSION	1.975 1.950 1.8952 1.8952	1.975 1.950 1.952 1.894	1.975 1.949 1.923 1.891 1.805
ON OF RE NBLEACHE	COR- REOTED TRANS- MISSION	968870 408870 74072	010880 40000 74000 74000	0,000 0,000000
TAE CALCULATION OF RETENTION ON UNBLEACHED KRAFT	TRANS- MI SSION	523-38 523-88 523-88 253-88 25 25 25 25 25 25 25 25 25 25 25 25 25	2007 2017 2017 2017 2017 2017 2017 2017	76.7 72.1 68.0 51.8
	POUNDS DYE PER 1000 POUNDS PULP	Ortored end Pro	のま たままで	೦-ಸ್ಟು - ಸ್ಟ್ ೧-ಸ್ಟು - ಸ್ಟ್ರ
~	Hd	3.9	4.9	5.9

• • •

٢

	PERCENT RETEN- TION	1 500 1000 1000 1000 1000 1000 1000 100	1000.0 552.00 46.12 46.12 46.12	100.0 575.0 51.90
	GRAMS DYE IN SHEET	0 000902 001735 002560	0 000900 001720 002530	0 000868 001650 002425
RED &BL	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0030	0 •0015 •0030 •0045
FAST	RAMS YE IN HITE	0 • 000592 • 001265 • 001940	000600 001970 001970	0 000632 001350 002075 004330
E PONTAMINE	CONCEN- TRATION OF WHITE WATER	0 •001260 •002690 •002690	0 • 001275 • 002720 • 008800	012600. 0174400. 047200. 047200.
TABLE UTION O	LOG COR- RECTED TRANS- AISSION	1.975 1.955 1.933 1.839	1.955 1.955 1.958 1.909	1.975 1.954 1.954 1.950
TON OF RET	COR- RECTED TRANS- MISSION	900 800 80 80 80 80 80 80 80 80 80 80 80	00000000000000000000000000000000000000	088880 40700 700140
OALGULATIO	TRANS_ MISSION	87779 87779 18867	1000000 100000000000000000000000000000	5001 5001 5001 5001
õ	POUNDS DYE PER 1000 POUNDS PULP	O+☆ ー エ ろ	에서 고 전 이네이 그 전	
	Hd	6 • E	6 • म	5.9

.

.

.

.

•

			·····		
		PERCENT RETEN- TION	1000 966.0 944.0 944.0	1002 9999 97699 97695 97695	100.0 98.6 97.3 96.3
	-	GRAMS DY E IN Sheet	0 • 001445 • 002860 • 004270	0 • 001468 • 002890 • 004320	0 .001479 .002935 .004380 .008670
	N BC ON	GRAMS DYE USED	0 0015 0030 0045 0090	0 0015 0030 0045 0090	0 0015 0030 0045 0090
	oria green s consistencie	CRAMS DYE IN WHITE WATER	0 • 000055 • 000140 • 000230	0 000032 000110 000180	0 000021 000065 000120 000330
A	PONT VICTORIA VARIOUS CONS	CONCEN- TRATION OF WHITE WATER	051100 000298 000000 004000	000068 000068 0000344 0000383	0 000045 000138 000255
TABUE 22A	OF DU P VLP AT	LOG COR- RECTED TRANS- MISSION	11-9893 19893 19893 19893 19893 19893	1.9931 9931 986 1.9886 1.9886	11-9989 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 29899 2011 2011 2011 2011 2011 2011 2011 20
	RETENTION BULPHITE I	COR- RECTED TRANS- MISSION	2009 2009 2009 2004 2004 2004 2004 2004	0000000 000000 0000000	8887.096 2000 2001 2001 2001 2001 2001 2001 200
	HED HED	TRANS- MISSION	88 88 71 10 10 10 10 10 10 10 10 10 10 10 10 10	844 833.7 79.0 79.0 79.0	000000 000000 000000
	CALCULATION UNBLEAO	POUNDS DYE PER 1000 PULP	0-4x -1 -1 M	O== ~ = = = = = = = = = = = = = = = = =	
		PERCENT CONSIST- ENCY	0•3	. 9.0	1.0

. .

	PERCENT RETEN- TION	1000 866.1 837.9 837.9	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 883 677.6 7
F	GRAMS DY E IN SHEET	0 001292 002550 003810	001317 .002590 .003860 .007650	0 • 001326 • 002630 • 003910
NO OS NI ES	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045
OTORIA GREEN	GRAMS DYE IN WHITE WATER	0 000208 0000450 000690	0 • 0001.83 • 000410 • 000640	0 • 000174 • 000570 • 000590
23A PONT VIOTO VARIOUB CO	CONCEN- TRATION OF WHITE WATER	. 0004442 . 000958 . 001470 . 003060	000390 000873 001360 002870	0 • 000370 • 000787 • 001250 • 002660
LARLE : OF DU	LOG COR- RECTED TRANS- MISSION	1.993 1.979 1.964 1.901	11-966 955 955 955 955 955 955 955 955 955	1.993 1.981 1.969 1.955 1.912
r RETENTION OULPHITE PU	COR- RECTED TRANS- MISSION	2000 2000 2000 2000 2000 2000 2000 200	00000000000000000000000000000000000000	95.7 95.7 93.1 81.7 81.7
IO O O	TRANS- MI BBION	080800 1807080 1907080 1907080	08880 1805 1908 1908 1908 1908 1908 1908 1908 1909 1909	233 233 23 23 23 23 23 23 23 23 23 23 23
CALCULATION BLEACH	POUNDS DYE PER 1000 PULP	Ortor of the	Orto orto	Orthorn
	PEROENT CONSI BT- ENOY	0•3	0.6	1.0

-206-

	EL I			
	PERCENT RETEN- TION	100.00 53.3 39.60	100 100 100 100 100 100 100 100 100 100	100.0 76.3 68.1 58.0
	GRAMS DYE IN SHEET	.000802 .001390 .001935	000866 001500 002060	0 .001130 .002040 .002880
EIN FL	GRAMS DYE USED	0 0015 0030 00450 0090	0015 0030 00450 00950	0 0015 0030 0045 0090
IANT CROCEIN CONSISTENCIES	GRAMS DYE IN WHITE WATER	000698 .000698 .001610 .002565	000634 0001500 002440	0 • 000370 • 000960 • 001620
A ONT BRILL VARIOUS	CONCEN- TRATION OF WHITE WATER	0 001485 003430 005460	001350 003190 005200	0 •000788 •002040 •003440
LABLE OF DU	LOG COR- RECTED TRANG- MISSION	1.973 1.955 1.955 1.827	1.955 1.955 1.953 1.953 1.890 282 282 282 282 282 282 282 282 282 28	1.973 1.966 1.948 1.948
RETENTION C GULPHITE	COR- RECTED TRANS- MISSION	944.0 900.2 8505.2 67.1 2	99 40 70 70 70 70 70 70 70 70 70 70 70 70 70	94.0 92.5 88.7 74.5
OF OHEJ	RANS- II SSION	75.1 72.1 64.1 53.7	70000 44800 49000	75.1 74.0 70.9 68.0 59.6
CALCULATION ON UNBLEA	PULP PULP PULP PULP	이야하고 나오	O-421 - 1 M	のまじます で
	PERCENT OONSIST- ENOY	0.3	0.6	1.0

