
ar
X

iv
:m

at
h/

00
12

00
7v

1
 [

m
at

h.
D

S]
 2

 D
ec

 2
00

0

Draft version of February 1, 2008

ORTHONORMAL INTEGRATORS BASED ON HOUSEHOLDER

AND GIVENS TRANSFORMATIONS∗

LUCA DIECI† AND ERIK S. VAN VLECK‡

Abstract. We carry further our work [DV2] on orthonormal integrators based on Householder
and Givens transformations. We propose new algorithms and pay particular attention to appropriate
implementation of these techniques. We also present a suite of Fortran codes and provide numerical
testing to show the efficiency and accuracy of our techniques.

AMS(MOS) subject classifications. Primary 65L

Key words. Continuous Householder and Givens transformations, orthonormal integrators.

1. Introduction. In recent times, there has been a lot of interest in techniques
for solving differential equations whose exact solution is an orthonormal matrix, in
such a way that the computed solution is also orthonormal; [CIZ], [DRV1], [DV1],
[DV2], [DLP], [GSO], [H], [MR], are a representative sample of references. In this
paper, we will restrict attention to a particular class of differential equations with
orthonormal solution, the QR equations. These arise in many seemingly unrelated
applications (e.g., see [BGGS], [C], [DNT], [DV2], [Me]), but can all be tracked back
to the following setup.

1. We are given the function A : t → IRn×n, A ∈ Ck−1, k ≥ 1, and consider the
associated initial value problem for X ∈ IRn×p, p ≤ n:

Ẋ = A(t)X , t ∈ [t0, tf] , X(t0) = X0 full rank .

2. We need the QR factorization of the matrix X : X = QR, Q, R ∈ Ck, Q ∈
IRn×p, R ∈ IRp×p. For stability reasons, we want to find the factors Q and R without
first finding X . Once Q is known, the equation for R becomes:

Ṙ = ÃR , R(t0) = R0 , Ã(t) = (QT AQ − QT Q̇)R ,(1.1)

where –since X = QR– Ã of (1.1) is upper triangular. Computation of R reduces
to a backward substitution algorithm for the entries of R, coupled with quadratures,
which is conceptually simple. Therefore, in this work we will focus on finding Q.
3. Let Q0R0 = X0 be a QR factorization of X0. Differentiate the relation X = QR,
make use of triangularity of R, let S = QT Q̇, observe that S ∈ IRp×p must be skew-
symmetric, and obtain the following differential equation for Q:

Q̇ = AQ − QQT AQ + QS , Sij =

(QT AQ)ij , i > j
0, i = j
−(QT AQ)ji, i < j

, Q(t0) = Q0 .(1.2)

∗This work was supported in part under NSF Grants #DMS-9973266 and #DMS-9973393.
†School of Mathematics and CDSNS, Georgia Institute of Technology, Atlanta, GA 30332-0160

U.S.A..
‡ Dept. of Mathematical & Computer Sciences, Colorado School of Mines, Golden, CO 80401

U.S.A..

1

http://arXiv.org/abs/math/0012007v1

2 LUCA DIECI AND ERIK S. VAN VLECK

Remark 1.1. Different rewritings of (1.2) are possible, in the case of p < n, which
present distinct advantages with respect to the given form (1.2). In particular, the
following rewriting proposed by Bridges and Reich in [BR] is interesting:

Q̇ = [(A − QQT A) − (AT − AT QQT) + QSQT]Q .(1.3)

Remark 1.2. Triangularity of Ã is the key point of a successful and widely used
technique for computing Lyapunov exponents of the A-system in decreasing order,
i.e., the first p dominant ones; e.g., see [BGGS] and [DRV2]. It is worth pointing out
that one may not know a priori how many Lyapunov exponents are needed, i.e., the
value of p; for example, one may need to compute all the positive ones1. In this case,
it would be desirable to have techniques which are capable (at least, in principle) of
increasing the number of exponents to be calculated without having to restart the
entire computation from scratch, and that can profitably use the computations done
so far.

In the next section, we discuss the design choices we face when devising methods to
solve (1.2). Then, we revisit the setup we proposed in [DV2] where we integrate (1.2)
by seeking Q as product of elementary Householder or Givens transformations. In
Section 3 we discuss numerical issues which must be confronted when implementing
techniques based on these elementary transformations. We also put forward new
formulations in the Householder case. In Section 4, we present FORTRAN codes we have
written for the task, and we illustrate their performance on a number of examples.
Conclusions are in Section 5.

We must point out right away that in this work we are exclusively concerned
with the case of coefficient matrices A(·) which are dense; that is, they have no
particularly exploitable structure. In case A is structured (symmetric, banded, etc.)
some computational savings ought to be possible, and we will consider these cases in
future work.

2. Background and Householder and Givens representations. Integrat-
ing (1.2) is an example of integration on a manifold. Quite clearly, we can view
the solution Q as a curve on the compact manifold of orthonormal (orthogonal if
p = n) matrices. The dimension of this manifold is p 2n−p−1

2 , which is therefore
the number of degrees of freedom one has to resolve. In general, a smooth mani-
fold may be parametrized in many different ways, and the choice of parametrization
may turn out to be of utmost importance from the numerical point of view. Clearly,
a minimal parametrization requires p 2n−p−1

2 parameters. We notice that a typical
construction in differential geometry is to parametrize a smooth manifold by overlap-
ping local charts; this may be a convenient way to seek the solution of a differential
equation evolving on a manifold even when the manifold itself may happen to be
globally parametrizable. Indeed, from the numerical point of view, it is important
that the parametrization lead to a stable numerical procedure. For example, it is
not enough to know that the solution of a differential equation on a manifold has a
global parametrization to make adopting this parametrization numerically legitimate.
In particular, if we choose a representation for the solution Q of (1.2), even when it
happens to be globally defined, it may not give us a sound numerical procedure.

Since the solution of (1.2) exists for all times, one may think that direct integration
of the IVP for Q is the right way to proceed. However, a standard numerical method

1e.g., this is needed in the study of ergodic dynamical systems to approximate the so-called
Lyapunov dimension and physical measure, see [ER]

ORTHONORMAL INTEGRATORS 3

used on (1.2) will not deliver a solution which is orthonormal at the meshpoints. For
this reason, several techniques have been proposed to obtain an orthonormal numerical
solution.

[p = n] In this so-called “square case”, there are many competing approaches. In
our opinion, the ones below are the most natural and/or interesting. All
of these choices have been implemented to varying degree of sophistication,
and all present intrinsic implementation difficulties: without entering in the
specifics of these methods, it is enough to state that none of the methods
below is trivial to implement, with the exception of (ii), and that all them
can be implemented so to have an expense proportional to O(n3) per step,
which is the expense of evaluating the right hand side of (1.2)2.
(i) Runge-Kutta schemes at Gauss points used directly on (1.2); [DRV1].
(ii) Projected methods. There are at least two of these: (a) bad and (b)

good.
(a) These methods use the original differential equation for X , integrate

this, and then form its QR factorization at each step. They are nu-
merically unsound, since integration of X is quite often an unstable
procedure (as when the problem is exponentially dichotomic).

(b) These consist in using any scheme to integrate (1.2), and then pro-
jecting the solution onto the manifold of the orthonormal matrices.
For example, the projection step can be done with a modified Gram-
Schmidt procedure (as in [DRV1]) or by using the orthogonal polar
factor (as in [H]).

(iii) Transformation methods. Here, one transforms the equation for Q,
which is an element of the (Lie) group of the orthogonal matrices, into
an equation for a skew-symmetric matrix Y , an element of the underly-
ing (Lie) algebra. The equation for Y now evolves in a linear space, and
standard discretizations will deliver a skew-symmetric approximation:
transforming this back to the group gives the desired approximation for
Q. There have been at least two ways in which this design has been
carried out:
(a) using near the identity transformations and the matrix exponential

to get back on the group (e.g., see [Mu]), and
(b) using the Cayley transform to get to the algebra and then back to

the group (e.g., see [DLP]).
[p < n] Here, the solution belongs to the manifold of rectangular orthonormal ma-

trices, the so-called Stiefel manifold. We must appreciate that often one has
p ≪ n, and thus we must insist that a well conceived method should have
cost proportional to O(n2p) per step, that is the cost of evaluating the right
hand side of (1.2). As it turns out, and to the best of our understanding,
this restriction rules out most of the methods we listed above for the p = n
case, with the exception of projection methods. However, the reasons why
the other methods must be discarded are different from one another: Gauss
RK methods applied directly to (1.2) do not maintain orthogonality in the
case p < n (see [DV1]), and transformation methods require going from the
group structure to the algebra and back: apparently, this requires an O(n3)
expense at some level. Notice that Gauss RK schemes on (1.3) do maintain

2we ignore the expense of computing A(t), since this is problem dependent, and we only focus
on the linear algebra expense; further, recall that we only consider the case of A “dense”

4 LUCA DIECI AND ERIK S. VAN VLECK

orthogonality, but it is not clear to us that they can be implemented so to
require a O(n2p) expense per step without forcing a possibly severe stepsize
restriction; for this reason in [BR] the authors adopt a stabilization procedure
which allows for explicit schemes to be used on (1.3); in essence, their method
becomes akin to inexact projection methods.

