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SUMMARY 

The current work describes the in vitro and in vivo G-quadruplex capabilities of human 

ribosomal RNAs (rRNAs) and investigates their involvement in heme bioavailability 

regulation. This is the first report on G-quadruplex formation on any rRNA, the most 

abundant RNA in cells of all living organisms on Earth (>80% of RNA is rRNA). Prior to 

this thesis work, RNA G-quadruplex research was mainly focused on messenger RNAs 

(mRNAs) partly due to next-generation sequencing (NGS) studies performed at the 

transcriptome-wide level according to which putative G-quadruplex regions are enriched 

in 5’ and 3’ untranslated regions (UTRs) of specific transcripts. In NGS studies it is a 

common practice to explicitly remove rRNAs due to their massive abundance. Doing so 

ensures efficient detection of other less abundant RNAs, such as mRNAs. However, it also 

eliminates the most abundant ones and it is one of the reasons why rRNAs have been put 

into oblivion within the G-quadruplex field. Another potential reason why rRNA G-

quadruplexes had not been reported before our work was published is the fact that rRNA 

sizes differ very significantly across phylogeny, making the identification of rRNA G-

quadruplex regions difficult. Eukaryotes (particularly metazoans) present massive rRNAs 

compared to bacteria. As it will be explained in the Introduction section of this thesis, this 

increase in size is mainly due to particular and enigmatic extensions in the form of double-

stranded rRNA tentacles called expansion segments (ESs). Thus, unless rRNAs are studied 

across the entire tree of life, it is extremely challenging to identify specific sequence 

patterns such as G-quadruplex regions. 



 xxiv 

Professor Loren Williams and coworkers have been investigating the evolution of the 

ribosome at the molecular level by looking at ribosomal 3D structures from species across 

at the entire tree of life. By doing so, they have been able to investigate the molecular 

mechanisms by which eukaryotic rRNAs increase in size and, therefore, appreciate their 

changes in structure and sequence across phylogeny. When this thesis work started, in the 

Williams lab we realized that guanine-rich human rRNA expansion segments presented 

repetitive patterns of guanine runs near the termini of specific tentacles of the two largest 

expansion segments of the human ribosome (ES7 and ES27). These patterns suggested 

potential G-quadruplex capabilities, albeit rRNAs had never been reported to form these 

non-canonical secondary structures. 

By applying a wide variety of biochemical assays such as circular dichroism, ultraviolet 

melting experiments, the use of fluorescence probes, electromobility shift assays with a G-

quadruplex antibody, and competition experiments, we were able to detect the in vitro 

formation of highly stable G-quadruplexes in human rRNAs. We identified numerous G-

quadruplex regions in human LSU rRNA (28S) and several other ones in human SSU 

rRNA (18S). Our results indicate that intact human 28S and 18S rRNAs extracted from 

human cells can form stable G-quadruplexes in vitro. We then tested their formation in 

cells. Our immunofluorescence and RNA pulldown experiments suggest these rRNAs can 

also form G-quadruplexes when in cells. 

Finally, we studied some of their potential physiological roles. To test this, we 

considered that these regions are located on the surface of the human ribosome. Therefore, 

we reasoned that one of their roles could be to recruit specific proteins to the ribosome. By 

using mass spectrometry, we identified the cytosolic proteins that bind to one of the G-



 xxv 

quadruplex regions on the 28S rRNA, identifying several RNA helicases (such as DEAD-

box helicases DDX3X or DDX17) , other RNA remodeling proteins such as CNBP, and 

proteins involved in phase separation systems like Fus.  

In addition, since G-quadruplexes are known to be capable of aggregating via inter-

molecular association, we tested the potential involvement of ribosomal G-quadruplexes 

in polysome association. Our dot blots with a G-quadruplex antibody suggest rRNA G-

quadruplexes form more easily in polysomes than in monomer ribosomes.  

Lastly, based on the high affinity of heme for G-quadruplexes in vitro (KD ~ 10 nM), 

our work demonstrating that rRNA forms extensive G-tracts in vitro (Chapters 1 and 2), 

the extreme stabilities of rRNA G4s in vitro, and the extraordinary abundance of rRNA in 

vivo we hypothesized that rRNA G-quadruplexes function in vivo to regulate intracellular 

heme bioavailability. This work (described in detail in Chapter 4) provides strong evidence 

that G-quadruplexes in human 28S and 18S rRNAs appropriate heme and regulate the 

bioavailable levels of labile heme in the cytosol, making the ribosome a hub for heme 

metabolism.  

Altogether, completion of this work opens new sets of questions on ribosomal and G-

quadruplex functionalities. Since rRNA is the most abundant RNA in cells, our results 

suggest that the so-called “RNA G-quadruplexome” (the entire body of cellular RNAs 

capable of forming G-quadruplexes) is ribosome-centered. Indeed, our 

immunofluorescence experiments suggests ~83% of the extra-nuclear RNA G-

quadruplexes are associated with ribosomes. In addition, our work suggests rRNA G-

quadruplexes are sites of exchangeable heme, appropriating it to the ribosome. We propose 



 xxvi 

that heme-rRNA G-quadruplex interactions may be important for protein hemylation 

reactions and buffering cytosolic heme.   
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CHAPTER 1 

INTRODUCTION 

1.1.The Ribosome 

Ribosomes are complex macromolecular machines responsible for all protein synthesis 

in cells. Ribosomes are ribonucleoproteins, which means they are made both of RNA 

(ribosomal RNA, or rRNA) and proteins (ribosomal proteins, or rProteins). They were first 

identified as RNA-rich particles in close proximity to the endoplasmic reticulum (1). In 

1958, Francis Crick proposed that ribosomes, which he named “microsomal particles”, 

could be involved in gene expression and suggested for the first time that proteins could be 

made by an RNA machine (2). Four decades later, Harry Noller reported that ribosomal 

activity was unusually resistant to proteases (enzymes that digest proteins), indicating that 

rRNA was the main ribosomal component involved in peptide bond formation (3).   

Every single cell of any living organism on Earth presents ribosomes. Each ribosome 

is composed of two subunits that, in combination with transfer RNA (tRNA) and 

messenger RNA (mRNA), assemble when protein synthesis is required. The large subunit 

(LSU) is responsible for peptide bond formation whereas the small subunit (SSU) contains 

the decoding center, where tRNA and mRNA bind. Each subunit is composed of rRNAs 

and rProteins and they are commonly identified by their sedimentation coefficient (in 

Svedbergs, S). In bacteria, the LSU (50S) is composed of two rRNAs (23S and 5S) and 31 

rProteins, whereas the small subunit (30S) is made of one rRNA (16S) and 21 rProteins 

(4). Eukaryotic ribosomes are larger in size and present higher structural complexity. For 
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example, the LSU (60S) of the Homo sapiens ribosome is composed of three rRNAs (28S, 

5.8S, and 5S) and over 50 rProteins whereas the SSU (40S) is made of one rRNA (18S) 

and 33 rProteins (4). 

1.1.1 rRNA size across phylogeny 

Although all rRNAs across phylogeny have conserved functions (LSU rRNAs: 

peptide bond formation, SSU rRNAs: decoding mRNA) their difference in size varies very 

significantly across the tree of life (Figure 1.1) (5). Bacterial rRNAs, for example, are small 

(23S: ~2,900 nucleotides or nts, 16S:	~1,600 nts). Yeast (a eukaryote) presents 

considerably larger rRNAs (25S: ~3,400 nts, 16S: ~1,800 nts) and the human ribosome 

presents the largest rRNAs known in nature (28S: ~5,000 nts, 18S: ~1,870 nts). This 

difference in size is very apparent when the secondary structures of these rRNAs are 

compared to each other (Figure 1.2) (5). 
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Figure 1.1. Phylogenetic tree indicating the sizes of LSU rRNAs and of genomes. 
Reprinted with permission (5).  

Figure 1.2. LSU rRNA secondary structures. (A) E. coli, (B) S. cerevisiae, (C) H. sapiens. 
Reprinted with permission (5).  

 Data in Figure 1.2. shows that the increase in size occurs through the elongation of 

rRNA in the form of tentacle-like double-stranded ramifications that protrude from the 

ribosomal surface. These regions are called rRNA expansion segments. 

1.1.2 rRNA expansion segments: structure and known functions 

Eukaryotic rRNA expansion segments (ESs) were discovered when comparative 

studies on rRNA secondary structures between bacteria and eukaryotes were performed (6-

9). In general, ESs do not perturb the ribosomal core. Eukaryotic ribosomes present 

numerous ESs and each one of them is identified and numbered. Across phylogeny, 

expansion segments 7 (ES7) and 27 (ES27) experience the most dramatic elongation 

processes. The serial increase of ES7, for example, was monitored by comparing the ES7 

3D structures across the tree of life (Figure 1.3) (5).   
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Figure 1.3. Serial accretion of rRNA helix 25/ES7 across phylogeny. Reprinted with 
permission (5).  

ES7 is formed by rRNA accretion from a 22-nucleotide stem loop (helix 25) in the 

last universal common ancestor (LUCA), which is approximated by E. coli. ES7 grows to 

a double-stranded 210-nucleotide ramification in yeast. In metazoans, ES7 elongation is 

more extreme and starts to present long surface-exposed tentacles, becoming a 342-

nucleotide long structure in D. melanogaster and 876 nucleotides in humans. H. sapiens 

presents the largest ES7 known in nature. 

The extreme cellular concentrations of rRNA (>80% of RNA is rRNA) (10) and 

the fact that eukaryotes present repetitive rDNA loci on multiple chromosomes (11) make 

the genetic modification of rDNA very challenging and hence the study of the potential 

physiological roles of ESs is incredibly difficult. S. cerevisiae, on the other hand, presents 

a single rDNA locus in chromosome XII (12). This has allowed researchers to entirely 

delete this region and supplement cells with an rDNA plasmid (13). Large deletions of 

yeast ESs result in defects in ribosome biogenesis (14). By deleting distal regions of yeast 

ES27, Maria Barna and co-workers found ES27 is involved in translation fidelity (13). 

Specifically, ribosomes with deletions on ES27 presented amino acid misincorporation as 

well as readthrough and frameshifting errors. As an alternative way of studying the cellular 

functions of ESs, Loren Williams and co-workers performed RNA pull-downs with in-

vitro-synthesized yeast ES7 and identified the cytosolic proteins that interact with it using 
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mass spectrometry (15). Taken together, these studies have provided new insights on the 

mysterious roles of ESs of the yeast ribosome. However, yeast ribosomes present 

significantly shorter ESs when compared to those of humans (e.g. ES7: 210 nts in yeast, 

876 nts in humans). The fact that human ESs, being significantly longer than those in yeast, 

suggests they could have additional cellular functions. However, as aforementioned, the 

repetitive nature of rDNA loci and their location on multiple chromosomes makes the study 

of human ESs even more difficult than those in yeast and it is the reason why their functions 

remain mostly unknown and enigmatic. Interestingly, most human ESs are rich in guanine 

and cytosine residues (>80% GC). 

1.2. G-quadruplexes in biology 

Guanine-rich nucleic acid sequences can form non-canonical secondary structures 

known as guanine quadruplexes (or G-quadruplexes) (16). Four guanine residues interact 

with each other through Hoogsteen base-pairing, forming a G-quartet. When two or more 

G-quartets p-stack onto each other, a G-quadruplex is formed (Figure 1.4).  The central 

cavity of a G-quartet sequesters monovalent cations, with potassium being the one that 

favors G-quadruplex formation the most. 
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Figure 1.4. Representation of a G-quartet and a G-quadruplex. Adapted from (17) with 
permission.  

Putative G-quadruplex sequences fall within the motif GxN1-7GxN1-7GxN1-7Gx, 

where x is usually at least 3 and N means any nucleotide. Such motifs allow for the 

formation of “canonical” G-quadruplexes (made of at least 3 G-quartets). However, recent 

studies have shown that “non-canonical” G-quadruplexes, with G-tracts shorter than 3 

guanine residues and connecting loops longer than 7 nucleotides, also exist (18-21). 

Although both DNA and RNA can form G-quadruplexes, those in RNA have been reported 

to be more stable than those in DNA, presumably through additional hydrogen bonds due 

to the presence of the 2’ hydroxyl group in RNA (22, 23).  

G-quadruplex research was predominantly focused on in vitro experimentation 

until a G-quadruplex specific antibody was developed and used to demonstrate that both 

DNA and RNA G-quadruplexes can form in fixed human cells (24, 25). Since then, several 

methods have been developed to study the formation of G-quadruplexes in cells, such as 

RNA pulldowns using a biotin tagged G-quadruplex ligand (26, 27), fluorescent probes 

(28, 29), or using 19F nuclear magnetic resonance (NMR) (30). However, while more 

studies reporting new potential roles of G-quadruplexes in physiology were published, a 

thought provoking article challenged the entire G-quadruplex field (31). By using dimethyl 

sulfate (DMS) footprinting and next-generation sequencing, Guo and Bartel provided a 

model according to which all G-quadruplexes are unfolded in eukaryotic cells. Their data 

suggested G-rich sequences were capable of forming stable G-quadruplexes in vitro but 

when in cells their chemical probing techniques suggested these same sequences were 

unfolded. Most interestingly, G-rich sequences folded into G-quadruplexes when 

transformed into bacterial cells, which led them to propose a model according to which 
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eukaryotic cells have developed a robust and precise machinery involved in unfolding G-

quadruplexes, most likely with the direct participation of RNA helicases and other RNA 

remodeling factors. Bacteria would lack this machinery and hence G-quadruplex sequences 

are able to fold in bacterial cells, according to their experiments and model. Although some 

concerns regarding their experimental approach have been raised (32), this study has been 

very instrumental and has pushed the G-quadruplex field forward very significantly. It is 

possible that G-quadruplexes form only transiently, and their formation might be highly 

regulated by helicases and other G-quadruplex unwinding factors. 

Other key methods used to identify putative DNA and RNA G-quadruplex 

sequences at the genome- and transcriptome-wide levels, respectively, involve next-

generation sequencing (33, 34). RNA G-quadruplex next-generation sequencing (rG4-seq) 

showed G-quadruplexes are enriched in 5’ and 3’-untranslated regions (UTRs) (34), in 

agreement with previous results that demonstrated that G-quadruplexes formed in specific 

5’-UTRs and inhibited translation of those transcripts (35-40). Due to the significant 

finding of G-quadruplex-mediated regulation of protein translation, most RNA G-

quadruplex work has been centered on mRNAs. However, G-quadruplexes have also been 

reported to form in other RNAs such as microRNAs (41-43), human telomerase RNA (44, 

45), and viral genomes (46, 47). Other known functions of G-quadruplexes involve 

promoting phase separation (48, 49) and binding heme, an interaction that can promote 

oxygen transfer reactions (50-52).  
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1.3. Heme in biology 

Hemes are iron-coordinated porphyrins essential for life in every living organism that 

metabolizes oxygen. In mammals, most of the cellular iron is heme iron due to its role in 

oxygen transport in hemoglobin. In humans, about 95% of the functional iron is bound to 

heme (53). There are several types of hemes with different shapes and roles (54). The most 

abundant one is heme b, which acts as a cofactor in most globin proteins, such as myoglobin 

and hemoglobin. Hemes a and c are synthesized from heme b through specific side chain 

modifications. The former acts as a cofactor in mitochondrial cytochrome c oxidase 

whereas the latter is known to form covalent bonds with the hemoproteins it interacts with, 

such as cytochrome c (54).  

