
 1

Learning to Compose Skills

Farhan Tejani1

Undergraduate Thesis

1 A paper based on this work was presented at the 2017 Neural Information Processing Systems Deep
Reinforcement Learning Symposium. Himanshu Sahni, Saurabh Kumar, and Charles Isbell were co-authors on that
paper.

 2

Abstract

We present a differentiable framework capable of learning a wide variety of com- positions of
simple policies that we call skills. By recursively composing skills with themselves, we can
create hierarchies that display complex behavior. Skill networks are trained to generate skill-state
embeddings that are provided as inputs to a trainable composition function, which in turn outputs
a policy for the overall task. Our experiments on an environment consisting of multiple collect
and evade tasks show that this architecture is able to quickly build complex skills from simpler
ones. Furthermore, the learned composition function displays some transfer to unseen
combinations of skills, allowing for zero-shot generalizations. We also design experiments for
learning both skills as well as optimal compositions of those skills from scratch. This allows for
the agent to more intelligently search the space of possible skills rather than having a human
hand-design the composition functions, which may be limited in scope.

Introduction

A key property of intelligent agents is the ability to learn simple skills throughout their lifetimes
and compose them together to solve complicated tasks. Yet, traditional reinforcement learning
(RL) agents lack this ability, making it hard to learn in environments with long term
dependencies. Recent advances in using deep neural networks as function approximators allow
for learning in high dimensional state spaces [16], but do not address this fundamental problem.

In RL, an agent interacts with a dynamic environment and learns to maximize the notion of a
long-term reward. The task is typically characterized as a Markov Decision Process (MDP)
defined by the tuple {S, A, T, R, γ} of states, actions, transition function, reward, and discount
factor. A policy π(S) → P(A) maps each state to a probability distribution over actions that the
agent should take. The agent must learn to optimize this policy in order to maximize the long-
term expected discounted reward that it obtains.

Hierarchical RL [6, 25] offers a solution to the generalization problem by decomposing a single
complicated task into a hierarchy of simpler subtasks, often times using intrinsic rewards to
motivate underlying learners. A related strategy is to use options [22], a set of policies with
fixed, possibly stochastic, initiation and termination criteria, that are made available to the agent
along with base environment actions. Both approaches focus on decomposing a difficult problem
into a sequence of simpler sub-goals. The motivation behind this work is that solving problems
in the real world rarely calls for optimal sequential decompositions of arbitrary tasks; instead, a
set of basic skills can be composed in multiple interesting ways to exhibit complex behavior.

A major distinction between our work and recent attempts to learn an optimal sequence of sub-
goals [1, 8, 17] is that our framework can learn a much richer set of skill compositions. For
example, in the game of Pacman, an agent must learn to collect food pellets while also avoiding
enemy ghosts. In the usual view of hierarchical RL, a sub-goal or option, such as "navigate to
food pellet A" or "evade enemy ghost B," would be activated one at a time and the agent must
learn to alternate between them to complete the overall task of “collect A while avoid B.” A
better approach is to learn a policy that composes both sub-goals, i.e. identifies paths to the food
pellet that also keep Pacman far away from ghosts. In this work, we consider a subset of
compositions defined by Linear Temporal Logic (LTL) [3, 18]. A wide variety of common RL
tasks can be specified using the temporal modal operators defined in LTL: next (O), always (#),

 3

eventually (♦), and until (U), along with the basic logic connectives: negation(¬), disjunction (∨),
conjunction (∧) and implication (→) [14]. The Pacman task above can be translated into LTL as
¬G U (♦F1 ∧ ♦F2 ∧ . . . ♦Fn), where G is the proposition that the Pacman occupies the same
location as any of the ghosts and F1 through Fn are the corresponding propositions for all the
food pellets. Thus, the LTL sentence can be interpreted as “do not get eaten by a ghost until all
the food pellets have been collected.”

Our main contribution in this work is the expression of these compositions as differentiable
functions. Representations of the individual skill policies are fed to this function as inputs and a
representation for the composed task policy is produced. Skill policies are learned only once, and
a wide variety of compositions can be created after the fact. We show that learning to compose
skills is more efficient than learning to sequence those skills as is typically done in hierarchical
RL. Moreover, we show how recursive compositions can be used to create rich hierarchies for
more complicated behavior.

A challenge with trainable compositions is that skill policies must be represented in a
differentiable manner so that they can be utilized inside the composition function. In most
modern RL domains, policies are represented as deep neural networks, with the outputs
normalized to form a probability distribution over actions. The action distribution alone,
however, may not encode enough information on the importance of a sub-goal in the current
state to arbitrate between competing sub-goals. On the other hand, the entire policy network may
contain multiple layers and thousands of weights. Trying to learn a composition function over
that would be very challenging. Therefore, we use a special architecture for training skill policies
which allows us to embed information on the skill and the state in a single layer of the network.
We call these skill-state embeddings. Each embedding is then fed into a composition layer which
learns to solve the overall task. The cost of acquiring skills is cheap and training the composition
function is faster than learning the overall task from scratch. More importantly, the skills can be
reused for different compositions. Finally, we show that the composition function itself shows
some transfer to unseen tasks, allowing for zero-shot task generalization.