Based upon the above discussion, and with our present knowledge and under-
standing, it would seem that projection methods are the only survivors amongst the
methods recalled above. We will see below that the techniques put forward in [DV2]
and revisited in this paper are a better alternative, but before doing so, let us point
out some inherent characteristics and potential limitations of projection methods.

(i) Perhaps the major obstacle to use the (good) projection methods is of the-
oretical nature: projection methods are hard to analyze. Of course, if any
method of order s, say, is used for (1.2), then the projected solution is also of
order s. However, the projection step itself is a discontinuous operator, and
this has been cause for some worries.

(ii) Part of the worries are probably caused by the difficulty of getting a backward
error statement for projection methods. In the numerical analysis of differen-
tial equations, a backward error analysis consists in the realization that one
has solved (at any given order) a problem which is O(hs) close to the original
one. We refer to [HL] for this point of view, which has proven valuable for
many problems, and most notably for Hamiltonian systems. However, this
point of view is perhaps less relevant in the context under examination here.
After all, suppose we obtain some orthonormal Q̃ at the grid points tk in-
stead of the exact Q, and some R̃, instead of the exact R. Naturally, we can
assume that both Q̃ and R̃ are O(hs) approximation to the exact matrices.
Therefore, we have triangularized some Ỹ (tk) instead of Y (tk), and obviously
Ỹ (tk) is O(hs) close to Y (tk). In general, should we expect something better?

(iii) In adaptive integration mode, there are some undesirable features of projec-
tion methods. For the sake of clarity, suppose that the time stepping strategy
is based on two formulas of different orders. If we control the error on the
unprojected solution, then it may occasionally happen that we will reject a
step which would not have been rejected if we had checked the error on the
projected values (or, similarly, we may accept a step which would have not
been accepted for the projected values). On the other hand, if we control the
error on the projected values, then we essentially increase the work, because
now two projections have to be performed. Finally, and regardless of how we
control the error, it is undesirable that when we end up rejecting a step we
had to approximate all of Q in the first place. It would have been preferable
to realize that the step was not going to be successful ahead of computing all
of Q. Admittedly, this may sound as a strange request, but we’ll see below
that it is possible to achieve it with well designed methods.

(iv) To conclude, and in spite of the above observations, we must say that our
experience with projection methods has been quite positive. For this reason,
in Section 4, we will compare performance of our new codes with a projection
method.

We are now ready to list which properties –in our opinion– a method to solve
(1.2) should have. At this point, the word “method” must be read as: “formulation
of the task in a form which in principle allows for the properties below to be satisfied”.
In so doing, we maintain the freedom of delaying discussion of which formulas will be

ORTHONORMAL INTEGRATORS 5

used in practice.

1. The method must deliver an orthonormal approximation, at the very least
at the mesh points. If a RK type integrator is adopted, the method must
deliver (at no added cost) an orthonormal approximation also at the internal
abscissas. This will guarantee that forming the matrix Ã at the internal
abscissas is a numerically stable procedure.

2. The method must be flexible enough to handle without modifications both
cases p = n and p < n.

3. The method must have a cost per step of O(n2p), and never require a O(n3)
expense when p < n.

4. The method must be based on numerically sound coordinates.
5. The method must allow for integration of the relevant differential equations

with theoretical order restrictions given only by the degree of differentiability
of Q.

6. The method must be well suited also in adaptive step-size mode: (i) we want
to be able to increase the stepsize if Q evolves slowly, (ii) we want to be
able to reject a step which is going to be unsuccessful as quickly as possible,
possibly (much) earlier than having completed approximation for all of Q.

7. The method must be flexible enough to allow for increasing the number of
columns of A which we want to triangularize, without having to restart the
entire triangularization process from the beginning, and it should be powerful
enough to exploit the work already done.

As we will see, the methods we laid down in [DV2] achieve the above points. These
methods are based upon writing Q as product of Householder or Givens transforma-
tions, and since, in general, these elementary transformations do not vary smoothly
on the whole interval of interest, we have to adopt a “reimbedding” strategy in order
to obtain a well defined process. We refer to [DV2] for the original derivation of this
approach, which we will review in Sections 2.1 and 2.2.

Now we consider a different interpretation of these methods based on Householder
or Givens transformations. In what follows, we will assume that we have to integrate
(1.2) when p < n; trivial simplifications take place if p = n.

We begin observing that, in principle, the sought solution Q can always be written

in the redundant way Q(t) = [Q(t) Q⊥(t)]

[

Ip

0

]

=: U(t)

[

Ip

0

]

, ∀t, where Q⊥ is the

orthogonal complement of Q. Thus, we can think –at least in theory– to have the
following representation for the sought solution Q:

Q(t) = U(tk, t0)Q(t, tk) , t ≥ tk , Q(tk, tk) =

[

Ip

0

]

.(2.1)

In (2.1), U(tk, t0) ∈ IRn×n and Q(t, tk) ∈ IRn×p. The matrix U(tk, t0) is at once
comprising Q, at tk, and its orthogonal complement. Now, let Uk := U(tk, t0), and
set

Â(t) = UT
k A(t)Uk , t ≥ tk .

With this, we have that the equation satisfied by Q(t, tk) is again (1.2) with Â replac-
ing A there. With abuse of notation, if we still call Q(t) what is really Q(t, tk), for

6 LUCA DIECI AND ERIK S. VAN VLECK

t ≥ tk, we would then have

Q̇ = ÂQ − QQT ÂQ + QŜ , Ŝij =

(QT ÂQ)ij , i > j
0, i = j
−(QT ÂQ)ji, i < j

, Q(tk) =

[

Ip

0

]

.(2.2)

(The equation for R, (1.1), is also modified trivially with Â replacing A.)
Thus, quite clearly, knowledge of Uk would allow us to integrate the equation (2.2),

starting “near the identity”; ostensibly, this can be done with a number of choices
for representing Q(t, tk) valid locally, if not globally (recall our discussion on local
charts). Now, suppose we can solve (2.2) from tk to tk+1, obtaining Q(tk+1), and that
at the same time we are able to obtain also the orthogonal complement of Q(tk+1, tk),
Q⊥(tk+1, tk); then, we could form the matrix Uk+1 = [Q(tk+1) Q⊥(tk+1)] Uk, rede-
fine Â and Q(t, tk+1) accordingly for t ≥ tk+1 and then again formulate a differential
equation for Q(t,tk+1) identical to (2.2) for t ≥ tk+1. We could then repeat this basic
setup until we arrive at tf . Proceeding this way, we would always have to solve differ-

ential equations with initial conditions

[

Ip

0

]

. Naturally, in practice we will only have

computed approximations, and not exact values, but the setup remains unchanged.
Notice that, unless we explicitly compute also Q⊥ so to triangularize all of A (and

this would cost O(n3)), the transformed matrix Â, at the tk’s, is upper triangular only
in its left (n,p) part, in particular its bottom (n-p,n-p) block is not triangular. But,
suppose that we now decide that we really needed to triangularize more columns of
the fundamental matrix solution X (or, which is the same, wanted to transform larger
part of A to upper triangular). If, somehow, we managed to keep track not only of
Q(t), but also of its orthogonal complement, then we could work only on the bottom
(n-p,n-p) piece of the matrix Â. In other words, at the price of added memory of
course, we would avoid having to restart from scratch. But, is it possible to obtain at
once information on Q(tk+1, tk) and Q⊥(tk+1, tk), for a cost proportional to O(n2p)
per step? This is where we can in principle exploit the representation for Q(t, tk) in
terms of either Householder or Givens transformations. In fact, with these choices,
one does get information on both Q(t, tk) and its orthogonal complement at the same
time, at the expense of computing only Q(tk+1, tk).

Warning. It should be stressed right away that Householder (or Givens) transforma-
tions are not globally defined; this means that if we want to represent Q(t) in (2.1) by
using these transformations, in general we cannot expect to have a globally smooth
representation. As we showed in [DV2], it is a trivial matter to recover for free a
smooth representation for Q(t). However, it is not trivial at all to recover for free a
smooth representation for Q⊥(t) (see also [CS]). After all, it is hardly imaginable that
one can obtain a smooth representation for the orthogonal complement at the price
of only getting Q! Regardless, lack of smoothness in the obtainable representation
of Q⊥ is not a concern in the contexts of which we are aware. For example, if the
orthogonal complement is needed because we intend to carry further the triangular-
ization process of A, then this can be done without restarting the entire computation
from the beginning (but it is not a trivial implementation to do, since we need to save
in memory all quantities which have been computed thus far).

