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Abstract  

We present a differentiable framework capable of learning a wide variety of com- positions of 
simple policies that we call skills. By recursively composing skills with themselves, we can 
create hierarchies that display complex behavior. Skill networks are trained to generate skill-state 
embeddings that are provided as inputs to a trainable composition function, which in turn outputs 
a policy for the overall task. Our experiments on an environment consisting of multiple collect 
and evade tasks show that this architecture is able to quickly build complex skills from simpler 
ones. Furthermore, the learned composition function displays some transfer to unseen 
combinations of skills, allowing for zero-shot generalizations. We also design experiments for 
learning both skills as well as optimal compositions of those skills from scratch. This allows for 
the agent to more intelligently search the space of possible skills rather than having a human 
hand-design the composition functions, which may be limited in scope. 

Introduction 
 
A key property of intelligent agents is the ability to learn simple skills throughout their lifetimes 
and compose them together to solve complicated tasks. Yet, traditional reinforcement learning 
(RL) agents lack this ability, making it hard to learn in environments with long term 
dependencies. Recent advances in using deep neural networks as function approximators allow 
for learning in high dimensional state spaces [16], but do not address this fundamental problem.  
 
In RL, an agent interacts with a dynamic environment and learns to maximize the notion of a 
long-term reward. The task is typically characterized as a Markov Decision Process (MDP) 
defined by the tuple {S, A, T, R, γ} of states, actions, transition function, reward, and discount 
factor. A policy π(S) → P(A) maps each state to a probability distribution over actions that the 
agent should take. The agent must learn to optimize this policy in order to maximize the long-
term expected discounted reward that it obtains. 
 
Hierarchical RL [6, 25] offers a solution to the generalization problem by decomposing a single 
complicated task into a hierarchy of simpler subtasks, often times using intrinsic rewards to 
motivate underlying learners. A related strategy is to use options [22], a set of policies with 
fixed, possibly stochastic, initiation and termination criteria, that are made available to the agent 
along with base environment actions. Both approaches focus on decomposing a difficult problem 
into a sequence of simpler sub-goals. The motivation behind this work is that solving problems 
in the real world rarely calls for optimal sequential decompositions of arbitrary tasks; instead, a 
set of basic skills can be composed in multiple interesting ways to exhibit complex behavior.  
 
A major distinction between our work and recent attempts to learn an optimal sequence of sub-
goals [1, 8, 17] is that our framework can learn a much richer set of skill compositions. For 
example, in the game of Pacman, an agent must learn to collect food pellets while also avoiding 
enemy ghosts. In the usual view of hierarchical RL, a sub-goal or option, such as "navigate to 
food pellet A" or "evade enemy ghost B," would be activated one at a time and the agent must 
learn to alternate between them to complete the overall task of “collect A while avoid B.” A 
better approach is to learn a policy that composes both sub-goals, i.e. identifies paths to the food 
pellet that also keep Pacman far away from ghosts. In this work, we consider a subset of 
compositions defined by Linear Temporal Logic (LTL) [3, 18]. A wide variety of common RL 
tasks can be specified using the temporal modal operators defined in LTL: next (O), always (#), 
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eventually (♦), and until (U), along with the basic logic connectives: negation(¬), disjunction (∨), 
conjunction (∧) and implication (→) [14]. The Pacman task above can be translated into LTL as 
¬G U (♦F1 ∧ ♦F2 ∧ . . . ♦Fn), where G is the proposition that the Pacman occupies the same 
location as any of the ghosts and F1 through Fn are the corresponding propositions for all the 
food pellets. Thus, the LTL sentence can be interpreted as “do not get eaten by a ghost until all 
the food pellets have been collected.” 
 
Our main contribution in this work is the expression of these compositions as differentiable 
functions. Representations of the individual skill policies are fed to this function as inputs and a 
representation for the composed task policy is produced. Skill policies are learned only once, and 
a wide variety of compositions can be created after the fact. We show that learning to compose 
skills is more efficient than learning to sequence those skills as is typically done in hierarchical 
RL. Moreover, we show how recursive compositions can be used to create rich hierarchies for 
more complicated behavior.  
 