The total pool of cellular heme is the sum of inert and labile heme (LH). Inert heme is 

more abundant, but it is not available for exchange in heme-dependent processes since it is 

bound with high-affinity to heme-binding proteins, such as cytochromes and globins. LH 

is less abundant, but it interacts with hemoproteins with less affinity and hence it is 

exchangeable and trafficked in cells through unknown buffering factors (55). The roles of 

heme as a cofactor (e.g. oxygen transport) and as signaling molecule (e.g. regulating 

transcription factors, kinases, etc. (56, 57)) make it an essential molecule. However, these 

properties also make heme cytotoxic: it can catalyze the formation of reactive oxygen 

species (ROS) (58) and bind to proteins and alter their structure and function (59). 

Therefore, heme bioavailability and trafficking are processes that have to be highly 

regulated. The identification of these factors is mostly focused on proteins, such as GAPDH 

(60), GTPases (61), and enzymes involved in heme biosynthesis (62). However, other 

biomolecules could be involved in the appropriation and trafficking of cellular heme, such 
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as nucleic acids. As aforementioned, the heme-binding capabilities of DNA and RNA G-

quadruplexes have been studied for decades (52). Furthermore, these interactions have 

been shown to enhance oxygen transfer reactions (50-52), indicating these interactions 

could have physiological relevance. A recent study reported that treatment of human cells 

with a G-quadruplex stabilizer resulted in upregulation of proteins involved in the 

degradation of free heme, such as heme oxygenase 1 (HMOX1), suggesting that one of the 

potential physiological roles of G-quadruplexes is to sequester free cytotoxic heme (63).  

1.4. Scope of Thesis 

In this dissertation, I will describe our results on i) the identification of G-quadruplex 

sequences in human LSU and SSU ribosomal RNAs, ii) their in vitro and in vivo formation, 

and iii) the role of rRNA G-quadruplexes in regulation of heme bioavailability in human 

cells. 

In Chapter 2, I will describe our published work in which we used a “canonical” G-

quadruplex motif to identify the G-quadruplex regions in human rRNAs, most of which 

are located on surface-exposed regions of the LSU rRNA. By performing a wide range of 

biochemical assays, our results suggest that the regions derived from the LSU rRNA form 

highly stable G-quadruplexes in vitro. In addition, we also identified the cytosolic proteins 

that bind to one of these regions. By performing phylogenic analyses, we discovered that 

the G-quadruplex regions we found in human rRNA are conserved across the phylum 

Chordata. Finally, our in vitro data also suggest human rRNA G-quadruplexes form more 

readily in polysomes than in monomer ribosomes, indicating a potential involvement in 
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polysome linkage via inter-molecular G-quadruplexes. This was the first report on G-

quadruplex formation on any ribosomal RNA. 

In Chapter 3, I will present the published work that continued our first article. In this 

second study, we applied a more relaxed G-quadruplex motif to identify numerous 

additional G-quadruplex regions in human 28S rRNA (from 4 to 17 regions) and 3 G-

quadruplex regions in human 18S rRNA. Our data suggest regions derived from the human 

18S rRNA as well as intact 28S and 18S rRNAs extracted from human cells can form stable 

G-quadruplexes in vitro. Our phylogenic studies indicate that the SSU G-quadruplex 

regions are highly conserved in mammals. This was the first report on G-quadruplex 

formation on any small subunit rRNA. 

In Chapter 4, I will describe our work on 1) rRNA G-quadruplex formation in vivo and 

2) the involvement of these non-canonical ribosomal structures in regulation of heme 

bioavailability in human cells. By taking a chemical biology approach that integrates 

results from immunofluorescence, G-quadruplex ligands, heme affinity reagents, and a 

genetically encoded fluorescent heme sensor, we observed that human ribosomes can form 

G-quadruplexes in vivo that regulate heme bioavailability. Our immunofluorescence 

experiments indicated that the vast majority of extra-nuclear G-quadruplexes are associated 

with rRNA (~83%). Moreover, titrating human cells with a G-quadruplex ligand we 

observed a dose-dependent alteration in the ability of ribosomes to bind heme and in the 

bioavailable levels of cytosolic labile as measured by a genetically encoded fluorescent 

heme sensor. Overall, results in Chapter 4 suggest ribosomes are central hubs of heme 

metabolism.  
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Lastly, in Chapter 5 I will present the conclusions of this work and some future 

directions. 

In short, the results presented in this thesis indicate human ribosomal RNAs can form 

G-quadruplexes in vitro and in vivo and suggest that one of their physiological functions is 

to regulate heme bioavailability in cells.  
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CHAPTER 2 

G-QUADRUPLEXES IN HUMAN RIBOSOMAL RNA 

 

This chapter is adapted from the previously published work: Mestre-Fos, S., Penev, P. I., 

Suttapitugsakul, S., Ito, C., Petrov, A. S., Wartell, R. M., Wu, R., Williams, L. D. “G-

Quadruplexes in Human Ribosomal RNA”, J. Mol. Biol. 431, pp 1940-1955 (2019). The 

author of this document contributed to this work by conceiving, designing and performing 

all experiments except the mass spectrometry and phylogenetic analyses, making all 

figures, making all tables, making all supplementary materials except the mass 

spectrometry analysis, and co-writing the manuscript.  

2.1. Abstract 

rRNA is the single most abundant polymer in most cells. Mammalian rRNAs are nearly 

twice as large as those of prokaryotes. Differences in rRNA size are due to expansion 

segments, which contain extended tentacles in metazoans. Here we show that the terminus 

of an rRNA tentacle of Homo sapiens contains 10 tandem G- tracts that form highly stable 

G-quadruplexes in vitro. We characterized rRNA of the H. sapiens large ribosomal subunit 

by computation, circular dichroism, UV melting, fluorescent probes, nuclease accessibility, 

electrophoretic mobility shifts, and blotting. We investigated Expansion Segment 7 (ES7), 

oligomers derived from ES7, intact 28S rRNA, 80S ribosomes, and polysomes. We used 

mass spectrometry to identify proteins that bind to rRNA G-quadruplexes in cell lysates. 
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These proteins include helicases (DDX3, CNBP, DDX21, DDX17) and heterogeneous 

nuclear ribonucleoproteins. Finally, by multiple sequence alignments, we observe that G-

quadruplex-forming sequences are a general feature of LSU rRNA of Chordata but not, as 

far as we can tell, of other species. Chordata ribosomes present polymorphic tentacles with 

the potential to switch between inter- and intramolecular G-quadruplexes. To our 

knowledge, G-quadruplexes have not been reported previously in ribosomes.  

2.2. Introduction 

Cytosolic ribosomes are the most abundant assemblies in any cell, containing over 80% 

of cellular RNA (10). Ribosomes are built on a ‘common core’ (64) of rRNA with universal 

structure and function in all extant species. Common core rRNA is approximated by 

prokaryotic rRNA; around 90% of prokaryotic rRNA is contained in the common core.  

The LSU of eukaryotic ribosomes contains additional rRNA in a secondary shell that 

surrounds the common core. The rRNA of the eukaryotic shell is composed of expansion 

segments (ESs) that attach to common core rRNA at a handful of specific sites (6, 65-67). 

ESs are the most variable rRNA structures over phylogeny. In S. cerevisiae, ESs are 

important in ribosome biogenesis (14) and chaperone association (68, 69). Beckman and 

coworkers recently described a 3D structure in which S. cerevisiae ESs associate with and 

localize N-terminal acetylases (70).  

ESs of chordates contain “tentacles” (Figure 2.1) (71). These tentacles reach a zenith 

in primates and birds, extending for hundreds of Ångstroms from the ribosomal surface. 

Here we observe G-quadruplexes in rRNA tentacles of human ribosomes. Tandem G-tracts 

are found in the tentacles of expansion segments 7 and 27 of H. sapiens ribosomes (ES7HS 
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and ES27HS). ES7HS contains ten tandem G-tracts in tentacle a and four in tentacle b. 

ES27HS contains six tandem G-tracts in tentacle a, two sets of three in tentacle b, and four 

within a base helix (Table 2.1).  

G-quadruplexes are favored by tandem G-tracts separated by short non-specific 

sequences. To investigate the possibility that G-tracts in rRNA tentacles form G-

quadruplexes, we used computation, circular dichroism, fluorescent probes, thermal 

melting, nuclease accessibility, electrophoretic mobility shift assays (EMSA), dot blotting, 

Western blotting, and pull-down assays combined with stable isotope labeling of amino 

acids in cell culture (SILAC) and Mass Spectrometry. To investigate phylogenetic 

distribution of ribosomal G-quadruplexes we conducted Multiple Sequence Alignments 

(MSAs) and database analysis.  

The results indicate that G-quadruplexes form in oligomers composed of sequences 

derived from ES7HS. In addition, G-quadruplexes form in intact ES7HS and in purified 

human 28S rRNA. We present data supporting formation of G-quadruplexes in 80S 

ribosomes and in polysomes. SILAC experiments show that known G-quadruplex-binding 

proteins associate with the G-tracts of ES7HS. MSAs indicate that G-quadruplex-forming 

sequences are found in ES7s of all chordates.  
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Table 2.1. G-quadruplex-forming regions within ES7 and ES27 rRNA 
 
ES7 Nucleotides 

 
tentacle a 

  

Homo sapiens GGGGGCGGGCUCCGGCGGGUGCGGGGGUGGGCGGGCGGGGCCGGGGGUGGGGUCG
GCGGGGG 

587-648 

Pan troglodytes GGGGGCGGGCUCCGGCGGGUGCGGGGGUGGGCGGGCGGGGCCGGGGGUGGGGUCG
GCGGGGG 

583-644 

Mus musculus                                                                                            
GGGCGGGGCCGGGGGUGGGGUCGGCGGGGG 

627-656 

Gallus gallus GGGGCGGGGCGGGCCCAGGGGGGGCGGGCGGGCCGGGG 557-594 

tentacle b   
Homo sapiens GGGAGGGCGCGCGGGUCGGGG 829-849 
Pan troglodytes GGGAGGGCGCGCGGGUCGGGG 816-836 
tentacle d   
Mus musculus GGGCGGGCGUGGGGGUGGGGGCCGGG 907-932 

Gallus gallus GGGGCGCGGGGGCGGGGGGGGUCGGG 933-958 
 

ES27    

 
tentacle a 

  

Homo sapiens GGGGGAGCGCCGCGUGGGGGCGGCGGCGGGGGGAGAAGGGUCGGGGCGGCAGGGG 3095-3149 

tentacle b   
Homo sapiensa GGGGGCGGGGAGCGGUCGGGCGGCGGCGGUCGGCGGGCGGCGGGGCGGGG 3373-3422 

 
Helix 63   

Homo sapiens GGGCUGGGUCGGUCGGGCUGGGG 2896-2918 

a) This sequence falls outside the G≥3N1-7G≥3N1-7G≥3N1-7G≥3 motif. 
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Figure 2.1. Model of the secondary structure of the LSU rRNA of Homo sapiens. G-
quadruplex-forming regions (defined by G≥3N1-7G≥3N1-7G≥3N1-7G≥3) are highlighted. a) 
Expansion segment ES7HS is orange. Tentacles a, b and d of ES7HS are indicated. G-
quadruplex-forming regions of ES7HS are GQES7-a (red, in tentacle a) and GQES7-b 
(cyan, in tentacle b) and are boxed by dashed lines. Expansion segment ES27HS is green 
with purple G-tracts. Helix 63, at the base of ES27HS, contains a G-quadruplex motif 
(purple). Tentacles a and b of ES27HS are indicated. b) An expanded view of GQES7-b 
indicates the nucleotide sequence. c) An expanded view of GQES7-a indicates the 
nucleotide sequence. 
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2.3. Results 

2.3.1. ES7 and ES27 of the human LSU contain G-quadruplex-forming sequences. 

The propensity of an RNA to form G-quadruplexes can be estimated from sequence 

- by lengths of guanine tracts and the lengths and compositions of loops regions. The 

program QGRS Mapper (72) provides “G-scores”, which quantitate this propensity. We 

have identified ES7 and ES27 as the primary regions in the human LSU with sequences 

that appear to be capable of forming G-quadruplexes. The computational results suggest 

that G-quadruplexes can form near the termini of the longest rRNA tentacles of these two 

ESs. In tentacles a and b of ES7HS, two regions, here named GQES7-a and GQES7-b 

(Figure 2.1), meet the G-quadruplex consensus (G≥3N1-7G≥3N1-7G≥3N1-7G≥3). The G-scores 

of GQES7-a and GQES7-b are in the range of well-established RNA G-quadruplexes.  

The sequence 5’ GGGGCCGGGGGUGGGGUCGGCGGGG 3’ (nts 623-647, 

from within GQES7-a, Figure 2.1, Table 2.1) gives a G-score of 60. The sequence 5’ 

GGGUGCGGGGGUGGGCGGG 3’ (nts 603-621, also within GQES7-a) gives a G-score 

of 40. The sequence 5’ GGGAGGGCGCGCGGGUCGGGG 3’ (nts 829-849 within 

GQES7-b, Figure 2.1, Table 2.1) gives a G-score of 38. Differences in the number of 

tandem G-tracts (10 in GQES7-a and 4 in GQES7-b), the lengths of the G-tracts, and G-

scores suggest more stable and more extensive G-quadruplex formation in GQES7-a than 

in GQES7-b. The G-tracts of GQES7-a are longer than those of GQES7-b and there are 

more of them. A greater propensity of GQES7-a over GQES7-b for G-quadruplex 

formation is seen in all experiments below.  



 18 
 

As a positive control for both computation and experiment, we used the G-

quadruplex from the 5’-UTR of the mRNA of the ADAM10 metalloprotease (73). This 

stable and well-characterized RNA G-quadruplex gives a G-score of 42. As negative 

controls, we used two mutant RNA oligomers (mtES7-a and mtES7-b) that are analogous 

to GQES7-a and GQES7-b in composition and length, with disrupted G-tracts (Table A.1). 

Neither gives a G-score. In several experiments we used yeast-tRNAphe as an additional 

negative control. 