Now, since Householder and Givens transformations are not unique (there is a
sign ambiguity for each Householder reflection, and a decision to be made on the
order in which we apply the Givens rotations), we must specify the way in which this

ORTHONORMAL INTEGRATORS 7

lack of uniqueness is resolved. This extra freedom means that a choice must be made
between different coordinates systems to represent the same object. The best way to
resolve this ambiguity is to make sure that we pick up the soundest coordinates from
the numerical point of view.

These ideas have been carried out (in a different notation) in [DV2]. There,
we wrote the solution Q(t) of (1.2), locally, as product of elementary Householder
or Givens transformations. We are ready to review the basic algorithms based on
Householder and Givens transformations. We will not explicitly take advantage of the
representation (2.1), but, by writing Q(t) solution of (1.2) as product of elementary
orthogonal matrices of Householder or Givens type, we are conceptually representing
Q as in (2.1), with nonsmooth U .

2.1. Householder transformations. Suppose we are at tk and that we know
X(tk) (e.g., tk = t0). Then, to find Q(t) such that QT (t)X(t) = R(t), for t ≥ tk, we
look for QT (t) = Pp(t) · · ·P1(t), with Pi(t) = PT

i (t) the Householder matrices

Pi(t) =

[

Ii−1 0
0 Qi(t)

]

, Qi(t) = I − 2

uT
i (t)ui(t)

ui(t)ui(t)
T .

After (i − 1) transformations, the matrix X got transformed into Pi−1 . . . P1X and
its first (i − 1) columns have been triangularized. Let us still call X the transformed
matrix, and let xi = X(i : n, i) be its i-th column we need to triangularize. This is
the role of Pi. So, we will set

ui(t) = xi(t) − σi‖xi‖e1 ,(2.3)

and continue the triangularization process. The standard textbook choice for the
value of σi is (see [GVL]):

σi :=

{

−1, if eT
1 xi(tk) ≥ 0,

1, if eT
1 xi(tk) < 0.

(2.4)

This is the idea. But, of course, we do not have X except at t0. In [DV2] we
showed that differential equations can be set for the ui’s directly, and for the norm
of the vectors xi, requiring only knowledge of the coefficient matrix A. Moreover,
we also derived differential equations for the Householder transformations in different
variables, namely for

vi :=
ui

‖ui‖
, Qi = I − 2viv

T
i ,(2.5)

which are better scaled variables, since vT
i vi = 1.

We now recall the differential equations for the u and v-variables. For simplicity,
we omit the subindices, and thus use the notation u for ui, etc., and also use A for
A(i : n, i : n), where the matrix A has been progressively modified by the accumulated
transformations:

(A, Pj)−update : A(t) := Pj(t)A(t)Pj(t) − Pj(t)Ṗj(t) , j = 1, . . . , i − 1 .(2.6)

With this understanding, for the u-variables we have:

d

dt

[

u
σ‖x‖

]

=

[

A − 2e1e
T
1 As (A − e1e

T
1 As)e1

2eT
1 As eT

1 Ase1

] [

u
σ‖x‖

]

− uT Asu

σ‖x‖

[

e1

−1

]

.(2.7)

8 LUCA DIECI AND ERIK S. VAN VLECK

Here, As = 1/2(A + AT), e1 is the first unit vector (of appropriate dimension), and
(2.7) must be understood as a differential equation for the ui, i = 1, . . . , p.

For the v-variables, we have the following. Partition v as v =

[

(eT
1 v)
v̂

]

, let

[

a11

â1

]

be the first column of A, (0, âT
1,a) be the first row of 1

2 (A − AT),

[

a11

â1,s

]

be the

first column of As, and let Â and Âs be the submatrices obtained from A and As,
respectively, by deleting the first row and column. Then, we have

d

dt

[

(eT
1 v)
v̂

]

=

[

0 cT − bT

b − c S − ST

] [

(eT
1 v)
v̂

]

,(2.8)

where we have set

b =
2(eT

1 v)2 − 1

2
â1 + Âv̂(eT

1 v) , cT := (−âT
1,av̂ + α)v̂T , S = (

2(eT
1 v)2 − 1

2(eT
1 v)

â1 + Âv̂)v̂T ,

and α := (a11(e
T
1 v) + âT

1,sv̂)(2(eT
1 v)2 − 1) + 2(eT

1 v)v̂T (â1,s(e
T
1 v) + Âsv̂) .

The differential equations (2.7) and (2.8) can easily be supplied with initial con-
ditions at t0 since X0 is known, and we can find Q0 via Householder transformations
(in either u or v formulation, with the σ’s satisfying (2.4)). However, to describe
the typical step between tk and tk+1 = tk + hk, and regardless of the choice adopted
between u or v-variables, the expression (2.4) used for choosing the sign of σ must
be modified since in practice we do not have X(tk). The way it is done is to enforce
(2.4), but by only keeping track of the transformations. It goes as follows.

Suppose we have found the Householder matrices at tk, coming from tk−1, call

them P
(k−1)
i (tk). Call P

(k)
i (tk) =

[

Ii−1 0

0 Q
(k)
i (tk)

]

the possibly different initial con-

dition for the Householder matrices (that is, different u’s or v’s and σ’s) we need in

order to step past tk. Let K
(k)
0 = In. Inductively define σ

(k)
i , i = 1, . . . , p, as follows:

σ
(k)
i :=

{

−1, if σ
(k−1)
i eT

1 K
(k)
i−1Q

(k−1)
i e1 ≥ 0 ,

+1, if σ
(k−1)
i eT

1 K
(k)
i−1Q

(k−1)
i e1 < 0 ,

(2.9)

where the matrices K
(k)
i−1 ∈ IRn−i+1,n−i+1 , i = 2, . . . , p, are defined by

Q
(k)
i−1(tk)K

(k)
i−2Q

(k−1)
i−1 (tk) =

[

σ
(k−1)
i−1 σ

(k)
i−1 0

0 K
(k)
i−1

]

,

and, for i = 1, . . . , p, the matrix Q
(k)
i (tk) is obtained so that

K
(k)
i−1Q

(k−1)
i (tk)σ

(k−1)
i e1 = Q

(k)
i (tk)σ

(k)
i e1 .

Thus, we need to find a3 Householder transformation which transforms the left-hand

side of this last equation into σ
(k)
i e1. This trivially gives new ICs for the v

(k)
i (tk); the

sign ambiguity in the vector v
(k)
i (tk) is resolved by forcing the sign to that of the first

3not unique, there is typo in [DV2]

ORTHONORMAL INTEGRATORS 9

component of v
(k−1)
i (tk). Thus, we can prescribe new ICs for the v

(k)
i (tk), and from

these it is simple to write ICs for the ui’s:

u
(k)
i (tk) = −2σ

(k)
i ‖xi(tk)‖(eT

1 v
(k)
i (tk))v

(k)
i (tk) .

The proof of the following Lemma is omitted since it amounts to a simple verifi-
cation.

Lemma 2.1. The choice (2.9) is the same as (2.4).

Remark 2.1. Let us substantiate the claim that the choice (2.4) ensures that
we are using sound coordinates from a numerical point of view. In linear algebra,
see [GVL], the choice of signs as in (2.4) is justified in order to avoid subtraction of
(possibly) nearly equal numbers. Of course, this is still true in our context, since we
will need to form the reflectors. But there is also another aspect to take into account
in the present context. We restrict to the v-coordinates, since these must be generally
preferred to the u-coordinates (but see the w-coordinates of (3.1) in Section 3). We
seek an orthonormal function Q, and we are choosing local coordinates to represent it.
Obviously, every column of Q, Qei, has unit length, and we represent these columns
as Pi . . . P1ei; to do this, we find the vi’s, each of which has itself unit length, by
integrating (2.8). From the differential equations (2.8), we observe that there is a

division by eT
1 vi in forming the vector

2(eT

1
vi)

2−1

2eT

1
vi

v̂ of S (here, e1 = (1, 0, . . . , 0)T ∈
IRn−i+1). For stability, we must ensure to avoid division by small numbers. But, with
some simple algebra, one can see that:
The choice (2.9) is equivalent to having

(eT
1 vi)

2 ≥
n−i+1
∑

j=2

(eT
j vi)

2 , i = 1, . . . , p .(2.10)

In particular, the vector
2(eT

1
vi)

2−1

2eT

1
vi

v̂ is as well scaled as generally possible. Moreover,

(2.10) can be used to decide if the current Householder frames are numerically stable
or not.