-207-

		PERCENT RETEN- TION	1 1000 1000 1000 1000 1000 1000 1000 1	1 000 000 000 000 000 000 000 000 000 0	100.0 81.3 61.3 61.3
	-	GRAMS DYE IN SHEET	0 • 000878 • 001525 • 002090	0 000931 0002200 002200	0 • 001230 • 002190 • 003070
	oein Fl Cies	GRAMS DYE USED	0 0015 0030 0045 0090	0 0015 0030 0045	0 • 0015 • 0030 • 0045 • 0090
	LLLIANT CROCE) 9 CONSISTENCII	GRAMS DYE IN WHITE WATER	0 • 000622 • 001475 • 002410 • 005220	0 000569 001385 002300	0 • 000270 • 000810 • 001430
26 A	PONT BRILI VARIOUS C	CONCEN- TRATION OF WHITE WATER	0 • 001320 • 005130 • 005130	001210 001210 004900	0 • 000575 • 001720 • 003040
TABLE 2	OF DU ULP A1	LOG COR- RECTED TRANS- MISSION	1.973 1.957 1.933 1.933 1.833	1.958 1.958 2.958 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.974 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.973 2.9757 2.9757 2.9757 2.9757 2.9757 2.9757 2.9757 2.9757 2.9757 2.97577 2.97577 2.97577 2.975777 2.975777 2.9757777 2.97577777777777777777777777777777777777	1.973 1.966 1.956 1.935
	RETENTION SULPHITE F	COR- REOTED TRANG- MISSION	94.0 90.6 855.7 860.9 68.1	9008890 4088189 080-189 080-100	94 925.51 75.91 75.91
	ATION OF BLEACHED	TRANS- MISSION	81.4 785.5 74.5 74.2 74.2 70.1	81. 781.7 70.7 59.5	81 80.1 77.4 65.6 8 65.8
	OALCULATION ON BLEAC	POUNDS DYE PER 1000 POUNDS PULP	으ポ(コ ユ ア)	0-4:-1-1 	
		PERCENT CONSIST- ENCY	0.3	0.6	1.0

<u></u>		ENT EN- N	0.780.80	-N000	02407
		PERCENT RETEN- TION	31200 34440 1		1000 100 100 100 100 100 100 100 100 10
		GRAMS DYEE IN Sheet	0 000696 001285 001880 003400	0 000870 001620 002350 004420	0 001180 002190 005820 005820
		8. B		8888	••••
	SBL ON JIE8	GRAMS DY E USED	0015 0015 0030 0045	0015 0045 00965	0 • 0015 • 0030 • 0045
	RED SBL	AMS E IN TER	804 500 500	00000 00000	320 350 350
	AST ONG	GRAI DYE WHI 7 WAT1	0008 0017 00267	000138	0 0003; 00003; 0013; 0013; 0013;
		IN- IN- IN- IN- IN- IN- IN- IN- IN- IN-	00000	5580 000	0000
	PONTAMINE NT VARIOUS	CONCEN- TRATION OF WHITI WATER	00017	00131 00291 00291 00291	0000
B 26A	E	1	58780	n man may	202
TABLE		LOG COR RECTED TRANS- MISSION		44444 66668 76000	
	F RETENTION SULPHITE PU	RED NGIC SION	nnom	500-	5050 500 14
	0 1	COR- RECTED TRANS- MI 83101	212889 212888 2128	0.00 00 00 00 00 00 00 00 00 00 00 00 00	428344
		NOI3 -19N	~00~1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~LU 80 80 H
	JLAT 3LEA	TRAN MISS.	2002-1-00	200010	03140
	CALOULATIC UNBLEACH	POUNDS DYE PER 1000 POUNDS PULP	まする	しまますろ	0-40-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	ļ	DH DH			
		PEROENT Consi st- Ency	0.3	0.6	1.0

- 209-

	PERCENT RETEN- TION	1000 100 100 100 100 100 100 100 100 10	100 100 100 100 100 100 100 100 100 100	100.0 91.0 84.9 81.1 75.8
	GRAMS DYE IN SHEET	0 000787 001415 002050	000960 001830 002660	001363 0025545 0028545
SBL ON	GRAMS DYE USED	0 0015 0030 0045 0090	00015 00030 00090	0 • 0015 • 0030 • 0045
AST RED SBL NSI STENCIES	GRAMS DYE IN WHITE WATER	0 • 000713 • 001585 • 002450 • 005240	0 •000540 •001170 •001840 •001840	000137 .000455 .000855
E 27A PONTAMINE F	CONCEN- TRATION OF WHITE WATER	0 001520 003380 005210	0 001147 002490 003910	0 • 000291 • 000968 • 001820
TABLE CON OF	LOG COR- RECTED TRANS- MISSION	1.975 1.950 1.693 1.7993	1.9956 8975 84735 44735	1.975 1.975 1.959 1.966 1.902
OF RETENTI	COR- RECTED TRANS- MISSION	948894 943994 083994 083994 0954	00100 00100 00100 00100	94.5 93.3 881.0 888.3 79.83
CALOULATION C	TRANS- MISBION	567-703 567-703 570304 570304	833.1 80.0 612.0 612.0	83.1 82.1 80.0 77.7 70.2
CALOU BL	POUNDS DYE PER 1000 POUNDS PULP	Orto 다 다 う	ᅇᆥᅋᆋᅑ	0
	PERCENT CONSIST ENCY	0.3	0.6	1.0

