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SUMMARY

Magnetic fields are speculated to affect the collapse dynamics in early star forma-

tion to influence the IMF, which may be imprinted in the local metal-poor population.

These fields arise by the amplification of primordial fields during the formation of the

first stars (Pop III) and from their feedback. We study the former using MHD simu-

lations with a uniform seed field from cosmological initial conditions to the formation

and supernova of a Pop III star. We find that a weak seed field can be amplified to µG

at the density peak and by a factor of 100 around the shell of the supernova shock. We

also explored the dynamics of metal-poor mini-halos, enriched by Pop III supernova,

in varying metallicities and Lyman-Werner flux to study the minimum collapse mass.

Furthermore, Pop III stars are significant drivers of reionization at high redshift (z

>10). We use semi-numeric methods including Pop III stars as ionizing sources and

find smaller characteristic H ii bubbles sizes while calculating an optical depth, τe =

0.0569, consistent with the latest results from Planck. The resulting ionization fields

can efficiently model the ionizing UV background in cosmological simulations. These

results are essential to building a full MHD simulation of the first galaxies.

xi



CHAPTER 1

INTRODUCTION AND BACKGROUND

Starting with the mechanics as formulated by Isaac Newton, humans have attempted

to use the rigors and rules of mathematics to discern the behavior of the physical

world from the smallest of particles to the largest of cosmic structures. Despite the

innumerable successes this particular approach has had, there is a realm of phenomena

that is not as easily illuminated by interpreting a single or even a set of equations.

This is the realm of non-linear dynamics which often deals with chaotic behaviors

of systems that span a large range of scales. From the beating of the human heart,

the whims of the weather, to the swirling plasmas in the depths of the universe,

we are forced to make constant compromises between accuracy, interpretability, and

even time to fully understand as we have done previously. Truly, it is a frontier of

knowledge of humankind.

In this work, we concern ourselves with a specific portion of this frontier, namely,

the physics of structure formation in the early universe. Starting from the Big Bang,

the universe graduates from the physically, chemically, and thermodynamically simple

linear phase, which one can parameterize with a small collection of well-suited values,

to the turbulent expanse filled with sudden explosions and gargantuan objects that

exist far beyond our terrestrial experience. This period can also be doubly viewed

as an observational frontier as current state of the art instruments are incapable of

directly capturing the details of this early time.

This is a tale of compromises between accuracy, interpretability, and time as we

explore this frontier. But first, we must present some background.
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1.1 Foundations of ΛCDM

Our understanding of modern cosmology has been largely shaped by a body of obser-

vations that support the existence of dark matter and dark energy. The former term

was likely first coined by Henri Poincaré [1] who actually denied that dark matter, or

matière obscure as he called it, should exist at all and posited that luminous matter

should account for the entirety of the mass of galaxies. It was not until 1933, when

Fritz Zwicky [2] used the virial theorem to estimate the mass of the Coma cluster

only to find the mass to be 400 times greater than the mass of the observed luminous

matter. He thus attributed the missing mass to dunkle Materie, or dark matter. Fi-

nally, Vera Rubin starting from the 1960s used galaxy rotation curves to demonstrate

that the rotational velocities stay high, rather than decaying, far beyond the reach

of the gravitational potential of the luminous matter implying that the bulk of the

mass of galaxies must lie in dark matter [3].

Although subsequent observations have only further cemented the argument for

dark matter, the precise nature of the individual particles that make up the material

is still unknown. What is known is that the particles must be what is known as

cold, as opposed to warm or hot. This refers not to the temperature of the particles

but rather the thermal velocities. Hot dark matter refers to particles that must

retain relativistic speeds at the time they decoupled from other matter and radiation

[4]. However, such particles would result in large cluster-like structures that would

subsequently fragment to form galaxies, in direct contrast to observational work [5].

Thus, alternative particles were considered, whose larger masses and lower thermal

velocities would allow for a bottom-up structure formation scenario. The favored

model is that of cold dark matter with masses on the order of 100 GeV, which provides

a good match to observed clustering of galaxies [6]. Warm dark matter can also match

observed clustering with the added of effect of suppressing the formation of dark

2



matter halos smaller than typical dwarf galaxy host halos. The biggest drawback

to these models is that there is no clear candidate for particles that fit the warm

dark matter energy range. The most promising candidate, thus, is a type of cold

dark matter known as Weakly Interacting Massive Particles (WIMPs), which are

supersymmetric particles that lie well within the mass range that is expected of cold

dark matter. However, direct detection efforts by LUX and SuperCDMS have not

been successful in a detection, resulting in a renewed interest in warm dark matter

models.

The other key element in our understanding of the universe is dark energy. The

first main evidence of its existence was considered after the discovery of a particular

pattern found in the observations of Type Ia supernovae. These supernovae were

spread apart further than was expected by cosmological models at the time, implying

that the expansion of the universe is accelerating at the present day [7]. Perlmutter

et al. [8] then took these data to estimate a value for the cosmological constant

energy density, which we now interpret as dark energy. It is commonly known that

Einstein had originally proposed the cosmological constant as an ad-hoc addition to

the equations of general relativity to enforce a static universe. However, it was quickly

discarded once it was observed that the universe appeared to be expanding [9], ruling

out a static universe. The presence of this dark energy was further cemented by

precise measurements of the Cosmic Microwave Background (CMB) which provided

much information regarding the make up of the universe. In particular, only about

30% of the universe consists of baryonic and dark matter, leaving the larger 70% to

dark energy.

Thus, it is with these discoveries that we find ourselves with the Lambda-Cold

Dark Matter (ΛCDM) cosmology model as a framework to understand the universe,

acknowledging that dark energy and dark matter dominate the dynamics of our uni-

verse. Figure 1.1 shows a cartoon schematic of this model. In this model, the universe

3
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expanded from a singularity, or a point of infinite density and temperature, going

through a period of exponential inflation while forming baryonic matter. Then the

universe continued to expand and cool until the electrons recombined with protons

to form atoms enabling photons to decouple from them. Finally, gravity begins to

amplify the fluctuations in matter distribution to begin forming the zoo of the cosmic

structures that are observed in the present universe.

1.1.1 Initial Conditions for Galaxy Formation

The focus of this work will be on this latest period in which stars and galaxies as

we know them today form. To study this process, we require two things: an un-

derstanding of the initial conditions and a physical model for the evolution of the

system.

Let us first consider the initial conditions. Without getting into details, we under-

stand that the quantum fluctuations during cosmic inflation will result in Gaussian

random fields of perturbations. This is particularly important because for Gaussian

random fields, the power spectrum can describe the distribution entirely providing

a powerful tool. For an average random volume of the universe, let us define the

correlation function as

ξ(|~x1 − ~x2|) =
〈
σ(~x1)σ(~x2)

〉
(1.1)

where ξ is the two-point correlation function and σ is the density field. Then, a

density field can be given by the Fourier transform of the power spectrum as follows

σ(~x) =
1

(2π)3

∫
d3k
√
P (k)λ~ke

i~k·~x (1.2)

where P is the power spectrum and λ are complex random numbers that represent

random amplitudes. Thus, if we have a measurement of the initial power spectrum, we

5



can simply scale a randomly generated field by it to generate a statistically identical

set of initial conditions. Luckily, the CMB provides this information. This then

provides the so-called cosmological initial conditions.

Now, we must evolve these initial conditions. We assume that the density pertur-

bations in the universe evolve according to the equations of fluid dynamics. Below

are the continuity, Euler, and Poisson equations expressed in comoving coordinates

to account for the expansion of spacetime and recast in terms of overdensity σ

∂σ

∂t
+

1

a
∇ ·
[
(1 + σ)~v

]
= 0 (1.3)

∂~v

∂t
+
ȧ

a
~v +

1

a
(~v · ∇)~v = −∇Φ

a
− ∇P
aρ̄(1 + σ)

(1.4)

∇2Φ = 4πGρ̄a2σ,Φ ≡ σ + aäx2/2 (1.5)

where a is the cosmological scale factor, x is the position, P is the pressure, ~v is

the peculiar velocity, Φ is the gravitational potential, and ρ̄ is the mean density.

During the early universe, when the perturbations are small, we take the following

assumption that the linear evolution of the perturbation grows as

σ(~x, a) = D(a)σi(~x) (1.6)

where D(a) is the growth factor [11]. This enables an efficient evolution of the initial

conditions to a later redshift as long as we are still in the linear regime, for σ . 0.2.

In practice, galaxy formation can be studied starting from these initial conditions

in a variety of ways, ranging from entirely analytic models all the way to completely

numerical models. This work focuses primarily on the latter in which we use the cur-

rently known physics to numerically evaluate future timesteps starting from above cos-

6



mological initial conditions. In these cosmological simulations, there are two central

components: dark matter and baryonic gas. Dark matter is most commonly treated

by taking discretized mass samples represented by collisionless particles evolved by

the Boltzmann equation

∂fi
∂t

+ ~̇x
∂fi
∂~x

+ ~̈x
∂fi

∂~̇x
= C (1.7)

where ~x are positions of a given element, fi is the probability density function, and

C is the collision integral which is set to 0 in the case of collisionless dark matter

particles. The solution to this equation is given by the characteristic equations which

are the simple Newtonian equations of motions

d~x

dt
= ~u,

d~u

dt
= −∇Φ (1.8)

where Φ is the gravitational potential given by the Poisson equation. This can then

be evaluated to using a variety of numerical techniques. As dark matter interacts

only gravitationally, we require no other physics to describe them.

On the other hand, baryonic physics are not limited to just gravitational interac-

tions. Instead, they must be modeled with the full equations of hydrodynamics which

include Equations 1.3,1.4,1.5, and also the energy equation given by

∂

∂t

[
ρ

(
v2

2
+ ε

)]
+∇ ·

[
ρ

(
v2

2
+
P

ρ
+ ε

)
~v

]
− ρ~v · ∇Φ = H− C (1.9)

expressed in terms of the density, ρ, velocity, ~v, pressure, P , and specific energy ε

without accounting for cosmological expansion. Also, H and C are respectively the

heating and cooling rates of the gas which encapsulates much of the physics of the

dynamics. Here, the numerous heating and cooling physics from radiation and the

chemical network must be coupled in to produce self-consistent solutions. Finally,

the equations must be closed with an assumed equation of state which relates the

7



pressure of the gas to the density, such as P = Kργ where γ = 5/3.

In this model, we find that gravity amplifies density perturbations and forms

dark matter halos, quasi-spherical concentrations of dark matter particles that are

gravitationally bound. The potentials created by the halos eventually attracts gas,

which is able to cool and collapse to form galaxies. However, the non-linearity of

the dynamics of the gas and numerous feedback prescriptions will produce different

characteristics in each of these galaxies, leaving us to decipher the relative importance

of certain physics. In the next subsection, we will discuss some of the predictions made

about the early universe using these models.

1.1.2 Formation of Metal-Free Stars

Following chronological order, the first objects to form in the universe were metal-

free primordial stars, so called Population III stars. Within the ΛCDM paradigm,

we expect structure formation to proceed in a bottom-up fashion. That is, the first

objects to form should be the smallest which assemble together to form the largest

structures at later times. Thus, the first objects to form must have formed in small

dark matter halos with M < 108 M�, or mini-halos at a redshift of z = 20-30 [12, 13].

As such, we have no observational confirmation of the existence of these objects. At

this early period in the history of the universe, there were no mechanisms in place

to produce elements heavier than lithium, leaving only the primordial elements, hy-

drogen and helium, as fuel for structure formation. Moreover, these mini-halos had

virial temperatures, T ∼ 1000 K, below the 104 K threshold at which atomic hydrogen

lines serve as efficient coolant [14]. The combination of the two resulted in highlight-

ing the importance of the role of molecular hydrogen in these early structures [15,

16]. Thus, the non-equilibrium chemistry of the primordial elements and molecular

hydrogen were explored, finding a number of different pathways for the formation

of molecular hydrogen, the most important of which is H + e− → H− + γ leading

8



Figure 1.2: Projections and slices of the time evolution of the collapsing cloud in
which the star forms. Top panels show projections centered at the formation site of
the star. The middle and bottom panels show slices of the density and temperature
at different resolutions. Taken from Abel et al. [21]

to H−+ H → H2 + e− [17, 18]. Once the gas clouds had collected beyond a critical

molecular fraction of fH2 > 10−4, these clouds could then collapse to form the first

stars [19, 20]. With fewer channels for fragmentation compared to the present day,

early studies predicted the formation of stars with characteristic masses, M ∼ 100

M� [21, 22]. Figure 1.2 shows the formation site of these stars taken from Abel et al.

[21].

The formation of a star is not an instantaneous event, however. The gas cloud first

collapses self-similarly prior to forming a hydrostatic core, which accretes gas [23].

Omukai and Nishi [24] calculated the former collapse phase using one-dimensional

9



simulations that took into account the radiative transfer of molecular hydrogen. They

found that the collapse proceeds identically as in present-day star formation follow-

ing the Larson-Penston similarity solution [25, 26]. At the end of the collapse, a

small hydrostatic core with mass, M ∼ 10−3M�, is formed. Initial studies also using

one-dimensional calculations tracing the gas accretion phase showed that inefficient

radiative feedback from the protostar enabled high accretion rates leading to large

stellar masses in agreement with the previous formation calculations [27, 28]. How-

ever, three-dimensional calculations starting from cosmological initial conditions with

protostar-scale resolution showed the fragmentation and then formation of two spa-

tially separated cores, providing evidence of binary Pop III formation [29]. Although

this simulation was not continued to the accretion phase, due to computational con-

straints, it demonstrated the possibility of fragmentation rather than single massive

stars, which was the previously accepted scenario. Other studies then used sink

particles to show evidence of fragmentation during the gas accretion phase further

cementing the ubiquitousness of fragmentation [30, 31].

Once the star is formed, it immediately lights up producing radiative feedback to

the surrounding interstellar medium. There are multiple dimensions to this feedback

which will be briefly highlighted here. The first is the production of soft UV photons

in the Lyman-Werner (LW) band. Because molecular hydrogen is fragile, the emission

of the LW photons from these stars can easily photodissociate nearby molecular clouds

[32]. As Pop III stars continue to form, they will then begin to build up a background

of these LW photons that will then negatively affect the formation of future Pop III

stars. In fact, the mass at which the primordial gas clouds collapse becomes sensitive

to the strength of this background at all redshifts [33, 20]. On the other hand, once a

gas cloud builds up a significant H2 column density, it can also be self-shielded against

this background as well [34, 35].

Higher energy radiation from Pop III stars can also photoheat the surrounding
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medium. This feedback very efficiently photoevaporates the gas shutting off further

star formation [36]. The ionizing photons also begin to form an extended H ii region

which spans 1-3 kpc [37, 38, 39, 40]. Thus begins the process of cosmic reionization,

a topic that will be discussed in the very next section. Also, the contribution of

these primordial H ii regions to the process of reionization is also the central topic of

Chapter 4.

One looming uncertainty about the first stars is the lack of constraints on the

Initial Mass Function (IMF). Although recent efforts have simulated over 1000 mini-

halos to obtain a statistical constraint [41], there are still many unresolved details and

computational difficulties that prevent pinpointing an exact functional form. Overall,

we know that massive stars emit light at much greater amounts than smaller stars

resulting in a relatively short lifespan. From stellar evolution models, we expect

that Pop III stars will die in a Type II core collapse supernova for 11 . M?/M� .

40 [42], or in a pair-instability supernova expelling greater total energy for 140 .

M?/M� . 260 [43]. The gas that is processed in these stars will then undergo stellar

nucleosynthesis to produce heavy elements that are ultimately carried out to their

surroundings via supernova feedback [44, 45, 46]. Some of the supernovae will leave

more massive black hole remnants which could potentially be seeds that grow to

become supermassive black holes observed presently in the centers of galaxies [47,

48].

1.1.3 Formation of the the First Galaxies

Following several cycles of star formation, these mini-halos that once hosted Pop III

stars will merge together to form the first dwarf galaxies. We will take the opera-

tional definition that a virialized object that is above T = 104 K, the threshold above

which atomic cooling lines are efficient, is a first galaxy. These objects must have had

corresponding masses of M ' 108 M�. The progenitor mini-halos must have had a
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number of Pop III star formation events which would then process the ISM enrich-

ing the surroundings with metals. Supernovae from these stars could enrich nearby

mini-halos with metals which could then directly form metal-poor, or Population II,

stars prior to the recovery of the host halo [49]. Otherwise, these halos will recover

their gas and undergo subsequent star formation after about 10 million years [50]. In

particular, this transition from Pop III stars to Pop II stars is also of interest. The

first generation of metal-poor stars must have formed directly as a consequence of

the enrichment process triggered by primordial supernovae. Therefore, the chemical

abundance patterns of such stars must be direct tracers of primordial supernovae

providing more insight in to the properties of Pop III stars. This particular path of

probing the first stars is known as stellar archaeology [51] and recent observations of

carbon-enhanced metal-poor stars (CEMPs) have ignited an interest in the hunt for

signs of the first stars [52]. The first galaxies are expected be an ideal environment in

which this transition occurs.