A challenge with trainable compositions is that skill policies must be represented in a 
differentiable manner so that they can be utilized inside the composition function. In most 
modern RL domains, policies are represented as deep neural networks, with the outputs 
normalized to form a probability distribution over actions. The action distribution alone, 
however, may not encode enough information on the importance of a sub-goal in the current 
state to arbitrate between competing sub-goals. On the other hand, the entire policy network may 
contain multiple layers and thousands of weights. Trying to learn a composition function over 
that would be very challenging. Therefore, we use a special architecture for training skill policies 
which allows us to embed information on the skill and the state in a single layer of the network. 
We call these skill-state embeddings. Each embedding is then fed into a composition layer which 
learns to solve the overall task. The cost of acquiring skills is cheap and training the composition 
function is faster than learning the overall task from scratch. More importantly, the skills can be 
reused for different compositions. Finally, we show that the composition function itself shows 
some transfer to unseen tasks, allowing for zero-shot task generalization. 
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Literature Review 
 
Our work is related to a family of hierarchical RL methods [4, 7, 10, 11, 12, 13]. Approaches in 
hierarchical RL typically learn the sub-goal policies and a meta-policy simultaneously, using 
intrinsic rewards for completion of sub-goals [13] or by tying parameters across different 
modules [1] or by adopting a meta-learning approach [8]. A fundamental difference in our 
approach is that instead of learning optimal decompositions for a given complex task, we take 
the view of learning optimal compositions given a set of base tasks. The act of learning to grill a 
pancake [9] does not require us learn an optimal, sequential decomposition of cooking by 
interacting with a wide variety of recipes. Instead, it is much easier if a base set of skills, such as 
whisking eggs, measuring flour, heating the pan etc. can be composed to occur simultaneously, 
in sequence, optionally or held true until another sub-goal is satisfied. The advantage of the 
ComposeNet architecture is that the overall tasks can be constructed post-hoc and pre-learned 
policies for skills can be quickly composed together to solve unseen tasks. This achieves much 
greater re-use of skills and quicker transfer to composed tasks as the skill networks are frozen 
after training once. Oh et al. [17] describe a framework to optimally sequence skills that can be 
learned in isolation from the main task. But they limit their discussion to sequence of sub-goals, 
like program instructions, with occasional interruptibility for a higher priority task. 
 
Our work is also similar to a related framework in hierarchical RL called options [2, 22]. The 
key difference here is that the skills are not provided to the agent as augmentations of its action 
set. Instead, our model learns skill-state embeddings, which are provided to a composition 
function which then learns to aggregate them and output an embedding for the overall task. 
Typically, multiple options cannot be activated in parallel. At a given state, an agent may 
activate a legal option and chose an action according to the policy prescribed by the option. After 
choosing the option, it must follow it for at least one step before activating another option or a 
taking a primitive action. In contrast, by composing skill-state embeddings, the agent is able to 
arbitrate between multiple sub-policies simultaneously to form optimal behavior according to the 
composed task. 
 
In this sense, modular reinforcement learning is a closer analogue to our approach [1, 5, 19, 23]. 
The skills can be regarded as sub-modules and the compositional layer as an aggregator that 
combines each skill’s suggestion into a policy for the overall task. A crucial distinction in our 
work is that the skill modules do not provide direct policy recommendations to the aggregator 
and nor does the aggregator output a policy. Instead, they both learn to create skill-state 
embeddings for their particular skills or tasks. A final layer transforms embeddings in this space 
into policy actions. Representing submodule policies with embeddings allows us to create a 
richer description of the state, conditioned on each skill, in a way that allows us to create a 
trainable composition function. 
 
Also related is work in multi-task RL, such as by van Seijen et al. [24], who use a Hybrid 
Reward Architecture agent to solve the game of Ms. Pacman. Our work can be seen as lying 
between multi-task and hierarchical RL as our framework is capable of solving simultaneous 
goals, sequential goals and also optional goals, goals that must be held true until other goals are 
satisfied, etc. 
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Materials and Methods 
 
The ComposeNet architecture allows learning of skill-state embeddings which can be used inside 
a differentiable composition function. Each skill has its own network trunk but the final layer, 
called the policy layer, is shared across all the skills (Figure 1a). Each trunk is trained for its 
particular skill in isolation but gradients from all the skills are applied to the policy layer. The 
trunks are therefore forced to encode information about their particular skill as well as the agent 
state in their topmost layer. The policy layer is learning to take embeddings from any skill trunk 
and output a policy corresponding to that skill. This can be seen as a reversal of many multi-task 
learning architectures where a common input trunk is used with branches at the top for different 
tasks [24]. In that case, a common embedding is learned for all tasks. Our goal is the opposite, 
i.e. to learn unique embeddings for each task and a common layer that can take any embedding 
and output the corresponding policy. 
 
