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SUMMARY

In this thesis we investigate the extremal functions for complete minors (or a complete

minor with one edge removed). The main results are:

(A) Every graph on n ≥ 9 vertices and 7n − 27 edges has a K9 minor, or is isomorphic to

K2, 2, 2, 3, 3, or is isomorphic to a graph obtained from disjoint copies of K1, 2, 2, 2, 2, 2 by

identifying cliques of size six.

(B) Every graph on n ≥ 8 vertices and (11n− 35)/2 edges has a K−
8 minor, or is isomorphic

to a graph obtained from disjoint copies of K1, 2, 2, 2, 2 and/or K7 by identifying cliques

of size five.

(C) Every edge-maximal graph on n ≥ 8 vertices without a K7 ∪ K1 minor (here K7 ∪ K1

stands for a disjoint union of K7 and K1) has at most 5n − 15 edges, or at most 31

edges when n = 9, or is isomorphic to one of the following graphs: K4 + Cn−4 when

n 6= 9, K1, 2, 2, 2, 2, K1, 3, 3, 3, K2, 2, 2, 4, K2, 3 + K−
2, 3, K2, 2 + K−

3, 3, K2, 3 + C5, K3, 3 + P4,

and K2, 2, 3, 3.

Note that Theorem (A) extends Mader’s results on the extremal function for Kp minors,

where p ≤ 7, and Jørgensen’s result on K8 minors. In Chapter 6, we also study the minimal

counterexamples to the analogue of Mader’s bound for K10 minors. However, since the

proof of one of our lemmas in Theorem (A) is computer-assisted, extending our methods to

K10 minors cannot be done without a lot of programming effort.

Theorem (B) settles a conjecture of Jakobsen from 1983 and Theorem (C) generalizes

Mader’s result on K7 minors, stating that every graph on n ≥ 7 vertices and 5n− 14 edges

has a K7 minor; and extends Jøgensen’s result on the extremal function for K6∪K1 minors.

The proofs of Theorem (B) and Theorem (C) are computer-free.

Finally, we prove a weak bound on the extremal function for K10 and K11 minors.

viii



CHAPTER I

INTRODUCTION

In this chapter, we introduce the basics in graph theory and some useful results that will

be used in this dissertation. We will mention the background and motivation for our work.

1.1 The Basics

In this section we present the terminology and notation that will be used in this dissertation.

A graph is a pair G = (V,E), where E is a set of 2-element subsets of V . The elements

of V are the vertices of the graph G and the elements of E are called edges. The usual way

to picture a graph is by drawing a dot for each vertex and joining two of these dots by an

arc if the corresponding two vertices form an edge. Just how these dots and lines are drawn

is considered irrelevant: all that matters is the information which pairs of vertices form an

edge and which do not.

The cardinality of a set S is denoted by |S|. For a graph G, the order of G is the

cardinality of V and the size of G is the cardinality of E. We use |G| and e(G) to denote

the order and size of G, respectively. Graphs are finite or infinite according to their order.

Unless stated otherwise, all graphs in this thesis are finite.

Two vertices u and v of G are said to be adjacent if {u, v} forms an edge, where an

edge {u, v} is usually written as uv or vu. If e = uv ∈ E(G), then we say that u and v are

neighbors; we also say that u, v are the ends of e; and e is incident with u and v. Two edges

e and e′ of G are said to be adjacent if they have a common end. Pairwise non-adjacent

edges are called independent. A set of independent edges is called a matching of a graph G.
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If x ∈ X, y ∈ Y , then xy is an X-Y edge. For a graph G, X,Y ⊂ V (G) and x, y ∈ V (G),

we will use eG(X,Y ) to denote the number of X-Y edges in G and G + xy to denote the

graph obtained from G by adding an edge with ends x and y. If x, y are adjacent or

equal, then we define G + xy to be G. If xy ∈ E(G), we denote by G − xy the graph

obtained from G by deleting the edge xy. The join G + H (resp. union G ∪ H) of two

vertex disjoint graphs G and H is the graph having vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {xy |x ∈ V (G), y ∈ V (H)} (resp. E(G) ∪ E(H)).

For a graph G = (V,E), if U is a subset of V , then G[U ] denotes the graph on U whose

edges are precisely the edges of G with both ends in U , and G[U ] is called the graph induced

by U in G. If U is any set of vertices, we write G−U for G[V −U ]; in other words, G−U is

obtained from G by deleting all the vertices in U ∩ V and their incident edges. If U = {u}

is a singleton, we write G − u rather than G − {u}. Instead of G − V (H), we simply write

G − H. We call G edge-maximal with a given graph property if G itself has the property

but no graph G + xy does, for non-adjacent vertices x, y ∈ V (G).

(a) K5 (b) K3, 3

Figure 1: Complete and complete bipartite graphs.

For a graph G, if all the vertices of G are pairwise adjacent, then G is complete. A

complete graph on n vertices is denoted by Kn. Let r ≥ 2 be an integer. A graph G = (V,E)

is called complete r-partite if V can be partitioned into V1, V2, . . . , Vr such that for any x ∈ Vi

and y ∈ Vj , x and y are adjacent if and only if i 6= j. If |Vi| = ni for i = 1, 2, . . . , r, then G

is denoted by Kn1, n2, ..., nr . Figure 1 shows examples of K5 and K3, 3.

2



Let G = (V,E) be a graph. The set of neighbors of a vertex v in G is denoted by NG(v)

or briefly by N(v). The degree of a vertex v is the number of edges incident with v and is

denoted by d(v) or dG(v). For a graph G we use ∆(G) and δ(G) to denote the maximum

and minimum degrees of G, respectively. If all the vertices of G have the same degree k,

then G is k-regular. A 3-regular graph is called cubic. If G is a graph and K is a subgraph

of G, then by N(K) we denote the set of vertices of V (G) − V (K) that are adjacent to a

vertex of K. If V (K) = {x}, then we use N(x) to denote N(K). By abusing notation we

will also denote by N(x) the graph induced by the set N(x). We define N [x] = N(x)∪{x},

and similarly will use the same symbol for the graph induced by that set.

A path is a non-empty graph P = (V,E) of the form V = {x0, x1, . . . , xk} and E =

{x0x1, x1x2, . . . , xk−1xk}, where the xi’s are all distinct, and x1, x2, . . . , xk−1 are the inner

vertices of P . The path P is also called an (x0, xk)-path. The integer k is called the length

of P . We often refer to a path by the natural sequence of its vertices, say P = x0x1 . . . xk.

If P = x0x1 . . . xk is a path and k ≥ 3, then the graph P + x0xk is called a cycle. A cycle

of length k is denoted by Ck.

A non-empty graph G is connected if there is an (x, y)-path in G for any two vertices

x, y ∈ V (G). A maximal connected subgraph of G is called a component of G. A graph G

is called k-connected if |G| > k and G−X is connected for any X ⊂ V (G) of size less than

k.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We call G and G′ isomorphic if there

exists a bijection ϕ : V → V ′ with xy ∈ E if and only ϕ(x)ϕ(y) ∈ E ′ for all x, y ∈ V .

For a graph G, the complement G of a graph G has the same vertex set as G, and distinct

vertices u, v are adjacent in G just when they are not adjacent in G. For an edge-transitive

graph G, we denote by G− the graph obtained from G by deleting an edge.

3



1.2 Background

1.2.1 Definition of Minor

In this section, we introduce the concept of a minor of a graph.

Let xy be an edge of a graph G = (V,E). We denote by G/xy the graph obtained from

G by contracting the edge xy and deleting all resulting parallel edges, where contraction of

the edge xy is performed by replacing the two vertices x and y with a single new vertex,

adjacent to each neighbor of x or y. We write G > H if a graph isomorphic to H can be

obtained from a subgraph of G by contracting edges. In those circumstances we say that G

has a minor isomorphic to H or an H minor.

Thus if H is a minor of a graph G, then G has a subgraph G′ such that V (G′) can

be partitioned into |H| disjoint subsets indexed by the vertices of H, say {Vx |x ∈ V (H)},

such that G[Vx] is connected for any x ∈ V (H) and there is a Vx-Vy edge if and only if

xy ∈ E(H). The sets Vx are the branch sets of the minor H. Intuitively, we obtained H

from G by contracting every branch set into a single vertex and deleted any parallel edges

or loops that may arise.

A graph is planar if it can be drawn in the plane without edge crossings. Perhaps the

most widely known result on graph minors is Wagner’s reformulation [37] of Kuratowski’s

Theorem [22], the following (See Figure 1 for pictures of K5 and K3, 3).

Theorem 1.2.1 A graph is planar if and only if it has no K5 or K3, 3 minor.

This theorem will be applied in the proof of Theorem 1.3.2.

1.2.2 Mader’s Result

In this dissertation, we study how global assumptions about a graph (namely, the number

of edges) can force it to have a given graph H as a minor.

4



The graph Kp−2 + Kn−p+2 has n vertices and (p− 2)n−
(p−1

2

)

edges and it contains no

Kp minor. Mader [25] proved that for p ≤ 7 this example is best possible, as follows.

Theorem 1.2.2 For every integer p = 1, 2, . . . , 7, a graph on n ≥ p vertices and at least

(p − 2)n −
(p−1

2

)

+ 1 edges has a Kp minor.

For p ≤ 5, this was first proved by Dirac [9]. Some years later but independently of

Mader, Györi [10] proved Theorem 1.2.2 for p ≤ 6.

Mader pointed out that Theorem 1.2.2 does not hold for p = 8: the graph K2, 2, 2, 2, 2

is a counterexample. However, one can construct further counterexamples by repeatedly

identifying cliques of size five. That motivates the next definition.

1.2.3 Definition of (H1,H2, k)-cockade

For graphs H1,H2 and an integer k, we define an (H1, H2, k)-cockade recursively as follows.

Any graph isomorphic to H1 or H2 is an (H1,H2, k)-cockade. Now let G1, G2 be (H1, H2, k)-

cockades and let G be obtained from the disjoint union of G1 and G2 by identifying a clique

of size k in G1 with a clique of the same size in G2. Then the graph G is also an (H1,H2, k)-

cockade, and every (H1, H2, k)-cockade can be constructed this way. If H1 = H2 = H, then

it is called (H, k)-cockade.

1.2.4 Jørgensen’s Result

Jørgensen [16] generalized Theorem 1.2.2 as follows.

Theorem 1.2.3 Every simple graph on n ≥ 8 vertices and at least 6n−20 edges either has

a K8 minor, or is a (K2, 2, 2, 2, 2, 5)-cockade.

To see that Theorem 1.2.3 implies Theorem 1.2.2, let G and p be as in Theorem 1.2.2,

and apply Theorem 1.2.3 to the graph obtained from G by adding 8 − p vertices, each

adjacent to every other vertex of the graph.

5



1.3 Main Results

1.3.1 K9 minors

One of our main results is the following next step (see also [31]). We prove that every

edge-maximal graph without a K9 minor has at most 7n−28 edges or is a (K1, 2, 2, 2, 2, 2, 6)-

cockade, or is isomorphic to K2, 2, 2, 3, 3. Note that every (K2, 2, 2, 3, 3, 6)-cockade is isomorphic

to K2, 2, 2, 3, 3.

Theorem 1.3.1 Every simple graph on n ≥ 9 vertices and at least 7n−27 edges either has

a K9 minor, or is a (K1, 2, 2, 2, 2, 2, 6)-cockade, or is isomorphic to K2, 2, 2, 3, 3

We prove Theorem 1.3.1 in Chapter 5. Note that Theorem 1.3.1 extends Mader’s results

on the extremal function for Kp minors, where p ≤ 7, and Jørgensen’s result on K8 minors.

In Chapter 6, we also study the minimal counterexamples to the analogue of Mader’s

bound for K10 minors. However, since the proof of one of our lemmas in Theorem 1.3.1 is

computer-assisted, extending our methods to K10 minors cannot be done without a lot of

programming effort.

1.3.2 K7 ∪ K1 minors

In Chapter 4, we prove that every edge-maximal graph without a K7 ∪ K1 minor has at

most 5n − 15 edges or is isomorphic to one of the graphs listed in Theorem 1.3.2. Note

that Theorem 1.3.2 generalizes Mader’s result on the extremal function for K7 minors (see

Theorem 1.2.2) and a result of Jørgensen on the extremal function for K6 ∪ K1 minors.

Theorem 1.3.2 Let G be a graph with n ≥ 8 vertices and

e(G) ≥











5n − 14 if n 6= 9

32 if n = 9

6



Then either G > K7 ∪ K1 or G is isomorphic to K4 + Cn−4 when n 6= 9, or one of

the following graphs: K1, 2, 2, 2, 2, K1, 3, 3, 3, K2, 2, 2, 4, K2, 3 + K−
2, 3, K2, 2 + K−

3, 3, K2, 3 + C5,

K3, 3 +P4, K2, 2, 3, 3, where K−
2, 3 and K−

3, 3 are depicted in Figure 2 and a dotted line denotes

the deleted edge.

Figure 2: K−
2, 3 and K−

3, 3

1.3.3 K−
8 minors, Jakobsen’s Conjecture

The extremal functions for K−
p minors have also been studied, where K−

p denote the graph

obtained from Kp by removing one edge. Jakobsen [13, 14] proved the following.

Theorem 1.3.3 For p = 5, 6, 7, if G is a graph with n ≥ p vertices and at least (p− 5
2)n−

1
2(p − 3)(p − 1) edges, then G > K−

p , or G is a (Kp−1, p − 3)-cockade when p 6= 7, or p = 7

and G is a (K2, 2, 2, 2, K6, 4)-cockade.

In 1983, Jakobsen [14] also conjectured that Theorem 1.3.3 extends to p = 8 as follows:

Conjecture 1.3.4 If G is a graph with n ≥ 8 vertices and at least 11n−35
2 edges, then

G > K−
8 or G is a (K1, 2, 2, 2, 2, K7, 5)-cockade.

In Chapter 3 (see also [30]), we prove Conjecture 1.3.4, as follows.

7



Theorem 1.3.5 If G is a graph with n ≥ 8 vertices and at least 11n−35
2 edges, then G > K−

8

or G is a (K1, 2, 2, 2, 2, K7, 5)-cockade.

Jakobsen [14] pointed out that the graph K2, 2, 2, 2, 3 contains no K−
9 minor. In fact,

there are many more small counterexamples to an analogue of Conjecture 1.3.4 for p = 9:

K1, 1, 2, 2, 2, 2, K1, 2, 2, 3, 3, K3, 3, 3, 3 and K2, 3, 3, 4. Thus an analogue of Conjecture 1.3.4 for

p = 9 will have to include the conclusion that G is isomorphic to one of these graphs.

1.3.4 Beyond K9 minors

In Chapter 6, we study counterexamples to Mader’s bound for p = 10. We believe that every

edge-maximal graph without a K10 minor has at most 8n−36 edges, or is a (K1, 1, 2, 2, 2, 2, 2, 7)-

cockade, or is isomorphic to one of the following graphs: K1, 2, 2, 2, 3, 3, or K2, 2, 3, 3, 4, or

K2, 3, 3, 3, 3, or K−
2, 3, 3, 3, 3, K2, 2, 2, 2, 2, 3, K−

2, 2, 2, 2, 2, 3, or the graph obtained from two disjoint

copies of K2, 2, 2, 2, 2, 3 by identifying cliques of size six. Unfortunately, we are unable to

prove it now. Instead, we give a weak estimate for the extremal function for K10 and K11

minors. We prove that every edge-maximal graph without K10 minor has at most 11n− 66

edges and every graph without K11 minor has at most 13n − 89 edges. This estimate can

be improved.

1.4 Linkages

Let G be a graph and s1, s2, . . . , sk, t1, t2, . . . , tk ∈ V (G). The k-path problem is to de-

termine if there exist k disjoint paths P1, P2, . . . , Pk such that Pi has ends si and ti. A graph

with at least 2k vertices is said to be k-linked if for every 2k-tuple s1, s2, . . . , sk, t1, t2, . . . , tk

of distinct vertices, the k-path problem is feasible.

Linkages, subdivisions and minors are related in the following sense. Larman and Mani

[23] and Jung [17] noticed that if a graph G is 2k-connected and contains a subdivision of
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K3k, then G is k-linked. Mader [24] showed that a graph contains a subdivision of K3k if its

connectivity is sufficiently large. Robertson and Seymour [27] showed that the observation

of Larman and Mani and of Jung remains true under a much weaker condition that G

has a K3k minor. Instead of considering K3k, Bollobás and Thomason [5] consider graphs

containing a dense graph as a minor. Using this idea they proved that every 22k-connected

graph is k-linked, thus proving the conjecture that linear connectivity forces a graph to be

k-linked. Recently, Kawarabayashi, Kostochka and Yu [18] proved that every 12k-connected

graph is k-linked, and Thomas and Wollan [32] were able to prove that every 10k-connected

graph is k-linked.

In this thesis, we shall use the following result on 2-linkages. The next theorem was first

proved by Jung [17]. Seymour [29] and Thomassen [36] gave a complete characterization of

all (not necessarily 4-connected) graphs that satisfy the hypothesis of the theorem.

Theorem 1.4.1 Let G be a 4-connected graph and let x1, x2, y1, y2 be distinct vertices in

G. If G does not contain an x1-y1 path and an x2-y2 path that are disjoint, then G is planar

and e(G) ≤ 3|G| − 7.

Theorem 1.4.2 is a result of Thomas and Wollan [33]. As we explain in Chapter 6, it

will be useful in a possible extension of Theorem 1.2.2 to p = 10.

Theorem 1.4.2 Let G be a 6-connected graph. Then G is 3-linked if e(G) ≥ 5n − 14.

1.5 Motivation for our work

1.5.1 Four Color Theorem

If any result in graph theory has a claim to be known to the world outside, it is the following

Four Color Theorem (which implies that every map can be colored with at most four colors):
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Theorem 1.5.1 [The Four Color Theorem] Every planar graph is 4-colorable.

The Four Color Theorem was first proved by Appel and Haken [1, 3, 2] in 1976. Their

proof was computer-assisted and extremely complicated. A new proof of the Four Color

Theorem was published in 1997 by Robertson, Sanders, Seymour and Thomas [26]. The

new proof was still computer-assisted but the programs used in the new proof were available

for independent verification.

1.5.2 Hadwiger’s Conjecture

Before we state the Hadwiger’s Conjecture, we need to introduce one more notion.

A graph G is said to be k-colorable if one can color its vertices in such a way that any

two adjacent vertices must receive different colors, using at most k colors. The least integer

k is called the chromatic number of G, and is denoted by χ(G).

Hadwiger’s Conjecture [11] from 1943 suggests a far reaching generalization of the Four

Color Theorem. It is considered by many as one of the deepest open problems in Graph

Theory.

Conjecture 1.5.2 For every integer t ≥ 1, every graph with no Kt+1 minor is t-colorable.

Hadwiger’s conjecture is trivially true for t ≤ 2, and reasonably easy for t = 3, as shown

by Dirac [8]. However, for t ≥ 4, Hadwiger’s conjecture implies the Four Color Theorem.

(To see that, let H be a planar graph, and let G be obtained from H by adding t−4 vertices,

each joined to every other vertex of the graph. Then G has no Kt+1 minor, and hence is

t-colorable by Hadwiger’s conjecture, and hence H is 4-colorable.) Wagner [37] proved that

the case t = 4 of Hadwiger’s conjecture is, in fact, equivalent to the Four Color Theorem,

and the same was shown for t = 5 by Robertson, Seymour, and Thomas [28]. They actually

proved that a minimal counterexample to the case t = 5 is a graph G which has a vertex v

such that G− v is planar. This kind of graph is called apex. For t = 6, Kawarabayashi and

10



Toft [19] proved that any graph with χ(G) ≥ 7 has either K7 or K4,4 as a minor. Jakobsen

[12] proved that every graph with χ(G) ≥ 7 contains a minor isomorphic to K7 with two

edges deleted. Hadwiger’s conjecture remains open for t ≥ 6.

1.5.3 Motivation

Our motivation was three fold. As we know, Hadwiger’s Conjecture is open for t ≥ 6.

Robertson, Seymour and Thomas [28] proved that the case t = 5 is equivalent to the Four

Color Theorem. Their proof made use of Theorem 1.2.2 for p = 6.

In [6] Chen, Gould, Kawarabayashi, Pfender and Wei proved that every simple graph

on n vertices and at least 9n − 45 edges has a K9 minor, and used that to deduce that if,

in addition, G is 6-connected, then it is 3-linked. It turns out [33] that the same conclusion

can be obtained from a weaker bound on the number of edges by a more direct argument,

but the work of Chen, Gould, Kawarabayashi, Pfender and Wei suggested that there may

be interest in the extremal problem for K9 minors.

Theorem 1.2.2 is such a nice result that it raises the question of whether it can be

generalized to all values of p. But there are more depressing news than Mader’s example

above: for large p a graph must have at least Ω(p
√

log pn) edges in order to guarantee a Kp

minor, because, as noted by several people (Kostochka [20, 21], and Fernandez de la Vega

[7] based on Bollobás, Catlin and Erdös [4]), a random graph with no Kp minor may have

average degree of order p
√

log p. Kostochka [20, 21] and Thomason [34] proved that this

is indeed the correct order of magnitude, and in a remarkable recent result [35] Thomason

was able to determine the constant of proportionality. Thus it may seem that an effort to

generalize Theorem 1.2.2 will be in vain, but there is still the following possibility. The

random graph examples provide only finitely many counterexamples for any given value of

p. Of course, more counterexamples can be obtained by taking disjoint unions or even gluing

counterexamples along small cutsets, but we know of no construction of highly connected

infinite families of counterexamples. More specifically, Seymour and Thomas (see [31])

conjecture the following.
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Conjecture 1.5.3 For every p ≥ 1 there exists a constant N = N(p) such that every

(p− 2)-connected graph on n ≥ N vertices and at least (p− 2)n−
(p−1

2

)

+ 1 edges has a Kp

minor.

It was this conjecture that was the third motivating factor for our research. Thus

Theorem 1.3.1 implies that Conjecture 1.5.3 holds for p ≤ 9.

12



CHAPTER II

K−
6 ∪ K1 MINORS IN GRAPHS OF SMALL ORDER

2.1 Introduction

For a real number x, we denote by dxe the least integer ≥ x. In the proof of Theorem 1.3.5,

we shall consider graphs with n vertices and exactly d 11n−35
2 e edges. Such graphs have

vertices of degree at most 10. Since we want to consider contractions in the graph spanned

by the neighbors of a vertex of degree at most 10, we need some results about contractions

in graphs with at most 10 vertices. Theorem 2.1.1 and Theorem 1.3.3 will be used in proving

those results, where Theorem 2.1.1 is a result of Jørgensen [16].

Theorem 2.1.1 Let G be a graph with n ≤ 11 vertices and δ(G) ≥ 6 such that for every

vertex x in G, G − x is not contractible to K6. Then G is isomorphic to one of the graphs

K2, 2, 2, 2, K3, 3, 3 or the complement of the Petersen graph. In particular, G > K−
6 ∪ K1.

We are now ready to prove the following two lemmas.

Lemma 2.1.2 Let G be a graph with 8 vertices and δ(G) ≥ 5. Then G > K−
6 ∪ K1 or

G is isomorphic to C8, C4 + C4, K3 + C5, K2 + C6, or K2, 3, 3. In particular, all these

graphs are edge maximal subject to not having a K−
6 ∪ K1 minor. Moreover, C8 > K6 and

C4 + C4 > K6.

Proof. It is not hard to verify that the graphs listed are edge maximal subject to not having

a K−
6 ∪ K1 minor. Thus we may assume that every edge of G is incident with a vertex of

degree five. Let x ∈ V (G) be such that d(x) = 5. If e(G − x) ≥ 1
2(7|G − x| − 15) = 17, by

Theorem 1.3.3, G − x > K−
6 or G − x = K3 + (K2 ∪ K2). In the second case, x is adjacent
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to the four vertices of degree 4 in K3 + (K2 ∪ K2). It is easy to check that G > K−
6 ∪ K1.

