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SUMMARY 

Today, the Internet is growing exponentially, with traffic statistics that 
mathematically exhibit fractal characteristics: self-similarity and long-range dependence. 
With these properties, data traffic shows high peak-to-average bandwidth ratios and 
causes data networks inefficient. These problems make it difficult to predict, quantify, 
and control data traffic, in contrast to the traditional Poisson-distributed traffic in 
telephone networks. In this thesis, two analytical methods are used to study fractal 
network traffic. They are second-order self-similarity analysis and multifractal analysis. 
Using a number of experiments, the following results towards characterizing and 
quantifying the network traffic processes have been achieved: 

First, self-similarity is an adaptability of traffic in networks. Many factors are 
involved in creating this characteristic. A new view of this self-similar traffic structure is 
provided. This view is an improvement over the theory used in most current literature, 
which assumes that the traffic self-similarity is solely based on the heavy-tailed file-size 
distribution. 

Second, the scaling region for traffic self-similarity is divided into two timescale 
regimes: short-range dependence (SRD) and long-range dependence (LRD). 
Experimental results show that the network transmission delay (RTT time) separates the 
two scaling regions. This gives us a physical source of the periodicity in the observed 
traffic. Also, bandwidth, TCP window size, and packet size have impacts on SRD. The 
statistical heavy-tailedness (Pareto shape parameter) affects the structure of LRD. In 
addition, a formula to quantify traffic burstiness is derived from the self-similarity 
property. 

Furthermore, studies of fractal traffic with multifractal analysis have given more 
interesting and applicable results. (1) At large timescales, increasing bandwidth does not 
improve throughput (or network performance). The two factors affecting traffic 
throughput are network delay and TCP window size. On the other hand, more 
simultaneous connections smooth traffic, which could result in an improvement of 
network efficiency. (2) At small timescales, traffic burstiness varies. In order to improve 
network efficiency, we need to control bandwidth, TCP window size, and network delay 
to reduce traffic burstiness. There are the tradeoffs from each other, but the effect is 
nonlinear. (3) In general, network traffic processes have a Hölder exponent α  ranging 
between 0.7 and 1.3. Their statistics differ from Poisson processes.  

To apply this prior knowledge from traffic analysis and to improve network 
efficiency, a notion of the efficient bandwidth, EB, is derived to represent the fractal 
concentration set. Above that bandwidth, traffic appears bursty and cannot be reduced by 
multiplexing. But, below it, traffic is congested. An important finding is that the 
relationship between the bandwidth and the transfer delay is nonlinear. 
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CHAPTER 1 

INTRODUCTION 

If the greatest invention in telecommunication in the late 19th century was the 

telephone, the Internet would be the comparable successor in the 20th century.  Since its 

public début about two decades ago, the Internet has grown exponentially in the number 

of users, the number of computers, and the amount of network traffic! In this 21st century, 

what’s confronting us is the challenge to manage and to process network data more 

efficiently. 

In 1994, Leland and Willinger et al. [1] reported that network traffic exhibited self-

similarity – a fractal concept in data analysis. Fractal traffic analysis and modeling have 

ever since been a popular research topic in network engineering. Mandelbrot[32] first 

coined the term “fractal” three decades ago and studied natural phenomena using a 

multifractal model. In 1988, Barnsley pointed out there are “fractals everywhere” and 

developed a popular fractal image compression algorithm called the “iterated functional 

system” (IFS) [35]. However, applications of fractal algorithms in data networking area 

are limited to traffic modeling [19]. Practical fractal algorithms in traffic measurement 

and management have yet to be well developed. There are several issues related to this: 

first, the fractal concept is a somewhat new idea and very non-intuitive, in contrast to our 

previous knowledge of traffic measuring; second, the causes of the fractal nature of 
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network traffic are not well understood; and third, it is very complex to verify the ideas 

behind this fractal behavior because of the rapid change of network technologies which 

affect traffic characteristics. 

1.1 Fractality 

Essentially, fractals use a mathematical measure in the form of  

αµ δ= .        (1.1) 

Here, δ is the unit, and α is an exponent referred to as the local singularity (to be defined 

in Ch.4). With α = 1, µ equals to δ in the traditional form, and the measure µ of an object 

is simply a sum in units of δ. However, with α non-unity, µ varies at each point. These 

values of α characterize a fractal set in a functional distributional sense expressed in f(α). 

So, we can write 

( )( ) , ( )tt fαµ δ α α= ⊂ .      (1.2) 

In addition, the measure µ also has scalability such that varying δ = 2-n as n→∞ will not 

have an effect on f(α). 

1.1.1 Heuristic from Sierpinski triangle 

In fact, a fractal describes a self-organizing mechanism. It reproduces itself 

iteratively, but it allows certain randomness without destroying its mechanism, i.e., its 

original form. An example is shown in Figure 1-1. The sub-figure A is a standard 

Sierpinski triangle. For each iteration, a triangle can spin off into three half-scaled small 

triangles and the middle one thus formed is removed from further divisions. This process 
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can be repeated infinitely in theory. Therefore, generally speaking, any small portion of a 

fractal set is infinite in the fractal space. However, for most of us, only a measurable 

object has some practical meaning. So, for a Sierpinski triangle, we can find the 

remaining size of the triangle at a scale n as 

2 1[ ] ( ) ( ) 3 2 .n n
n nS n N s − −= ∆ × ∆ = ×      (1.3) 

∆ denotes a small-scaled triangle. ( )nN ∆  is the number of the small triangles remaining 

at a scale n, and ( )ns ∆ is the size of one small triangle. A Sierpinski triangle has a fractal 

dimension df, which can be found by 

2
2

( ) 3
log 3 1.585.

( )

n

f

n
n

fd
n

N
d

N
δ

δ
−=

−

∆ = → = =
∆ = 

    (1.4) 

So, we get 

0.415 1[ ] 2 .nS n − −=        (1.5) 

 

Figure 1-1 The Sierpinski triangles.  

A. a normal Sierpinski triangle; B. a Sierpinski triangle with a stop probability 0.25 at each scale in 
iteration. 
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The sub-figure B still looks like a Sierpinski triangle. However, if looking carefully 

you will find there are a number of missing triangles across many scales because a 

probability of stopping the triangles splitting is set. What is the size of this figure without 

counting the triangles in detail? In this example, the probability of stopping a spin-off is 

0.25. Using (1.3) and (1.4), we find 

1.1699fd =  and 0.8301 1[ ] 2 .nS n − −=      (1.6) 

 

Figure 1-2 Normalized measures of Sierpinski triangle size for Figure 1-1 A and B 

The Sierpinski triangles are empty sets as n →∞, but the sets have different 

characteristics. Figure 1-2 plots the equations of (1.5) and (1.6) for the triangles A and B, 

respectively, and compares to a numerically-generated experimental plot. When scale n 

increases, the plot from the experiment approaches the plot of equation (1.6). All three 

plots will go to zero as the scale n →∞. A Sierpinski triangle with an infinite scale is 
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empty even though it appears to have some complex structures. There are spaces inside. 

So, we can imagine that if a real system has a fractal behaviour with α < 1, its efficiency 

will be affected. 

1.1.2 Fractals in network traffic 

In the case of network traffic, the “spaces” are unused bandwidth for a scaled 

interval of time (Figure 1-3). Similar to a Sierpinski triangle, traffic has different levels of 

“spin-offs”: at the packet level, transport layer protocols (TCP or UDP) dispatch packets 

in bursts; at the connection level, multiple objects (e.g., in a Web page) are correlated; 

and there are session-level traffic bursts as well. More detailed discussions of these 

mechanisms will be given in the later chapters. 

 

Figure 1-3 Fractal network traffic in several timescales 
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1.2 About this thesis 

1.2.1 Problem statement and scope 

This thesis uses fractal analysis to characterize increasingly bursty Internet traffic. 

It examines how the fractal nature of network traffic is developed due to the workings of 

network protocols and applications. The goal is to develop a better understanding of the 

fractal nature of network traffic, which in turn will lead to more efficiency and better 

quality of services on the Internet. 

This document begins with a discussion of the fundamental theory of data network 

traffic. It introduces statistical second-order self-similarity analysis using wavelets and 

gives an overview of several popular traffic modeling approaches, e.g., M/G/∞, 

FARIMA, and the wavelet traffic models. Then, self-similarity analysis is applied to a 

series of NS-2 simulated datasets. The study improves the understanding of traffic self-

similarity with several insightful observations. 

Later in this thesis, the study focuses on multifractal analysis – a more 

fundamental and broader view of fractals compared to second-order self-similarity 

analysis. MFA is based on the concept of a local signal singularity characterized by the 

Hölder exponent α. The formulations of MFA are described. MFA is applied to both 

simulated traffic datasets and real traffic datasets from the Internet. The MFA study 

confirms the previous findings of the fractal behavior of network traffic.  Based on the 

fractal property, a new concept of efficient bandwidth is developed and is applied to 

fractal traffic control to improve network efficiency.  
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1.2.2 Contribution of the thesis 

This thesis:  

- verifies that network traffic indeed is fractal. The self-similarity can be 

separated into two regions that have short-range dependence (SRD) and 

long-range dependence (LRD). The physical mechanisms that control the 

two regions are clearly identified and generalized by six factors. More 

specific physical evidences of fractal behavior of network traffic are 

described. I argue that the heavy-tailedness of file sizes, a current popular 

view of traffic self-similarity, is not the sole cause.  

- applies multifractal analysis to study network traffic and characterizes 

network traffic with advanced multifractal spectra and  multifractal 

measure. From multifractal analysis, it appears that the Hölder exponent is 

in the range of 0.7 ~ 1.3 in most network traffic traces.  

- proposes a measurement of the efficient bandwidth to quantify a fractal 

traffic flow to reduce burstiness and demonstrates its usefulness for fractal 

traffic control to improve network efficiency and performance. 

1.2.3 Organization of the thesis 

This thesis consists of four main chapters (Chapters 2−5). Chapter 2 describes some 

basic network traffic theories: statistical second-order self-similarity. It also covers a few 

representative traffic modelling schemes. Interpretations of network traffic fractality are 

presented in both analytical networking contexts and experimental results. A further 

study of a real-traffic trace with comparison between Web traffic and KaZaa traffic is 
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reported here to demonstrate that large file sizes do not necessarily lead to fractality but 

the self-organized and correlated traffic objects will. 

Chapter 3 studies multifractal traffic analysis. The concept of multifractal is based 

on analyzing the signal local singularity or Hölder exponent, and it is formulated using 

both binomial multifractal model and wavelet transform. A number of datasets are tested 

using this analysis, including binomial cascades, Poisson processes, simulated traffic sets, 

and real Internet traffic sets. 

Chapter 4 deals with applications of fractal traffic analysis.  The concept of 

efficient bandwidth is developed, and the results from a NS-2 experiment are presented to 

demonstrate its effectiveness for TCP traffic.  Additionally, a study of efficient transport 

of gaming traffic in UDP is presented. 

Chapter 5 concludes the thesis with future work.   
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CHAPTER 2 

FRACTALS WITH NETWORK TRAFFIC 

This chapter studies the basic network traffic theory: statistical second-order self-

similarity. Traffic self-similarity has a root from two fractal processes: Fractional 

Brownian Motion (FBM) and Fractional Gaussian Noise (FGN). The characteristics of 

FBM and FGN are represented by a fractal spectrum with a Hurst parameter, which can 

be easily analyzed using wavelet transform such as a Haar wavelet. Using self-similarity 

analysis, we can characterize fractal traffic in both the SRD and LRD regions. A series of 

NS-2 simulations are conducted to study the impacts on SRD and LRD using six 

parameters: bandwidth, delay, number of connections, packet sizes, TCP window sizes, 

and Pareto shape factor of connection sizes. Later, two traffic flows of Web and KaZaa  

in a real traffic trace are analyzed and compared on self-similarity. A traffic burst profile 

based on burstiness is derived to show the differences in the self-similarity between the 

Web and KaZaa traffic flows. 

2.1 Background in network traffic 

The essential property of fractals is scale-invariant, and this property is often 

described as self-similarity in the second order statistics. In the early 1990s, Leland and 

Willinger et al. [1] first reported the self-similar nature of network traffic. Before that 
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study, traffic engineering had been successful in adopting a Poisson traffic model in 

traditional telephone networks. But, the new paradigm with fractal traffic has 

revolutionized traffic modeling. Among a number of network traffic models, fractional 

auto-regressive integrated moving average (FARIMA) and M/G/∞ are two famous 

examples. FARIMA captures both short-range and long-range dependence. It has been 

successful in video traffic modeling. However, for generic network traffic, FARIMA 

lacks connections with the network mechanisms, e.g., TCP and HTTP. It also has a high 

computation complexity, which makes it difficult to use in practice. On the other hand, 

the M/G/∞ model[11][12] is based on the aggregation of general ON/OFF processes. 