	· · · · · · · · · · · · · · · · · · ·			
	PERCENT RETEN- TION	100 967 97 97 97 97 97 97 97 97	100.0 995.0 950.0	100.0 98.0 97.0 95.3
	GRAMS DYE IN SHEET	0 001468 002890 004320	0 001459 002890 004310	0 • 001470 • 002910 • 004320 • 008570
GREEN SO RATURES	GRAMS DYE USED	0 0015 0030 0045 0090	0 • 0015 • 0030 • 0045	0 • 0015 • 0030 • 0045
1 E	GRAMS DYE IN WHITE WATER	0 • 000032 • 000110 • 000150	0 • 0000110 • 000110 • 000190	0 000030 000090 000180
28A DU PONT VICTORIA AT VARIOUS TEMP	CONCEN- TRATION OF WHITE WATER	0 000068 0000234	0 000087 0000234 00000404	0 •000064 •000191 •000383
TABLE TON OF	LOG COR- RECTED TRANS- MISSION	1.993 1.991 1.986 1.981	11111 96860 66860 66860 66860	1.993 1.991 1.987 1.965
N OF RETENT	COR- RECTED TRANS- MISSION	999988 207.68 207.68 207.68 208	999998 2010-89 200-89 200-80 200-80 200-80 200-80 200-80 200-80 200-80 200-80 200-80 200-8	98.3 97.0 97.3 92.3
CALOULATION ON UNBLEACE	TRANS- MISSION	844.0 882.7 881.7 791.07	2888884 281122 28122 29122 2922 2922 2922 2922	288833 2833 2833 2833 293 293 293 293 293 293 293 293 293 2
CALC	POUNDS DYE PER 1000 PULP	O-trin The second se	0-40-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
<u>.</u>	TEMPER- ATURE	50	0 1	60

-211-

.

..

	PERCENT RETEN- TION	1 000 000 000 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 000 1 000 000 000 000000	1 000 000 00 00 00 00 00 00 00 00 00 00	1 88888 0 7 0 7 0 8 7 0 8 7 0 8 7 0 8 7 0 8 7 0 8 7 0 8 7 8 8 8 8
	GRAMS DYE IN BHEET	001317 002590 002860	0 001318 002595 003850	0 • 001 314 • 002595 • 003860 • 007640
REEN SO	GRAMS DYE USED	0 • 0015 • 0030 • 0090	0 0015 0030 0045 0090	0 • 0015 • 0030 • 0045
CTORIA GREEN	GRAMS DYE IN WHITE WATER	0 • 000183 • 000410 • 000640	0 000182 0000405 000650	0 • 000186 • 0000405 • 000640
29A DU PONT VI(AT VARIOUS	CONCEN- TRATION OF WHITE WATER	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 000387 000861 001380 002880	000396 000396 000861 001360
TABLE : RETENTION OF I	LOG COR- RECTED TRANS- MISSION	11-966 951-9566 951-966	11.993 11.993 951 955 955 955 955 11.9555 11.9555 11.9555 11.9555 11.9555 11.9555 11.9555 11.9555 11.9555 11.9555 11.95555 11.95555 11.955555 11.95555555555	1.993 1.980 1.952 1.952
É.	COR- RECTED TRANS- MISSION	800088 800000 200000	000088 800000 00000	80000 80000 20000
CALCULATION O	TRANG- MISSION	788880 7807891 780789	91. 866.7 74.88 74.7 87.6 7 7	288891 7288881 7296668
Q ALOI ON	POUNDS DYE PER 1000 POUNDS PULP	여전 Orf전 r r r	0-4% M	
	TEMPER- ATURE	50	01	ő

	· .		- 213-		
		PERCENT RETEN- TION	100.0 57.0 1455.0 1411.8 1	1 700 700 700 700 700 700 700 700 700 70	10000 10000 171100 171100 1700 1700000000
	FL	Grams Dy e In Sheet	0 000865 001500 002030	0 001515 002070 002070	0 000900 001560 002140
		GRAMS DYE USED	0 0015 00030 0045	0 0015 0030 0045	0 0015 0045 0045
·	ANT FEMP	GRAMS DYE IN WHITE WATER	0 000635 001500 002470	0 000620 001485 002430	0 •001440 •001440
30A	PONT BRILLI	CONCEN- TRATION OF WHITE WATER	0 • 001350 • 003190 • 005250	001320 .001320 .005170 .011100	0 • 001270 • 005020 • 010700
TABLE	DE DU PULP	LOG COR- RECTED TRANS- MISSION	1.956 1.956 1.933 1.933 1.933 1.933	1.955 973 1.9573 1.9573 1.9573	1.973 1.973 1.957 1.837
	T RETENTION (ED SULPHITE	COR- RECTED TRANS- MISSION	990 800 90 90 90 90 90 90 90 90 90 90 90 90 9	400 400 04000 04000	9994 889994 889996 889996 88999 88999 88999 88999 899 80 80 80 80 80 80 80 80 80 80 80 80 80
	CALCULATION OF RI ON UNBLEACHED	TRANS- MISSION	77200 10000 10000	222 544 544 544 54 54 54 54 54 54 54 54 54	700077 76832 80984
	NO ON ON	POUNDS DYE PER 1000 POUNDS PULP			Onter 다 う
		TEMPER- ATURE	50	011	60

.

•

	PERCENT RETEN- TION	100.0 53.8 149.0	1 100 100 100 100 100 100	100.0 53.8 451.1
ЪГ	GRAMS DY E IN SHEET	0 000931 001615 002200	0 000935 001620 002230	0 001658 001658 001058
1	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 0015 0015 0045 0090	0 • 0015 • 0030 • 0045
BRILLIANT CROCEIN IOUS TEMPERATURES	GRAMS DYE IN WHITE WATER	0 000569 0001385 0002300	0 000565 001380 002270 005030	0 • 000543 • 001342 • 002200 • 004950
31A J PONT BRILI AT VARIOUS	CONCEN- TRATION OF WHITE WATER	0 .001210 .002950 .004900 .010850	0 001200 002940 004820 010700	0 • 001150 • 002860 • 004680
TABLE I OF DU	LOG COR- RECTED TRANS- MISSION	1.973 1.958 1.936 1.936 1.836	1.953 1.953 1.957 212 7.537	1.973 1.959 1.938 1.944
F RETENTION ED BULPHITH	COR_ RECTED TRANS_ MI SSION	4000 4000 0.00 0.00 0.00 0.00 0.00 0.00	94 830.5 830.5 830.7 831.7 831.7 831.7 831.7 831.7 94	94.0 91.0 86.7 82.07 69.2
CALCULATION OF ON BLEACHED	TRANS- MI BSION	81 778-7 59-7-7 59-7-7	81 708-7 59-7 59-7	81.4 735.8 791.01 59.90
IO OI	POUNDS DYE PER 1000 POUNDS PULP	0-4:	~~~ Ortori ri r\	0-401-11 PN
	TEMPER- ATURE	50	0 1	60

.-

.

.