Now that we have a way to embed skill and state information in a single vector, we can combine 
two or more embeddings to create a new embedding for a composition of those skills. A 
composition, then, is a mapping from embeddings of all relevant skills to an embedding of the 
composed task. 
 
Note that the policy function is agnostic to where the embeddings are coming from. This means 
that the same function must learn to map embeddings of all skills and any of their compositions 
to a policy. This property allows us to do recursive compositions of composed embeddings with 
other skills and create hierarchies of behavior. If both functions are differentiable, gradients with 
respect to the parameters of the composition function, C, can be formed using gradient based RL 
methods.  
 
In practice, two skill-state embeddings are concatenated end-to-end and fed to a fully connected 
layer, or the composition layer, which acts as the composition function C. The output of the 
composition layer is the same dimensionality as the skill-state embeddings and is fed into the 
pretrained policy layer whose output is now treated as a policy for the composed task (Figure 
1b). Hence, the composition layer must learn to take two skill-state embeddings and output an 
embedding for the composed task. It is assumed that the correct skills for the task are provided to 
the agent and the form of the composition is known. This can be seen as a semi-supervised way 
of representing the task. 
 
ComposeNet is trained as follows. First, skill trunks and the shared policy layer (without the 
composition layer) are trained simultaneously using asynchronous actor critic (A3C) [15]. Once 
converged, the weights of the skill trunks and the policy layer are frozen. Now a task consisting 
of a composition of two or more skills is chosen and only the composition layer is trained on 
samples from it. 
 
Environment and Skills 
 
To test our approach, we devised a domain similar to Pacman, where an agent must collect or 
evade colored objects, Red, Green and Blue. The objects to collect remain stationary but the 
enemies chase the agent along the shortest path. Once an object is collected, it disappears from 
the map. The agent can teleport across the map if it goes out of bounds, but the objects cannot. 
An example task in this environment is “collect object Red while evading object Blue” (¬b U r). 
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The agent’s state is a 15x15 pixel grayscale image of the game grid. There are six skills in this 
environment: collecting and evading the three objects respectively. The skills are trained 
separately in environments with reward functions only relevant to that skill. 
 
We consider four types of compositions in this environment: 
1. ¬p U q, collect object q while evading enemy p; 
2. ♦p ∨ ♦q, collect object p or q;  
3. #¬p ∧ #¬q, always evade enemy p and enemy q; and  
4. ♦(p ∧ ♦q), collect object q then object p. 
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Results 
 
We first train all six skills networks for about 3 million steps total (i.e. 500,000 steps on average 
per skill). After this, skill networks and the policy layer are frozen. This initial cost is fixed and 
amortized over all possible compositions.  
 
In the graphs, we compare performance of our method (ComposeNet) to two baselines: (1) 
training a single network from scratch, and (2) a meta-controller approach where a network picks 
from relevant trained skills every step. We also experimented with using skills as options by 
augmenting the agent’s action space. That performed worse than training from scratch on all 
problems, likely due to the increased number of actions. We have omitted those results for 
clarity. 
 

 
 
Single Compositions and Zero-Shot Generalizations 
 
Figure 2 shows performance of ComposeNet compared to our baselines on a sample task for 
each type of composition. Overall, the results show that individual skills can be successfully 
composed with the ComposeNet architecture to near optimality and are learned faster than either 
of the baselines. For the “while” and “then” compositions (Figures 2a and 2d), the meta-
controller initially achieves a somewhat good reward but then learning slows down significantly. 
This is because the meta-controller quickly learns that the skill “collect blue” may lead to a high 
reward. But improving the reward requires it to learn to alternate between reaching blue and 
evading green. Similarly, with “collect red then green”, the agent may reach red then randomly 
stumble into green or follow the “collect green” skill only and collect red along the way 
accidentally. But activating them in sequence with correct timing is harder to learn. The 
exception is “collect red or blue”, as in this case the meta-controller can select any skill at 
random and ensure a high reward. ComposeNet quickly learns to achieve high reward for all 
types of compositions. For the p ∧ q composition, the meta-controller strategy completely fails to 
learn. Evading both objects is a hard task and actions must be chosen to evade both at the same 
time. Activating only one, say ‘avoid red’, may lead the agent towards danger, towards green. 
Our learned composition function ensures both are evaded simultaneously. This is an example of 
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why the ComposeNet architecture is better suited to a wide variety of compositions than 
traditional hierarchical RL approaches.  
 