Hence we may assume e(G − x) ≤ 16, and so 20 ≤ e(G) ≤ 21. If e(G) = 20, then G is

5-regular on 8 vertices. Thus G is 2-regular. It follows that G is isomorphic to C8, C4 ∪C4,

or C3 ∪ C5, and so the lemma holds. If e(G) = 21, then G has either one vertex of degree

7 and seven vertices of degree 5 or two vertices of degree 6 and six vertices of degree 5. In

the first case, let y be the vertex of degree 7. Then G − y is 4-regular on 7 vertices. Thus

G − y = C7 or C3 ∪ C4. It is easy to check that G − y > K−
5 ∪K1 and thus G > K−

6 ∪ K1.

For the latter, let z, w be the two vertices of degree 6. Since G is edge minimal, we have

zw /∈ E(G). It follows that G − {z, w} is 3-regular on 6 vertices. Thus G is K2 + C6 or

K2, 3, 3. The last assertion is easy to verify.

Figure 3: Graph J has no K−
6 ∪ K1 minor

Lemma 2.1.3 Let G be a graph with 9 ≤ n ≤ 10 vertices and δ(G) ≥ 5. Then G > K−
6 ∪K1

or G is isomorphic to J (given in Figure 3).

Proof. Lemma 2.1.3 can be checked by computers. However, a computer-free proof is

given in the next section.

From Lemma 2.1.2 and Lemma 2.1.3, it follows that

Corollary 2.1.4 Let G be a graph with 8 ≤ |G| ≤ 10 and δ(G) ≥ 5. Then G > K−
6 ∪ K1

or G is isomorphic to C8, C4 +C4, K3 +C5, K2 +C6, K2, 3, 3, or J . In particular, all these

graphs are edge maximal (subject to not having a K−
6 ∪ K1 minor) with maximum degree

≤ |G| − 2. Moreover, C8 > K6, C4 + C4 > K6, and J > K6.
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We need to prove two more results.

Lemma 2.1.5 Let G be a graph on 8 vertices. Let u,w ∈ V (G) be such that d(u) ≥ 4,

d(w) = 7, and d(v) ≥ 5 for every v 6= u,w. Then G > K−
6 ∪ K1.

Proof. Suppose d(u) ≥ 5. Then δ(G) ≥ 5 and ∆(G) = 7. By Lemma 2.1.2, G > K−
6 ∪K1.

So we may assume that d(u) = 4. Then e(G) ≥ d 4+7+5×6
2 e = 21. Note that e(G − u) =

e(G) − 4 ≥ 17 and G − u has at most three vertices of degree 4. By Theorem 1.3.3,

G − u > K−
6 .

Lemma 2.1.6 Let G be a graph on 9 vertices. Let uw ∈ E(G) be such that d(u) = 4,

d(w) ≥ 7 and d(v) ≥ 5 for every v 6= u,w. Then G > K−
6 ∪ K1.

Proof. Suppose G is not contractible to K−
6 ∪K1. We may assume that G is edge minimal.

We claim that d(w) = 7. Suppose d(w) = 8. Since the number of odd vertices of any graph

is even, there exists another vertex, say v ∈ V (G), such that d(v) ≥ 6. Clearly, vw ∈ E(G)

and dG−vw(w) ≥ 7, dG−vw(u) = 4, dG−vw(v) ≥ 5 for any v 6= u,w, which contradicts the

fact that G is edge minimal. Hence d(w) = 7, as claimed.

We first show that G is 4-connected. Let S be a minimal separating set of G with |S| ≤ 3.

Since |G| = 9 and d(v) ≥ 5 for any v 6= u,w, we have |S| = 3. Let H1 and H2 be the two

connected components of G − S. Then |H1| = |H2| = 3. We may assume that H1 = K3

and each vertex of H1 is adjacent to all vertices of S. Note that there exists a vertex, say

a ∈ V (H2), adjacent to all vertices in S. Let b ∈ S. Now G/ab − V (H2 − a) > K−
6 . This

proves that G is 4-connected.

Since uw ∈ E(G), let V (N(u)) = {w, a, b, c} and A = V (G) − V (N [u]) = {d, e, f, g}.

We next prove the following claim.

Claim: For any v ∈ {a, b, c}, if vw ∈ E(G), then dN(u)(v) ≥ 2 .
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Proof. Suppose otherwise. We may assume that aw ∈ E(G) and ab, ac /∈ E(G). Let w ′ be

the new vertex in G/ua. Then dG/ua(w) = 6, dG/ua(w
′) ≥ 6 and ww′ ∈ E(G). Note that

δ(G/ua − ww′) ≥ 5. By Lemma 2.1.2, G/ua > K−
6 ∪ K1.

Suppose that w is adjacent to all vertices of A. Since dG(w) = 7, we may assume that

cw /∈ E(G). If ca /∈ E(G) or dG(a) ≥ 6, then ∆(G/uc) = 7, dG/uc(b) ≥ 4 and dG/uc(v) ≥ 5

for any v ∈ V (G/uc− b). By Lemma 6, G/uc > K−
6 ∪K1. Hence ca ∈ E(G) and dG(a) = 5.

Similarly, cb ∈ E(G) and dG(b) = 5. Note that eG(v, {a, b, c}) ≥ 1 for any v ∈ A. If

G[A] = K4 or K−
4 , then G/ac/bc − u > K−

6 . So we may assume that e(G[A]) ≤ 4. Thus

eG(A,N(u)) ≥ 20−2e(G[A]) ≥ 12 and eG({a, b, c}, A) = eG(A,N(u))−eG(w,A) ≥ 12−4 =

8. Note that dG(a) = dG(b) = 5. It follows that ab /∈ E(G) and c is adjacent to all vertices

of A. Hence dG(c) = 7, dG(v) = 5 for any v ∈ A, and e(G[A]) = 4. So G[A] = C4 or

K1 + (K2 ∪ K1). In the first case, we may assume that G[A] has vertices d, e, f, g in order

and ad ∈ E(G). Then by symmetry, either af ∈ E(G) or ae ∈ E(G). If af ∈ E(G),

then be, bg ∈ E(G) and so G/ad/be − u = K−
6 . If ae ∈ E(G), then bf, bg ∈ E(G) and so

G/uw/de − a = K−
6 . In the second case, we may assume that ed, ef, eg, fg ∈ E(G). Then

d is adjacent to all vertices of N(u). Note that either af, bg ∈ E(G) or ag, bf ∈ E(G). In

either case, G/da/db − u > K−
6 . This proves the case when w is adjacent to all vertices of

A.

Suppose w is adjacent to all vertices of N(u). Then dG(w,A) = 3 and so δ(G[{a, b, c}]) ≥

1 by Claim. We may assume that ab, bc ∈ E(G). Note that eG(v, {a, b, c}) ≥ 1 for any v ∈ A.

If G[A] = K4, then G/ab/bc − u > K−
6 . So we may assume that e(G[A]) ≤ 5. It follows

that eG(A,N(u)) ≥ 20− 2e(G[A]) ≥ 10 and so eG({a, b, c}, A) = eG(A,N(u))− eG(w,A) ≥

10−3 = 7. Thus ca /∈ E(G) (otherwise, since G is edge minimal, at most one of a, b, c could

be of degree > 5, and so e({a, b, c}, A) ≤ 4 + 1 + 1 = 6, a contradiction). If a is adjacent to

all vertices of A, then ∆(G/uc) = 7, dG/uc(b) = 4 and dG/uc(v) ≥ 5 for any v ∈ V (G/uc−b).

By Lemma 6, G/uc > K−
6 ∪ K1. Hence a, similarly c, is adjacent to at most three vertices

of A. Thus eG(N(u), A) ≤ 3 + 3 + 1 + 3 = 10 ≤ eG(A,N(u)). It follows that G[A] = K−
4 , a

(resp. c) is adjacent to exactly three vertices of A and b is adjacent to exactly one vertex of
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A, all vertices of A are of degree five. Since G[A] = K−
4 , we may assume that de /∈ E(G).

Note that eG(b, A) = 1, we may assume that be /∈ E(G). Then ew, ea, ec ∈ E(G). Observe

that eG(d,N(u)) = 3 and if v ∈ N(u) is not adjacent to d, then vf ∈ E(G) or vg ∈ E(G),

say the later. Clearly, G/ae/dg − f > K−
6 .

2.2 Proof of Lemma 2.1.3

Here we give a computer-free proof of Lemma 2.1.3.

We may assume that G is minor minimal subject to δ(G) ≥ 5 and |G| ≥ 9. If δ(G) ≥ 6,

by Theorem 2.1.1, G > K−
6 ∪ K1. So we may assume that δ(G) = 5. We first prove two

claims.

Claim 1. Every edge of G is in at least two triangles.

Proof. Suppose e = uv ∈ E(G) is in at most one triangle in G. Let w be the new vertex

in G/e. Then dG(w) ≥ 7, and dG(y) ≥ 4, where y is the common neighbor of u and v in

G. Clearly, wy ∈ E(G/e) and dG/e(v) ≥ 5 for any v 6= w, y. Since G is minor minimal, by

Lemma 2.1.5 and Lemma 2.1.6, G > G/e > K−
6 ∪ K1.

Claim 2. There is no edge of G with both ends of degree at least six in G.

Proof. Suppose e = uv ∈ E(G) is such that d(u), d(v) ≥ 6. Then δ(G−e) ≥ 5 and |G| ≥ 9,

which contradicts the fact that G is minor minimal.

We next show that G is 4-connected. Let S be a minimal separating set of G with

|S| ≤ 3. Let H1 be a component of G − S with minimal order and H2 = G − S − H1. If

|S| ≤ 2, then, since δ(G) ≥ 5, |H1|, |H2| ≥ 4, and hence |S| = 2, H1 and H2 are isomorphic

to K4, because |G| ≤ 10. But then, clearly, G > K−
6 ∪K1. Suppose |S| = 3. Then H1 = K3

and 3 ≤ |H2| ≤ 4. Note that every vertex of H1 is adjacent to every vertex of S. If there is a

vertex b ∈ V (H2) such that b is adjacent to all vertices in S, then G/ab−V (H2 − b) > K−
6 ,

where a ∈ S. Otherwise H2 = K4. By the minimality of |S|, G has a matching from S
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into H2. By contracting this matching, it follows that G > K−
6 ∪K1. This shows that G is

4-connected.

Since δ(G) = 5, let x ∈ V (G) be such that d(x) = 5. We may assume that V (N(x)) =

{a, b, c, d, e} and A = V (G) − V (N [x]) = {y1, y2, · · · , y|G|−6}.

Claim 3. N(x) contains no subgraph isomorphic to K2,3.

Proof. Suppose that N(x) has a subgraph H isomorphic to K2,3. We may assume that

dH(a) = dH(e) = 3 and dH(b) = dH(c) = dH(d) = 2, as shown in Figure 4.

a

b c d

e

Figure 4: K2, 3

Suppose that there exists a vertex of A, say y1, such that y1b, y1c, y1d ∈ E(G). If

G[{b, c, d}] 6= K3, say bc ∈ E(G), then G/y1d − y2 > K−
6 . So we may assume that

G[{b, c, d}] = K3. If two of b, c, d, say b, c, have a common neighbor, say y2, of A − y1

in G, then G/by2/dy1 −y3 > K−
6 . It follows that any two vertices of b, c, d have no common

neighbors in A, thus there is a matching M from {b, c, d} into A − y1 = {y2, y3, y4}, and

V (M) ∩ A is not a stable set in G. We may assume that y2y3 ∈ E(G) and by2, cy3 ∈ M .

Now G/by2/y2y3/dy1 − y4 > K−
6 . This proves that there is no vertex of A adjacent to all

b, c, d in G. Next, suppose that G[{b, c, d}] induces at least two edges, say bc, cd ∈ E(G).

We may assume that bd, ae /∈ E(G), otherwise N [x] > K−
6 . Among a, b, d, e, by Claim 2,

we may assume that dG(e) = 5. Let ey1 ∈ E(G). If cy1 /∈ E(G), by Claim 1, δ(N(e)) ≥ 2.
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Thus by1, dy1 ∈ E(G) and so G/by1−y2 > K−
6 . It follows that cy1 ∈ E(G). Then dG(c) ≥ 6.

By Claim 2, dG(a) = dG(b) = dG(d) = 5. By Claim 1 and the symmetry of b and d, we

may assume that by1 ∈ E(G). Then dy1 /∈ E(G), otherwise y1 is adjacent to all b, c, d in G.

Similarly, let dy2 ∈ E(G). Then cy2 ∈ E(G) and by2, ey2 /∈ E(G). Thus ay2 ∈ E(G). Now

y3 is only adjacent to c, y1, y2, y4, which contradicts the fact that dG(y3) ≥ 5. This proves

that G[{b, c, d}] contains at most one edge. We may assume that bc, bd /∈ E(G).

Suppose that dG(a), dG(e) ≥ 6. Then δ(G/xb) ≥ 5. Since G is minor minimal, we

have |G| = 9. Let w be the new vertex in G/xb. Then dG/xb(w) ≥ 6. If dG/xb(a) ≥ 6 or

dG/xb(e) ≥ 6, say the latter, then δ(G/xb − ew) ≥ 5. By Lemma 2.1.2, G/xb > K−
6 ∪ K1.

It follows that dG(a) = dG(e) = 6. Since |G| = 9 and the number of odd vertices of a

graph is even, there exists a vertex of A, say y1, such that dG(y1) ≥ 6. Then dG/xb(y1) ≥ 6

and wy1 ∈ E(G/xb). Now δ(G/xb − wy1) ≥ 5. By Lemma 2.1.2, G/xb > K−
6 ∪ K1.

Consequently, dG(a) = 5 or dG(e) = 5. We may assume that dG(a) = 5. If ae ∈ E(G),

then, since G is 4-connected, e has at least one neighbor in A. It follows that dG(e) ≥ 6

and so dG(b) = dG(c) = dG(d) = 5. Now x and b have exactly two common neighbors a and

e in G. If dG(e) ≥ 8, then in G/xb, ∆(G/xb) ≥ 7, dG/xb(a) = 4 and dG/xb(v) ≥ 5 for any

v ∈ V (G/xb−a). By Lemma 2.1.5 and Lemma 2.1.6, G/xb > K−
6 ∪K1. So we may assume

that e is adjacent to at most two vertices of A in G. Then eG(N(x), A) ≤ 8. It follows

that eG(N(x), A) = 8, |A| = 4, G[A] = K4, and G[{b, c, d}] = K3. We may assume that

by1, cy4 ∈ E(G). Then G/by1/y1y2/y2y3 − y4 = K−
6 . Hence ae /∈ E(G). Let ay1 ∈ E(G).

Then cd ∈ E(G), otherwise, by Claim 1, δ(N(a)) ≥ 2, but then y1 is adjacent to all b, c, d

in G. Again, by Claim 1, y1b ∈ E(G). By symmetry of c and d, we may assume that

cy1 ∈ E(G) and so dy1 /∈ E(G) (otherwise y1 is adjacent to all b, c, d). Let dy2 ∈ E(G).

Then ay2 /∈ E(G) and y2 is adjacent to at most one of b and c in G. It follows that either

y2y1 ∈ E(G) (in this case G/by1/y1y2 − y3 > K−
6 ) or y2y3, y2y4 ∈ E(G) and y1 is adjacent

to at least one of y3, y4, say y3 ( in this case G/by1/y1y3/y3y2 − y4 > K−
6 ).

Claim 4. N(x) contains no subgraph isomorphic to K1 + (K2 ∪ K2).

Proof. Suppose that N(x) has a subgraph H isomorphic to K1 + (K2 ∪ K2). We may
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assume that dH(c) = 4, and ab, de ∈ E(H), as depicted in Figure 5.

c

a

b

d

e

Figure 5: K1 + (K2 ∪ K2)

By Claim 3, there exists at most one edge between {a, b} and {d, e} in G. Suppose such

an edge exists. By symmetry, we may assume that ad ∈ E(G). By Claim 2, we may assume

that dG(a) = 5. Let ay1 ∈ E(G). By Claim 1, δ(N(a)) ≥ 2. By Claim 3, we may assume

that cy1 ∈ E(G). It follows that dG(c) ≥ 6 and by Claim 2, dG(b) = dG(d) = dG(e) = 5.

If eG(c, A) ≥ 3, then dG/xe(c) ≥ 7, dG/xe(d) = 4 and dG/xe(v) ≥ 5 for any v 6= e. By

Lemma 2.1.5 and Lemma 2.1.6, G > G/xe > K−
6 ∪K1. Hence eG(c, A) ≤ 2. By counting the

number of edges between N(x) and A in G, it follows that eG(A,N(x)) = 8 and G[A] = K4.

Let byi, eyj ∈ E(G), where yi, yj , y1 could be the same. Clearly, G/eyj/yjyi/yiy1 − (A −

{y1, yi, yj}) = K−
6 . This shows that there exists no edge between {a, b} and {d, e} in G. By

Claim 2, we may assume that dG(b) = dG(e) = 5. Let by1, by2 ∈ E(G).

Suppose that dG(c) = 5. Then by Claim 1, y1y2, ay1, ay2 ∈ E(G). Let yi, yj be the

two neighbors of e in A. By Claim 1, yiyj, dyi, dyj ∈ E(G). If yi = y1 and yj = y2, then

G/ey1/dy2 − y3 > K−
6 . If yi = y1 and yj 6= y2, we may assume that yj = y3. Then

G/ey1/ay3 − y2 > K−
6 if ay3 ∈ E(G) or G/ey1/dy2 − y3 > K−

6 if dy2 ∈ E(G). It follows

that G[A] = K4. Now G/ey1/ay2/y2y3 − y4 > K−
6 . Hence, by symmetry, we may assume

that yi, yj 6= y1, y2 and so ey3, ey4 ∈ E(G). Clearly, G > K−
6 ∪ K1 or G is isomorphic to J .

This proves that dG(c) ≥ 6. By Claim 2, dG(a) = dG(b) = dG(d) = dG(e) = 5. If dG(c) ≥ 8,
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then dG/xa(c) ≥ 7, dG/xa(b) = 4 and dG/xa(v) ≥ 5 for any v 6= c, b. By Lemma 2.1.5 and

Lemma 2.1.6, G/xa > K−
6 ∪ K1. It follows that 6 ≤ dG(c) ≤ 7. Since by1, by2 ∈ E(G), by

the symmetry of a, b, d, e, we may assume that cy1 /∈ E(G). By Claim 1, y1y2, ay1 ∈ E(G).

Suppose ey1 ∈ E(G). By Claim 1, dy1 ∈ E(G). If dy2 ∈ E(G) or ey2 ∈ E(G), say

the latter, then G/ay1/by2 − y3 > K−
6 . So we may assume that dy2, ey2 /∈ E(G). Let

ey3 ∈ E(G). By Claim 1, y1y3 ∈ E(G). By symmetry of a, b, d, e, ay3, by3 /∈ E(G). If

|A| = 3, then by Claim 1, cy2, cy3, ay2, dy3, y2y3 ∈ E(G) and so G/xd/y2y3 − e = K−
6 . If

|A| = 4, since y4 is adjacent to at least two vertices other than b, e of H, we may assume

that ay4 ∈ E(G). Then G/ay4/by1 − {y2, y3} = K−
6 if dy4 ∈ E(G), otherwise y3y4 ∈ E(G)

and G/by1/ey3/y3y4 − y2 = K−
6 . This proves that ey1 /∈ E(G) and similarly, dy1 /∈ E(G).

Thus y1yi ∈ E(G), i = 2, 3, 4, and dG(y1) = 5. We claim that G[A] = K4. If ay2 ∈ E(G),

by Claim 1, δ(N(y1)) ≥ 2 and so G[A] = K4. If ay2 /∈ E(G), we may assume that

ay3 ∈ E(G). By Claim 1, δ(N(b)) ≥ 2 and so cy2, cy3 ∈ E(G). Since dG(c) ≤ 7, we have

cy4 /∈ E(G) and so y4 is adjacent to d, e, y1, y2, y3. Then either G[A] = K4 or y2y3 /∈ E(G)

(in this case, we may assume that ey3 ∈ E(G). Then G/by1/y1y4/ey3 − y2 = K−
6 ). Hence

G[A] = K4, as claimed. Since eG(N(x), A) ≥ 9, there exists a vertex yi ∈ A such that

dG(yi) ≥ 6. Note that dG(y1) = 5, we have yi 6= y1. By Claim 2, cyi /∈ E(G) and so

eG(yi, {a, b, d, e}) ≥ 3. Since y1e, y1d /∈ E(G), let eyj, dyk ∈ E(G), where yj, yk 6= yi. If

yi 6= y2, then G/ayi/by1/y1yj > K−
6 ∪ K1. So we may assume that yi = y2. If ay2 /∈ E(G),

then G/by2/ay1/y1yj > K−
6 ∪ K1. If ay2 ∈ E(G), we may assume that ey2 ∈ E(G). Then

G/ey2/by1/y1yk > K−
6 ∪ K1.

By Claim 1, δ(N(x)) ≥ 2. Hence, by Claim 3 and Claim 4, N(x) is isomorphic to either

C5 or C5 with exactly one chord.

Suppose that N(x) is isomorphic to C5 and N(x) has vertices a, b, c, d and e in order as

shown in Figure 6.

By Claim 2, N(x) contains at most two vertices of degree ≥ 6. Suppose that N(x)

contains exactly two vertices of degree ≥ 6, say b and d. Then δ(G/xc) ≥ 5. Since G is
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a

b

c d

e

Figure 6: C5

minor minimal, we have |G| = 9, dG(b) = dG(d) = 6, and by Claim 2, dG(v) = 5 for any

v ∈ V (G − {b, d}), which contradicts the fact the number of odd vertices of G is even.

This implies that N(x) contains at most one vertex of degree greater than five (we may

assume dG(e) ≥ 6 if such a vertex exists). Thus dG(a) = dG(b) = dG(c) = dG(d) = 5. Let

cy1, cy2 ∈ E(G). By Claim 3 and Claim 4, N(c) contains no subgraph isomorphic to K2,3

and K1 +(K2∪K2). Thus by Claim 1, y1y2 ∈ E(G). We may assume that by1, dy2 ∈ E(G).

Then by2, dy1 cannot be both in E(G), otherwise N(c) > K2,3.

Suppose by2, dy1 /∈ E(G). Since dG(b) = 5, let by3 ∈ E(G). By Claim 1, ay3, y3y1 ∈

E(G). We claim that dy3 /∈ E(G). Suppose dy3 ∈ E(G). By Claim 1, y3y2, ey3 ∈ E(G).

Thus dG(y3) ≥ 6 and so dG(e) = dG(y1) = dG(y2) = 5. If |A| = 3, by Claim 1, ay1, ey2 ∈

E(G). Clearly, G/xb/y1y2− c > K−
6 . If |A| = 4, then y4 is adjacent to a, e, y1, y2, y3, and so

G/by3/ay4/y4y2−y1 = K−
6 . This proves that dy3 /∈ E(G). Since dG(d) = 5, let dy4 ∈ E(G).

Then by Claim 1, ey4, y2y4 ∈ E(G). If ay4 /∈ E(G), then dG(y4) = 5 and y4y1, y4y3 ∈ E(G).

By Claim 1, δ(N(y4)) ≥ 2 and so ey3 ∈ E(G). Note that a is adjacent to exactly one vertex

of {y1, y2}. Now G/ay1/by3/cd − y2 = K−
6 if ay1 ∈ E(G) or G/xc/xe/ay2 − d = K−

6 if

ay2 ∈ E(G). This proves that ay4 ∈ E(G). By Claim 1, δ(N(a)) ≥ 2 and so y3y4 ∈ E(G).

Clearly, y1y4 /∈ E(G) (otherwise dG(y4) ≥ 6 and so by Claim 2, e is adjacent to exactly

one of y2 and y3, say y2. Then dG(y3) = 4, which is a contradiction). It follows that

ey1 ∈ E(G) and dG(y1) = 5. By Claim 1, δ(N(y1)) ≥ 2, we have ey2, ey3 ∈ E(G). Now

G/xa/xc/y3y4 − b = K−
6 .
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Suppose by2 /∈ E(G) but dy1 ∈ E(G). Since dG(b) = 5, let by3 ∈ E(G). By Claim 1,

ay3, y3y1 ∈ E(G). Suppose |A| = 4. Then y4 is adjacent to a, e, y1, y2, y3. Then dG(y1) ≥ 6.

By Claim 2, dG(y2) = dG(y3) = 5. By Claim 1, δ(N(y4)) ≥ 2, we have ey2, ey3 ∈ E(G).