	<u></u>	PERCENT RETEN- TION	100000 10000 10000 10000 10000 10000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 577 777 7000 7000 7000 7000 7000 70
	_	grams dy e in Sheet	000870 001620 002350	000896 0002400 002400	0 0000926 001710 002450
	sbl on Ures	GRAMS DYE USED	0 0015 0030 0045	0015 0030 0030 0045	0 0015 0030 0045 0090
	FAST RED SBL TEMPERATURES	GRAMS DYE IN WHITE WATER	0 .000630 .001380 .002150	. 000604 . 000604 . 001335 . 004520	0 .000574 .001290 .002050
32A	PONTAMINE AT VARIOUS	CONQEN- TRATION OF WHITE WATER	0 • 001 340 • 002940 • 004580	0 001280 002840 002840 0004470	.001220 .002750 .004360
TABLE :	AULP NLP	LOG COR- RECTED TRANS- MISSION	1.975 1.953 1.928 1.828	1.955 1.955 2051 2051 255 255 255 255 255 255 255 255 255 2	1.975 1.956 1.952 1.932 1.827
	OF RETENTI(D SULPHITE]	COR- RECTED TRANS- MISSION	94.5 89.7 80.0 66.4	000000 00000 000000	9994 2008 2005 2005 2005 2005 2005 2005 2005
	CALOULATION UNBLEACHED	TRANS- MI SSION	76.7 722.7 68.7 53.8	26692	500000 500000 500000
	CAL	POUNDS DYE PER 1000 POUNDS PULP	0-10:	つま ?.エュア	O-40:H H M
	·	TEMPER- ATURE	50	Ott	60
		· · · ·			

	PERCENT RETEN- TION	100.00 664.00 759.50 80.150	100 665 601 860 0 100 0	100.00 660.0 59.34
	GRAMS DYE IN SHEET	0000960 000360 001830 002660	0000986 001855 002700	001025 .001025 .001930 .002800
gBL ON	GRAMS DYE USED	0 0015 0045 0090	0 • 0015 • 0030 • 0045 • 0090	0 • 0015 • 0030 • 0045
FAST RED SBL EMPERATURES	GRAMS DYE IN WHITE WATER	0 • 000540 • 001170 • 001840 • 003940	0 • 000514 • 001145 • 001800	.000475 .001070 .001700 .003640
33A PONTAMINE PARIOUS T	CONCEN- TRATION OF WHITE WATER	0 001147 002490 003910	0 001150 002440 003830	0 • 001010 • 002280 • 003620 • 007740
TABLE TABLE	LOG COR- RECTED TRANS- MISSION	1.975 1.956 1.935 1.913	1.975 1.957 1.957 1.957 1.957 1.8465	1.975 1.959 1.939 1.854
OF RETEN'	COR- RECTED TRANS- MISSION	94.05 860.10 880.10 880.88 880.10 880.88	96 88694 70850 70950 70050 700000000	94.05 86.9 712.88 71.487
CALOULATION BLEACHED	TRANG- MI BSION	83.1 80.0 75.7 72.0 61.4	87779 1.5777 1.5777 1.5777 1.5777 1.577 1.577 1.577 1.577 1.577 1.57777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.57777 1.57777 1.5777 1.57777 1.57777 1.57777 1.57777 1.57777 1.57777 1.57777 1.577777 1.577777 1.577777 1.57777777777	88401 64788
CALC	POUNDS DYE PER 1000 POUNDS PULP	Ortoram	Ototan	оңан т м
	TEMPER- ATURE	50	0 1 1	60

	PERCENT RETEN- TION	100 976 976 976 976 976 976 976 976 976 976	100 976 956 40 40 40 40 40 40 40 40 40 40 40 40 40	1 986 956.0 95.1 1
	GRAMS DY E IN SHEET	0 001468 002890 004320	001469 002890 004320	0 001470 002895 004330
green so imes	GRAMS DY E USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0090	0 • 0015 • 0030 • 0045
VICTORIA G VARIOUS TI	GRAMG DYE IN WHITE WATER	0 • 000032 • 000110 • 000160	0 000031 000110 000180	0 000030 000105 000170
34A DU PONT VI PULP AT VI	OONOEN- TRATION OF WHITE WATER	000068 000068 0000234	.000066 .0000234 .0000383	0 000064 0000224 0000362
ABLE N OF 1 HITE 1	LOG COR- RECTED TRANS- MISSION	1.993 1.991 1.986 1.981 661	11111 998699 66193 66193	1,993 1,993 1,958 1,955
OF RETE LEACHED	COR- RECTED TRANS- MISSION	0000000 0000000 0000000	0000000 1000000 1000000000000000000000	800000 880000 9008000
CALOULATION ON UNB	TRANS- MISSION	01100 888 10100 1000000	0.11.0 882.7 791.7 791.7	84.0 83.7 81.7 7.19 19
CALC	POUNDS DYE POUNDS DYE POUNDS PULP	0-4	อาสะเป เป หา	으====================================
	TIME IN MINUTEG	10	30	60

			PERCENT RETENT TION	1 1000 1000 1000 100 100 100 100 100 10	100.0 87.0 855.8 855.8	100.0 87.9 86.0 85.3		
			CRAMS DYE IN Sheet	• 001317 • 002590 • 003860 • 007650	0 001305 002585 003860 007650	0 • 001319 • 002590 • 007870 • 007680		
	A GREEN SO		GRAMS DYE USED	0 • 0015 • 0030 • 0030	0 0015 0030 0045	0 • 0015 • 0030 • 0045		
	OTORI /	F	GRAMS DYE IN WHITE WATER	0 • 000183 • 000640 • 000640	0 000195 0000435 000640	0 • 000181 • 000410 • 000630		
	TABLE 35A CALOULATION OF RETENTION OF DU PONT VI ON BLEACHED SULPHITE PULP AT VARIC	A PONT VI AT VARI	ia Pont VI AT VARI	AT VA	CONCEN- TRATION OF WHITE WATER	0 000390 000873 001360	0 • 000415 • 000925 • 001360	0 • 000385 • 000870 • 001340 • 002810
			LOG COR- RECTED TRANS- MISSION	11-966 951 956 951 951	1111 9980 9955 9057 9057 9057	1.992 1.992 1.956 1.908 1.908		
		OF RETEN		COR- RECTED TRANS- MISBION	0000880 8000000 200000	ຎຎຎຬຬຬ ຎຎຎຎຎ ຎຎຎຎຎ	8880900 8880000 60000 7000	
			TRANS- MISSION	4 5 5 5 5 5 5 5 5 5 5 5 5 5	08880 2888 289 290 200 200 200 200 200 200 200 200 20	91.0 835.0 75.0 8 75.0 8 75.0 8 75.0 8 75.0 8 91.0 75.0 8 91.0 75.0 8 91.0 75.0 8 91.0 75.0 8 91.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75		
	OAL	· ·	POUNDS DYE PER 1000 TI POUNDS M	0-**:ユュア	ortor i i in	оф:115 М		
			TIME IN MINUTES	10	30	éo		