We focused our experiments primarily on ES7HS.  However, the end of tentacle a 

of ES27HS contains the sequence 5’ GGGGAGAAGGGUCGGGGCGGCAGGG 3’ (nts 

3124-3148, tentacle a), which gives a G-score of 40 (Figure 2.1, Table 2.1). ES27HS also 

contains a G-quadruplex-forming region within Helix 63, near the junction of tentacles a 

and b. Based on the high G-scores and our experimental observation of G-quadruplexes 

within ES7HS, we expect G-quadruplexes to form in ES27HS.  

2.3.2. Circular dichroism.   

CD spectra of GQES7-a and GQES7-b indicate G-quadruplex formation, with the 

expected dependence on type of counterion. CD is used widely to study RNA and DNA G-

quadruplexes (74-78). CD spectra of GQES7-a and GQES7-b (Figure 2.2b) show the 

characteristic peak at 260 nm and trough at 240 nm. It is known that G-quadruplex 

formation is promoted by K+ and is inhibited by Li+ or Na+ (79). The intensities of the 260 

nm peaks of both GQES7-a and GQES7-b are attenuated when the monovalent cation is 

switched from K+ to Li+. GQES7-a gives a more intense CD signal than GQES7-b under 

all conditions. 
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2.3.3. ThT fluorescence.  

ThT is known to yield intense fluorescence at 487 nm upon association with G-

quadruplexes (80, 81). ThT fluorescence results here suggest formation of G-quadruplexes 

in GQES7-a, GQES7-b and intact ES7HS (Figure 2.2c). Intact ES7HS and GQES7-a give 

more intense ThT fluorescence signals than the positive control (ADAM10). The GQES7-

b signal is less than that of ADAM10 but is significantly greater than the controls. ThT 

fluorescence of GQES7-a and GQES7-b is attenuated when the monovalent counterion is 

switched from K+ to Li+. (Figure 2.2d). Consistent with results of QGRS Mapper and CD 

spectroscopy, the ThT-induced fluorescence signal for GQES7-b is less than that of 

GQES7-a under all conditions. 

The formation of G-quadruplexes by GQES7-a, GQES7-b and intact ES7HS is supported by 

competition assays with pyridostatin (PDS) (Figures 2.2e and 2.2f). PDS is a G-quadruplex 

stabilizer and a ThT competitor with a greater affinity than ThT for G-quadruplexes (82). 

As expected if G-quadruplexes form in these rRNAs, PDS displaces ThT. In this series of 

experiments mtES7-a, mtES7-b and tRNA were used as negative controls, giving signals 

near background.  
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Figure 2.2. Formation of G-quadruplexes by rRNA fragments GQES7-a, GQES7-b, and 
ES7HS. a) G-quadruplexes preferentially coordinate K+.  b) CD spectra of GQES7-a and 
GQES7-b in the presence of either K+ or Li+. c) Fluorescence emission at 487 nm of the G-
quadruplex probe ThT in the presence of ES7HS, GQES7-a, GQES7-b, or positive control 
ADAM10. Negative controls (dashed) are tRNA, mtES7-a, mtES7-b and minus RNA.  d) 
ThT fluorescence emission of GQES7-a and GQES7-b in the presence of various 
monovalent cations. Intensities of GQES7-a and GQES7-b are normalized in the presence 
of K+ to highlight cation-induced differences.  e) PDS competes with ThT in association 
with ES7HS. f) PDS competes with ThT in association with GQES7-a and GQES7-b. 
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2.3.4. UV thermal melting.  

The melting of G-quadruplexes 

is distinguishable from melting of other 

RNA secondary structures.  Melting of 

G-quadruplexes, but not other RNA 

structures, is accompanied by 

hypochromicity at 295 nm (83). 

Melting of G-quadruplexes, but not 

other RNA structures, shows an acute 

dependence on type of monovalent 

counterion. The Tm’s of G-quadruplex 

melting are expected to be greater in K+ 

than in Li+.  

 

Figure 2.3. a) UV thermal melting 
profile of GQES7-b at 295 nm. Before 
melting RNA was annealed in the 
presence of either 100 mM KCl or 100 
mM LiCl. b) ES7HS cleavage by mung 
bean nuclease. ES7 was annealed with 
or without KCl and with or without 
PDS. The black arrow indicates cleaved 
rRNA. c) EMSA of the BG4 antibody 
with GQES7-a and its non-G-
quadruplex-forming mutant mtES7-a, 
visualized on a native gel. GQES7-a 
and mtES7-a RNAs were loaded at a 
constant strand concentration with 
increasing concentrations of BG4 
antibody. The RNA (arrow) is blue and 
the protein is red. 
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The UV melting profile of GQES7-b demonstrates the characteristic hypochromic 

shift at 295 mm and the expected salt dependence (Figure 2.3a). The Tm of the melting 

transition is increased by around 9 °C when the counterion is switched from Li+ (Tm≅36 

°C) to K+ (~45 °C). We were unable to observe a melting transition under any conditions 

for GQES7-a. Even under low concentrations of Li+ the Tm of GQES7-a appears to be 

greater than experimentally accessible temperatures. The observed differences between 

melting behaviors of GQES7-a and GQES7-b are consistent with the greater G-quadruplex 

propensity of GQES7-a than of GQES7-b observed by GQRS Mapper, CD spectroscopy 

and ThT fluorescence. 

2.3.5. Mung bean nuclease cleavage.  

In the conventional secondary model of H. sapiens LSU rRNA (Figure 2.1), G-

quadruplex-forming sequences are represented as doubled-stranded and are paired with C-

rich strands. If these tentacles form G-quadruplexes, the C-rich strands would be 

dissociated, presumably as single strands. As an additional test for G-quadruplexes in intact 

ES7HS rRNA, we examined cleavage by mung bean nuclease (MBN, Figure 2.3b). MBN 

preferentially cleaves single-stranded RNA or DNA and would cleave ES7HS rRNA more 

rapidly if G-quadruplexes form than if they do not. MBN cleavage has been used 

previously to test for G-quadruplexes in DNA (84). The results here show that MBN 

cleaves ES7HS most rapidly under G-quadruplex-stabilizing conditions (Figure 2.3b). 

Addition of K+ increases the extent of cleavage (at constant time). Addition of PDS to K+ 

further increases the extent of cleavage. The simplest interpretation of the MBN results is 

that ES7HS exists as a mixture of duplex and G-quadruplex forms and that the equilibrium 

is shifted by the type of counterion and by G-quadruplex stabilizers. In a negative control, 
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extent of MBN hydrolysis of tRNA did not increase upon addition of K+ and/or PDS 

(Figure A.2). 

2.3.6. Antibody binding.  

BG4 is an antibody developed by Balasubramanian and coworkers (24, 25) that 

binds to a variety of G-quadruplex types but not to other nucleic acids such as RNA 

hairpins, single-stranded or double-stranded DNA. Here, to test for G-quadruplex 

formation in GQES7-a, an EMSA was performed with BG4 (Figure 2.3c). BG4 was also 

used for dot blotting experiments with GQES7-a, GQES7-b, and intact ES7HS (Figure 2.4). 

We observe binding of BG4 to GQES7-a, GQES7-b, and intact ES7HS (Figure 2.4a-b). 

Consistent with the results above, BG4 binds more tightly to GQES7-a than to GQES7-b. 

The experiments presented above are consistent with in vitro formation of G-

quadruplexes by ES7HS and by oligomers derived from ES7HS. Below we investigate 

whether intact H. sapiens 28S rRNA can form G-quadruplexes when protein-free or when 

assembled in ribosomes. The 28S rRNA was extracted from HEK293T cells and dot 

blotting was performed with BG4 (Figure 2.4d). The results suggest that 28S rRNA forms 

G-quadruplexes.  
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Figure 2.4. Dot blots performed with the BG4 antibody on a) GQES7-a and GQES7-b, b) 
intact ES7HS, c) the negative controls mtES7-b and tRNA, d) the 28S rRNA extracted from 
HEK293T cells and on e) human 80S ribosomes and f) polysomes purified from HEK293 
cells. All samples were incubated in the presence of 50 mM KCl and ribosomes and 
polysomes were further analyzed with or without 10 µM PDS, which stabilizes G-
quadruplexes. Samples were loaded onto the membrane in increasing amounts from left to 
right. 

To determine if 28S rRNA from H. sapiens forms G-quadruplexes when assembled 

in intact ribosomes, dot blotting was also performed with purified 80S human ribosomes 

and with polysomes (Figure 2.4e and 2.4f). The results show that the BG4 antibody binds 

preferentially to intact human ribosomes and polysomes in a concentration-dependent 

manner. PDS enhances binding of the antibody, as expected for G-quadruplex formation. 
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The observation of more extensive binding of the antibody to polysomes than to monomer 

ribosomes suggests formation of intermolecular G-quadruplexes in polysomes (i.e., that G-

quadruplexes link tentacles of adjacent ribosomes). 

2.3.7. G-quadruplex sequences in ribosomes throughout Chordata.  

Focusing specifically on translation, we have developed the SEREB Database (64), 

which contains fully curated and cross-validated sequences of rRNAs from all major phyla, 

yet samples the tree of life in a sparse, efficient and unbiased manner. Here we extended 

the SEREB database, increasing the number of chordate species from 10 to 17, for a fine-

grained analysis of ES7. 

2.3.7.1.G-quadruplex-forming sequences in chordate ES7s.  

Our MSA confirms that the lengths of rRNA tentacles of eukaryotes are variable, 

reaching maxima in species such as G. gallus and H. sapiens (Figure 2.5). Aligned 

sequences of relevant segments of ES7s of various eukaryotes demonstrate G-quadruplex-

forming sequences in chordates, indicated by the motif G≥3N1-7G≥3N1-7G≥3N1-7G≥3 (number 

of G tracts (n) >3). The motif is observed near the termini of ES7 tentacles in all warm-

blooded chordates, although the exact locations and specific sequences are variable. The 

maximum number of tandem G-tracts in tentacle a of ES7 is ten in human and chimpanzee 

and eight in rat and chicken. Fish, reptiles and amphibians appear to lack the G-tract motif 

in ES7 tentacles.  
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2.3.7.2.G-quadruplex-forming sequences in chordate ESs other than ES7.  

The extended SEREB Sequence Database suggests that G-quadruplex-forming 

sequences are universal to chordates (Table A.2). Several chordate species present G-

quadruplex-forming sequences in tentacles other than ES7 (Table A.2). These G-

quadruplex-forming sequences are not shown in Figure 2.5. In addition, repeated G-tracts 

outside of the motif can form G-quadruplexes (85, 86). Therefore, additional G-

quadruplexes cannot be excluded in these ribosomes. It is possible that G-tracts with n<4 

form intermolecular G-quadruplexes with other tentacles or with other ribosomes as in 

polysomes. 
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Figure 2.5. G-tracts are observed in ES7 tentacles. a) Conventional secondary structural 
models of ES7 from various eukaryotes. G-tracts within the G≥3N1-7G≥3N1-7G≥3N1-7G≥3 
motif are highlighted in red. b) Sequence alignment of ES7 tentacle a showing G-
quadruplex-forming sequences are common in chordates. Individual G-tracts in both 
panels are labeled with Greek symbols. Nucleotides are colored by type. G’s within G-
tracts are dark red. Other G’s are pink. All nucleotides are numbered in accordance with 
H. sapiens 28S rRNA. Sizes of eukaryotic ES7 secondary structures are not to scale. 
Complete species nomenclature is provided in Table A.3. 
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2.3.7.3.Absence of G-quadruplex sequences in non-chordate rRNAs.  

To determine the phylogenic distribution of G-quadruplexes in LSU rRNA, we 

inspected highly curated sequences of 20 non-chordate eukaryotes from the SEREB 

database (64). Thus far we can find no evidence of G-quadruplex-forming sequences in 

ribosomes of non-chordate eukaryotes.  

2.3.8. RNA remodeling proteins bind to rRNA G-quadruplex sequences.  

The localization of G-quadruplex-forming sequences to ribosomal tentacles 

suggests the possibility of interaction with non-ribosomal proteins. To identify the proteins 

that bind to rRNA G-quadruplexes, we performed pull-down experiments and used stable 

isotope labeling with amino acids in cell culture (SILAC) for protein quantification. We 

focused on GQES7-a, the longest and most stable G-quadruplex-forming region in human 

rRNA (Figure 2.6). GQES7-a rRNA was linked on the 3’ end to biotin (GQES7-a-Biotin) 

and associated proteins in human cell lysates were pulled down and analyzed by mass 

spectrometry. The biotinylation of GQES7-a does not disrupt the G-quadruplexes (Figure 

A.3). Known G-quadruplex-binding proteins were pulled down by this assay including 

CNBP, YBOX1, hnRP F, hnRP H, DDX21, DDX17, DDX3X (87-93).  A significant 

number of helicases were identified (DDX3X, CNBP, DDX21, DDX17), all of which have 

been reported to unfold G-quadruplexes. In addition, a significant number of heterogeneous 

nuclear ribonucleoproteins (hnRNPs) were shown in this experiment to bind to GQES7-a, 

including hnRNP G-T/RMXL2, hnRNP M, hnRNP G/RBMX, hnRNP H2, hnRNP H, 

hnRNP F, hnRNP H3, and FUS. hnRNPs are a family of RNA-binding proteins with 

functions including pre-mRNA processing and transport of mRNAs to ribosomes (94). 
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Several of these proteins have been previously identified as ribosome-binding proteins 

(95).  

To support results of the pull-down experiments, Western blotting was performed 

with four of the proteins obtained in the pull-down experiments (Figure 2.6d). We assayed 

a DEAD-box RNA helicase (DDX3X), a heterogeneous nuclear ribonucleoprotein (hnRNP 

H), the RNA-binding protein FUS, and a pre-mRNA polyadenylation stimulator (FIP1). 

hnRNP H and DDX3X have been previously identified as G-quadruplex-binding proteins. 