In the u-variables, it is easier to check (2.4) directly, since eT
1 xi = eT

1 ui + σi‖xi‖;
thus, as long as

σi(e
T
1 ui + σi‖xi‖) < 0 , i = 1, . . . , p ,(2.11)

there is no need to change the current frame.

We now summarize the overall strategy on a typical step from tk to tk+1 = tk+hk.
In the next section, we will pay closer attention to all aspects of this strategy.

Householder on [tk, tk+1].

INPUT: tk, hk > 0, initial conditions P
(k−1)
i (tk) , i = 1, . . . , p (i.e., the vectors u

(k−1)
i

and ‖x(k−1)
i ‖ or the vectors v

(k−1)
i at tk), and the σ

(k−1)
i .

(1) For i = 1, . . . , p, check to see if (2.10) (or (2.11)) holds true. If it fails, rede-

fine σ
(k)
i according to (2.9) and determine new P

(k)
i (tk) =

[

Ii−1 0

0 Q
(k)
l (tk)

]

accordingly (redefine u
(k)
i (tk) or v

(k)
i (tk)), for i = 1, . . . , p

• For i = 1, . . . , p

10 LUCA DIECI AND ERIK S. VAN VLECK

(2) Let A = A(i : n, i : n)

(3) Find the Householder transformation P
(k)
i (t) by integrating (2.7) or (2.8)

on [tk, tk+1]
(4) Do an (A, Pi) update (2.6)

• Endfor i.
OUTPUT: Q(k)(tk+1)

T = P
(k)
p (tk+1) · · ·P (k)

1 (tk+1), is such that Q(k)(tk+1)
T X(tk+1) is

triangular.

2.2. Givens transformations. Suppose at tk we know X(tk) (e.g., tk = t0). To
find Q(t) such that QT (t)X(t) = R(t), for t ≥ tk, we look for Q(t) = Q1(t) · · ·Qp(t),

where Qi(t) is of the form Qi(t) =

[

Ii−1 0
0 Gi(t)

]

, and each Gi, i = 1, . . . , p, is the

product of elementary planar rotations (Givens, or Jacobi, transformations) of the
type

Qij(t) = I − (e1e
T
1 + eje

T
j) + Gij , Gij = cij(e1e

T
1 + eje

T
j) − sij(e1e

T
j − eje

T
1) ,

for j = 2, . . . , n − i + 1. Above, we have used cij and sij to express cos(θij(t)) and
sij = sin(θij(t)), respectively, where the function θij(t) needs to be found. Now,
suppose we have triangularized the first i − 1 columns of X , and still call X the
transformed matrix. The role of Gi is to triangularize xi := X(i : n, i), the i-th
column of the unreduced part of X .

In the standard linear algebra setting (see [GVL]), the rotators are safely applied
in their natural sequence Qi,i+1, . . . , Qi,n. But this may lead to instabilities in our
time dependent setting! In fact, the specification of the order in which the rota-
tors Qi,i+1, . . . , Qi,n are applied turns out to be of utmost importance for numerical
stability, and therefore for accuracy and efficiency. We adopted the following strategy.
Order of rotators. Our strategy is

First rotator must annihilate largest entry of xi(2 : n − i + 1) .(2.12)

To be precise, define l to be the largest entry in absolute value of xi(2 : n − i + 1):

l : Xi+l−1,i = max
2≤j≤n−i+1

|Xi+j−1,i| ,(2.13)

and define the index array πi as

πi = [1, l, 2, . . . , l − 1, l + 1, . . . , n − i + 1] .(2.14)

Then, define (the ordering of the rotators) Gi as

Gi = Qi,πi(2) · · ·Qi,πi(n−i+1) .(2.15)

Remark 2.2. There seems to be no need to further refine (2.12) by selecting the
second rotator to annihilate the largest entry of the unreduced part, and so forth.

In [DV2], we derived differential equations for the elementary rotators, that is for
the θij or for the corresponding (cos, sin) pairs. To recall, omitting the row index i
(i.e., using θj for θij , etc.), these are

cπi(3) · · · cπi(n−i+1)
d
dtθπi(2)

cπi(4) · · · cπi(n−i+1)
d
dtθπi(3)

...
cπi(n−i+1)

d
dtθπi(n−i)

d
dtθπi(n−i+1)

=

απi(2)

απi(3)

...
απi(n−i)

απi(n−i+1)

.(2.16)

ORTHONORMAL INTEGRATORS 11

Here, for j = 2, . . . , n − i + 1, we have set

απi(j)(t) = eT
πi(j)

[

QT
i,πi(n−i+1) · · ·QT

i,πi(2)
AQi,πi(2) · · ·Qi,πi(n−i+1)

]

e1 ,

and A is really A(i : n, i : n), which has been progressively modified by the accumu-
lated transformations:

(A, Qj)−update : A(t) := Qj(t)
T A(t)Qj(t) − QT

j (t)Q̇j(t) , j = 1, . . . , i − 1 .(2.17)

Of course, since d
dt

[

cos(θij)
sin(θij)

]

=

[

− sin(θij)
cos(θij)

]

d
dtθij , from (2.16) it is trivial to write

differential equations for the (cos, sin) pairs directly:

cπi(3) · · · cπi(n−i+1)
d
dt

[

cπi(2)

sπi(2)

]

...

cπi(n−i+1)
d
dt

[

cπi(n−i)

sπi(n−i)

]

d
dt

[

cπi(n−i+1)

sπi(n−i+1)

]

=

[

0 −απi(2)

απi(2) 0

] [

cπi(2)

sπi(2)

]

...

[

0 −απi(n−i)

απi(n−i) 0

] [

cπi(n−i)

sπi(n−i)

]

[

0 −απi(n−i+1)

απi(n−i+1) 0

] [

cπi(n−i+1)

sπi(n−i+1)

]

.

(2.18)
To supply initial conditions at t0 for the differential equations (2.16) and/or (2.18),

we enforce (2.12); that is, use (2.13), (2.14), and apply the rotators in the order
specified by (2.15). At each application of an elementary rotator on xi at t0, there is
a sign ambiguity; we resolve this ambiguity by forcing the first entry of xi to be always
positive as the rotators are applied (and thus, equal to ‖xi‖ after all the elementary
rotators Qi,πi(2), . . . , Qi,πi(n−i+1), are applied). This way, we can start the integration.

But, to describe the typical step between tk and tk+1 = tk + hk, the strategy just
outlined, in particular the expressions (2.13) and (2.14), must be modified, since we
do not have X at tk. To understand the way we do this, we first need the following
remark.

Remark 2.3. Givens transformation provide another example of the situation
we described at the beginning of this work, when we discussed how a trajectory
on a smooth manifold can be parametrized by overlapping local charts. Then, we
said that an appropriate way to choose local coordinates was to enforce numerical
stability. We now justify how this can be achieved with the choices we have adopted.
Without loss of generality, assume that πi = [1, 2, . . . , n − i + 1] (if not, relabel the
indices accordingly). From the differential equations (2.16) and (2.18), we notice that
multiplication by the inverse of the diagonal matrix

diag
(

c3 · · · cn−i+1, c4 · · · cn−i+1, . . . , cn−i+1, 1
)

is taking place. For numerical stability, we need to avoid division by small num-
bers. Clearly, the smallest number by which we are dividing (in absolute sense) is
c3 · · · cn−i+1. Let xi,j denote the jth component of xi, j = 1, 2, . . . , n − i + 1. Then,
using rotators to triangularize xi, we have

c2
j =

(
∏j−1

l=1 x2
i,l)

(
∏j

l=1 x2
i,l)

,

12 LUCA DIECI AND ERIK S. VAN VLECK

and so

c2
3 · · · c2

n−i+1 =
(x2

i,1 + x2
i,2)

‖xi‖2 .

Now, as long as

x2
i,1 + x2

i,2 ≥ x2
i,j , j = 3, . . . , n − i + 1 , i = 1, . . . , p ,(2.19)

no division by small number is taking place, since when (2.19) is satisfied we have

c2
3 · · · c2

n−i+1 ≥ 1

(n − i)
,

which is as nicely bounded away from 0 as any product of cosines for Givens’ transfor-
mations can generally be. Furthermore, with some simple algebra, one can see that:
The inequality (2.19) is equivalent to having

k
∏

j=3

c2
j ≥ s2

k , k = 3, . . . , n − i + 1 , i = 1, . . . , p .(2.20)

Clearly, (2.20) can be used to decide if the current ordering of Givens’ transformations
is numerically stable or not, without knowledge of X .