- 218-

•

										
		PERCENT RETEN- TION	100.0 57.0 450.0 4450.0	1000 509 509 505 74 74 74 74 74 74 74 74 74 74 74 74 74	1 600 100 100 100 100 100 100 100 100 10					
	FL	GRAMS DY E IN SHEET	0 • 000865 • 001500 • 002030	000895 .001545 .001545 .002110	0 .000961 .001605 .002170 .003870					
	EIN	GRAMS DYE USED	0 0015 0030 0045 0090	0 0015 0045 0045	0 0015 0045 0045 0045					
	BRILLIANT CROC VARIOUS TIMES	GRAMS DYE IN WHITE WATER	000635 .000635 .001500 .002470	.000605 .001455 .002390	0 • 000539 • 001395 • 002330 • 005130					
36A	TABLE 36A CALGULATION OF RETENTION OF DU PONT BRILI ON UNBLEACHED SULPHITE PULP AT VAR	OF DU PONT HITE PULP A1	A7 A7	TN A7	PONT ULP A1	PONT ULP A1	CONCEN- TRATION OF WHITE WATER	0 001350 003190 005250	0 001280 005080 011000	0 •001150 •002970 •004950 •010900
1			LOG COR- RECTED TRANS- MISSION	1.955 1.955 1.953 1.953 1.832	11.9957 79957 469957 46994	1.973 1.959 1.936 1.835				
		COR- RECTED TRANS- MISSION	04000 0000 04000 0400	9000000 4000100 000100	94 88 68 68 68 68 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
		LATION O ON UNBL	TRANS- MI SSION	70000 50000 50000	2100-7-7 5-5-5-5-7-5-1- 5-5-5-5-1-5-1- 5-5-5-1-5-1-5-1-5-1	22007- 266952 26007-				
		POUNDS DYE PER 1000 POUNDS PULP	о-фин -1 M	0-4-1-1-M	つ- 参: すう					
		TIME IN MINUTES	01	<u>3</u> 0	60					

	MS PERCENT E RETEN- TION	931 62.0 615 62.0 49.0 43.3	975 6355 540 143-7 930 143-7	976 658 557.2 2800 50.7 960	
тĽ	GRAMS DYE DYE IN SHEET	0000	00000	001000000000000000000000000000000000000	
ANT CROCEIN 8 TIMES	GRAMG DY E USED	0015 0015 0030 0045	0015 0015 00030 0090	0 • 0015 • 0030 • 0045 • 0090	
LLIANT C	GRAMS DYE IN WHITE WATER	0 • 000569 • 001385 • 002300	0 000525 0001365 002260	0 •000424 •001342 •002220	
LE 37A DU PONT BRILLI PULP AT VARIOUS	CONCEN- TRATION OF WHITE WATER	0 001210 002950 004900	0 •001118 •002900 •004810	0000000 002860 0004720	
	LOG COR- RECTED TRANS- MISSION	1.973 1.958 1.936 1.9316 1.836	1.959 1.959 1.959 7.8377 7.8377 7.8377 7.8377 7.83777 7.837777 7.837777777777	1.9738 1.9388 1.8384	
TAI F RETENTION OF ACHED SULPHITE	COR- COR- RECTED TRANS- MISSION	4008880 4008880 0.80.180 0.80.178	94.0 881.0 681.7 681.7	94 92 86 82 92 94 9 94 9 94 9 94 9 94 9 94 9 94	
CALCULATION O	TRANS- MISSION	20423 20431	81 20 50 50 50 50 50 50 50 50 50 50 50 50 50	81.4 79.3 71.00 59.7	
QALOUI	POUNDS DYE PER 1000 POUNDS POUNDS	О-40:	о-кант М	에 다 다 이 네 다 다 이	
	TIME IN MINUTES	10	30	- •	

		IS PERCENT RETEN- TION	100.0 100.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0	100000 100000 100000 100000 100000 1000000	65 100.0 65 77.7 50 55.5 30 57.0											
		10 8 B L 12 8	GRAMS DYE IN SHEET	000168 00168	0 00100 00100 0019 0028	0 .00116 .00210 .00295										
			സന	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0090	0 0015 0030 0045 00045									
		E FAST RED RIOUS TIME	GRAMS DYE IN WHITE WATER	0 •000630 •001380 •002150	0 001100 001100 001800	0 • 000335 • 000300 • 001550 • 001550										
	38A PONTAMINE F	ION OF RETENTION OF PON	PONTAMINI ULP AT VAI	PONTAMIN ULP AT VA	F PONTAMIN PULP AT VA	F PONTAMIN PULP AT VA	F PONTAMIN PULP AT VA	PONTAMIN ULP AT VA	ULP AT VAI	ULP AT VA	' PONTAMINI ULP AT VA	PONTAMINI ULP AT VA	CONCEN- TRATION OF WHITE WATER	0 • 001 340 • 002940 • 004580	001000 002340 003830	0 • 000713 • 001910 • 003300
•	TABLE		LOG COR- RECTED TRANS- N MISSION	1111 999 799 8008 8008 8008 8008 8008	11.9595 11.9595 11.9595 11.95755 11.95755 11.95755 11.95755 11.95755 11.95755 11.95755 11.957555 11.957555 11.9575555555555555555555555555555555555	1.975 1.964 1.945 1.945 1.845										
	LATION OF UNBLEACHE		ION OF BLEACHE	COR- RECTED TRANG- MISSIO	94 88 66 66 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	94 68 88 7 2 7 2 7 2 7 2 7 7 7 7 7 7 7 7 7 7	94.5 92.0 83.1 70.1 83.1									
				NLOULATIC ON UNBI	ALOULATION ON UNBI	NLOULATION ON UNBI	TRANS- MISSION	53465 534656	736.7 55.6 55.6	746.746.7 5681-67 5681-467						
		POUNDS DYE PER 1000 POUNDS PULP	್ಷ ೧೯೫೧ ಗೆ ಗೆ	0-4<1-1-17	Ortorr											
			TIME IN MINUTES	10	30	60										

.

.