All four proteins bind to GQES7-a in the Western blot, suggesting we have tapped an 

uncharacterized pool of G-quadruplex-binding proteins. 
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Figure 2.6. Identification of GQES7-a-binding proteins. a) Scheme of the SILAC 
experiment. “RNA+beads” samples were combined in HEK293T grown in heavy media 
(panel i). The “Beads Only” control sample was combined in HEK293T grown in light 
media. To verify the proteins identified by this method, the experiment was performed 
using reverse labeling (panel ii). b) Scatter plot representing fold enrichment of the proteins 
binding to GQES7-a in “Heavy” HEK293T. Color representation indicates specific 
proteins that bound more tightly to GQES7-a than to the beads (green), to the beads than 
to GQES7-a (red) or bound to the beads and GQES7-a to a similar extent (orange). c) A 
close-up view of the green region of the scatter plot represented in panel b. Dots with a 
black contour are used to indicate proteins that appeared in the green region of the two 
replicate experiments described in panel a. d) Western blotting analyses of the eluted 
proteins from the RNA pull-down of HEK293T. All four blotted proteins (FIP1, FUS, 
DDX3 and hnRNP H) eluted from the GQES7-a sample (RNA+Beads) but not from the 
control (Beads Only), confirming the SILAC results.  
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2.4. Discussion 

The results presented here suggest that G-quadruplexes are far more profuse than 

previously conceived. rRNA is the most abundant macromolecule in most cells. Human 

LSU rRNA and rRNA of other chordates contain sequences with strong propensity to form 

G-quadruplexes (Figure 2.1). We have identified ten tandem G-tracts in tentacle a of 

human ES7 rRNA and four in tentacle b. These tandem G-tracts form stable G-

quadruplexes under a variety of conditions in vitro. Computation, ThT fluorescence, CD 

spectroscopy, UV melting, EMSAs, nuclease digestion and blotting with a G-quadruplex 

antibody provide a consistent picture of the propensities of various regions of 28S rRNA 

to form G-quadruplexes. 

G-quadruplex-forming sequences have been shown previously to cluster within 

regulatory mRNA regions such as 5′ and 3′ untranslated regions (96) and within the first 

intron (97). The extent to which such G-quadruplexes form in vivo remains uncertain. 

Bartel and coworkers suggest that mRNA G-quadruplexes are globally unfolded by 

unwinding factors in eukaryotic cells (31). By contrast, Wong and Monchaud support a 

model in which G-quadruplexes continuously form and unfold in vivo (27). However, 

rRNAs were explicitly excluded from both of these investigations; the extent of G-

quadruplex formation in vivo remains an open question.  

In our view, the following merit a ribosome centric reinvestigation of G-quadruplex 

structure and function in vivo: 

i. inherent flexibility and polymorphism of rRNA tentacles,  

ii. their ability to extend hundreds of Ångströms from the ribosomal surface,  
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iii. the large number of tandem G-tracts on some rRNA tentacles, 

iv. high stability of tentacle G-quadruplexes in vitro, and 

v.  extreme concentrations of rRNA on the rough ER and in polysomes. 

Our results suggest that nature’s most complex organisms have evolved long rRNA 

tentacles with unexpected structural polymorphism, including the ability to form G-

quadruplexes (Figure 2.7). 

G-quadruplex-forming rRNA sequences appear to be a universal feature of 

tentacles of chordate ribosomes. We have inferred the locations of tandem rRNA G-tracts 

in various species by Multiple Sequence Alignments. The specific sequences and exact 

locations of the G-quadruplexes on tentacles are variable across phylogeny. We searched 

the SEREB database and thus far could find no evidence of G-quadruplex-forming 

sequences outside of the Chordata phylum. The SEREB database is specifically designed 

for analysis of rRNA, and includes species from all major phyla, and samples the tree of 

life in a sparse, efficient and accurate manner (64). It contains complete and highly curated 

rRNA sequences. 
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Figure 2.7. a) Schematic 
representation of the 
common core, the eukaryotic 
shell and the tentacles of the 
LSU of the Homo sapiens 
ribosome. G-quadruplexes 
are indicated on ES7 and 
ES27. The lengths of ES7HS 
(orange) and ES27HS (green) 
tentacles are roughly scaled 
to the size of the common 
core. The G-quadruplexes 
represented in tentacle b of 
ES27HS do not fall within the 

G≥3N1-7G≥3N1-7G≥3N1-7G≥3 
motif and are speculative. 
The G-quadruplex region 
found in Helix 63 of ES27HS 
is not indicated here. b) 
Schematic representation of 
interactions between 
ribosomes via intermolecular 
G-quadruplexes. G-tracts on 
ES7 tentacle a from different 
ribosomes contribute to the 
formation of G-quadruplexes 
(an expanded view is 
presented on the right). 

	

	

	

	

The preferential localization of rRNA G-quadruplexes near the termini of rRNA 

tentacles suggests these regions are loci for association of specific cytosolic proteins or for 

assembly of ribosomes. Here we identified multiple human RNA helicases and other RNA 
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remodeling proteins that bind to rRNA G-quadruplexes. (Figure 2.6) These proteins could 

be participants in G-quadruplex regulation on ribosomes. 

Our observation here that polysomes appear to form more extensive G-

quadruplexes than monomer ribosomes suggests a role for inter-ribosomal G-quadruplexes 

in closely associated ribosomes (Figure 2.7b). Our work points to the possibility that, inside 

cells, ribosomes present polymorphic tentacles that can switch between unimolecular and 

multimolecular G-quadruplexes and duplex forms. In this model, surfaces of ribosomes 

contain multivalent docking sites for G-quadruplex-specific proteins and for nucleic acid 

assemblies, including in polyribosomes. It has been shown that G-quadruplexes can form 

phase separated RNA gels (49). It is conceivable that densely packed ribosomes on the 

rough ER and in polysomes are surrounded by phase separated G-quadruplexes gels, 

composed of rRNA tentacles.  

G-quadruplex-forming sequences have been described in genes encoding rRNA, 

where they are proposed to influence transcription (98) and bind to the nucleolar protein 

nucleophosmin (99). These studies have focused on the external and internal transcribed 

regions (ETS and ITS) and are not part of the assembled ribosome. Moore and co-workers 

reported tetramerization of an oligomer containing a single G-tract, derived from E. coli 

5S rRNA (100). The results here highlight potential ribosomal functionality associated with 

the large rRNA tentacles of mammals and birds. The conservation of rRNA G-quadruplex-

forming sequences throughout Chordata, albeit at various locations in rRNA tentacles, 

suggests significant functions.  

 
 



 35 
 

2.5. Methods 

ES7HS spans nucleotides 436 to 1311 of the H. sapiens LSU rRNA and contains 

sequences that we call GQES7-a (nts 583-652) and GQES7-b (nts 825-853). RNAs 

corresponding to ES7HS, GQES7-a and GQES7-b were synthesized in vitro by transcription 

(HiScribeTM T7 High Yield RNA Synthesis Kit, New England Biolabs). For cation-

dependent experiments, precautions were used to remove contaminating cations that 

stabilize G-quadruplexes. RNAs were ethanol precipitated from 800 mM LiCl, 10 mM 

Tris-HCl, pH 7.5. The RNA pellets were resuspended in 1 mM LiCl, 10 mM Tris-HCl, pH 

7.5 were dialyzed extensively against the same buffer using Slide-a-Lyzer dialysis cassettes 

(MWCO 3,500, Pierce) at 4°C. mtES7-a and mtES7-b were ordered as RNA oligomers. 

Baker’s yeast tRNAs were purchased from Roche. RNA purity was monitored by 8 M Urea 

5% acrylamide gel in TBE buffer. Complete sequences of ES7HS, GQES7-a, GQES7-b, 

mtES7-a and mtES7-b are contained in Table A.1. 

2.5.1. HEK293T 28S rRNA extraction and purification.  

HEK293T cells were grown to 60% confluency after which total RNA was 

extracted with TRI Reagent® (Sigma-Aldrich). 28S rRNA was extracted from an agarose 

gel by running the rRNA into wells in the center of the gel, where the rRNA was extracted 

with a pipette. The rRNA was precipitated in 5 M ammonium acetate-acetic Acid, pH 7.5 

with excess ethanol. 28S rRNA purity was monitored on 1% agarose gels (Figure A.1).  
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2.5.2. Thioflavin T (ThT) fluorescence.  

RNAs were prepared at a final concentration of 1	µM (strand) and annealed in 150 

mM KCl, NaCl or LiCl, 10 mM Tris-HCl, pH 7.5, 2 �M ThT by cooling from 90°C to 

25°C at 1°/min. RNAs were incubated at 4°C for 10 min and were loaded onto a Corning® 

384 Well Flat Clear Bottom Microplate. Fluorescence from 300-700 nm, exciting at 440 

nm were acquired on a BioTek Synergy™ H4 Hybrid plate reader. When appropriate, 

pyridostatin (PDS) was added to the desired concentration after the RNA was annealed.	

2.5.3. Circular dichroism.  

RNA at 1	µM	(strand) in 150 mM KCl or LiCl and 10 mM Tris-HCl (pH 7.5) was 

annealed as described above. CD spectra were acquired at 20 °C on a Jasco J-810 

spectropolarimeter using 1 mm cuvettes. Data from 200-320 nm was acquired at a rate of 

100 nm/min with 1 sec response, a bandwidth of 5 nm, and averaged over three 

measurements. The buffer spectrum was subtracted. Smoothing was performed with Igor 

Pro. The observed ellipticity	(q, mdeg) was normalized (101) using the expression	∆𝜀 =

	𝜃/(32,980	 × 	𝑐	 × 	𝑙),	where c is the molar strand concentration of the RNA and l is the 

path length of the cuvette in centimeters. 	

2.5.4. UV thermal melting.  

Absorbance measurements were collected at 295 nm using a Varian Cary-1E UV 

spectrophotometer. RNA samples	(800	µL, final OD260 of 0.50 units) in 10 mM Tris-HCl, 

pH 7.5 and 100 mM KCl or LiCl were annealed as described above and added to 1 cm 

path-length quartz cuvettes. Samples were then heated from 15°C to 90°C and cooled at 

the same rate at 0.5°C/min. Data was recorded every 0.5°C. 
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2.5.5. EMSAs.  

The anti-G-quadruplex BG4 antibody was purchased from Absolute Antibody 

(Catalog #: Ab00174-1.1). GQES7-a	(3	µM) rRNA or the negative control mtES7-a RNA 

were annealed in 20 mM Hepes-Tris, pH 7.5, 50 mM KCl. GQES7-a rRNA or mtES7-a 

RNA were combined with various concentrations of BG4 at a final RNA concentration of 

1	µM RNA (strand).	RNA-protein mixtures were incubated at room temperature for 20 min 

in 50 mM KCl. RNA-protein interactions were analyzed by 5% native-PAGE. Gels were 

visualized following a dual fluorescent dye protocol (102) with a Azure imager c400 (Azure 

Biosystems).		

2.5.6. rRNA - BG4 antibody dot blotting.  

RNAs were annealed in the presence of 50 mM KCl and were diluted 1x, 2x and 

4x. GQES7-a, GQES7-b, mtES7-b, tRNA: 3.2 µM,	 1.6 µM,	 0.8	  µM.	ES7HS: 1.4 µM,	

0.7 µM,	 0.35 µM.	 28S	 rRNA: 55 nM, 27.5 nM, 13.7 nM. RNAs were loaded onto 

nitrocellulose membranes and dried at room temperature for 30 min. The membranes were 

blocked for 1 h at room temperature. BG4 antibody was added (1:2,000 dilution) and 

incubated with gentle rocking for sixty min at room temperature. The membrane was 

washed for ten min twice with 1X TBST and incubated for sixty min with an appropriate 

fluorescent secondary antibody anti-mouse (1:10,000 dilution) (Biotium, #20065-1). The 

membrane was washed for ten min twice with 1X TBST and was imaged on a Li-Cor 

Odyssey Blot Imager. Intact 80S ribosomes and polysomes were purified from HEK293, 

which were incubated 5 min in 10 µg/mL	cycloheximide at 37°C. Lysis buffer (10 mM 

NaCl, 10 mM MgCl2, 10 mM Tris-HCl, pH 7.5, 1% Triton X-100, 1% sodium 
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deoxycholate, 0.2 U/mL DNase I, RNase inhibitor, 1mM dithiothreitol, 10	 µg/mL	

cycloheximide) was used to scrap the cells. Nuclei and cell debris were removed by 

centrifugation and the supernatant was transferred to a 15-50% sucrose gradient containing 

100 mM NaCl, 10 mM MgCl2, 30 mM Tris-HCl, pH 7.5 and centrifuged by 

ultracentrifugation. Purified 80S ribosomes and polysomes were then incubated at room 

temperature for 15 min in the presence of 50 mM KCl with or without 10 �M PDS. 

Ribosomes or polysomes were added iteratively in 30-min intervals to the same site on a 

nitrocellulose membrane (0.9	 µg,	 2.7	 µg,	 4.5 µg). The membrane was then treated as 

described above. BG4 was added to a final dilution of 1:1,000 and the secondary antibody 

was added to a final dilution of 1:5,000.	

2.5.7. Mung bean nuclease (MBN) probing.  

ES7HS and tRNA were prepared at 100 ng/�L and annealed in the presence/absence 

of 100 mM KCl, 15 mM Tris-HCl (pH 7.5) by cooling from 90°C to 25°C, at 1°/min. PDS 

was added to the annealed RNA to a final concentration of 2	µM.	One unit of MBN was 

added per µg of RNA	and samples were incubated at 30°C for 30 min. SDS was added to 

a final concentration of 0.01% to denature the nuclease and RNA was purified by ethanol 

precipitation. The extent of RNA cleavage was determined on an 8 M urea 5% acrylamide 

(19:1 acrylamide/bisacrylamide) gel stained with ethidium bromide. 

2.5.8. ES7 secondary structures.  

Secondary structures of human and D. melanogaster ES7 were obtained from 

RiboVision (103). Nucleotides of G-quadruplex regions in P. troglodytes, M. musculus and 
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G. gallus (Table 2.1) were numbered as in Bernier (64), subtracting the nucleotides from 

the 5.8S rRNA.  

2.5.9. Phylogeny and Multiple Sequence Alignments.  

The SEREB MSA (64) was used as a seed to align additional eukaryotic ES7 

sequences to increase the density of eukaryotic species in the MSA. The 28S rRNA 

sequences in the SEREB MSA were used to search (104) the NCBI databases (105) for 

LSU rRNA sequences. The SEREB database has sequences from 10 chordate species; 

seven additional chordate species from 7 new orders were added to the ES7 tentacle a MSA 

(Figure 2.7, Table A.3). Sequences without intact ES7 tentacle a were excluded. Sequences 

with partial 28S rRNA were marked as partial. Sequences inferred from genomic scaffolds 

were marked as predicted (Table A.3). The extended database was queried for G-

quadruplex-forming sequences. 

Sequences were incorporated into the SEREB-seeded MSA using MAFFT (106) 

and adjusted manually using BioEdit (107). Manual adjustments incorporated information 

from available secondary structures. In some cases, the positions of G-tracts in sequences 

with large gaps relative to H. sapiens are not fully determined, as they can be aligned 

equally well with flanking G-tracts in the MSA. Alignment visualization was done with 

Jalview (108). The phylogenetic tree and the timeline of clade development were inferred 

from TimeTree (109). 

Analysis of the entire LSU was performed on SEREB sequences, which are highly 

curated and always complete. This procedure ensured that negative results indicate absence 

of G-quadruplex-forming sequences from intact rRNAs rather than absence from rRNA 
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fragments that lack the appropriate regions. G-quadruplex-forming sequences are not 

detected in any of the 20 non-chordate members of the SEREB database. 