We are ready to describe how we modify the strategy which led us to (2.13) and
(2.14) after the first step. First of all, as long as (2.20) holds, we do not change the
present ordering of the rotators. In case (2.20) fails, we enforce (2.12), but by only
keeping track of the transformations, in the following way. Suppose we have found

the Givens transformation matrices at tk, coming from tk−1, call them Q
(k−1)
i (tk).

Call Q
(k)
i (tk) =

[

Ii−1 0

0 G
(k)
i (tk)

]

the possibly different initial condition for the new

Givens matrices (that is, different θ’s or cosines/sines) we need in order to step past

tk. Define K
(k)
0 = In, and inductively define

wi := K
(k)
i−1G

(k−1)
i (tk)e1 , for i = 1, . . . , p .(2.21)

Let l be the index of the largest entry (in absolute value) of wi(2 : n − i + 1).

Accordingly, define πi as in (2.14) and the ordering for the rotators relative to G
(k)
i (tk)

as in (2.15). Find initial conditions for the Q
(k)
i,j (tk) by enforcing that all vectors

∏n−m+1
j=2 (Q

(k)
i,πi(j)

(tk))T wi, m = n − 1, . . . , i, have positive first component. This

way, we define G
(k)
i (tk), hence Q

(k)
i (tk). Finally, for i = 2, . . . , p, we define K

(k)
i−1 ∈

IRn−i+1,n−i+1 from

Q
(k)
i−1(tk)T

(

Ii−2 0

0 K
(k)
i−2

)

Q
(k−1)
i−1 (tk) =

(

Ii−1 0

0 K
(k)
i−1

)

.

Again we omit the proof of the following Lemma, since it is a direct verification.
Lemma 2.2. The choice just described for providing initial conditions on the

rotators at tk is equivalent to the strategy based on (2.15) and first paragraph after
(2.18).

ORTHONORMAL INTEGRATORS 13

We summarize the overall strategy on a typical step from tk to tk+1 = tk + hk.
We assume that integration has been successful up to tk, and that the step hk has
been selected.

Givens on [tk, tk+1].

INPUT: tk, hk > 0, initial conditions Q
(k−1)
i (tk) , i = 1, . . . , p (i.e., either the (cos, sin)

pairs or the θ values, and the ordering in which they had been applied).
(1) For i = 1, . . . , p, check to see if (2.20) holds true. If it fails, redefine the index

array πi and initial conditions for the rotators at tk. That is, for i = 1, . . . , p,

let Q
(k)
i = Qi,πi(2) · · ·Qi,πi(n+i−1), and find initial conditions for Q

(k)
i (tk) by

bringing wi(i : n) into e1 so that all rotated vectors
∏n−m+1

j=2 (Q
(k)
i,πi(j)

(tk))T wi,

m = n − 1, . . . , i, have positive first component.
• For i = 1, . . . , p

(2) Let A = A(i : n, i : n).

(3) Find the transformation Q
(k)
i (t) by integrating the differential equations

(2.16) or (2.18) on [tk, tk+1].
(4) Do an (A, Qi) update (2.17).

• Endfor i.
OUTPUT: Q(k)(tk+1) = Q

(k)
1 (tk+1) · · ·Q(k)

p (tk+1), is such that (Q(k)(tk+1))
T X(tk+1) is

triangular with positive diagonal entries.

Remark 2.4. We observe that –even through a change of initial conditions– with
our strategy the signs on the diagonal of R, see (1.1), remain fixed when using rotators
to find Q.

3. Implementation. Here we describe how we implemented the algorithm put
forward in the previous section. Before doing so, however, we want to derive a dif-
ferent formulation for the Householder transformations, which present some distinct
advantages over both the u and v formulations. The motivation comes from Remark
2.1.

We experimented with two different rewritings of the Householder vectors.
(a) With the notation of (2.8), we observe that (eT

1 v) = σ(1− v̂T v̂)1/2. Thus, one
can write differential equations just for v̂, and then recover all of v by using
(eT

1 v) = σ(1−v̂T v̂)1/2. On the surface, this seems to present some advantages,
since there is one less differential equation to solve. However, there is a
potential loss of precision which occurs with this approach when forming
back eT

1 v. After all, we know that the first component of v dominates all
others; thus, we expect that some of the other components will be small (and
we often observed this to be true in practice). Indeed, in our experiments,
this formulation gave consistently less precise results than the v formulation
or the w formulation to be introduced next. For this reason, henceforth we
will not present computational results obtained with this formulation.

(b) Consider the new variable w:

w =
1

eT
1 v

v , thus w =

[

1
ŵ

]

.(3.1)

Observe that

(eT
1 v) =

−σ

‖w‖ ,

14 LUCA DIECI AND ERIK S. VAN VLECK

so that the discussion relative to the choice of σ’s (see (2.9)) stays unchanged.

Since ẇ = dw
dt =

[

0
dŵ
dt

]

, we have one less differential equation to solve and

a simplified form for the (A, Pi)-updates. Omitting the indices for simplicity,
the form of the typical update becomes

PAP − PṖ =(3.2)

= A − 2

wT w
(w(wT A) + (Aw)wT) + 4

wT Aw

(wT w)2
wwT − 2

wT w
(wẇT − ẇwT) .

From (3.2), it is easy to derive the differential equation satisfied by ŵ. In fact,
this can be obtained from the requirement that (PAP − PṖ)e1 has only its
first entry not 0. Using the form of ẇ, and the same notation used to derive
(2.8), this requirement becomes

â1 −
2

wT w
((a11 + ŵT â1)ŵ + â1 + Âŵ) + 4

wT Aw

(wT w)2
ŵ +

2

wT w
˙̂w = 0 ,

from which we get the equation for ŵ:

dŵ

dt
=

[

a11 + ŵT â1 − 2
wT Aw

wT w

]

ŵ + (1 − wT w

2
)â1 + Âŵ .(3.3)

Remark 3.1. Notice that the division by wT w in (3.3) is perfectly safe, given the
form of w. Of course, if one uses the w-variables, obvious modifications take place in
the skeleton of the algorithm on page 9. E.g., (2.10) now would read

1 − (w2
i+1,i + . . . + w2

n,i) ≥ 0 .(3.4)

To sum up, for Householder methods, we have considered three possibilities: (i) u-
variables, (ii) v-variables, and (iii) w-variables. In the v-variables, we need to integrate
(2.8) whose solution has norm 1 for all t, and we must maintain this property under
discretization, at gridpoints. In principle, we could use Gauss RK schemes for this
task; we did this in [DV2], by using Newton’s method to solve the resulting nonlinear
system, but this gives a cost of O(pn3) per step which is more than what we are willing
to pay. Use of the linearly convergent scheme of [DRV1] forces a severe stepsize
restriction, which is clearly incompatible with adaptive time stepping. For these
reasons, for the v-variables, in this work we propose integrating (2.8), with an explicit
scheme followed by a renormalization at each step. The resulting method is a “local
projection” method for the v-variables and has cost of O(n2p) per step. As far as
the integration for the u or w-variables, integration can be carried out with explicit
schemes, with no need of renormalization. Notice, though, that when forming the
Householder transformations, and hence Q, one is in fact normalizing things so to keep
them orthogonal; this is obvious: in the matrix I − 2wwT /wT w, the term wwT /wT w
is indeed an orthogonal projection.

As far as methods based on Givens transformations, so far, we spent more time
trying to obtain good codes only for the formulation in terms of the θ-variables, see
(2.16), and not for the (cos, sin)-variables. There are several reasons for our choice.
First, a simplicity reason: it is simpler to work with the θ-variables, and then form the
rotators. Second, if we work with (cos, sin), then we must integrate (2.18) maintaining

ORTHONORMAL INTEGRATORS 15

the solution of norm 1: again, we could use Gauss RK schemes with Newton’s method,
or a “local projection” technique. But, in all cases, (2.18) is twice the dimension of the
system to be solved with the θ-variables. Repeated use of the trigonometric identity
cos2 α + sin2 α = 1 would allow us to half the dimensions, of course, but at the price
of added nonlinearities. Third, there is an accuracy reason to prefer the θ-variables;
in all our tests, they gave more accurate results than their (cos, sin) counterpart. An
explanation for this fact is the content of the next Lemma.

Lemma 3.1. Let θ be the angle associated to the elementary rotation Q(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

. Let φ be an approximation to θ, and let Q(φ) be the elementary

rotator associated to φ. Consider the error matrix E := QT (θ)(Q(φ) − Q(θ)). If
θ − φ = η, sufficiently small, then the error on the diagonal of E is O(η2):

E =

[

− η2

2 + O(η4) η + O(η3)

−η + O(η3) − η2

2 + O(η4)

]

.

Proof. The proof follows from QT (θ)Q(φ) =

[

cos(θ − φ) sin(θ − φ)
− sin(θ − φ) cos(θ − φ)

]

.