Now G/ab/cy2/dy1 − y3 = K−
6 . So we may assume that |A| = 3. Since cy3, dy3 /∈ E(G),

it follows that dG(y3) = 5 and y3e, y3y2 ∈ E(G). By Claim 1, ey2 ∈ E(G). Note that a

is adjacent to exactly one vertex of y1, y2. Now G/xa/y2y3/ − e = K−
6 if ay1 ∈ E(G) or

G/xa/y1y3 − b = K−
6 if ay2 ∈ E(G).

Finally, assume that dy1 /∈ E(G) but by2 ∈ E(G). Since dG(d) = 5, let dy3 ∈ E(G).

By Claim 1, ey3, y3y2 ∈ E(G). Suppose |A| = 4. Then y4 is adjacent to a, e, y1, y2, y3.

Thus dG(y2) ≥ 6. By Claim 1, δ(N(y4)) ≥ 2 and so ay1 ∈ E(G). Since dG(y2) ≥ 6,

by Claim 2, y3 is only adjacent to d, e, y2, y4, which contradicts the fact that dG(y3) ≥ 5.

So we may assume that |A| = 3. Since cy3, by3 /∈ E(G), it follows that dG(y3) = 5 and

y3a, y3y1 ∈ E(G). Suppose ay1 ∈ E(G). By Claim 2, e is adjacent to exactly one vertex of

y1, y2. Thus G/xe/y2y3/ − d = K−
6 if ey1 ∈ E(G) or G/xe/y1y3 − a = K−

6 if ey2 ∈ E(G).

Suppose ay1 /∈ E(G). Then ey1, ay2 ∈ E(G). Now G/ay2/ey1 − y3 = K−
6 . This completes

the proof that N(x) is isomorphic to C5.

It remains to consider the case when N(x) is isomorphic to C5 with exactly one chord.

We may assume that E(N(x)) = {ab, bc, cd, de, ea, be}, as depicted in Figure 7.

a

b

c d

e

Figure 7: C5 with one chord

By Claim 2, one of b and e, say e, is of degree five in G. Let ey1 ∈ E(G). By Claim
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1, δ(N(e)) ≥ 2 and so dy1 ∈ E(G). Suppose ay1, by1 ∈ E(G). We claim that dG(a) ≥ 6.

Suppose dG(a) = 5. Let ay2 ∈ E(G). By Claim 1, δ(N(a)) ≥ 2 and so by2, y2y1 ∈ E(G).

It follows that N(a) > K1 + (K2 ∪ K2), which contradicts Claim 4. Hence dG(a) ≥ 6, as

claimed. By Claim 1 and Claim 2, dG(b) = 5 and cy1 ∈ E(G). But now N(b) > K2,3, which

contradicts Claim 3. This proves that at most one of by1, ay1 are in E(G).

Suppose by1 ∈ E(G) but ay1 /∈ E(G). If dG(b) = 5, since δ(N(b)) ≥ 2, cy1 ∈ E(G). By

Claim 1, δ(N(a)) ≥ 2. Hence ayi ∈ E(G), i = 2, 3, 4, and G[{y2, y3, y4}] = K3. Since there

is no edge between {b, e} and {y2, y3, y4} in G, eG({y2, y3, y4}, {c, d, y1}) ≥ 6. However, by

Claim 2, eG({c, d, y1}, {y2, y3, y4}) ≤ 5, which is a contradiction. So we may assume that

dG(b) ≥ 6. By Claim 2, dG(a) = 5. Let ay2, ay3 ∈ E(G). By Claim 1, δ(N(a)) ≥ 2 and so

y2y3, by2, by3 ∈ E(G). Then N(a) > K1 + (K2 ∪ K2), which contradicts Claim 4.

Finally, suppose ay1 ∈ E(G) but by1 /∈ E(G). We claim that dG(d) ≥ 6. Suppose

dG(d) = 5. Let dy2 ∈ E(G). We may assume that N(d) 6= C5. By Claim 1, δ(N(d)) ≥ 2 and

so y1y2, cy1, cy2 ∈ E(G). It follows that G/ay1/by2−y3 > K−
6 if by2 ∈ E(G) or G/ay2/ey1−

y3 > K−
6 if ay2 ∈ E(G). So we may assume that ay2, by2 /∈ E(G). Then y2y3, y2y4 ∈ E(G).

Since by1, by2 /∈ E(G), we may assume that by3 ∈ E(G). Now G/ay1/by3/y3y2 − y4 = K−
6 .

This proves that dG(d) ≥ 6. By Claim 2, dG(c) = 5 and so dG(b) ≥ 6 (otherwise, by

symmetry of b and e, dG(c) ≥ 6). Now δ(G/xc) ≥ 5. Since G is minor minimal, we have

|G| = 9. Let w be the new vertex in G/xc. Then dG/xc(w) ≥ 6. If dG/xc(b) ≥ 6 or

dG/xc(d) ≥ 6, say the latter, then δ(G/xb−dw) ≥ 5. By Lemma 2.1.2, G/xc > K−
6 ∪K1. It

follows that dG(b) = dG(d) = 6. Since |G| = 9 and the number of odd vertices of G is even,

there exists a vertex, say y1, of A such that dG(y1) ≥ 6. Note that dG/xc(y1) ≥ 6 and y1c ∈

E(G). Now y1w ∈ E(G/xc) and δ(G/xc− y1w) ≥ 5. By Lemma 2.1.2, G/xc > K−
6 ∪K1.
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CHAPTER III

THE EXTREMAL FUNCTION FOR K−
8 MINORS

In this chapter, we shall prove Conjecture 1.3.4 stated in Chapter 1.

3.1 (K1, 2, 2, 2, 2, K7, 5)-cockades are edge-maximal

Our proof of Conjecture 1.3.4 uses induction by deleting and contracting edges of G. We

need to investigate graphs G such that the new graph G−xy or G/xy is a (K1, 2, 2, 2, 2, K7, 5)-

cockade, where xy ∈ E(G). It turns out that contracting an edge of G in the proof of

Conjecture 1.3.4 will not produce a (K1, 2, 2, 2, 2,K7, 5)-cockade. So we only consider the

case when G − xy is a (K1, 2, 2, 2, 2, K7, 5)-cockade. We do that next.

Lemma 3.1.1 Let G be a (K1, 2, 2, 2, 2, K7, 5)-cockade and let x and y be nonadjacent ver-

tices in G. Then G + xy is contractible to K−
8 .

Proof. This is obviously true if G is K1, 2, 2, 2, 2. So we may assume that G is obtained

from H1 and H2 by identifying on K5, where both H1 and H2 are (K1, 2, 2, 2, 2, K7, 5)-

cockades. If both x, y ∈ V (Hi), then Hi > K−
8 by induction. So we may assume that

x ∈ V (H1) − V (H2) and y ∈ V (H2) − V (H1). If there exists z ∈ V (H1) ∩ V (H2) such that

yz /∈ E(G), then by contracting V (H1)−V (H1)∩V (H2) to z, the resulting graph will have

a K−
8 minor by induction. So we may assume y is adjacent to all vertices in V (H1)∩V (H2).

Similarly, we may assume that x is adjacent to all vertices in V (H1) ∩ V (H2). Hence there

exists w ∈ V (H1) such that H1[{w, x, V (H1) ∩ V (H2)}] is a K7 subgraph in H1. Clearly,

G[{w, x, y, V (H1) ∩ V (H2)}] + xy > K−
8 .

It is easy to observe that
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Lemma 3.1.2 Let G be a (K1, 2, 2, 2, 2,K7, 5)-cockade. Then e(G) = 11|G|−35
2 .

3.2 Proof of Theorem 1.3.5

In this section we prove Theorem 1.3.5 by induction on n. The only graphs G with 8 vertices

and e(G) ≥ 11×8−35
2 are K−

8 and K8. So we may assume that n ≥ 9 and the assertion holds

for smaller values of n.

Suppose G is a graph with n vertices and e(G) ≥ 11n−35
2 but G is not contractible

to K−
8 and G is not a (K1, 2, 2, 2, 2,K7, 5)-cockade. By Lemma 3.1.1, we may assume that

e(G) = d 11n−35
2 e, where d 11n−35

2 e denotes the least integer ≥ 11n−35
2 .

If G has a vertex x with d(x) ≤ 5, then e(G − x) ≥ 11n−35
2 − 5 > 11|G−x|−35

2 . By the

induction hypothesis and Lemma 3.1.2, G − x > K−
8 , a contradiction. Thus

(1) δ(G) ≥ 6.

(2) δ(N(x)) ≥ 5 for any x ∈ V (G).

Proof. Suppose that there exists y ∈ N(x) such that dN(x)(y) ≤ 4. Then e(G/xy) ≥
11(n−1)−34

2 > 11|G/xy|−35
2 . By the induction hypothesis and Lemma 3.1.2, G − x > K−

8 , a

contradiction.

Let S be a minimal separating set of vertices in G, and let G1 and G2 be proper

subgraphs of G so that G = G1 ∪G2 and G1 ∩G2 = G[S]. For i = 1, 2, let di be the largest

integer so that Gi contains disjoint set of vertices V1, V2, ..., Vp so that Gi[Vj ] is connected

and |S ∩ Vj| = 1, 1 ≤ j ≤ p = |S|, and so that the graph obtained from Gi by contracting

V1, V2, ..., Vp and deleting V (G) − (∪jVj) has e(G[S]) + di edges. Let G′
1 (resp. G′

2 ) be

obtained from G1 (resp. G2) by adding d2 (resp. d1) edges to G[S]. By (1), |Gi| ≥ 7,

i = 1, 2. Hence we may assume that e(G1) ≤ 11|G1|−35
2 −d2 (otherwise e(G′

1) >
11|G′

1
|−35

2 , in

which case, G′
1 > K−

8 by induction). Similarly, we may assume that e(G2) ≤ 11|G2|−35
2 −d1.

Consequently,
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(3) 11n−35
2 ≤ e(G) = e(G1) + e(G2) − e(G[S]) ≤ 11n+11|S|−70

2 − d1 − d2 − e(G[S]), and so

(4) 11|S| ≥ 35 + 2d1 + 2d2 + 2e(G[S]).

(5) G is 5-connected.

Proof. It follows from (4) that |S| ≥ 4. Note that di ≥ |S| − 1 − δ(G[S]), i = 1, 2, and

2e(G[S]) ≥ |S|δ(G[S]). By (4), we have 7|S| ≥ 31 + (|S| − 4)δ(G[S]), which implies that

|S| ≥ 5.

(6) There is no minimal separating set S so that G[S] is complete.

Proof. Suppose that G[S] is complete. By (5), |S| ≥ 5. If |S| ≥ 6, by contracting

V (G1) − S and V (G2) − S into two new vertices, we get G > K−
8 . So we may assume

|S| = 5. Note that when G[S] = K5, we get equality in (3). Thus e(Gi) = 11|Gi|−35
2 for

i = 1, 2 and e(G) = 11n−35
2 . It follows by induction that G is a (K1, 2, 2, 2, 2,K7, 5)-cockade,

a contradiction.

(7) There is no minimal separating set S with a vertex x so that G[S − x] is complete.

Proof. Suppose that G[S − x] is complete. By (5), |S| ≥ 5. By (6), we may assume

δ(G[S]) ≤ |S| − 2. Then d1 = d2 = |S| − 1 − δ(G[S]) and 2e(G[S]) = (|S| − 1)(|S| −

2) + 2δ(G[S]). By (4), 11|S| ≥ 35 + 4(|S| − 1 − δ(G[S])) + (|S| − 1)(|S| − 2) + 2δ(G[S]) =

|S|2 + |S|+33−2δ(G[S]) ≥ |S|2 + |S|+33−2(|S|−2). It follows that |S|2 −12|S|+37 ≤ 0,

which is impossible.

(8) 7 ≤ δ(G) ≤ 10.

Proof. Let x ∈ V (G) be a vertex such that d(x) = δ(G). By (1), d(x) ≥ 6. If d(x) = 6,

by (2), N(x) = K6. Now K6 will be a minimal separating set, which contradicts (6). Thus

δ(G) = d(x) ≥ 7. On the other hand, since e(G) = d 11n−35
2 e, we have d(x) ≤ 10.
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(9) δ(G) ≥ 8.

Proof. Suppose that d(x) ≤ 7. By (8), d(x) = 7. By (2), δ(N(x)) ≥ 5. Thus N(x) =

K7 − M , where M is a matching of N(x). Let K be a component of G − N [x]. By (7),

N(K) contains two nonadjacent vertices, say a and b, in N(x). Let P be an a− b path with

interior vertices in K. If |M | ≤ 2, then by contracting all but one of the edges of the path

P , G > K−
8 , a contradiction. So we may assume that |M | = 3, that is N(x) = K1, 2, 2, 2.

Let V (N(x)) = {y, z1, z2, z3, w1, w2, w3} so that y is adjacent to all vertices in N(x) −

y and ziwi /∈ E(G). Suppose that G − N [x] is disconnected. Let K and K ′ be two

components of G − N [x]. Since N(x) = K1, 2, 2, 2, by (7), N(K) and N(K ′) contain two

pairs of nonadjacent vertices of N(x), respectively. We may assume that z1, w1 ∈ N(K)

and z2, w2 ∈ N(K ′). Let P be a z1-w1 path in K and P ′ be a z2-w2 path in K ′. Then by

contracting all but one of the edges of P and P ′, respectively, we get a K−
8 minor of G, a

contradiction. Hence

(9a) G − N [x] is connected.

(9b) There is no vertex in G − N [x] that is adjacent to a pair of nonadjacent vertices in

N(x).

Proof. Suppose that there exists v ∈ V (G) −N [x] adjacent to, say z1 and w1. Let K be a

component of G−N [x]−v. If N(K) contains a pair of nonadjacent vertices of {z2, z3, w2, w3},

say, z2 and w2, then there is a z2-w2 path P in K. Now by contracting v to z1 and all but

one of the edges of the path P, we get a K−
8 minor of G, a contradiction. Thus by (7), we

may assume z1, w1 ∈ N(K). Let K ′ = G − N [x] − K. Clearly, K ′ is connected. If N(K ′)

contains a pair of nonadjacent vertices, other that z1 and w1 of N(x), then G would have

a K−
8 minor, a contradiction. Therefore, we may assume that w2, w3 ∈ N(K)−N(K ′) and

z2, z3 ∈ N(K ′)−N(K). Since w2z3 ∈ E(G), w2 and z3 have at least one common neighbor

in G − N [x]. It follows that vw2, vz3 ∈ E(G) and thus w2 ∈ N(K ′), a contradiction.

Let v ∈ N(x) and w ∈ V (G − N [x]) be such that v 6= y and vw ∈ E(G). By (2) and

(9b), v and w have at most three common neighbors in N(x). Hence,
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(9c) for any v ∈ N(x) − y, v has at least three neighbors in G − N [x].

Suppose that w is a cut-vertex of G − N [x]. Let K be a component of G − N [x] − w

and let K ′ = G − N [x] − K. Then K ′ is connected. Since N(x) = K1,2,2,2, by (7), N(K)

and N(K ′) contain at least one pair of nonadjacent vertices of N(x), respectively. If N(K)

and N(K ′) contain distinct pairs of nonadjacent vertices of N(x), then G would have a K−
8

minor by the existence of such two disjoint paths in K and K ′, respectively. So we may

assume that z1, w1 ∈ N(K) ∩ N(K ′) and N(K) and N(K ′) contain no pair of nonadjacent

vertices of N(x) other than z1, w1. Thus we may assume that z2, z3 ∈ N(K ′) − N(K) and

w2, w3 ∈ N(K)−N(K ′). Since w2z3 ∈ E(G), w2 and z3 have at least one common neighbor

in G − N [x]. It follows that ww2, wz3 ∈ E(G), and thus w2 ∈ N(K ′), a contradiction.

Therefore

(9d) G − N [x] is 2-connected.

Consider the graph H = G − {x, y, z3, w3}. We next show that H is 4-connected.

Let S be a minimal separating set of at most three vertices in H. By (9c) and (9d),

|S| ≥ 2 and |S ∩ N(x)| ≤ 1. If |S ∩ N(x)| = 1, we may assume that w1 ∈ S. Since

z1z2, z1w2 ∈ E(G), z1, z2, w2 are in the same component of H − S. Denote this component

by K. If w1 /∈ S, then also w1 ∈ K, and in this case we assume that S and w1 are chosen

so that |S ∩ N(w1)| is maximal. We next show that there exist z ′
2 and w′

2 in G − N [x] − S

adjacent to z2 and w2, respectively. By (9b) and (9c), we may assume that w2 has exactly

three neighbors in G − N [x], say a, b, c, and S = {a, b, c}. Clearly, w1 /∈ S. By the

assumption that |S ∩ N(w1)| is maximal, it follows that w1 is adjacent to all vertices in S.

Since w2z1 ∈ E(G), by (2), z1 and w2 have at least one common neighbor in G − N [x].

Since w2 has only three neighbors a, b, c in G − N [x], we may assume z1a ∈ E(G). Now

a is adjacent to both z1 and w1, which contradicts (9b). This proves that there exist

z′2, w
′
2 ∈ (V (G) − N [x] − S) such that z2z

′
2, w2w

′
2 ∈ E(G).

Clearly, z′2, w
′
2 ∈ K. By (9d), G − N [x] contains two independent z ′

2-w
′
2 paths. One of

these paths is contained in G[K ∪ S].
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Since G is not contractible to N [x] + z2w2 + z3w3, there is no z3-w3 path in G[K ′ ∪

{z3, w3}], where K ′ 6= K is another component of H − S. But this implies that K ′ is

separated from x by S and two adjacent vertices in N(x). We may assume that such two

vertices are {y, w3}. Since G is 5-connected, |S| = 3. Let S = {s1, s2, s3}, where s1 = w1 if

w1 ∈ S, and S′ = S∪{y, w3}. Then S′ is a minimal separating set of G. Let H1 = G[K ′∪S′}

and H2 = G − K ′. Let d1 and d2 be defined as in the paragraph following (2). Clearly,

K ∪ {x, z3} is contained in H2. By Menger’s theorem, there exist three disjoint paths

between {x,w1, z2} and S in G−{y, w3}. By contracting those paths, we get d2 + eG(S′) =

e(K5) = 10. By (2), d1 ≥ 1. By (4), 55 = 11×5 ≥ 35+2(d2+e(S′))+2d1 = 35+20+2 = 57,

a contradiction. Thus H is 4-connected.

By (9b), dG−N [x](z3) + dG−N [x](w3) ≤ |G| − |N [x]| = n − 8. Since G is not contractible

to K−
8 , it follows from Theorem 1.4.1 that e(H) ≤ 3|H| − 7 = 3(n− 4)− 7. Then 11n−35

2 ≤

e(G) = d(x)+(d(y)−1)+e(H)+eG({z3, w3}, {z1, w1, z2, w2})+dG−N [x](z3)+dG−N [x](w3) ≤

7 + (n − 2) + 3(n − 4) − 7 + 8 + n − 8 = 5n − 14. It follows that n ≤ 7, which contradicts

the fact that n ≥ δ(G) + 1 ≥ 8 by (8).

(10) Let x be a vertex such that 8 ≤ d(x) ≤ 10. Then there is no component K of G−N [x]

such that N(K) = N(x).

Proof. Suppose such a component K exists. By Corollary 2.1.4, N(x) > K−
6 ∪ K1 or

N(x) > K6 or N(x) ∈ {K3 + C5,K2,3,3,K2 + C6}. In the first case, there is a vertex

y ∈ N(x) such that N(x) − y > K−
6 . By contracting V (K) ∪ {y} to a single vertex

we see that G > K−
8 , a contradiction. We will use this argument repeatedly later, and

we shall refer to it as “contracting K onto a free vertex of N(x)”. If N(x) > K6, then

we obtain the same conclusion by contracting K to a vertex. So we may assume that

N(x) ∈ {K3 +C5,K2,3,3,K2 +C6}. We claim that G−N [x] is connected. Suppose G−N [x]

is disconnected. Let K ′ 6= K be another component of G − N [x]. By (6), N(K ′) is not

complete. Let a, b ∈ N(K ′) be such that ab /∈ E(G). Let P be an a-b path with interior in

K ′. By Corollary 2.1.4, N(x) is edge maximal, and so N [x]∪P > K−
7 ∪K1. By contracting

K to a free vertex of N(x)∪P , we get G > K−
8 , a contradiction. Thus G−N [x] is connected,
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as claimed. As N(x) ∈ {K3 +C5,K2,3,3,K2 +C6}, by (2), G−N [x] has at least two vertices.

We consider the following two cases.

Case 1. G − N [x] has no cut-vertex or G − N [x] has only two vertices.

Suppose N(x) ∈ {K2 + C6,K2, 3, 3}. By (2), there exist x1, x2, y1, y2 ∈ N(x) such that

x1x2, y1y2 ∈ E(G), x1 and x2 (resp. y1 and y2) have at least two common neighbors in

G − N [x], and x1y1, x2y2 /∈ E(G) but N [x] + x1y1 + x2y2 > K−
8 . Let u1, u2 ∈ V (K) be

two distinct common neighbors of x1 and x2, and w1, w2 ∈ V (K) be two distinct common

neighbors of y1 and y2, respectively. By Menger’s Theorem, K contains two disjoint paths

from {u1, u2} to {w1, w2}. Thus G has two disjoint paths with interiors in K, one with ends

x1, y1, and the other with end x2, y2. Then G > K−
8 by the existence of those two paths, a

contradiction.

Suppose N(x) = K3+C5. Let V (K3) = {a1, a2, a3} and let C5 have vertices y1, y2, y3, y4, y5

in order. Let w ∈ V (G−N [x]). Then G−N [x]−w is connected and each vertex of N(x) is

adjacent to at least one vertex of G−N [x]−w. If w is adjacent to two vertices of a1, a2, a3,

say a1, a2, then G > N [x]+a1a2+y1y2+y2y3 > K−
8 by contracting wa1 and V (G−N [x]−w)

onto y2, respectively. Similarly, if w is adjacent to two nonadjacent vertices of y1, y2, · · · , y5,

say y1, y2, then G > N [x]+y1y2+y2y3+y3y4 > K−
8 by contracting wy1 and V (G−N [x]−w)

onto y3, respectively. So we may assume that any pair of nonadjacent vertices of N(x) have

no common neighbor in G − N [x]. By (2), there exist w1, w2, w3, w4 ∈ V (G − N [x]) such

that wi is a common neighbor of y1 and ai, i = 1, 2, 3, and w4 a common neighbor of y2 and

y5. Since any pair of nonadjacent vertices of N(x) have no common neighbor in G − N [x],

we have wi 6= wj for i 6= j. As G − N [x] has no cut-vertex, there exist two disjoint paths,

say P1, P2, between {w1, w4} and {w2, w3} in G−N [x]. We may assume that P1 is a w1-w3

path. Now G > N [x] + a1a3 + y1y2 + y1y5 > K−
8 by contracting a1w1, y1w2 and all but one

of the edges of each of P1, P2, a contradiction.

Case 2. G − N [x] has a cut-vertex.

In this case, G − N [x] is connected. Let w be a cut-vertex of G − N [x] and let H1 be a
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connected component of G −N [x] − w with N(H1) minimal, and let H2 = G −N [x] − H1.

Clearly, H2 is also connected. If N(H1) ⊆ N(H2) or N(H2) ⊆ N(H1), say the latter. Then

N(H1) = N(K) = N(x). By (6), there exists e = ab ∈ E(N(H2)). By Corollary 2.1.4, there

exists u ∈ N(x) such that N(x)+e−u > K−
6 . Then G > K−

8 by contracting the a-b path in

H2 and contracting V (H1) to u. So we may assume that there exist a ∈ N(H1)−N(H2) and

b ∈ N(H2) − N(H1). By (2), any two adjacent vertices in N(x) have at least one common

neighbor in G − N [x]. Thus ab /∈ E(G), NN(x)(a) ⊆ N(H1) and NN(x)(b) ⊆ N(H2).