2.5.10. SILAC.  

HEK293T cells were cultured in SILAC media - “heavy” or “light” Dulbecco's 

Miodified Eagle Media (DMEM) (Thermo Scientific) supplemented with 10% dialyzed 

fetal bovine serum (FBS) (Corning) and 1% penicillin-streptomycin solution (Sigma) in a 

humidified incubator at 37 °C with 5% carbon dioxide. The heavy media contained 0.798 

mM L-lysine (13C6 and 15N2, Cambridge Isotope Laboratories) and 0.398 mM L-arginine 

(13C6, Cambridge Isotope Laboratories). The light media had the same concentrations of 

normal lysine and arginine (Sigma). Media were supplemented with 0.2 mg/mL proline 

(Sigma) to prevent arginine-to-proline conversion. Heavy and light cells were grown for at 

least six generations. Once the confluency reached 80%, cells were harvested by scraping, 

washed twice with ice-cold PBS (Sigma), lysed in a buffer containing 10 mM HEPES 

pH=7.4, 200 mM potassium chloride, 1% Triton X-100, 10 mM magnesium chloride (all 

from Sigma) and 1 pill/10 mL cOmplete ULTRA tablet protease inhibitor (Roche), and 

incubated on an end-over-end shaker at 4 oC for 1 hour. Lysates were centrifuged at 25,830 

g at 4 oC for 10 minutes, and the supernatants were collected and kept on ice.  

Ten	µg of	GQES7-a-Biotin RNA was annealed as described above in the presence 

of 10 mM Tris-HCl, pH 7.5, and 100 mM KCl. Twenty	µL of	magnetic streptavidin-coated 

beads (GE Healthcare) were washed with the lysis buffer (10 mM HEPES, pH 7.4, 200 

mM KCl, 1% Triton X-100, 10 mM MgCl2, protease inhibitors). Annealed RNA was then 

added to the washed beads and incubated at 4oC for 30 min with gentle shaking. For control 
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experiments, no RNA was added. SILAC cell lysates were incubated with 0.5 mg E. coli 

tRNA per 1 mg protein at 4oC for 30 min with gentle shaking. “RNA+Beads” and control 

“Beads Only” samples were transferred into the SILAC cell lysates: “RNA+Beads” were 

added to the Heavy cell lysate and “Beads Only” was added to “Light” HEK293T cell 

lysate. As a replicate, “RNA+Beads” was added “Light” cell lysate and “Beads Only” was 

added to “Heavy” cell lysate. 200 U/mL of RNasin was added and the lysates were 

incubated at 4 oC for 2 hrs with gentle shaking. Samples were centrifuged, the supernatant 

was discarded, and the pelleted beads were washed with lysis buffer with increasing KCl 

concentrations (0.4 M, 0.8 M, 1.6 M). After the three washes, 100	µL of the	elution buffer 

(100 mM Tris-HCl, pH 7.4, 1% SDS, 100 mM DTT) was added to one of the two samples 

and then combined with the beads of the corresponding sample. “RNA+Beads” in “Heavy” 

lysates were combined with “Beads Only” in “Light” lysates and “RNA+Beads” in “Light” 

lysates were combined with “Beads Only” in “Heavy” lysates. The combined samples were 

boiled and then briefly centrifuged. Beads were discarded and samples were analyzed with 

an online LC-MS system. 

2.5.11. Mass spectrometry.  

Eluted proteins were diluted 10 times with 50 mM HEPES pH=7.4 and were 

alkylated with 28 mM iodoacetamide (Sigma) for 30 minutes at room temperature in the 

dark. Proteins were precipitated by methanol-chloroform, and the pellets were resuspended 

in digestion buffer containing 50 mM HEPES pH=8.8, 1.6 M urea, and 5% acetonitrile 

(ACN) (all from Sigma). After digestion with sequencing-grade modified trypsin 

(Promega) at 37 °C for 16 hours, reactions were quenched with 1% trifluoroacetic acid 

(TFA, Fisher Scientific) and purified with StageTip. Peptides were dissolved in 10	µL 5% 
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ACN and 4% FA solution, and 1 µL was loaded to a Dionex UltiMate 3000 UHPLC system 

(Thermo Fisher Scientific) with a microcapillary column packed in-house with C18 beads 

(Magic C18AQ, 3 µm, 200 Ǻ, 75	µmx16 cm).	A 110-minute gradient of 3-22% ACN 

containing 0.125% FA was used. The peptides were detected with an LTQ Orbitrap Elite 

Hybrid Mass Spectrometer (Thermo Fisher Scientific) controlled by Xcalibur software 

(version 3.0.63). MS/MS analysis was performed with a data-dependent Top20 method. 

For each cycle, a full MS scan in the Orbitrap with the automatic gain control (AGC) target 

of 106 and the resolution of 60,000 at 400 m/z was followed by up to 20 MS/MS scans in 

the ion trap for the most intense ions. Selected ions were excluded from further sequencing 

for 90 seconds. Ions with singly or unassigned charge were not sequenced. Maximum ion 

accumulation times were 1,000 ms for each full MS scan and 50 ms for each MS/MS scans. 

The spectra were searched against a human protein database downloaded from UniProt 

using the SEQUEST algorithm (version 28) (110).  The following parameters were used: 

20 ppm precursor mass tolerance; 1.0 Da fragment ion mass tolerance; trypsin digestion; 

maximum of 3 missed cleavages; differential modifications for methionine oxidation 

(+15.9949 Da), heavy lysine (+8.0142 Da), and heavy arginine (+6.0201 Da); fixed 

modification for cysteine carbamidomethylation (+57.0215 Da). The false discovery rates 

(FDR) were evaluated and controlled by the target-decoy method. Linear discriminant 

analysis (LDA) was used to filtered the peptides to <1% FDR based on parameters such as 

XCorr,	DCn,	and precursor mass error. An additional filter was used to control the protein 

FDR to <1%. For SILAC quantification, the S/N ratios of both heavy and light peptides 

must be greater than 3. Otherwise, one of the two versions of the peptides (heavy or light) 

must have the S/N ratio greater than 10. Other peptides that did not pass these criteria were 
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removed. The final protein ratio was calculated from the median value of the peptides from 

each parent protein. The raw files are publicly accessible at 

http://www.peptideatlas.org/PASS/PASS01260, Username: PASS01260, Password: 

TL3854zn. 

2.5.12. Western Blotting.  

Samples were electrophoresed on 12% SDS-PAGE gels and transferred to a 

nitrocellulose membrane overnight. Membranes were blocked for 1 hour at room 

temperature with gentle shaking and then incubated for another hour with primary 

antibodies: 1:200 dilution of FIP1 (mouse monoclonal, sc-398392), DDX3 (mouse 

monoclonal, sc-81247), FUS (mouse monoclonal, sc-47711),  or hnRNP H (mouse 

monoclonal, sc-32310). Antibodies were obtained from Santa Cruz Biotechnology. 

Membranes were washed three times with 1X TBST and secondary antibody CF680 goat 

anti-mouse IgG (H+L) (Biotium, 20065) was added (1:5,000 dilution). Membranes were 

washed three times with 1X TBST and imaged on a Li-Cor Odyssey Blot Imager. 

 
 

 

 

 

 

 

 



 44 
 

CHAPTER 3 

PROFUSION OF G-QUADRUPLEXES ON BOTH SUBUNITS OF 

METAZOAN RIBOSOMES 

 

This chapter is adapted from the previously published work: Mestre-Fos, S., Penev, P. I., 

Richards, J. C., Dean, W. L., Gray, R. D., Chaires, J. B., Williams, L. D. “Profusion of G-

quadruplexes on both Subunits of Metazoan Ribosomes”, PLOS ONE. 14, (2019). The 

author of this document contributed to this work by conceiving, designing and performing 

all experiments except the phylogenetic analysis and analytical ultracentrifugation and CD 

melting experiments, making all figures except Figure 3.1a and 3.3b, making all tables, 

making all supplementary materials except Figures B.1, B.3, and B.4, and co-writing the 

manuscript.  

3.1. Abstract 

Mammalian and bird ribosomes are nearly twice the mass of prokaryotic ribosomes 

in part because of their extraordinarily long rRNA tentacles. Human rRNA tentacles are 

not fully observable in current three-dimensional structures and their conformations remain 

to be fully resolved. In previous work we identified sequences that favor G-quadruplexes 

in silico and in vitro in rRNA tentacles of the human large ribosomal subunit. We 

demonstrated by experiment that these sequences form G-quadruplexes in vitro. Here, 

using a more recent motif definition, we report additional G-quadruplex sequences on 
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surfaces of both subunits of the human ribosome. The revised sequence definition reveals 

expansive arrays of potential G-quadruplex sequences on LSU tentacles. In addition, we 

demonstrate by a variety of experimental methods that fragments of the small subunit 

rRNA form G-quadruplexes in vitro.  Prior to this report rRNA sequences that form G-

quadruplexes were confined to the large ribosomal subunit. Our combined results indicate 

that the surface of the assembled human ribosome contains numerous sequences capable 

of forming G-quadruplexes on both ribosomal subunits. The data suggest conversion 

between duplexes and G-quadruplexes in response to association with proteins, ions, or 

other RNAs. In some systems it seems likely that the integrated population of RNA G-

quadruplexes may be dominated by rRNA, which is the most abundant cellular RNA. 

3.2. Introduction 

rRNA expansion segments (ES’s) decorate the surfaces of eukaryotic ribosomes. 

Ribosomal ES's of complex eukaryotes, especially in birds and mammals, contain long 

rRNA tentacles that appear to extend for 100’s of Å from the ribosomal surface. We 

previously reported that rRNA tentacles of chordates can form G-quadruplexes (111). 

rRNA tentacles of Homo sapiens contain multiple sequences that form G-quadruplexes of 

unusually high stability in vitro.  

In our previous work, rRNAs were scrutinized for G-quadruplex sequences using 

the classic 3 x 4 motif of at least three contiguous guanines and a short spacer, repeated 

four times [(G≥3N1–7)n≥4] (111). A G-quadruplex is composed of four guanine columns 

surrounding a central cavity that sequesters monovalent cations (K+ > Na+ > Li+) (32, 112). 

The guanine columns are linked by Hoogsteen hydrogen bonds between co-planar 
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guanines. The 3 x 4 sequence criteria identified four potential G-quadruplex forming 

regions in ES7 and ES27 of the rRNA of the large ribosomal subunit (LSU) of humans. 

rRNA of the human small ribosomal subunit (SSU) rRNA appeared to lack G-quadruplex 

sequences.  

However, the RNA sequence space of G-quadruplexes has recently been re-

evaluated: both shortened and bulged G-tracts are now seen to form stable G-quadruplexes 

(18-21, 34, 113). Here, we extended our rRNA sequence search using a revised motif of 

four repeats of two or more adjacent guanines connected by a spacer (2 x 4, (G≥2N1–7)n). 

Using the 2 x 4 criterion, we identify numerous additional G-quadruplex forming 

sequences on the human LSU rRNA, and for the first time, detect potential G-quadruplex 

forming sequences in SSU rRNAs (Figure 3.1). We experimentally confirm formation in 

vitro of G-quadruplexes by rRNA fragments derived from SSU rRNA as well as by native 

human SSU rRNA. 

The revised sequence definition reveals expansive arrays of potential G-quadruplex 

sequences on LSU tentacles of expansion segments 7 and 27 (ES7 and ES27). The G-

quadruplex forming regions of ES7 are increased from 10 to 20 G-tracts (tentacle a, regions 

1 and 2) and from 4 to 23 G-tracts (tentacle b, regions 3 and 4) (Figure 3.1B). For ES27, 

the increases are from 6 to 25 G-tracts (tentacle a, regions 10 and 11) and from 0 to 32 G-

tracts (tentacle b, regions 12, 13 and 14).  rRNA sequences on the surfaces of the H. sapiens 

LSU and SSU that meet the 2 x 4 criteria are shown in Figure 3.1B and listed in Tables 3.1 

(SSU) and 3.2 (LSU). G-quadruplex sequences in the SSU are located mainly near the 

termini of expansion segments (Figure 3.1B); es’s are considerably smaller than ES’s 

(lower case es indicates SSU and uppercase ES indicates LSU).  
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Here, we experimentally characterize SSU 2 x 4 G-quadruplex sequences of es3 

and es12. Our data suggest that the 2 x 4 sequence of es3 forms a G-quadruplex in vitro 

while that of es12 forms a hairpin. The es12 sequence converts from hairpin to G-

quadruplex in the presence of a G-quadruplex stabilizer or at elevated temperature. We also 

observe that 2 x 4 G-quadruplex sequences on the surface of the SSU are conserved over 

phylogeny of warm-blooded animals.  

The combined results suggest that G-quadruplexes can be formed by multiple 

surface-exposed sequences on both the LSU and SSU of H. sapiens. The results are 

consistent with a model in which human ribosomal surfaces are structurally polymorphic, 

with complex liquid-liquid phase behavior, mediated in part by G-quadruplex formation. 

In metazoans, the integrated population of RNA G-quadruplexes (the RNA G-

quadruplexome) may be dominated by rRNA, which is more abundant than other cellular 

RNAs (10, 114) and presents more expansive arrays of G-tracts. 
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Figure 3.1. Secondary structures of the LSU and SSU rRNAs of Homo sapiens. (a) 
Nucleotide level solvent-Accessible Surface Area of the human LSU and SSU determined 
from intact ribosomes (PDB ID: 4UG0 (115)). (b) G-quadruplex forming sequences 
identified by the 3 x 4 motif are highlighted in red and those identified with the 2 x 4 motif 
are highlighted in blue. Only G-quadruplex forming sequences located on the ribosomal 
surface are shown. These images were generated with RiboVision (103). 
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3.3. Results 

3.3.1. Computation 

3.3.1.1. Solvent accessible surface of the ribosome.  

Here we presume that rRNA G-quadruplexes are more likely to form on the surface 

regions of the ribosome and not in the interior. The interior of the ribosome is engaged in 

intense inter- and intra-molecular interactions that constrain the structure and prevent 

conversion between different conformational states. To quantitate and visualize surface 

exposed rRNA, we calculated the Solvent-Accessible Surface Area (SASA) for all 

ribosomal nucleotides of the intact H. sapiens ribosome, and then mapped the data onto the 

two-dimensional structure of the rRNA (Figure 3.1A). The SASA varies between 0 Å2 

(fully buried) to 400Å2 (fully exposed) per nucleotide. The color gradient shown in Figure 

3.1A covers the range between 20Å2 and 200Å2 since the great majority of nucleotides fall 

in this range (Figure B.1). These ranges are consistent with previous definitions of exposed 

and buried nucleotides (116). Nucleotides with SASA below 20Å2 are purple, nucleotides 

with SASA above 200Å2 are yellow. Nucleotides with SASA above 140Å2 are considered 

as solvent accessible. Multiple contiguous nucleotides with SASA above 140Å2 indicate 

rRNA that is on the ribosomal surface. Surface rRNA indicated by SASA was confirmed 

by inspection of the three-dimensional ribosomal structure. Nucleotides that are not 

resolved in the structure but are known to be on the surface are also yellow. These regions 

of the rRNA are of particular interest because conformational heterogeneity, possibly 

conversion between duplex and G-quadruplex forms, may be the ultimate source of the 
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diffuse and smeared electron density during structure determination. Overall, the results 

confirm that rRNA expansion segments are in solvent-accessible regions of the ribosome. 