 4

Literature Review

Our work is related to a family of hierarchical RL methods [4, 7, 10, 11, 12, 13]. Approaches in
hierarchical RL typically learn the sub-goal policies and a meta-policy simultaneously, using
intrinsic rewards for completion of sub-goals [13] or by tying parameters across different
modules [1] or by adopting a meta-learning approach [8]. A fundamental difference in our
approach is that instead of learning optimal decompositions for a given complex task, we take
the view of learning optimal compositions given a set of base tasks. The act of learning to grill a
pancake [9] does not require us learn an optimal, sequential decomposition of cooking by
interacting with a wide variety of recipes. Instead, it is much easier if a base set of skills, such as
whisking eggs, measuring flour, heating the pan etc. can be composed to occur simultaneously,
in sequence, optionally or held true until another sub-goal is satisfied. The advantage of the
ComposeNet architecture is that the overall tasks can be constructed post-hoc and pre-learned
policies for skills can be quickly composed together to solve unseen tasks. This achieves much
greater re-use of skills and quicker transfer to composed tasks as the skill networks are frozen
after training once. Oh et al. [17] describe a framework to optimally sequence skills that can be
learned in isolation from the main task. But they limit their discussion to sequence of sub-goals,
like program instructions, with occasional interruptibility for a higher priority task.

Our work is also similar to a related framework in hierarchical RL called options [2, 22]. The
key difference here is that the skills are not provided to the agent as augmentations of its action
set. Instead, our model learns skill-state embeddings, which are provided to a composition
function which then learns to aggregate them and output an embedding for the overall task.
Typically, multiple options cannot be activated in parallel. At a given state, an agent may
activate a legal option and chose an action according to the policy prescribed by the option. After
choosing the option, it must follow it for at least one step before activating another option or a
taking a primitive action. In contrast, by composing skill-state embeddings, the agent is able to
arbitrate between multiple sub-policies simultaneously to form optimal behavior according to the
composed task.

In this sense, modular reinforcement learning is a closer analogue to our approach [1, 5, 19, 23].
The skills can be regarded as sub-modules and the compositional layer as an aggregator that
combines each skill’s suggestion into a policy for the overall task. A crucial distinction in our
work is that the skill modules do not provide direct policy recommendations to the aggregator
and nor does the aggregator output a policy. Instead, they both learn to create skill-state
embeddings for their particular skills or tasks. A final layer transforms embeddings in this space
into policy actions. Representing submodule policies with embeddings allows us to create a
richer description of the state, conditioned on each skill, in a way that allows us to create a
trainable composition function.

Also related is work in multi-task RL, such as by van Seijen et al. [24], who use a Hybrid
Reward Architecture agent to solve the game of Ms. Pacman. Our work can be seen as lying
between multi-task and hierarchical RL as our framework is capable of solving simultaneous
goals, sequential goals and also optional goals, goals that must be held true until other goals are
satisfied, etc.

 5

Materials and Methods

The ComposeNet architecture allows learning of skill-state embeddings which can be used inside
a differentiable composition function. Each skill has its own network trunk but the final layer,
called the policy layer, is shared across all the skills (Figure 1a). Each trunk is trained for its
particular skill in isolation but gradients from all the skills are applied to the policy layer. The
trunks are therefore forced to encode information about their particular skill as well as the agent
state in their topmost layer. The policy layer is learning to take embeddings from any skill trunk
and output a policy corresponding to that skill. This can be seen as a reversal of many multi-task
learning architectures where a common input trunk is used with branches at the top for different
tasks [24]. In that case, a common embedding is learned for all tasks. Our goal is the opposite,
i.e. to learn unique embeddings for each task and a common layer that can take any embedding
and output the corresponding policy.

Now that we have a way to embed skill and state information in a single vector, we can combine
two or more embeddings to create a new embedding for a composition of those skills. A
composition, then, is a mapping from embeddings of all relevant skills to an embedding of the
composed task.

Note that the policy function is agnostic to where the embeddings are coming from. This means
that the same function must learn to map embeddings of all skills and any of their compositions
to a policy. This property allows us to do recursive compositions of composed embeddings with
other skills and create hierarchies of behavior. If both functions are differentiable, gradients with
respect to the parameters of the composition function, C, can be formed using gradient based RL
methods.