Suppose N(x) ∈ {K2 + C6,K2,3,3}. Since ab /∈ E(G), there exist x1, y1 ∈ NN(x)(a) and

x2, y2 ∈ NN(x)(b) such that x1y1, x2y2 /∈ E(G) but N [x]+x1y1 +x2y2 > K−
8 . Then G > K−

8

by the existence of xi-yi path in Hi, i = 1, 2, a contradiction. Suppose N(x) = K3 +C5. Let

V (K3) = {a1, a2, a3} and let C5 have vertices y1, y2, y3, y4, y5 in order. If a, b ∈ {a1, a2, a3},

then yi ∈ (NN(x)(a)∩NN(x)(b)) for all i = 1, 2, · · · , 5. Thus G > K−
8 by contracting V (H1)

to y1 and V (H2) to y2, respectively. So we may assume that a, b ∈ {y1, · · · , y5}, say a = y1

and b = y2. Clearly, a1, a2, a3, y3, y4 ∈ N(H1) and a1, a2, a3, y4, y5 ∈ N(H2). By (2), y3

and y5 have at least one common neighbor, say y, in G − N [x]. We may assume that

y ∈ V (H1). Then y5 ∈ N(H1) and so G > K−
8 by contracting V (H1) to y4 and V (H2) to

a1, respectively, a contradiction.

(11) Let x be a vertex such that 8 ≤ d(x) ≤ 10. Then there is no component K of G−N [x]

such that N(K ′) ⊆ N(K) for every component K ′ of G − N [x].

Proof. Suppose such a component K exists. Among all vertices x with 8 ≤ d(x) ≤ 10 for

which such a component exists, choose x to be of minimal degree. By (10), N(K) 6= N(x).

Let y ∈ N(x) − N(K) be of smallest degree. Then N(y) ⊆ N [x]. Note that d(y) ≤ d(x) ≤

d(y)+2. Suppose d(x) = d(y). Then each vertex of N(x) is either adjacent to all vertices in

N [x] or contained in N(K), and dN(x)(y) = |N(x)|−1. By Corollary 2.1.4, N(x) > K−
6 ∪K1.

By contracting N(K) to a free vertex of N(x), we obtain G > K−
8 , a contradiction. Next,

suppose d(x) = d(y) + 1. Let {z} = N(x) − N [y]. Then z /∈ N(K), for otherwise we would

have chosen y for x. By the choice of y, d(z) = d(x)−1. Thus {z} is a component of G−N [y]

such that N({z}) = N(y), which contradicts (10). Finally, suppose d(x) = d(y) + 2. Then
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d(x) = 10. Let {z, w} = N(x)−N [y]. Clearly, z and w are not both in N(K), otherwise we

would have chosen y for x. So we may assume that z /∈ N(K). If zw /∈ E(G), then {z} is a

component of G−N [y] such that z is adjacent to all the vertices in N(y), which contradicts

(10). So we may assume zw ∈ E(G), and thus w /∈ N(K) (otherwise we would have chosen

y for x, because K ∪{z, w} is a component in G−N [y] satisfying (11)). By the choice of y,

d(z), d(w) ≥ d(y). Now e(N(x)) ≥ (d(y) − 1) + (d(z) − 2) + (d(w) − 2) + 1 + 4|N(x)∩N(y)|
2 ≥

3d(y) − 4 + 2(d(y) − 1) = 5d(y) − 6 = 5(d(x) − 2) − 6 = 5d(x) − 16 > 9|N(x)|
2 − 12. By

Theorem 1, N(x) > K−
7 and so G > N [x] > K−

8 , a contradiction.

It follows from (11) that

(12) G − N [x] is disconnected.

(13) Let x be a vertex such that 8 ≤ d(x) ≤ 10. Then there is no component K of G−N [x]

with one vertex w so that dG(y) ≥ 11 for every vertex y 6= w in K and dG(w) ≥ dG(x).

Proof. Assume that such a component K exists. Let G1 = G − K and G2 = G[K ∪

N(K)]. Let d1 be defined as in the paragraph following (2). Let G′
2 be a graph with

V (G′
2) = V (G2) and e(G′

2) = e(G2) + d1 edges obtained by contracting edges in G1. By

(9), |G′
2| ≥ 9. If e(G′

2) >
11|G′

2
|−35

2 , then G > G′
2 > K−

8 by induction, a contradiction.

Thus e(G2) = e(G′
2) − d1 ≤ 11|G2|−35

2 − d1 = 11|N(K)|+11|K|−35
2 − d1. On the other hand,

for any u ∈ N(K), there exists w ∈ K such that uw ∈ E(G). By (2), dG2
(u) ≥ 6. Thus

e(G2) ≥ 1
2(6 × |N(K)| + 11(|K| − 1) + dG(w)) ≥ 6|N(K)|+11|K|−11+d(x)

2 . It follows that

(13a) 5|N(K)| ≥ 24 + d(x) + 2d1 and so |N(K)| ≥ 7 by (9).

Let t = eG(N(K),K) and d = δ(N(K)). Then e(G2) = e(G[K]) + t + e(N(K)) ≥
11(|K|−1)+dG(w)−t

2 + t + |N(K)|×d
2 ≥ 11|K|−11+d(x)+t+|N(K)|×d

2 . It follows that

(13b) −t+d(x)
2 ≥ d1 + d(x) + 12 + d|N(K)|−11|N(K)|

2 ≥ (|N(K)| − 1 − d) + d(x) + 12 +

d|N(K)|−11|N(K)|
2 = 11 + d(x) + d(|N(K)|−2)

2 − 9|N(K)|
2 .

Note that t ≥ ∑

v∈K dG(v) − 2e(G[K]) ≥ 11(|K| − 1) + d(w) − |K|(|K| − 1) ≥ −|K|2 +

12|K| + d(x) − 11. If t ≤ d(x) + s, then
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(13c) |K|2 − 12|K| + 11 + s ≥ 0.

By (10), N(K) 6= N(x). This, together with (13a), implies that 7 ≤ |N(K)| ≤ 9. Thus

|K| ≥ (∆(G2) + 1) − |N(K)| ≥ (11 + 1) − 9 = 3. We next show that t ≤ d(x) + s, where

s = 14.

By (2), d ≥ 5 − (|N(x)| − |N(K)|). If |N(K)| = 7, by (6) and (13a), we have d1 ≥ 1

and d(x) + 2d1 ≤ 11. Thus d(x) ≤ 9 and d ≥ 5 − (9 − 7) = 3. By (13b), −t+d(x)
2 ≥

1+d(x)+12+ 3|N(K)|−11|N(K)|
2 ≥ −7. If |N(K)| = 8, then d(x) ≤ 10 and d ≥ 5−(10−8) = 3.

By (13b), −t+d(x)
2 ≥ 11 + d(x) + d(|N(K)|−2)

2 − 9|N(K)|
2 ≥ 11 + d(x) + 3×(8−2)

2 − 9×8
2 ≥ −7.

If |N(K)| = 9, then d(x) = 10 and d ≥ 5 − (10 − 9) = 4. By (13b), −t+d(x)
2 ≥ 11 + d(x) +

d(|N(K)|−2)
2 − 9|N(K)|

2 ≥ 11 + d(x) + 4×(9−2)
2 − 9×9

2 > −7. In all cases, we have t ≤ d(x) + 14

and s = 14.

Since s = 14 and |K| ≥ 3, by 13(c), |K| > 8. Note that e(G[K]) ≥ 11(|K|−1)+d(w)−t
2 ≥

11(|K|−1)
2 + −t+d(x)

2 ≥ 11|K|−25
2 . It follows that G[K] > K−

8 by induction, a contradiction.

By (9), G has a vertex of degree 8, 9 or 10. Among the vertices of degree 8, 9 or 10 for

which the order of the largest component of G − N [x] is maximum, choose x so that its

degree is minimum. Let K be a largest component of G − N [x].

By (12), there is another component K ′ of G−N [x]. By (13), there is a vertex x′ in K ′

of degree dG(x′) ≤ 10. By the maximality of the order of K, N(K) ⊆ N(x′) ∩ N(x). Thus

N(K) ⊆ N(K ′) and K is also a component of G − N [x′]. By the choice of x, d(x′) ≥ d(x).

By (13), there exists another vertex y ′ 6= x′ in K ′ of degree d(x) ≤ d(y′) ≤ 10. Clearly, y′ is

adjacent to every vertex in N(K). By (11), There is a third component K ′′ of G−N [x]. By

symmetry, K ′′ has two vertices x′′, y′′ of degree at most 10 in G and N(K) ⊆ N(x′′)∩N(y′′).

Let G1 = G − K, G2 = G[N(K) ∪ K] and let d1 and d2 be as in the paragraph following

(2).

Since δ(N(x)) ≥ 5, δ(N(K)) ≥ 5 − (10 − |N(K)|) = |N(K)| − 5. Therefore there is a

subgraph T of N(K) with |N(K)| − 5 vertices and at least |N(K)| − 6 edges. Contract the
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vertices in N(K)−T with different vertices in {x, x′, y′, x′′, y′′}, which are adjacent to every

vertex in N(K). It is easy to see that

d1 + e(N(K)) ≥ e(K5) + 5(|N(K)| − 5) + (|N(K)| − 6) = 6|N(K)| − 21.

By (4), d1 + e(N(K)) ≤ 11|N(K)|−35−2d2

2 . It follows that d2 = 1 and |N(K)| = 5.

However, when |N(K)| = 5, then d1 + e(N(K)) ≥ e(K5)+5(|N(K)|−5) = 5|N(K)|−15 =

10. By (4), 55 = 11|N(K)| ≥ 35 + 2(d1 + e(N(K)) + 2d2 ≥ 35 + 20 + 2 = 57, which is

impossible. This completes the proof of Theorem 1.3.5.
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CHAPTER IV

THE EXTREMAL FUNCTION FOR K7 ∪ K1 MINORS

4.1 Introduction

Mader [25] proved that every simple graph on n ≥ 7 vertices and at least 5n− 14 edges has

a K7 minor (see Theorem 1.2.2). In this chapter, we will prove that every edge-maximal

graph on n ≥ 8 vertices without a K7 ∪K1 minor has at most 5n− 15 edges, or at most 31

edges when n = 9, or is isomorphic to one of the graphs listed in Theorem 1.3.2 in Chapter

1. Theorem 1.3.2 generalizes Theorem 1.2.2 for p = 7, and extends a result of Jørgensen

(namely Lemma 4.1.1). Theorem 1.3.2 will be applied in the the computer-free proof of

Lemma 4.3.3 for graphs on at most 11 vertices and should be helpful for a possible proof of

Conjecture 6.5.1.

We need one more definition. By a (Kp−1, Kp−5 + MP, p − 2)-cockade we mean any

graph that can be obtained as in the definition of a cockade, starting from Kp−1 and graphs

of the form Kp−5 + H, where H is a 4-connected maximal planar graph, by identifying

cliques of size p − 2. A (Kp−5 + MP, p − 2)-cockade is defined analogously.

In the proof of Theorem 1.3.2, we shall need the following two results of Jørgensen

[15, 16].

Lemma 4.1.1 Let G be a graph with n ≥ 7 vertices and

e(G) ≥











4n − 9 if n 6= 8

24 if n = 8

Then either G > K6 ∪ K1, or G is isomorphic to K3 + Cn−3 when n 6= 8 or K2, 2, 2, 2 or

K3, 3, 3.
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Lemma 4.1.2 For any integer p, where 5 ≤ p ≤ 7, every graph G with n vertices and

(p − 2)n −
(p−1

2

)

edges has a Kp minor or is isomorphic to K2, 2, 2, 3 or is a (Kp−1,Kp−5 +

MP, p − 2)-cockade.

4.2 Proof of Theorem 1.3.2

We first prove that ∆(G) ≤ n − 2. Suppose there exists a vertex x ∈ V (G) such that

d(x) = n − 1. Then e(G − x) ≥ 4(n − 1) − 9 if n 6= 9, and e(G − x) = 24 if n = 9. By

Lemma 4.1.1, G− x > K6 ∪K1 or G − x is isomorphic to K2, 2, 2, 2, or K3, 3, 3 or K3 + Cn−4

when n 6= 9. Thus G > K7 ∪K1 or G is isomorphic to K1, 2, 2, 2, 2, or K1, 3, 3, 3 or K4 + Cn−4

when n 6= 9. Hence we may assume that

(1) ∆(G) ≤ n − 2.

As e(G) ≥ 26 when n = 8 and e(G) ≥ 32 when n = 9, it follows from (1) that n ≥ 10.

(2) For every vertex x ∈ V (G), either d(x) ≥ 7, or d(x) = 6 and G−x is a (K6, K2+MP, 5)-

cockade.

Proof. Suppose there exists x ∈ V (G) such that d(x) ≤ 5. Then e(G−x) ≥ 5(n− 1)− 14.

By Theorem 1.2.2, G − x > K7. So we may assume that d(x) ≥ 6. Suppose d(x) = 6.

Then e(G − x) ≥ 5(n − 1) − 15. By Lemma 4.1.2, G − x > K7 or G − x is a K2, 2, 2, 3 or

G − x is a (K6, K2 + MP, 5)-cockade. In the first case, we have G > K7 ∪ K1. Suppose

G−x = K2, 2, 2, 3. Then G = K2, 2, 2, 4 if x is not adjacent to any vertex of degree six in G−x.

So we may assume that x is adjacent to at least one vertex of degree six in G − x. If x is

adjacent to a K4 subgraph in G− x, then it is easy to check that G > K7 ∪K1. So we may

assume that there exist a pair of nonadjacent vertices, say y, z, such that xy, xz /∈ E(G).

As we have proved that x is adjacent to at least one vertex of degree six in G, there are

only two ways to join x to the vertices of K2, 2, 2, 3, as depicted in Figure 8, where only the

37



complement of G is shown by dotted line. One can easily verify that G = K2, 2 + K−
3, 3 or

G = K2, 3 + K−
2, 3, and so the theorem holds.

y

z

x

y

z

x

Figure 8: Two possible ways to join vertex x to K2, 2, 2, 3 − {y, z}

(3) For 10 ≤ n ≤ 11, if δ(N(x)) ≥ 4 for some x ∈ V (G), then d(x) ≥ 7.

Proof. Suppose there exists x ∈ V (G) with d(x) ≤ 6. By (2), we may assume that

d(x) = 6. If N(x) = K6, then N [x] = K7 and so G > K7 ∪ K1. So we may assume that

N(x) 6= K6. Combining this with the assumption that δ(N(x)) ≥ 4, we have δ(N(x)) = 4.

Thus N(x) = K6−M , where M is a matching of K6. If N(x) = K−
6 , let a, b ∈ N(x) be such

that ab /∈ E(G). Suppose there is no a-b path with interior in G − N [x]. As δ(G) ≥ 6, we

have n = 11 and G−N [x] has exactly two components, say H1 and H2, each of size two. We

may assume that a /∈ N(H1). Now G[V (H1)∪ (N(x)−{a})] = K7 and so G > K7 ∪K1. So

we may assume that there exists an a-b path with interior in G−N [x]. Let P be a shortest

a-b path with interior in G − N [x]. If P has at most |V (G) − N [x]| − 1 interior vertices,

then by contracting all but one of the edges of the path P , we see that G > K7 ∪ K1. So

we may assume that G − N [x] = P − {a, b}. As P is the shortest a-b path with interior in

G−N [x], it follows that each vertex in V (G)−N [x] is adjacent to all vertices of degree five
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in N(x). Hence ∆(G) = n − 1, contrary to (1). So we may assume that N(x) = K6 − M

for any vertex x of degree six in G, where M is a matching of size at least 2.

Since δ(G) = 6, by (2), G−x is a (K6, K2+MP, 5)-cockade for any vertex x of degree six.

If K6 is a member of this cockade, then there exists a vertex y of degree 6 in G such that K5

is a subgraph of NG(y), a contradiction. Thus G−x is a (K2 +MP, 5)-cockade. Since every

4-connected maximal planar graph has at least six vertices, we have G−x = K2 +H, where

H is a 4-connected maximal planar graph. Since ∆(G) ≤ n− 2, we see that N(x) ⊂ V (H).

Let y, z be the two vertices in (K2 + H) − H. Note that N(x) = K6 − M , where M is a

matching of size at least two in K6. If |M | = 2, let z1z2, w1w2 be the two missing edges

in N(x). By contracting the edges zz1, yw1, we see that N(x) + z1z2 + w1w2 > K6 and so

G − (V (H) − N(x)) > K7. Thus we may assume that N(x) = K2, 2, 2 for any x of degree

six in G. Since H is a 4-connected maximal planar graph with a K2, 2, 2 subgraph, it follows

that H is isomorphic to K2, 2, 2. Thus |G| ≤ 9, a contradiction.

(4) n ≥ 11.

Proof. Suppose n = 10. Then e(G) ≥ 36. We claim that δ(N(x)) ≥ 4 for any x ∈ V (G).

Suppose there exists y ∈ N(x) such that x and y have at most three common neighbors.

Then e(G/xy) ≥ 32 and |G/xy| = 9. Similarly to the case when n = 9, we have G/xy >

K7 ∪ K1 or G/xy = K1, 2, 2, 2, 2. In the first case, G > G/xy > K7 ∪ K1. Suppose G/xy =

K1, 2, 2, 2, 2. Then x and y have exactly three common neighbors, and d(x) + d(y) ≤ 13. By

(2), d(x), d(y) ≥ 6. We may assume that d(x) = 6. Then 6 ≤ d(y) ≤ 7. Let V (G/xy) =

{u, z1, z2, z3, z4, w1, w2, w3, w4} so that ziwi /∈ E(G) for i = 1, 2, 3, 4, as shown in Figure 9.

Let w be the new vertex in G/xy. Suppose w is of degree seven. We may assume that

w = z1. Then d(y) = 6. Since x and y have three common neighbors, we may assume that

w2 is a common neighbor of x and y. As z2 is adjacent to either x or y, say the latter,

then G/yz2/z3z4 − x = K7. Suppose w = u. In this case, we see that d(y) = 7. Suppose

y is adjacent to all zi’s. Since d(y) = 7, we may assume that yw1, yw2 ∈ E(G). Then
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z1 z2 z3 z4

w1
w2

w3 w4

Figure 9: The complement of K1, 2, 2, 2, 2

G/w1w3/w2w4 − x = K7. So by swapping zi with wi, we may assume that y is adjacent

to z1, z2, z3, w1, w2, w3. Thus xz4, xw4 ∈ E(G). Since x and y have exactly three common

neighbors, we may assume that two of those three common neighbors are z1, z2. If z3 is

also a common neighbor, then G/w1z4/w2w4 −w3 = K7. So we may assume that w1 is the

third common neighbor. Then G = K2, 3 + K−
2, 3. Thus δ(N(x)) ≥ 4, as Claimed.

Since δ(N(x)) ≥ 4 for any x ∈ V (G) as we claimed, by (3), δ(G) ≥ 7. Note that

e(G) ≥ 36 and ∆(G) ≤ 8 by (1). If e(G) = 36, then there exist two vertices x, y ∈ V (G)

such that d(x) = d(y) = 8. If xy /∈ E(G), then G − x − y is 5-regular on 8 vertices. Thus

G−x−y is isomorphic to K3 +C5 or C4 +C4 or C8. Hence G = K2,3 +C5 or G > K7∪K1.

If xy ∈ E(G), then G − xy is 7-regular on 10 vertices. Thus G − xy is isomorphic to

K3 + C7, or K3,3 + C4 or C4 + C6 or C5 + C5. Note that all these graphs except K3, 3 + C4

are edge maximal subject to not having a K7 ∪ K1 minor. It follows that G > K7 ∪ K1

or G = K3, 3 + P4. If e(G) ≥ 37, then there exist uw ∈ E(G) such that d(u) = d(w) = 8

because ∆(G) ≤ 8. Then e(G − uw) ≥ 36 and δ(G − uw) ≥ 7. Similarly to the case when

e(G) = 36, we have G − uw > K7 ∪ K1 or G − uw = K3, 3 + P4. Thus G > K7 ∪ K1 or

G = K2, 2, 3, 3, and so the theorem holds.

By (4) and (2), we have n ≥ 11 and δ(G) ≥ 6. We now proceed the proof by induction

on n. Suppose G does not contain a K7 ∪K1 minor. We may assume that e(G) = 5n− 14.

Suppose n = 11. We claim that δ(N(x)) ≥ 4 for any x ∈ V (G). Suppose there exist xy ∈

E(G) such that x and y have at most three common neighbors, then e(G/xy) ≥ 5(n−1)−13.
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Similarly to the case when n = 10, we see that G/xy > K7 ∪K1 or G/xy = K2, 2, 3, 3. In the

first case, we have G > K7 ∪K1, a contradiction. So we may assume that G/xy = K2, 2, 3, 3.

Let w be the new vertex in G/xy. Note that G/xy − w is edge maximal subject to not

having a K7 minor, and G/xy−w have three independent vertices, say a, b, c, each of which

is adjacent to either x or y, we may assume that xa, xb ∈ E(G). Then G/xa − y > K7, a

contradiction. Thus δ(N(x)) ≥ 4 for any x ∈ V (G), as claimed.

Since δ(N(x)) ≥ 4 for any x ∈ V (G), by (3), δ(G) ≥ 7. If δ(G) ≥ 8, then 4n ≤ e(G) =

5n − 14. It follows that n ≥ 14, a contradiction. Thus δ(G) = 7. Let x be a vertex of

degree seven in G. Suppose δ(N(x)) ≥ 5. We may assume that N(x) = K1, 2, 2, 2, otherwise

N [x] > K7, a contradiction. Since n = 11 and δ(G) = 7, every vertex in G−N [x] is adjacent

to a pair of non-adjacent vertices in N(x). It can be easily checked that G > K7 ∪ K1,

a contradiction. Thus we may assume that δ(N(x)) = 4. Let y ∈ N(x) be such that x

and y have exactly four common neighbors. Then e(G/xy) = 5(11 − 1) − 14. Note that

e(G) = 41, ∆(G) ≤ n− 2 = 9 by (1), and δ(G) = 7. If ∆(G) = 9, then G has either exactly

two vertices of degree nine, one of degree eight, eight of degree seven, or exactly one vertex

of degree nine, three of degree eight, and seven of degree seven. If ∆(G) = 8, we see that

G has exactly five vertices of degree eight and six vertices of degree seven. In either case,

G/xy has at least t vertices of degree six and 4− t vertices of degree seven, where 0 ≤ t ≤ 4.

Moreover, if t ≤ 2, G/xy has at most 1 + t vertices of degree at least eight and if t = 4,

G/xy has at least one vertex of degree at least eight. Thus G/xy is not isomorphic to any

one of the graphs in {K1, 3, 3, 3,K2, 2, 2, 4,K2, 3 + K−
2, 3,K2, 2 + K−

3, 3,K2, 3 + C5,K3, 3 + P4}.

Similarly to the case when n = 10, we see that G/xy > K7 ∪ K1, a contradiction.

It follows that

(5) n ≥ 12.

(6) δ(N(x)) ≥ 5 for any x ∈ V (G).

Proof. Suppose there exists y ∈ N(x) such that x and y have at most four common
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neighbors. Then e(G/xy) ≥ 5(n − 1) − 14 and |G/xy| ≥ 11 by (5). Hence G > K7 ∪ K1 by

induction, a contradiction.

(7) δ(G) ≥ 7.

Proof. Suppose there exists a vertex x ∈ V (G) such that d(x) ≤ 6. Then by (6), N [x] = K7

and thus G > K7 ∪ K1, a contradiction.

Since e(G) = 5n − 14, we have δ(G) ≤ 9. Thus by (7)

(8) 7 ≤ δ(G) ≤ 9.

Let S be a minimal separating set in G. Let Gi (i = 1, 2) be subgraphs in G such that

G1∩G2 = G[S] and V (G1)∪V (G2) = V (G). Then e(Gi) ≤ 5|Gi|−15 for i = 1, 2, otherwise

if e(Gi) ≥ 5|Gi| − 14, then by Theorem 1.2.2, Gi − (G3−i − S) > K7, a contradiction. Let

|S| = s.

(9) G[S] is not complete.

Proof. Suppose G[S] is complete. Since e(Gi) ≤ 5|Gi| − 15 for i = 1, 2, we have 5n −

14 = e(G) = e(G1) + e(G2) − e(G[S]) ≤ 5(n + s) − 15 − 15 − 1
2s(s − 1). It follows that

s2 − 11s + 32 ≤ 0, which is impossible.

(10) s ≥ 4 and if s = 4, then e(G[S]) ≤ 4.