3.3.1.2. Identification of G-quadruplex sequences.  

The 2 x 4 sequence definition significantly extends the repertoire of putative rRNA 

G-quadruplexes in the human rRNA. All 3 x 4 sequences are located on solvent-accessible 

ribosomal regions whereas several of the 2 x 4 sequences are buried in the interior of the 

ribosome. The interior 2 x 4 sequences would appear to be locked in fixed non-G-

quadruplex structures and were not investigated further. Canonical secondary structures of 

the human LSU and SSU rRNAs illustrating surface-exposed 2 x 4 and 3 x 4 sequences are 

shown in Figure 3.1B. Both surface-exposed and buried 2 x 4 and 3 x 4 sequences are 

shown in Figure B.2. Several of the 3 x 4 sequences in the human LSU have already been 

characterized (111). Here, we concentrate on the 2 x 4 sequences of the human SSU rRNA, 

whose G-quadruplex forming capabilities have not been reported to our knowledge. 

We identified three 2 x 4 sequences on the surface of the human SSU rRNA. These 

sequences are located in expansion segments es3, es6, and es12. The propensity of each of 

these 2 x 4 sequences to form G-quadruplexes was estimated with the program QGRS 

Mapper, which outputs G-scores (117). The greatest SSU G-score (21) corresponds to the 

G-tracts of es3. Four 2 x 4 sequences are located on the buried interior of the ribosome. 

These interior 2 x 4 sequences are found in helices h33, h34, and in the junctions of helices 

h11 and h12 as well as helices h17 and h18 (Figure B.2).  

G-tracts are ‘polarized’ in all LSU tentacles and in both es3 and es6 on the SSU. 

Polarized G-tracts are confined to one strand of the hairpin form of the tentacle with 
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complementary C-rich sequences on the opposing strand (Figure 3.1B). In general, 

polarization is an indicator of proximal rather than dispersed G-tracts. Proximal G-tracts 

are more likely to form stable G-quadruplexes that dispersed G-tracts.  

3.3.2. Experiment.  

We produced RNA oligomers (GQes3 and GQes12, Figure 3.2A and Table B.1) 

that contain the 2 x 4 sequences found in tentacles of es3 and es12. We also investigated 

intact 18S rRNA (SSU rRNA) extracted from human cells. As negative controls, we 

produced mutants mutes3 and mutes12 with the same nucleotide composition as GQes3 

and GQes12, respectively, but with disrupted G-tracts (G-scores: 0, Table B.1).  

The G-tracts of es12 are distributed between both strands of the hairpin form of the 

tentacle (Figure 3.2A).  We anticipate that in isolated oligonucleotides, polarized G-tracts 

are more likely to form G-quadruplexes than non-polarized G-tracts because for non-

polarized G-tracts the hairpin form competes with G-quadruplex formation. Here, we 

experimentally investigate the 2 x 4 sequences of a polarized SSU tentacle (es3) and a non-

polarized SSU tentacle (es12).   The combined data, described below, suggest that GQes3 

forms G-quadruplexes while GQes12 forms a hairpin at low temperature in the absence of 

G-quadruplex stabilizers. At elevated temperatures and in the presence of G-quadruplex 

stabilizers GQes12 converts from hairpin to G-quadruplex. 
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3.3.2.1. Circular dichroism (CD) spectroscopy.  

CD has been used extensively for inferring whether RNAs or DNAs form G-

quadruplexes. RNA can form both parallel and antiparallel G-quadruplex topologies (44, 

45). The CD spectra of GQes3 and GQes12, with positive peaks at 260 nm and troughs at 

around 240 nm (Figure 3.2B), are consistent with RNA G-quadruplexes (118). However, 

the spectra are not definitive because A-form DNA and G-quadruplexes present similar 

Table 3.1. Sequences and G-scores of 2 x 4 G-quadruplex regions located on the ribosomal 
surface of the Homo sapiens 18S rRNA (SSU). 
 
Name Region SSU rRNA Sequence (5’ to 3’)  Highest 

G-score 
GQes3 es3 GGCCCCGGCCGGGGGGCGGGCGCCGGCGGCUUUGG* 21 

GQes12 es12 GGGGUCGGCCCACGGCCCUGGCGG 20 
 es6 GGAGCGGGCGGGCGGUCCGCCGCGAGG 20 
*GQes3 rRNA oligomer does not contain the last 9 nucleotides of the es3 sequence shown in 
Table 1 
 
Table 3.2. Sequences and G-scores of 2 x 4 and 3 x 4 G-quadruplex regions located on the 
ribosomal surface of the Homo sapiens 28S rRNA (LSU). 
 

# Region LSU rRNA Sequence (5’ to 3’)  Highest 
G-score 

1 ES7-a GGCGGCGGGUCCGGCCGUGUCGGCGGCCCGGCGG 20 
2 ES7-a GGGGGCGGGCUCCGGCGGGUGCGGGGGUGGGCGGGCGGGGCCGGGGGUGGGGUCGGC

GGGGG 
60 

3 ES7-b GGCGGGGAAGGUGGCUCGGGGGG 19 
4† ES7-b GGGAGGGCGCGCGGGUCGGGGCGGCGGCGGCGGCGGCGGUGGCGGCGGCGGCGGCGG

CGGCGGG 
38 

5 ES7-g GGGCCCGGGGGAGGUUCUCUCGGGG 19 

6 ES12 GGCUCGCUGGCGUGGAGCCGGGCGUGG 20 

7 ES15 GGACGGGAGCGGCGGGGGCGG 21 
8 ES15 GGAGGGCGGCGGCGGCGGCGGCGGCGGGGGUGUGGGG 21 
9 H63 GGGCUGGGUCGGUCGGGCUGGGG 38 

10† ES27-a GGGGGAGCGCCGCGUGGGGGCGGCGGCGGGGGGAGAAGGGUCGGGGCGGCAGGGGCC
GGCGGCGGCCCGCCGCGGGGCCCCGGCGGCGGGGGCACGG 

40 

11 ES27-a GGGGGGCCCGGGCACCCGGGGGGCCGGCGGCGGCGGCGACUCUGG 37 
12* ES27-b GGCGGGCGUCGCGGCCGCCCCCGGGGAGCCCGGCGGGCGCCGG 20 
13 ES27-b GGGGGCGGGGAGCGGUCGGGCGGCGGCGGUCGGCGGGCGGCGGGGCGGGGCGG 21 
14 ES27-b GGCGCGCGGCGGCGGCGGCGGCAGGCGGCGGAGGGGCCGCGGGCCGG 21 
15 ES30 GGGGCCCGGGGCGGGGUCCGCCGGCCCUGCGGGCCGCCGG 21 
16 ES39 GGGACCGGGGUCCGGUGCGG 20 
17 ES39 GGGAAACGGGGCGCGGCCGGAGAGGCGG 20 

*This region contains a loop longer than 7 nucleotides 
† These regions meet both 3 x 4 and 2 x 4 criteria.   
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CD spectra (119). The CD spectra of negative controls mutes3 and mutes12 are 

characteristic of A-C rich single-stranded RNA (120).   

 Thermal denaturation of GQes3 (Tm > 95 oC) or GQes12 (Tm,1 =50 oC, Tm,2> 90oC) 

was monitored by CD (Figure 3.2C) to reveal that both form exceptionally stable 

structures; neither is fully melted at the highest obtainable temperatures.  Since neither 

completely unfolds, a detailed thermodynamic analysis is not possible.   

When monitored at 265 nm the melting of GQes3 appears simple and is typical of 

G-quadruplex melting (Figure 3.2C and Figure B.3). However, the melting of GQes12 is 

complex, with a positive inflection near 50oC, followed by a separate denaturation 

transition with Tm > 90 oC.  This biphasic behavior suggests that GQes12 may form one 

structure (perhaps a duplex hairpin, see below) at low temperature.  Upon melting of the 

first structure, the strand appears to fold into a second structure (a G-quadruplex) that 

denatures with further increase in temperature.  A probable hairpin structure for GQes12 is 

shown in Figure B.4 (calculated using the mFold RNA server). 
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Figure 3.2. (a) The expanded secondary structure of the G-quadruplex regions on es3 or 
es12 of the human SSU rRNA. Schematic diagram of a single G-quartet, a 3 x 4 G-
quadruplex (with tracts of at least three guanine residues), and a 2 x 4 G-quadruplex (with 
tracts of at least two guanine residues). (b) CD spectra of SSU G-quadruplex regions 
GQes3 and GQes12 and control RNAs mutes3 and mutes12. (c) Changes in CD amplitude 
at 260 nm as a function of temperature for GQes3 and GQes12. (d) ThT fluorescence in 
solutions of GQes3, GQes12, mutes3 or mutes12 annealed in the presence of potassium 
ions. (e) ThT/PDS competition assay. After annealing, the rRNA oligomers were incubated 
with increasing concentrations of PDS and then fluorescence was recorded at 490 nm. (f) 
ThT fluorescence of LSU oligomers GQES7-a and GQES7-b and SSU oligomers GQes3 
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and GQes12.  (g) Sedimentation velocities of GQes3, GQes12, mutes3 or mutes12.  Data 
are shown as c(s) plots that show the distribution of sedimentation coefficients obtained by 
analysis using the program SEDFIT (121). The statistical significance relative to GQES7-
a-ThT fluorescence is indicated by asterisks using an ordinary one-way ANOVA with 
Dunnett’s post-hoc test. **** P < 0.0001.  

 

3.3.2.2. Thioflavin T (ThT) fluorescence.  

ThT interacts specifically with G-quadruplexes, and in doing so fluoresces at 490 

nm (122). Our results show that ThT in the presence of GQes3 gives a significantly stronger 

fluorescence signal than in the presence of the negative control mutes3, consistent with 

formation of G-quadruplexes by GQes3 (Figure 3.2D). However, GQes12-ThT 

fluorescence is not significantly higher than the negative control, consistent with formation 

of hairpin instead of G-quadruplex. 

G-quadruplex stability is cation dependent (K+ > Na+ > Li+). The cation dependence 

of ThT fluorescence is consistent with formation of G-quadruplexes by GQes3. ThT 

fluorescence is significantly more intense when annealed in K+ than in Li+ (Figure B.5). 

GQes12-ThT gives a stronger fluorescence in the presence of Li+ than in K+, consistent 

with our model in which GQes12 forms a hairpin and not a G-quadruplex. 

 3.3.2.3. ThT - pyridostatin (PDS) competition.  

PDS is a G-quadruplex stabilizer that binds with greater affinity than ThT to G-

quadruplexes and can displace ThT from G-quadruplexes (123). The results here show that 

G-quadruplex-induced ThT fluorescence of GQes3 is attenuated by addition of PDS, 

consistent with displacement of ThT from G-quadruplexes by PDS. Although ThT 

fluorescence in the presence of either GQes3 or GQes12 decreases as PDS concentration 
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is increased (Figure 3.2E), the effect on GQes3 is greater than the effect on GQes12. Under 

the conditions of our experiment, for GQes3 the maximum fluorescence intensity decrease 

is ~80% while the weaker signal of the mutes3 control decreases by approximately 40%. 

For GQes12, the fluorescence intensity decreases by ~40% while the signal for mutes12 

control remains constant. The data are consistent with a model in which GQes3 forms G-

quadruplexes in solution whereas GQes12 forms a hairpin in the absence of a G-quadruplex 

stabilizer. The G-quadruplex stabilizer shifts the GQes12 equilibrium to favor G-

quadruplexes.  

3.3.2.4. LSU and SSU G-quadruplexes.   

We compared the ThT fluorescence of 3 x 4 sequences from the LSU with 2 x 4 

sequences GQes3 and GQes12 from the SSU, anticipating that the 3 x 4 LSU signals would 

be more intense than the 2 x 4 SSU signals. We previously characterized rRNA oligomers 

and polymers containing 3 x 4 sequences from the tentacles of H. sapiens LSU rRNA (111). 

These sequences form highly stable G-quadruplexes in vitro. That work focused on 3 x 4 

sequences within tentacles a and b of ES7. The LSU sequences are GQES7-a, sequence 1 

in Table 3.2 and GQES7-b, the first four G-tracts of sequence 3 of Table 3.2. The G-scores 

of GQES7-a and GQES7-b are much greater than those of GQes3 and GQes12 (GQES7-a, 

60; GQES7-b, 38; GQes3, 21; GQes12, 20).   

The SSU sequences GQes3 and GQes12 give significantly weaker ThT 

fluorescence than the LSU sequences GQES7-a and GQES7-b. ThT fluorescence of 

GQES7-b is approximately 20% of that of GQES7-a, while GQes3-ThT fluorescence is 

around 6% and GQes12-ThT fluorescence is ~1.5% (Figure 3.2F). Overall, the 
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experimental and computational results are self-consistent: the 3 x 4 G-quadruplexes in the 

human LSU rRNA appear to be considerably more stable and more extensive than the 2 x 

4 G-quadruplexes of the SSU rRNA.  

3.3.2.5. Analytical Ultracentrifugation (AUC).  

The results of sedimentation velocity experiments (Figure 3.2G) are consistent with 

and support results described above.  The control sequence mutes3, designed to be an 

unstructured single-strand, shows a single AUC species with an S value of 1.8 S. G-

quadruplex sequence.  GQes3 has a more complex c(s) distribution with major species of 

2.5 S and 4.7 S (Figure 3.2G, top panel).  The elevated baseline between these species 

suggests an interacting self-associating system, probably a mono-dimer equilibrium.  The 

molecular weights of the two species observed for GQes3 indicates that they most likely 

correspond to monomer and dimer forms in equilibrium.   