In practice, two skill-state embeddings are concatenated end-to-end and fed to a fully connected
layer, or the composition layer, which acts as the composition function C. The output of the
composition layer is the same dimensionality as the skill-state embeddings and is fed into the
pretrained policy layer whose output is now treated as a policy for the composed task (Figure
1b). Hence, the composition layer must learn to take two skill-state embeddings and output an
embedding for the composed task. It is assumed that the correct skills for the task are provided to
the agent and the form of the composition is known. This can be seen as a semi-supervised way
of representing the task.

ComposeNet is trained as follows. First, skill trunks and the shared policy layer (without the
composition layer) are trained simultaneously using asynchronous actor critic (A3C) [15]. Once
converged, the weights of the skill trunks and the policy layer are frozen. Now a task consisting
of a composition of two or more skills is chosen and only the composition layer is trained on
samples from it.

Environment and Skills

To test our approach, we devised a domain similar to Pacman, where an agent must collect or
evade colored objects, Red, Green and Blue. The objects to collect remain stationary but the
enemies chase the agent along the shortest path. Once an object is collected, it disappears from
the map. The agent can teleport across the map if it goes out of bounds, but the objects cannot.
An example task in this environment is “collect object Red while evading object Blue” (¬b U r).

 6

The agent’s state is a 15x15 pixel grayscale image of the game grid. There are six skills in this
environment: collecting and evading the three objects respectively. The skills are trained
separately in environments with reward functions only relevant to that skill.

We consider four types of compositions in this environment:
1. ¬p U q, collect object q while evading enemy p;
2. ♦p ∨ ♦q, collect object p or q;
3. #¬p ∧ #¬q, always evade enemy p and enemy q; and
4. ♦(p ∧ ♦q), collect object q then object p.

 7

Results

We first train all six skills networks for about 3 million steps total (i.e. 500,000 steps on average
per skill). After this, skill networks and the policy layer are frozen. This initial cost is fixed and
amortized over all possible compositions.

In the graphs, we compare performance of our method (ComposeNet) to two baselines: (1)
training a single network from scratch, and (2) a meta-controller approach where a network picks
from relevant trained skills every step. We also experimented with using skills as options by
augmenting the agent’s action space. That performed worse than training from scratch on all
problems, likely due to the increased number of actions. We have omitted those results for
clarity.

Single Compositions and Zero-Shot Generalizations

Figure 2 shows performance of ComposeNet compared to our baselines on a sample task for
each type of composition. Overall, the results show that individual skills can be successfully
composed with the ComposeNet architecture to near optimality and are learned faster than either
of the baselines. For the “while” and “then” compositions (Figures 2a and 2d), the meta-
controller initially achieves a somewhat good reward but then learning slows down significantly.
This is because the meta-controller quickly learns that the skill “collect blue” may lead to a high
reward. But improving the reward requires it to learn to alternate between reaching blue and
evading green. Similarly, with “collect red then green”, the agent may reach red then randomly
stumble into green or follow the “collect green” skill only and collect red along the way
accidentally. But activating them in sequence with correct timing is harder to learn. The
exception is “collect red or blue”, as in this case the meta-controller can select any skill at
random and ensure a high reward. ComposeNet quickly learns to achieve high reward for all
types of compositions. For the p ∧ q composition, the meta-controller strategy completely fails to
learn. Evading both objects is a hard task and actions must be chosen to evade both at the same
time. Activating only one, say ‘avoid red’, may lead the agent towards danger, towards green.
Our learned composition function ensures both are evaded simultaneously. This is an example of

 8

why the ComposeNet architecture is better suited to a wide variety of compositions than
traditional hierarchical RL approaches.

We also tested zero-shot task generalization by training the composition layer on other tasks
containing the same compositions. For example, we trained the same composition layer on all
five tasks of the type ¬p U q, except ¬g U b. The learned weights were then used as initialization
for the composition layer of the held-out task. Our results show that there is significant zero-shot
generalization to compositions of the same type. Further training on the held-out task quickly
produces near optimal rewards. For the “collect red or blue” and “evade red and green” tasks we
transferred from only two other tasks, as the order of the objects does not matter in these
compositions.

Hierarchies of Compositions

The ComposeNet architecture is versatile enough that the composition layer can accept itself as
an input, leading to more complex hierarchies. Figure 3 shows results on two composed tasks,
‘collect red while evade green and blue’, (¬g ∧ ¬b) U r, and ‘collect red or green while evade
blue’, ¬b U (r ∨ g). The networks are formed by first composing the literals in parentheses, and
then composing the resulting embedding with the embedding for the third literal. For example, in

 9

Figure 3a, the embeddings for ‘evade green’ and ‘evade blue’ are composed first. The output is
fed into another composition layer, along with the embedding for ‘collect red’. The output of this
layer is then fed to the policy layer. In the ‘transfer’ condition for this task, the first composition
layer was initialized with weights trained on all ‘evade this and that’ tasks. These weights have
been trained to compose two evade policies into a single policy that successfully evades both
objects. The second composition layer is initialized with weights trained on all ‘collect this while
evade that’ tasks. This layer takes as input ‘collect red’ embeddings and the composed
embedding from the first compositional layer and produces an embedding for the complete task.
Similarly, for the transfer treatment in the second task, weights from training on all ‘collect this
or that’ tasks and all ‘collect this while evade that’ tasks were used to initialize the two
composition layers.