Although we currently do not have any direct observations of any of these objects,

there are a few places where we can see hints of the first galaxies. The first is looking

at similar sized objects in the Local Group. Some of the dwarf galaxies that are near

by may be from the first generation of galaxies that were formed that were eventually

merged in naturally as structure formation progressed. Of particular interest are

the Ultrafaint Dwarf Galaxies (UFD) which are the the least intrinsically luminous

galaxies in the Local Group with Ltot . 105L� [53]. These objects are speculated to

have a minimum number of star-formation events which can potentially lead to more

readily extracting the details of the early chemical enrichment processes.

Another such class of objects are globular clusters. Nearly every observed galaxy

of a sufficient stellar mass (> 107M�) contains a globular cluster system. The glob-

ular clusters (GCs) themselves have a color bimodality allowing for distinguishing

between a blue, metal-poor (BGC) population and a red, metal-rich population [54].
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In particular, BGCs are of significant interest because their relative age (≥10 Gyr)

[55] places them in the correct epoch to be related to the formation of the first galax-

ies. Thus, understanding the mechanisms through which globular clusters formed

may be central to understanding how the first galaxies were assembled.

Furthermore, because they are the first galaxies, these objects are relatively simple

compared to present day galaxies, like our Milky Way. Because they have fewer star

formation events in their histories, they have relatively little contamination from the

physics of dust and metals, which can add significant complications in the dynamics

of the gas. Also, their small sizes enable them to be sufficiently resolved starting from

cosmological initial conditions to insert the details of the currently established set of

physics for the galaxy formation process. In the next section, we will introduce how

these objects start the latest phase transition of the universe.

1.2 Epoch of Reionization

As the first stars light up and emit radiation ionizing their immediate surroundings,

the dark ages come to an end to trigger the beginning of the Epoch of Reionization

(EoR). The EoR begins with Pop III stars and is driven by starlight from subsequently

formed galaxies and galaxy clusters ending once the entire universe is fully ionized.

This process is not completely trivial as gas that is once ionized can then recombine

returning to the neutral state. For example, Pop III stars can leave relic H ii regions as

the surrounding gas recombines resulting in partially ionized gas. Thus, to accurately

capture the physics of this period, one must keep track of both the sources and sinks

of ionizing radiation. In the following sections, we will briefly summarize the key

physics involved during the period and the connection to observations.
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1.2.1 Physics of Reionization

During the EoR, the central physics are that of ionization and recombination, which

can be represented by the chemical equation

H + γ ↔ H+ + e− (1.10)

When the energy of the incoming photon, γ, is greater than 13.6 eV, then the neutral

hydrogen will absorb this photon kicking out the electron. The opposite reaction, or

recombination, occurs simply through Coulomb attraction as demonstrated in elec-

trostatics. We can then quantify the rates at which these processes occur.

First, the ionization rate must be proportional to the rate at which ionizing pho-

tons are being produced. The rate is given by

ṄI = σHInHIF cm−3 s−1 (1.11)

where σHI is the photoionization cross-section, or the probability that a single photon

will be absorbed, nHI is the number density of neutral hydrogen in a given volume,

and F is the ionizing radiation flux.

On the other hand, since recombination occurs via Coulomb interaction, the rate

must be simply proportional to the concentration of the two ion populations. Thus,

the recombination rate is given by

ṄR = nenpαn(T ) cm−3 s−1 (1.12)

where ne and np are the electron and proton number densities respectively, and αn

is the temperature-dependent recombination rate coefficient for a given electron level

n. One can then sum this rate over all the electron levels of hydrogen to get a total

recombination rate, which is known as ‘case A’. However, as Equation 1.10 shows,
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the recombination process emits out a photon as well. In the situation of the electron

going directly to the ground state, or n =1, a photon exactly at the energy of hydrogen

ionization is emitted, which will then propagate out to ionize another nearby hydrogen

atom effectively producing net zero recombination. Thus, it is useful for us to consider

the total recombination rate ignoring the n =1 scenario. The sum of these rates are

then referred to as ‘case B’.

In a region with ionizing sources, we can equate the two rates to then calculate

an ionization fraction. However, in the case that stars are the sources of ionization,

we also know that stars can only produce a finite amount of ionizing radiation before

succumbing to their end. Thus, there must be an equilibrium state where the ionized

volume no longer expands [56]. We can set the recombination rate equal to the ionizing

photon luminosity to calculate the extent of this volume.

4

3
πR3xenpαB(T ) = Ṅγ (1.13)

where R is the radius of the ionized region, αB is the ‘case B’ recombination coefficient,

and Ṅγ is the ionizing photon luminosity. We can then solve for this radius, which is

referred to as the Strömgren radius, given by

Rs =

[
3Ṅγ

4πn2
HαB(T )

]1/3

≈ 3.44

(
nH

100 cm−3

)−2/3( Ṅγ
1049 s−1

)1/3(
T

104 K

)−0.282

pc

(1.14)

where xe ≡ ne/nH, and we’ve taken the assumption that ne = np for pure hydrogen

gas. Such regions are effectively the building blocks of reionization. Initially, Pop

III stars will form disjoint isolated primordial H ii regions which will merge and

grow as more ionizing sources are produced in subsequent star formation events.

These ionized bubbles will then begin to overlap one another as they begin to fill in

significant volumes of the universe. Finally, the ionized regions fill the majority of the
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volume of the universe as the small pockets of neutral plasma are eventually wiped

away by the ionizing radiation.

Given this general outlook, an obvious question to pose may be what are the

sources of ionization that are principally responsible for ionizing the universe. At first

glance, quasars appear to be an attractive candidate in that they are brightest sources

of radiation known in the universe. However, the number density of quasars are too

low at high redshift to account for all of reionization [57]. Instead, starlight becomes

the primary candidate for reionizing the entire universe. The quest then becomes

understanding the details of the process of reionization as a whole. If starlight in

galaxies are indeed the primary drivers during the EoR, then a better understanding

of the EoR will necessarily provide deeper insight into the details of galaxy and

structure formation in the universe. In the next section, we will discuss the current

and upcoming observational constraints to aid us in this effort.

1.2.2 Current and Future Observational Constraints

The CMB not only provides constraints on the cosmological parameters but also

constraints on the timing of the EoR. Here, the key value is the optical depth to

Thomson scattering, τ , which refers to the CMB photons that scatter off of free

electrons floating about on the way to Earth. This scattering makes an imprint on

the polarization of the CMB which can then be measured to provide an integrated

value of the Thomson scattering optical depth. Figure 1.3 shows the measurements

of τ starting from the WMAP mission to the latest results from the Planck satellite.

Note the systematic decrease in the value of τ as we increase the precision in the

measurements. As τ is an integrated value, the smaller the value, the later reionization

must have started. The end of reionization is well constrained by quasar spectra as will

be discussed shortly. Thus, a smaller τ also implies a shorter duration for the entire

EoR. The latest constraints from the Planck satellite put the average reionization
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Figure 1.3: Measurements of the optical depth to Thomson scattering, τ , starting
with the WMAP 3-year results to the Planck Satellite 2016 Intermediate results. The
value of τ has been significantly reduced since the initial measurement implying a
much shorter duration for the Epoch of Reionization. Taken from Planck [59].

redshift, that is when the ionization fraction is half, at z = 7.8 to 8.8 [58].

The next key constraint for the EoR comes from the absorption spectra of quasi-

stellar objects (QSOs), or quasars. Looking at these spectra shows a progression in

which a trough following the peak flux is extinguished at z ∼ 6 [60]. This trough is

known as the Gunn-Peterson trough, who identified the trough as an indication of the

ionization state of the IGM surrounding the quasar [61]. In a highly ionized medium,

the optical depth to Lyman-alpha (Lyα) photons is high and all photons would thus

be absorbed. Thus, these measurements constrain the EoR to have ended by z ∼ 6.

The most promising observations of the EoR, however, likely come from the hy-

perfine transition line in neutral hydrogen, also known as the 21-cm line [62]. These

states arise when the intrinsic spins of the electron and proton in the neutral hy-

drogen are parallel or anti-parallel. Even with the advent of the James Webb Space

Telescope (JWST), the likelihood of observing the very first luminous objects is quite
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low [63]. However, the observations from upcoming radio telescopes should be able

to detect 21-cm signals to arbitrarily high redshift down to the ‘dark ages’. As we

go back further in time, more of the IGM is neutral. The absorption and emission

by neutral hydrogen is imprinted on to the 21-cm differential brightness temperature

given by

Tb ' 26.9

(
1 + z

10

)1/2(
Ts − TCMB

Ts

)
mK (1.15)

where Ts is the spin temperature indicating the relative occupancy of the electron

spin levels, and TCMB = 2.73(1 + z) k is the CMB temperature. Measurement of

the evolution of temperature would then directly probe the ionization history during

the EoR. Upcoming large radio telescope arrays such as the Hydrogen Epoch of

Reionization Array (HERA) [64] and the Square Kilometer Array (SKA) [65] should

be able to map the EoR to precisions previously unattainable down to z ∼ 30.

1.3 Magnetic Fields in the Early Universe

With the progression of structure formation in the universe during the EoR, magnetic

fields are also built up resulting a wide range of field strengths. Observations of

the universe reveal the presence of magnetic fields at scales ranging from planets

all the way to the voids between large cosmological structures [66, 67]. Moreover,

measurements of galaxies show corresponding field strengths of up to tens of µG [68].

These observations imply a reciprocal relation between galaxy formation and magnetic

field build up. How each process affects the other is a key question that is still under

exploration. The physics of magnetic fields in plasmas is not trivially studied using

analytic techniques, so it becomes a difficult problem to pull out immediate intuition

regarding the dynamical impact they may have.

However, to give a heuristic argument for how magnetic fields can play a role, let
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us first consider the scalar magnetic virial theorem, which is given by the following

W + 2U +M = Pext

∮
x · n̂ dA−

∮
x·
↔
T n̂ dA (1.16)

where
↔
T is the Maxwell Stress Tensor, Pext is the external pressure, the self-gravitational

energy of the gas is given by

W = −1

2
G

∫
V

∫
V

ρ(x)ρ(x′)

|x− x′| d
3x′d3x (1.17)

where ρ is the density, the thermal energy of the gas is given by

U =
3

2

∫
V

Pd3x (1.18)

where P is the gas pressure, and the magnetic energy contained in volume V is given

by

M =

∫
V

| ~B|2
8π

d3x (1.19)

which provides the equation of state for a system in virial equilibrium, such as a

galaxy.

Applying Equation 1.16 to a isothermal gas cloud, we will define 4πR3 ≡
∮
x ·

n̂dA, and introduce some dimensionless terms α and β. Then we can rewrite the

gravitational term and magnetic terms as

W = −αGM
2

R
(1.20)

M+

∮
x·
↔
T n̂ dA = β

Φ2

R
(1.21)

Finally, plugging in Equations 1.20 and 1.21 to Equation 1.16, we can rearrange
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the terms to read as the following,

Pext =
1

4π
(−αGM

2

R4
+ β

Φ2

R4
+ 3

a2M

R3
) (1.22)

where a2 = kT/m = constant and M is the mass of the cloud.

We can see from this equation that the magnetic term has the effect of acting

against gravitational collapse. Along with turbulence support, this term can po-

tentially have the effect of sustaining gas clouds from collapse allowing for further

growth.

1.3.1 Relevant Scales in MHD

Numerical studies of magnetic fields naturally involve the coupling of magnetic fields

to the equations of hydrodynamics that govern the baryonic dynamics. Rather than

deriving the full set of magnetohydrodynamic(MHD) equations, in this section we

will highlight the key equations to understand the relevant scales in astrophysical

contexts.

First is the induction equation,

∂ ~B

∂t
+∇× ( ~B × ~v) = −∇× (η∇× ~B) (1.23)

where ~B is the magnetic field, ~v is the fluid velocity, η is the electrical resistivity.

This equation effectively governs the evolution of the magnetic field strength in a

fluid. If we take η to be zero, we are left with the standard ideal MHD condition

of flux freezing, in which the field lines can be thought of as being frozen into the

plasma. This also results in a MHD scenario in which the field lines can never break.

Using dimensional analysis on the three terms in Equation 1.23, we find

BV

L
+
BV

L
∼ η

B

L2
(1.24)
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which can then be reduced to

LV

η
∼ 1 (1.25)

Thus, we define the first relevant scale, the magnetic Reynolds number, given by

Rm = LV
η

, where L and V are the characteristic length and velocity scales respectively.

This term can be understood as the relative importance of induction to diffusion of

the magnetic field. Thus, if Rm is less than 1, then diffusion must be significant in

the system. In a typical molecular cloud, we can take L ∼ 10 pc, V ∼ 3 km s−1,

and η ∼ 1022cm2 s−1 [69] which gives us Rm ∼ 1000. Thus, on these scales, magnetic

diffusion is not significant.

Next, we introduce the momentum equation including the magnetic term

∂

∂t
(ρ~v) = −∇ · (ρ~v~v)−∇P + ρv∇2~v +

1

4π
(∇× ~B)× ~B (1.26)

where ρ is the density, and P is the pressure. We can once again perform a dimensional

analysis reduction to look at the terms which results in

1 ∼ 1 +
c2
s

V 2
+

v

V L
+

B2

ρV 2
(1.27)

where cs is the speed of sound. Thus, we can now define the Alfvén Mach number,

MA = V/vA, in terms of the Alfvén speed, vA = B /
√

4πρ. When MA � 1, then

the magnetic term dominates the dynamics, while for MA � 1, the magnetic term

is negligible. Once again, for typical molecular clouds, we can take n ∼ 100 cm−3,

B ∼ µG, and V ∼ 3km s−1, then vA is also a few km s−1. This means that magnetic

fields can have some influence, highlighting their potential significant role in the

dynamics.
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The final relevant scale is known as plasma beta which is defined as

β =
p

pmag
=

nkBT

B2/(2µ0)
(1.28)

which is the ratio of the gas pressure to magnetic pressure. Thus, it directly relates

the relative importance of the magnetic field in the dynamics of a fluid. The smaller

the β value, the greater the magnetic field contribution.

1.3.2 Primordial Magnetic Fields

In this section, we will begin by considering the initial conditions of the problem at

hand. In fact, a particular difficulty in understanding magnetic fields in the early

universe is that the exact sources of the initial primordial magnetic field is unknown.

This is further compounded with the uncertainty in the magnitudes of the initial

field strengths. The particular sources have been speculated to be a number of dif-

ferent mechanisms which can be broadly separated into two categories: astrophysical

processes after the start of structure formation and physics prior to recombination

[70].

We will first consider the latter category which primarily refers to early universe

phase transitions. In the early universe, there are periods as the plasma cools where

matter changes phases from quark-gluon to mesons and baryons (i.e. hadronic phase)

and where the electroweak symmetry breaks into the electromagnetic and the weak

[71]. These periods are referred to as phase transitions, quantum-chromodynamic

(QCD) and electroweak (EW) transitions respectively. Now the exact order of these

transitions is not well constrained. If they are second-order, it will proceed smoothly

in an adiabatic manner. However, if the order is first-order, then there are bubbles

of the next phase that formed that can shock the surrounding medium. These mech-

anisms were explored by Hogan [72], Quashnock et al. [73] and Sigl et al. [74], who

found that fields on the order B ∼ 10−29 G and B ∼ 10−20 G can be generated during
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the QCD and EW transitions respectively.

A more exotic production scenario occurs during cosmic inflation. During infla-

tion, the inflaton scalar field can be coupled to the electromagnetic field to produce

fields as large as B ∼ 10−9 G [75]. Kandus et al. [76] found that charged scalar fields

during inflation can produce currents which then lead to the formation of magnetic

fields. The greatest drawback to these scenarios, unfortunately, is that there are vir-

tually no constraints on the variety of physical mechanisms that can be evoked to

produce these fields.

Thus, we come back to astrophysical processes. The most popular mechanism

of primordial magnetic field is likely the Biermann battery. This mechanism is con-

cisely represented by adding a term to the ideal MHD induction equation, originally

introduced as Equation 1.23 [77]

∂ ~B

∂t
+∇× ( ~B × ~v) =

cm

e

1

1 + χ

∇p×∇ρ
ρ2

(1.29)

where c is the speed of light, m is average mass per particle, e is the charge of an

electron, p is the pressure, ρ is the density, and χ is the ionization fraction. This term

can be understood by looking at the cross product. When the density and pressure

gradients are misaligned, the electrons drift faster than the protons and generating a

net electric field in a closed loop circling the gradients [78]. Figure 1.4 shows a cartoon

of the setup and the closed contour in which the net electric field is generated. This

net field then produces an electromotive force which generates the magnetic field by

Faraday’s law. This effect was first explored in the cosmological context in numerical

simulations by Xu et al. [79], who found peak magnetic field strengths of B ' 10−9 G

at the center of a star forming halo at z = 17.55, not yet strong enough to have any

dynamical impact on the gas evolution. However, they could be sufficient to explain

the galactic magnetic field assuming different amplification processes.