Proof. Let G1 and G2 be as defined prior to (9). Since e(Gi) ≤ 5|Gi| − 15 for i = 1, 2,

we have 5n − 14 = e(G1) + e(G2) − e(G[S]) ≤ 5(n + s) − 15 − 15 − e(G[S]). It follows that

5s ≥ 16 + e(G[S]). Thus s ≥ 4 and if s = 4, then e(G[S]) ≤ 4, as desired.

(11) 8 ≤ δ(G) ≤ 9.

Proof. By (8), we may assume that there exists a vertex x such that d(x) = 7. By (6),

δ(N(x)) ≥ 5. Since G 6> K7 ∪ K1, we may assume that N(x) = K1, 2, 2, 2. If G − N [x]
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contains two components, say H1 and H2, by (9), N(H1) is not complete. Let a, b ∈ N(H1)

be non-adjacent. Clearly, N(x)+ab > K7. By contracting V (H1)∪{a} into a single vertex,

we see that G − H2 > K7, a contradiction. Thus G − N [x] is connected. Let P be an a-b

path with interior in G − N [x]. We may choose a and b so that |P | is minimum. Since

G 6= K1, 2, 2, 2, 2, |G − N [x]| ≥ 2. If G − N [x] = P − {a, b}, then there would exist a vertex

on P which is adjacent to a pair of non-adjacent vertices in N(x), contrary to the choice of

P . Thus there exists w ∈ V (G − N [x]) − V (P ). By contracting all but one of the edges of

P , we see that N [x] + ab > K7. Hence G − w > K7, a contradiction.

(12) G−N [x] is disconnected for any vertex x of degree 8 or 9, and there exist a, b ∈ N(x)

such that ab /∈ E(G) and there is no a-b path with interior in G − N [x]

Proof. Suppose G−N [x] is connected or every pair (a, b) has an a-b path with interior in

G − N [x]. By (6), δ(N(x)) ≥ 5. By Corollary 2.1.4, N(x) > K−
6 ∪ K1 or N(x) > K6 or

N(x) ∈ {K3 + C5, K2 + C6, K2, 3, 3}. In the first case, let a, b ∈ N(x) so that N(x) + ab >

K6 ∪ K1. Let P be an a-b path with interior in G − N [x] (we know such a path exists

by assumption). Then by contracting all but one of the edges of the path P , we see that

G > N [x]+ab > K7 ∪K1, a contradiction. If N(x) > K6, then N [x] > K7, again we obtain

a contradiction. Thus N(x) ∈ {K3+C5,K2+C6,K2, 3, 3}. Note that K2+C6 and K2, 3, 3 are

edge maximal subject to not having a K6 minor and K3 +C5 +cd > K6 for any cd /∈ E(C5).

Let u,w be two non-adjacent vertices in N(x) such that N(x) + uw > K6. Let P be a u-w

path with interior in G − N [x] (again such a path exists by assumption). We may assume

that P is the shortest path among all such pairs (u,w). Then V (G) − N [x] − V (P ) 6= ∅,

otherwise, let u′ be the unique neighbor of u on P . By (8), u′ has at least six neighbors in

N(x). Thus u′ is adjacent to a pair of non-adjacent vertices in K2 + C6 and K2, 3, 3, and a

pair of non-adjacent vertices of C5 in K3 +C5. In either case, it is contrary to the choice of

P . Now by contracting all but one of the edges of the path P , we see that G > K7 ∪K1, a

contradiction.

Let x be a vertex of minimum degree in G. By (11), 8 ≤ d(x) ≤ 9. By (12), G − N [x]
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is disconnected. Let H1 and H2 be two distinct connected components in G − N [x].

(13) e(N(x)) ≤ 4|N(x)| − 11.

Proof. Suppose e(N(x)) ≥ 4|N(x)| − 10. Let y be a vertex of minimum degree in N(H1).

and let N ′(x) = N(x) + {yw : w ∈ N(H1) − N(y)}. By (9), N(H1) is not complete. Now

by contracting V (H1) ∪ {y} into a single vertex, we see that e(N ′(x)) ≥ 4|N(x)| − 9. By

Theorem 1.2.2, N ′(x) > K6 and so G[N [x] ∪ N(H1)] − H2 > K7, a contradiction.

(14) δ(G) = 9.

Proof. Suppose d(x) = 8. Since δ(N(x)) ≥ 5 by (6), we have e(N(x)) ≥ 20. By (13), we

may assume that 20 ≤ e(N(x)) ≤ 21. Suppose e(N(x)) = 20. Then N(x) is 5-regular on 8

vertices. Thus N(x) = K3 + C5 or C4 + C4, or C8. In the latter two cases, N(x) > K6 and

so N [x] > K7, a contradiction. So we may assume that N(x) = K3 + C5.

a

b c

Figure 10: The complement of K3 + C5

Let {a, b, c} be the vertex set of K3 in K3 + C5, as shown in Figure 10. If N(H1)

contains a pair of non-adjacent vertices of C5, say u and w, then N [x] + uw > K7, and

so G − H2 > K7, a contradiction. Thus N(H1) contains only one or two adjacent vertices

of C5. By symmetry, N(H2) also contains only one or two adjacent vertices of C5. Then

G−N [x] has a third component, say H3. By (10), |N(Hi)| ≥ 5, for i = 1, 2, 3. Thus N(H1)

and N(H2) must contain vertices a, b, and c. By contracting V (H1)∪{a} and V (H2)∪{b}
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into single vertices, respectively, we see that N [x]+ab+ac+ ca > K7, and so G−H3 > K7,

a contradiction. Thus we may assume that e(N(x)) = 21. Let z ∈ N(x) be of maximum

degree. If dN(x)(z) = 7, then N(x)−z is 4-regular on seven vertices. Thus N(x)−z = C7 or

K3 + C4. In either case, N [x] > K7, a contradiction. Thus dN(x)(z) = 6. As e(N(x) = 21,

there is another vertex z ′ 6= z such that z′ is of degree six in N(x). If zz ′ ∈ E(G), then

N(x) − zz′ is 5-regular on eight vertices. Similarly to the case when e(N(x)) = 20, we

see that N(x) is edge maximal subject to not having a K6 minor. By contracting H1 onto

a vertex of minimum degree in N(H1). We get G − H2 > K7, a contradiction. Thus

zz′ /∈ E(G). Then N(x) − z − z ′ is 3-regular on six vertices. Thus N(x) = K2, 3, 3 or

K2 + C6. Note that those two graphs are edge maximal subject to not having a K6 minor.

Now by contracting V (H1) onto a vertex of minimum degree in N(H1) (because N(H1) is

not complete by (9)), we see that G − H2 > K7, a contradiction.

Let x be a vertex of minimum degree in G. From (8) and (13), we see that d(x) = 9

and δ(N(x)) ≥ 5. Thus e(N(x)) ≥ 23. By (14), we have 23 ≤ e(N(x)) ≤ 25.

(15) There is no component K of G −N [x] such that K has at most two vertices of degree

9.

Proof. Suppose such a component K exists. We may assume that K 6= H1. Let G1 =

G[K ∪ N(K)]. Then by (6), dG1
(v) ≥ 6 for any v ∈ N(K). Thus e(G1) ≥ 5(|K| − 2) + 9 +

3|N(K)|. On the other hand, let G′
1 be obtained from G1 by contracting x onto a vertex of

minimum degree in N(K). Let d = δ(N(K)). Then e(G′
1) = e(G1) + (|N(K) − 1 − d). We

may assume that e(G′
1) ≤ 5(|K|+ |N(K)|)−15, otherwise by Theorem 1.2.2, G′

1 > K7, and

so G−H1 > K7∪K1, a contradiction. Thus e(G1) ≤ 5(|K|+|N(K)|)−15−(|N(K)|−1−d).

The two inequalities of e(G1) imply that d + |N(K)| ≥ 13. By (9), d ≤ |N(K)| − 2. It

follows that |N(K)| ≥ 8. If |N(K)| = 8, then d ≥ 13 − |N(K)| = 5. Let N ′(x) be obtained

from N(x) by contracting K onto a vertex of minimum degree in N(K). Then the edge-set

of N ′(x) consists of edges incident with the vertex in N(x)−N(K) and the edges in N(K)

in N ′(x). Thus
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e(N ′(x)) ≥ 5 + e(N(K)) + (7 − d) ≥ 5 + 4d + 7 − d = 12 + 3d ≥ 27.

By Theorem 1.2.2, N ′(x) > K6 and thus G − H1 > K7, a contradiction. Thus N(K) =

N(x), and so for any uw /∈ N(x), there is a u-w path with interior in K, which contradicts

(12).

Among the vertices of degree 9, choose x so that the order of the largest component of

G − N [x] is maximum. Let K be a largest component of G − N [x]. By (12), G − N [x] is

disconnected. Let K ′ 6= K be a connected component of G−N [x]. By (15), K ′ has at least

three vertices, say x1, y1, z1, of degree nine. By the choice of x, each of x1, y1, z1 is adjacent

to every vertex of N(K). Thus N(K) ⊂ N(H1). By (12), there is a third component, say

K ′′ of G−N [x]. By symmetry, K ′′ has at least three vertices, say x2, y2, z2, of degree nine,

each of which is adjacent to every vertex of N(K), and N(K) ⊂ N(K ′′). By (12), We may

assume that there exist a ∈ N(K ′)−N(K ′′) and b ∈ N(K ′′)−N(K). By (10), |N(K)| ≥ 4.

If |N(K)| ≥ 5, then by contracting the edge ax1, and five independent edges, each with

one end in N(K) and the other end in {y1, z1, x2, y2, z2}, we see that G − K > K7, a

contradiction. Thus |N(K)| = 4. If there exists an a-b path with interior in N(x) −N(K),

then by contracting all but one of the edges of the path P , and edges ax1, bx2 and four

independent edges, each with one end in N(K) and the other end in {y1, z1, y2, z2}, we see

that G−K > K7, a contradiction. Thus N(x)−N(K) is disconnected. Clearly, N(x)−N(K)

has exactly two components and one of them has exactly two vertices. We may assume that

{a, c} is the component of size two in N(x) − N(K), where c 6= b. Since δ(N(x)) ≥ 5, a

(resp. c) is adjacent to every vertex of N(K). By contracting three independent edges, each

with one end in N(K) and the other end in {x1, y1, z1}, we see that G − K − H2 > K7, a

contradiction. This completes the proof of Theorem 1.3.2.

4.3 Graphs with at most 13 vertices and minimum degree 7

In the proof of Theorem 1.3.1, we need to examine graphs with at most 13 vertices and

minimum degree seven. It is annoying that we are unable to find all such graphs without a
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K7 ∪K1 minor without the use of computers. To see the difficulty, we give a computer-free

proof for graphs with at most 11 vertices and minimum degree seven. We shall need to find

all 4-regular graphs on eight vertices and cubic graphs on ten vertices.

(a) graph V8 (b) graph K4, 4

Figure 11: 4-regular graphs on eight vertices

Lemma 4.3.1 Suppose H is 4-regular on eight vertices. Then H is isomorphic to one of

the 6 graphs depicted in Figure 11.

Note that the first graph in Figure 11 is the complement of V8, where V8 denotes the

graph obtained from C8 by joining all four pairs of diagonally opposite vertices. The fol-

lowing lemma can be verified by a routine case-checking.
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Lemma 4.3.2 Suppose H is a cubic graph on ten vertices. Then H is isomorphic to one

of the 21 graphs shown in Appendix A.

Let P be the Petersen graph, and let P ′ denote the graph obtained from P by subdividing

one edge. We are now ready to state the following lemma.

Lemma 4.3.3 Let G be a graph on n ≤ 13 vertices and δ(G) ≥ 7. Then either G > K7∪K1

or G is isomorphic to one of the following graphs: K1, 2, 2, 2, 2, K1, 3, 3, 3, K3, 3+P4, K3, 3+C4,

K2, 2, 3, 3, K2, 3 + C5, C5 + C5, K3 + C7, K3, 4, 4, K3 + V 8, K1 + P , P ′, J1 and K1 + J2,

where the graph J2 and the complement of J1 are depicted in Figure 17.

Proof. By a computer search we have found all graphs G on 9, 10, 11, 12 and 13 vertices

such that every vertex has degree at least seven, every edge is incident with a vertex of

degree seven, and for every vertex v of G the graph G − v has no K7 minor. To do this we

have used the package nauty, version 2.2, written by Brendan McKay. Our small program

serves to weed out graphs that do not satisfy the above conditions; it is available on the

author’s web-site for independent verification. Note that there are exactly one graph on 12

vertices and one graph on 13 vertices which satisfy the three conditions mentioned above.

Here we give a computer-free proof of the lemma for graphs with n ≤ 11 vertices.

By Theorem 1.3.2, we may assume that e(G) ≤ 5n − 15, otherwise G > K7 ∪ K1 or

G is isomorphic to K1, 2, 2, 2, 2, K2, 2, 3, 3, G = K3, 3 + P4, K1, 3, 3, 3, or K2, 3 + C5. Since

δ(G) ≥ 7, we have 7n ≤ 2e(G) ≤ 2(5n − 15). It follows that n ≥ 10. Suppose n = 10.

Then 35 ≤ e(G) ≤ 5 × 10 − 15 = 35. Thus e(G) = 35 and so G is 7-regular on ten vertices.

Thus G is isomorphic to K3 + C7, or K3, 3 + C4, or C5 + C5 or C4 + C6. In the latter case,

G > K7 ∪ K1. Note that all those graphs are edge maximal, except K3, 3 + C4, subject to

not having a K7 ∪ K1 minor.

Suppose n = 11. We may assume that G is edge maximal subject to not having a

K7 ∪ K1 minor and δ(G) = 7. If ∆(G) = 10, let y be a vertex of maximum degree. Then
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δ(G − y) ≥ 6. By Theorem 2.1.1, G − y > K6 ∪ K1 or G − y = P , where P is the Petersen

graph. Thus G > K7 ∪ K1 or G = K1 + P . So we may assume that ∆(G) ≤ 9. Note that

39 ≤ e(G) ≤ 5 × 11 − 15 = 40 by Theorem 1.3.2. We consider the following two cases.

Case 1. e(G) = 39.

In this case, there exists x ∈ V (G) such that d(x) = 8 and all the other vertices are

of degree seven. Let y, z be the two non-neighbors of x in G. Suppose yz ∈ E(G). Then

G− x− yz is 6-regular on ten vertices and so the complement of G− x− yz is cubic on ten

vertices. By Lemma 4.3.2, there are exactly twenty one cubic graphs on ten vertices. One

can check that G > K7 ∪ K1 or G − x − yz = P (and thus G = P ′). So we may assume

that yz /∈ E(G).

If N(y) = N(z), then there exists a vertex, say u ∈ N(x), such that uy, uz /∈ E(G).

Since d(u) = 7, u has a non-neighbor, say w, in N(x). Now N(x) −{u,w} has two vertices

of degree three and four of degree two, and is isomorphic to one of the graphs depicted in

Figure 12. It can be easily checked that N(x) − {u,w} can be partitioned into two vertex

disjoint subgraphs, say H1 and H2, such that H1 > K3 and H2 > K2. Let a, b be two

adjacent vertices in H2. Now by contracting the edges ay, bz, we see that G − w > K7.

Thus we may assume that N(y) and N(z) have exactly six common neighbors.

Let u,w ∈ N(x) be such that uy,wz /∈ E(G). Clearly, uz,wy ∈ E(G). If uw ∈ E(G),

then N(x)− uw is isomorphic to a 4-regular graph on eight vertices. By checking those six

graphs in Figure 11, we see that G > K7∪K1. So we may assume that uw /∈ E(G). If u and

w have a common non-neighbor, say a, in N(x), then u and w are adjacent to each vertex

in N(x) − {a, u, w}. Thus N(x) − {u,w} has exactly one vertex of degree four and five of

degree two, and so N(x) − {u,w} is isomorphic to the unique graph depicted in Figure 13.

If u and w have no common non-neighbor in N(x), then N(x)−{u,w} has exactly two

vertices of degree three and four of degree two, and thus is isomorphic to one of the graphs
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a b
ba

a

b

a

b

Figure 12: graph with two vertices of degree 3 and four of degree 2

depicted in Figure 12, where the vertices labeled as a and b are non-neighbors of u and w,

respectively. In either case, it can be easily verified that G > K7 ∪ K1.

Case 2. e(G) = 40.

Suppose e(G) = 40. Let x be a vertex of maximum degree in G. Clearly, d(x) ≥ 8.

Thus 8 ≤ d(x) ≤ 9. If d(x) = 9, then there exists y 6= x in V (G) such that d(y) = 8 and

xy ∈ E(G), which is contrary to the assumption that G is edge-maximal. Thus we may

a

Figure 13: graph with one vertex of degree 4 and five of degree 2
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assume that d(x) = 8. Since e(G) = 40 and δ(G) = 7, G has another two vertices, say y, z,

of degree eight in G. As G is edge maximal, x, y, z are pairwise not adjacent. It follows that

each of x, y, z is adjacent to all vertices in G − {x, y, z}. Thus G − {x, y, z} is 4-regular on

eight vertices. By Lemma 4.3.1, there are exactly six 4-regular graphs on eight vertices, as

shown in Figure 11. It can be easily checked that G > K7∪K1 or G−{x, y, z} is isomorphic

to the two graphs in the first row in Figure 11. Thus G > K7 ∪ K1 or G is isomorphic to

K3 + V8 or K3, 4, 4.
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CHAPTER V

THE EXTREMAL FUNCTION FOR K9 MINORS

In this chapter, we prove that every edge-maximal graph on n ≥ 9 vertices without a

K9 minor has at most 7n − 28 edges, or is a (K1, 2, 2, 2, 2, 2, 6)-cockade, or is isomorphic to

K2, 2, 2, 3, 3.

5.1 Outline of the proof of Theorem 1.3.1

Suppose for a contradiction that G is a counterexample to Theorem 1.3.1 with minimum

number of vertices, say n. Since deletion or contraction of edges does not produce smaller

counterexamples, it follows easily that G has minimum degree at least eight, and with some

effort it can be shown that every edge of G is in at least seven triangles. It also follows by a

straightforward counting argument that G is 6-connected. Also e(G) = 7n − 27, and hence

G has a vertex x of degree at least eight and at most thirteen. Fix such a vertex, and let K

be a component of G−N [x]. Assume for a moment that every vertex of N(x) has a neighbor

in K. If there exists a vertex y ∈ N(x) such that N(x) − y > K7, then by contracting the

connected set V (K) ∪ {y} to a single vertex, we see that G > K9. Thus G − y 6> K7 for

every vertex y ∈ N(x). On the other hand, N(x) has minimum degree at least seven and at

most thirteen vertices. Those properties are fairly restrictive: there are only fourteen such

graphs, and so they can be found explicitly. It turns out that they all have two properties

in common (conditions (A) and (B) stated prior to Lemma 5.4.1) that allow us to find a K9

minor in G in a different way. This is how we deal with the case when there is a component

K of G − N [x] satisfying N(x) = N(K). In fact, the argument extends to the situation

when there exists a component K of G − N [x] such that N(K ′) ∩ M ⊆ N(K) for every

component K ′ of G−N [x], where M is the set of all vertices of N(x) that are not adjacent

to every other vertex of N(x).
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Thus we may assume that for no vertex x of degree at most thirteen such a component

exists. In the next step we prove a lemma analogous to Claim (15) of [16], namely that

there is no component K of G − N [x] such that dG(v) ≥ 14 for all vertices v ∈ V (K),

except possibly two, and the exceptional vertices have degree at least d(x). This follows

by counting edges, for if such a component exists, then we exhibit a proper minor of G

with n′ < n vertices and more than 7n′ − 27 edges. That minor of G has a K9 minor by

the minimality of G, and hence G has a K9 minor, a contradiction. Finally, in the last

step, following Jørgensen [16], we select a vertex x ∈ V (G) of degree at most thirteen to

maximize the size of a component of G−N [x], and, subject to that, to minimize the degree

of x. Let K be the largest component of G − N [x]. From the previous results we know

there is another component K ′ of G−N [x], and that component has at least three vertices

of degree at most thirteen (but at least d(x), by the choice of x). The choice of x implies

that all three of these vertices are adjacent to every vertex of N(K). Thus N(K) ⊆ N(K ′),

and so there is a third component of G−N [x]. The same argument applies to it, and hence

there are six distinct vertices of G − N [x] that are adjacent to every vertex of N(K). On

the other hand, |N(K)| ≥ 6 because G is 6-connected, and so it is now easy to construct a

K9 minor in G.

5.2 (K1, 2, 2, 2, 2, 2, 6)-cockades are edge maximal

As noted in Section 5.1, our proof uses induction by deleting and contracting edges of

G. Thus we need to investigate graphs G such that the new graph G − xy or G/xy is a

(K1,2,2,2,2,2, 6)-cockade or is isomorphic to K2, 2, 2, 3, 3. We do that next.

Lemma 5.2.1 Let G be K2, 2, 2, 3, 3 or a (K1, 2, 2, 2, 2, 2, 6)-cockade and let x and y be nonad-

jacent vertices in G. Then G + xy is contractible to K9.

Proof. This is easily checked if G = K2, 2, 2, 3, 3 or G = K1, 2, 2, 2, 2, 2. So we may assume

that G is obtained from H1 and H2 by identifying cliques of size 6, where H1 and H2 are
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(K1, 2, 2, 2, 2, 2, 6)-cockades. If x and y are both in H1 or H2, then H1 +xy > K9 or H2 +xy >

K9 by induction. So we may assume that x ∈ V (H1) − V (H2) and y ∈ V (H2) − V (H1).

Note that no (K1, 2, 2, 2, 2, 2, 6)-cockade contains K7 as a subgraph. Therefore there exists

z ∈ V (H1)∩V (H2) such that zy /∈ V (G). Now by contracting V (H1)−V (H2) to the vertex

z in G + xy, the resulting graph is H2 + zy. By induction, H2 + zy > K9.

5.3 Preliminaries

In this section, we consider contractions in a graph G, which has two adjacent vertices x

and y such that x and y have exactly six common neighbors and G/xy is a (K1, 2, 2, 2, 2, 2, 6)-

cockade or is isomorphic to K2, 2, 2, 3, 3.

Lemma 5.3.1 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly six

common neighbors. If G/xy is isomorphic to K2, 2, 2, 3, 3, then G > K9.

Proof. Let w be the new vertex in G/xy. Since x and y have exactly six common neighbors,

there exist distinct vertices w1, w2, w3, w4 ∈ V (G/xy)−w such that w1w2, w3w4 /∈ E(G/xy),

and w1, w2, w3 are common neighbors of x and y in G. Moreover, w4 is adjacent to x or y,

say to y, in G. By contracting the edges xw2 and yw4 we see that G has a K9 minor, as

desired.

Lemma 5.3.2 Let G be a graph and let x, y be adjacent vertices of G with exactly six

common neighbors. If G/xy is isomorphic to K1, 2, 2, 2, 2, 2, then G has a K9 minor, unless

G is isomorphic to K2, 2, 2, 3, 3 and x, y have degree nine in G.

Proof. Let w be the new vertex of G/xy, and let z, x1, y1, . . . , x5, y5 be the vertices of G/xy

numbered so that xi is not adjacent to yi. Assume first that w 6= z, say w = x1. Since x

and y have six common neighbors, we may assume that x2, y2, x3 are common neighbors of
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x and y. Moreover, y3 is adjacent to x or y, say to y. By contracting the edges xy2, yy3

and y4y5 we see that G has a K9 minor, as desired.

Thus we may assume that w = z. Since x, y have six common neighbors, their degree

is at least seven. Assume for a moment that dG(x) = 7. Since x, y have six common

neighbors in G, we deduce that y is adjacent to all other vertices of G and there exists

an index i such that xi, yi are common neighbors of x, y. We may assume that i = 1.