This model is directly related to the heavy-tailed property of traffic, e.g., network objects 

such as traffic connections and file sizes that are heavy-tailed. In M/G/∞, it is suggested 

that aggregating a large number of heavy-tailed processes results in long-range 

dependence. In the more recent studies, wavelet theory has been very popular in traffic 

analysis. A representation of traffic in wavelet domain requires only a few parameters 

across the scaling regions, which in turn leads to the wavelet traffic models including 

Independent Wavelet Model (IWM)[16][17] and Multifractal Wavelet Model (MWM) 

[19]. In this section, I will describe these traffic analysis theories and models in detail. 

2.1.1 Basic fractal traffic theory 

2.1.1.1  Self-similarity and long range dependence 

The fundamental fractal traffic model is derived from Fractional Brownian Motion. 

FBM is a Gaussian process and can be used in general conditions. It has a homogenous 

parameter H. A FBM process BH holds in the form of 
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( ) ( )  for 0H
H HB st s B t s= > .      (2.1) 

Here, H ∈ (0,1) is the Hurst parameter – a structural parameter for all scales s→∞. In 

(2.1), the equality holds in a statistical distribution sense. 

In addition, BH is a zero-mean Gaussian process with the following two properties: 

(i) BH(0) = 0; and (ii) the variance H
H ttB 222 ||)}({ σ=Ε . As σ2 is the energy of BH,  the 

variance is proportional to |t|2H. From (ii), we can also have 

2
2 2 2{ ( ) ( )} (| | | | | | )

2
H H H

H HB t B u t u t uσΕ = + − − .   (2.2) 

Equation (2.2) shows that BH is a non-stationary process. But the increment of FBM 

is a stationary process, which is known as Fractional Gaussian Noise. Let Y(t) denote a 

FGN process, and δ is the time interval. Then, we define  

)()(:)( δ−−= tBtBtY HH .      (2.3) 

Y(t) is a zero-mean Gaussian process, and its autocorrelation function satisfies  

))(2)((
2

)( 222
2

HHHY
Y kkkkr δδσ −+−+=  .    (2.4) 

With (2.4), Y(t) is called exactly second-order self-similarity. It shows that Y(t) is 

second-order stationary because rY (k) depends only on the interval k . For ½ < H < 1 and 

δ = 1, we obtain 

222)12(lim)( Y
H

kY kHHkr σ−

∞→
−= .      (2.5) 
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From (2.5), we have rY (k) > 0. Thus, the autocorrelation is not summable for the lag 

k→∞. This property of Y(t) is called long-range dependence. It indicates that the 

autocorrelation has a decay rate slower than 1/k.  

2.1.1.2  Network traffic processes 

In a general traffic model, a network traffic process is known as an H-parameterized 

self-similar process with stationary increments (H-sssi).  Let Z(t) denote an aggregated 

traffic process starting at t = 0. Z(t) models a FBM process. So, we can write X(t), the 

stationary increment process of Z(t), as 

xtYtZtZtX µ+=−−= )()1()()( .     (2.6) 

By the definition (2.3), Y(t) is a zero-mean FGN process. µx denotes the mean of 

X(t). Equation (2.6) will be useful only in a statistical sense.  

Let Y(m) represent the average of Y(t) at an accumulation scale m, and we have 

])1(2[2][
2

1

)( inYnY m

i

mm
m

+−= ∑
=

− .     (2.7) 

Y(m) is called asymptotically second-order self-similar if 

))1(2)1((
2

)(lim 222
2

)(
HHHY

Ym
kkkkr m −+−+=

∞→

σ .   (2.8) 

From the properties of FGN, we know that Y(0) = 0 and µY = 0. Therefore, we can 

get 

YY Hmm )1()( 2 −−=        (2.9) 

and 

2)22()( 2][ Y
HmmYVar σ−−= .                (2.10) 
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Correspondingly, for the increment traffic process X(t),  it follows 

])1(2[2][
2

1

)( inXnX m

i

mm
m

+−= ∑
=

−      (2.11) 

and 

2)22()( 2][ X
HmmXVar σ−−= .      (2.12) 

From (2.12), it is implied that there is an asymptotical scaling structure within the 

traffic model. As the accumulation level m increases, the variance will decrease 

asymptotically, and the decay in log-scale is a straight line with a slope determined by H. 

2.1.2 Fractal traffic analysis 

2.1.2.1 Discrete wavelet transform (DWT) 

The wavelet transform is useful to analyze fractals. For fractal network traffic, 

discrete wavelet functions are used in the forms of (2.13).  

( ) (2 ),

( ) (2 ).

m m
n
m m
n

t t n
t t n

ψ ψ
φ φ

−

−

 = −


= −
       (2.13) 

)(tm
nψ  is known as the mother wavelet, and )(tm

nφ  is the father wavelet. Using wavelet 

functions such as a Haar wavelet, a signal can be decomposed in the wavelet domain 

represented in (2.14).  
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with  
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( ) ( ) ,

( ) ( ) .
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φ

ψ

 =


=

∫

∫
       (2.15) 

The decomposition comprises two parts: an approximation of the original signal at a 

coarse scale M and its complementary parts  (orthogonal to the signal space) at the 

multiple finer scales. The approximation coefficients m
na  are called the scaling 

coefficients, and the coefficients m
nd  are the wavelet coefficients.  

2.1.2.2 Fractal spectrum 

A self-similar process is also called 1/f noise. This is because its power spectrum has 

a power-law decay. The spectrum of FGN is shown as 

)12()( −−∝Γ H
f νξν  for  ν → 0.     (2.16) 

The power spectrum (2.16) has two parameters (H, ξ): H is the Hurst parameter, 

capturing the scaling structure of the process; and ξ, independent of the Hurst parameter, 

represents the signal power at the finest scale. 

A wavelet estimator of the Hurst parameter is given by Abry and Veitch [42]. 

Applying DWT (2.13), we can analyze this spectrum using the multi-scaled wavelet 

coefficients. As a wavelet function is an approximate band-pass filter, )(tm
nψ  has a time 

support of 2-m and a frequency support of 2mν0 at a scale m. Here, ν0 is the center 

frequency corresponding to ψ0(t). So, we can derive 
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Nm is the number of wavelet coefficients at the scale m. Using (2.16) and (2.17), we 

will find 

)(log)12(])[(log 22 CmHdVar m ξ+−−= ,    (2.18) 

with 

∫ Ψ= −− ννν dC H 2)12( )( .      (2.19) 

For a fractal signal, (2.18) represents a linear relationship between the log-scaled 

signal energy and the scale m. Therefore, we can calculate H from (2.18). At two scales j 

and k (j < k), the wavelet estimator for the Hurst parameter H is found as  

2
1

][
][

log
)(2

1ˆ
2 +















−
= k

j

dVar
dVar

jk
H .     (2.20) 

The estimation of ξC can also be obtained from the linear regression of (2.18). Then, 

get ( ) CC /ξξ = .  Detailed discussion can be found in [42][43].  

2.1.3 Network traffic modeling 

Traffic models are important to network performance analysis. They are required to 

capture the statistical characteristics of real traffic efficiently and accurately. The 

development of traffic modeling relies on the advances of traffic analysis. One of the 

traffic models is derived from an On-Off queuing model. In this model, “On” represents a 

busy data transmission period and “Off” represents silence with no data transmission. 

Statistically, if “On-Off” periods are heavy-tailed, aggregating a large number of these 

processes will result in long-range dependence[5]. On the other hand, self-similarity of a 

process is a property represented using its power spectrum. By exploiting the power 
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spectrum, a number of traffic models[15][17][19][23] have been proposed since the late 

1990s and early 2000s. In particular, the Haar wavelet has been used to analyze and to 

model network traffic in recent years[19]. 

2.1.3.1 M/G/∞∞∞∞ 

M/G/∞ model[11][12][13] considers a queuing system, where arrivals are Poisson 

and are served by the infinite number of servers. The service times are i.i.d with general 

distributions. The system is characterized by counting the number of busy servers at a 

time t. Then, if the service time distribution is heavy-tailed, it converges to the long-range 

dependence at output. This model corresponds to the On-Off traffic model, in which the 

traffic sessions arrive by a Poisson distribution and the On-period of each session is 

heavy-tailed. 

Heavy-tailedness (H-T)[13] A distribution F is said to be heavy-tailed, if 

)(~)( xFyxF + as x → ∞ for any fixed y.  

The heavy-tailed distribution decays slower than exponential. A random variable X 

with a heavy-tailed distribution can be expressed as 

α−> cxxX ~}Pr{ , as x → ∞,      (2.21) 

where α is a shape factor as 0 < α < 2, and the constant c > 0. For 0 <α <2,  the variance 

of X is infinite; for 0 < α <1, the mean also becomes unbounded. In particular, Pareto is 

one of the most used heavy-tailed distributions. The probability density function of 

Pareto is given by 

1)( += α

αα
x

bxP , 0 < α < 2 and x ≥ b.     (2.22) 
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The mean of Pareto distribution is αb/(α -1). Besides Pareto, Weibull and lognormal 

distributions are also referred to as heavy-tailed distributions. However, they both have 

finite variances. 

Furthermore, the relationship between the Pareto shape α in H-T and the Hurst 

parameter H  in LRD is   

2/)3( α−=H , for 1 < α < 2 and 1/2  < H < 1.   (2.23) 

2.1.3.2 FARIMA 

FARIMA is a widely used model for stationary time series[14][15]. A FARIMA 

process, denoted as fARIMA(p,d,q), is comprised of two basic polynomials: the auto-

regression polynomial (AR) with degree pth and the moving average polynomial (MA) 

with degree qth. They are written as  

2
1 2

2
1 2

( ) 1 ,

( ) 1 .
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q
q

B a B a B a B

B b B b B b B
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β

 = − − −


= + + +

�

�

      (2.24) 

Here, B is the backward shift operator, defined as )()( jtXtXj −=Β . The third part is a 

differentiation operator ∇  with dd )1( Β−=∇ . The differentiator is responsible for 

removing any seasonal trend from a data process X(t). Altogether, we have 

)()()()( tzBtXB d βα =∇ .      (2.25) 

In (2.25), z(t) is noise, an i.i.d process. Note, ∇  is a differentiator on the left side but 

becomes an integrator on the right side. This is shown as 

0

1
1

i

i
B

B

∞

=

Σ = =
− ∑ ,       (2.26) 

( ) ( )dX t z t= Σ .       (2.27) 
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For 0 < d < ½, X(t) is long-range dependent. Both α(B) and  β(B) are used to 

characterize the SRD properties. For d > ½, the process is non-stationary. For a FGN 

process with autocorrelation function in (2.5), the relationship between the Hurst 

parameter H and d is H = d + ½. 

Although FARIMA is flexible enough to model both LRD and SRD characteristics, 

it requires solving the polynomial coefficients. As the degrees of p and q increase, the 

computation complexity increases dramatically. This is one of the major drawbacks for 

FARIMA. 

2.1.3.3 Wavelet traffic models 

Wavelet traffic models are studied in [16][17][19][20]. By a wavelet transform, it is 

possible to decorrelate the dependent structure in fractal traffic. A key theory by Kapland 

and Kuo [38][39] states that the wavelet coefficients of fractal data are independent at 

each scale and those coefficients therefore can be modeled as zero mean Gaussian 

random variables. Because a Gaussian random variable only has two parameters, mean 

and variance, we can use the wavelet coefficients to capture the traffic LRD structure 

over the multiple scales.  In data synthesis, Gaussian variables are generated by wavelet 

coefficient variances at those scales, and then data samples are calculated by an inverse 

wavelet transformation. By using the Haar wavelet, the computation for this procedure is 

simplified. The above method is often referred to as the independent wavelet model[17]. 

However, there is a problem with IWM. It produces unrealistic negative values for 

traffic due to using Gaussian random variables. Another approach proposed by Riedi, et 

al. [19] solved this problem. This model is referred to as the multifractal wavelet model. 
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Figure 2-1 Illustration of MWM traffic model 

The MWM model is illustrated in Figure 2-1. In a Haar wavelet transform, the 

scaling coefficients can be found by 
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For a positive process, 0≥m
na  and m

n
m
n da ≥  for any m and n. Let m

nA  be a random 
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Therefore, together with (2.28) and (2.29), obtain 
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Using (2.30) and fitting the distribution of the random variable m
nA , we can 

synthesize a traffic trace precisely. In Riedi’s paper[19], two distributions for the random 
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variable m
nA  were suggested: a symmetric Beta distribution and a point-mass distribution. 