 
 
We also tested zero-shot task generalization by training the composition layer on other tasks 
containing the same compositions. For example, we trained the same composition layer on all 
five tasks of the type ¬p U q, except ¬g U b. The learned weights were then used as initialization 
for the composition layer of the held-out task. Our results show that there is significant zero-shot 
generalization to compositions of the same type. Further training on the held-out task quickly 
produces near optimal rewards. For the “collect red or blue” and “evade red and green” tasks we 
transferred from only two other tasks, as the order of the objects does not matter in these 
compositions. 
 
Hierarchies of Compositions 
 
The ComposeNet architecture is versatile enough that the composition layer can accept itself as 
an input, leading to more complex hierarchies. Figure 3 shows results on two composed tasks, 
‘collect red while evade green and blue’, (¬g ∧ ¬b) U r, and ‘collect red or green while evade 
blue’, ¬b U (r ∨ g). The networks are formed by first composing the literals in parentheses, and 
then composing the resulting embedding with the embedding for the third literal. For example, in  
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Figure 3a, the embeddings for ‘evade green’ and ‘evade blue’ are composed first. The output is 
fed into another composition layer, along with the embedding for ‘collect red’. The output of this 
layer is then fed to the policy layer. In the ‘transfer’ condition for this task, the first composition 
layer was initialized with weights trained on all ‘evade this and that’ tasks. These weights have 
been trained to compose two evade policies into a single policy that successfully evades both 
objects. The second composition layer is initialized with weights trained on all ‘collect this while 
evade that’ tasks. This layer takes as input ‘collect red’ embeddings and the composed 
embedding from the first compositional layer and produces an embedding for the complete task. 
Similarly, for the transfer treatment in the second task, weights from training on all ‘collect this 
or that’ tasks and all ‘collect this while evade that’ tasks were used to initialize the two 
composition layers. 
 
The results for zero-shot generalization show that some transfer occurs to such hierarchically 
composed tasks, even when the training set is comprised solely of flat compositions of two 
literals. The task in Figure 3a is fairly challenging, so the zero-shot policy is able to collect 
reward only about half the time, resulting in an average reward close to zero. With a few samples 
from the composed task, it quickly learns a high-reward policy. In Figure 3b, the transferred 
policy starts with a decent zero-shot reward of close to 0.5 and also converges quickly. 
ComposeNet allows for this mix-and-match composition capability and reuse of learned skills, 
even in complicated hierarchies. 
 
Discussion 
 
We have presented a framework called ComposeNet which allows an agent to compose simple 
skills into a hierarchy to solve complicated tasks. The skills are learned separately and can be 
reused for multiple compositions. Key in the framework are skill-state embeddings and a 
trainable composition function, backed by our ablative studies. Moreover, when testing on 
composed tasks it has never seen before, ComposeNet shows some zero-shot generalization 
capability, and quickly converges with few environment samples. This suggests that the ability to 
compose skills in this domain may be transferable.  
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This research aligns with the current trajectory of option learning in the field of RL. Recent work 
from McGill’s Reasoning and Learning Laboratory [2] aims to learn options, which are 
temporally extended actions such as “go to pellet A” from scratch. However, a key difference is 
that with this framework, an agent will naturally learn which options are necessary for solving 
the overall task – these options (or skills) do not need to be pre-defined as in our work. It would 
be interesting to combine these ideas to learn base skills as well as composition functions.  
 
Future Work 
 
Future work in this area includes trying ComposeNet on more complicated domains such as 
Minecraft. We have demonstrated that the operators: (1) U (collect this while evade that), (2) ∧ 
(evade this and that), (3) ∨ (collect this or that), and (4) ♦( ∧ ♦) (collect this then that), can be 
learned quickly with pre-trained base skills. Work on learning other types of compositions is 
ongoing. Additionally, we are currently working on a mathematical derivation for learning 
options in reinforcement learning end-to-end simply by specifying the number of desired 
options. This algorithm is being tested on simulated environments, such as Atari games like 
Pacman. 
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