-

		PERCENT RETEN- TION	100.0 644.0 591.0 759.1	100 750 687 0468 0468 0468 040 0	100.0 86.1 77.4 71.3 611.3						
		GRAMS DYE IN Sheet	0 000960 001830 002660	001138 002055 002910	0 • 001290 • 002320 • 003210						
	D BBL S	GRAMS DYE USED	0 • 0015 • 0030 • 0045	0 0015 0030 0045 0090	0 • 0015 • 0030 • 0045						
	E FAST RED LOUS TIMES	GRAMS DYE IN WHITE WATER	046200.	000362 000362 001590	0 • 000210 • 000680 • 001290						
39A	T VARINE	PONTAMINE POTAMINE	PONTAMINE LP AT VARI	PONTAMINE PONTAMINE	PONTAMINE POTAMINE	CONCEN- TRATION OF WHITE WATER	0 001147 002420 003910	0 000770 002010 003380 003380	0 • 000447 • 001450 • 002740		
TABLE		LOG COR- RECTED TRANS- MISSION	1.975 1.975 1.975 1.913	1111 969 967 967 967 967 967 967 967 967 967	11111 89995 89956 89358 893568 89358 89358 89358 89358 89358 89358 89358 89358 89358 89358						
		LEACHED	COR- RECTED TRANS- MISSION	901-90 100 100 100 100 100 100 100 100 100 1	999 1988 1987 1987 1987 1987 1987 1987 1	406667 406667 406664					
				OLI	OLD DLD	OLI	OLI	OLI	TRANS- MISSION	833.1 802.0 752.7 61.4	647788 647788 7571881
		POUNDS DYE PER 1000 POUNDS PULP	Ownum	0-40:-1-1 m	ᅌᇾᆸᆑᅎ						
		TIME IN MINUTES	10	30	60						

.

.

.

			T				
		PERCENT RETEN- TION	00000000000000000000000000000000000000	44 <u>0000</u> 8000000 8000000	844000 8440000 140000		
	J PONT	GRAMS DYE IN SHEET	008580 008520 008700 008700 008700	003765 004270 004860 005350 005720	004420 004800 005620 005480 005480		
	SEC, DU SBL ON SEB	GRAMS DYE USED	6666666 666666666666666666666666666666	66666666 66666666666666666666666666666	6000 6000 6000		
	a green St red Freenes	GRAMS DYE IN WHITE WATER	000420 000380 000300 000230 000190	005235 0041730 004140 003650 003650	004580 004200 003380 003380 002520 001860		
40A	F DU PONT VICTORI AND PONTAMINE FA PULP AT VARIOUS	VI CTO AMINE VARIOU	VI CTO AMINE VARIOU	CONCEN- TRATION OF WHITE WATER	.000895 .000808 .000638 .000490 .000404	011140 010070 008800 007770 006980 006120	.009750 .008940 .007180 .007180 .005360 .002980
TABLE 4		LOG COR- RECTED TRANG- MISSION	11111 9997 9887 9887 9887 9887 8897 887 887 8	004440000 004440000 0044400000	1.0823 2.0835 2.0923 2.0923 2.003 2.		
	RETENTION O OROCEIN FL	COR- RECTED TRANS- MISSION	999992 2011-20 2011-20 2011-20		881-7866 881-7886 7-7886 7-7886 7-7888 7-7888 7-7888 7-7888 7-7888 7-788 7-788 7-788 7-79 7-78 7-79 7-79		
	CALCULATION OF RE BRILLIANT OR UNBLEACHED	TR ANG- MISSION	0450000 0450000 0450000	86717976 666717976 666717976 666717976	50000000 50000000000000000000000000000		
·		FREE- NESS S.R.	12000 10000 10000 100000000	2500050 250050 250050	860 810 705 7500 2500 2500		
		BEATING TIME IN MINUTES	0000000	0 0 0 0 0 0 0	750000 00000		
	-	DYE	Victoria Green	Brilliant Crocein FL	Feet Red SBL		

- 223-

PULP	N DYE DYE REACENT N DYE DYE RETEN- USED IN TION SHEET	20 009 008550 95.4 70 009 008550 95.4 70 009 008570 95.4 70 009 008570 95.4 70 009 008570 95.4 70 009 008570 94.8 70 009 007640 91.8 70 009 007564 91.8 70 009 007564 91.8 70 009 0014840 53.6 70 009 001750 11.7 70 009 001756 11.7 70 009 001756 11.7 70 009 001756 11.7 70 009 007561 79.6 70 009 007561 79.1 70 009 007561 79.5 70 009 007561 79.6 70 009 007561 79.6 70 009 007561 79.6 70 009 007561
alihatns	GRAMS DYE IN WHITE WATER	.000420 .001470 .001470 .000470 .000470 .000470 .007950 .007950 .007950 .007950 .007950 .007950 .007750 .007750 .007750 .007750 .007750
UNBLEACHED SUI	CONCEN- TRATION OF WHITE WATER	.000895 .001000 .001000 .001000 .0010702 .0010702 .0010702 .0010702 .0010700 .0016400 .016400 .016400 .016400 .016400 .016420 .016420 .016420 .016420 .016420 .016420 .016420 .016420 .016420 .016420 .016420 .01772 .01772 .01772 .01772 .007722 .007
NO	LOG COR- RECTED TRANG- MISSION	1111111 111111 111111 938900888 7077388 8809096 938900888 7077888 8809096 938900888 7077888 938900888 70777888 70890888 70777888 70890888 707778 70890888 707778 70890888 707778 70890888 707778 70890888 70778 70890888 70778 70890888 70778 70890888 70778 70890888 70778 70890888 70778 70890888 70778 7089088 70890888 70778 70890888 70890888 70890888 7089088 7089088 7089088 708908 708908 708908 708908 708908 708908 708908 708908 708908 708908 708908 70800000000
TABUE 41A RIOUS DYES	COR- RECTED TRANS- MI SSION	00000000000000000000000000000000000000
TABLE OF VARIOUS	TRANS- MISSION	4710000 001000 0000000000000000000000000
RETENTION	WAVE LENGTH EXAM.	6000000 000000 00000000000000000000000
CALCULATION OF RE	DYE STUFF	Du Pont Victorin Green SC Du Pont Rhodemine B Du Pont Auremine Conc. Du Pont Methylene Blue ZX Du Pont Basic Brown BR Du Pont Basic Brown BR Du Pont Brilliant Crocein FL Du Pont Brilliant Crocein FL Du Pont Anthraquinone Blue B Du Pont Vigrosine WSB Powder Du Pont Quinoline Yellow Conc. Pontemine Fast Red SBL Du Pont Purpurine 4B Conc. Pontamine Fast Scarlet 4BB Pontamine Black E Du Pont Brill. Paper Yellow Conc. Pontamine Yellow SXP Pontamine Yellow SXP