In addition, it requires that m
nA  is identically distributed and symmetric in order to model 

a stationary process. From (2.30), the wavelet energy scaling property can be captured as 
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      (2.31) 

In order to match the energy scaling structure, we have to recursively solve (2.31) 

starting from the coarsest scale m = 0.  

More importantly, the MWM algorithm can be identified with a binomial cascade 

and is close to the multifractal measure in a natural fractal structure. This provides some 

insightful ideas towards understanding the statistics of network traffic, which will be 

studied in much more detail in Chapter 3. 
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2.2 An application view on traffic self-similarity 
In network engineering, finding the origin of traffic self-similarity and long-rang 

dependence is important to us. While the concepts of self-similarity and long-range 

dependence in traffic are counter-intuitive to most network engineers, we do know that 

their impacts are significant: network traffic is very bursty. This burstiness could cause 

network bottlenecks, packet loss, jitter, and low bandwidth efficiency. Traffic analysis 

and modeling generalize several mathematical methods, which improved the 

understanding of self-similar structure in network traffic. In this section, it gives a unified 

explanation of traffic self-similarity from an application structural point of view. The 

proposed explanation is based on Web traffic, which has dominated the Internet for a 

decade.  

Previous studies [4][5][6] have shown that the heavy-tailedness of connection sizes, 

specifically the over abundance of large file sizes (corresponding to long active periods), 

is the main cause of LRD in network traffic. However, this explanation is incomplete. 

Some recent studies[21][22] have raised questions about it and suggested more 

complicated mechanisms behind both LRD and SRD. In particular, the heavy-tailedness 

is incapable of explaining the subtle scaling structure that appears for small timescales. In 

[7][8][9], Feldmann et al. described the network traffic structure as resulting from a data 

cascade. Traffic objects are regenerated from one protocol layer to another in a cascade 

fashion. In general, the mechanisms that govern the self-similarity can be categorized as 

due to two sets of rules: one that controls the scaling at the large scales (second ~ 

minutes) and one that controls the scaling at the small-scale range (ms ~ sec). These 
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scaling regions can be easily observed from an energy-scaling diagram (see Figure 2-5). 

These mechanisms are described in detail as below. 

2.2.1 Self-similarity at the large timescales 

 

Figure 2-2 Self-similarity in a Web traffic session 

By definition, LRD resides in timescales starting from seconds. For the Web 

application, we may separate Web traffic into three levels in this time range (shown in 

Figure 2-2): session, flow and micro-flow. In a Web session, one user may open multiple 

Web browsers simultaneously, each of which initiates a group of connections at the flow 

level. Those connections transmit data for multiple objects in parallel. The size of each 

object varies independently depending on the contents either text or multimedia 

information, while the initial times of data transmission are closely correlated. Thus, a 

single click on a Web page will result in traffic bursts for some random period. This 

phenomenon is analogous to the ripples generated by throwing a stone into water. The 
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periods of connections from this operation could last from a few hundred milliseconds to 

a few minutes. 

The timescale range is related to the initial scales in LRD. LRD represents a trend 

of the signal energy scaling in a long run. In such a sense, why will heavy-tailed traffic 

elements cause LRD? LRD is a global estimation. Heavy-tailed traffic elements are those 

with very large values, but which appears with very low frequency, such as the 

downloading of a movie file. LRD indicates that the energy from these low-frequency 

elements will become more and more dominant as the timescales increase.  

On the other hand, time and frequency are inversely related. At the small 

timescales, the signal energy is determined by the short-duration traffic activities while 

the long-duration traffic flows have much smaller effect. At large timescales, the short 

traffic activities become insignificant as they are averaged over long time periods. Based 

on this analysis, the self-similarity at the large timescales (i.e., LRD) is caused by a few 

long traffic flows whose average rates are proportional to the mean rate of the total 

traffic. 

2.2.2 Self-similarity at the small timescales 

On the other hand, SRD is found in the timescales below a few seconds, perhaps 

down to milliseconds. This is a time range below the connection level. Each individual 

connection is regarded as a micro-flow. Within micro-flows, due to network algorithms 

(such as TCP control mechanisms) packet bursts occur periodically. The packet bursts are 

statistically correlated across the timescale periods – bursts contain microbursts that are 

related both by sizes and time intervals. Therefore, a scaling structure exists. 
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Figure 2-3 Bursts in scaling: (a) Scaling up (b) Scaling off 

Figure 2-3  (a) illustrates an example of an up-scaling burst. As the scale increases 

from 20 to 23, the size of burst per time unit also increases, so the energy per time unit 

increases. An example of this phenomenon in network traffic is seen during the TCP 

connection start-up phase. The TCP sender’s congestion window size increases 

exponentially with each ACK packet received. So, in one TCP connection, the number of 

transmitted packets are doubled in each RTT until a congestion occurs. Figure 2-3 (b) 

shows another case, in which the scaling structure stops at the timescale 23 because the 

burst size at 23 does not grow. The timescale where the scaling stops is referred to as the 

cut-off timescale and corresponds to a “knee” (a turnover) on the wavelet energy plot 

(i.e., the timescale K see Figure 2-5  in Section 2.3.1). 

The packet bursts on networks are similar to the above example, but they appear in 

a random fashion. SRD is referred to as packet level bursts, and can be further separated 

into three sub-levels. 
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Figure 2-4 Self-similarity at the packet level 

Figure 2-4 illustrates the self-similarity for packet bursts at SRD. First, Figure 2-4.1 

shows the correlation between TCP packet bursts. This is due to the mechanisms, such as 

TCP slow start, congestion, loss recovery and other similar transport-layer schemes that 

could cause the packet rate to alternate and send multiple back-to-back packets. For 

example, TCP increases the packet rate (the sender’s congestion window size) in every 

RTT until the flow reaches the congestion point, and then TCP starts over (between the 

two parts a and b in Figure 2-4.1). This burst period is within the multiple RTTs, which 

determines the largest timescale (usually a few hundred milliseconds or seconds) in SRD. 

Secondly, within a RTT time range, multiple traffic flows share the network at the same 

time, and packet burst sizes vary for the different TCP flows. This diversity is illustrated 

in Figure 2-4.2. In this case, the TCP flows are synchronized, e.g., a fast TCP flow (with 
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large packet bursts) shares the bandwidth with a slow TCP flow (with smaller packet 

bursts). Those packet bursts can divide a RTT period into few smaller intervals, so the 

energy scaling could occur within a RTT period (less than 100ms). This traffic level on 

self-similarity is referred to as “ripple”. Thirdly, in a single packet burst the packet size is 

a factor affecting energy scaling (shown in Figure 2-4.3). Packet sizes vary from the 

control packets (usually 40 bytes without payloads) to data packets (up to 1500 bytes on 

Ethernet). So, this variation occurs at the smallest timescale in the scaling range (usually 

within few milliseconds on Ethernet). This traffic level is called “lap”. 

In the wide area network, it is possible that one packet burst can mix with packets 

from different TCP connections and different users. Packets from different users are 

independent from each other. So, they are generally uncorrelated and produce very 

limited SRD effect on the scaling structure. However, in a local network, a correlation 

exists because they share the same bottleneck to the Internet. The separate TCP flows 

from the same LAN are synchronized, so that it usually shows SRD. For this reasoning, 

we may assume that the aggregated TCP traffic flow from a single LAN is one flow, but 

one which will correlate with other such traffic flows at a common bottleneck going to an 

even larger network. This may depict a high-level picture of traffic self-similarity from a 

network topology point of view. 
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2.3 How does network shape traffic? 
In this section, I use a semi-experimental method to demonstrate how the network 

itself impacts on the traffic self-similarity.  

 

Figure 2-5 A log-scaled wavelet energy plot 

2.3.1 The energy plot 

Figure 2-5  is a typical log-scaled wavelet energy plot from analysis of a network 

traffic trace. This plot is calculated by the partial energy ][ m
ndVar  at each scale using 

(2.20) in Section 2.1.2.2. A linear section in this plot indicates an energy scaling. Clearly, 

there are two linear segments in Figure 2-5: the segment between scales 1-5 and the 

segment between scales 11-16. They are referred to as SRD and LRD, respectively. As 

mentioned earlier, another important property in this plot is the scale K, the “knee” for 

LRD. 



 28

2.3.2 A 5-parameter traffic profile 

We can profile a traffic self-similarity based on the signal energy plot (Figure 2-5). 

Here, we need to assume that traffic has Gausianity. This assumption has been widely 

used previously [43] and is considered to be valid if traffic is an aggregation of many 

traffic flows from a large number of users, e.g., traffic data on backbone networks[10]. 

Using the energy plot, we can obtain a simple parametric traffic profile by five 

parameters: (H, ξ)SRD, K, (H, ξ)LRD.  Here, (H, ξ)SRD represent the scaling structure for 

SRD and (H, ξ)LRD for LRD. K is the knee scale. 

2.3.3 The source traffic model 

 

Figure 2-6 The source traffic model used in simulation 

Figure 2-6 shows the source traffic model in the simulation. There are N TCP 

connections, with a Poisson arrival rate λ. The size of each connection follows a Pareto 

distribution with mean µ and shape α. Those traffic flows are aggregated at node 0 and 

go to node 1. Traffic is collected on the link between nodes 0 – 1. 

2.3.4 Simulation and results 

In the experiment, six variables are chosen. They are categorized into three groups: 

-  Variables on network: bandwidth and delay. 
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-  Variables on traffic sources: the number of connections and the shape of 

Pareto distribution. 

-  Variables on TCP connections: the packet size and the TCP sender’s 

maximum congestion window size. 

The experiments are conducted using the NS-2 simulator, and the simulation time 

of each trial is one hour. The following observations are made based on the results shown 

in Figure 2-7 (a) – (f).  

(a) Increasing the bandwidth does not have any impact on LRD, but will smooth the 

effect on SRD (Figure 2-7.a). Traffic flows originally are uncorrelated. However, since 

the link 0 – 1 is a bottleneck, TCP flows will be synchronized by TCP control 

mechanisms. This makes TCP flows correlated. The smaller the bandwidth the higher the 

correlation will be at the bottleneck. As discussed in Section 2.2, TCP mechanisms 

control traffic flows at SRD. Therefore, at some point, increasing the bandwidth will only 

affect SRD. 

(b) Figure 2-7.b shows that the link transmission delay, i.e., 1/2 RTT, is vital in 

separating the scaling regions between SRD and LRD. Since the scaling change at K 

indicates the periodicity in the traffic correlation structure, RTT is the key factor that 

represents the period at this scaling range. Note, this timescale of K is approximately 

twice of the transmission delay, because the energy scaling stops at the ascending 

timescale by one. The delay does not change the scaling structure, but reduces TCP 

throughput as RTT increases. Because RTT separates the SRD and LRD regions, this 

implies that the transport protocols determine the scaling behaviors at the small 

timescales.  
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(c) Increasing the connection arrival rate raises the traffic loads, thus raises the 

energy level. But, it does not affect the scaling structure, i.e., the slope of the energy plot 

(Figure 2-7.c). This shows traffic independent among the connections.  

(d) The Pareto shape factor of connection sizes determines the scaling structure at 

both SRD and LRD (Figure 2-7.d). As the factor α decreases to 1, the Hurst parameter H 

increases and is close to 1. Then, traffic is more correlated. The relationship is H = (3 - 

α)/2 [6].  

 (e) Adjusting the TCP maximum congestion window sizes changes SRD but not 

LRD (Figure 2-7.e). This can be explained by packet-level burstiness on self-similarity 

(referred to the discussion in Section 2.2). It shows the difference of SRD with the same 

traffic load. 

With a window size of 100 (packets), it has a SRD region across scales 1 – 8. For 

the packet size at 1000 bytes and the network bandwidth at 10Mb/s (in my simulation), 

this equals to a maximum packet burst period of approximate 80ms from one TCP 

connection. For a RTT of 300ms (corresponding to scale 8), it is approximate to a quarter 

of link capacity (80ms out of 300ms). This estimates the maximum packet burst period. 
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Figure 2-7 Log-scale wavelet energy plots: How does the network impact on self-similarity? 
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On the other hand, at the TCP window size of one, there is no packet burst at the 

small timescales. SRD shows flat. For the same traffic load, traffic in this case is less 

bursty – packets are spread out under the scale 8.  