The difference in sedimentation coefficients between the GQes3 monomer and 

mutes3 indicates that monomeric GQes3 folds into a compact form, consistent with G-

quadruplex formation.  For comparison, the change in sedimentation of a DNA oligomer 

upon G-quadruplex formation is a similar to the change observed for GQes3.  Specifically, 

the folding of a 24 nucleotide DNA oligomer into a G-quadruplex results in a change from 

1.4S (unfolded) to 2.0S (G-quadruplex) (124). Additional sedimentation velocity 

experiments (data not shown) showed that as the concentration of GQes3 is decreased, the 

fractional of 2.5S monomer increases, consistent with equilibrium between monomer and 

a dimer. The monomer-dimer concentration dependence of GQes3 mobility is confirmed 

by gel electrophoresis experiments (Figure B.6). 
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The AUC behavior of GQes12 (Figure 3.2G, bottom panel) differs from that of 

GQes3.  The mutes12 control (unstructured) shows a single species with 1.75S, while under 

folding conditions GQes12 shows a single species of 2.03 S.  S values are determined with 

0.1S precision, so the difference is significant, but is smaller than expected for folding of 

GQes12 into a G-quadruplex.  The data indicate folding of GQes12, presumably to a 

hairpin, which is less compact than a G-quadruplex.    

3.3.2.6. Association of SSU rRNA with BioTASQ.  

G-quadruplex formation by the H. sapiens SSU rRNA was probed using BioTASQ, 

a biotin-linked small molecule that binds specifically to G-quadruplexes (26, 27). 

BioTASQ associates with streptavidin beads and appears to provide an unambiguous assay 

for G-quadruplex formation; RNA that associates with BioTASQ is prevented by the beads 

from entering the gel during electrophoresis. As a negative control, we used E. coli SSU 

rRNA, which lacks GQes3, GQes12 or other potential surface-exposed G-quadruplex 

forming sequences. Our results indicate the H. sapiens SSU rRNA but not E. coli SSU 

rRNA binds to BioTASQ (Figure 3.3A) consistent with G-quadruplex formation by H. 

sapiens SSU rRNA. The simplest interpretation of this data, consistent with the other 

experiments presented here, is that in vitro GQes3 forms G-quadruplexes within H. sapiens 

rRNA.  

We also investigated binding of GQes3 and GQes12 to BioTASQ. GQes3 binds 

well to BioTASQ while GQes12 binds poorly (Figure 3.3A). Treatment of cells with G-

quadruplex stabilizers has been shown to significantly increase the efficiency of BioTASQ 

to pull down G-quadruplex forming RNAs (27). Here, we observe that the addition of the 
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G-quadruplex stabilizer PDS increases BioTASQ binding for all putative G-quadruplex 

forming rRNAs, including GQes12, but not for the negative controls. The results of these 

experiments suggest that GQes3 readily forms G-quadruplexes while GQes12 forms G-

quadruplexes under stabilizing conditions. GQes3, GQes12 and possibly other SSU 2 x 4 

sequences like the one found in es6 (Figure 3.2A) are probably responsible for the 

formation of G-quadruplexes within the intact H. sapiens SSU rRNA.  

BioTASQ also binds human 28S rRNA but not T. thermophilus 23S rRNA (Figure 

3.3A) which lacks surface-exposed G-quadruplex regions, indicating the formation of these 

secondary structures in the human LSU rRNA and corroborating our initial findings (111). 

3.3.2.7. Conservation of 2 x 3 sequences of the mammalian SSU rRNA.  

We explored the phylogeny of G-quadruplex forming sequences in es3 throughout 

the Eukaryotic domain. Multiple sequence alignments (MSAs) indicate that all mammalian 

species contain es3 sequences with the potential to form 2 x 3 G-quadruplexes (Figure 

3.3B). G-tract polarization is conserved in mammalian es3 sequences. This pattern of 

conserved polarization was observed previously within expansion segments of the LSU. 

Using polarization as a marker for G-quadruplex formation, these results suggest that the 

last mammalian common ancestor had G-quadruplex forming sequences within es3. 

3.3.2.8. Parallel evolution of es3 within the ray-finned fishes.  

Our initial SSU MSA included only a single representative of the ray-finned fishes 

(Actinopterygii) – D. rerio. The D. rerio sequence appeared anomalous in that es3 is long, 

comparable in length to es3 of mammals (Figure 3.3B). No 2 x 4 G-quadruplex forming 
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sequences are observed in es3 of D. rerio. To investigate the evolution of es3 within the 

ray-finned fishes, we incorporated additional species to our SSU MSAs. The results show 

that es3 length is variable within ray-finned fish. Two of the ray-finned fish species in our 

alignment contain 2 x 4 G-quadruplex forming sequences. However, the 2 x 4 G-

quadruplexes of ray-finned fish are not polarized. 

The combined results suggest an uneven process of sequence evolution of es3 

within the ray-finned fishes compared within mammals. The prospect of parallel evolution 

of G-quadruplex forming sequences between mammals and ray-finned fishes eliminates 

some possibilities for the underlying evolutionary pressures. The data limit the basis for G-

quadruplex formation to characteristics beyond those exclusive to mammalian lineages but 

rather to those that are common to all chordates.  

 

Figure 3.3. (a) BioTASQ binds to human LSU and SSU RNAs in vitro but not to E. coli or 
T. thermophilus rRNAs. BioTASQ binds G-quadruplex forming fragments of human SSU 
RNA but not to control RNA (b) Multiple Sequence Alignment of es3 for chordate species. 
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G-tracts are common in chordates, specifically in mammals. Guanines from G-quadruplex 
forming sequences are highlighted with dark red, all other guanines are pink. All 
nucleotides are numbered in accordance with H. sapiens 18S rRNA. Human 28S (LSU), 
18S (SSU) and E. coli 16S (SSU) rRNAs were extracted from cells. T. thermophilus 23S 
rRNA was synthesized in vitro. rRNAs were annealed in the presence of potassium and 
magnesium at pH 7.5, followed by incubation with BioTASQ and streptavidin-coated 
beads. 

 

3.4. Discussion 

Previously we identified sequences in the human LSU rRNA that form G-

quadruplexes in vitro (111). G-quadruplex sequences are a general feature of tentacles of 

chordate ribosomes. We identified G-quadruplex forming sequences in rRNA using the 

canonical 3 x 4 sequence motif. Sequences falling within this established motif were 

experimentally demonstrated to form G-quadruplexes in vitro. Recently however, others 

have shown that RNA sequences containing short tandem G-tracts that do not meet the 3 x 

4 motif form G-quadruplexes (18-21, 34, 113).  A relaxed 2 x 4 criterion extends the 

repertoire of G-quadruplex forming regions, for example, to the UTRs of mRNAs encoding 

for polyamine synthesis proteins (18). The development of next generation RNA 

sequencing strategies for mapping G-quadruplexes has significantly increased the ability 

to identify G-quadruplex sequences across the human transcriptome.  

Here, applying the 2 x 4 criteria to human rRNA we identified seven potential G-

quadruplex sequences in the SSU. Three of these are located on the ribosomal surface near 

the termini of the rRNA tentacles of es3, es6, and es12 (Figure 3.1). Our experimental 

results indicate that rRNA oligomers derived from these regions, as well as the native 18S 

rRNA, can form G-quadruplexes in vitro. This report represents the first evidence of G-

quadruplex formation of any SSU rRNA.   
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The surfaces of both the LSU and the SSU of the human ribosome contain a 

sufficiently large number of G-quadruplex forming regions (Figure 3.4) that it seems 

possible that in some environments G-quadruplexes might dominate interactions of 

ribosomes with other cellular components. Extended arrays of G-tracts on solvent exposed 

regions of rRNA suggest roles in protein recruitment and polysome assembly. The 

association of the protein FUS (125, 126) with rRNA tentacles (111) is consistent with a 

model in which ribosomes participate in RNA mediated liquid-liquid phase separation (49).  

Our phylogenetic analysis suggests that 2 x 4 sequences within the chordate SSU 

rRNAs have a complex evolutionary history. The data are consistent with a model in which 

2 x 4 sequences evolved in parallel in distant chordate species. The phylogenetic 

conservation G-quadruplex sequences in warm-blooded animals and their surface 

localization suggest conserved function.  

In yeast, ES27 has been shown to recruit specific proteins to the ribosome (13, 127). 

In mammals, ES7 is extended by tentacles, reaching a size zenith in humans. Our results 

suggest LSU tentacles confer increased complexity compared with protists in part via 

ability to form G-quadruplexes. rRNA tentacles appear to be dynamic, switching between 

G-quadruplex and duplex conformations depending on environment or protein association.  

rRNA makes up more than 80% of the cellular RNA, suggesting that most of the 

G-quadruplexes in cells at any given time could be contributed by rRNA and hence that 

the RNA G-quadruplexome could be ribosome-centered. Historically, study of RNA G-

quadruplexes has been directed to poly-adenylated mRNAs and long non-coding RNAs. 

Most transcriptome-wide studies have explicitly excluded rRNAs from their analyses (27, 
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34). The discovery of G-quadruplex regions on rRNA was made only recently (111). The 

results presented in this study corroborate these initial findings and extend the G-

quadruplex forming capability of rRNA to the H. sapiens SSU. 

Figure 3.4. Schematic representation of the Homo sapiens ribosome with G-quadruplexes. 
ES lengths are not drawn to scale. This simplified schematic does not indicate the 
possibility of inter-ES and inter-ribosome G-quadruplexes or of the interconversion 
between G-quadruplexes and duplexes.  
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3.5. Methods 

3.5.1. RNAs.  

GQes3, GQes12, mutes3, and mutes12 were purchased from Integrated DNA 

Technologies. GQES7-a and GQES7-b were synthesized in vitro by transcription. H. 

sapiens 28S and 18S rRNAs were extracted from HEK293 cells. Briefly, HEK293 cells 

were grown to 60% confluency and total RNA was extracted with TRI reagent®. Intact 

rRNAs were extracted with a pipette from an agarose gel by running the rRNA into wells 

in the center of the gel. The rRNA was then precipitated with 5 M Ammonium Acetate-

Acetic Acid (pH 7.5) with excess ethanol. E. coli 16S rRNA was extracted from DH5𝛼 E. 

coli strain using the same method. RNA sequences are listed in Table B.1. 

3.5.2. RNA Annealing. 

Before any experiment, RNAs were annealed by heating at 95 °C for 5 min and 

then cooled to 25	°C at 1°C/min and incubated for 10 min at 4°C.  

3.5.3. CD Spectroscopy.  

RNAs solutions were prepared at a final concentration of 10 µM (strand) and 

annealed as described above in the presence of 150 mM KCl and 10 mM Tris-HCl, pH 7.5. 

Spectra were acquired from 320 nm to 200 nm at a constant temperature of 20 °C on a 

Jasco J-815 spectropolarimeter using 1-mm cuvettes, at a rate of 100 nm/min with 1-s 

response, a bandwidth of 5 nm, averaged over three measurements. The same buffer minus 

RNA was used as the baseline. Igor Pro software was used to smooth the data. The 

expression ∆𝜀 = 𝜃/(32,980	 × 	𝑐	 × 	𝑙), where c is the molar concentration and l is the 
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cuvette path length was used to obtain the molar ellipticity from the observed ellipticity (𝜃, 

mdeg).  

3.5.4. ThT Fluorescence.  

RNAs solutions were prepared at a final concentration of 10 µM (strand) and 

annealed as described above in the presence of 150 mM KCl, 10 mM Tris-HCl, pH 7.5, 

and 2 µM ThT. For cation dependency experiments, either 50 mM KCl or LiCl was used. 

For LSU vs. SSU rRNA G-quadruplex-formation comparison (Figure 3.2F), RNAs were 

prepared at a final strand concentration of 1 µM. After annealing, RNAs were loaded onto 

a Corning® 384 Well Flat Clear Bottom Microplate and fluorescence was recorded from 

300 nm to 700 nm, exciting at 440 nm. Fluorescence data were acquired on a BioTek 

Synergy™ H4 Hybrid plate reader.  

For ThT/PDS competition assays, PDS was added after RNA annealing at final 

concentrations of 1	µM, 2	µM, 3	µM, 4	µM, or 5	µM. Mixtures were allowed to sit at room 

temperature for 10 min before data acquisition.  

3.5.5. Analytical Ultracentrifugation (AUC).  

RNAs were prepared at a final OD260 of 1.0 in the presence of 50 mM KCl and 10 

mM Tris-HCl, pH 7.5.  Sedimentation velocity measurements were carried out in a 

Beckman Coulter ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., 

Brea, CA) at 20.0 °C and at 40,000 rpm in standard 2 sector cells. Data (200 scans collected 

over a 10 hour centrifugation period) were analyzed using the program Sedfit (121) in the 

continuous c(s) mode or by a model assuming discrete, noninteracting species 
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(www.analyticalultracentrifugation.com). Buffer density was determined on a Mettler/Paar 

Calculating Density Meter DMA 55A at 20.0 °C and buffer viscosity was measured on an 

Anton Paar Automated Microviscometer AMVn. For the calculation of frictional ratio, 

0.55 mL/g was used for partial specific volume and 0.3 g/g was assumed for the amount of 

water bound.  

3.5.6. BioTASQ Binding.  

RNAs solution were prepared at a final concentration of 15 nM (H. sapiens 28S, 

18S rRNAs; E. coli 16S rRNA; T. thermophilus 23S rRNA) and 1 µM (GQes3, GQes12 or 

mutes3, mutes12) in the presence of 50 mM KCl, 1 mM MgCl2 and 10 mM Tris-HCl, pH 

7.5, and were annealed by heating at 75 °C for 1 min and cooling to room temperature at 1 

°C/min. For (+) PDS samples, PDS was added to a final concentration of 5 µM after RNAs 

were annealed and allowed to sit at room temperature for 10 min. BioTASQ was added to 

the annealed RNA samples to a final concentration of 20 µM. Samples were allowed to 

mix by rocking at room temperature for 1 hr. Streptavidin-coated magnetic beads (GE 

Healthcare) were washed three times with 50 mM KCl and 10 mM Tris-HCl, pH 7.5. Then, 

1.5 µg of the beads was added to the RNA-BioTASQ samples and allowed to mix overnight 

by rocking at room temperature. rRNAs were subsequently analyzed by native agarose 

electrophoresis (18S and 16S rRNAs) or 5% native-PAGE (GQes3, GQes12, mutes3 and 

mutes12).  

3.5.7. Phylogeny and Multiple Sequence Alignments.  

The SEREB MSA (64) was used as a seed to align additional eukaryotic es3 

sequences. The SSU rRNA sequences in the SEREB MSA were used to search (128) the 
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NCBI databases (129) for SSU rRNA sequences. The SEREB database has sequences from 

10 chordate species; sixteen additional chordate species were added to the es3 MSA (Figure 

3.3). Sequences were incorporated into the SEREB-seeded MSA using MAFFT (130) and 

adjusted manually using Jalview (131). Manual adjustments incorporated information from 

available secondary structures. In some cases, the positions of G-tracts in sequences with 

large gaps relative to H. sapiens are not fully determined, as they can be aligned equally 

well with flanking G-tracts in the MSA. Alignment visualization was done with Jalview 

(131). The phylogenetic tree and the timeline of clade development were inferred from 

TimeTree (132).	
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CHAPTER 4 

HUMAN RIBOSOMAL G-QUADRUPLEXES REGULATE HEME 

BIOAVAILABILITY 

 

This chapter is adapted from the manuscript in review: Mestre-Fos, S., Ito, C., Moore, C. 