In particular, this Lemma implies that ‖E‖ = |η| + O(η2). Instead, an error
equal to η on cos(θ) − cos(φ) and on sin(θ) − sin(φ), would have rendered ‖E‖ =
|η|

√
2+O(η2). In the general case of Q ∈ IRn×p, with notation similar to Lemma 3.1,

by taking into account the general form of the matrix Q as product of rotators, and
using Lemma 3.1 over and over, it is simple to realize that an error of order η on the
angles still gives an O(η2) error term on the diagonal of E, whereas an error O(η) for
the cos and sin would give an O(η) error term for all entries of E.

Remark 3.2. Of course, the θ-variables are more properly seen as variables on
a torus. Indeed, also to avoid pathological cases in which the θ values would grow
unbounded, we always renormalize their values to [−π, π], which we do by computing
inverse tangent. This represents a drawback with respect to working directly with the
(cos, sin) pairs.

Remark 3.3. Householder methods based on the w-variables, and Givens’ methods
based on the θ-variables parametrize the sought Q using exactly p 2n−p−1

2 parameters:
the minimal number required.

Linear Algebra Involved. An advantage of using Householder and Givens transforma-
tions to represent Q is that we can take advantage of the many clever ways in which
these transformations can be manipulated, see [GVL], and thus obtain efficient proce-
dures. For example, we keep the matrix Q in factored form, and never form it (except
when required for output purposes). Of course, we never perform matrix-matrix mul-
tiplications either, but we exploit inner product arithmetic for Householder matrices
and the simple structure of the rotators for Givens matrices.

Discretization Schemes. We have chosen to use explicit integrators of RK type as the
basic schemes. We are not interested in extremely accurate computations; the range of
practical interest for us is between 10−2 and 10−10, and our schemes have been chosen
with this accuracy demands in mind. If one needs more accurate computation, then
different choices would be more appropriate. We chose formulas of order 4 and of
order 5 with an associated embedded formula, to be used in variable stepsize mode.
The formulas used are the well known Runge-Kutta 3/8-th rule, a scheme of order 4
with an embedded scheme of order 3, and the formulas of Dormand-Prince of order

16 LUCA DIECI AND ERIK S. VAN VLECK

5 with the embedded scheme of order 4. For convenience, we give these pairs below.
The lower order scheme is the one relative to the weights b̂.

0 0 0 0 0 0
1
3

1
3 0 0 0 0

2
3 − 1

3 1 0 0 0
1 1 −1 1 0 0
b 1

8
3
8

3
8

1
8 0

1 1
8

3
8

3
8

1
8 0

b̂ 1
12

1
2

1
4 0 1

6

3/8-th Runge-Kutta 4-3 pair

0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0
1 9017

3168 − 355
33

46732
5247

49
176 − 5103

18656 0 0
b 35

384 0 500
1113

125
192 − 2187

6784
11
84 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

b̂ 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Dormand–Prince 5-4 pair.

Remark 3.4. With our schemes based on elementary transformations, one can
form orthogonal approximations also at the internal RK points, not just at the grid
points, at negligible extra cost. This is a nice fact, both for dense output purposes,
and for forming Ã at the internal points.

Updates. Whenever the updates are required, see (2.6) and (2.17), we do not setup
the updated matrices by using exact derivatives (as we did in [DV2]), since we can
(and do) use the values obtained at the Runge-Kutta stages; this way, the update
does not require extra function evaluations.

Error Control. Finally, about error control for variable time-stepping integration.
Most of the criteria we used are standard. We do mixed absolute/relative error
control with respect to the input value TOL, in the way explained in [HNW, II-4], with
some slightly different heuristics. For example we use a safety factor of 0.8 (it is fac
in [HNW]), we never allow a new stepsize to be bigger than four times the current
stepsize, and we choose the initial stepsize to be TOL1/(q+1), where q is the order of
the estimator (i.e., q = 3 for the embedded 3/8th rule, and q = 4 for the embedded
Dormand-Prince rule). But the most relevant changes to the standard strategies are
due to the nature of our methods. In fact, triangularizing one column of X at the
time, as we do, present some important advantages. First of all, we decide on step-
size changes by monitoring the behavior of the error (in the ∞-norm) on all columns
independently, and then take the most conservative estimate for the next step. But,
most importantly, there is no need to complete the entire integration step prior to
rejecting the step! This is a pleasant outcome of the present implementation, since
often (see Section 4) a step failure occurs ahead of having completed computation of
all of Q.

Reimbedding. We have used the construction based on (2.9), or (2.21), and following
discussion, only if the tests (2.11), or (2.10), or (3.4), or (2.20), for the u, v, w, or θ

ORTHONORMAL INTEGRATORS 17

variables, respectively, failed. We have not succeeded in finding less expensive ways
to obtain new initial conditions in case these tests failed.

4. Codes & Examples. We have written FORTRAN codes using the previous
ideas. In the examples, we will refer to the performance of each of these codes,
which differ by which formulas are used, and whether or not they are implemented
in constant or variable stepsize modes. We use the following first letter convention:
u=u-variables, v=v-variables, w=w-variables, t=θ-variables.

• Fixed stepsize codes.
– 3/8th rule: urk38, vrk38, wrk38, trk38. Thus, for example, wrk38

is a fixed stepsize implementation using the Runge-Kutta 3/8th rule of
the Householder method based on the w-variables.

– Dormand-Prince rule: udp5, vdp5, wdp5, tdp5.
• Variable stepsize codes. The naming convention is as above, but now the first

letter is a v to signify “variable stepsize”.
– 3/8th pair: vurk38, vvrk38, vwrk38, vtrk38. For example, vvrk38

is the variable stepsize implementation of the 3/8th pair for the House-
holder method in v-variables.

– Dormand-Prince pair: vudp5, vvdp5, vwdp5, vtdp5.

We report on several measures of performance of the above codes.

- err: the error between computed and exact Q, if the exact Q is known.
- reimb: the number of reimbeddings needed for a given method; we increment

the counter every time a change of coordinates is performed.
- rejs/first: the number of total rejections (in variable stepsize mode) fol-

lowed by the rejections occurring while triangularizing the first column.
- cpu: the total CPU time needed to complete a given run normalized to 1 for

the fastest run on the given problem.
- nsteps: the total number of steps taken (in variable stepsize mode).

For the variable stepsize codes, we also include comparison with a projected in-
tegrator, prk45, which integrates (1.2) with the well known (and sophisticated) in-
tegrator RKF45 of Netlib, and then uses modified Gram-Schmidt for the projection.
We recall that RKF45 is a RK solver of order 5/4 whose performance is comparable
with the Dormand-Prince 5/4 pair we adopted here.

Example 4.1. This is a problem chosen because the underlying fundamental so-
lution is both exponentially dichotomic and fast rotating. Bad projection methods
have difficulties on this problem. Also Gauss RK schemes without Newton method
run into serious stepsize restrictions. We have the coefficient matrix

A(t) =

[

β cos(2αt) −α + β sin(2αt)
α + β sin(2αt) −β cos(2αt)

]

,

and we seek Q associated to the QR factorization of X : X ′ = AX , X(0) = I.

The exact solution is X(t) =

[

cos(αt) sin(αt)
sin(αt) − cos(αt)

] [

eβt 0
0 −e−βt

]

. We fix β = 100,

α = 100, and consider integration on the interval [0, b] with b = 10. The problem
should cause difficulties to methods based on Householder transformations, because of
the fast rotation of Q. This does indeed produce several reimbeddings for Householder
methods, but no appreciable deterioration in accuracy.

18 LUCA DIECI AND ERIK S. VAN VLECK

Observe that for the t methods there is only one equation to integrate:

θ̇ = α − β sin(2θ(t)) cos(2αt) + β sin(2αt) cos(2θ(t)) , θ(0) = 0 ,

and this has the exact solution θ(t) = αt. So, one may expect no error while integrat-
ing for θ. However, the reason why the t methods do not recover the exact solution
is because we automatically renormalize angles to [−π, π] and this causes roundoff
errors to enter in the picture; if we do not renormalize the angles, then the exact
solution is recovered.

Tables 4.1 and 4.2 summarize the results of our numerical experiments. For the
fixed step methods in Table 4.1 the small error for the t methods is notable and this is
mirrored by the superior performance for the variable step t methods (see Table 4.2).
Note that the u methods fail on this problem. Also, observe how prk45 is considerably
more expensive than the competing 5/4 codes (vvdp5, vwdp5).

Table 4.1. Example 4.1: fixed stepsize ∆t = 1.E − 3.