(f) Like TCP window sizes, the larger packet sizes impact on SRD (Figure 2-7.f).  

The scaling structure appears to be more correlated as the packet size becomes larger, 

which results in the higher packet-level burstiness at SRD.  

2.3.5 Traffic bursts with self-similarity 

 

Figure 2-8 Self-similarity and bursts 

The above experiments indicate that there is a relationship between self-similarity 

and traffic burstiness, which we reported in [49]. Illustrated in Figure 2-8, bursts are the 

discontinuous packet arrivals with time-intervals proportional to their scales. The greater 

the self-similarity (H→1), the smaller the intervals are, and the greater the bursts are.  In 

other words, burstiness gives the sense of “dense”. 
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2.3.5.1 A formulation of traffic burst 

From self-similarity (2.1), we may estimate the traffic burst at a given scale. 

Considering, at the smallest scale m = 20 = 1, the average signal energy is expressed as 

2
0

2
0

2 ])[( µσε +== XEX .      (2.32) 

σ0 is the standard deviation and µ0 is the mean of X. 

For the aggregated signal X(k) at scale k, 
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From self-similarity, we have  

  XX Hkk )1()( 2 −−=        (2.34) 

and  
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Correspondingly, at a scale k, the signal energy of X(k) is expressed as 

2
0

22)( ])[()( µσε +== k
k

X XEk .      (2.36) 

We assume that the signal energy at the scale k is concentrated on the “large” signal 

defined as bursts Bk. Therefore, 2
0BX ≈ε , and 2

)( kX Bk ≈ε . Conveniently, we obtain the 

formula  

.)(2 2
0

2
0

2
0

)22( µµ +−= − BB Hk
k        (2.37) 

Equation (2.37) can be used to derive a traffic burst size Bk from B0. We can estimate 

the burst size B0 from the maximum packet size against the network bandwidth.  For 

example, on a 10Base-T Ethernet, a 1500-byte packet at 10Mb/s determines the smallest 

time interval for the timescale is approximate to 1.2ms. If a timescale is chosen as 2ms, 
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then we find B0 = 6Mb/s. With an estimated Hurst parameter H at each scale, this 

formulation results in a traffic burst profile. 

There are some limitations in this algorithm. First, the formulation requires an 

estimation of the Hurst parameter in every two scales, which may not give an accurate 

result. Second, the distribution of traffic changes from a small scale to a large scale. So, 

the algorithm is not accurate to calculate bursts at large scales. Given those issues, this is 

a simple method to estimate the traffic flow throughput at the connection level.  

2.3.5.2 Analysis with real traces 

A. Description of the trace 

The trace in this experiment was collected at the gateway of a college network at 

7:30-8:30PM on Friday Jan 25, 2002. The trace has one-hour duration consisting of 800k 

IP frames. About 95.3% of frames and 98.5% of bytes are TCP, and 4.2% of frames and 

1.4% of bytes are UDP. Within TCP, 45% of frames and 63.2% of bytes are KaZaa 

traffic(port 1214), only 28.4% of frames and 27% of bytes are Web (HTTP port 80). So, 

KaZaa traffic is more than twice as much as Web traffic in bytes in this trace. 

The network has a T1 connection to access the Internet and a 10base-T Ethernet 

LAN linked to local users. A 100Mb/s Ethernet router switches traffic at the central hub, 

at which the trace was collected. A Linux box running TCPdump performed the packet 

recording. The size of the network is several hundred users.  

B. Self-similarity analysis on traffic 

Figure 2-9 plots the wavelet energy for KaZaa, Web and combined TCP traffic. It is 

shown that Web traffic has a knee at the scale 8. The equivalent timescale is around 
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250ms, which is approximately twice the typical RTT that HTTP connections had in the 

trace. This agrees exactly with the result in the previous sections that the “knee” is 

controlled by RTT. In the SRD region (scales 1 – 5), KaZaa curve is close to the 

combined TCP trace, and in the LRD region (scales 8 – 18), the Web curve is close to the 

TCP trace.  However, in the SRD region, the Web traffic has little impact, while the 

KaZaa traffic does not affect the LRD region. 

 

Figure 2-9 Comparisons of energy plots for KaZaa (kaz) and Web (htp) and the two-combined 

TCP traces 

C. Traffic burst profiles 

From a practical point of view, we may use traffic bursts in multiple timescales to 

classify the traffic processes. On a 10Mb/s Ethernet, the transmission time for a 1500-
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byte packet is 1.2ms. The smallest timescale at 2.048ms is used to calculate the burst B0. 

Applying (3.6), we can compute the burst sizes at ascending timescales. (Since it 

corresponds to a timescale, the traffic burst is the same as the burst bandwidth.)  

Figure 2-10 plots the profile for the Web trace. At small timescales (m < 4), the 

bandwidth drops sharply. This corresponds to the packet-level bursts, showing the LAN 

behavior of traffic.  

 

Figure 2-10 The Web traffic burst profile vs. timescales 

The interesting region is the scale ranges m = 8 – 13 (250ms ~ 8s), where the burst 

bandwidth only fluctuates within 600 – 800kb/s. This is the range of the maximum 

throughput of the Web traffic flow at the common bottleneck of the T1 link access to the 

Internet.  A scaling range can also be found in the energy plot (Figure 2-9), which is the 

initial linear region of LRD. It clearly indicates that the Web traffic is shaped by TCP 
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mechanisms at these timescales. In other words, many TCP micro-flows of the Web 

traffic are multiplexed and share the T1 link at these timescales. Furthermore, the average 

throughput of the Web traffic flow is 260kb/s (below the burst bandwidth at the largest 

timescale). The plot shows the burstiness of Web traffic exists in all large scales, i.e., 

LRD.  

 

Figure 2-11 The KaZaa traffic burst profile vs. timescales 

On the other hand, the traffic burst profile of the KaZaa trace displays a different 

picture (Figure 2-11). In the scale range m = 4 – 6, the traffic profile has a big “belly”. 

But it has a very short “tail” after the scale m = 13, where the burst bandwidth becomes 

equal to the mean. So, this KaZaa trace has no LRD characteristics, but it is burstier at the 

packet level (the small timescales). These properties are also shown in the energy plot 

(Figure 2-9).  
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Note that the KaZaa traffic has a higher throughput at 520Kb/s, twice as much as the 

Web trace (260Kb/s). By TCP mechanisms, KaZaa traffic microflows are also shaped at 

the T1 link. But, it is at a much larger timescale m = 12 (approximately 4s), because the 

average RTT in the KaZaa trace is around 2s.  

This study raises the question of whether Heavy-tailedness is the sole cause of traffic 

self-similarity at LRD. In both size and throughput, the KaZaa traffic flows are much 

larger than the Web flows, but KaZaa clearly shows less LRD. So, what else could 

determine LRD in network traffic? From an application point of view, KaZaa has little 

correlation at the connection level while Web traffic does. 

2.3.6 Summary 

Self-similarity is a mechanism that affects network traffic actively. In this study, 

this mechanism is interpreted in great detail with respects to traffic structures at the 

different protocol layers and timescales. This view is an improvement over the popular 

theory that self-similarity of network traffic is only caused by the heavy-tailed 

distribution of file sizes. 

The scaling properties of traffic can generally be divided into two regimes: the SRD 

region at small timescales and the LRD region at large timescales. Previously, it was 

unclear how these regions are separated and how traffic is controlled in each scaling 

region. In this report, it can be identified that the network transmission delay (related to 

RTT) separates the two scaling regions. This gives a physical source of the periodicity in 

traffic self-similarity. By analyzing the results from numerous simulations, I have found 

that:  
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(1) Bandwidth, TCP window size, and packet size have impacts on the SRD region.  

(2) Heavy-tailedness (Pareto shape parameter) shapes the structure of LRD, but it is 

not the only factor, and the heavy-tailedness of traffic may not be caused solely 

by the distribution of file sizes.  

(3) These network parameters (e.g., bandwidth, packet size, TCP window size and 

RTT time) reallocate data energy in the signal power spectrum. The effect of 

their mechanisms will be examined in more detail in Chapter 3 using 

multifractal analysis. 

The property of burstiness on traffic self-similarity leads to the development of a 

traffic burst profile. The traffic burst profile is applied to a real traffic trace to profile 

KaZaa and Web traffic, and the results are consistent with the network mechanisms, e.g., 

they represent the packet-level bursts and the connection-level throughputs at a shared 

link. 
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CHAPTER 3 

MULTIFRACTAL DATA ANALYSIS 

Self-similarity analysis uses the fractal power spectrum (i.e. second-order statistics) 

and cannot reveal any detail at a particular point. Fractals are heterogenous rather than 

homogenous. They are characterized by pointwise singularities. In a deterministic fractal 

like a Sierpinski Triangle, we can “zoom in” the image and find similar structures inside 

the image. However, most natural fractal objects such as landscapes are random: there is 

not exactly same shape found in all scales. In engineering, we want to find a fractal 

measurement to analyze fractals with randomness. This measurement is called 

Multifractal Measure, originally introduced by Mandelbrot in 1972. Multifractal analysis 

has several formulations. Among them two representations have been widely used in the 

literature. One is its original derivation based on the binomial cascade process[34]. 

Another analyzes fractal data in the wavelet paradigm and uses wavelet coefficients to 

represent the multifractal functions[3][19][29]. Both methods describe the fractal 

structure using the distribution of Hölder exponents. 

In this chapter, we will study these two methods and apply MFA to analyze network 

traffic. 
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3.1  Multifractal analysis 

3.1.1 Local singularity with Hölder exponent 

A fractal is characterized by its singularities. Singularity implies an irregular 

structure within a signal. In mathematics, the notion of pointwise regularity (also called 

Hölder exponent) is used to represent the singularity concept in fractals. Below is a brief 

introduction of signal singularity analysis based on the wavelet theory [28][29]. 

Pointwise regularity describes the function’s differentiability at a particular point. A 

function ƒ with m-differentiations in a neighborhood of v can be approximated by a 

Taylor series pv with a polynomial of degree m: 

1
( )

0

1( ) ( )( ) .
!

m
k k

v
k

p t f v t v
k

−

=
= −∑     (3.1) 

If ƒ has a singularity at a point v, then ƒ is non-differentiable at v and there exists the 

Hölder exponent1 α characterizing the singular behavior as 

,| ( ) ( ) | | | .vt f t p t K t v α∀ ∈ − ≤ −�     (3.2) 

Here, pv is a polynomial of degree m = α as expressed in (3.1), and K and α are positive 

real numbers such that (3.2) holds. The Hölder exponent αv is the supremum of all α in 

(3.2).  If 0 < α < 1, the function f(t) is bounded but discontinuous at v. 

Localize signal singularities using wavelet analysis 

To localize the singularities within a signal, we apply a multiscaling process using a 

wavelet function. In the neighbourhood of a point v, the function f can be approximated 

as 

                                                 
1 The pointwise regularity is also referred to as Lipschitz-Hölder exponent in the mathematic context. 
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( ) ( ) ( )v vf t p t tγ= +     (3.3) 

with 

| ( ) | | | .v t K t v αγ ≤ −  

In (3.3), pv is a polynomial of (3.1). So, ( )v tγ  is equivalent to the right hand side of (3.2).  

To analyze the signal, we apply a wavelet function ψ(t), which has n vanishing 

moments (n > α). This means ψ(t) has n continuous derivatives with fast decay. So, at a 

point v, we have 
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The stability of wavelet analysis requires that f has some uniform regularity. If f is 

uniformly singular with the Hölder exponent α over [a, b], then the wavelet transform is 

bounded as 

1/ 2( , )  for 0.Wf u s Ks Kα+≤ >         (3.5) 

Therefore, we can apply the wavelet function ψu,s to locate α over the range [a, b] [29] 

p.169.  

In wavelet theory, this is analyzed asymptotically. Let ψu,s have a compact support 

within [ ],C C− . At the neighbourhood of a point v, the wavelet function has a cone of 



 43

influence as u v Cs− ≤ . In the cone of ψ, ( , )Wf u s  has a local maximum, called the 

modulus maximum. From (3.5), we can find 

2 2 2
1log ( , ) log ( ) log .
2

Wf u s K sα≤ + +     (3.6) 

The Hölder exponent α is equivalent to the largest slope in (3.6) along the maxima 

line moving towards the point v. So, this analysis method that isolates signal singularities 

in a wavelet domain is referred to as wavelet modulus maxima (WMM) [29] p.176. 

Wavelet modulus maxima (Mallat) A point 0 0( , )u s on the wavelet time-scale 

plane is called modulus maximum if it satisfies both 0 0( , ) 0Wf u s ≠ and 0 0( , ) 0Wf u s
u
∂ =
∂

. 