By contracting the edges xx1, x2x3 and x4x5, we obtain a K9 minor of G. Hence we may

assume that d(x), d(y) ≥ 8. We may also assume that G is not isomorphic to K2, 2, 2, 3, 3

with x, y of degree nine, and so it follows that one of x, y is adjacent to xi or yi for every

i = 1, 2, 3, 4, 5. Thus we may assume (by swapping xi and yi) that x is adjacent to all of

X, where X = {x1, . . . , x5}. Moreover, we may assume that if y is also adjacent to every

vertex of X, then d(x) ≤ d(y). Let Y = {y1, . . . , y5}. Since y has degree at least eight,

there is some i such that y is adjacent to xi and yi. We claim that y is adjacent to at least

three vertices of Y . For if not, then x is adjacent to at least three vertices of Y (the non-

neighbors of y) and, since d(y) ≥ 8, y is adjacent to all vertices of X. But then d(x) > d(y),

a contradiction. Thus y is adjacent to at least three vertices of Y .

Thus there exist distinct indices i, j, k such that y is adjacent to xi, yi, yj, yk. Choose

such indices so that, if possible, x is not adjacent to yi. We may assume that i = 1, j = 2

and k = 3. We claim that x is adjacent to at least two vertices of Y −{y1}. For if not, then

y has at least four neighbors in Y , and hence x, y have at least four common neighbors in

X, and so the indices i, j, k above can be chosen so that x is not adjacent to yi. Thus x is

not adjacent to y1, and hence x has at most one neighbor in Y , implying that d(x) = 7, a

contradiction. Thus x has at least two neighbors in Y − {y1}, and so we may assume that

x has a neighbor in {y2, y4} and a neighbor in {y3, y5}. By contracting the edges yy1, y2y4

and y3y5 we see that G has a K9 minor, as required.

Lemma 5.3.3 Let G be a graph with δ(G) ≥ 7. Let x, y ∈ V (G) be such that xy ∈ E(G)

with exactly six common neighbors. If G/xy is a (K1, 2, 2, 2, 2, 2, 6)-cockade, then either G >

K9, or G is isomorphic to K2, 2, 2, 3, 3 and x, y have degree nine in G.
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Proof. We proceed by induction on |G|. By Lemma 5.3.2 we may assume that G/xy =

H1 ∪ H2, where H1 ∩ H2 is a complete graph on six vertices and both H1 and H2 are

(K1, 2, 2, 2, 2, 2, 6)-cockades. Let w be the new vertex of G/xy. For i = 1, 2 let H ∗
i =

G[(V (Hi) − {w}) ∪ {x, y}]. If w ∈ V (H1) − V (H2), then H∗
1 6= K2, 2, 2, 3, 3 (because the

latter graph has no K6 subgraph) and the result follows by induction applied to H ∗
1 . From

the symmetry we may assume that w ∈ V (H1)∩V (H2). Let S = V (H1)∩V (H2)−{w}; thus

V (H∗
1 )∩V (H∗

2 ) = S∪{x, y}. Let Z denote the set of six common neighbors of x and y in G.

If Z ⊆ V (H∗
1 ), then by induction applied to H∗

1 we may assume that H∗
1 is isomorphic to

K2, 2, 2, 3, 3 and x, y have degree nine in H∗
1 . Since H∗

1 has no K6 subgraph one of x, y, say x,

is not adjacent to some s ∈ S and x has at least one neighbor in V (H2)− V (H1). By using

a path with ends x and s and interior in H∗
2 − V (H∗

1 ) we deduce that G > H∗
1 + sx > K9

by Lemma 5.2.1, as desired.

Thus we may assume that Z −V (H∗
1 ) 6= ∅ 6= Z −V (H∗

2 ). Since H2 is a (K1, 2, 2, 2, 2, 2, 6)-

cockade, it is 6-connected. Let k = |Z − V (H1)|. Since |Z ∩ V (H2)| ≤ 5 we have |S − Z| =

5−|Z∩S| ≥ k. Thus there exist k disjoint paths P1, P2, . . . , Pk in H2− (Z∩S)−w between

Z ∩ V (H2 − S) and S − Z. Consequently H∗
1 has a supergraph H ′

1 on the same vertex set

such that H ′
1 < G and x, y have exactly six common neighbors in H ′

1. By induction H ′
1 is

isomorphic to K2, 2, 2, 3, 3 and x, y have degree nine in H ′
1. By symmetry the same holds for

the analogous graph H ′
2. It follows that in H ′

1 the vertex x has a unique non-neighbor in S,

say x′. Then x′ 6∈ V (P1∪· · ·∪Pk). From the symmetry between H1 and H2 we may assume

that k ≤ 3. (In fact, |Z − V (H1)| = |Z − V (H2)| = 3.) It follows that the k disjoint paths

P1, . . . , Pk can each be chosen of length one, and that there exists a common neighbor of x

and x′ in V (H∗
2 ), say u, that does not belong to any of the paths. Thus by contracting the

edge ux′ and all the edges of the paths P1, . . . , Pk we deduce that G > H ′
1 + xx′ > K9 by

Lemma 5.2.1, as desired.
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5.4 Graphs without K7 ∪ K1 minor

As pointed out in Section 5.3, we need to examine graphs G such that |V (G)| ≤ 13,

δ(G) ≥ 7 and G 6> K7 ∪ K1. The next lemma shows that those graphs G satisfy the

following properties:

(A) either G is isomorphic to K1, 2, 2, 2, 2, or G has four distinct vertices a, b, c, d such that the

pairs of vertices (a, b) and (c, d) are adjacent and have at most four common neighbors

in G and G + ac + bd > K8,

(B) for any two sets A,B ⊆ V (G) of size at least five such that neither is complete and

A ∪ B includes all vertices of G of degree at most |G| − 2, either

(B1) there exist a ∈ A and b ∈ B such that G′ > K8, where G′ is obtained from G by

adding all edges aa′ and bb′ for a′ ∈ A − {a} and b′ ∈ B − {b}, or

(B2) there exist a ∈ A − B and b ∈ B − A such that ab ∈ E(G) and the vertices a and b

have at most five common neighbors in G, or

(B3) one of A and B contains the other and G+ab > K7∪K1 for all nonadjacent vertices

a, b ∈ A ∩ B.

Lemma 5.4.1 Let n be an integer satisfying 9 ≤ n ≤ 13 and let G be a graph on n vertices

with δ(G) ≥ 7. Then either G > K7 ∪ K1 or G satisfies (A) and (B).

Proof. By Lemma 4.3.3 the graphs G with 9 ≤ n ≤ 13 vertices, δ(G) ≥ 7 and G 6> K7∪K1

are the following ones: K1, 2, 2, 2, 2, K1, 3, 3, 3, K3, 3+P4, K3, 3+C4, K2, 2, 3, 3, K2, 3+C5, C5+C5,

K3 + C7, K3, 4, 4, K3 + V 8, K1 + P , P ′, J1 and K1 + J2, depicted in Figures 14-17. In the

following we assume that the vertices of those graphs are labeled as in the above-mentioned

figures.

To see that condition (A) holds for those graphs G we may assume that G is not

isomorphic to K1, 2, 2, 2, 2. Let (a, b, c, d) = (0, 3, 1, 4) for K1, 2, 2, 2, 2, K1, 3, 3, 3, K3, 3 + P4,
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Figure 14: Graphs with no K7 ∪ K1 minors.
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Figure 15: Graphs with no K7 ∪ K1 minors.
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Figure 16: Graphs with no K7 ∪ K1 minors
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Figure 17: Graphs with no K7 ∪ K1 minors.
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K3, 3 + C4, and K2, 2, 3, 3, let (a, b, c, d) = (0, 11, 2, 10) for K1 + J2, and let (a, b, c, d) =

(0, 9, 1, 8) for the rest of the graphs.

To prove that condition (B) holds for all those graphs G let the sets A and B be as stated

in condition (B), and assume that (B2) does not hold. A vertex in a graph is universal if

it is adjacent to every other vertex of the graph. Let M be the set of all vertices of G that

are not universal. For notational reasons we define G + (u, v) to mean G + uv.

Assume first that A is a subset of B. Then M is a subset of B because M is included

in the union of A and B. We may assume that G is K3, 3 + P4, K3, 3 + C4, or K2, 2, 3, 3, for

otherwise (B3) holds for any pair of nonadjacent vertices a, b of G. In particular, G has no

vertex adjacent to every other vertex, and so B = {0, 1, ..., 9}. If A intersects both {0, 1, 2}

and {3, 4, 5} in at most one element, then (since A has at least five elements) we may

assume that 6, 7, 8 ∈ A, and on letting (a, b) = (7, 0) we deduce that (B1) holds (because

G + (0, 1) + (6, 7) + (7, 8) > K8). Thus we may assume that 0 and 1 belong to A, and by

letting (a, b) = (0, 3) we deduce that (B1) holds (because G + (0, 1) + (3, 4) > K8).

So we may assume that there exist x ∈ A−B and y ∈ B−A. We first dispose of the case

when x and y cannot be chosen so that neither is universal. In that case we may assume

that x is universal; that limits G to K1, 2, 2, 2, 2, K1, 3, 3, 3, K1 +P or K1 +J2. Note that each

of them has a unique universal vertex. It follows that M is a subset of B, for otherwise a

vertex in M − B can replace x, yielding a choice of (x, y), where neither is universal. Let

u, v be nonadjacent vertices in A. Then G + (u, v) > K7 ∪ K1 . (We said above that there

are only two graphs, namely K3, 3 + C4 and K3, 3 + P4, that are not edge-maximal, and

those two graphs have no universal vertex.) Thus for some w the graph G + (u, v) − w has

a K7 minor. If w is universal, then G + (u, v) has a K8 minor, and we are done. Otherwise

w ∈ M , and hence w ∈ B, and so graph obtained from G + (u, v) by adding all missing

edges wb for b ∈ B has a K8 minor, as desired.

Thus we may assume that x and y can be chosen so that neither is universal. As A

and B do not satisfy property (B2), it follows that for any a ∈ N(x) − A, the vertices x
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and a have at least six common neighbors in G. This is rarely true for the graphs we are

dealing with, and that is how, in the analysis below, it follows that a ∈ A. The argument

that b ∈ B is analogous. Furthermore, if x and y are adjacent, then they have at least six

common neighbors, and that eliminates many cases. Here are the choices for a and b to

show that (B1) holds. We list, up to symmetry, all pairs (x, y) of nonadjacent vertices and

all pairs (x, y) of adjacent vertices with at least six common neighbors such that neither is

universal.

K1, 2, 2, 2, 2: we may assume that (x, y) = (0, 1). Let (a, b) = (2, 4).

K1, 3, 3, 3: by symmetry we may assume that (x, y) = (0, 1). Let (a, b) = (3, 7) and note that

G + (3, 4) + (7, 8) > K8.

K3, 3 + P4, K3, 3 + C4 and K2, 2, 3, 3: if (x, y) = (0, 1) let (a, b) = (3, 6); if (x, y) = (6, 7) or

(x, y) = (6, 8) let (a, b) = (0, 3).

K2, 3 + C5: if (x, y) = (0, 1) let (a, b) = (3, 8); if (x, y) = (3, 4) let (a, b) = (0, 8); if

(x, y) = (8, 9) let (a, b) = (0, 3).

C5 + C5: we may assume that (x, y) = (0, 1). Let (a, b) = (2, 5).

K3 + C7: if (x, y) = (0, 1) let (a, b) = (3, 7); if (x, y) = (7, 8) let (a, b) = (0, 2).

K3,4,4: if (x, y) = (0, 1) let (a, b) = (4, 8); if (x, y) = (8, 9) let (a, b) = (0, 4).

K3 + V8: if (x, y) = (0, 1) or (x, y) = (0, 3) let (a, b) = (4, 8); if (x, y) = (8, 9) let (a, b) =

(0, 2).

K1 + P : we may assume that (x, y) = (0, 1). Let (a, b) = (5, 4).

P ′: we may assume that (x, y) is one of (0, 1), (2, 3), (3, 4), (1, 10), (8, 3). Let(a, b) = (5, 7).

Notice that G + (5, 4) + (7, 6) and G + (5, 6) + (7, 8) both have K8 minors.

J12: we may assume that (x, y) is one of (1, 0), (1, 2), (1, 11). Let (a, b) = (7, 9) and notice

that G + (7, 8) + (7, 4) + (9, 5) has a K8 minor (contract the edges (0, 4), (1, 3), (2, 10), and

(6, 8)).
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K1+J1: we may assume that (x, y) is one of (4, 3), (8, 6), (8, 3). Let (a, b) = (0, 1) and notice

that G+(0, 10)+(1, 9) has a K8 minor (contract the edges(0, 11), (2, 10), (3, 6), (4, 8), (4, 5)).

5.5 Proof of Theorem 1.3.1

In this section, we are going to prove Theorem 1.3.1 by induction on n. The only graph

G with 9 vertices and e(G) ≥ 7 × 9 − 27 = 36 is K9. Thus we may assume that n ≥ 10

and that the assertion holds for smaller values of n. Throughout this section we assume

that G is a graph with n vertices and e(G) ≥ 7n − 27 but G is not contractible to K9 and

G is not K2, 2, 2, 3, 3 or a (K1, 2, 2, 2, 2, 2, 6)-cockade. By Lemma 5.2.1, we may assume that

e(G) = 7n − 27.

Suppose that G has a vertex x of degree at most 6. Then e(G − x) ≥ 7(n − 1) − 26,

and hence G > G − x > K9 by induction, a contradiction. Suppose now that G has two

adjacent vertices x, y with at most five common neighbors. Then e(G/xy) ≥ 7(n− 1)− 26.

By induction, G > K9, a contradiction. Thus δ(G) ≥ 7 and δ(N(x)) ≥ 6. If G has a

vertex x of degree 7, then N(x) = K7 and e(G − x) ≥ 7(n − 1) − 27. Note that neither

a (K1, 2, 2, 2, 2, 2, 6)-cockade nor K2, 2, 2, 3, 3 contain K7 as a subgraph. Thus, by induction,

G − x > K9, a contradiction. Hence

(1) δ(G) ≥ 8 and δ(N(x)) ≥ 6 for any x ∈ V (G).

Let S be a separating set of vertices in G, and let G1 and G2 be proper subgraphs of

G so that G = G1 ∪ G2 and G1 ∩ G2 = G[S]. Let mi = 7|Gi| − 27 − e(Gi), i = 1, 2. Then

7n − 27 = e(G) = e(G1) + e(G2) − e(G[S]) = 7n + 7|S| − 54 − m1 − m2 − e(G[S]), and so

(2) 7|S| = 27 + m1 + m2 + e(G[S]).

For i = 1, 2, let di be the maximum number of edges that can be added to G3−i by

contracting edges of G with at least one end in Gi. More precisely, let di be the largest

integer so that Gi contains disjoint set of vertices V1, V2, . . . , Vp so that Gi[Vj ] is connected,
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|S ∩ Vj | = 1 for 1 ≤ j ≤ p = |S|, and so that the graph obtained from Gi by contracting

V1, V2, . . . , Vp and deleting V (G) − (
⋃

j Vj) has e(G[S]) + di edges. By (1), δ(G) ≥ 8. Thus

|Gi| ≥ 9, i = 1, 2. By induction, d1 ≤ m2 and d2 ≤ m1. By (2),

(3) 7|S| ≥ 27 + d1 + d2 + e(G[S]).

In particular, |S| ≥ 4. If S is a minimal separating set, then let v ∈ S be a vertex of

minimum degree in G[S]. By choosing V1 = V (Gi) − (S − {v}) and the rest of the sets Vj

to be singletons, we see that di ≥ |S| − 1 − δ(G[S]) for i = 1, 2. Thus

(4) if S is a minimal separating set, then

5|S| ≥ 25 + e(G[S]) − 2δ(G[S])) ≥ 25 +
1

2
(|S| − 4)δ(G[S]).

Lemma 5.5.1 G is 6-connected.

Proof. Suppose G is not 6-connected. Let S be a minimal separating set of G, and let

G1, G2, d1, d2 be as above. By (4) G is 5-connected and G[S] = K5. We next show that

d1 ≥ 5. Let x and y be distinct vertices in G1\S. By Menger’s theorem, there exist five

x-S paths P1, P2, . . . , P5 in G1 which have only the vertex x in common. If all these paths

have length 1, then, since there are at least four internally disjoint y-S paths in G1\{x}, by

contracting these paths we deduce that d1 ≥ 7. We may now assume that P1 has length at

least 2. Let V (P1)∩S = {z}. As {x, z} is not a separating set in G, there is a path P from

a vertex on P1\{x, z} to a vertex on some Pi\{x}, i 6= 1, so that only the end vertices of

P belong to
⋃5

j=1 Pj . By contracting a suitable subset of the edges of P ∪ P1 ∪ · · · ∪ P5 we

deduce that d1 ≥ 5, as claimed.

By symmetry, d2 ≥ 5 and so d1 + d2 ≥ 10. However, by (3), d1 + d2 ≤ 8, which is a

contradiction.

Lemma 5.5.2 There is no separating set S with a vertex x so that G[S − x] is complete.

Proof. Suppose that G[S − x] is complete and let G1, G2 be as above. We may assume

that S is a minimal separating set. By Lemma 5.5.1, |S| ≥ 6. If |S| ≥ 8, by contracting
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V (G1)−S to x and V (G2)−S to a new vertex, we get a K9 minor, a contradiction. So we

may assume that |S| = 6 or |S| = 7.

If |S| = 6, by (4), 5|S| ≥ 25+ e(G[S])−2δ(G[S])) ≥ 25+10+ δ(G[S])−2δ(G[S]), which

implies that G[S] = K6. By induction, we may assume e(Gi) ≤ 7|Gi| − 27, i = 1, 2. Since

7n − 12 = 7n − 27 + 15 = e(G) + 15 = e(G1) + e(G2) ≤ 7|G1| − 27 + 7|G2| − 27 = 7n − 12,

it follows that e(Gi) = 7|Gi| − 27, i = 1, 2. Since K2, 2, 2, 3, 3 does not contain K6 as a

subgraph, by induction, Gi > K9 or Gi is a (K1, 2, 2, 2, 2, 2, 6)-cockade. Thus G > K9 or G is

a (K1, 2, 2, 2, 2, 2, 6)-cockade, a contradiction.

If |S| = 7, by (4), 5|S| ≥ 25+ e(G[S])−2δ(G[S])) ≥ 25+15+ δ(G[S])−2δ(G[S]), which

implies that G[S] is isomorphic to K7 or K7 with an edge deleted. Let e(G[S]) = 21 − t,

where t = 0 or 1. Suppose e(G1) ≥ 7|G1| − 27 − t. Let G′
1 be obtained from G by

contracting V (G2) − S to x. Then e(G′
1) = e(G1) + t ≥ 7|G′

1| − 27. Since G′
1 contains

a K7 subgraph, it is not K2, 2, 2, 3, 3 or a (K1, 2, 2, 2, 2, 2, 6)-cockade, and hence by induction,

G > G′
1 > K9. Thus e(G1) ≤ 7|G1|− 28− t. Similarly, we have e(G2) ≤ 7|G2|− 28− t. But

now e(G) = e(G1) + e(G2) − e(G[S]) ≤ 7(n + 7) − 28 − t − 28 − t − 21 + t = 7n − 28 − t,

which is a contradiction.

Lemma 5.5.3 δ(N(x)) ≥ 7 for any x ∈ V (G).

Proof. Suppose δ(N(x)) ≤ 6. By (1) there exists a vertex y ∈ N(x) such that x and y

have exactly six common neighbors. Then e(G/xy) = 7(n − 1) − 27. Since G 6> K9, the

minimality of |G| implies that G/xy is isomorphic to K2, 2, 2, 3, 3 or is a (K1, 2, 2, 2, 2, 2, 6)-

cockade. In either case, by Lemma 5.3.1 or Lemma 5.3.3, G > K9 or G = K2, 2, 2, 3, 3, a

contradiction.

Lemma 5.5.4 δ(G) ≥ 9.

Proof. Let x ∈ V (G) be such that d(x) = δ(G) ≤ 8. By Lemma 5.5.3, N(x) = K8 and so

G > N [x] = K9, a contradiction.
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Lemma 5.5.5 If G − N [x] is 2-connected or has at most two vertices, then N(x) 6=

K1, 2, 2, 2, 2.

Proof. Suppose for a contradiction that N(x) = K1, 2, 2, 2, 2. Let V (N(x)) = {y, z1, z2, z3, z4,

w1, w2, w3, w4} so that y is adjacent to all vertices in N(x) − y and ziwi /∈ E(G).

We next show that zi and wi have no common neighbor in G − N [x] for i = 1, 2, 3, 4.

To this end suppose that there exists a vertex v ∈ V (G−N [x]) adjacent to, say z1 and w1.

Let K = G−N [x]− v. Then K is not null by Lemma 5.5.4, because G is not isomorphic to

K1, 2, 2, 2, 2, 2. Since G − N [x] has no cut vertex, K is connected. If zi, wi ∈ N(K) for some

i ∈ {2, 3, 4}, then let P be a path with ends zi and wi and interior in K. By contracting

the edge z1v and all but one of the edges of P we see that G > N [x] + z1v1 + ziwi > K9,

a contradiction. Thus we may assume that w2, w3, w4 6∈ N(K). Let i ∈ {2, 3, 4}. It follows

from Lemma 5.5.3 applied to wi that v is adjacent to wi. By Lemma 5.5.3 the edge vwi is

in at least seven triangles, and hence z2, z3, z4 are all adjacent to v. By Lemma 5.5.2 the set

N(K)−{v} is not complete, and hence z1, w1 ∈ N(K). By contracting the edge vw2 and all

but one edge of a z1-w1 path with interior in K we deduce that G > N [x]+z1w1+z2w2 > K9,

a contradiction. This proves that the vertices zi and wi have no common neighbor in

G − N [x].

Let u ∈ V (G) − N [x] be a neighbor of z1. By Lemma 5.5.3 the vertices u and z1 have

at least seven common neighbors, and so by the result of the previous paragraph z1 has at

least four neighbors in G − N [x]. By symmetry the same holds for all zi and wi.

Let H = G − {x, y, z3, w3, z4, w4}. We next show that H is 4-connected. Suppose for

a contradiction that S is a minimal separating set of at most three vertices in H. Since

G−N [x] has no cut vertex, |S| ≥ 2 and |S ∩N(x)| ≤ 1. If |S ∩N(x)| = 1, we may assume

that w1 ∈ S. Since z1z2, z1w2 ∈ E(G), z1, z2, w2 are in the same component of H − S.

Denote this component by K. If w1 /∈ S, then also w1 ∈ K. Since z2, w2 have at least

four neighbors in G − N [x], there exist z ′2 and w′
2 in G − N [x] − S adjacent to z2 and w2,

respectively. Clearly, z ′2 and w′
2 belong to K. As G − N [x] has no cut vertex, G − N [x]

contains two independent z ′2-w
′
2 paths. One of these paths is contained in G[K ∪ S].
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Since G is not contractible to N [x] + z2w2 + ziwi > K9 for i = 3, 4, there is no zi-wi

path in G[K ′ ∪ {zi, wi}], where K ′ 6= K is another component of H − S. But this implies

that K ′ is separated from x by S and three pairwise adjacent vertices. We may assume

that such three vertices are y, w3, w4. Since G is 6-connected, |S| = 3. Let S = {s1, s2, s3},

where s1 = w1 if w1 ∈ S, and let S ′ = S ∪ {y, w3, w4}. Then S′ is a minimal separating

set of G. Let H1 = G[K ′ ∪ S′] and H2 = G − K ′. Let d1 and d2 be defined as in the

paragraph prior to (3). Clearly, K ∪ {x, z3, z4} is contained in H2. By Menger’s theorem,

there exist three disjoint paths between {x,w1, w2} and S in G − {y, w3, w4}. Now by

contracting those paths, we get d2 + e(G[S′]) = e(K6) = 15. By Lemma 5.5.2, d1 ≥ 1. By

(3), 42 = 7|S ′| ≥ 27 + 1 + 15 = 43, a contradiction. Thus H is 4-connected.

Since G is not contractible to K9, it follows from Theorem 1.4.1 applied to the vertices

z1, z2, w1, w2 that e(H) ≤ 3|H|−7 = 3(n−6)−7. Since for i ∈ {3, 4} the vertices zi and wi

have no common neighbor in G − N [x], they together have at most |G| − |N [x]| = n − 10

neighbors in G − N [x]. The vertices {z3, w3, z4, w4} are incident with 20 edges of N [x].

Thus

7n − 27 = e(G) ≤ d(x) + d(y) − 1 + e(H) + 2(n − 10) + 20

≤ 9 + n − 2 + 3(n − 6) − 7 + 2(n − 10) + 20 = 6n − 18.