The final potential candidate for primordial magnetic field generation are the first

23



Figure 1.4: Schematic of the Biermann battery effect. The particles represent the
electrons which are scattered about according to the density and temperature gradi-
ents. They form electric fields flowing through the highlighted loop which will lead to
the production of an electromotive force and thus magnetic fields. From APS/Alan
Stonebraker.
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stars. Whichever way the fields are generated, stellar dynamos can efficiently amplify

the seed fields which are then subsequently carried out to the surrounding medium

via winds or supernova feedback. Bisnovatyi-Kogan et al. [80] and Pudritz and Silk

[81] proposed models in which fields can be generated in protostellar gas clouds via a

Biermann battery mechanism. This is a particularly attractive model because it has

been shown that magnetic fields can play an important role in carrying out the angular

momentum during the collapse phase of star formation enabling the protostellar core

to be formed [82]. Furthermore, Machida and Doi [83] showed that the presence of

magnetic fields during the accretion phase can result in different end scenarios for Pop

III stars. Namely, when the magnetic field strength is B > 10−12 (n/1 cm−3)2/3 G, the

field can suppress fragmentation resulting in a single massive star. If the strength is

increased further, it results in binaries, further emphasizing the potential importance

of the magnetic fields.

Unfortunately, the observational constraints are limited in their ability to select

out the sole or multiple origins of the primordial magnetic field. The latest results

from the Planck Collaboration in measuring the effects of a stochastic primordial

magnetic background on the CMB anisotropies by measuring the polarization of dust

have resulted in a rather loose constraint of B < 4.4 nG [84]. This is further com-

pounded by the fact that magnetic fields can be quite efficiently amplified through a

number of mechanisms. These amplification mechanisms will be discussed next.

1.3.3 Growth of Magnetic Fields

Magnetic fields can be amplified in two primary methods: compression and dynamos.

The former can be understood by considering a uniform ideal spherical collapse of a

gas cloud where the magnetic field is frozen into the plasma. As the flux is conserved,

the field strength must then scale with the cross-sectional area of the collapsing cloud.

Alternatively, one can also visualize the field lines squeezing together as the total
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volume is decreased. The scaling of the field strength is then given by the following

B ∝ 1

A
∝ 1

r2
∝ ρ2/3 (1.30)

where A is the cross-sectional area of a sphere, and r is the radius of the sphere.

Dynamos, on the other hand, are a turbulent process that can lead to great ampli-

fication. Astrophysical dynamos can be further differentiated by the associated length

scale. Large-scale dynamos can be on galactic scales where the turbulence driven by

various stellar feedback and MHD instabilities can lead to twisting and tangling of

the magnetic field lines [85]. This is most simply described by a mean-field theory

which recasts Equation 1.23 as

∂~B

∂t
+∇× (~B× ~V) = ∇× ~E (1.31)

where ~B and ~V are the ensemble averaged values of the magnetic and velocity fields,

and ~E is the electromotive force generated by the turbulent terms [86].

The small-scale dynamos, however, operate at scales that are of the order or

smaller than the energy carrying the turbulence. This was first explored by Kazantsev

[87], who worked out the growth of the instability that leads to the amplification of

the magnetic field. Since then, this mechanism has been studied in the context of the

formation of the first stars providing a plausible scenario through which significant

field strengths are generated from weak primordial fields [88, 89].

These mechanisms are key to understanding the build up of magnetic fields that

traces hierarchical structure formation. In Chapter 3, we extend the exploration

further by pushing beyond the formation of the first stars to understand the dynamical

growth of magnetic fields until after the death of the first stars.
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1.4 Computational Techniques

The investigations laid out in this work are primarily computational in nature and

thus make use of cosmological simulation codes. In particular, the adaptive mesh re-

finement (AMR) software Enzo is used. Enzo is an open-source fully coupled radiation

transport hydrodynamics code that is parallelized over MPI and OpenMP protocols

used for a wide-range of physical and astrophysical applications varying in compu-

tational demand. Unlike the popular cosmological simulation code Gadget which is

a Lagrangian code, Enzo is a Eulerian code. The two types differ in the method in

which the equations of hydrodynamics are discretized. In the former, the fluid itself

is discretized, represented as particles. For the latter, space itself is discretized onto

a grid while the modeled fluid travels between grids in terms of the dynamical flux.

The AMR scheme then allows for arbitrary precision in regions of physical interest

based on an astute selection of ‘refinement criteria’ by further splitting up cells into

even smaller cells. This splitting is done dynamically enabling the flow of gas to be

traced to high precision as the simulation is evolved. It also includes a number of

models for various physics that are relevant to cosmological structure formation, such

as star formation and feedback. Specific details of the implementation of the code can

be found in the method paper [90]. Furthermore, the details of the relevant physics

models can be found in the individual chapters.

1.5 Thesis Overview

Within the current framework of galaxy formation in a ΛCDM universe, we are now

at a place to begin probing the details of early structure formation. This thesis works

to understand the details of the dynamics and of the first objects that were formed

in the universe and how they led to the formation of the first galaxies. In particular,

our focus is on mini-halos, the smallest dark matter structures in which the first stars
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are thought to be born in.

In Chapter 2, we investigate the effect of metallicity on the collapse masses of gas

clouds in the early universe. Such objects are potential sites for the formation of the

first metal-poor stars and this exploration provides insight to the conditions required

for this mode of star formation as well as the transition from Pop III to Pop II stars.

Then in Chapter 3 we investigate the amplification of magnetic fields in the first

mini-halos. Previous explorations stopped prior to the formation of the star, but

this work shows the first numerical calculation from cosmological initial conditions

following through to the formation, main sequence, and death of a Pop III star.

Next, we use a semi-numerical simulation code to study the impact of these primor-

dial objects on reionization in Chapter 4. The code is extended to include mini-halos

as potential sources and we compare the resulting ionization histories with that of

standard models.

Continuing from the previous chapter, we then, in Chapter 5, propose a new

computational method to produce cosmological simulations in an efficient manner

without the use of fully coupled radiative transfer while maintaining some level of

accuracy.

Finally, in Chapter 6 we briefly summarize the key results stemming from this

work and conclude with future work to be carried out.
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CHAPTER 2

EFFECT OF METALLICITY ON THE COLLAPSE OF

PREGALACTIC GAS CLOUDS

In this chapter, we begin by exploring a relatively simple premise. Star formation

occurs in the potential wells that attract gas clouds and gravitationally collapse. The

minimum mass of the gas cloud above which this process can occur is an important

value that can dictate the abundance of stars that are formed. This value has been

explored in previous works for metal-free gas clouds. However, the introduction of

metals can greatly change collapse dynamics by providing alternative cooling mecha-

nisms. We explore this effect in this chapter. This particular work has been submitted

for publication in the Monthly Notices of the Royal Astronomical Society. This work

was co-authored by John Wise who ran the actual simulations and provided the data.

2.1 Introduction

The complex gas dynamics within mini-halos at the start of the Epoch of Reioniza-

tion has profound effects on subsequent structure formation. In the case of primordial

metal-free gas clouds, the key cooling agent that drives the star formation process

is molecular hydrogen H2 which dominates for temperatures below 104 K, the maxi-

mum virial temperature of a mini-halo. The conditions for gravitational collapse as

a result of efficient H2 cooling is a well studied problem. However, H2 is also easily

photodissociated by soft UV photons with energies below 13.6 eV, in the Lyman-

Werner (LW) bands of H2 [32]. In these mini-halos that are able to efficiently cool,

the first metal-free stars (Population III) will then emit such photons and dissociate

the surrounding H2 providing a negative feedback effect [91, 92]. Furthermore, the

LW emission from a cosmological stellar population will build up a radiation back-
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ground (LW background) that will influence H2 abundances, and thus the collapse

dynamics of halos, at relatively large distances beyond the immediate vicinity of the

sources [93]. Machacek et al. [33] (M01) and Yoshida et al. [20] initially explored the

collapse dynamics of these mini-halos incorporating this LW background in cosmo-

logical simulations. The former also used a number of spatial- and time-independent

LW background strengths to provide a relationship between the minimum collapse

mass of mini-halos and the LW flux. This minimum collapse mass is an important

quantity that can provide estimates for the primordial star formation rates in the

early universe.

Moreover, in M01, the effects of self-shielding were neglected, opting for an optically-

thin approximation. As significant H2 column densities are built-up, gas in halo cen-

ters can self-shield against the LW background to suppress photodissociation. This

effect was estimated by Draine and Bertoldi [34] who provided simple analytic ap-

proximations, who found that a H2 column density > 1014 cm−2 was required to

see significant effects. Then in Yoshida et al. [20] and Glover and Mac Low [94],

this effect was better approximated by calculating the exact column densities in only

the Cartesian directions, the so-called six-ray approximation. However, most recent

work has shown that an accurate 3D treatment of the effects of self-shielding results

in photodissociation rates that differ from previous estimates by as much as an or-

der of magnitude [35]. Similarly, Hartwig et al. [95] showed significant differences in

the value of the critical UV flux required for gas collapse by calculating the column

densities in 3D simulations.

But not only do the Pop III stars emit these soft UV photons to dissociate H2, a

fraction will also die in supernovae, in either the core-collapse or the pair-instability

flavors [43, 96]. The metals formed from these primordial supernovae eventually enrich

their surroundings to set the stage for future generations of metal-poor star formation

[45, 36]. Once enriched, there are a number of different channels through which the
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next generation metal-poor stars can form. First, the metal-enriched gas clouds can

merge into larger halos which will then collapse to form stars [97, 98]. Secondly,

the original halo can recover and collapse again after some extended recovery period

[50]. Or thirdly, the supernova can externally enrich nearby mini-halos that survive

the blastwave [49]. In each of these scenarios, the metal-enriched gas cloud must then

cool and collapse to begin forming stars. However, unlike in the primordial mini-halos

where the abundance of H2 singly determined the collapse dynamics, metals add a

degree of complication. The additional atomic and molecular transitions increase

the number of channels by which the gas clouds can cool [99, 100, 101]. Just as the

formation of Pop III stars was explored through the thorough understanding of the

collapse dynamics of mini-halos and chemistry of H2, the formation of these first

metal-poor stars can be better understood by studying the interplay of metal- and

H2-cooling in these metal-enriched mini-halos.

Our primary goal then is to extend the work done in M01 to understand the

collapse dynamics of metal-enriched mini-halos. To this end, we will explore the effects

of variances in both the strength of the LW background as well as the metallicity of

the gas. Secondly we extend the M01 results to include H2 self-shielding. In this

paper, we present the results from a series of cosmological simulations exploring this

parameter space. The following section describes the setup for our suite of simulations.

Then in Section 2.3, we present the results for the minimum collapse mass from our

simulations. Finally, in Section 2.4, we discuss some of the neglected physics and

conclude.

2.2 Methods

2.2.1 Simulation Setup

Our simulations were all run using the enzo simulation code v2.5 [90], an adaptive

mesh refinement (AMR) code that uses an N-body adaptive particle-mesh solver to
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follow dark matter dynamics. We utilize a nine-species (H i, H ii, He i, He ii, He

iii, e−, H2, H+
2 , H−) non-equilibrium chemistry model [18] using the H2 cooling rates

from Glover and Abel [102]. In order to solve the equations of hydrodynamics, we use

the piece-wise parabolic method (PPM) and the Harten-Lax-van-Leer with contact

(HLLC) Riemann solver for accurate shock capturing.

Each simulation has a top grid resolution of 5123 cells, and we employ a total of

10 levels of refinement, refining cells when any of the following criteria are met: (i)

relative baryon overdensity of 8, (ii) relative DM overdensity of 8, and (iii) local Jeans

length [103]. For the first criteria, we employ super-Lagrangian refinement, where the

cells are refined more aggressively, i.e. a lower density refinement threshold, at higher

levels1. We also require the local Jeans length to be covered by at least 4 cells in

each direction. The effective spatial resolution is 1.41 comoving parsecs at the finest

refinement level with an effective dark matter mass resolution of 99.1 M�.

We initialized the simulations at z = 150 with a 500 h−1 comoving kpc box and run

them down to z = 10. All the simulations employ the same realization of initial condi-

tionss, generated with the MUSIC initial condition generator [104] using second-order

Lagrangian perturbation theory and the Planck 2015 best fit cosmological parameters

[105]: ΩM = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, h = 0.6774, σ8 = 0.8159, and ns =

0.9667 with the variables having their typical definitions.

The main parameter space explored in this work is that of the strength of the

LW background and the metallicity. For the LW background, we employ a uniform

constant background at all redshifts for five different values, J21 = (0, 0.01, 0.1, 1, 10),

where J21 is the specific intensity in units of 10−21 erg s−1 cm−2 Hz−1 sr−1. Likewise,

we apply a constant uniform metallicity at all redshifts for four different values, Z

= (0, 10−4, 10−3, 10−2) Z�. Lastly, we approximate the effects of LW radiative self-

shielding using the spherically averaged “Sobolev-like” length method in Wolcott-

1This feature is triggered with the enzo parameter MinimumMassForRefinementLevelExponent
= -0.25 [see 90, for more details].
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Green et al. [35] which attenuates the LW background in regions of high density,

allowing efficient H2 cooling. In order to compare with M01, we also run simulations

without self-shielding for each metal-free simulation. In total, we have a complete

suite of a 24 simulations spanning the parameter space.

As our simulations also include metals, we add the effects of radiative cooling

from fine-structure transitions in metals using the method in Smith et al. [106]. This

method involves using the tabulated cooling data generated with CLOUDY which

considers the following logarithmically spaced range of variables: (i) density: 10−6 to

106 cm−3, ∆ = 0.25 dex, (ii) temperature: 10 to 108 K, ∆ = 0.1 dex, (iii) electron

fraction: 10−6 to 1, ∆ = 0.25 dex, and (iv) metallicity: 10−6 to 1 Z�, ∆ = 1 dex, where

∆ is the spacing. We use the CMB radiation spectrum and ignore dust cooling as

our simulations do not reach high enough densities, where it significantly contributes

to the cooling rate above ∼ 1012 cm−3.

2.2.2 Treatment of Collapsed Peaks

Once a density peak reaches the maximal refinement level, we call the peak “col-

lapsed”. After a peak has collapsed, we insert an artificial pressure support to prevent

the peak from collapsing further, which can cause numerical instabilities. This is the

same method as used in M01 where an effective pressure term, the greater of the ther-

mal pressure and KGρ2
b∆x

2
f/µ, is used for each cell. ρb is the baryon density in the

cell, ∆xf is the cell width at the finest refinement level, K is a dimensionless constant

set to be 100, and µ = 1.22mH is the mean mass per particle. We also set the cooling

rate to be zero in cells that have reached a number density of n ≥ 10000 cm−3 to

provide an additional check against excessive collapse. These methods result in un-

physical behavior of the cores of the haloes, however, they enable us to maintain the

collapsed state while evolving the simulation further in time as we are not interested

in the dynamical properties of the individual peaks. Visual inspection shows excessive
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fragmentation and disk formation but these effects are not physical and should not

be taken as representative behavior of halos during this epoch.

2.3 Results

2.3.1 Halo Sample

Our analysis is focused on the final dataset at z = 10, as the dependence of the dense

gas fraction on redshift is negligible because of the time-independent LW background

and static metal enrichment. Moreover, as we are interested in the collapsed state

of individual haloes, it is important to first construct a catalogue of haloes. For this

purpose, we use the Rockstar halo finder [107] to identify all the haloes that consists

of at least 100 dark matter particles. From this list, we further limit our analysis to

massive haloes that have more than 1000 dark matter particles and filter out any

subhaloes that Rockstar may have identified. This results in a catalogue of ∼ 2000

halos for each simulation. In Figure 2.1, we show the representative cumulative halo

number density from the run with zero metallicity and no LW background compared

with analytic result. The analytic halo mass function was generated with the form

dn

dM
= f(σ)

ρ̄m
M

d ln σ−1

dM
(2.1)

where ρ̄m is the mean density, σ is the root mean squared variance of the linear density

field, and f(σ) is the weighted distribution of first crossing of random walks. This

functional form is taken from Tinker et al. [108] calculated using the python software

package Rabacus [109]. As our DM mass resolution is around 100 M�, we begin to

see deviation from the analytic result below 105M�. Likewise, we see deviation at the

high mass end above 106.5M� because of the lack of statistics for halos at this mass

range in our relatively small box.
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Figure 2.1: The cumulative number density of halos as a function of halo mass. The
blue line shows the data taken from our fiducial run without a LW background or
metals, which is meant to be representative sample as the distribution of halo masses
does not significantly change between the various runs. The green line shows an
analytic calculation for comparison. Above, we show the mass distribution of halos
in the same run. At high mass ranges, there are very few halos.
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2.3.2 Collapse Mass

We consider the collapse masses of the halos at a single snapshot at the end of each

of the simulations at z = 10. For each halo, we check if any cell within a sphere

of its virial radius has a number density greater than 330 cm−3, the value assumed

in M01. If so, we consider a halo collapsed as such a halo has met the condition

for star formation. Once we check the collapsed state of each halo, we can sort

the halos by their virial mass and identify the minimum mass of collapse for each

simulation. This method is an approximation for the exact mass at which a halo may

collapse. Because our analysis is done at a single snapshot, halos that we consider to

be collapsed may have collapsed at an earlier time. This time delay, however, should

only significantly affect the recorded collapse masses at the higher mass range for M

> 106.5M� because we do not have enough halos to statistically obtain an accurate

value for the minimum collapse mass. A more accurate method of calculating the

exact collapse masses would involve generating merger trees for each of the halos we

identify as collapsed at z = 10, and then tracing the most massive progenitors for each

halo backwards in time to identify the initial point in which it collapsed. However,

any further precision in the minimum collapse mass gained from this method would

be far less than the statistical uncertainty at the higher mass range. Therefore, the

minimum collapse mass reported at high mass ranges M > 106.5M� should be taken

as an upper limit to the actual value.