The results for zero-shot generalization show that some transfer occurs to such hierarchically
composed tasks, even when the training set is comprised solely of flat compositions of two
literals. The task in Figure 3a is fairly challenging, so the zero-shot policy is able to collect
reward only about half the time, resulting in an average reward close to zero. With a few samples
from the composed task, it quickly learns a high-reward policy. In Figure 3b, the transferred
policy starts with a decent zero-shot reward of close to 0.5 and also converges quickly.
ComposeNet allows for this mix-and-match composition capability and reuse of learned skills,
even in complicated hierarchies.

Discussion

We have presented a framework called ComposeNet which allows an agent to compose simple
skills into a hierarchy to solve complicated tasks. The skills are learned separately and can be
reused for multiple compositions. Key in the framework are skill-state embeddings and a
trainable composition function, backed by our ablative studies. Moreover, when testing on
composed tasks it has never seen before, ComposeNet shows some zero-shot generalization
capability, and quickly converges with few environment samples. This suggests that the ability to
compose skills in this domain may be transferable.

 10

This research aligns with the current trajectory of option learning in the field of RL. Recent work
from McGill’s Reasoning and Learning Laboratory [2] aims to learn options, which are
temporally extended actions such as “go to pellet A” from scratch. However, a key difference is
that with this framework, an agent will naturally learn which options are necessary for solving
the overall task – these options (or skills) do not need to be pre-defined as in our work. It would
be interesting to combine these ideas to learn base skills as well as composition functions.

Future Work

Future work in this area includes trying ComposeNet on more complicated domains such as
Minecraft. We have demonstrated that the operators: (1) U (collect this while evade that), (2) ∧
(evade this and that), (3) ∨ (collect this or that), and (4) ♦(∧ ♦) (collect this then that), can be
learned quickly with pre-trained base skills. Work on learning other types of compositions is
ongoing. Additionally, we are currently working on a mathematical derivation for learning
options in reinforcement learning end-to-end simply by specifying the number of desired
options. This algorithm is being tested on simulated environments, such as Atari games like
Pacman.

 11

References

[1] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. arXiv preprint arXiv:1611.01796, 2016.

[2] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI, pages 1726–
1734, 2017.

[3] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press, 2008.

[4] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[5] S. Bhat, C. L. Isbell, and M. Mateas. On the difficulty of modular reinforcement learning for
real-world partial programming. In Proceedings of the National Conference on Artificial
Intelligence, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2006.

[6] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. J. Artif. Intell. Res.(JAIR), 13(1):227–303, Nov. 2000.

[7] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. J. Artif. Intell. Res.(JAIR), 13:227–303, 2000.

[8] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies.
arXiv preprint arXiv:1710.09767, 2017.

[9] P. C. P. A. Kevin Frans, Jonathan Ho and J. Schulman. Learning a hierarchy. https://blog.
openai.com/learning-a-hierarchy/, 2017.

[10] G. Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. In IJCAI:
proceedings of the conference, volume 2016, page 1648. NIH Public Access, 2016.

[11] G. Konidaris and A. G. Barto. Building portable options: Skill transfer in reinforcement
learning. In IJCAI, volume 7, pages 895–900, 2007.

[12] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration
by constructing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.

[13] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems, pages 3675–3683, 2016.

[14] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan. Environment-
independent task specifications via gltl. arXiv preprint arXiv:1704.04341, 2017.

 12

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937, 2016.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[17] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. arXiv preprint arXiv:1706.05064, 2017.

[18] A. Pnueli and Z. Manna. The temporal logic of reactive and concurrent systems. Springer,
16:12, 1992.

[19] K. Samejima, K. Doya, and M. Kawato. Inter-module credit assignment in modular
reinforcement learning. Neural Networks, 16(7):985 – 994, 2003.

[20] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume 135. MIT
Press Cambridge, 1998.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

[22] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181 – 211, 1999.

[23] E. Uchibe, M. Asada, and K. Hosoda. Behavior coordination for a mobile robot using
modular reinforcement learning. In Intelligent Robots and Systems’ 96, IROS 96, Proceedings of
the 1996 IEEE/RSJ International Conference on, volume 3, pages 1329–1336. IEEE, 1996.

[24] H. van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang. Hybrid reward
architecture for reinforcement learning. arXiv preprint arXiv:1706.04208, 2017.

[25] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K.
Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. arXiv preprint
arXiv:1703.01161, 2017.