The wavelet transform ( , )Wf u s can be interpreted as the derivative of f averaged in 

the neighbourhood of u with a kernel dilated by s. If a Gaussian function θ is used, the 

kernel θ has a fast decay and 
0

1lim [0].ss
K

s
θ δ

→
=  A Gaussian kernel can guarantee that a 

series of modulus maximum points converge from coarse scales to the finest scale at a 

singular point [29] p.178. 
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Figure 3-1 Wavelet modulus maxima of a network traffic trace 

 (a) A 512-point network traffic sample path.  (b) Wavelet transformation of the signal with the 

first derivative of Gaussian function kernel. (c) Wavelet modulus maxima plots converge at the 

singular points. The figure is produced using Wavelab 802 toolkit[46]. 

Figure 3-1 shows an example of wavelet modulus maxima analysis on a fractal 

signal. It demonstrates that a complex signal underlines some basic structure, which can 

be extracted by using wavelet modulus maxima analysis. The signal wavelet energy will 

follow the local maxima lines toward the singular points. For network traffic in Figure 

3-1, we can see that the traffic signal is singular almost everywhere. 

3.1.2 Multifractal 

Wavelet theory can analyze various fractal signals. But it has a stability problem. 

The issue of choosing a wavelet function for a particular type of signals currently is an 

advanced research topic by itself. Network traffic generally has a Hurst parameter less 
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than one. That means that the vanishing moment of a wavelet function does not help 

much isolating singularities of signals. To analyze a positive data process such as 

network traffic, we can use a simpler method, multifractal binomial measure, which was 

originally proposed by Mandelbrot. Several works have studied this subject 

[29][30][32][33][34]. 

3.1.2.1 Binomial cascade processes 
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Figure 3-2 Illustration of binomial cascade 

A binomial cascade (BC) [34] is a simple deterministic multifractal process. Shown 

in Figure 3-2, the process begins with a uniform mass of 1.  Iteratively, each segment is 

subdivided into two parts proportional to p0 and p1. Here, set p0 + p1 = 1. At a stage n, the 

number of intervals is N = 2n, which can be represented by a set 
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Therefore, the mass of a subinterval xi is ( )
0 1 ,  ,k n k

i p p k nµ −= ≤ and the binomial 

measure is denoted as ( ) .i iM x µ=  Let Sξ  denote a subset of subintervals with a measure 

( )
0 1 ,   = k n k k

np pξµ ξ−= . The population of Sξ  is 
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! 1 !n
nN

n n
ξ

ξ ξ
=

−
.      (3.7) 

With ( )nN ξ , we can quantify a fractal set Sξ  with a particular value ξ , which leads to 

the formulation of fractal dimension and multifractal spectra. 

3.1.2.2 Fractal dimension and scaling exponent ( )qτ  

In a fractal set, the length of a subinterval is 2 nδ −= . Therefore, we can calculate 

the measure ( )dM Sξ as 0δ → and n →∞ , and determine the fractal dimension ( )D ξ  of 

the set Sξ  by the following:  
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Expression (3.8) implies that ( )dM Sξ  will be countable as 0δ →  only for 

( )d D ξ= .  

For a non-deterministic fractal, we have to measure the scaling function to calculate 

the fractal spectrum. A set S with N elements has a measure 
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The exponent ( )d qτ= −  determines that the measure converges as 0δ → . The 

moments of the random variable {µI} are scalable with ( )qτδ . So, ( , )N q δ  can be 

expressed as 

( )

1
( , )

N
q q
i

i
N q τδ µ δ

=

=∑ ∼ .  (3.10) 

 

Figure 3-3 The scaling function of a binomial measure. 

( )qτ  is ascending and has two special values at (0, -1) and (1, 0). 

The exponent ( )qτ  is called scaling function, which weights the random variable 

{µI} by choosing a moment q and thus characterizes the fractal set. It can be expressed as  
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There are following special points on ( )qτ : 
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When q varies in the range ( , )−∞ +∞ , it selects different values of {µI}. The small 

values of {µI} are captured by q →−∞ , and the large {µI} are controlled by q →+∞ . 

Correspondingly, there are two limits in ( )qτ . Let µ- and µ+ denote the minimum and the 

maximum of {µI}, respectively. We should have 
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Also, at 1q = , we have 
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( )δΗ  is recognized as the partition information entropy at the resolution scale size 

δ.  Let Sα be the fractal dimension of the set 
S

Sα , we have 

( ) lnSδ α δΗ = − .  (3.15) 

In particular, the binomial cascade process has 

 0 1ln( )( )
ln 2

q qp pqτ += − .  (3.16) 
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3.1.2.3 ( )f α  curve and multifractal spectrum 

The scaling function ( )qτ  characterizes the multifractal set and leads to the 

formulation of the multifractal spectrum ( )f α .  

f(αααα) on a multiplicative binomial process 

From Section 3.1.2.1, (3.7) can be written approximately as [31] p.74 
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2 1
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− + − −

−
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Then, we can define an exponent  
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( )

ln 2
f

ξ ξ ξ ξ
ξ

+ − −
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so that we have ( )( ) f d
dM S ξ

ξ δ δ−
∼ . Therefore, the fractal dimension of set Sξ  is 

( )d f ξ= . ( )f ξ  is a convex curve with a maximum (0.5) 1f = . The measure ( )M x is 

completely characterized by the union of fractal subsets Sξ , each of which has its own 

fractal dimension.  

Using the definition of Hölder exponent at a singularity, we can write 

( ( ) ) ( ( ))M x M x α
ξµ ξ δ ξ δ= + − = .  (3.19) 

The measure (1 )
0 1
n np pξ ξ

ξµ
−=  gives the relationship between the Hölder exponent and the 

fractal set index ξ  as below 
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Given p0 and p1 (p0 < p1), (3.20) is a linear mapping between α and ξ. For 0 1ξ≤ ≤ , we 

have 

1
2min 1 1

1
2max 0 0

ln ln 2,  as 0 and ,
ln ln 2,  as 1 and .

p p
p p

α ξ
α ξ

= − = ≥
 = − = ≤

    (3.21) 

So, ( )f ξ  can be replaced by ( )f α .  

In general, for a multifractal set S, suppose that there is a fractal subset Sα  

containing a Hölder exponent α. ( , )N q δ  is approximated as ( )f qα αδ − + , which is 

dominated at α(q) as ( ) ( )q q fα α× −  reaches the maximum. The exponent is related to 

τ(q).  If we know the scaling function τ(q), we may calculate f(α) as the following: 

( )( ) ,d qq
dq
τα = −        (3.22) 

then, 

( ( )) ( ) ( ).f q q q qα α τ= −       (3.23) 



Figure 3-4 Multifractal spectrum f(a) fo
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Figure 3-5 Plots of partition function at different q values. 

3.1.2.4 Wavelet multifractal analysis (WMFA) 

Multifractal spectrum can be calculated using a wavelet transform. In WMFA, we 

define a Partition function ( , )Z q s , similar to the measure ( , )dM q δ ,   as 

( , ) ( , )
N

q
i

i
Z q s Wf u s=∑ .      (3.24) 

So, let τ(q) denote the scaling function that measures the asymptotic decay of Z(q, s): 
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=  and ( )( , ) ~ qZ q s sτ . With 
1
2( , ) ~Wf u s sα+ , the scaling function is  

1
2( ) inf ( ( ) ( ))q q f

α
τ α α= + − .      (3.25) 

With an inverse of (3.25), the multifractal spectrum in WMFA is  



 53

1( ) inf ( ( ) ( ))
2q

f q qα α τ= + − .      (3.26) 

3.1.2.5 Summary 

In summary,  a multifractal set S is a union of fractal subsets Sα  with the pointwise 

Hölder exponent α. The multifractal set has a measure ( , )dM q δ , which is controlled by 

the order of moments q and characterized by the scaling function ( )qτ . At a moment q, 

only proper values of µi are selected, and correspondingly α(q) is found. From α(q), we 

can calculate the multifractal spectrum ( )f α .  
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3.2 Multifractal data analysis  

Multifractal analysis can classify different classes of processes. It is an advanced 

analysis method, but it is non-intuitive in real data analysis. In this section, MFA is tested 

using two known processes, binomial cascade and Poisson. Then, MFA of network traffic 

processes are compared with these cases.  

3.2.1 Multifractal spectra of general data processes 

3.2.1.1 Binomial cascade processes (BC) 

Described in Section 3.1.2.1, a binomial cascade process has a binomial measure 

( )
0 1 ,  .k n k

i p p k nµ −= ≤  BC is a deterministic fractal process. Shown in Figure 3-6, there are 

three traces for p = 0.25, 0.35, and 0.45 respectively. We see that the trace 1 (p = 0.25) is 

more vibrant than the trace 3 (p = 0.45). Figure 3-7 shows the histograms of the three 

traces with a log2 scale. It illustrates that their log-scaled distributions are symmetrical. 
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Figure 3-6 Sample paths of three binomial cascade processes: p = 0.25, 0.35, and 0.45, 

respectively. 

 

Figure 3-7 Histograms in log-scale for the three binomial cascades. 
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Figure 3-8 Multifractal spectra of three binomial cascade processes. 

The multifractal spectra of these BC processes are plotted in Figure 3-8. We can 

find the following properties: 

(1) The width of f(α) is related to the variations of data values. A large span 

of f(α) reflects large data changes in the processes. 

(2) When p increases, f(α) moves to the left, and α0 increases. This shift 

indicates the changes of the data structure. 

(3) f(α) is symmetrical and centered at α0. This is because the log-scaled 

histograms are also symmetrical in Figure 3-7. 
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3.2.1.2 Poisson processes 

Figure 3-9 plots three Poisson processes with mean = 1, 2, and 5, respectively. 

Figure 3-10 illustrates their log-scaled histograms.  

 

Figure 3-9 Sample paths of two Poisson processes, mean = 1, 2, 5. 

 

Figure 3-10 Histograms with log-scales of three Poisson processes with mean 1, 2, and 5. 
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Figure 3-11 Multifractal spectra of Poisson processes. 

In this test, Poisson random processes are compared with a binomial cascade 

process (p = 0.45). Figure 3-9 plots three Poisson processes with the same mean = 1, and 

two other Poisson processes with mean = 2 and 5, respectively. Although Poisson 

processes are not fractal, they exhibit scaling in some limited ranges. We can observe the 

following features from Figure 3-10, Figure 3-11, and Figure 3-12: 

(1) Asymmetrical: Unlike BC, the multifractal spectra of Poisson processes 

are asymmetrical. This can be explained by their asymmetrical log-scaled 

distributions shown in Figure 3-10. In a Poisson process, there are a few 

large values and many small values close to the mean. So, it appears in 

MFA that the left-side curve is short and the right side is extended. 
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Figure 3-12 Poisson process multifractal spectra (2). 

(2) Narrow: In MFA plots of Poisson processes, α varies in small ranges: ∆α 

~ 0.2 for the Poisson process with mean = 5; and ∆α ~ 0.35 for the 

Poisson processes with mean = 1. As the mean of a Poisson process 

increases, the range of α narrows (Figure 3-12). 

(3) Identical on fractality: Unlike binomial cascades (Figure 3-8), these MFA 

plots look very similar to each other. For example, all are almost centered 

at α0 ~ 1.0. The plots (labeled ‘m11’, ‘m12’, ‘m13’ in Figure 3-11) are three 

separated Poisson processes with the same mean of 1. They are very close 

to each other on multifractal spectra.  

∆α 
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3.2.2 Multifractal spectra on network traffic processes 

3.2.2.1 Simulated network traffic 

 

Figure 3-13 Multifractal spectra of network traffic (using NS-2 simulations) on small timescales 

(SRD). Minimum timescale is 1.024ms. 
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Figure 3-14 Multifractal spectra of network traffic (using NS-2 simulations) on large timescales 

(LRD). Minimum timescale is around 0.5s. 
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In this test, multifractal analysis is applied to the same simulated network traffic 

datasets presented in Chapter 2. Multifractal analysis allows us to examine the data 

processes in more detail. Two versions of results are presented: (i) MFA on small 

timescales (SRD) in Figure 3-13; and (ii) MFA on large timescales (LRD) in Figure 3-14. 

The following can be found: 

(1) Shorter network delay results in burstier traffic. This is shown in that the 

multifractal spectrum becomes wider as the delay decreases, especially on 

the left side of the spectrum.  