Effects of Self-Shielding

Self-shielding was initially neglected in the analysis in M01 because initial estimates

of the magnitude of the effect by Draine and Bertoldi [34] were significantly under-

estimated. Figure 2.2 shows the minimum collapse mass as a function of the LW

background strength for both self-shielding-enabled and no-self-shielding cases. Di-

rect comparisons with M01 show some differences, which we attribute to using the
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Figure 2.2: Plot of minimum collapse mass as a function of J21. The blue line shows
the base case which includes the effects of self-shielding, while the green line does not.
For J21 = 0, there is no difference as there is no background flux for self-shielding to
take effect against. In the case of J21 = 10 without self-shielding, there is a placeholder
marker at the mass of the most massive halo as no halos have collapsed by the end
of simulation at z = 10.
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updated H2 cooling rates from Glover and Abel [102]. In the no-shielding case, the

LW background efficiently dissociates the H2 and prevents cooling at even the highest

mass haloes. This is in contrast with M01, who reported efficient cooling at even a

weak LW flux of FLW = 10−22 erg s−1 cm−2 Hz−1.

For the run with J21 = 1 without self-shielding, we find that only the most massive

halo in the box has collapsed, whose total mass is 2.3 x 107 M�. However, as previously

noted, in each of the runs, the halo likely collapsed at an earlier time and therefore

with a lower mass. But because there is only one halo that collapsed at these LW

background strengths, this collapse mass should be taken as an upper limit. In the

case of J21 = 10, we find that none of the halos have collapsed by z = 10.

Once self-shielding is included, we see evidence of cooling at lower masses. The

shielding prescription prevents the LW background from penetrating through the

dense regions where H2 can efficiently form unhindered. This results in cooling in

our sample of haloes even at a relatively high LW background strength of J21 = 1.

Once at J21 = 10, however, we see that self-shielding is not sufficient to prevent the

dissociation of H2 and once again only the most massive halo has collapsed.

At all LW background strengths, the differences in the minimum collapse mass are

over an order of magnitude. The drastic differences in the minimum collapses masses

for the two cases strongly suggest that self-shielding is an important effect and should

always be included in any serious study of star formation at high-redshifts.

With Respect to Photodissociating Background

Next, we consider the effect solely due to the change in the strength of LW background

for constant values of metallicities while including the effects of self-shielding. Figure

2.3 shows the minimum collapse mass as a function of J21 for different metallicities.

As expected, with no LW background, we observe efficient cooling even at masses

down to M = 2 × 105 M� consistent with M01 and Yoshida et al. [20]. Increased
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Figure 2.3: Plot of minimum collapse mass as a function of J21 for different metal-
licities. There are minimal differences for any given LW background strength for
metalliticities Z ≤ 10−3. However, for Z = 10−2 Z�, we see very efficient cooling
independent of the LW background strength.

LW background strengths result in an increase in the minimum collapse mass as well.

With increased flux, the photons can effectively dissociate H2 to prevent collapse. This

trend is also consistent with the results of M01. At the strongest LW background

strengths with J21 = 10, only the most massive halo is able to collapse. In one

particular case with Z = 10−3 Z�, we find none of the halos have collapsed by the

end of the simulation at z = 10. The only deviation from this general trend can be

found in the Z = 10−2 Z� line where the minimum collapse mass does not change as

a function of the LW background strength. This will be discussed in more detail in

the following subsection.
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Figure 2.4: Plot minimum collapse mass as a function of metallicity. The triangle
marker in the J21 = 10 is a placeholder marker to prevent displaying a misleading
trend as no halo has collapsed in this particular run. All the lines show a largely
flat trend, or perhaps small cooling effect from the metal cooling at the smallest
metallicities. At Z = 10−2 Z�, we find efficiently cooled halos around M = 105 M�
independent of the LW background strength.

With Respect to Metallicity

We now consider the effect of varying the metallicity for constant values of LW flux.

Figure 2.4 shows the same minimum collapse mass data points from Figure 2.3 rear-

ranged as a function of metallicity for constant LW background strengths. Qualita-

tively, we find a small downward trend from the metal-free case to the Z = 10−3 Z�

case, which is most clearly shown in the J21 = 1, indicating that metal cooling is

prompting collapses in slightly smaller halos. In the other lines, the trend is largely

flat, presumably due to the smaller sizes of the halos that do not have a high enough
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virial temperature to invoke efficient metal cooling. For J21 = 10, there is only one

halo collapsed in the metal-free and Z = 10−4 Z� cases, which is the most mas-

sive halo. Although no halo has collapsed in the Z = 10−3 Z� run, we inserted a

placeholder datapoint to show a more accurate trendline. However, a pronounced

difference can be seen for all simulations with Z = 10−2 Z�, where the minimum mass

drops significantly down to M = 105 M�, even further below the case with no LW

background. This implies that between Z = 10−2 Z� and Z = 10−3 Z�, there exists a

critical metallicity, above which the metal-cooling becomes sufficiently efficient to be

the dominant cooling mechanism over H2 cooling, regardless of the LW background

strength.

Distribution of Collapsed Halos

Figure 2.5 shows the fraction of collapsed halos to total halos as a function of halo

mass. The starting point for each line indicates the minimum collapse masses shown

in Figures 2.2, 2.3, 2.4, while any halo with the masses above the end point of each of

the lines is collapsed. The distribution of collapsed halos is largely unchanged between

different values of metallicity and LW flux. Based on the starting and end points,

we can see that any halo that is an order of magnitude greater than the minimum

collapse mass for a given metallicity and LW background pair is guaranteed to be

collapsed.

2.4 Discussion and Conclusion

2.4.1 Neglected Processes

While we have explored a relatively large parameter space of the key variables in

the cooling process, there are a few effects that we have not considered. As we have

neglected any star formation or feedback, our simulations assume a fully neutral in-

terstellar medium. Once ionized by a stellar source, the thermodynamics of the gas
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mass.
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should be altered. In particular, we showed the efficient cooling of halos with M

= 105 M� can occur when the metallicity exceeds some critical value between Z =

10−3 Z� and Z = 10−2 Z�. This exact scenario is unlikely to occur in a cosmological

context, as any mini-halo must have been enriched through multiple star formation

cycles to reach such high metallicities and thus the surrounding region must be ion-

ized. However, there exist rare clumps which survive both the ionization front from

stars and the subsequent supernovae that are strongly enriched. Our results can

provide a basis to explain the collapse dynamics of such regions.

While previous results demonstrated marginal differences in star formation with

the inclusion of relative streaming velocities of baryonic and non-baryonic matter [110,

111, 112], more recent results tell a different story. Ahn [113] relaxed the condition

of limiting the large-scale density environment to be that of the global mean density

to find significant differences in the resulting power spectrum. Such differences can

result in major changes in the dynamics of mini-halos in the early universe, which

has yet to be fully explored.

Moreover, the artificial pressure support that we introduced results in unphysical

disk formation in many of the mini-halos. Consequently, the dynamics of mergers

between these mini-halos may also be affected, such as the dynamical heating resulting

from the mergers. However, given the large number of halos at the lower mass ranges,

we expect these effects to only manifest in the mass distributions of the collapsed

halos, if at all.

2.4.2 Conclusion

We present an extension of M01 by determining the minimum collapse mass of metal-

enriched mini-halos for various LW background strengths and metallicities. We re-

iterate the importance of incorporating an approximate model of self-shielding [35]

in studies that attempt to resolve the formation of Pop III stars as the minimum
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mass for collapse can be affected by more than an order of magnitude. Our results

also show that a critical metallicity exists between Z = 10−3 Z� and Z = 10−2 Z�

where metal-cooling becomes the dominant cooling mechanism enabling mini-halos

to collapse at a mass as low as M = 105 M� independent of the strength of the LW

flux.
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CHAPTER 3

AMPLIFICATION OF MAGNETIC FIELDS IN A PRIMORDIAL H II

REGION AND SUPERNOVA

Magnetic fields are often invoked in discussions of star formation as they can poten-

tially play a significant role at multiple stages. Majority of these studies are done in

idealized or isolated simulation work that does not fully capture the realistic environ-

ment of structure formation. Continuing on theme of understanding the dynamics

of mini-halos, we explore the growth of magnetic fields in a single mini-halo starting

from cosmological initial conditions through the formation of a primordial H ii region

as well the expansion of the remnant formed following a single supernova. This work

has been published in the Monthly Notices of the Royal Astronomical Society [114].

This work was co-authored by John Wise who provided the initial idea and some of

the analysis techniques.

3.1 Introduction

Magnetic fields are everywhere in the present day universe [see 85, for a review]. Var-

ious observations reveal the presence of magnetic fields at scales ranging from planets

all the way to the voids between large cosmological structures [66, 67]. Moreover,

measurements of galaxies show corresponding field strengths of up to 10s of µG [68].

Such fields may originate from the amplification of primordial fields in the early

universe. These primordial fields may have been generated during the electroweak

and QCD phase transitions [74]. Furthermore, Wagstaff et al. [115] demonstrated

that sufficient turbulent conditions are realized in the radiation dominated universe

prior to the onset of structure formation to produce field strengths on the order of

Brms
0 ∼ (10−6 − 10−3) nG on scales of 0.1 - 100 pc, sufficient to explain the magnetic
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field strengths found in the intergalatic medium (IGM) [116]. Alternatively, Naoz

and Narayan [117] found that primordial magnetic fields are expected to be gener-

ated through the Biermann battery mechanism [78] during linear structure formation

through vorticity produced by scale-dependent temperature fluctuations.

On the other hand, the study of Population III star formation has been largely

carried out without the addition of such magnetic fields. Earlier, these stars were

thought to have been massive M? ∼ 100 M� with suppressed fragmentation largely

forming in isolation [21]. However, follow up studies with longer integration times at

higher densities resulted in fragmentation, suggesting that Population III binaries are

possible [29, 111, 118]. In particular, metal-free gravitational collapses in cosmologi-

cal simulations have been followed until the formation of a protostellar shock [119],

capturing the dynamics and fragmentation of the surrounding accretion disk [31]. In

the very early stages of disk fragmentation, the majority of protostars have masses

M? < 1 M� and some might be ejected from the central system [31, 120]. The final

stellar masses are ultimately determined when the protostellar radiation quenches the

accretion flow. Most recently, Hirano et al. [41] followed the formation and evolution

of 1540 Pop III star-forming clouds, extracted from a cosmological simulation with

a far-ultraviolet radiation background, with axisymmetric radiation hydrodynamic

simulations. They found two distinct populations of metal-free stars, those formed in

relative isolation versus those formed under the influence of H2-dissociating external

feedback. They found an initial mass function (IMF) with two peaks at M? ' 250 M�

and 25 M� for the former population and a single peak at M? ' 400 M� for the lat-

ter population, demonstrating that metal-free star formation could indeed favor a

top-heavy IMF.

As these stars begin to emit ionizing photons, they photoionize and photoheat

their host halos and surrounding medium, creating a cosmological H ii region. The

particular radiative characteristics of Pop III stars were explored by Tumlinson and
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Shull [121] and Schaerer [122] using evolutionary synthesis models. The latter results

were then taken to study the resulting H ii regions in one-dimensional hydrodynamics

calculations [37, 38] showing that they span a typical radius of 1–3 kpc. Follow up

three-dimensional studies with radiative transfer largely confirmed these results [39,

40]. At the end of its lifetime, the star dies in a Type II core collapse supernova for

11 . M?/M� . 40 [42], or in a pair-instability supernova for 140 . M?/M� . 260

[43]. These forms of stellar feedback were incorporated in numerical studies performed

by Kitayama and Yoshida [44], Greif et al. [45], and Whalen et al. [46] tracing the near

complete evacuation of baryons from the host halo. In particular, [45] characterized

the behavior of the SN remnant in a numerical study following the four classical

distinct sequential phases: free expansion, Sedov-Taylor, pressure-driven snowplow,

and momentum-conserving snowplow [123]. Mixing of heavy elements expelled from

the first stars can lead to fragmentation and low-mass metal-enriched star formation

in neighboring minihalos and direct halo descendants, hosting the first galaxies [36,

124, 49].

Both analytic and numerical studies have demonstrated the amplification of a

seed magnetic field by small scale dynamos during the collapse of primordial halos

[125, 126]. In the absence of turbulence or other dynamo action, gravitational collapse

can enhance the magnetic field strength as B ∝ ρ2/3 assuming the field is frozen to

the fluid. Building upon this analytical work, Sur et al. [88] inserted a seed field of

Brms ∼ 1 nG into an isolated Bonnor-Ebert sphere, resulting in fields ∼ 10−3 G at

a baryon density n ∼ 1014 cm−3. Such fields may become dynamically important in

subsequent star formation by potentially reducing fragmentation of molecular clouds

[30]. Even without a seed field, Xu et al. [79] showed that significant fields can be

formed through the Biermann battery effects. They found a peak magnetic field

strength of 1 nG at a baryon density n ∼ 1010 cm−3 at the center of the star forming

halo at z ' 18. These fields, resulting from the Biermann term, are never strong

47



enough to become dynamically important, but rather set a lower bound on fields that

would exist during Pop III star formation.

Furthermore, Federrath et al. [127] simulated the collapse of an isothermal Bonnor-

Ebert sphere with a seed magnetic field and turbulent velocity fields showing that a

minimum resolution of 32 elements per Jeans length is required to properly resolve

dynamo action. As they increased the resolution up to 128 elements, they found

significantly increased amplification rates with no signs of convergence. Turk et al.

[128] then performed a full numerical calculation from cosmological initial conditions

demonstrating similar results. They also found that a minimal resolution of 64 ele-

ments per Jeans length is required fully capture vortical motions that can enhance

magnetic fields. These results imply the need for a much more stringent resolution

requirement to fully explore Pop III star formation.

Thus far, these works have all mainly focused on the generation and evolution

of magnetic fields during the primordial collapse, but they all stop short of the for-

mation of the star. In this paper, we present calculations following the evolution of

magnetic fields throughout the formation, main sequence, and aftermath of a Pop III

star starting from cosmological initial conditions. We follow the magnetic amplifica-

tion rates as the supernova remnant expands into the surrounding medium. In the

following section, we describe the specifics of the numerical simulations. In Section

3.3, we present the amplification of the initial background magnetic field. We then

discuss the missing physics that may potential influence our results in Section 3.4.

Finally, we summarize our results in Section 3.5.

3.2 Methods

3.2.1 Simulation Setup

The simulations described subsequently have all been conducted with the enzo simu-

lation code v2.4 [90]. enzo is an adaptive mesh refinement (AMR) code that uses an
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N-body adaptive particle-mesh solver to follow dark matter dynamics. We utilize a

nine-species (H i, H ii, He i, He ii, He iii, e−, H2, H+
2 , H−) non-equilibrium chemistry

model [18] using the H2 cooling rates from Glover and Abel [102]. To solve the ideal

magneto-hydrodynamical (MHD) equations, we use the Godunov MUSCL (mono-

tone upstream-centered schemes for conservation laws) algorithm with the Dedner

hyperbolic cleaning method to enforce ∇ ·B = 0 [129, 130]. We also use the Harten-

Lax-van-Leer (HLL) Riemann solver with piecewise linear reconstruction for accurate

shock capturing.

We initialized the simulation at z = 150 with a 250h−1 comoving kpc box. The

initial conditions were generated with the MUSIC initial condition generator [104]

using second-order Lagrangian perturbation theory and the Planck 2013 best fit cos-

mological parameters [131]: ΩM = 0.3175, ΩΛ = 0.6825, Ωb = 0.049, h = 0.6711,

σ8 = 0.8344, and ns = 0.9624 with the symbols having their typical definitions.

First, we ran a dark matter only simulation with a 2563 top grid with 8 levels of

adaptive mesh refinement to z = 12. Next, we used the Rockstar halo finder [107]

to identify the most massive halo with a virial mass Mvir = 2.3× 106M� and radius

rvir = 316 pc. We then calculate the initial Lagrangian volume centered on this halo

that is a sphere with a radius of 4rvir. The zoom-in initial conditions have two nested

grids around this Lagrangian volume at z = 150. The effective dark matter mass

resolution is 1.6 M� in the high-resolution region, which is bounded by a cuboid with

dimensions of (72.3× 70.3× 76.2) comoving kpc3 resolved by (296× 288× 312) cells.