It follows that n ≤ 9, a contradiction.

Lemma 5.5.6 Let x ∈ V (G) be such that 9 ≤ d(x) ≤ 13. Then there is no component K

of G −N [x] such that N(K ′) ∩M ⊆ N(K) for every component K ′ of G −N [x], where M

is the set of vertices of N(x) not adjacent to all other vertices of N(x).

Proof. Assume such a component K exists. Among all vertices x with 9 ≤ d(x) ≤ 13

for which such a component exists, choose x to be of minimal degree. We first prove that

M ⊆ N(K). Suppose for a contradiction that M − N(K) 6= ∅, and let y ∈ M − N(K) be

such that d(y) is minimum. Clearly, d(y) < d(x). Let J be the component of G − N [y]

containing K. Since d(y) < d(x) the choice of x implies that N(x) − N [y] 6⊆ V (J), and

hence some component H of N(x)−N [y] is disjoint from N(K). We have dG(z) ≥ dG(y) for
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all z ∈ V (H) by the choice of y. Let t = |V (H)|. Then t ≥ 2, for otherwise the vertex y and

component H contradict the choice of x. On the other hand t ≤ d(x) − d(y) ≤ 13 − 9 = 4.

From Lemma 5.5.3 applied to y we deduce that N(y) ∩ N(x) has minimum degree at least

six. Let L be the subgraph of G induced by (N [y] ∩ N(x)) ∪ V (H). Then the edge-set of

L consists of edges of N(x) ∩ N(y), edges incident with y, and edges incident with V (H).

Thus

e(L) ≥ 3(d(y) − 1) + d(y) − 1 + t(d(y) − 1) − 1

2
t(t − 1)

≥ 6(d(y) + t) + (t − 2)d(y) − 4 − 7t − 1

2
t(t − 1) ≥ 6|V (L)| − 20,

because d(y) ≥ 9 and 2 ≤ t ≤ 4. Since 11 ≤ |V (L)| ≤ 13 the graph L is not a (K2, 2, 2, 2, 2, 5)-

cockade, and hence N(x) > L > K8 by Theorem 1.2.3. Thus G > K9, a contradiction.

This proves that M ⊆ N(K).

If N(x) > K7 ∪K1, then N(x) has a vertex y such that N(x)− y > K7. If y 6∈ M , then

N(x) > K8. Otherwise, by contracting the connected set V (K) ∪ {y} we can contract K8

onto N(x). Thus in either case G > K9, a contradiction. Thus by Lemma 5.4.1, we may

assume that N(x) satisfies properties (A) and (B).

If G − N [x] is 2-connected or has at most two vertices, then by Lemma 5.5.5, we may

assume that N(x) 6= K1, 2, 2, 2, 2. Then by property (A) and Lemma 5.5.3 the set N(x)

has four distinct vertices x1, y1, x2, y2 such that N(x) + x1y1 + x2y2 > K8 and the pairs

(x1, x2) and (y1, y2) have at least two common neighbors in G − N [x]. Let u1, u2 (resp.

w1, w2) be two distinct common neighbors of x1 and x2 (resp. y1 and y2) in G − N [x]. By

Menger’s Theorem, G − N [x] contains two disjoint paths from {u1, u2} to {w1, w2} and so

G > N [x] + x1y1 + x2y2 > K9, a contradiction.

Thus we may assume that G−N [x] has at least three vertices and is not 2-connected. If

G−N [x] is disconnected, let H1 = K and H2 be another connected component of G−N [x].

If G−N [x] has a cut-vertex, say w, let H1 be a connected component of G−N [x]−w and

let H2 = G−N [x]− V (H1). In either case, H1 and H2 are disjoint connected subgraphs of

G − N [x] such that M ⊆ N(H1) ∪ N(H2) (because we have shown that M ⊆ N(K)). For

i = 1, 2 let Ai = N(Hi)∩N(x). By Lemma 5.5.2 and Lemma 5.5.1, Ai is not complete and
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|Ai| ≥ 5 for i = 1, 2. By property (B), A1 and A2 satisfy properties (B1), (B2) or (B3).

Suppose first that A1 and A2 satisfy property (B1). Then there exist ai ∈ Ai such that

N(x) + {a1a : a ∈ A1 −{a1}} + {a2a : a ∈ A2 − {a2}} > K8. By contracting the connected

sets V (H1)∪{a1} and V (H2)∪{a2} to single vertices, we see that G > K9, a contradiction.

Suppose next that A1 and A2 satisfy property (B2). Then there exist a1 ∈ A1 − A2 and

a2 ∈ A2 − A1 such that a1a2 ∈ E(G) and the vertices a1 and a2 have at most five common

neighbors in N(x). Thus a1, a2 ∈ M by Lemma 5.5.3, and by another application of the

same lemma there exists a common neighbor u ∈ V (G) − N [x] of a1 and a2. But a1 6∈ A2

and a2 6∈ A1, and hence u 6∈ V (H1) ∪ V (H2). Thus G − N [x] is disconnected and H1 = K.

But then a2 ∈ M ⊆ N(K) = N(H1), a contradiction. Thus we may assume that A1 and

A2 satisfy (B3), and hence Ai ⊆ A3−i for some i ∈ {1, 2}. As M ⊆ A1 ∪ A2, we have

M ⊆ N(H3−i). Since Ai is not complete, let a, b ∈ Ai be not adjacent. By property (B3),

N(x) + ab > K7 ∪K1. Let P be an a-b path with interior in Hi. By contracting all but one

of the edges of the path P and by contracting H3−i similarly as above, we see that G > K9,

a contradiction.

Lemma 5.5.7 G − N [x] is disconnected for every vertex x ∈ V (G) of degree at most 13.

Proof. If G − N [x] is not null, then it is disconnected by Lemma 5.5.6. Thus we may

assume that x is adjacent to every other vertex of G. Let H = G − x. Then e(H) =

e(G) − n + 1 = 7n − 27 − n + 1 = 6|H| − 20. By Theorem 1.2.3 applied to H the graph G

has a K9 minor or is a (K1, 2, 2, 2, 2, 2, 6)-cockade, a contradiction.

Lemma 5.5.8 δ(G) ≥ 10.

Proof. Let x ∈ V (G) be such that d(x) = δ(G) = 9. By Lemma 5.5.3, δ(N(x)) ≥ 7. Thus

∆(N(x)) = 8. Let K, K ′ be two components of G − N [x]. By Lemma 5.5.2, N(K) and

N(K ′) contain distinct pairs of nonadjacent vertices of N(x), say a, b and c, d, respectively.

Now e(N(x) + ab + cd) ≥ 1
2(8 + 8 × 7) + 2 = 34 = 6|N(x)| − 20. Since |N(x)| = 9,

Theorem 1.2.3 implies that N(x) + ab + cd > K8, and so G > N [x] + ab + cd > K9 by
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the existence of internally disjoint a-b and c-d paths with interiors in K,K ′ respectively, a

contradiction.

Lemma 5.5.9 Let x ∈ V (G) be such that 10 ≤ d(x) ≤ 13. Then there is no component K

of G−N [x] with two vertices w and w′ so that dG(y) ≥ 14 for every vertex y ∈ K −{w,w′}

and dG(w), dG(w′) ≥ dG(x).

Proof. Assume that such a component K exists. Let G1 = G−K and G2 = G[K∪N(K)].

Let d1 be defined as in the paragraph prior to (3). Let G′
2 be a graph with V (G′

2) = V (G2)

and e(G′
2) = e(G2)+d1 edges obtained from G by contracting edges in G1. By Lemma 5.5.8,

|G′
2| ≥ 11. If e(G′

2) ≥ 7|G′
2| − 26, then by induction G > G′

2 > K9, a contradiction. Thus

e(G2) = e(G′
2) − d1 ≤ 7|G2| − 27 − d1 = 7|N(K)| + 7|K| − 27 − d1. On the other hand,

every u ∈ N(K) has a neighbor in K. From Lemma 5.5.3 applied to u we deduce that

dG2
(u) ≥ 8.

Let t = eG(N(K),K) and d = δ(N(K)). We have e(G2) = e(K) + t + e(N(K)) and

2e(K) ≥ 14(|K| − 2) + 2d(x) − t, (∗)

and hence

e(G2) ≥ 7|K| − 14 + d(x) +
t

2
+

1

2
d|N(K)|.

By contracting the edge xz, where z ∈ N(K) has minimum degree in N(K), we see that

d1 ≥ |N(K)| − d − 1. By combining this with the two inequalities for e(G2) we get

d(x) − t

2
≥ 12 − 6|N(K)| + 2d(x) +

1

2
d(|N(K)| − 2).

Let q = d(x) − |N(K)|. Since N(x) has minimum degree at least seven, it follows that

d ≥ 7−q. Thus d(x)− t
2 ≥ 5− 1

2(q+1)|N(K)|+3q ≥ −6 because |N(K)| = d(x)−q ≤ 13−q.

By (∗) e(K) ≥ 7|K| − 14 + d(x) − t
2 ≥ 7|K| − 20. Since G is not contractible to K9, we

deduce by induction that |K| < 9. As e(K) ≥ 7|K| − 20 we have, in fact, |K| ≤ 3.

If K has a vertex z such that dG(z) ≤ 13 and z is adjacent to every other vertex of K,

then z and the component of G − N [z] containing x contradict Lemma 5.5.6. Thus K has

no such vertex. Since N(K) 6= N(x) by Lemma 5.5.6 applied to x and K, it follows that
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|K| = 3. Thus K has a vertex of degree 14, and either K has only two edges, or every

vertex of K has degree 14. Therefore e(K) + e(K,N(x)) ≥ 14 + 13 + 13 − 2 = 38. It also

follows that d(x) = 13, |N(K)| = 12, and hence d ≥ δ(N(x)) − 1 ≥ 6. Let us recall that

d1 ≥ |N(K)| − d − 1 ≥ 11 − d. Since dG(z) ≥ d(x) = 13 for every z ∈ V (K) we have

e(G′
2) ≥ e(G2) + d1 ≥ 1

2
d|N(K)| + 38 + 11 − d ≥ 7|G′

2| − 26,

and hence G > G′
2 > K9 by induction, a contradiction.

By Lemma 5.5.8 and the fact that e(G) = 7n − 27 there is a vertex of degree 10, 11, 12

or 13 in G. Among the vertices of degree 10, 11, 12 or 13 for which the order of the largest

component of G − N [x] is maximum, choose x so that its degree is minimum. Let K be a

largest component of G − N [x].

By Lemma 5.5.7, there is another component K ′ of G − N [x]. By Lemma 5.5.9, there

is a vertex x′ in K ′ of degree dG(x′) ≤ 13. By the maximality of the order of K, N(K) ⊆

N(x′)∩N(x). Thus N(K) ⊆ N(K ′) and K is also a component of G−N [x′]. By the choice

of x, d(x′) ≥ d(x). Thus every vertex of K ′ has degree in G at least d(x). By Lemma 5.5.9,

there are two distinct vertices y′ 6= x′ and z′ 6= x′ in K ′ of degree dG(y′), dG(z′) ≤ 13.

Similarly, y′ and z′ are adjacent to every vertex in N(K). By Lemma 5.5.6, there is a

third component K ′′ of G−N [x]. By symmetry between K ′ and K ′′, K ′′ has three vertices

x′′, y′′, z′′ of degree at most 13 in G and each of them is adjacent to every vertex of N(K).

Let G1 = G − K, G2 = G[N(K) ∪ K] and let d1 and d2 be as in the paragraph after (2).

Since δ(N(x)) ≥ 7, δ(N(K)) ≥ 7−(13−|N(K)|) = |N(K)|−6. Thus there is a subgraph

T of N(K) with |N(K)| − 6 vertices and at least |N(K)| − 7 edges. By contracting six

independent edges, each with one end in N(K)−T and the other end in {x′, y′, z′, x′′, y′′, z′′},

we see that d1 + e(N(K)) ≥ e(K6) + 6(|N(K)| − 6) + |N(K)| − 7 = 7|N(K)| − 28. This,

together with (3), implies that d2 ≤ 1. Thus the complement of N(K) is a matching, and

hence δ(N(K)) ≥ |N(K)|− 2. Assume that |N(K)| ≥ 7. Then there exists a set A of seven

vertices of N(K) such that G[A] contains a subgraph H isomorphic to K1,2,2,2. Since K ′ is

connected, there is a x′-y′ path P with interior in K ′. Now by contracting three independent

edges, each with one end in A and the other in {x′′, y′′, z′′} and all but one of the edges of
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the path P , we get G > G[V (H) ∪ {x′, y′}] + E(H) + x′y′ > K9, a contradiction. So we

may assume that |N(K)| = 6 and thus N(K) = K6 − M , where M is a matching. Then

e(N(K)) = 15 − |M | and d1 = |M | (by using x′, y′, z′). By Lemma 5.5.2, d2 ≥ 1. By

(3), 7 × 6 ≥ 27 + |M | + 1 + 15 − |M | = 43, a contradiction. This completes the proof of

Theorem 1.3.1.
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CHAPTER VI

BEYOND K9 MINORS

6.1 Minimal counterexamples to Mader’s bound when p = 10

We believe that our methods can be used to extend Theorem 1.2.2 for the case when p = 10.

To apply our methods, one needs to find all graphs G without a K8 ∪ K1 minor, where G

has at most fifteen vertices and minimum degree eight. However, we do not see a way to

do this without a lot of programming effort. Still, it may be possible to prove the following

Conjecture 6.1.1, which we believe is the right extension for Theorem 1.2.2 when p = 10.

Conjecture 6.1.1 Every graph on n ≥ 10 vertices and at least 8n − 35 edges has a K10

minor, or is a (K1, 1, 2, 2, 2, 2, 2, 7)-cockade, or is isomorphic to one of the following graphs:

K1, 2, 2, 2, 3, 3, K2, 2, 3, 3, 4, K2, 3, 3, 3, 3, K−
2, 3, 3, 3, 3, K2, 2, 2, 2, 2, 3, K−

2, 2, 2, 2, 2, 3, or J0, where J0 is

obtained from two disjoint copies of K2, 2, 2, 2, 2, 3 by identifying cliques of size six.

6.2 Some evidence for Conjecture 6.1.1

As noted in Section 5.3, our proof of Theorem 1.3.1 uses induction by deleting and contract-

ing edges of G. To apply our methods to prove Conjecture 6.1.1, one needs to investigate

graphs G such that the new graph G − xy or G/xy is a (K1, 1, 2, 2, 2, 2, 2, 7)-cockade or is

isomorphic to one of the graphs listed in Conjecture 6.1.1. We do that next, which will

establish some evidence for Conjecture 6.1.1.

Lemma 6.2.1 Let G be a (K1, 1, 2, 2, 2, 2, 2, 7)-cockade, or let G be isomorphic to the graph J0

or one of the following graphs: K1, 2, 2, 2, 3, 3, K2, 2, 3, 3, 4, K2, 3, 3, 3, 3, K−
2, 3, 3, 3, 3, K2, 2, 2, 2, 2, 3,
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or K−
2, 2, 2, 2, 2, 3, and let x and y be nonadjacent vertices in G. Then G + xy is contractible

to K10 or G + xy is isomorphic to K2, 3, 3, 3, 3 or K2, 2, 2, 2, 2, 3.

Proof. This is easily checked if G is isomorphic to one of the following graphs: J0,

K1, 2, 2, 2, 3, 3, K2, 2, 3, 3, 4, K2, 3, 3, 3, 3, K−
2, 3, 3, 3, 3, K2, 2, 2, 2, 2, 3 K−

2, 2, 2, 2, 2, 3, and K1, 1, 2, 2, 2, 2, 2.

So we may assume that G is obtained from H1 and H2 by identifying cliques of size seven,

where H1 and H2 are (K1, 1, 2, 2, 2, 2, 2, 7)-cockades. If x and y are both in H1 or H2, then

H1 +xy > K10 or H2 +xy > K10 by induction. So we may assume that x ∈ V (H1)−V (H2)

and y ∈ V (H2) − V (H1). Note that no (K1, 1, 2, 2, 2, 2, 2, 7)-cockade contains K8 as a sub-

graph. Therefore there exists z ∈ V (H1)∩V (H2) such that zy /∈ V (G). Now by contracting

V (H1) − V (H2) to the vertex z in G + xy, the resulting graph is H2 + zy. By induction,

H2 + zy > K10.

Now we consider contractions in a graph G, which has two adjacent vertices x and y such

that x and y have six or seven common neighbors and G/xy is a (K1, 1, 2, 2, 2, 2, 2, 7)-cockade

or is isomorphic to one of the graphs listed in Conjecture 6.1.1.

Lemma 6.2.2 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with six or seven

common neighbors. If G/xy is isomorphic to K2, 3, 3, 3, 3 or K2, 2, 2, 2, 2, 3, then G > K10.

Proof. Let w be the new vertex in G/xy. Since x and y have at least six common neighbors,

there exist distinct vertices w1, w2, w3, w4 ∈ V (G/xy)−w such that w1w2, w3w4 /∈ E(G/xy),

G +w1w2 +w3w4 > K10, and w1, w2, w3 are common neighbors of x and y in G. Moreover,

w4 is adjacent to x or y, say to y, in G. By contracting the edges xw2 and yw4 we see that

G has a K10 minor, as desired.

Lemma 6.2.3 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly

seven common neighbors. If G/xy is isomorphic to J0, then G > K10.
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Proof. Let w be the new vertex in G/xy and let J0 be obtained from H1 and H2, where

Hi = K2, 2, 2, 2, 2, 3, i = 1, 2. Let S be the set of seven common neighbors of x and y. If

w ∈ V (Hi) − V (H3−i) for some i, then S ⊂ V (Hi). By Lemma 6.2.2, G > Hi > K10.

So we may assume that w ∈ V (H1) ∩ V (H2) and |S ∩ V (H1)| ≤ |S ∩ V (H2)|. Then

|S∩V (H1)| ≤ 3. Let H ′
2 be obtained from G by deleting the vertices in V (H1)−(V (H2)∪S)

and contracting |S ∩ V (H1)| independent edges, each with one end in S ∩ V (H1) and the

other in V (H1) ∩ V (H2) − {w}. Then H ′
2 = K2, 2, 2, 2, 2, 3 and x and y have exactly seven

common neighbors. By Lemma 6.2.2, G > H ′
2 > K10, as desired.

x4 x5

y5

z5

z

y1

x1 x2

y2

x3

y3

z4

y4

Figure 18: The complement of K1, 2, 2, 2, 3, 3.

Lemma 6.2.4 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly

seven common neighbors. If G/xy is isomorphic to K1, 2, 2, 2, 3, 3, then G > K10 or G is

isomorphic to K2, 2, 3, 3, 4 or K−
2, 3, 3, 3, 3.

Proof. Let w be the new vertex in G/xy and let z ∈ V (G/xy) be such that dG/xy(z) = 12.

If w 6= z, then since x and y have exactly seven common neighbors, there exist distinct

vertices w1, w2, w3, w4 ∈ V (G/xy) − w such that w1w2, w3w4 /∈ E(G/xy), and w1, w2, w3

are common neighbors of x and y in G. Moreover, w4 is adjacent to x or y, say to y, in G.

By contracting the edges xw2 and yw4 we see that G has a K10 minor, as desired. So we

may assume that w = z. Let V (G/xy) be labeled as depicted in Figure 18.
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Let X = {x1, x2, x3, x4, x5}. Suppose x is complete to X. If y is also complete to X,

we may assume that dG(x) ≥ dG(y). Then x has at least three neighbors, say a, b, c, in

{y1, y2, y3, y4, y5, z4, z5}. Now by contracting four independent edges, each with one end in

{y, a, b, c} and the other in {y1, y2, y3, y4, y5, z4, z5} − {a, b, c}, we see that G > K10. So we

may assume that there exists a color class of G/xy that are non-neighbors of x, similarly,

there exists a color class of G/xy that are non-neighbors of y. Since x and y have exactly

seven common neighbors, we may assume that xx1, xy1 /∈ E(G). If yx4, yy4, yz4 /∈ E(G),

then G is isomorphic to K2, 2, 3, 3, 4. So we may assume that yx2, yy2 /∈ E(G). Since x and y

have exactly seven common neighbors, we may assume that either y3 or z4 are not common

neighbors. In either case, we may assume that yy3, yz4 /∈ E(G). It’s easy to see that G is

isomorphic to K−
2, 3, 3, 3, 3, see Figure 19.

x4 x5

y5

z5

x1 x2 x3

y3

z4

y2y1

x y

y4

x4 x5

y5

z5

x1 x2 x3

y3

z4

y2y1

x y

y4

Figure 19: The complements of K−
2, 3, 3, 3, 3.
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Lemma 6.2.5 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly

seven common neighbors. If G/xy is isomorphic to K2, 2, 3, 3, 4, K−
2, 3, 3, 3, 3, or K−

2, 2, 2, 2, 2, 3,

then G > K10.

Proof. Let w be the new vertex in G/xy. Since x and y have exactly seven common

neighbors, there exist distinct vertices w1, w2, w3, w4 ∈ V (G/xy)−w such that w1w2, w3w4 /∈

E(G/xy), G + w1w2 + w3w4 > K10, and w1, w2, w3 are common neighbors of x and y in G.

Moreover, w4 is adjacent to x or y, say to y, in G. By contracting the edges xw2 and yw4

we see that G has a K10 minor, as desired.

w3 w4w1

u1

z1 z2 z3 z4 z5

w5w2u2

Figure 20: The complement of K1, 1, 2, 2, 2, 2, 2.

Lemma 6.2.6 Let G be a graph and let x, y be adjacent vertices of G with exactly seven

common neighbors. If G/xy is isomorphic to K1, 1, 2, 2, 2, 2, 2, then G has a K10 minor, unless

G is isomorphic to K1, 2, 2, 2, 3, 3 or K−
2, 2, 2, 2, 2, 3 and in either case, dG(x) + dG(y) = 20.

Proof. Let w be the new vertex in G/xy. Let the vertices of G/xy be as depicted in

Figure 20.

Assume first that w 6= u1, u2, say w = z1. Since x and y have seven common neighbors,

we may assume that z2, w2, z3 are common neighbors of x and y. Moreover, w3 is adjacent

to x or y, say to y. By contracting the edges xz2, yz3 and z4z5 we see that G has a K10

minor, as desired.
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Thus we may assume that w = u1. If u2 is a common neighbor of x and y, then by

Lemma 5.3.2, we have G > K10 or G is isomorphic to K1, 2, 2, 2, 3, 3 and dG(x) + dG(y) = 20.

So we may assume that u2x ∈ E(G) but u2y /∈ E(G). If x is adjacent to zi for 1 ≤ i ≤ 5,

then since x and y have seven common neighbors, we may assume that xw4, xw5 ∈ E(G),

and y has at last one neighbor in {w1, w2, w3}. By contracting three independent edges,

each with one end in {w1, w2, w3} and the other in {y, w4, w5}, we see that G > K10. So

we may assume that xz1, xw1 /∈ E(G) (by swapping zi with wi). Then yz1, yw1 ∈ E(G).

Since x and y have exactly seven common neighbors, we may assume that z2x ∈ E(G) or

yz2 ∈ E(G) but not both. In either case, it can be easily checked that G is isomorphic to

K−
2, 2, 2, 2, 2, 3 and dG(x) + dG(y) = 20, see Figure 21.

y

x

u2

w1

z1

z2

w2w3

z3z4

w4

z5

w5

y

x

u2

w1

z1

z2

w2w3

z3z4

w4

z5

w5

Figure 21: The complements of K−
2, 2, 2, 2, 2, 3.