(2) With respect to connection rate (or the number of connections per hour), 

we expect traffic to be burstier when there are fewer connections. This is 

because there is less traffic load on the network, so an individual traffic 

flow becomes burstier. Also, the fractal structure changes, which is not 

clear in self-similarity analysis reported in Chapter 2. 

(3) With respect to bandwidth, traffic seems to be faster only at small 

timescales (SRD) as the bandwidth increases. With large timescales 

(LRD), the behavior is the same (Figure 3-14). This will be discussed 

further in Chapter 5. 

(4) The TCP sender’s congestion window is another factor which affects 

greatly the burstiness of TCP traffic. For both SRD and LRD, with larger 

window sizes, the multifractal spectrum shows that traffic is burstier. 

However, with the smaller windows, the spectrum becomes close to a 

Poisson distribution’s: ∆α shrinks, and the two sides of the spectrum are 
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uneven. The right side of the spectrum is larger, i.e., traffic is constrained 

at the sender side. 

(5) Increasing packet sizes does not affect the fractal property in LRD but it 

does affect SRD. In SRD, the right side of the spectrum gets wider.  

(6) With respect to the Pareto shape factor, traffic becomes burstier when the 

factor decreases to 1. It is the same as the results seen from self-similarity 

analysis. 

In general, these traffic processes belong to the same class of random process with 

the following common features:  

(1) The ranges of α are mostly between 0.7 and 1.2 in LRD and between 0.7 

and 1.3 in SRD. 

(2) The left sides of multifractal spectra are much larger, especially in LRD. 

This is a clear difference from a Poisson distribution’s. It indicates that 

network traffic is burstier than a Poisson process. 

(3) The centers of the spectra α0  are around 0.9 ~ 1.0 in SRD and around 1.0 

~ 1.1 in LRD. Evidently, three factors affecting α0  are connection rate, 

TCP window size and Pareto shape factor. 
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3.2.2.2 Internet traffic traces 

 

Figure 3-15 Multifractal spectra of Internet traffic (from Internet Traffic Archive). 

In this test, I use five Internet traffic traces downloaded from Internet Traffic 

Archive[59]. The two traces ‘pAug89’ and ‘pOct89’ are WAN traffic from Bellcore. 

Each contains 1 million Ethernet packets. ‘pAug89’ began at 11:25am on August 29, 

1989, and ran for about   3142.82 seconds. ‘pOct89’ began at 11:00am on October 5, 

1989, and ran for about 1759.62 seconds. There are also three traces from Lawrence 

Berkeley Laboratory (LBL). The trace ‘LBL3’ is a two-hour WAN TCP traffic, time 

from 14:10 to 16:10 on Thursday, January 20, 1994, capturing 1.8 million TCP packets. 

The packet drop rate is about 0.0002. The trace ‘LBL4’ ran from 14:00 to 15:00 on 

Friday, January 21, 1994, and ‘LBL5’ ran from 14:00 to 15:00 on Friday, January 28, 

1994. Each captured 1.3 million TCP packets, dropping about 0.0007 and 0.0005, 
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respectively. The LBL traces were made using tcpdump on a Sun SPARCstation. Their 

timestamps have microsecond precision.  

Figure 3-15 shows the multifractal spectra for these WAN traffic traces. We can see 

the three ‘LBL’ traces are very similar to each other, especially for ‘LBL4’  and ‘LBL5’. 

This can be understood since all three are TCP traffic captured under the similar 

conditions (e.g., similar network and relatively the same time period of a day/week). The 

two ‘Bellcore’ traces are different from “LBL”, particularly on the right side. This 

indicates unevenly distributed packet sizes, similar to the simulated scenario in Section 

3.2.2 - (5). Since these two traces included all Ethernet packets (unlike ‘LBL’, which 

only contains TCP packets), the packet size distribution will be different. So, the 

difference in packet sizes could be one of the causes. 

In addition, the multifractal spectra from the Internet traffic traces are very close to 

the simulated traffic results described in Section 3.2.2. In particular, the ranges of α are 

between 0.8 and 1.3, and the centers, α0, are between 1.0 and 1.1. 

3.2.3 Summary 

Multifractal spectra analyzes the functional properties of data processes. By using 

binomial cascade and Poisson processes as examples to compare with network traffic 

processes, the following results are found from this study:  

(1) With respect to LRD, increasing the bandwidth does not change the traffic 

throughput (or network performance). The two factors affecting the traffic 

throughput are network delay and TCP window size.  

(2) Also With respect to LRD, more traffic load with a larger number of connections 

makes traffic less burstier, i.e., there is smoothing by multiplexing. Reducing 
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packet sizes also reduces the traffic load, but the burstiness in LRD is not 

affected. This might suggest that in order to improve network efficiency we need 

to reduce the packet sizes and split traffic into multiple connections. 

(3) The burstiness caused by Pareto shape α is inherent to traffic. 

(4) With respect to SRD, these six factors all affect traffic burstiness to some extend. 

But, because three factors, bandwidth, TCP window size, and network delay, do 

not improve throughput in long term, we need to control them to reduce 

burstiness, especially by using the tradeoffs between the bandwidth and the 

network delay. 

(5) In general, network traffic processes have values of the Hölder exponent α 

between 0.7 and 1.2 in LRD and between 0.7 and 1.3 in SRD. They are different 

from Poisson processes. The center exponents of the spectra α0 are typically 

around 0.9 ~ 1.0 in SRD and around 1.0 ~ 1.1 in LRD. Three factors affecting α0 

are connection rate, TCP window size and Pareto shape factor. Since the Pareto 

shape is inherent in traffic, we can use other parameters to counteract it and 

reduce the burstiness. 
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CHAPTER 4 

APPLICATIONS FOR EFFICIENT TRAFFIC 

CONTROL 

Self-similarity and long-range dependence present new challenges to network 

engineering. With these two properties, data traffic exhibits fractal behaviours, which 

produce high peak-to-average bandwidth ratios. Therefore, those problems make it much 

more difficult to predict, quantify, and control data traffic, in contrast to traditional voice 

traffic in telephone networks. Especially in the recent years, many new bandwidth-

consuming applications with multimedia content have become increasingly popular, 

which causes network traffic to be even more fractal in nature. Multimedia content 

requires network providers to improve network efficiency and to improve the quality of 

services to customers. How to make networks more efficient while still maintaining a 

good quality of service becomes the key issue in the network-engineering domain. This 

chapter will introduce a novel solution on efficient traffic control based on the results 

from multifractal analysis.  
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4.1 Network performance evaluation 

4.1.1 Basic parameters of networks 

First, let us review a few basic concepts of network performance evaluation. A 

network can be viewed as a queueing system with three parameters:  

Traffic Load (X), the number of packets put into a network during a time interval. 

For Poisson traffic in traditional telephone networks, this can be represented by a 

predetermined mean value. However, for data traffic, packet arrival rates vary 

dramatically from time to time. The mean value of traffic is less accurate as a 

representation for traffic load. 

Throughput (S), the number of bytes transmitted through a network during a time 

interval. Throughput will increase with traffic load until reaching a maximum point, 

referred to as the Capacity (C). Because of rapid fluctuations of data traffic, it is almost 

impossible to utilize the full capacity of a network. So, there is another metrics, the 

network efficiency, which is the ratio between throughput and capacity.  

Delay (D), the amount of time that a packet takes in transmission in a network. 

While there is a propagation delay for signals through the physical media (wire or 

wireless), the majority of the time a packet spends in a network is due to buffer delay. For 

instance, a connection between points in the same continent will typically have a RTT in 

the order of hundreds of milliseconds while its propagation time is only a few tens of 

milliseconds. The buffer delay is also determined by network bandwidth, traffic load, and 

throughput. For fractal traffic, burstiness increases buffer delays, and it can be so severe 

that buffers overflow and packets are lost. Loss (L) is defined as the percentage of 

dropped packets.  
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4.1.2 Connection time factor 

A network object, such as a Web page, contains multiple packets. Packet delay only 

tells the time for a single packet.  In order to monitor the delay as a group, we need to 

modify the previous parameter for traffic delay.  

Packets in fractal traffic are correlated at both the packet level and the connection 

level. The measurement of individual packet delay cannot show how fast or slow a 

network object such as a Web page is retrieved. To compare delays, we should use the 

connection time. However, durations of connections vary from each other and cannot be 

simply unified. For example, an average connection time may be interpreted as 

representing either of two things: the average duration of connections or the speed of a 

network.   

For comparison of group traffic delays, a parameter, connection time factor (Γ ), is 

used, which is a ratio between the tested connection time and the benchmark time.  

Tested Connection Time[ ][ ] ,   is the connection index.
Benchmark Time[ ]

ii i
i

Γ =  

Here, the benchmark measurement is referred to a test with special settings, e.g., there is 

no bottleneck link, so Γ generally is greater than 1. 

4.2 Efficient bandwidth of fractal traffic 

The goal in the control of fractal traffic is to achieve the same or a better throughput 

by controlling the available bandwidth for fractal traffic flows. This optimum bandwidth 

is referred to as the efficient bandwidth (EB), noted as Eb[n]. Eb[n] is associated with a 

timescale n. For a different timescale, there is a different value of  efficient bandwidth. 
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4.2.1 Formulation of efficient bandwidth 

In a positive fractal process, a fractal measure is represented by  

αµ δ= .  (4.1) 

We can think µ as a fraction of the total mass 1. On the right hand side of (4.1), δ is the 

unit, related to a scale of the measure µ, e.g., δ = 2-n. We can choose any δ. α is the 

Hölder exponent, which describes the fractal structural information and may vary from 

point to point. According to MFA in Chapter 4, a fractal process can be characterized by 

its multifractal spectrum f(α). Let Sα be a subset of a fractal process S. So, we have 

( ) ( )

,  0S Sα ξ
α ε ξ α ε

ε
− ≤ ≤ +

= →∪ .  (4.2) 

Now, let V be the volume of traffic (in the number of bits) during a period T. So, we can 

derive the efficient bandwidth Eb[n] for the fractal traffic flow as 

[ ] ( [ ])[ ]    .
[ ] [ ]b
n V n VE n
n T n T

αµ δ
δ δ

= =   (4.3) 

If we apply [ ] 2 nnδ −= , we have 

 (1 )[ ] = 2 .n
b

VE n T
α−        (4.4) 

We recognize V/T is the average bandwidth of the flow. Therefore, the efficient 

bandwidth in a scale n is (1 )2 nα−  times of the average bandwidth. Furthermore, α is the 

Hölder exponent corresponding to the partition entropy (αS = −H(δ)/lnδ)  of the fractal 

traffic flow. 
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4.2.2 Properties of EB 

In the formulation of EB (4.4), Sα is a concentration set as α corresponds to the 

partition entropy of a fractal set. This assure that M(Sα) asymptotically converges to M(1) 

as n →∞ .  

Let α be in a range of [αs-ε, αs+ε]. In a simple binomial cascade case with p0 < p1 < 

1, the measure ( )M Sα  becomes the maximum at 0 0 1 1ln ln
ln 2s

p p p pα α += = −  and 

decays at a rate of 1/ 2n−  near αs. As n →∞ , ε is close to zero, and ( )M Sα  is close to 

(1)M . Therefore, the set Sα  is the concentration of the entire fractal set. 

For a fractal dataset, α must be less than 1, because Eb[n] is ascendant as n →∞ . 

We can easily observe the following on Eb:  

(1) When n is very small (n → 0), Eb is close to V/T. 

(2) When n is large (n→∞), the timescale is close to zero, and Eb is much greater 

than V/T.  

Therefore, to determine an efficient bandwidth Eb[n], we need to choose a time scale n, 

and then measure fractal exponents α. The computation of α is very simple and can be 

the number of bits that represents the traffic at a time t.   
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Figure 4-1 An example of efficient bandwidth vs. timescales. 

Example 4.1 Suppose a traffic stream of 400Mbits with α = 0.8 to be sent in a period of 

1000 seconds. Figure 4-1 shows the needed bandwidth vs. timescales. Here, the average 

bandwidth for this traffic stream is 400kb/s. But, below the timescale of 1s, the required 

bandwidth is 1.6Mb/s. With even smaller timescales, Eb increases exponentially with a 

rate 20.2n. 

Note that the efficient bandwidth is not a traffic burst bandwidth. Taking into 

account the overall random structure, an efficient bandwidth “averages” burstiness at a 

given timescale in fractal space. By applying the efficient bandwidth for a certain 

timescale, we see that traffic spreads out uniformly within the timescale. Above that 

timescale, the traffic flow appears to be the same. That is, the efficient bandwidth 
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removes burstiness of traffic in small scales while maintaining the fractal structure at 

higher traffic level, e.g., the connection level and the user session level. Therefore, this 

traffic smoothing will not degrade the quality of services to users. 