		••••••••••••••••••••••••••••••••••••••							•												
		PERCENT RETEN- TION	100. 95.	100.0 95.2	95.	100		100.													
	TABLE 42A JULATION OF RETENTION OF VARIOUS DYES ON UNBLEACHED SULPHITE PULP USING SULPHURIO AGID, ALUM, AND SIZE AND ALUM	ON UNBLEACHED AND SIZE AND AL	ON UNBLEACHED AND SIZE AND AL	더	Ħ	떮	E .	Ħ	Ħ	Ħ	E	H	E	GRAMS DY E IN SHEET	• 008580	•008560	.008580	0.003760	0.780	.003880	
				GRAMS DY E USED	600 .	600 .	•009	000	000												
				ON UNBLEACHED AND SIZE AND AL	ON UNBLEACHED AND SIZE AND AL	ON UNBLEACHED AND SIZE AND AL	ON UNBLEACHED AND SIZE AND AL	GRAMS DYE IN WHITE WATER	0211000.	0001110	.000420	.005240	.005220	0 005120							
								UND I	UND I UND	UND I UND	UND I UND	UND I UND	UND I UND	UND I UND	ND I UNA	CONCEN- TRATION OF WHITE WATER	.000895	•000936	.000895	.001115	
		LOG COR- RECTED TRANS- MISSION	• •	1.964	•	0,60	0/80	1.973 1.845	(Continued)												
TABI		COR- RECTED TRANS- MISSION		00 K0 00 K0 00 K0	•	94.0 67.9	94•0 66•4	0*176 20*02	(Cont												
		ы́р	OF REJ USING	TRANS- MISSION	102	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•	75 .1 54.3	• •	72.3											
JULATION OF PULP US				POUNDS DYE PER 1000 POUNDS N	000	omo	m	010	010	07											
	OALC	ACID	H ₂ BO _L	pue unte	Size	H2804	Alum	Alum and Bize													
		DYE	ΛĠ			FL															

- 225-

	Et 1	
	PERCENT RETEN- TION	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
	GRAMS DY E IN SHEET	0 0 0 0 0 0 0 0 0 0 0 0 0 0
	GRAMS DY E USED	00000000000000000000000000000000000000
	GRAM6 DYE IN WHITE WATER	.007720 .007670 .007220 .004580 .004660
ued)	CONCEN- TRATION OF WHITE WATER	.016420 .016300 .015350 .015350 .009750 .009910
42A (Continued)	LOG COR- RECTED TRANS- MISSION	111111 111111 000000 0000000 000000 0000000 000000 00000000
TAULE 42	COR_ RECTED TRANG_ MISSION	900000 0400000 2820000 040000 000000 040000
	TRANS- MISSION	202000 2020000 2020000 2020000 2020000 2020000
	POUNDS DYE PER 1000 POUNDS PULP	omonon ononon
	AOID	H2804 Alum Alum and Blze H2604 Alum and Alum and
	DYE	11 ØBL

- 226-

•

.

•

.

.

APPENDIX B. DYE-STANDARD GRAPHS

.

. ·

÷-

-227-

per L. mittance per L. mittance 0 98.3 1.993 0 95.9 1.982 .003 79.8 1.902 .003 86.3 1.936 .006 65.0 1.813 .006 77.6 1.890 .009 53.0 1.724 .009 70.0 1.845 AURAMINE CONC. METHYLENE BLUE ZX AT 660 MILLIMICRONS METHYLENE BLUE ZX AT 434 MILLIMICRONS AT 660 MILLIMICRONS Conc. Trans- Log Grams mittance Trans- mittance Frans- mittance per L. 93.4 1.970 0 99.0 1.997	TRANSMITTANCE DATA OF THE STANDARD SOLUTIONS AT VARIOUS CONCENTRATIONS										
Grams per L.mittanceTrans- mittanceGrams per L.mittanceTrans- 											
.003 79.8 1.902 .003 \$6.3 1.936 .006 65.0 1.813 .006 77.6 1.890 .009 53.0 1.724 .009 70.0 1.845 AURAMINE CONC. METHYLENE BLUE ZX AT 434 MILLIMICRONS METHYLENE BLUE ZX Conc. Trans- Log Grams mittance Trans- Log per L. Mittance Der L. Mittance 0 93.4 1.970 0 99.0 1.997	Grams	mitte	ittance Trans		ins-	·	Grams		Log Trans- mittance		
AT 434 MILLIMICRONSAT 660 MILLIMICRONSConc.Trans-LogGramsmittanceTrans-per L.mittanceper L.093.41.970099.01.997	.003 .006	79 . 8 65 . 0		79 . 8 65 . 0		1.9	13		.003 .006	86.3 77.6	1.982 1.936 1.890 1.845
Grams per L.mittance mittanceTrans- mittanceGrams per L.mittance mittan093.41.970099.01.997							METHYI C66 TA	LENE BLUE MILLIMIC	ZX RONS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grams		ance Trans-			Grams					
.005 49.2 1.692 .006 41.8 1.621 .009 36.0 1.556 .009 27.5 1.435	.003 67.6 1.831 .006 49.2 1.692				•003 •006	64.3 41.8	1.808				
PONTAMINE FAST SCARLET 4BS AT 500 MILLIMICRONS							38	<u></u>			

Conc. Grams per L.	Trans- mittance	Log Trans- mittence
0	94.0	1.973
.006	78.7	1.896
.012	66.1	1.820
.018	55.3	1.743

١

T	TRANSMITTANCE DATA OF THE STANDARD SOLUTIONS AT VARIOUS CONCENTRATIONS						
BASIC BROWN BR AT 460 MILLINICRONS			SAFRANINE T EX. AT 520 MILLIMICRONS				
Conc. Grams per L.	ems mittance Trans-		Conc. Grams per L.		Log Trans- mittance		
0 •003 •006 •009	.003 83.8 1.923 .006 75.4 1.877		0 •003 •006 •009	94.5 74.2 58.2 45.7	1.975 1.870 1.765 1.660		
	VIOLET I MILLIMIC			ANT CROCEI MILLIMICH			
	Trans- mittance	Log Trans- mittance	Conc. Grams per L.	Trans- mittance	Log Trans- mittance		
0 •003 •006 •009	per L. mittance 0 97.0 1.987 .003 64.6 1.810 .006 43.3 1.637			94.0 78.9 66.2 55.7	1.973 1.897 1.821 1.746		

BRILLIANT PAPER YELLOW CONC. AT 420 MILLIMICRONS

Conc. Grams per L.	Trans- mittance	Log Trens- mittance
0	94•1	1.974
.006	73•5	1.866
.012	57•3	1.758
.018	44•9	1.652