Meth err reimb cpu

tdp5 3.1E − 13 0 17.5
trk38 3.9E − 13 0 14.2
udp5 − − −
urk38 − − −
vdp5 2.5E − 9 318 24.0
vrk38 1.6E − 6 318 18.9
wdp5 3.9E − 8 318 18.9
wrk38 2.4E − 6 318 15.5

Table 4.2. Example 4.1: variable stepsize, tol= 1.E − 8.

Meth err reimb rejs cpu nsteps

prk45 1.4E − 8 − − 31.1 20803
vtdp5 4.6E − 8 0 162 1.2 599
vtrk38 2.5E − 8 0 158 1 705
vudp5 − − − − −
vurk38 − − − − −
vvdp5 3.3E − 9 318 0 20.4 9557
vvrk38 7.2E − 9 318 1 61.4 37931
vwdp5 3.0E − 9 318 718 20.4 11623
vwrk38 4.6E − 9 318 1835 46.0 34317

Example 4.2. Here we take the coefficients matrix

A(t) = α(θ(t) − sin(t))

[

0 1
−1 0

]

,

where θ(t) = α
1+α2 (exp(−αt) + α sin(t) − cos(t)) and we fixed α = 100. Interval

of integration is [0, 10] and exact solution is Q(t) =

[

cos(θ(t))) sin(θ(t))
− sin(θ(t)) cos(θ(t))

]

. This

is a difficult problem for all the methods considered, but all methods except prk45

ORTHONORMAL INTEGRATORS 19

obtain accurate solutions as seen in Tables 4.3 and 4.4. The integrator RKF45 fails to
integrate in one-step mode on the desired interval, though it succeeds on [0, 9], much
less efficiently than vtdp5, vvdp5, vwdp5. We expected the θ methods to run into
difficulty in variable stepsize mode, because of stiffness of the θ differential equation,
but did not notice that.

Table 4.3. Example 4.2: fixed stepsize ∆t = 1.E − 3.

Meth err reimb cpu

tdp5 1.5E − 12 0 169.
trk38 1.5E − 10 0 136.
vdp5 6.2E − 12 0 209.
vrk38 1.5E − 10 0 170.
wdp5 6.2E − 12 0 163.
wrk38 1.6E − 10 0 131.

Table 4.4. Example 4.2: variable stepsize, tol= 1.E − 8.

Meth err reimb rejs cpu nsteps

prk45 − − − − −
vtdp5 5.3E − 9 0 8 1 53
vtrk38 5.1E − 9 0 8 3.0 206
vudp5 1.5E − 8 0 10 2.0 93
vurk38 2.6E − 8 0 1 4.0 280
vvdp5 6.9E − 9 0 10 2.9 106
vvrk38 5.9E − 8 0 8 5.0 263
vwdp5 1.3E − 8 0 12 1.2 66
vwrk38 6.4E − 9 0 20 3.1 238

Example 4.3. This is a coefficients’ matrix arising from a stiff two-point boundary
value problem having both boundary and interior layers. We have

A(t) =

0 0 1 0
t/(2ǫ) 0 1 1/2
1/ǫ 0 0 0
0 1/ǫ 1/ǫ −t/(2ǫ)

and we take ǫ = 10−2. Interval of integration is [−1, 1]. Exact solution is not known.
The u-methods fail to complete the integration, but all other methods perform well.
For this problem, see Tables 4.6-(i) and 4.6(ii), most rejections occur after having
computed all of Q.

20 LUCA DIECI AND ERIK S. VAN VLECK

Table 4.5. Example 4.3: fixed stepsize ∆t = 1.E − 3.

Meth reimb cpu

tdp5 2 8.7
trk38 2 6.2
vdp5 3 12.2
vrk38 3 8.8
wdp5 3 10.0
wrk38 3 7.2

Table 4.6-(i). Example 4.3: variable stepsize, tol= 1.E − 8.

Meth reimbrejs/first cpu nsteps

prk45 − − 1.4 252
vtdp5 2 11/2 1 221
vtrk38 2 15/4 1.7 628
vudp5 − − − −
vurk38 − − − −
vvdp5 3 9/1 1.3 217
vvrk38 3 14/2 2.7 612
vwdp5 3 10/2 1.1 228
vwrk38 3 13/3 2.3 649

Table 4.6-(ii). Example 4.3: column-rejections, tol= 1.E − 8.

Meth 1st 2nd 3rd

vtdp5 2 1 8
vtrk38 4 0 11
vvdp5 1 0 8
vvrk38 2 0 12
vwdp5 2 1 7
vwrk38 3 0 10

Example 4.4. This is a fairly simple problem quite useful for testing purposes.
We have the coefficient matrix

A(t) = Q(t)D(t)QT (t) + Q̇(t)QT (t) ,

where D(t) = diag(1, cos(t),− 1
2
√

t+1
,−10), Q(t) =

1 0 0
0 Qβ(t) 0
0 0 1

[

Qα(t) 0
0 Qα(t)

]

,

and Qγ(t) =

[

cos(γt) sin(γt)
− sin(γt) cos(γt)

]

. We report on results for α = 1 and β =
√

2 and

integrate on [0, 100]. Notice the inadequacy of the u-variables. Such inadequacy is
hidden in constant stepsize mode, but it becomes apparent in variable stepsize mode:
the u-vector becomes very poorly scaled. In variable stepsize, nearly all rejections

ORTHONORMAL INTEGRATORS 21

occur while triangularizing the first column. From Table 4.8, observe how prk45

takes more steps and is less accurate than vtdp5, vvdp5, vwdp5.

Table 4.7. Example 4.4: fixed stepsize ∆t = 1.E − 3.

Meth err reimb cpu

tdp5 1.6E − 10 27 22.7
trk38 1.5E − 10 27 16.9
vdp5 1.6E − 10 77 24.3
vrk38 1.5E − 10 77 19.1
wdp5 1.6E − 10 77 22.2
wrk38 1.5E − 10 77 17.3

Table 4.8. Example 4.4: variable stepsize, tol= 1.E − 8.

Meth err reimb rejs/first cpu nsteps

prk45 2.1E − 7 − − 1.1 5053
vtdp5 7.7E − 9 27 94/89 1 4533
vtrk38 1.2E − 8 27 107/100 2.1 13010
vudp5 − − − − −
vurk38 − − − − −
vvdp5 1.2E − 8 77 80/80 1.1 3967
vvrk38 1.2E − 8 77 99/99 2.1 11169
vwdp5 1.4E − 8 77 103/92 1.1 4370
vwrk38 2.8E − 8 77 125/115 2.3 12694

Example 4.5. Here we take the diagonal coefficient matrix

A(t) = diag(− 1

2
√

t + 1
,−10, cos(t), 1) ,

which is just a permutation of D(t) in Example 4.4. We take both Q(0) = I and
a random initial condition Q(0), to verify if the diagonal elements of D will become
reordered. When Q(0) = I, then the computed solution remains Q(t) = I for all t.
For randomly chosen Q(0), the change of variables Q does instead reorder the diagonal
of Ã: Ã11 ≥ · · · ≥ Ã44 (see Figure 4.1; results obtained with vtdp5).

Example 4.6. This is an example of a constant coefficients matrix. The equation
(1.2) reduces to a so-called isospectral flow. For these problems, it is known that the
diagonal of the upper (p, p) block of the transformed matrix must eventually converge
to the real parts of the leading eigenvalues of A.Far from advocating the ideas set forth
in this paper as a mean to solve the eigenvalue problem, we included this problem
because we wanted to highlight (on a problem of arbitrarily high dimensions) how most
stepsize rejections occur ahead of having found all of Q; for this reason, we report
on results obtained with the variable stepsize codes vtdp5, vvdp5, vwdp5, and, for
comparison, with prkf45, in spite of the fact that probably constant coefficients
problems can be efficiently solved also with constant stepsize. Also, we wanted to see
how ill conditioning (i.e., poor separation) of the eigenvalues affected convergence.

22 LUCA DIECI AND ERIK S. VAN VLECK

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 50 100 150 200 250 300 350 400

"tol=1.E-8"
"tol=1.E-4"
"tol=1.E-2"

Fig. 4.1. Plot of t vs. log10(||D(t) − diag(Ã(t))||∞) for vtdp5 applied to Example 4.5 for

different tolerances using a “random” Q(0).

The coefficient matrix is the upper Hessenberg Frank matrix:

A =

n n − 1 n − 2 . . . 1
n − 1 n − 1 n − 2 . . . 1

0 n − 2 n − 2 . . . 1
...

. . .
. . .

. . .
...

0 . . . 0 1 1

.