4.3 TCP traffic 

In this section, an experimental study of the fractal traffic control mechanism will 

be presented using the concept of efficient bandwidth on TCP traffic. Normally, Web, 

email, and FTP sessions are carried by TCP traffic. These are not time-critical 

applications. Choosing a timescale of 100ms or even a second should not affect services. 

But, packet bursts originate at millisecond or sub-millisecond timescales. Removing 

traffic burstiness will greatly increase the network efficiency. 

node 0
Bottleneck on Internet

node 1
Traffic Source

Servers

node 2
Traffic Sink

Users

a

b

 

Figure 4-2 The General Network Model 

The experiment set-up is similar to those in Chapter 2 and Chapter 3. A large 

number of  TCP flows simulated in NS-2 originate from “node 1” to “node 2”. In the 

middle is a bottleneck “node 0”. This simplified network model emulates a typical 
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Internet traffic scenario and is shown in Figure 4-2. “node 1” represents an Internet server 

domain, which typically has a high bandwidth for downstream data transfers. “node 2” 

represents a user group, which receives packets from the server group. “Node 0” acts as 

an Internet bottleneck, at which traffic experiences limited bandwidth, buffer delay and 

packet loss. 

4.3.1 An experiment 

In this experiments, four tests were conducted with the controlled bandwidth at link 

(b) at 0.3, 0.5, 1, 10Mb/s. Table 4-1 lists the experiment parameters. 

Table 4-1 Experiment parameters 

Items Contents 

Traffic Source - Poisson connections with Pareto distributed size  

- Number of connections: 3000  

- Connection arrival time: 0.6s 

- Connection Pareto size: 12  

- Connection Pareto shape: 1.5 

- Traffic type: TCP 

Links and 

Bandwidth 

 

- Link (a): 0.3, 0.5, 1, 10 (Mb/s) 

- Link (b): 1Mb/s, the bottleneck link with one-way time 75ms 

and buffer capacity of 10 packets. 
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Figure 4-3 Experiment results (1) 

Figure 4-3 shows histograms for delay and bandwidth. From these histograms, we 

can find the case of link “a” with 1Mb/s is the fastest one among the four cases. The 

10Mb/s link is a little slower because it has no bandwidth control and has packet drops at 

the bottleneck. The case with only 0.5Mb/s performs very well and has moderate 

throughput, but for the 0.3Mb/s link the performance is greatly degraded.  

The benchmark test has a 10Mb/s bandwidth without the bottleneck. Compared to 

the benchmark trace, the maximum connection delays are 164.356s (0.3Mb), 52.504s 

(0.5Mb), 12.986s (1Mb), and 18.536s (10Mb), respectively. In Figure 4-4, for the average 

of connection time factors, both the 1Mb and 10Mb cases are close to 1, the 0.5Mb is just 

over 2, and the 0.3Mb is greater than 9. From those numbers, it is obvious that the 0.3Mb 

link is congested, the bandwidth at 10Mb/s is too fast for the bottleneck, and 1Mb/s is 

sufficient enough but may not be efficient (note that the difference on throughputs 
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between the source’s and the user’s in Figure 4-4 upper right). So, how much bandwidth 

actually is needed for efficiently carrying a fractal traffic flow? 

 

Figure 4-4 Experiment results (2) 

Figure 4-5 shows the multifractal spectra. They are consistent with the above 

observations. The 1Mb link (yellow line) is slightly over the 10Mb link (cyan line), the 

0.3Mb link is throttled at 0.3Mb/s, and the 0.5Mb link is in the middle. Hölder 

singularities of αS are calculated as 0.9822 (0.3Mb), 0.9647 (0.5Mb), 0.9467 (1Mb), 

0.9484 (10Mb), and 0.9229 (the “benchmark” run), respectively. So, using (4.4), Figure 

4-6 plots the efficient bandwidth. For timescales less than 1s, the 0.3Mb link reaches the 

maximum of 0.3Mb/s so traffic is congested below this timescale. The 0.5Mb link has no 

problem under the 1s timescale. Its peak bandwidth is about 400kb/s at the smallest 

timescale of 10ms. Comparably, both the 1Mb link and the 10Mb link are close to 
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480kb/s at the maximum. Increasing bandwidth from 0.5Mb/s to 1Mb/s only has a small 

gain in throughput (400kb/s to 480kb/s). So, it is implied that the 0.5Mb link is the best 

among the four cases. However, in reality, choosing the right bandwidth between 

0.3Mb/s to 1Mb/s is not tightly defined. The best value also depends on the network 

environment, i.e., network traffic loads from other traffic flows. Using efficient 

bandwidth give an accurate estimation on how to multiplex fractal traffic flows to share 

the bandwidth at a common link. 

 

Figure 4-5 Multifractal spectra of traffic 

Figure 4-7 give the detail of the connection time factor and the packet loss. The 

outline of the connection time factor in the 0.3Mb/s case (red) resembles a fractal image 
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(Von Koch curve) in a random fashion, and that in the 0.5Mb/s case also looks similar 

but in a smaller scale. This demonstrates the traffic fractal behaviors in another aspect: 

when fractal traffic is constrained (by bandwidth), network delays increase nonlinearly. 

This finding invalidates the formula: /bandwidth traffic time= . The figure shows delay 

will increase exponentially with decreasing bandwidth. Figure 4-8 zoom in to show the 

variations in the connection time factor in finer detail, and the above property remains 

similar. 

 

Figure 4-6 The efficient bandwidths 
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Figure 4-7 Connection time factors and connection packet loss rate vs. time. 

 

Figure 4-8 Connection Time Factor in smaller time ranges 
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Furthermore, in Figure 4-7 bottom plot, we will also notice that the 10Mb link (blue 

dots) has packet losses in some connections. Large connection time factors in the 10Mb 

link are caused by their packet losses. The 10Mb case is the only one suffering packet 

losses in this experiment. It is apparent that without bandwidth control traffic is very 

bursty at the packet level, and those packet losses in fractal traffic occur in bursts which 

are non-uniform. 

4.3.2 Discussion 

In network engineering, efficiency is a key objective in network provisioning. 

Network efficiency is determined by traffic characteristics, e.g., the peak-to-average rate 

ratio. Dramatic traffic burstiness affects network utilization. Without traffic control, 

fractal traffic is bursty in multiple timescales. Simple multiplexing does not smooth out 

such burstiness rather than causes traffic congestions and packet losses. Fractal traffic 

needs to be measured and controlled to achieve higher network efficiency. 

A fractal traffic flow has an efficient bandwidth (EB). Above this bandwidth, there 

is limited improvement of performance. Large packet-level bursts may overflow the 

buffer at the bottleneck link and cause packet losses. Using EB can improve the network 

performance in the following aspects: 

(1) It reduces the degree of traffic burstiness, and more fractal traffic flows 

can be multiplexed without interference. Thus, the network efficiency can 

be improved.  

(2) EB is more accurate in measuring a fractal traffic flow bandwidth than the 

other conventional methods, such as the mean. Because of the scaling of 

fractal traffic, a flow with a small mean could have a large EB at a small 
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timescale. The scaling exponent plays a very important part in fractal 

traffic. 

(3) It is easy to calculate EB and to measure it in real-time to provide 

adaptive control. 

In addition, we can also find the following aspects of EB: 

(1) As α → 1, EB increases slowly with decreasing timescale. So for a given  

timescale, if α is close to one, there is a higher probability that the traffic rate is 

less than EB. 

(2) Decreasing EB, on the other hand, will increase the delay exponentially for a 

given α. We can no longer use the formula /bandwidth traffic time=  to 

calculate a network bandwidth to carry fractal traffic. 

  

4.4 Reliable UDP traffic 

Traffic analysis is proven even more useful for real-time applications where time is 

more crucial. With self-similarity analysis and multifractal analysis, we understand that a 

traffic process has a random structure, which is completely characterized by its 

singularity. The last section showed a method to derive the efficient bandwidth for TCP 

traffic from the singularity. Conversely, the singularity reflects a probability. If the 

efficient bandwidth is known, we can use the bandwidth to derive the probability that a 

real-time packet will be delivered so that it provides the reliability without 

acknowledgement in UDP traffic.  
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Below is a study for efficient and reliable transport of UDP game traffic on HFC 

cable networks[48] 

4.4.1 Introduction 

In recent years, the hybrid fibre coax (HFC) cable system for broadband access 

from household users has gained popularity dramatically. Besides typical data services, 

such as email, and Web browsing, many other types of applications have been developed 

on HFC networks. Among them, the interactive type of gaming application is the most 

popular one, which is attracting many customers. To operate such an application, a game 

server resides at a digital head-end (HE) and broadcasts messages to a group of users. 

Cable modem clients will respond with user messages to the server in real-time. 

On HFC cable networks, there are some challenges to this interactive application. 

First, a data session for a single transaction is usually very short but very bursty, e.g., a 

large number of clients exist on the same network but the interaction is short (there could 

be one packet from each client). Packets from different clients will interfere each other 

because of contention on the upstream channel. Second, the response packet intervals are 

spontaneous and have comparatively large time ranges. Bandwidth reservation is not 

efficient for this type of network operation. Third, each packet has a real-time constraint 

with a hard deadline. A packet received after a deadline is useless. 

In practice, HFC networks are heavily contention-based. A large number of users 

could coexist in a single collision domain, such as 500 – 2000 users sharing one upstream 

channel. For such an application, the MAC protocol is operated at the HFC immediate 

mode, which resembles a Slotted-Aloha scenario, to reduce the inefficiency of using 

time-slot reservations. Without reservation of time slots, packet collisions at the upstream 
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channel could be a very serious problem. Furthermore, on the HFC MAC layer, senders 

cannot directly sense a packet collision unlike on Ethernet. Loss discovery requires other 

mechanisms. At the transport layer, though TCP is capable of recovering lost packets, it 

is very ineffective for the real-time requirement due to its extremely slow response time. 

To use UDP, we will have to implement an efficient transport scheme with reliability. 

Nowadays, despite the popularity of online gaming, few papers have directly 

addressed the issues of interactive real-time applications on HFC networks. Related work 

can be found in [51], which focuses more on the signalling design to provide reliability. 

The transport layer performance of TCP on HFC network is studied in [52]. The related 

MAC layer issue is addressed in [53]. 

4.4.2 The network architecture and the game application 

4.4.2.1 The simulation model 

 

Figure 4-9.  The Abstract Network Topology 

The abstract network topology for the simulated HFC system is shown in Figure 

4-9. (NS-2 is used for this simulation.) There are several nodes representing the game 

server, the head-end (HE), the QPSK demodulator for an upstream channel, and 500 
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cable modem users (CM 1-500), respectively. The downstream channel (DS) is a broadcast 

link from the head-end to cable modems. The upstream channel (US) is contentious by 

the packets from a large number of simultaneous game users and traffic from other 

applications, such as Web and email. The upstream channel is assumed in the HFC 

immediate mode, in which the MAC protocol uses Slotted-Aloha. Therefore, in the 

simulation, we will study the packet delay that occurs mainly due to contentions on the 

upstream channel.  

Figure 4-9 also shows the basic system parameters. These parameters are estimated 

based on following situations. The QPSK channel bandwidth is 1.5Mb/s, which will be 

reduced by an overhead of the packet conversion between Ethernet frames and cable 

system frames on upstream. Therefore, the available upstream bandwidth is about 

1.2Mb/s. The one-way propagation delay on a typical cable network approximates 1ms.  

4.4.2.2 The game application 

 

Figure 4-10.  The Game Procedure 

In the simulation, the transaction of the game application is relatively simple 

(Figure 4-10). It exemplifies an application such as a TV game. During the game, the 
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game server first broadcasts a question through downstream channels to client cable 

modems. Game players have ta seconds to answer the question. Nearly at the end of ta 

seconds, a client program will score the answer and post the user’s new score to the game 

server. Only one packet will hold the score from each client, and the packet size is small. 

After ta seconds, the server starts receiving the client packets. The server waits until 

another T seconds when all the packets arrive. Then, the server will sort all scores and 

broadcast the best 10 scores to the clients. To avoid a long latency, the server must set a 

limit on the deadline T for all client packets to come.  

During the response period of T, packets could be lost due to a collision at the 

upstream channel. If a packet loss is detected, the client needs to retransmit the packet. 