Lemma 6.2.7 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly

seven common neighbors. If G/xy is a (K1, 1, 2, 2, 2, 2, 2, 7)-cockade, then either G > K10, or

G is isomorphic to K1, 2, 2, 2, 3, 3 or K−
2, 2, 2, 2, 2, 3 and in either case, dG(x) + dG(y) = 20.
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Proof. We proceed by induction on |G|. By Lemma 6.2.6 we may assume that G/xy =

H1 ∪ H2, where H1 ∩ H2 is a complete graph on seven vertices and both H1 and H2 are

(K1, 1, 2, 2, 2, 2, 2, 7)-cockades. Let w be the new vertex of G/xy. For i = 1, 2 let H ∗
i =

G[(V (Hi) − {w}) ∪ {x, y}]. If w ∈ V (H1) − V (H2), then H∗
1 6= K1, 2, 2, 2, 3, 3 or K−

2, 2, 2, 2, 2, 3

(because the latter graph has no K7 subgraph) and the result follows by induction applied to

H∗
1 . From the symmetry we may assume that w ∈ V (H1)∩V (H2). Let S = V (H1)∩V (H2)−

{w}; thus V (H∗
1 ) ∩ V (H∗

2 ) = S ∪ {x, y}. Let Z denote the set of seven common neighbors

of x and y in G. If Z ⊆ V (H∗
1 ), then by induction applied to H∗

1 we may assume that

H∗
1 is isomorphic to K1, 2, 2, 2, 3, 3 or K−

2, 2, 2, 2, 2, 3, and in either case, dH∗

1
(x) + dH∗

1
(y) = 20.

Since H∗
1 has no K7 subgraph one of x, y, say y, is not adjacent to some s ∈ S such that

H∗
1 + sy > K10 and y has at least one neighbor in V (H2) − V (H1) (To see such an edge ys

exists, note that K1, 2, 2, 2, 3, 3 is edge maximal. If H∗
1 is isomorphic to K−

2, 2, 2, 2, 2, 3, from the

proof of Lemma 6.2.6, we see that K−
2, 2, 2, 2, 2, 3 + u2y > K10, where u2 and y are labeled in

the proof of Lemma 6.2.6). By using a path with ends y and s and interior in H ∗
2 − V (H∗

1 )

we deduce that G > H∗
1 + sy > K10 by Lemma 6.2.1, as desired.

Thus we may assume that Z−V (H∗
1 ) 6= ∅ 6= Z−V (H∗

2 ). Since H2 is a (K1, 1, 2, 2, 2, 2, 2, 7)-

cockade, it is 7-connected. Let k = |Z − V (H1)|. Since |Z ∩ V (H2)| ≤ 6 we have |S − Z| =

6−|Z∩S| ≥ k. Thus there exist k disjoint paths P1, P2, . . . , Pk in H2− (Z∩S)−w between

Z ∩ V (H2 − S) and S − Z. Consequently H∗
1 has a supergraph H ′

1 on the same vertex set

such that H ′
1 < G and x, y have exactly seven common neighbors in H ′

1. By induction H ′
1

is isomorphic to K1, 2, 2, 2, 3, 3 or K−
2, 2, 2, 2, 2, 3 and in either case, dH′

1
(x) + dH′

1
(y) = 20. By

symmetry the same holds for the analogous graph H ′
2. It follows that in H ′

1 the vertex x has

a unique non-neighbor in S, say x′ such that H ′
1 + xx′ > K10. Then x′ 6∈ V (P1 ∪ · · · ∪ Pk).

From the symmetry between H1 and H2 we may assume that k ≤ 3. It follows that

the k disjoint paths P1, . . . , Pk can each be chosen of length one, and that there exists a

common neighbor of x and x′ in V (H∗
2 ), say u, that does not belong to any of the paths.

Thus by contracting the edge ux′ and all the edges of the paths P1, . . . , Pk we deduce that

G > H ′
1 + xx′ > K10 by Lemma 6.2.1, as desired.

80



6.3 An extremal function for K10 and K11 minors

In this section, we shall establish a weak bound on the extremal functions for K10 and K11

minors. We prove the following.

Theorem 6.3.1 For 10 ≤ p ≤ 11, every graph on n ≥ p vertices and at least 11n − 65 +

(p−10)(2n−23) = (2p−9)n−23p+165 edges has a Kp minor (i.e. every graph on n ≥ 10

vertices and at least 11n − 65 edges has a K10 minor, and every graph on n ≥ 11 vertices

and 13n − 88 edges has a K11 minor).

As noted in previous chapters, we need to examine graphs on 2p − 7 ≤ n ≤ 4p − 19

vertices and δ(G) ≥ 2p − 9. Lemma 6.4.4 shows that all those graphs have a Kp−2 ∪ K1

minor. This allows us to give a computer-free proof for Theorem 6.3.1 in the next section.

Lemma 6.3.2 For any integer 10 ≤ p ≤ 11, every graph on 2p − 7 ≤ n ≤ 4p − 19 vertices

and δ(G) ≥ 2p − 9 has a Kp−2 ∪ K1 minor.

Proof. Let x be a vertex of minimum degree in G. If p = 10, then d(x) ≥ 11 and n ≤ 21.

Thus e(G − x)) ≥ 1
2 d(x)n − d(x) = 1

2 d(x)(n − 2) ≥ 11(n−2)
2 ≥ 6(n − 1) − 19 because

n ≤ 21. By Theorem 1.2.3, G − x > K8. If p = 11, then d(x) ≥ 13 and n ≤ 25. Hence

e(G − x) ≥ 13(n−2)
2 > 7(n − 1) − 27. By Theorem 1.3.1, G − x > K9. In either case, we

obtain a Kp−2 ∪ K1 minor, as desired.

6.4 Proof of Theorem 6.3.1

In this section, we are going to prove Theorem 6.3.1 by induction on n. Since e(G) ≥

(2p − 9)n − 23p + 165, namely,

81



e(G) ≥











11n − 65 if p = 10

13n − 88 if p = 11,

one can easily check that the only graph G with p vertices and e(G) ≥ (2p − 9)n − 23p +

165 is Kp. So we may assume that n ≥ p + 1 and that the assertion holds for smaller

values of n. Throughout this section we assume that G is a graph with n vertices and

e(G) ≥ (2p − 9)n − 23p + 165 but G is not contractible to Kp. We may assume that

e(G) = (2p − 9)n − 23p + 165. Suppose that G has a vertex x of degree at most 2p − 9.

Then e(G − x) ≥ (2p − 9)(n − 1) − 23p + 165, and hence G > G − x > Kp by induction,

a contradiction. Suppose now that G has two adjacent vertices x, y with at most 2p − 10

common neighbors. Then e(G/xy) ≥ (2p − 9)(n − 1) − 23p + 165. By induction, G > Kp,

a contradiction. Thus δ(G) ≥ 2p− 8 and δ(N(x)) ≥ 2p− 9 for any vertex x in G. If x is of

degree 2p − 8 in G, then we see that N [x] = K2p−7 > Kp, a contradiction. Hence

(1) δ(G) ≥ 2p − 7 and δ(N(x)) ≥ 2p − 9 for any x ∈ V (G).

Let S be a separating set of vertices in G, and let G1 and G2 be proper subgraphs of

G so that G = G1 ∪ G2 and G1 ∩ G2 = G[S]. Let mi = (2p − 9)|Gi| − 23p + 165 − e(Gi),

i = 1, 2. Then (2p− 9)n− 23p + 165 = e(G) = e(G1) + e(G2)− e(G[S]) = (2p− 9)n +(2p−

9)|S| − 46p + 165 + 165 − m1 − m2 − e(G[S]), and so

(2) (2p − 9)|S| = −165 + 23p + m1 + m2 + e(G[S]). That is,











11|S| = 65 + m1 + m2 + e(G[S]) if p = 10

13|S| = 88 + m1 + m2 + e(G[S]) if p = 11.

For i = 1, 2, let di be the maximum number of edges that can be added to G3−i by

contracting edges of G with at least one end in Gi. More precisely, let di be the largest

integer so that Gi contains disjoint set of vertices V1, V2, . . . , Vp so that Gi[Vj ] is connected,

|S ∩ Vj | = 1 for 1 ≤ j ≤ p = |S|, and so that the graph obtained from Gi by contracting
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V1, V2, . . . , Vp and deleting V (G) − (
⋃

j Vj) has e(G[S]) + di edges. By (1), δ(G) ≥ 2p − 7.

Thus |Gi| ≥ 2p − 6 for i = 1, 2. By induction, d1 + 1 ≤ m2 and d2 + 1 ≤ m1. Thus by (2)

(3) (2p − 9)|S| ≥ −163 + 23p + d1 + d2 + e(G[S]). That is,











11|S| ≥ 67 + d1 + d2 + e(G[S]) if p = 10

13|S| ≥ 90 + d1 + d2 + e(G[S]) if p = 11.

In particular, |S| ≥ 7. If S is a minimal separating set, then let v ∈ S be a vertex of

minimum degree in G[S]. By choosing V1 = V (Gi) − (S − {v}) and the rest of the sets Vj

to be singletons, we see that di ≥ |S| − 1 − δ(G[S]) for i = 1, 2. Thus

(4) if S is a minimal separating set, then

(2p − 11)|S| ≥ −165 + 23p + e(G[S]) − 2δ(G[S])) ≥ −165 + 23p +
1

2
(|S| − 4)δ(G[S]).

That is,











9|S| ≥ 65 + d1 + d2 + e(G[S]) − 2δ(G[S])) ≥ 65 + 1
2(|S| − 4)δ(G[S]) if p = 10

11|S| ≥ 88 + d1 + d2 + e(G[S]) − 2δ(G[S])) ≥ 88 + 1
2(|S| − 4)δ(G[S]) if p = 11.

From (4) it follows that

Lemma 6.4.1 G is 8-connected.

Lemma 6.4.2 There is no separating set S with a vertex x so that G[S − x] is complete.

Proof. Suppose that G[S − x] is complete and let G1, G2 be as above. We may assume

that S is a minimal separating set. By Lemma 6.4.1, |S| ≥ 8. If |S| ≥ p− 1, by contracting

V (G1)−S to x and V (G2)−S to a new vertex, we get a Kp minor, a contradiction. So we
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may assume that 8 ≤ |S| ≤ p − 2 ≤ 9. By (4),











9 × 8 = 9|S| ≥ 65 + (e(K7) + δ(G[S])) − 2δ(G[S])) ≥ 81 + δ(G[S]) if p = 10

11 × 9 ≥ 11|S| ≥ 88 + (e(K7) + δ(G[S])) − 2δ(G[S])) ≥ 109 + δ(G[S]) if p = 11.

From this it follows that δ(G[S]) ≥ 9, which is impossible because δ(G[S]) ≤ |S| − 1 ≤ 8.

As e(G) = (2p − 9)n − 23p + 165, we have δ(G) ≤ 4p − 19. By (1),

Lemma 6.4.3 2p − 7 ≤ δ(G) ≤ 4p − 19.

Lemma 6.4.4 Let x ∈ V (G) be such that 2p − 7 ≤ d(x) ≤ 4p − 19. Then there is no

component K of G − N [x] such that N(K ′) ∩ M ⊆ N(K) for every component K ′ of

G−N [x], where M is the set of vertices of N(x) not adjacent to all other vertices of N(x).

Proof. Assume such a component K exists. Among all vertices x with 2p − 7 ≤ d(x) ≤

4p−19 for which such a component exists, choose x to be of minimal degree. We first prove

that M ⊆ N(K). Suppose for a contradiction that M −N(K) 6= ∅, and let y ∈ M −N(K)

be such that d(y) is minimum. Clearly, d(y) < d(x). Let J be the component of G − N [y]

containing K. Since d(y) < d(x) the choice of x implies that N(x) − N [y] 6⊆ V (J), and

hence some component H of N(x) − N [y] is disjoint from N(K). We have dG(z) ≥ dG(y)

for all z ∈ V (H) by the choice of y. Let t = |V (H)|. Then t ≥ 2, for otherwise the vertex y

and component H contradict the choice of x. On the other hand t ≤ d(x)−d(y) ≤ 2p− 12.

From (1) applied to y we deduce that N(y) ∩ N(x) has minimum degree at least 2p − 9.

Thus
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e(N(x) ∩ N(y)) ≥ 1

2
(2p − 9)|N(x) ∩ N(y)|

≥











(6|N(x) ∩ N(y)| − 19) + (19 − |N(x)∩N(y)|
2 ) if p = 10

(7|N(x) ∩ N(y)| − 26) + (26 − |N(x)∩N(y)|
2 ) if p = 11

≥











6|N(x) ∩ N(y)| − 19 if p = 10

7|N(x) ∩ N(y)| − 26 if p = 11,

because |N(x) ∩ N(y)| ≤ 25. By Theorem 1.2.3 and Theorem 1.3.1, N(x) ∩ N(y) > Kp−2

and so G[N [x] ∩ N [y]] > Kp, a contradiction.

It follows from Lemma 6.4.4 that

Lemma 6.4.5 For any vertex x with 2p − 7 ≤ dG(x) ≤ 4p − 19, G − N(x) is disconnected

and each component of G − N [x] has at least three vertices.

Proof. Suppose G − N [x] has a component H with |H| ≤ 2. By Lemma 6.4.4, N(H) 6=

N(x). Let u ∈ V (H). Then dG(u) ≤ d(x). Now u and the component of G−N [u] containing

x contradict Lemma 6.4.4.

Lemma 6.4.6 Let x ∈ V (G) be such that 2p − 7 ≤ d(x) ≤ 4p − 19. Then there is no

component K of G − N [x] with three vertices w1, w2, and w3 so that dG(y) ≥ 4p − 18 for

every vertex y ∈ V (K) − {w1, w2, w3} and dG(wi) ≥ dG(x) for i = 1, 2, 3.

Proof. Assume that such a component K exists. Let G1 = G−K and G2 = G[K∪N(K)].

Let d1 be defined as in the paragraph prior to (3). Let G′
2 be a graph with V (G′

2) = V (G2)

and e(G′
2) = e(G2)+d1 edges obtained from G by contracting edges in G1. By Lemma 6.4.3,

|G′
2| ≥ 2p − 6. If e(G′

2) ≥ (2p − 9)|G′
2| − 23p + 165, then by induction G > G′

2 > Kp, a

contradiction. Thus e(G2) = e(G′
2)−d1 ≤ (2p−9)|G2|−23p+164−d1 = (2p−9)|N(K)|+
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(2p − 9)|K| − 23p + 164 − d1. On the other hand, let t = eG(N(K),K) and d = δ(N(K)).

We have e(G2) = e(K) + t + e(N(K)) and

2e(K) ≥ (4p − 18)(|K| − 3) + 3d(x) − t, (a)

and hence

e(G2) ≥ (2p − 9)|K| − 3(2p − 9) +
t + 3d(x)

2
+

1

2
d|N(K)|.

By contracting the edge xz, where z ∈ N(K) has minimum degree in N(K), we see that

d1 ≥ |N(K)| − d − 1. By combining this with the two inequalities for e(G2) we get

3d(x) − t

2
≥ 17p − 138 − (2p − 10)|N(K)| + 3d(x) +

1

2
d(|N(K)| − 2). (b)

Let q = d(x) − |N(K)|. Since N(x) has minimum degree at least 2p − 9, it follows that

d ≥ 2p − 9 − q. We claim that 3 ≤ |K| ≤ 4. We consider the following two cases.

Case 1. p = 10.

In this case, d ≤ 11−q and 13 ≤ d(x) ≤ 21. Thus by (b), 3d(x)−t
2 ≥ 11− 1

2 (q+1)|N(K)|+

4q ≥ −23 because |N(K)| = d(x) − q ≤ 21 − q. By (a) e(K) ≥ 11|K| − 33 + 3d(x)−t
2 ≥

11|K| − 56. Since G is not contractible to K10, we deduce by induction that |K| < 10. As

e(K) > 11|K| − 56 we have, in fact, |K| ≤ 7. Since |K| ≥ 3, we have 3 ≤ |K| ≤ 7. Suppose

5 ≤ |K| ≤ 7. Let L be the subgraph of G induced by N [x]∪ V (K). Then the edge-set of L

consists of edges of N(x), edges incident with x, and edges incident with V (K). Note that

δ(N(x)) ≥ 11. Thus

e(L) ≥ 11d(x)

2
+ d(x) + 3(d(x) − (|K| − 1)) + (|K| − 3)(22 − (|K| − 1)) +

1

2
|K|(|K| − 1)

≥ 11(d(x) + 1 + |K|) +
1

2
(−3d(x) + 23|K| − |K|2 − 77) > 11|V (L)| − 65,

because d(x) ≤ 21 and 5 ≤ |K| ≤ 7. Thus L > K10 by induction, a contradiction. This

proves that 3 ≤ |K| ≤ 4, as claimed.

Case 2. p = 11.

In this case d ≤ 13−q and 15 ≤ d(x) ≤ 25. Thus by (b), 3d(x)−t
2 ≥ 36− 1

2(q+1)|N(K)|+

4q > −45 because |N(K)| = d(x) − q ≤ 25 − q. By (a) e(K) ≥ 13|K| − 39 + 3d(x)−t
2 ≥
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13|K| − 84. Since G is not contractible to K11, we deduce by induction that |K| ≤ 10.

Since |K| ≥ 3, we have 3 ≤ |K| ≤ 10. Suppose 5 ≤ |K| ≤ 10. Let L be the subgraph of G

induced by N [x] ∪ V (K). Then the edge-set of L consists of edges of N(x), edges incident

with x, and edges incident with V (K). Note that δ(N(x)) ≥ 11. Thus

e(L) ≥ 13d(x)

2
+ d(x) + 3(d(x) − (|K| − 1)) + (|K| − 3)(26 − (|K| − 1)) +

1

2
|K|(|K| − 1)

≥ 13(d(x) + 1 + |K|) +
1

2
(−5d(x) + 27|K| − |K|2 − 156) > 13|V (L)| − 88,

because d(x) ≤ 25 and 5 ≤ |K| ≤ 10. Thus L > K11 by induction, a contradiction. This

proves that 3 ≤ |K| ≤ 4, as claimed.

From the above, we have 3 ≤ |K| ≤ 4. We now show that K has a vertex of degree

at most 4p − 19. Suppose each vertex of K is of degree at least 4p − 18. Then |N(K)| ≥

|N(x)| − 2. Thus δ(N(K)) ≥ (2p − 9) − 2 = 2p − 11 and so e(N(K)) ≥ (2p−11)|N(K)|
2 >

(p−5)|N(K)|−
(p−2

2

)

+2 because |N(K)| ≤ 4p−20. By Theorem 1.2.2 and Theorem 1.2.3,

N(K) > Kp−3. If each vertex of K is adjacent to all other vertices in K ∪ N(K), then

K > K3 (because δ(K) ≥ 2) and thus G[K ∪ N(K)] > Kp, a contradiction. Thus |K| = 4

and d(x) = 4p − 19 and |N(K)| = 4p − 20. Clearly, d ≥ (2p − 9) − 1 = 2p − 10. It can be

easily checked that K can be partitioned into two connected components, say K1 and K2,

such that each vertex of N(K) has at least one neighbor in K1 and K2, respectively, and

there is an edge between K1 and K2 in K. Let N ′(x) be obtained from N(x) by contracting

x onto a vertex of minimum degree in N(x). Then e(N ′(x)) ≥ d|N(K)|
2 +(|N(K)|− 1−d) =

(p − 4)|N(K)| − 2p + 9 > (p − 4)|N(K)| −
(

p−1
2

)

+ 2 because d ≥ 2p − 10 and 10 ≤ p ≤ 11.

By Theorem 1.2.3 and Theorem 1.3.1, N ′(x) > Kp−2. Now by contracting K1 and K2 into

different vertices, we see that G[K ∪N ′(x)] > Kp, a contradiction. This proves that K has

a vertex, say z, of degree at most 4p − 19 in G.

We may choose z to be of minimal degree among all vertices of K of degree at most

4p − 19 in G. If z is adjacent to every other vertex of K, then z and the component of

G − N [z] containing x contradict Lemma 6.4.4. So we may assume that there is a vertex

z′ 6= z in K such that zz′ /∈ E(G). If z is adjacent to every other vertex of K − z ′, then
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either z and the component {z ′} in G − N [z] (in this case z ′ is adjacent to every vertex

in N(z)) or z and the component of G − N [z] containing x contradict Lemma 6.4.4. Thus

z has another non-neighbor, say z ′′ 6= z′ in K. Then |K| = 4, and dG(z) = 4p − 19 and

|N(z)∩N(x)| = |N(K)| = |N(x)| − 1. If z ′ is adjacent to every vertex in N(z), then z and

the component {z′} contradict Lemma 6.4.4. Thus dG(z′) = 4p − 19 and z′z′′ ∈ E(G), but

now z′ and the component K − {z ′, z′′} contradict Lemma 6.4.4.

By Lemma 6.4.3 and the fact that e(G) = (2p − 9)n − 23p + 165 there is a vertex of

degree 2p − 7, . . . , or 4p − 19 in G. Among the vertices of degree 2p − 7, . . . , or 4p − 19

for which the order of the largest component of G−N [x] is maximum, choose x so that its

degree is minimum. Let K be a largest component of G − N [x]. By Lemma 6.4.5, there is

another component K ′ of G − N [x]. By Lemma 6.4.6, there is a vertex x′ in K ′ of degree

dG(x′) ≤ 4p − 19. By the maximality of the order of K, N(K) ⊆ N(x′) ∩ N(x). Thus

N(K) ⊆ N(K ′) and K is also a component of G − N [x′]. By the choice of x, d(x′) ≥ d(x).

Thus every vertex of K ′ has degree in G at least d(x). By Lemma 6.4.6, there are three

distinct vertices y′ 6= x′, z′ 6= x′ and w′ 6= x′ in K ′ of degree dG(y′), dG(z′), dG(w′) ≤ 4p−19.

Similarly, y′, z′ and w′ are adjacent to every vertex in N(K). By Lemma 6.4.4, there is a

third component K ′′ of G − N [x] such that N(K ′′) − N(K) 6= ∅. By symmetry between

K ′ and K ′′, K ′′ has four vertices x′′, y′′, z′′, w′′ of degree at most 4p − 19 in G and each of

them is adjacent to every vertex of N(K). By Lemma 6.4.1, |N(K)| ≥ 8. Since K ′′ 6= K ′.

Let a ∈ N(K ′′) − N(K ′) and b ∈ N(K). If |N(K)| ≥ p − 2, then by contracting K

onto b, the edge ax′′ and seven independent edges, each with one end in N(K) − {b}

and the other end in {x′, y′, z′, w′, y′′, z′′, w′′}, we see that G > Kp, a contradiction. So

we may assume that 8 ≤ |N(K)| ≤ p − 3 ≤ 8. Thus p = 11 and |N(K)| = 8. Let

G1 = G − K and G2 = G[K ∪ N(K)]. Let d1 and d2 be defined as prior to (4). Then by

using {x′, y′, z′, w′, y′′, z′′, w′′}, we have d1 + e(G[N(K)]) = e(K8) = 28. By Lemma 6.4.2,

d2 ≥ 1. Now by (3), 13|N(K)| ≥ 90+1+28, which is impossible because |N(K)| = 8. This

completes the proof of Theorem 6.3.1.
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6.5 Further work

From Conjecture 6.1.1, we see the difficulty in extending Mader’s result (namely Theo-

rem 1.2.2) for the case when p = 10. As noted in Chapter 5, we need to deal with the

case when the neighborhood of a vertex of degree ten is K2, 2, 2, 2, 2, in which case three

independent edges are needed in order to have a K10 minor. Thus the edge bound on 3-

linkages (see Theorem 1.4.2) is needed, which will make the proof very technical. However,

a computer-free proof might be possible if we increase the edge bound to 10n− 55. Finally,

we conjecture the following generalization of Theorem 1.3.2.

Conjecture 6.5.1 Let G be a graph on n ≥ 9 vertices and at least 6n− 19 edges. Then ei-

ther G > K8∪K1 or G is isomorphic to one of the following graphs: K1, 1, 2, 2, 2, 2, K1, 2, 2, 3, 3,

K2, 2, 2, 2, 3, K−
2, 2, 2, 2, 3, K3, 3, 3, 3, K−

3, 3, 3, 3, or K2, 3, 3, 4.
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APPENDIX A

CUBIC GRAPHS ON 10 VERTICES

(a) K4 ∪ C6 (b) K4 ∪K3,3

Figure 22: Cubic graphs on 10 vertices.
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Figure 23: Cubic graphs on 10 vertices.

91



Figure 24: Cubic graphs on 10 vertices
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(f) Petersen graph

Figure 25: Cubic graphs on 10 vertices.
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[10] Györi, E., “On the edge numbers of graphs with Hadwiger number 4 and 5,” Period.
Math. Hung., vol. 13, pp. 21–27, 1982.
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