We only allow the mesh to be refined in the exact Lagrangian volume of this sphere

up to a maximum level of 15, corresponding to a maximal comoving spatial resolution

of 0.04 pc.

The cells are flagged for refinement if one or more of the following criteria are

met: (i) relative baryon overdensity of 3, (ii) relative DM overdensity of 3, and (iii)

local Jeans length [103]. For the first criteria, we employ super-Lagrangian refinement,
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where the cells are refined more aggressively, i.e. a lower density refinement threshold,

at higher levels1. We also require the local Jeans length to be covered by at least 64

cells in each direction in order to fully resolve the vortical motions that can amplify

the magnetic field as demonstrated by Federrath et al. [127] and Turk et al. [128].

Furthermore, a time-dependent Lyman-Warner optically thin radiation background

modeled in Wise et al. [132] is utilized in the simulation, which is based on the semi-

analytical model of Wise and Abel [133]. This model considers the LW contributions

of both Pop III stars and galaxies and is valid at higher redshifts (z ≥ 12) before

metal-enriched stars dominate the cosmic emissivity. We use the functional form of

the background evolution in Wise et al. [97],

log10 J21(z) = A+Bz + Cz2 +Dz3 + Ez4, (3.1)

where (A, B, C, D, E) = (-2.567, 0.4562, -0.02680, 5.882 × 10−4, -5.056 × 10−6), and

J21 is the specific intensity in units of 10−21 erg s−1 cm−2 Hz−1 sr−1. Modulating this

background, we include a prescription for radiative self-shielding taken from Wolcott-

Green et al. [35] which reduces LW flux to supress H2 cooling in haloes.

Each simulation was evolved until the most massive halo undergoes catastrophic

cooling and collapse, and we momentarily stop the simulation at a refinement level of

15. We outputted data every 24.2 Myrs until this point. Once the halo collapsed, we

then allow for star formation and feedback and wrote data every 105 yr until the end

of the simulation, 2 Myr after the supernova. By writing data at a relatively small

time interval, we are able to trace the evolution of the regions around the star and

ensuing supernova. The runs all end around z = 14.4. We ran the simulations on the

Comet supercomputer at the San Diego Supercomputing Center using 12 nodes with

12 cores per node for each simulation. The runs took approximately 10 days each for

1This feature is triggered with the enzo parameter MinimumMassForRefinementLevelExponent
= –0.2 [see 90, for more details].
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a total computational time of 100,000 core hours. All of the analysis were performed

with the analysis and visualization toolkit yt [134].

3.2.2 Initial Magnetic Field

We conducted a total of three runs. Each run used the same initial conditions de-

scribed previously. At the start of each simulation, we seed the box with a initial

uniform background field of a given field strength purely in the z-direction. The

seed fields are given in proper magnetic field strengths that are proportional to the

square of the scale factor. The only difference between the runs is the initial seed

magnetic field strength. Observations of high-energy photons from blazars put the

lower limit of a background field at 10−15 G [135] while the upper limit on the field

strength produced by primordial phase transitions is at 10−20 G [74]. Globally, the

most recent constraint from CMB measurements puts the upper limit for the comov-

ing field strength at scale of 1 Mpc at 4.4 nG [84]. Given the large uncertainty in the

background field strength, we chose three different values. In the base case run, H2R,

there is no seed magnetic field. In the runs H2R.B1 and H2R.B2, a proper seed field

of 10−10 G and 10−14 G, respectively, was placed at the start. These correspond to

comoving fields strengths of 4.4× 10−15 G and 4.4× 10−19 G.

3.2.3 Star Formation and Feedback

We only consider Pop III star formation in this work, and here we briefly describe the

prescription for the formation and subsequent feedback mechanisms. We represent a

single Pop III star using a single star particle [40, 97]. A particle is formed in a cell

when the following criteria have been met.

1. An overdensity of 1× 106 (∼ 6000 cm−3 at z = 15).

2. A converging gas flow (∇ · vgas < 0).
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Figure 3.1: Mass-weighted projections of density, temperature, magnetic energy, and
vorticity squared centered around the most massive halo at the end of the B1 run.
Each projection has a width of 10 kpc. The H ii region produced by the star is most
prominently displayed in the temperature plot.

3. A molecular hydrogen fraction fH2 > 5× 10−4.

Given the uncertainty about the initial mass function of Pop III stars, we chose a fixed

mass of 40 M� as the stellar mass. Then after the formation criteria are met, an equal

mass of gas is then removed from the computation grid in a sphere containing twice

the stellar mass and is centered on the particle. This particle is then initialized with

the mass-weighted velocity of gas contained in the sphere. Moreover, we manually

limited the simulation to prevent the formation of any subsequent stars after the first

star was formed to minimize the computational stress of following multiple halos since

our focus was only on the most massive halo.
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After the formation, the star particle becomes a point source of H2-dissociating,

hydrogen- and helium-ionizing radiation. For the dissocating radiation, we approx-

imate the radiation intensity as a 1/r2 field that is centered at the star particle,

providing additional intensity on top of the background (Equation 3.1). The ion-

izing radiation field is evolved with adaptive ray tracing based on the HEALPix

framework and is coupled self-consistently to the hydrodynamics [136]. As the rays

propagate outwards from the source, they are adaptively split into child rays when

the solid angle associated with the parent ray θ = 4π/(12 × 4L), where L is the

HEALpix level, is larger than 20% the cell area. We use a discretized spectrum for

the radiation with the following luminosities and photon energies: for H2 dissociating

radiation, Lγ = 2.90× 1049 s−1; for hydrogen ionizing photons, Lγ = 2.47× 1049 s−1

and Eph = 28 eV, which is appropriate for the near-constant 105 K surface tem-

peratures of Pop III stars; we also have helium singly and doubly ionizing radiation

with lumonisities and photon energies of Lγ = 1.32 × 1049 s−1, Eph = 30 eV and

Lγ = 8.80× 1046 s−1, Eph = 58 eV, respectively [122]. At the end of its lifetime of 3.7

Myr, the star particle dies as a Type II supernova with a standard explosion energy

of 1051 erg. The blast wave produced is modeled by injecting the thermal energy

and ejecta mass into a sphere with a 5 pc radius. This injection is smoothed over the

surface for numerical stability and is well resolved at initialization showing agreement

with the Sedov-Taylor solution [36].

3.3 Results

We focus on the evolution of the magnetic field strength and morphology through the

formation, main sequence, and supernova of a Pop III star, paying special attention

to the amplification of primordial magnetic fields as the gas is processed by stellar

radiation and the supernova. First, we visually inspect any morphological differences

between the three simulations with varying initial magnetic field strengths. We then
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quantify any field amplification that is caused by small dynamo actions beyond the

expected compressional amplification.

3.3.1 Visual inspection

The most massive halo has a mass of 6.0×105 M� at the time of collapse at z = 14.66.

A Pop III star forms near the center of the halo and begins to emit radiation heating

up the entire region. Figure 3.1 shows projections of the entire H ii region at the end

of main sequence spanning a 10 kpc box. All three simulations have nearly identical

characteristics at this time. The temperature projection clearly shows the extent of

the region that is photoheated by the star. The H ii region grows in a typical fashion,

breaking out of the host halo within ∼300 kyr. The ionization front leaves behind

dense neutral clumps that create shadows and form cometary structures similar to

ones observed in the Galaxy (also see Figure 3.2). By the end of main sequence, the

H ii region has grown to 2 proper kpc, enveloped by a partially ionized and heated

medium, resulting from the higher energy radiation that has a longer mean free path

and can penetrate farther into the neutral IGM. The shielding from the nearby halos

and filaments result in the butterfly shape of the region as seen in previous works

[39, 40]. We also show the projections of magnetic energy where uB = B2/8π and

the square of the fluid vorticity ω2 where ω = ∇ × v. The growth of the magnetic

field strength is directly related to the vortical fluid motion, and its evolution can be

expressed as

∂B

∂t
+∇× (B× v) = 0, (3.2)

in the ideal MHD case, i.e. when electrical resistivity is negligible. The vorticity

evolution equation can be derived from the Navier-Stokes equation and can be written

as

Dω

Dt
= −ω∇ · v − ∇P ×∇ρ

ρ2
+ ν∇2ω, (3.3)
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Figure 3.2: Density-weighted projections of density, temperature, magnetic field, and
vorticity squared for the B1 run at three different times. Each projection has a field
of view of 700 pc. The top panels show projections immediately following the birth
of the star. The middle panels show the death of the star, and then 2 Myr after
the supernova explosion at the bottom. Significant magnetic energy and vorticity
is generated in the supernova remnant. The vorticity projection shows some grid
artifacts as a result of the rendering which does not reflect the data.
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Figure 3.4: Phase plots of ρ− T right before (left) and after (middle) the supernova,
and at the end of the run (right). The top row shows the H2R.B1 run weighted by
mass and the bottom row shows the same run weighted by magnetic field strength.
The peak, representing the supernova, shows signs of amplification when compared
with regions at the same density at lower temperatures.

where ν is the visocity, and we only consider non-viscous fluids (ν = 0) in our sim-

ulations. Here D/Dt is the fluid derivative, P is the pressure, and ρ is the density.

The first term describes the stretching and compression of vortical motions, and the

second term comes from non-barotropic flows, P 6= P (ρ), which occur at or near

shock fronts. In the lower panels of Figure 3.1, the presence of vortical structures

as shown in the regions of high vorticity imply increased turbulent energy. Because

magnetic field amplification is directly related to the vorticity and thus compression,

regions of significant magnetic energy and vorticity are co-located with the regions of

high density where gravitational collapse has compressed the field lines.

Figure 3.2 depicts the same projected quantities of the H2R.B1 run at the birth

of the star, the death of the star, and 2 Myr after the supernova with a field of view

of 700 pc. In the first row, we see the high density region near the center of the halo
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where star is formed. This is also the point of peak vorticity in the entire run, arising

from the compression of the gas (also see Figure 3.5). The emitted radiation then

evacuates the surrounding gas greatly reducing the baryon density before the death

of the star. The ionization fronts also photo-evaporate the gaseous envelopes of some

of the nearby halos and filaments, compressing them and producing thin filaments in

their shadows. The star lives for about 3.7 million years after which it dies in the

form of a Type II supernova.

In the second row of Figure 3.2, there is a clearly delineated shell representing the

supernova shock that propagates outwards. The shock mechanically compresses the

gas producing regions of enhanced magnetic energy. By the end of the simulations,

the supernova has completely disrupted the halo as shown in the bottom row panels.

In its wake, the shock leaves behind little knots carrying metals which will eventually

dissipate into the ISM. Although the host halo has been completely disrupted, there

remains a smaller halo located below the main halo that manages to survive the

irradiation and blastwave. This particular halo, now enriched by the metals carried

out by the supernova, is likely to be a candidate for hosting second generation star

formation. Smith et al. [49] found that the core of a comparable mini-halo following

the supernova of a nearby Pop III star is enriched to ∼ 2× 10−5 Z�.

3.3.2 Comparison of radially averaged quantities

In general, the morphology of the halos is not significantly affected by the presence of

the magnetic field. To make a quantitative comparison, we calculate mass-weighted

radial profiles, shown in Figure 3.3, within a sphere of 1 kpc radius centered on the

Pop III star in all three runs at the end of the simulation, about 2 Myr after the

supernova. The density and temperature profiles, in particular, show little deviation

between the three runs. They also show the approximate location of the supernova

shock which at this point is a radius of ∼ 150 pc. At this point, the remnant is well
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into the snowplow phase, in line with evolution of the SN remnant as shown in Greif

et al. [45]. The shock has completely blown out the gas reducing the density within

the shock radius to ρ = 10−28 g cm−3. Furthermore, the reverse shock heats the gas

interior to the remnant initially to ∼ 108 K and subsequently cools through PdV

work to T = 5× 105 K. As the shock front expands outwards, the dense shell is able

to efficiently cool below 104 K. The temperature and density gradients between shell

and the hot interior drive turbulence resulting in magnetic field amplification.

However, notable differences can be seen in the vorticity profile where the dif-

ference between the H2R and the H2R.B1 run is more than an order of magnitude

inside of the shock radius. For the H2R.B2, the vorticity squared sits between the

two runs at ω2 ' 6 × 10−29 s−2. This difference in vorticity is reflected in the mag-

netic field strength profiles. The magnetic field strength profile of H2R.B2 has been

scaled up by a factor of 104, corresponding to the ratio of initial field strengths, for

better comparison with the H2R.B1 run. Recall that the initial seed field strength in

the H2R.B1 run was 10−10 G, 4 orders of magnitude greater than that of H2R.B2.

Within the shock radius, the H2R.B2 shows a greater average field strength reflect-

ing the greater vorticity. At this time, the peak magnitudes, which are co-located

with the shock radius, are 6.3 × 10−9 G for H2R.B1 and 4.2 × 10−13 G for H2R.B2.

Furthermore, comparing the values shows that the magnitude of the amplification

is independent of the initial field strength value because the magnetic field is still

dynamically unimportant.

Figure 3.4 shows the ρ − T diagram of the H2R.B1 run immediately before and

after the supernova and 2 Myr after the supernova. The prominent peak in the second

column represents the newly formed supernova remnant. As the magnetic field does

not affect the dynamics, we do not see any significant differences in the three runs.

The bottom row shows the same plot as the top row but shows the mass-weighted

average magnetic field strength in each cell rather than the mass. In the bottom
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squared centered around the peak vorticity point of the B1 run shortly before the
birth of the star. From top to bottom, the widths are 1kpc, 100 pc, and 10 pc. The
magnetic fields are highly compressed at this time resulting in amplification.
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middle plot, immediately following the supernova, there is evidence of amplification

in the remnant when comparing the field strength at similar densities in the unaffected

regions with T ≤ 104 K. This peak evolves to lower temperatures as the remnant

expands and dissipates into the surrounding medium. The bottom right plot shows

the ρ− T diagram at the end of the magnetized run. The magnetic field within the

blastwave and the accompanying shell has been amplified, as seen by the enhanced

field strengths below the adiabatic relation in ρ− T phase space and in the hot and

diffuse phase. This additional magnetic energy is not apparent in the bulk of the

mass-weighted phase space because of the limited mass affected by the blastwave.

3.3.3 Amplification of Magnetic Field

Maximum Magnetic Energies

To characterize the significance of the magnetic field in this system, we calculated

several key values at the point of peak vorticity. Figure 3.5 shows projections of

magnetic field and vorticity centered around the point of peak vorticity from the

entire simulation. This particular point was found to be at the point of collapse

immediately preceding the insertion of the star particle. The peak density at this

time is 3.8× 10−18 g cm−3 with a magnetic field strength of 3.2× 10−5 G, consistent

with the results from Turk et al. [29] and Latif et al. [137]. The first is the plasma

β ≡ (nkT )/(B2/8π) which consistently remains β � 1 throughout the simulation.

At the time of collapse, minimum, mean, and max values are 3.0, 4.1 × 106, and

1.7 × 1011, respectively. This implies that the gas dynamics dominate the behavior

while magnetic fields have minimal influence. Next, we calculated the Alfvénic mach

number MA ≡ V/vA where V is the characteristic velocity and vA = B/
√

4πρ is the

Alfvén speed within a sphere of radius r = 300 pc right after the formation of the star.

MA remained consistently MA � 1, typically having values ∼1000 outside the shock

dropping to ∼ 50 within a pc around the star. At the time of collapse, minimum,
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mean, and max values are 2.5, 1400, and 5.4 × 105. These values also indicate that

the magnetic term is not dynamically important.

In Figure 3.6, we show the magnetic field strength scaled by ρ2/3 as a function

of density weighted by mass at the time of the halo’s collapse. The blue line shows

the mean with the shaded region indicating the variance. We see a small deviation

from the expected flat relation indicating some dynamo action. Comparing the two

relations shows that the field strength to density relation is steeper than 2/3 but not

as high as 0.89 as reported by Turk et al. [29]. This is likely caused by the shorter

integration time because we form the star at 1 × 106 cm−3, far below 1013 cm−3

from Turk et al. [29]. This is also consistent with the results from Sur et al. [88] which

showed little deviation in the amplification from the ρ2/3 relation at a density of 10−18

g cm−3.

Distribution

In the case of a uniform spherical collapse for a magnetic field frozen into the gas,

B ∝ ρα where α = 2/3. This relation approximates the amplification due to the com-

pression of magnetic field lines as density increases. Thus, we define the amplification

factor to be the ratio

Amplification Factor =
uBρ

4/3

uB0ρ
4/3
0

(3.4)

where uB0 is the initial seed field energy and ρ0 = Ωbρc(z = 150) is the cosmic mean

baryon density. Any value of the amplification factor > 1 implies some amplifica-

tion beyond the compressional scaling which can be attributed to turbulent dynamo

effects.