We take n = 25, and seek Q triangularizing X ∈ IRn×p, X ′ = AX, X(0) =

[

Ip

0

]

,

with p = 13. Interval of integration is [0, b]. Exact solution is not known, so we report
on the defect of the diagonal of the upper (p, p) block of the transformed matrix Ã(b)
from the real parts of the leading eigenvalues; this we list as errd. At four digits, the
eigenvalues are 77.9837, 60.5984, 47.7777, 37.5667, 29.2021, 22.2856, 16.5772, 11.9193,
8.2006, 5.3359, 3.2479, 1.8495, 1.1841 ± 0.2634i, 0.8147 ± 0.6124i, 0.4098 ± 0.7755i,
0.0051± 0.7737i, −0.3373± 0.6031i, −0.5452± 0.3177i, −0.6070.

ORTHONORMAL INTEGRATORS 23

In the next table, we report on selected runs with the variable stepsize codes
for b = 100. The value of errd is entirely due to lack of convergence to the real
part of the 13-th eigenvalue, 1.1841, all larger eigenvalues having already converged
to several digits. Notice that (for most cases) errd does not change appreciably by
decreasing the tolerance value, which indicates that only by increasing the length
of integration one would be able to approximate the 13th eigenvalue more accu-
rately. Also, we notice that our codes are clearly superior to prkf45. Finally, in
our codes, a large majority of rejections occur while integrating for the 4th or 5th
columns; for example, for vtdp5 with tol=1.E-6, the rejection patterns is as fol-
lows: [1, 0, 11, 372, 104, 4, 0, 0, 1, 14, 1, 4, 3], where each number in this vector refers to
rejections occurred while triangularizing columns 1 to 13.

Table 4.9. Example 4.6: variable stepsize.

Meth tol errd reimb rejs cpu nsteps

prk45 1.E − 4 1.8E − 1 - - 1.7 5365
vtdp5 1.E − 4 9.6E − 2 73 525 1.5 2391
vvdp5 1.E − 4 1.1E0 77 516 1.2 2459
vwdp5 1.E − 4 3.0E0 85 504 1 2462
prk45 1.E − 6 1.8E − 1 - - 1.7 5430
vtdp5 1.E − 6 1.8E − 1 65 515 1.6 2459
vvdp5 1.E − 6 5.6E − 2 35 501 1.2 2491
vwdp5 1.E − 6 1.1E − 1 34 476 1. 2481

5. Conclusions. The purpose of this work has been manifold. We discussed gen-
eral design choices people should have in mind when devising techniques for solving
(1.2). We reinterpreted methods based on Householder and Givens transformations
as methods which give a trajectory on the smooth manifold of orthonormal matri-
ces, and use overlapping local charts to parameterize the manifold. We gave new
formulations and new implementations of methods based on Householder and Givens
transformations. Finally, we presented a suite of FORTRAN codes for solving (1.2) by
our techniques. We believe that the methods put forward in this work, and their
implementation as laid down here, are a very sensible way to solve (1.2), and should
not be ignored by anyone interested in comparative performance of other techniques
for solving (1.2). In this spirit, we welcome other people to use our codes4.

Our study showed that all design scopes we had set at the beginning are satisfied
by appropriate implementation of our techniques. There is certainly room for improv-
ing our codes, and we anticipate some work towards more efficient implementation,
in particular insofar as data structure, memory requirement, and extensive use of the
BLAS libraries. However, we believe that our implementations are now sophisticated
enough that some conclusions and recommendations for future work can be given.

1. Much as one should have expected, in variable stepsize the dp5 codes outper-
form the rk38 codes. In constant stepsize, however, the rk38 codes are less
expensive and this makes up for their reduced accuracy.

2. A striking difference with the standard linear algebra situation occurs when
using Householder methods. There, different representations of the House-
holder vectors are chiefly a matter of storage efficiency. In our time de-

4e-mail to either author

24 LUCA DIECI AND ERIK S. VAN VLECK

pendent setting, however, Householder methods in the u-variables should be
discarded: they are prone to instabilities, and this is clearly betrayed in a vari-
able stepsize implementation. Instead, in the v-variables, integrated with a
local projection step, and - especially - the w-variables, Householder methods
are robust and also handle well large problems.

3. Givens methods based on the θ-variables revealed very accurate and effi-
cient. However, the frequent need to compute sines and cosines and inverse
trigonometric functions is a potential drawback with this approach. A care-
ful implementation based on direct integration of the (cos, sin) values has not
been carried out, but could be an interesting endeavor.

4. The implementation in variable stepsize has proved very rewarding, especially
since it confirmed our expectation that often most rejections occur far ahead
of having computed all of Q.

5. It would be interesting to implement our methods by exploiting the rewriting

(2.1), and hence solving (2.2) always starting near

[

Ip

0

]

. This may prove

beneficial for all methods, also those based on the u-variables.
6. With the present level of implementation, and all things considered, the meth-

ods based on θ and w variables are probably the best, followed by the v-
methods.

7. The relative comparison with the projected integrator prk45 appears favor-
able to our new codes. In particular, our codes generally require fewer steps,
and are more accurate and less expensive. Moreover, the vtdp5, vvdp5,

vwdp5 codes never failed to complete the integration; instead, prk45, in spite
of the certainly more sophisticated implementation of the integrator RKF45,
was occasionally unable to complete the integration.

REFERENCES

[BGGS] G. Benettin, G. Galgani, L. Giorgilli, J. M. Strelcyn, Lyapunov exponents for

smooth dynamical systems and for Hamiltonian systems; a method for computing all

of them. Part I: Theory. . . . Part II: Numerical applications, Meccanica 15 (1980),
pp. 9–20,21–30.

[BR] T. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel manifold,
preprint, University of Surrey, (2000).

[CIZ] M. P. Calvo, A. Iserles, and A. Zanna, Numerical solution of isospectral flows,
Math. Comp. 66 (1997), pp. 1461–1486.

[C] M.T. Chu, On the continuous realization of iterative processes, SIAM Review 30 (1988),
375–387.

[CS] T.F. Coleman and D.C. Sorensen, A note on the computation of and orthonormal

basis for the null space of a matrix, Mathematical Programming 29 (1984), 234–242.
[Da] Davey, A., An Automatic Orthonormalization Method for Solving Stiff BVPs, J.

Comp. Phys. 51 (1983), pp. 343-356.
[DNT] P. Deift, T. Nanda, and C. Tomei, Ordinary differential equations and the symmetric

eigenvalue problem, SIAM J. Numer. Anal. 20 (1983), no. 1, 1–22.
[DRV1] L. Dieci, R. D. Russell, E. S. Van Vleck, Unitary Integrators and Applications to

Continuous Orthonormalization Techniques, SIAM J. Numer. Anal. 31 (1994), pp.
261-281.

[DRV2] L. Dieci, R. D. Russell, and E. S. Van Vleck, On the computation of Lyapunov

exponents for continuous dynamical systems, SIAM J. Numer. Anal. 34 (1997),
402–423.

[DV1] L. Dieci and E. S. Van Vleck, Computation of a few Lyapunov exponents for contin-

uous and discrete dynamical systems, Appld. Numer. Math. 17 (1995), 275–291.
[DV2] L. Dieci and E. Van Vleck, Computation of orthonormal factors for fundamental

solution matrices, Numer. Math. 83 (1999), 599–620.

ORTHONORMAL INTEGRATORS 25

[DV3] L. Dieci and E. Van Vleck, Continuous orthonormalization for linear two-point

boundary value problems revisited, IMA Volumes in Math. Appl. 118 (1999), 69–90.
[DLP] F. Diele, L. Lopez, and R. Peluso, The Cayley transform in the numerical solution

of unitary differential systems, Adv. Comp. Math. 8 (1998), 317–334.
[ER] J. P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod.

Phys. 57 (1985), 617–656.
[GSO] I. Goldhirsch, P. L. Sulem, and S. A. Orszag, Stability and Lyapunov stability of

dynamical systems: a differential approach and a numerical method, Physica D 27
(1987), 311–337.

[GVL] G. H. Golub and C. F. Van Loan, Matrix computations, 2nd ed., The Johns Hopkins
University Press, 1989.

[HL] E. Hairer, C. Lubich, The life-span of backward error analysis for numerical integra-

tors, Numer. Math. 76 (1997), 441–462.
[HNW] E. Hairer, S. P. Nœrsett, and G. Wanner, Solving ordinary differential equations I,

Springer-Verlag, Berlin-Heidelberg, 1993, Second edition.
[H] D. Higham, Time-stepping and preserving orthonormality, BIT 37 (1997), 24–36.
[MR] V. Mehrmann and W. Rath, Numerical methods for the computation of analytic sin-

gular value decompositions, Elec. Trans. Numer. Anal. 1 (1993), 72–88.
[Me] Meyer, G. H. Continuous Orthonormalization for Boundary Value Problems, J. Comp.

Phys. 62 (1986), pp. 248-262.
[Mu] H. Munthe-Kaas, Runge-Kutta methods on Lie groups, BIT 38 (1998), 92–111.