TRANSMITTANCE DATA OF THE STANDARD SOLUTIONS AT VARIOUS CONCENTRATIONS						
ANTHRAQUINONE BLUE B AT 600 MILLIMICRONS			NIGROSINE WSB POWDER AT 570 MILLIMICRONS			
Conc. Grams per L.	as mittance Trans-		Conc. Grams per L.	Trans- mittance	Log Trans- mittance	
0 .006 .012 .018	.006 87.3 1.941 .012 78.2 1.893			96.5 87.3 78.9 71.5	1.985 1.941 1.897 1.854	
	ANGE II CO 90 MILLIMI		QUINO AT 41	LINE YELLA 40 MILLIM	OW CONC. ICRONS	
Conc. Grams per L.	Trans- mittance	Log Trans- mittance	Conc. Grams per L.	Trans- mittance	Log Trans- mittance	
0 .006 .012 .018	94.0 68.2 49.3 35.7	1.973 1.834 1.693 1.553	0 .006 .012 .018	93.2 78.5 66.4 56.1	1.969 1.895 1.822 1.749	

PONTAMINE FAST YELLOW NNL AT 460 MILLIMICRONS

Conc. Grams per L.	Trans- mittance	Log Trans- mittance
0	93.0	1.969
.006	87.7	1.943
.012	82.6	1.917
.018	77.8	1.891

PONTACYL VIOLET S4B AT 550 MILLIMICRONS					PURINE 48 00 MILLIM		
Conc. Grams per L.	Trans- mittance	Log Trans mitten		Conc. Grams per L.	Trans- mittence	Log Trans- mittance	
0 .006 .012 .013	95.9 70.8 52.4 38.5	1.982 1.850 1.719 1.586		0 .006 .012 .018	94.0 71.6 54.7 41.8	1.973 1.855 1.738 1.621	
	TAMINE BL. 00 MILLIM			PONTAMINE YELLOW SXP AT 460 MILLIMICRONS			
Conc.	Trans-	Log Trans- mittance		Conc. Grams	Trans- mittance	Log Trans-	
Grans per L.	mittance	4		per L.		mittance	
•	94.0 86.1 79.1 72.5	4	.ce		93.0 85.3 78.3 71.8		
0 .006 .012	94.0 86.1 79.1 72.5	mittan 1.973 1.935 1.898 1.860 PONTAM	CE	per L. 0 .006 .012	93.0 85.3 78.3	mittance 1.969 1.931 1.894	
0 .006 .012	94.0 86.1 79.1 72.5	mittan 1.973 1.935 1.898 1.860 PONTAM	CE	per L. 0 .006 .012 .018 ST RED SBL LIMICRONS	93.0 85.3 78.3 71.8	mittance 1.969 1.931 1.894	

.

•

-232

•

-235-

-236-

-239-

-240-

:

-247-

-250-

-251-

APPENDIX C DYE FORMULAS

.

.

.

.

•

.

.

· .

.

-

.

•

STRUCTURAL FORMULAS OF DYES AS SHOWN IN THE GUSTAV COLOR TABLE-7TH ED. SCHULTZ DYE AND FORMULA COLOR INDEX COLOR NUMERER NUMBER DU PONT VICTORIA GREEN SC 657 754 (CH₃)₂N-=N(CH3)2 DU PONT RHODAMINE B $(C_{2^{H_{5}}})_{2^{N-1}}$ 749 =N(C2H5)2 C1 864

-COOH

-254-

. .

APPENDIX D.

-259-

STANDARD WHITE WATER DATA

÷

(

TRANSMI	TRANSMITTANCE DATA OF DISTILLED WATER AND NATURAL WHITE WATERS AT VARIOUS WAVELENGTHS								
WAVE LENGTHS MILLIMICRONS	DISTILLED WATER	UNBLEACHED SULPHITE	BLEACHED SULPHITE 3% BLEACH	BLEACHED SULPHITE 6% BLEACH					
 400 410 420 430 450 450 450 450 450 500 510 510 510 550 550 550 550	9018200136025159150248357 999999999999999999999999999999999999	69.5 70.2 70.2 71.4 71.4 77 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 75	67.0370 66666690 771223456798 771223456798	70.0 70.3 70.3 71.3 72.3 71.1 72.3 74.3 77.4 77.4 77.5 77.4 77.5 77.7 77.5 70.4 70.5 77.7 77.5 70.5 77.5 70.5 77.5 70.5 70	71.9 72.59 72.9 72.9 72.9 72.9 72.9 72.9 72.9 72.				
570 580 590 610 620 630 640 650 650 650 650 650 650 650 650 670 680 690 700	96.5 97.2 97.2 97.4 97.8 97.8 97.8 97.9 97.0 99.0 99.0 99.0 99.0 99.0	51.9 51.9 52.3.2 55.5 55.5 55.5 55.5 55.5 55.5 5 5 5 5	727777789001122233333333333333333333333333333333	77.046879012.061901233 88888888888888888888888888888888888	777888888888888888888888888888888888888				

•

TRANSM	TRANSMITTANCE DATA OF DISTILLED WATER AND NATURAL WHITE WATERS AT VARIOUS WAVELENGTHS							
WAVELENGTH MILLIMICRONS	BLEACHED SULPHITE 20% BLEACH	BLEACHED SULPHITE 30% BLEACH	RAG	SODA	GROUND- Wood	UNBLEACHED SULPHITE WITH SIZE AND ALUM		
400 410 420 430 440 450 450 450 450 450 550 5550 5	77777777777788888888888888888888888888	75506051785421308754054282345666 777777788901234555678990112222222222222222222222222222222222	76.0407344028532075518185182926700 76.07778901223456678990012233444955 888888888888888888999999999999999	0520849404803815902345790123455 7777889901112222333344444445555555555555555555555	66777777777777777777777777777777777777	66.58250307555333024305062947812344		

TRANSMITTANCE DATA OF DISTILLED WATER AND NATURAL WHITE WATERS AT VARIOUS WAVELENGTHS								
WAVELENGTH MILLIMICRONS	UNBLEACHED KRAFT	kraft 5% Bleach	KRAFT 15% BLEACH	kraft 30% Bleach	KRAFT 40% BLEACH			
400 410 420 430 450 450 450 450 550 550 555 555 555 55	63.0 64.8 64.8 66.1 66.7 7.6 69.9 69.0 771.9 90.12 77.7 77.7 77.7 77.7 77.7 77.7 77.7 7	5557186329410909830840134567990 56789901223455778900012222222223 	66777777777777777788888888888888888888	7123.4455666.2851009529508934566666667.0950012234456666666666666666666666666666666666	77777777777777777777777777777777777777			

-262-

.

.

.

•