The phase diagram in Figure 3.7 shows this amplification factor as a function of

the density weighted by the mass within a sphere of radius 250 pc in run H2R.B1. The

blastwave radius is approximately 100 pc at this time. Within this volume, nearly

all regions have had its field amplified beyond the expected density scaling, implying
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Figure 3.7: 2D mass-weighted histogram of the amplification factor and density at
the end of the H2R.B1. Above each respective axes shows the projection to a 1D
histogram. The amplification factor shows a clear Gaussian distribution with a mean
around 120.

dynamo action is efficient during the blast wave propagation, especially during its

momentum-conserving phase. To the left of the phase diagram is a histogram showing

the distribution of the amplification factor weighted by mass. The amplification factor

is log normally distributed with a weighted mean of 102.08 and standard deviation of

100.75. This is equivalent to a mean field strength amplification by a factor of ∼120.

Figure 3.8 shows a slice of the density and amplification factor at this time showing

the distribution of the amplified magnetic field. The relative low densities in the cen-

tral region evacuated by the supernova leads to high amplification factors. However,

the highest magnetic field strengths are located in the shock front, where the gas has
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Figure 3.8: Slice of density (left) and amplification factor (right) centered around the
stellar remnant at the end of the H2R.B1 run. Each slice spans 700 pc. Relatively
strong magnetic field strengths exist inside the shell having been significantly ampli-
fied in the wake of the forward and reverse shocks. The strongest magnetic fields on
the order of a few nG exist in the shell.

been compressed and vortical motions have begun to grow leading to amplification

factors on the order of 100.

Time Evolution

In Figure 3.9, we show the distribution of the proper field strengths and amplification

factor in a sphere of approximately 37.5 kpc centered at the most massive halo which

approximately captures the entire Lagrangian volume of the collapsing large-scale

environment. The total gas mass in this volume is approximately 3× 108 M�, which

can be used to estimate the gas mass above each multiple of the standard deviation.

We plot these quantities as a function of lookback time from the end of the simulation.
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Only the top half of the distribution of field strengths is shown through filled in colors

while the very bottom line shows the mass-weighted median. The median proper field

strength decreases as the scale factor increases since B ∝ a2.

In the top panel showing the magnetic field strength, there are two prominent

peaks. The first peak is at the gravitational collapse of the halo immediately prior to

the formation of the Pop III star when the density reaches a peak at 3.8×10−18 g cm−3.

As the H ii region grows and evacuates the gas from the halo, the magnetic field

strength decreases along with the gas density. The radial forcing and lack of vortical

motions in the ionization front suppresses any field amplification. The second peak

follows the death of the star when the supernova produces a shock that compresses the

field as it propagates outwards. The first peak hits a maximum at 10−4 G indicating

an amplification of over six orders of magnitude. This is consistent with the results of

Sur et al. [88] who also saw similar levels of amplification. Only a small fraction of the

magnetic field in the total volume manages to reach this high level of amplification.

While the shock is able to significantly compress the gas, the highest densities are

reached at the birth of the star.

The amplification factor evolution differentiates itself from the magnetic field

strength evolution with only a single significant peak following the death of the star.

To start, the amplification factor shows a sharp increase around 100 Myr before the

end of the simulation. This can be attributed to the virialization of the halo gener-

ating some turbulence [138]. Following this period, there is a slight steady increase

in the amplification factor as the halo collapses. King and Coles [125] demonstrated

that for an anisotropic collapse, α may fluctuate as high as 0.9, where recall B ∝ ρα.

As the initial peak in the magnetic field evolution was due to compressional effects,

which is removed by our scaling of the amplification factor, we observe no significant

peak at this point. The most significant amplification occurs following the supernova

where the instabilities formed as the supernova cools results in increased turbulence.
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This turbulent field will then induce stretching and twisting of the magnetic fields

through dynamo action resulting in amplification.

In order to get the magnetic field amplification at larger scales, we calculated

the magnetic energy spectrum taking a 1 kpc box with a resolution of 0.71 proper

pc (AMR level 7) centered about the star particle at the end of the simulation, 2

Myr after the supernova. We found the peak of this spectra to be k ∼ 50kpc−1,

corresponding with a coherence length of 20 pc using the definition in Seifried et al.

[139]. At the end of the run, the radius of the blast wave is around 100 pc. This ratio

between the blast wave radius and the coherence length is in agreement with Seifried

et al.

We also show the time evolution of magnetic, kinetic, and thermal energies in Fig.

3.10. The quantities are the total energies within a sphere of radius 200 pc, which

is approximately the virial radius of the host halo, centered around the star particle.

The evolution of the magnetic energy shows the two peaks previously described in

Fig. 3.9. In the bottom panel, we plot the ratio of the magnetic energy to both the

kinetic energy and total energy. At the time of collapse, when the magnetic energy

is at a global maximum, we see that the kinetic energy dominates the magnetic term

by 5 orders of magnitude. This shows that the magnetic term is never dynamically

significant consistent with our earlier conclusions.

3.4 Discussion

Our simulations show that magnetic fields are amplified mostly strongly via self-

consistent turbulence generated by mechanical compression and the initial field strength

plays little role in the subsequent level of amplification.

In our simulations, we have required that the Jeans length be resolved by 64 cells

along each dimension. As Turk et al. [128] and Sur et al. [88] has shown, although 64

cells is sufficient to resolve the action of the dynamos, it may not be enough to fully
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Figure 3.9: Magnetic field strength (top) and amplification factor (bottom) as a func-
tion of time until the end of the simulation in the B1 run. We define the amplification
factor to be the ratio uB/ρ

4/3 normalized by uB0/ρ
4/3
0 where uB0 is the initial seed field

energy and ρ0 is the cosmic mean baryon density. uB is defined as B2/8π. Only the
+σ distributions are shown. The field strength shows two peaks, once at the birth of
the star and once following the supernova while the amplification factor shows only
one peak.
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resolve the amplification of the fields as a result of the dynamos. Our simulations do

not show any signs of magnetic saturation, and thus equipartition, and our results can

thus be taken as a lower limit to the field strength. However, due to computational

constraints, we were unable to increase the resolution preventing any declarative

statement about convergence.

In our simulations, we have only considered the ideal MHD limit in which the flux-

freezing approximation holds. The only dissipation observed is a numerical artifact

resulting from the finite resolution of the simulation. We do not consider the effects

of Ohmic resistivity, ambipolar diffusion, nor magnetic reconnection. Although the

calculated values of plasma β � 1 and MA � 1 validate the approximation, our need

for higher resolution may require taking non-ideal effects into account as a result. In

particular, the effects due to magnetic reconnection in the vicinity of the star may

produce significant deviations in the amplification process.

Missing physics that may have dynamical effects include streaming velocities and

stellar magnetic fields. First, the relative velocity differences of dark matter and bary-

onic gas [110] results in a delayed collapse of halos which may have important dynam-

ical impact [e.g. 111, 112, 140]. Namely, the increased velocity in the gas may produce

a greater shearing effect which would increase the turbulence, invoking greater am-

plification of the magnetic fields.

Secondly, stars can themselves generate powerful magnetic fields. A fraction of

galactic O-type stars with masses up to 60 M� have been observed to have surface

magnetic field strengths of ∼ 100 G [141]. Moreover, magnetic fields in protostellar

disks can be sufficiently amplified leading to field strengths capable of driving jets

[142]. These fields are coherent at scales up to 1000 AU with a corresponding jet

luminosity of ∼ 106 L�. Furthermore, the magnetic fields produced in the form of

supernova feedback can also play a significant role [143]. While these fields may be

significantly below our current effective computational resolution, future simulations
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where higher resolutions are demanded may need to include these effects.

3.5 Conclusions

In this paper, we present the amplification of the magnetic field in the H ii region

throughout the lifetime of a single Pop III star and its supernova. We simulated

three different runs including a base case without any magnetic fields, and two others

with an uniform initial background proper field strength of 10−10 G and 10−14 G. In

each simulation, a single Pop III star of 40 M� forms in the most massive halo at

z ∼ 15 in the central metal-free molecular cloud and subsequently emits radiation

until its death in the form of a supernova injecting 1051 erg into its surroundings.

The simulation ends after about 2 Myr after the death of the star as the shockwave

continues to propagate outwards. We tracked the evolution of the magnetic field

throughout each of the simulations and found the following main results.

1. Magnetic fields are amplified primarily through compression during the gravita-

tional collapse prior to star formation and scales as ρ2/3 as expected from ideal

collapse scenarios.

2. We find no significant amplification during the growth of the H ii region as the

star evacuates the gas from its host halo and photoevaporates nearby halos and

filaments.

3. Once the supernova remnant begins to cool and fragment, the resulting turbu-

lent velocity in and near the the supernova shell further amplify the magnetic

field through small-scale dynamo action. Here the field strengths have a log-

normal distribution with an average amplification factor of 120. Within the

shell, the field strength is on the order of a few nG at a number of 1 cm−3.

4. The amplitude of the amplification is largely independent of the initial seed field

strength. The peak level of amplification occurs in the interior of the blastwave,
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where the resulting field strength is six orders of magnitude greater than the

amplification levels expected in a spherical collapse.

Our simulations show the potential for dynamically important magnetic fields to

be produced in the first galaxies. With stronger background field strengths closer

to observed limits and the inclusion of fields generated by stars, the amplification

mechanisms described in this paper can produce dynamically important fields. Our

work elucidates the magnetic field “initial conditions” in the protogalactic gas that

will collapse in descendant halos, forming low-mass metal-enriched galaxies. Future

calculations will follow its evolution to study the impact of magnetic fields on the tran-

sition from Population III stars to the first generations of galaxies, possibly affecting

the nature of star formation in such objects.
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CHAPTER 4

EXTENDING SEMI-NUMERIC REIONISATION MODELS TO THE

FIRST STARS AND GALAXIES

Our simulation work from the previous chapters have been limited computationally

for us to study the long-term impact of this primordial structures on the Epoch of

Reionization. The large dynamical range required to accurately treat the physics

of this process necessarily leads to compromises in accuracy. In this chapter, we

extend a popular semi-numeric model to study the Epoch of Reionization and the

effect of mini-halos on the progression of reionization. This method enables us to

quickly generate large volumes and the time evolution of such volumes. This work

has been submitted for publication in the Monthly Notices of the Royal Astronomical

Society. This work was co-authored by John Wise who provided the initial idea to

use 21cmFAST.

4.1 Introduction

Models of the Epoch of Reionisation (EoR) have been extensively improved over

the years as tighter observational constraints are provided. This particular phase

transition of the universe can provide a number of insights into the details of the

beginnings of structure formation [144].

The biggest current observational constraint in modeling EoR comes from the

Thomson scattering optical depth, τe, to the cosmic microwave background (CMB).

Improvements to the measurement have progressively driven down this particular

value, where the latest results estimate τe = 0.0596 ± 0.0089 corresponding to a red-

shift of instantaneous reionsation of z = 8.0+0.9
−1.1 [58]. Next, the transmission fraction

of quasar light through the intergalactic medium shows that the EoR ended by z ∼
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6 [61, 60], though there are some recent observations implying that it may not have

been completed until z ∼ 5.6 [145, 146]. Interestingly, it was previously expected

that quasars alone could not produce the needed number of ionising photons to com-

plete reionisation as earlier constraints from Wilkinson Microwave Anisotropy Probe

(WMAP) introduced a need for high-redshift sources [e.g. 147, 148]. However, with

the updated Planck results requiring a later start to reionisation, quasars have come

back in recent models, in some of which they are the only sources [149].

Theoretical efforts in the modeling EoR has ranged from relative simple analytic

models [150, 151, 152] all the way to high-resolution numerical simulations with var-

ious detailed star and galaxy formation prescriptions that include self-consistent ray

tracing [153, 154]. Reionisation necessitates a large number of approaches due to the

wide range of scales involved in the process. Moreover, a full numerical solution would

require parsec scale resolution to correctly follow sources and feedback in, at mini-

mum, a 100 comoving Mpc3 box to get convergent histories [155]. Such simulations

would be an enormous computational cost.

Semi-numeric models are thus an attractive alternative. Such models can accu-

rately generate full three-dimensional density, velocity, and ionisation fields without

the need to follow the underlying physics [156, 157, 158]. These models make the fol-

lowing fundamental assumption that overdense regions drive the ionisation process.

With this assumption, one asserts that if the number of available photons exceeds

the number of baryons in a cell, the cell must be ionised. This simple model pro-

vides a powerful tool that compares favorably with high-resolution radiative transfer

numerical simulations [159].

Within the numerous models, there have been many efforts to understand the

role of the various potential sources in the reionisation process. Typical models only

consider galaxies hosted by atomic-cooling halos above Tvir ∼ 104 K. However, an

often neglected source is mini-halos with M < 108 M� containing massive, metal-

74



free Pop III stars. Pop III stars have been studied extensively over the past decade

detailing their formation [21, 29, 111], their spectral properties [121, 122], and their

final fates [42, 43, 96]. Of more interest to the EoR, these massive stars also produce

extended H ii regions in their immediate vicinity spanning 1-3 kpc [38, 37, 39, 40].

These H ii regions will then grow out further as mini-halos merge together to form

the first galaxies providing additional ionising flux. Ahn et al. [160] used a sub-grid

model to populate mini-halos in a 114 Mpc h−1 simulation and showed their addition

had a significant effect in determining the onset of reionisation. Furthermore, Wise

et al. [161] calculated the escape fraction of ionising photons in a 1 comoving Mpc

radiation hydrodynamics simulation showing that mini-halos can contribute up to 30

percent of the ionising photon budget.

Given the extensive volume of data available from large volume high-resolution

simulations at high redshifts, we can take simulated physical properties of ionising

sources, such as the photon escape fraction and star formation efficiency. In this

work, we take these calculated properties to create a new parameterization extending

existing semi-numeric models to include the effects of mini-halos.

In the immediately following Section 4.2, we introduce our new parameterization.

In Section 4.3, we compare the ionisation histories produced from our model and

show the resulting bubble size distributions. Finally, in section 4.4, we provide a

short discussion and summarize our results.

4.2 Methods

4.2.1 Simulating Reionisation

Our treatment involves use of the semi-numerical reionisation simulation code 21cm-

FAST [162]. In this code, the ionisation field is generated following an excursion-set
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approach [156]. Namely, a cell is considered to be ionised when

fcoll(x,Mmin, R, z) ≥ ζ−1 (4.1)

where ζ is the ionisation efficiency, and fcoll is the fraction of collapsed mass inside a

region of size R in halos whose mass is greater than Mmin [157, 158]. This value R is

iterated from Rmax, which is typically taken to be the maximum horizon of ioinising

photons, or the effective mean free path down to the length of a single cell. These

three parameters then fully determine the ionisation state at any given redshift. Our

simulations are run on a box with a 100 comoving Mpc side length using 20483 cells

down-sampled to 10243 cells to generate the ionisation field. The main contribution

in this work is our detailed treatment of the parameter ζ which is outlined in the

following sections.

4.2.2 Calculating the Ionising Efficiency

In previous treatments, ζ typically represents a homogeneous ionising efficiency fac-

tor for all star-forming galaxies in any environment. A typical parameterization is

provided in Greig and Mesinger [163] as

ζ = 30

(
fesc

0.2

)(
f∗

0.03

)(
fb

Ωb/Ωm

)(
Nγ/b

4000

)(
1.5

1 + nrec

)
(4.2)

where fesc is the fraction of ionising photons escaping into the intergalactic medium

(IGM), f∗ is the fraction of galactic gas in stars, fb is the baryon fraction inside haloes

hosting galaxies in units of the cosmic baryon fraction, Nγ/b is the number of ionising

photons per baryon in stars, and nrec is the average number of recombinations per

baryon in the IGM. These values are all assumed to be mass- and redshift-independent

to produce a single ζ value. We take this model to be the Fiducial case and compare

our new parameterization against it in Sec 4.3.
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The main improvement of this work is to model ζ as a function of the host halo

mass at a given redshift. This class of parameterizations has been initially explored

by Furlanetto et al. [164] but they only considered a simple power-law function set-

ting ζ ∼ mα for various values of α. In our work, we consider a more extensive

dependence on the host halo mass that is better physically motivated. This allows

us to incorporate the distribution of ionising efficiencies at different masses as well

including the contribution of mini-halos to the photon budget for reionisation.

In particular, ζ has been parameterized as follows.

ζ(Mvir) =


ζ0,3 fesc f∗ N3,γ/b ft∗ Mmin ≤Mvir < Mfilter

ζ0,2 fesc(Mh) f∗(Mh) focc(Mh) N2,γ/b Mvir ≥Mfilter

(4.3)

where N3,γ/b is Nγ/b for Pop III stars, ft∗ is the fractional star-formation timescale

for Pop III stars, focc is the fraction of halos containing star-forming galaxies, and

N2,γ/b is Nγ/b for galaxies. Lastly, ζ0,3 and ζ0,2 are constants calibrated to the desired

reionisation history. In this work, we take these values to be 2 and 3 respectively.