For every retransmission, the packet latency increases. Therefore, the response period T 

is a critical time. In this design, for customer’s satisfaction, we must keep the overall 

packet loss rate negligible in a given response time T. On the other hand, the period T 

also limits the number of retransmissions (in the worst case, multiple losses occur for the 

same client). Furthermore, the application must adapt to varied traffic loads. Those 

problems have to be considered for the implementation of the transport scheme. 

4.4.3 SCRA algorithm 

 

Figure 4-11.  SCRA packet transactions 
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SCRA is a server-initiated collision resolution and avoidance scheme for real-time 

packet transport using UDP. Because of using UDP, SCRA must be able to recover the 

lost packets. Figure 4-11 illustrates SCRA packet transactions. SCRA uses a server-

initiated retransmission. The server maintains a timer to track client’s packets. For each 

received packet from a client, the server replies an ACK. At a timeout, the server will 

send a request (NACK) packet to those “missing” clients. On the client side, after sending 

a packet, it waits for an acknowledgement. If ACK is received, the client does nothing. If 

NACK arrives, the client will resend the packet. 

 

Figure 4-12.  SCRA Algorithm 

SCRA is not only a scheme for packet loss recovery, but also an algorithm that can 

effectively avoid and resolve collisions for the game clients. Figure 4-12 shows the 

mechanism. At the beginning, we estimate the aggregated traffic load G from all clients. 

Then, spread the packets out along an initial time window of τ. For a large τ, it contains 

more timeslots than the number of game users so the total game traffic has approximately 
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a uniform distribution with an average rate less than one packet per timeslot. So, 

contentions among game clients are greatly reduced. Because all stations on HFC are 

synchronized, this could be implemented by each user independently running a random 

delay generator. However, it is still possible that the packets from game clients will 

collide with the packets from other applications, as well a small chance of collisions from 

other game clients. Therefore, after the first transmission period τ, a fraction of the 

packets will successfully arrive at the server. For those missing clients, the server will 

send the request packets (NACK) during a time t1. t1 is proportional to the number of 

missing users, Lt ∗= τ1 , (L is the loss rate), so the retransmission time window is shrunk 

at each time, such that τ > t1 > … > tk → 0. In this way, the gaming traffic load G is 

unchanged. For an unlucky client, however, if the collisions occur repeatedly, the 

individual packet rate g from this client will increase and converge to G exponentially, g 

∝ tk = )( i

k

i
tL∏τ , where L(ti) is the average loss rate within the ith retransmission. (If in 

this process, L(ti)  is assumed to be constant, then, L(ti) ~ L, and  tk ~ τ.Lk.) Therefore, at a 

heavy load condition, L will be greater, and the time window shrinks less quickly. 

Oppositely, at a low traffic load, the window could shrink rapidly. In all, the transmission 

time will adapt to the background traffic, but the overall traffic load from the game 

clients will remain constant during the transmission period, since G is not growing with 

time. This assures that a cable network has less interference by the burstiness of the game 

traffic, and this prevents the network from reaching an unstable state. 

SCRA is designed systematically based on the analysis of Slotted-Aloha MAC 

protocol. Under a certain traffic load, Slotted-Aloha produces a steady throughput. By 
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spreading the client game packets, it de-correlates traffic, minimizes interference with 

background traffic, and achieves an optimum transmission rate. 

4.4.4 Simulation results 

In the simulation, the applied traffic load G is designed at 160kb/s from 500 game 

clients. This traffic is less than 15% of the upstream link capacity at 1.2Mb/s, and the 

upstream game packets are spread out in a 2s window at the first transmission. SCRA is 

also tested under background traffic loads of 300, 600, and 900kb/s, respectively.  

 

Figure 4-13. The percentage of finished users vs. time with different background traffic loads 

(The three plots, from left to right, corresponds 300, 600, 900 kb/s). 

Figure 4-13 shows the percentage of finished users versus time. We find under 

traffic loads of 25% (300kb/s), 50% (600kb/s), and 75% (900kb/s), the finish times are 

nearly linear. That indicates that the success rate of packet transmission is steady. This is 

an expected result, because it indicates the interference between the game traffic and the 
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background traffic is minimal. The three lines are distinguished by different skew rates, 

which are determined by the background traffic loads.  

 

Figure 4-14.  Traffic from the game application 

US: total applied game traffic at upstream; DS: total game traffic at downstream; Rcv: the 

actually received traffic at upstream; Ack: the downstream traffic by the server sending ACK 

packets. Nak: the downstream traffic by the server sending NACK packets 

Figure 4-14 shows the game traffic bandwidth under the three traffic loads. The 

labeled ‘US’ is the total bandwidth that the clients try to send packets on upstream, and 

‘Rcv’ is the received bandwidth by the game server. From the plots, we see that the 

traffic rates are not very bursty. Especially at the loads of 25% and 50%, the upstream 

traffic  appears even everywhere. This proves that the network is steady during the packet 

transactions, and SCRA does not overload the network to meet the deadline. 
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4.4.5 System analysis 

Referred to the Section 4.4.2.2, in the implementation of this SCRA algorithm, we 

have the following parameters: the response time T, the number of clients on the network 

N, the typical traffic load X, and the expected packet missing rate Pmiss. Therefore, the 

purpose of this system analysis is to derive a set of design formulae using those 

parameters. 

4.4.5.1 Throughput and packet loss rate 

Given a channel, a timeslot could be one of the three situations: empty, packets 

collided, and a successful packet transmission. Assuming the packet arrival is a Poisson 

distribution, the probability of a timeslot empty is 1/eX [56], where X is the fractional 

traffic load.  

The traffic load from the game clients ∑=
N

n
ngG , gn is the traffic load from the nth 

client. To avoid collision from different game users, a random number for each client is 

assigned to specify in which timeslot a client may send a packet. The packets are spread 

randomly in a time window τ, so gn ~ g, G = gN. G is designed to be only a portion of 

link bandwidth, and constant. 

The background traffic load X is steady during the game traffic transaction period. 

So, the packet loss rate due to collision is approximately invariant, L(t) ~ L.  

G is chosen to be comparably small and uniform so that any negative impact of 

gaming traffic to the network will be negligible. For example, when G is 0.1 and the 

fractional traffic load X is 0.2, the throughput for X is 0.20.2 0.164e−× ≈ , of which 

10%  (or 0.0164) will be collided with the game traffic. Therefore, the throughput of 

game application, Sg, is proportional to the applied traffic. It can be shown as 
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X
gS Ge−= .        (4.5) 

For the game clients, the packet loss rate from collisions would be 

XeL −−=1 .        (4.6) 

If τ is small enough, we can assume the background traffic X is constant. The 

analysis of Slotted-Aloha indicates that there are at least a percentage of 1/eX timeslots 

empty. In SCRA, the gaming traffic is independent from the background traffic, and is 

distributed randomly with uniform probability. So, we expect that the throughput for 

gaming traffic is proportional to the available timeslots under  traffic load X. Therefore, 

this argument justifies (4.5) and (4.6). 

 

Figure 4-15.  Goodput vs. traffic load 

In SCRA, G is a design parameter. The larger the value of G, the higher throughput 

for the game traffic will be, but its impact may no longer be negligible. When a larger G 

is used, there is more interference with background traffic. So, it requires a balance to 
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determine a proper G so that it can minimize the contention with background traffic and 

also meet the required deadline. Figure 4-15 plots the goodput vs. traffic load with G = 

0.1. The lower bound of goodput corresponds to ( )X Ge− + , and the upper bound of  

goodput is Xe− , the case without  the impact of G. The plots will be useful to decide an 

operational range for the game traffic under a certain background traffic condition. For 

example, if the typical background traffic load is around 0.4, and we need a goodput of 

no less than 0.6 to meet the time requirement, the proper G is 0.1. We should only choose 

G in the small range where the packets could meet their deadline T. 

4.4.5.2 Packet latency and probability of missing a deadline 

The latency and the missing-deadline probability are QoS parameters. They are 

related to the game traffic throughput. Whether a sender can meet the deadline depends 

on the number of retransmissions due to the collisions. The packet latency can be found  

L
L

LKD
K

i
K

i −
−

=≥
+

=
∑ 1

1
)(

1

0
ττ .      (4.7) 

K is the number of transmissions. L is the game packet loss rate.τ represents the 

initial time window size and can be calculated by GCNBητ = . N is the number of 

clients; B is the packet size; C is the link capacity; and η > 1 is a constant.  

Given a time deadline T, we can solve K  by inverting (4.7): 








 −






 −−= 1log)1(1log LTLK

τ
.     (4.8) 

Therefore, K is the maximum number of transmissions before missing the deadline.  

The probability of missing the deadline can be expressed as: 
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1)1()( −−= k
miss LLkP .       (4.9) 

So, using (4.8) and (4.9), we can estimate the probability Pmiss, and derive τ  and G.  

If the application requires no more than Pmiss fraction of packets missing their deadlines, 

we can find k from (4.9). Compared with the K from (4.8), if K is larger, we have to 

reduceτ  and increase G. Note that, to make the system stable and to reduce the 

interference from background traffic, we should keep G as small as possible. 

4.4.6 Conclusions 

The game application is an example of how to reduce traffic burstiness at the user 

session level. Using UDP, a transport scheme is proposed to solve a contention problem 

and to meet a real-time requirement. 

To design and implement such a scheme, we first determine an efficient bandwidth 

using the QoS requirements: deadline and packet missing probability. Then, based on the 

number of customers, packets are spread out to avoid collisions. As results, the SCRA 

scheme solves the traffic congestion with very limited knowledge between the server and 

clients  – a transmission window size, unlike TCP that has more complicated 

mechanisms.  

SCRA is efficient to meet a hard deadline requirement. It does not generate traffic 

burstiness and affect the background traffic to improve its throughput. In fact, the traffic 

rate remains almost constant during the transmission period. So, the packet level 

burstiness is eliminated. Finally, SCRA is scalable to the different sizes of network and 

the different conditions of background traffic.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Today, Internet is growing rapidly. Traffic measurement and management are 

important in every aspect of network engineering. This thesis took on a new unsolved 

problem in the area: how to analyze the fractal characteristics of network traffic. Two 

analytical methods were used to study the problem: self-similarity analysis and 

multifractal analysis. Using a number of experiments, the following results and 

observations were presented: 

1. Self-similarity in traffic is an adaptability of traffic in the network. Many factors 

are involved in creating this characteristic. A new view of this self-similar traffic 

structure is interpreted. This view is an improvement over the theory used in most 

current literature, which assumes that the traffic self-similarity is solely based on 

the heavy-tailed file-size distribution. 

2. The scaling region on traffic self-similarity is divided into two timescale regimes: 

SRD and LRD. Experimental results show that the network transmission delay 
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(RTT time) separates the two scaling regions. This gives a physical source of the 

periodicity in the observed traffic. Also, bandwidth, TCP window size, and packet 

size have impacts on SRD. The statistical heavy-tailedness (Pareto shape 

parameter) affects the structure of LRD. In addition, a formula to calculate traffic 

burstiness is derived from self-similarity. 

3. Furthermore, examinations of fractal traffic using multifractal analysis give more 

interesting and applicable results. (1) In LRD, increasing the bandwidth does not 

improve throughput (or network performance). The two factors affecting the 

traffic throughput are network delay and TCP window size. On the other hand, 

more simultaneous connections smooth traffic, which could result in the 

improvement of network efficiency. (2) At small time scales, traffic burstiness 

varies. In order to improve network efficiency, we need to control bandwidth, 

TCP window size, and network delay to reduce traffic burstiness. There are 

tradeoffs from each other but nonlinearly related. (3) In general, network traffic 

processes have Hölder exponents α  ranging between 0.7 and 1.3. Their statistics 

differ from Poisson processes.  

4. To apply this prior knowledge from traffic analysis and to improve network 

efficiency, a notion of the efficient bandwidth, EB, is derived to represents the 

fractal concentration set. Above the bandwidth EB, traffic appears bursty in a way 

that cannot be reduced by multiplexing. But, below EB, traffic is congested. The 

important finding is that the relationship between the bandwidth and the transfer 

delay is nonlinear.  
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5. Traffic analysis can be applied to various applications, including best-effort TCP 

traffic and real-time UDP traffic, so that we can remove packet-level burstiness 

and improve network efficiency.  

5.2 Future work 

 For the future work, fractal traffic analysis and results will be useful to enhance the 

performance of real-time traffic, especially in multimedia video applications. There are 

the following reasons why this research is applicable:  

a. Video traffic is known as being self-similar and fractal;  

b. Video traffic is extremely time-sensitive;  

c. Video traffic is bandwidth-consuming.  

To balance bandwidth, delay and network efficiency, it is necessary to study the 

fractal properties of video traffic and to find the efficient bandwidth. 
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