Furthermore, the domain of ζ is characterized by two different masses. First is

Mmin, which is the minimum mass of mini-halos that is required to collapse to form

Pop III stars. This mass is determined by the strength of the soft H2 photodissociating

Lyman-Werner (LW) flux by

Mmin(FLW) = 1.25 x 105 + 8.7 x 105

(
FLW

10−21

)0.47

(4.4)

taken from Machacek et al. [33], where FLW is the strength of the LW background in

units of erg s−1 cm−2 Hz−1. The magnitude of this flux as a function of redshift is
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modeled as

log J21(z) = A+Bz + Cz2 +Dz3 + Ez4 (4.5)

where (A,B,C,D,E) = (-2.567, 0.4562, -0.02680, 5.882 x 10−4, -5.056 x 10−6) taken

from Wise et al. [132]. Here J21 is the specific intensity in units of erg s−1 cm−2 Hz−1

sr−1. In this fit, the strength of the background peaks at z = 13.765 with a value

of J21 = 0.97 after which galaxies would dominate the contribution. As the actual

minimum mass for collapse would be dependent on the exact environment of the

halos, we set the LW background to be this maximum value of this fit at subsequent

redshifts. At these redshifts, the exact value has minimal impact on the resulting

reionisation history because galaxies provide the bulk of the photon budget.

The other relevant characteristic mass is the filtering mass, Mfilter, which is the

characteristic mass scale below which reionisation suppresses gas fraction in low-mass

halos [165] given by

M
2/3
filter =

3

a

∫ a

0

da′M
2/3
J (a′)

[
1−

(
a′

a

)1/2
]

(4.6)

where MJ is the Jeans mass and a is the cosmological scale factor. We calculated

Mfilter from the simulations of Wise et al. [132] and created a polynomial fit as a

function of redshift for computational ease given by

log Mfilter(z) = A+Bz + Cz2 +Dz3 (4.7)

where (A,B,C,D) = (9.065, -0.15611, 0.0063, -1.9577 x 10−4). This Mfilter is then used

as the mass cut-off above which galaxy formation occurs at a given redshift. From

Mmin to Mfilter, we assume Pop III stars are the dominant contributors, while for

Mvir > Mfilter, galaxies dominate. For the rest of this work, we define mini-halos as

halos with masses in the range Mmin ≤Mvir < Mfilter whose dominant ionising source
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Figure 4.1: Characteristic masses as a function of redshift. The minimum mass, Mmin

(black, solid), is the mass above which ionising sources exist. The filtering mass, Mfilter

(black, dashed), is the threshold between Pop III mini-halos and galaxies. That is,
any mass range between these two lines will be assumed to be a mini-halo, while any
mass range above the dashed line will host galaxies. For comparison, we also show
commonly assumed minimum masses corresponding to a virial temperature Tvir = 104

K (green), Tvir = 105 K (blue), and circular velocity, Vc = 30 km/s (red).

is Pop III stars.

These characteristic masses are shown in Fig 4.1. When Mfilter > Mmin, which

happens at z > 24, we set ζ to be 0 as no galaxies can be formed. We can see

that our adopted Mfilter is much less than any of the typically adopted minimum

mass values at z > 15, greatly increasing the number of available galaxies to produce

ionising photons.

79



Mini-halos

For mini-halos (Mmin ≤ Mvir < Mfilter), the photon contribution is assumed to be

entirely from Pop III stars. Given the large uncertainty and lack of observational

constraints for the relevant parameters for the first stars, we take each value in the

parameterization to be mass- and redshift-independent in the relevant ranges for Pop

III stars. Instead, we consider the possible range of values in Sec. 4.2.2.

First, fesc is the parameter with the largest uncertainty [39], which we adopt a

value of 0.6. We set f∗ to be a constant at 100 M�/106 M� which is a typical ratio

found in cosmological simulations of Pop III star formation [118, 41]. The number

of photons per baryon, N3,γ/b is largely determined by the surface temperature of

the star. We take this value to be 50,000 [122]. Lastly, we introduce a term ft∗,

the fractional star-formation timescale defined as the average lifetime of a Pop III

star over the recovery time, to account for the fact that Pop III formation events

are bursty. Pop III stars can very efficiently photoevaporate their surroundings and

their supernova completely disrupt the host halo [45, 114]. This results in a significant

delay until the subsequent generation of star formation [50]. We take this value to be

5 Myr/30 Myr.

Galaxies

For halos with Mh > Mfilter, galaxies dominate the photon budget following the death

of Pop III stars. For this range of masses, we take a number of fits from cosmological

galaxy simulations to calculate ζ.
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The photon escape fraction, fesc, is modeled using the piece-wise fit below

log fesc(Mvir) =


−0.51− 0.039 log Mvir log Mvir ≥ 8.5

2.669− 0.413 log Mvir 7 ≤ log Mvir < 8.5

−0.222 log Mvir < 7

(4.8)

taken from Kimm and Cen [166] who used high-resolution zoom-in simulations to

construct the fit. This fit takes a nominal value of fesc = 0.6 for halos below log

Mvir/M� < 7, matching our assumed value for mini-halos, with a steep decrease for

7 < log Mvir/M� < 8.5 and then flattens off for log Mvir/M� > 8.5 to fesc ∼ 0.1.

This is consistent with other simulations showing high escape fractions for low mass

galaxies [167, 168].

To determine the stellar mass fraction, we use a combination of fits taken from

O’Shea et al. [169] and Behroozi et al. [170]. From the former, valid for the range

log Mvir/M� < 10, we have

f∗(Mvir) = 1.26 x 10−3

(
Mvir

108 M�

)0.74

(4.9)

fitted using data from the Renaissance Simulations that focus on galaxy formation

during the EoR. These simulations have found that galaxy properties during EoR are

largely independent of redshift [171]. From the latter, valid for the range log Mvir ≥ 10,

we have

log f∗(Mvir, z = 6) = log (εM1) + f

(
log

(
Mvir

M1

))
− f(0)− log Mvir (4.10)

where ε, M1, and the function f are heavily involved parameters.The exact details of

this parameterization can be found in Behroozi et al. [170]. We take this fit at only z
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Figure 4.2: Stellar mass fraction as a function of host halo mass. The lower mass end
power law is taken from O’Shea et al. [169] while the high mass end is taken from
Behroozi et al. [170] at z = 6. We approximate the stellar mass fraction in the central
mass ranges to be equivalent to the peaks of both ends to maintain continuity.

= 6 and apply for all redshifts to maintain continuity for all mass ranges. Figure 4.2

shows the combined fits of f∗ at various redshifts. In order to remove discontinuities

in combining the two fits, we extrapolate Eq. 4.9 until f∗ = 0.022, or equal to the

maximum of Eq. 4.10 at z = 6. Then we assume a constant f∗ in the range between

the two fits to connect them continuously. This imposed ceiling is largely consistent

with the results from high-redshift numerical simulations which show a maximum

stellar fraction [172, 166, 173, 174].

One component in the ζ for galaxies that is not in the ζ for mini-halos is the halo

occupation fraction, focc. This parameter takes into account for the fact that not

every halo has a stellar population that provides ionising photons. Thus, it dampens
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the contribution from young low-mass halos which have bursty star formation periods.

This relation is given by

focc(Mh) =

[
1 +

(
2α/3 − 1

)(Mh

Mc

)−α]−3/α

(4.11)

taken from O’Shea et al. [169] based on the form from Okamoto et al. [175] where

α = 1.5 and Mc = 6.0 x 107 M�. This function exponentially drops off below 1

for masses below the characteristic mass, Mc. Above this mass, the fraction quickly

approaches unity implying every halo contains ionising sources. Finally, we take

N2,γ/b to be a constant 4000 photons per baryon [176].

Putting it Together

Figure 4.3 shows ζ as a function of halo mass for a number of redshifts. The biggest

contribution in the range 9 ≤ log Mvir/M� < 12 is due to the peaking of f∗. These

galaxies have large f∗ while still having fesc > 0.1 and thus provide the largest frac-

tion of ionising photons. For log Mvir/M� > 12, star formation becomes inefficient

represented by a steep decline in ζ. At the lower mass end below log Mvir/M� < 8,

the star forming halo occupation fraction greatly depresses ζ. Because we assume

redshift-independent star formation parameters for ζ above the filtering mass, we see

the values of ζ overlapping.

Given these distributions, we take a weighted average to get a single ζ value for a

given redshift. First, we take the halo mass function (HMF) at a given redshift. We

use the following form

dn

dM
= f(σ)

ρ̄m
M

d ln σ−1

dM
(4.12)

taken from Tinker et al. [108] calculated using the python software package Rabacus

[109]. We then normalize the HMF at Mmin(z) to be 1. Now we can define nfrac to be

the fraction of halos at a mass range between M and M+dm by taking the difference
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Figure 4.3: Ionising efficiency, ζ, as a function of host halo mass at various redshifts.
For masses Mmin ≤ Mvir < Mfilter, we assume Pop III stars are the dominant ioini-
sation sources and assume a constant ζ. Both Mmin and Mfilter evolve with redshift
and the latter acts a moving threshold between mini-halos and galaxies. For galaxies,
we take the distribution of ionising efficiencies as a function of the halo mass to be
independent of redshift. The values of ζ all overlap above Mfilter as we assume a
redshift-independent f∗ for galaxies.
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of the normalized HMF at those values.

We can then take the integrated average of ζ weighted by halo number density

fraction and halo mass as

ζ(z) =
1

1 + nrec

∫Mmax

Mmin
ζ(Mh) nfrac Mh dm∫Mmax

Mmin
nfrac Mh dm

(4.13)

where nfrac is the fraction of halos within a mass range between Mh and Mh + dm.

We take Mmax = 1015 M� to consider the full range of halo masses. This integral

is similar to that introduced in Furlanetto et al. [164], where they took ζ to have a

power-law dependence on the host halo mass instead.

Furthermore, we introduce a mean recombination number per baryon as

nrec = C(z) tH,0 αB n̄H,0 (1 + z)3/2 (4.14)

where tH,0 is the Hubble time at the present day, n̄H,0 is the mean hydrogen number

density at the present day, and αB is the case B recombination coefficient at 104 K

which is taken as 2.6 x 10−13cm3 s−1. As our treatment of the recombination number

is a global value that only depends on redshift, and not on the halo mass, we can

safely evaluate it outside the integral. We also include the clumping factor given by

C(z) =


1 + exp(−0.28z + 3.50) z ≥ 10

3.2 z < 10

(4.15)

taken from Pawlik et al. [177] to account for the boosted recombination rates in

a clumpy IGM. An increased recombination rate requires an increased number of

photons to keep the IGM reionised which has the effect of dampening ζ overall. This is

in contrast to the method of Sobacchi and Mesinger [178] where the recombination rate

was calculated in each cell to produce the time-integrated number of recombinations

per baryon to adjust ζ. We find, however, that both treatments result in a similar
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Table 4.1: Coefficients for fits of ζ
Model A B C D E
Mean 30.27 -6.293 0.506 -1.801 x 10−2 -2.366 x 10−4

Lo 14.74 -3.088 0.248 -8.902 x 10−3 -1.189 x 10−4

Hi 51.71 -1.061 0.852 -2.995 x 10−2 -3.820 x 10−4

effect.

Finally, we can then calculate a ζ for any given redshift. Figure 4.4 shows the

calculated ζ as a function of redshift. The line shows a polynomial fit to ζ with the

functional form given by

ζ(z) = A+Bz2 + Cz2 +Dz3 + Ez4 (4.16)

where the coefficients are shown in Table 4.1. At high redshifts, ζ remains mostly

constant. This is because at these redshifts, the vast majority of ionising sources are

mini-halos whose ionising efficiencies we have taken to be a constant value significantly

lower than that of galaxies. These smaller objects form smaller H ii regions and thus

cover only a small volume fraction of the total universe. In contrast, the general trend

shows an exponential increase in the ionising efficiency at lower redshifts. Recall that

the ionising efficiencies peak in the range 9.5 < log Mvir/M� < 12. At these lower

redshifts, the number of halos available to produce ionising photons at these mass

ranges continually increases as halos merge to form larger structures which results

in the boosted ζ. These galaxies with large f∗ provide the bulk of ionising photon

budget necessary for reionisation. We stress that Eq. 4.16 is only valid for the range

5 < z < 25 as all the parameters have been calibrated from high-redshift simulations.

Quantifying the Uncertainties

In order to consider the full range of values given the large uncertainties in certain

parameters, we calculated the upper and lower limits to ζ as a function of redshift.
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Figure 4.4: Integrated ionising efficiency ζ as a function of redshift. The dots show
the calculated ζ values at each redshift while the line shows a 4th-order polynomial
fit. See Eq. 4.16 for the fit parameters. At high-z, the contribution from mini-halos
dominates and suppresses ζ. At low-z, massive galaxies begin to dominate and greatly
increases the ionising efficiency.
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Table 4.2: Varied parameters and their values
Parameter Mean Value Lo Value Hi Value
Pop III fesc 0.6 0.05 0.9

ft∗
5 Myr
30 Myr

5 Myr
100 Myr

5 Myr
10 Myr

Galaxy fesc fesc (Mh) fesc (Mh) x 0.7 fesc (Mh) x 1.3
Galaxy f∗ f∗(Mh, z) f∗(Mh, z) x 0.7 f∗(Mh, z) x 1.3

Table 4.2 shows the list of parameters that we have chosen to vary along with the

range. The greatest variances are in fesc reported by Wise et al. [161] and Kimm

and Cen [166]. For ft∗, we assume the same lifetime for Pop III stars and only vary

the recovery times as reported by Muratov et al. [179] and Jeon et al. [50]. For the

galactic f∗, we take the average variances found in Behroozi et al. [170]. All other

parameters not listed in the table remain as their original definitions.

These values are used to produce the ionisation fields for the upper, lower, and

standard values of ζ. They provide a first order approximation to the possible dis-

tribution of ζ values. For both the lower and upper limits, we take a polynomial fit

of the same form as Eq. 4.16 to calculate ζ. The coefficients for the resulting fits are

found in Table 4.1.

Figure 4.5 shows the corresponding variances in the ζ function. The blue shaded

region shows the resulting variance due to Pop III parameters while the red region

shows it for galaxies. The effective combined range of values are represented by the

grey area. At high redshifts (i.e. z > 15), the spread is entirely blue indicating only

the mini-halos contribute significantly to the photon budget. As structure forma-

tion continues, the galactic contribution dominates after z < 10. This is expected

as the Pop III star formation rate plateaus as their own formation results in the

metal-enrichment of their surroundings suppressing further Pop III formation [97,

180] . Instead, these mini-halos merge together to assemble galaxies with greater star

formation rates and larger collapsed structures. Once reionisation is fully underway,

the galactic contribution increases exponentially which also increases the spread of
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Figure 4.5: Integrated ionising efficiency ζ as a function of redshift including the
spread using both low and high limit values for the various parameters in Eq. 4.3.
The blue and red shaded regions show the spread of ζ due to Pop III and galaxies
respectively, while the grey shows the total spread due to the combined variance. The
lines also show the polynomial fit to each of the Lo (blue), Hi (red), and Mean (black)
values of ζ.

uncertainties at lower redshifts [181].

4.3 Results

We run a total of four simulations from the same cosmological initial conditions at

z = 300 each with varying ζ . The high resolution density grid is sampled by 20483

cells which is smoothed over a 10243 grid to produce the ionisation field. We produce

50 snapshots equally spaced in time starting from z = 25 down to z = 6 to produce

the entire ionisation history. The fiducial case takes the three parameter model from
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Greig and Mesinger [163] consisting of Tmin
vir , the minimum virial temperature hosting

ionising sources, ζ, the ionisation efficiency, and Rmfp, the maximum horizon for

ionising photons which defines the maximum filtering scale. From their results, we

take the best fit values for each of the parameters which are Tmin
vir = 105 K, ζ = 50,

and Rmfp = 20 Mpc.

In comparison with the fiducial case, we run a total of three simulations with

varying values of ζ as a function of redshift. In each of the runs, rather than taking

the minimum virial temperature as a proxy for the minimum mass of ionising halos,

we use the minimum mass calculated by Eq. 4.4. The three runs are then the Mean,

Hi, and Lo cases which represent the base fit to ζ and its upper and lower variance

values with their fits given in Table 4.1. We keep the same maximum horizon as

Rmfp = 20 Mpc as Sobacchi and Mesinger [178] and Greig and Mesinger [163] have

shown that the resulting ionisation fields are largely insensitive to the choice.

4.3.1 Reionisation Histories

Figure 4.6 shows the ionisation histories calculated from each of the four runs. We

define the start of reionisation, zstart, to be when the ionised fraction, x(z), is at 10%.

Similarly, the end, zend, is when x(z) = 99%. The blue line shows the fiducial case

which does not quite end up fully ionised at the end at z = 6.0, while zstart = 9.8. The

green line shows the Mean case which also has zstart = 9.8 and zend = 6.0. The fiducial

model has a much steeper rise at zstart while the Mean case shows a gradual rise in

the ionised fraction. In the former, as only halos with Tvir > 105 K are considered,

there is a more abrupt increase in the ionised fraction as these halos do not exist in

large numbers until lower redshifts. In the latter, as mini-halos begin forming early

on at high redshifts, there is a gradual increase in the ionised fraction as Pop III stars

continually add on to the photon budget. Moreover, since the value of ζ is relatively

sensitive to Pop III parameters at z ∼ 10, mini-halos must play a role in determining
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the exact starting point of reionisation. Once reionisation is underway, the Mean case

shows a steeper increase in the ionised fraction resulting in a slightly earlier end to the

EoR. This is mostly due to the steep incline in ζ at these low redshifts corresponding

to the presence of bigger halos with large f∗ emitting a significant amount of ionising

photons.

The shaded region in green shows the spread in histories where the edges represent

the Hi and Lo value cases. The Hi value case has zstart = 11 and zend = 6.9 while the

Lo value case has zstart = 8.8 and only reaches x = 0.45 at z = 6. Given the constraint

that the universe is fully ionised by z = 6, much of the lower spread in histories is

effectively ruled out. This broadly constrains our parameters, in particular fesc and

f∗ for galactic populations. However, even considering just the Hi case, there is a

broad range of zstart as the large mini-halo population quickly drives up the ionised

fraction to the threshold fairly early on.

We also calculate the optical depth due to Thomson scattering for each of the

runs by

τe =

∫ ∞
0

dz
c(1 + z)2

H(z)
x(z)σTn̄H(1 + ηY/4X) (4.17)

where H(z) is the Hubble parameter, x(z) is the ionised fraction of hydrogen, σT is the

Thomson cross-section, and X and Y = 1−X are the hydrogen and helium number

fractions respectively. We also assume that helium is singly ionised (η = 1) at z > 3

and doubly ionised at later times (η = 2).

The fiducial case produces τe = 0.0567 while the Mean case has τe = 0.0569+0.0121
−0.0125,

where the Hi and Lo case τe are represented as uncertainties. Taking the estimated

value from the Planck 2016 intermediate results of τe = 0.0596 ± 0.0089 [59], we see

that our value is still well within the margin of error albeit lower.
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Figure 4.6: Ionisation histories of all four runs. The blue line represents the fiducial
run using the three parameter model from Greig and Mesinger [163]. The green line
shows the Mean value run using our new parameterization. The shaded region shows
the spread in ionisation histories using our Lo and Hi value parameterizations.
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4.3.2 Bubble Size Distributions

In order to further characterize the differences between our models, we generate

ionised bubble size distributions. These distributions tell us about the morphology

of reionisation as the H ii regions grow and expand. We use the same methodology

found in Mesinger and Furlanetto [157] to maintain consistency in generating the dis-

tributions. First, we smooth out the ionisation field and remove the partial ionisation

values by setting a threshold. We choose this threshold to be 0.5. We then choose an

ionised cell and a direction vector at random and measure the distance to the nearest

neutral cell. We repeat the process 107 times to get a distribution. This method has

been shown to be a good approximation to getting the true distributions [182].

Figure 4.7 shows the generated bubble size distributions for the Mean and Fiducial

cases at different ionisation fractions. At any given ionisation fraction, the peak in

the distribution function, or characteristic size, of the Mean model is at a lower

value compared to the Fiducial case. This can be understood as due to the presence

of mini-halos which make up a larger fraction of ionised cells in our model driving

the peak down. These mini-halos have small ionising photon luminosities, which

would correspond to smaller H ii regions. We also see a broadening of the peaks

as x increases, which can be attributed to the heightened number of mergers of the

bubbles. There are a larger number of small bubbles that merge with the larger

bubbles that artificially increase the size. At high x, the characteristic size quickly

approaches the size of the box in both cases as expected.

Recently Paranjape and Choudhury [183] showed that a correction to remove the

correlation in the random walk introduced by the smoothing filter can result in a

significant increase in the characteristic sizes. We expect a similar impact should the

correction be included.
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Figure 4.7: Bubble size distributions at x ≈ 0.1 (blue), x ≈ 0.25 (red), x ≈ 0.5
(black) . The Mean case is represented with solid lines and the Fiducial with dashed
lines. The dip and peak at R ∼ 2 Mpc and ∼ 8 Mpc are artifacts from the numerical
bubble size distribution calculation.
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4.4 Discussion and Summary

The greatest strength in our parameterization is that the assumed values are those

constrained by the latest numerical simulations including full range of physical process

including radiative and supernova feedback effects. This enables us to consider the

full range of mass scales rather than assuming a single ionising efficiency for all halos.

However, one large downside to this particular semi-numerical treatise is that the

method is still fundamentally a single parameter model that only depends on the

collapse mass fraction. There is no consideration of the environment that the sources

live in, whether it is in a ionised region or not, and we take a relatively crude average

over all halos in different environments to get a single efficiency coefficient. This

may result in an improper weighting of ζ. This is a problem that is well treated

in contrast in full radiation hydrodynamics simulations, which is now starting to be

computationally feasible at large scales [184].

A number of instruments will be coming online within the next several years to

help put tighter constraints on models of reionisation. 21 cm interferometry performed

by the Square Kilometer Array (SKA)1 and the Hydrogen Epoch of Reionization

Array (HERA)2 will produce accurate mapping of the morphology of the reionisation

process. Moreover, the James Webb Space Telescope should extend the current limits

to the luminosity function of galaxies constraining parameters such as the stellar mass

fraction. With these observations, we expect that our models can be utilized to study

the onset of reionisation.

In this work, we extended the semi-numeric simulation code 21cmFAST to in-

clude a redshift-dependent minimum mass threshold for ionising source containing

halos, Mmin, as well as a mass- and redshift-dependent ionising efficiency, ζ. Our

model produces reionisation histories that have subtle differences in comparison with

1http://www.skatelescope.org/
2http://reionization.org
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the default model implemented in 21cmFAST while still being broadly consistent

with the constraints from Planck. Moreover, we find significant differences in the

bubble size distribution due to the presence of mini-halos which drive the character-

istic scales down. We find that our model broadly constrains the minimum ionising

efficiency contribution from galaxies while mini-halos only contribute near the begin-

ning of reionisation, having no significant impact after z = 10.
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CHAPTER 5

EFFICIENT IONIZATION IN MULTI-SCALE COSMOLOGICAL

SIMULATIONS OF THE EPOCH OF REIONIZATION

5.1 Introduction

The Epoch of Reionization (EoR) is the final phase transition in the universe. As

galaxies form during hierarchical structure formation, they host stars who emit starlight

that ionizes the plasma pervading the universe in a highly non-linear fashion [For a re-

view, see 10]. Thus, this particular process is an intimate coupling between light emit-

ted by stellar sources and the large-scale intercluster medium. The massive dynamic

range required to fully understand the process has made it a challenging problem in

cosmology.

Initial attempts to understand the EoR were entirely analytic in nature [185,

150]. These works considered the ionization fraction of the universe as a continuous

function balanced by the ionization and recombination rates into a single differential

equation. These works were further extended to include halo mass dependence to

consider the inhomogeneity of the sources [151, 152] but such extensions naturally

led to the development of more computing-heavy methods. In a much more direct

way, full hydrodynamical simulations were employed to resolve individual sources of

photon emission in large boxes [153, 154, 184]. In order to get proper convergent

histories of ionization, a minimum of 100 comoving Mpc3 box is required [155], and

stellar sources are properly treated on parsec scales. This wide range of required

scales has significantly hindered the use of cosmological simulations in the execution

of fully consistent models.

A natural compromise between the two ends resulted in the development of semi-
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numeric models. With the basic assumption that over-dense regions are the primary

drivers of reionization, the ionization rate can be replaced by a single excursion set

condition [156]. This can be understood as stating that if the number of photons

available to ionize the region exceeds the number of baryons, the region must be

ionized. This was initially implemented for complete three-dimensional realizations of

cosmological initial conditions by Mesinger and Furlanetto [157] and Zahn et al. [158].

These models have the advantage of quickly being able to generate ioinization fields for

large boxes at any given redshift in parallel, independent of one another. In particular,

the code 21cmFAST [162] is an implementation that lends itself to be simply extended

beyond the the single excursion set criterion. Sobacchi and Mesinger [178] considered

the effect of inhomogeneous recombinations on the topology by calculating the self-

consistent recombination rates at each given cell. Greig and Mesinger [163] used a

Monte-Carlo scheme on top of the code to generate a best-fit range of parameters

given the various constraints we have for the EoR. Koh and Wise [186] then extended

the code to include the mass-dependence in the ionization efficiency parameter to

explore the role of mini-halos and first dwarf galaxies on reionization. These works

demonstrate 21cmFAST to be a capable tool to study the EoR.

In this work, we propose a novel method to tie in the results generated from semi-

numeric codes in tandem with full hydrodynamical calculations to study the EoR.

In the immediately following Section 5.2, we will describe the proposed method in

detail along with the proof-of-concept plan. Then in Section 5.3, we will conclude by

describing the potential applications of the proposed method.

5.2 Methods

The goal here is to generate ionization fields separately using a semi-numeric technique

and then take the fields and couple them into a traditional hydro solver without

turning on ray tracing. This should, with appropriate sampling of the ionization field
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Figure 5.1: Overview schematic of the implementation of efficient ionization.

evolution, give largely consistent overall evolution of the system. Figure 5.1 shows an

overview schematic detailing the process described.

5.2.1 Ionization Model

The first step is to produce an accurate set of cosmological initial conditions. We

employ the MUSIC initial condition generator [104] using second-order Lagrangian

perturbation theory to produce initial conditions in real-space and write them out to

a file. We then extend the semi-numeric code 21cmFAST [162] to read in these ini-

tial conditions. The original code base generates initial conditions directly in k-space

using first-order perturbation theory. The use of MUSIC enables a fluid transition be-

tween 21cmFAST and other cosmological hydrodynamics simulations which typically
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require initial conditions to be inputted in real-space.

Furthermore, we use the modifications to 21cmFAST as detailed in [186]. As our

simulations typically employ high-resolution to trace the formation of mini-halos,

using this modification is important in generating the corresponding ionization maps.

In order to accurately sample the time evolution of the ionization field, spatial data

needs to outputted at a minimum of every 10 Myrs to match typical formation time-

scales of Pop III stars. Moreover, the spatial resolution of the ionization field will be

23 times the root grid resolution of the hydrodynamical simulations.

5.2.2 Coupling to Hydrodynamics

The next step is to couple in the ionization fields that are calculated in the previous

section to hydrodynamic simulations. For our proof of concept, we use the cosmo-

logical simulation code Enzo [90]. From the generated ionization maps, we create a

single spatial grid that stores the redshift at which the individual cells are ionized.

This acts as a filter map through which an ionization background radiation can be

triggered. Once the listed ionization redshift is reached, the cell is then considered

ionized and we turn on the ionization background. As for the strength of this radi-

ation, we use the ionization fields that are calculated in [187]. Since the grid cells in

the hydrodynamical simulations can be of higher resolution than the ionization maps

previously generated, we then employ nearest-neighbor interpolation to smooth out

the high resolution details.

5.2.3 Proof-of-Concept

We will first produce a single simulation including radiative transfer as the base model

to which we will compare the accuracy of our new method. This simulation will be a

(4 Mpc)3 box focused on a single dwarf galaxy (M ' 109 M�) which we will run down

to z = 10. Our test case will be using our method on the same identical cosmological
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initial conditions. We will compare the properties of the resulting most massive galaxy

at the end of the simulation time at z = 10. We will tolerate errors that are introduced

on the order of 5-10% which are comparable to the uncertainties that are inherent in

astrophysical contexts. Larger discrepancies can be addressed by adjustments to the

semi-numeric calculations which are comparably cheap in computation time.

5.3 Applications

There are two key applications to this implementation: (1) survey simulations and

(2) zoom-in simulations. The former involves the simulation of a large sample volume

from cosmological initial conditions. Because this implementation removes the need

for the full radiative transfer module, we can then efficiently generate such large

volumes while reaching high-spatial resolution comparable to the current state-of-

the-art high redshift simulations.

Secondly, having a spatially-varying ionization map in place enhances zoom-in

simulations which can often underestimate the outflow of radiation from regions out-

side of the region of interest. As the outside regions are not properly resolved, the

sources that should be formed are never formed resulting in some inaccuracies at the

outer ends of the Lagrangian volume. The preprocessing of the gas through ioniza-

tion is required to accurately model the formation of present-day galaxies, which can

significantly impact star formation rates.

The method proposed in this Chapter will lead to significant speed-up benefits in

cosmological simulations. Radiative transfer modules can take up to 2/3rds of the

total computation time in typical cosmological simulations. Therefore, in an idealistic

scenario, this particular protocol can lead to an increased computational speedup of

a factor of three. Once the proof-of-concept is demonstrated, we propose to release

the modifications to the codes to the public. Both 21cmFAST and Enzo are available

to the public using common version control software. We expect that the method
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introduced will be widely used by community for the applications listed above.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we explored the dynamics and role of mini-halos during the Epoch of

Reionization. These are the fundamental building blocks which host the formation

of the very first stars in the universe. Understanding the precise formation of these

objects are essential to forming a consistent theory of galaxy formation. We will

summarize the main conclusions and detail potential future extensions from our work

in this chapter.

6.1 Summary of Thesis

In Chapter 2, we investigated the effect of the metallicity on the collapse dynamics

of mini-halos. The main conclusions of this study are

• The effects of self-shielding are important in accurately treating the formation

of stars in mini-halos.

• Metallicity has minimal impact on the minimum collapse mass of mini-halos

below the critical metallicity between 103Z� < Z < 102Z�. Once this critical

metallicity is met, the minimum collapse mass drops down to 105M�.

Then in Chapter 3, we investigated the amplification of magnetic fields in the

early universe. This was done using a set of ab-initio simulations that followed the

birth, main sequence, and death of a single Population III star with varying initial

magnetic field strengths. The main conclusions of this study are

• Magnetic fields are primarily amplified by compression during the gravitational

collapse prior to star formation, following the B ∼ ρ2/3 scaling.
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• Magnetic fields are again amplified shortly following the supernova from the

Pop III, but primarily through turbulent motions formed in the wake of the

expanding blast wave.

• The magnitude of the amplification is largely independent of the strength of the

initial background field. This implies that the peak field strength is strongly

dependent on the initial field strength.

Then in Chapter 4, we explored the role of these primordial objects in reionizing

the universe by extending an existing semi-numeric method to account for the mass-

dependence of the ionizing efficiency. Thus, we were able to account for the role that

mini-halos would have. The main conclusions of this study are

• Mini-halos can have significant impact during the start of the Epoch of Reion-

ization, but are dwarfed by larger halos which began to dominate after z > 10.

• Mini-halos can also alter the ionization bubble topology as they form smaller H

ii regions.

Finally, in Chapter 5, we propose an application of our extension from the previous

chapter to provide an efficient method of accurately generating ionization histories

in cosmological simulations without the use of fully-resolved radiative transfer pro-

tocols. This implementation will enable the efficient generation of a large sample of

cosmological simulations of the Epoch of Reionization. Furthermore, this can provide

an accurate treatment of ionization effects from outside the target region in zoom-in

cosmological simulations.

6.2 Future Work

We have explored the potential sites of the first-metal poor stars and the growth of

magnetic fields in the first mini-halos that are formed during the Epoch of Reioniza-

tion. The natural progression from this work is to push the ab-initio magnetic field
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simulations from cosmological simulations to the formation of the first dwarf galaxy

of mass, M > 109M�. This work can be limited to a zoom-in simulation centered

about the most massive halo that will first reach this mass threshold. By incor-

porating magnetic fields, we can further trace the growth of magnetic fields which

follows structure formation in parallel. As multiple supernovae blast waves collide,

they can promote turbulence and lead to greater growth and dynamically significant

field strengths. Then, we can study the impact these fields have on the formation of

the subsequent generations of stars.

There are still lots of unanswered questions in the process of galaxy formation

in the early universe. With the upcoming James Webb Space Telescope, Square

Kilometer Array, and other next generation instrumentation, we will be able to probe

further back into the Epoch of Reionization. Combined with the growing computing

capacity and algorithms, such as the method proposed in Chapter 5, we will be ever

closer to accurately studying this unique period in the universe.
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G. Helou, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R.
Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest,
K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M.
Juvela, E. Keihänen, R. Keskitalo, J. Kim, T. S. Kisner, J. Knoche, M. Kunz,
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Górski, S. Gratton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, J. Haissin-
ski, J. Hamann, F. K. Hansen, D. Hanson, D. Harrison, S. Henrot-Versillé, C.
Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, M. Hob-
son, W. A. Holmes, A. Hornstrup, Z. Hou, W. Hovest, K. M. Huffenberger,
A. H. Jaffe, T. R. Jaffe, J. Jewell, W. C. Jones, M. Juvela, E. Keihänen, R.
Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-
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