M., Reddi, A. R., Williams, L. D. “Human Ribosomal G-Quadruplexes Regulate Heme 

Bioavailability”. The author of this document contributed to this work by conceiving, 

designing and performing all experiments except the HS1 transfection experiment, making 

all figures except Figure 4.4d, making all tables, making all supplementary materials, and 

co-writing the manuscript.  

4.1. Abstract 

The in vitro formation of stable G-quadruplexes (G4s) in human ribosomal RNA 

(rRNA) was recently reported. However, their formation in cells and their cellular roles 

have not been resolved. Here, by taking a chemical biology approach that integrates results 

from immunofluorescence, G4 ligands, heme affinity reagents, and a genetically encoded 

fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that 

regulate heme bioavailability. Immunofluorescence experiments indicate that the vast 

majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells 

with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme 
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bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, 

these results suggest ribosomes are central hubs of heme metabolism.  

4.2. Introduction 

Cells tightly control heme concentration and bioavailability (55-57) because it is 

essential but potentially cytotoxic. Proteins that regulate heme concentration are relatively 

well understood; structures and mechanisms of all eight heme biosynthetic enzymes and 

the heme degrading heme oxygenases are known (55-57). However, regulation of heme 

bioavailability, including intracellular trafficking from sites of synthesis in the 

mitochondrial matrix or uptake at the plasma membrane, is poorly understood. Current 

paradigms for heme trafficking and mobilization involves heme transfer by unknown 

proteinaceous factors and largely ignore contributions from nucleic acids. Given that the 

first opportunity for protein hemylation occurs during or just after translation, ribosomal 

RNA (rRNA) or proteins (rProteins) may be critical for shepherding labile heme to newly 

synthesized proteins.  

We hypothesized that intracellular heme bioavailability is regulated in part by 

rRNA quadruplexes (G4s). G4s are nucleic acid secondary structures that are composed of 

four guanine columns surrounding a central cavity that sequesters monovalent cations. Our 

hypothesis is based on the high affinity of heme for G4s (KD ~10 nM) (50-52), our work 

demonstrating that rRNA forms extensive G-tracts in vitro (17, 111), the extreme stabilities 

of rRNA G4s in vitro (17, 111) and the extraordinary abundance of rRNA in vivo (10).  

DNA G4s are proposed to help regulate replication (133), transcription (134), and 

genomic stability (135). In RNA, G4s are associated with untranslated regions of mRNA 
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and have been proposed to regulate translation (35, 36, 40). However, the in vivo folding 

state and functional roles of G4s are under debate. Eukaryotic cells contain helicases that 

appear to unfold RNA G4s (31) although counter arguments have been put forth (27, 32). 

The density of G4 sequences on surfaces of the human ribosome, which is extremely 

abundant, is high, with 17 G4 sequences in the 28S rRNA and 3 in 18S rRNA (Figure 

4.1A). Previous to this report, it was not known if human ribosomes form G4s in vivo or 

what their functions might be.  

Indeed, herein we present evidence that rRNA forms G4s in vivo that regulate 

cellular heme homeostasis. Results of immunofluorescence experiments with a G4 

antibody, RNA pulldowns and competition experiments with G4 ligands provide strong 

support for in vivo formation of G4s by rRNA tentacles. We find that G4s on ribosomes 

bind heme in vitro (Figure 4.1B) and that perturbation of G4s in vivo with G4 ligands 

affects in vivo heme interactions and heme bioavailability, as measured by heme affinity 

reagents and genetically encoded heme sensors. Taken together, the results here indicate 

that surface-exposed rRNA G4s interact with heme in cells and suggest that ribosomes are 

hubs for cellular heme metabolism.  
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Figure 4.1. (A) Secondary structures of the human LSU rRNAs (5.8S and 28S) and SSU 
rRNA (18S). G4 sequences are highlighted in green. rRNA-based oligomers from the LSU 
(GQES7-a, GQES7-b) and from the SSU (GQes3) are indicated. (B) Schematic 
representation of a hemin-G4 complex. 

 

4.3. Results 

4.3.1. Ribosomal RNA forms G4s in vivo. 

Confocal microscopy and G4-pulldowns were used to determine if human 

ribosomes form G4s in vivo. For confocal microscopy, we used the BG4 antibody, which 

selectively targets G4s (24, 25) and has been broadly used for visualizing DNA G4s and 

non-ribosomal RNA G4s in cells. (25, 136-138) Our method of permeabilizing cells for 
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antibody treatment does not permeabilize the nuclei (139). Therefore, DNA G4s were not 

anticipated or observed. To identify ribosome associated G4s, we determined the extent to 

which antibodies to rProtein L19 (eL19) and to G4s colocalize and how this is altered when 

cells are subjected to RNase or G4 ligand PhenDC3, which are expected to modulate G4-

L19 colocalization. Prior to antibody addition, cells were crosslinked with 

paraformaldehyde to lock G4s in situ. This procedure is intended to prevent induction of 

G4s by the antibody and has been shown to reduce levels of detection of G4s (27). The 

extent of L19 and G4 antibody colocalization suggests that a fraction of ribosomes form 

G4s (Figure 4.2A,C) and that most G4s are associated with ribosomes. Specifically, we 

find that ~83% of BG4 pixels colocalize with L19, indicating that the vast majority of G4s 

in vivo are associated with ribosomes (Figure 4.2C, green bar) and are therefore rRNA G4s. 

Conversely, only 5% of L19 pixels colocalize with BG4 (Figure 4.2C, WT red bar), 

indicating that only a specialized fraction of ribosomes contains G4s. Similar results were 

obtained using an antibody against rProtein uL4 instead of L19 (not shown).  

PhenDC3, which is known to induce and stabilize G4s, (140, 141) appears to 

increase ribosomal G4 formation in vivo; treating cells with PhenDC3 increases L19-BG4 

colocalization from 5 to ~24% (Figure 4.2C). The increase in colocalization upon 

PhenDC3 treatment supports formation of G4s by ribosomes. By contrast, treating cells 

with RNase A abolishes the L19-BG4 colocalization signal (Figure 4.2C). Together, these 

results indicate the colocalized BG4 signal is coming from a G4 forming RNA in close 

proximity to L19. 

mRNA in the cytosol, in the unlikely event that they form G4s at high frequency 

(31), may confound our ability to selectively detect rRNA G4s. The high density of 
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ribosomes on the surface of the endoplasmic reticulum (ER) and the lower abundance of 

mRNA in this location as compared to the cytosol (142) motivated us to investigate if G4s 

colocalize with the ER. Toward this end, we determined the extent to which BG4 

colocalizes with an antibody against an ER membrane protein (calnexin) (Figure 4.2B). 

Indeed, we find that ~45% of the BG4 signal colocalizes with the ER marker (Figure 4.2D, 

green bar), indicating a significant presence of RNA G4s at the ER membrane. As with 

L19, the fraction of the ER signal that colocalizes with G4s (~2%) is completely abolished 

by RNase (undetectable) and enhanced by PhenDC3 (12%) (Figure 4.2D). Altogether, the 

data are consistent with formation of RNA G4s by ER-bound ribosomes. 
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Figure 4.2. Ribosomal G4s in HEK293 cells. Colocalization of (A) ribosomal protein L19 
or (B) endoplasmic reticulum (red) with RNA G4s (green). Nuclei were stained with DAPI 
(blue). (C) Extent of colocalization is quantitated as the ratio of colocalized pixels over 
total L19 pixels (red bars) or as the ratio of colocalized pixels over total BG4 pixels (green 
bar). Same analysis was done for ER-BG4 colocalization (D). The statistical significance 
relative to WT is indicated by asterisks using an ordinary one-way ANOVA with Dunnett’s 
post-hoc test. Each dot represents a biological replicate. (E) G4 ligand BioTASQ binds to 
28S and 18S rRNAs. In the presence of BioTASQ and streptavidin beads, human rRNAs 
do not enter the agarose gel. (F) Schematic representation of the BioTASQ pulldown 
protocol. (G) RT-qPCR analysis of rRNAs pulled down by BioTASQ. The statistical 
significance relative to a fold enrichment value of 1 is indicated by asterisks using a one 
sample t and Wilcoxon test. Each dot represents a biological replicate. Data in (G) are 
represented as RNA enrichment under “BioTASQ + streptavidin beads” conditions relative 
to control streptavidin beads. * P < 0.05. n.s. = not significant. 

 

In an orthogonal approach, we pulled down RNA with BioTASQ (26, 27), which 

is a G4 ligand linked to biotin. BioTASQ captures G4s. We previously used BioTASQ to 

demonstrate that human rRNA forms G4s in vitro (Figure 4.2E) (17). Here, we captured 

rRNA G4s from crosslinked HEK293 cells by methods summarized in Figure 4.2F. 

BioTASQ captures 28S rRNA from cell lysates (Figure 4.2G), in agreement with our 

previous in vitro BioTASQ data and with observations of G4-L19 colocalization above. 

BioTASQ also captures 18S rRNA although the signal is significantly weaker. Taken 

together, our immunofluorescence and BioTASQ pulldown experiments provide strong 

evidence that human ribosomes form G4s in vivo. 

4.3.2. Human ribosomes bind hemin in vitro 

It has been suggested that G4s might associate with heme in vivo (63). In vitro, 

heme binds with high affinity to G4s by end-stacking (143-145) (Figure 4.1B). We used 

UV-visible spectroscopy to assay the binding of hemin to human rRNA. rRNA oligomers 

GQES7-a (Figure 4.3A), GQES7-b (Figure C.1A) or GQes3 (Figure C.1B) were titrated 
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into fixed amount of hemin. GQES7-a and GQES7-b are fragments of expansion segment 

7 of human LSU rRNA (111). GQes3 is a fragment of expansion segment 3 of human SSU 

rRNA (17). Each of these oligonucleotides is known to form G4s and each caused a 

pronounced increase in the Soret band of hemin at 400 nm. The binding is specific for G4s 

as a mutant oligonucleotide, mutes3, that lacks G-tracts does not induce a change in the 

hemin Soret band (Figure C.1C). Larger human ribosomal components also bind heme. 

Intact 28S and 18S rRNAs extracted from human cells (Figure C.1D-E), assembled large 

(LSU) (Figure 4.3B) and small (SSU) (Figure C.1F) ribosomal subunits, and polysomes 

(Figure 4.3C) all induce changes in the hemin Soret bands, which is indicative of heme-

rRNA interactions. The combined data are consistent with a model in which rRNA 

tentacles of human ribosomes bind to hemin in vitro. 
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Figure 4.3. Human rRNA G4s bind heme in vitro. (A) UV-Vis spectra of heme during a 
titration with GQES7-a, (B) during a titration with the assembled LSU, and (C) during a 
titration with polysomes. (D) UV-Vis spectra of constant heme/GQES7-a during a titration 
with PhenDC3, (E) heme/LSU during a titration with PhenDC3, and (F) heme/polysomes 
during a titration with PhenDC3. 
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PhenDC3 was used to confirm binding of hemin to ribosomal G4s. PhenDC3, like 

hemin, end-stacks on G4s (63) and therefore competes with heme for binding to G4s. With 

fixed GQES7-a and hemin, addition of PhenDC3 causes a decrease in the intensity of the 

hemin Soret peak (Figure 4.3D) due to dissociation of heme. The same phenomenon is 

observed with assembled ribosomal particles (LSU: Figure 4.3E, SSU: Figure C.2A) and 

with polysomes (Figure 4.3F). Hemin that is associated with purified 28S and 18S rRNAs 

is also dissociated by PhenDC3 (Figures C.2B-C). Solutions of hemin with mutes3, 

however, do not show a change in the Soret peak upon the addition of PhenDC3 (Figure 

C.2D). Addition of PhenDC3 causes a slight increase in absorbance at 350 nm (Figures 

4.3D-F). This phenomenon is intrinsic to PhenDC3, which absorbs at this wavelength 

(Figure C.2E). Taken together, the results here provide strong support for association of 

hemin with G4s on human ribosomes in vitro.  

4.3.3. Human ribosomes bind heme in vivo. 

We developed an assay that exploits differential interactions with hemin-agarose, 

an agarose resin covalently linked to heme, to report in vivo heme binding to ribosomes 

and rRNA. The degree to which any biomolecule interacts with heme in cells is inversely 

correlated with the extent to which it interacts with hemin-agarose upon lysis due to 

competition between endogenous heme and hemin-agarose for the heme-binding site. 

Therefore, the effects of heme binding factors in vivo can be monitored by determining if 

their interaction with hemin-agarose changes upon depletion of intracellular heme.  

Accordingly, HEK293 cells were conditioned with and without succinylacetone 

(SA (60)), an inhibitor of heme biosynthesis. Lysates of these cells were incubated with 
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hemin-agarose, and hemin-agarose interacting rRNA was quantified by RT-qPCR. 

Consistent with previous work (146), treatment with 0.5 mM SA for 24 hours caused a 7-

fold decrease in total cellular heme in HEK293 cells (results not shown). The results reveal 

that rRNA binding to hemin-agarose relative to control agarose lacking heme increases by 

~4-fold in cells depleted of heme (Figure 4.4A). This result suggests that, under heme-

depleted conditions, a greater fraction of rRNA heme binding sites are free and available 

to bind hemin agarose. In short, the data are consistent with a model in which ribosomal 

RNAs associate with endogenous heme. 
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Figure 4.4. Ribosomes appropriate heme in vivo through rRNA G4s. (A) RT-qPCR analysis 
from untreated (WT) and SA-treated human cells. Statistical significance relative to WT is 
represented by asterisks using Student’s t-test. Each dot represents a biological replicate. 
(B) RT-qPCR analysis from PhenDC3-treated HEK293 cells. Statistical significance 
relative to no treatment conditions is represented by asterisks using ordinary one-way 
ANOVA with Dunnett’s post-hoc test. Each dot represents a technical replicate coming 
from individual biological replicates. The experiment was performed a total of 2 times with 
similar dose-dependent trends (Fig. C.3A). Data in (A) and (B) are represented as RNA 
enrichment in hemin agarose beads relative to control sepharose beads. (C) Single cell 
analysis of HS1-transfected HEK293 cells grown in heme deficient media containing 
succinylacetone (HD+SA), regular media containing 5-aminolevulinic acid (R +ALA), or 
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regular media (regular) with the indicated concentrations of PhenDC3. Statistical 
significance relative to regular conditions is represented by asterisks using the Kruskal-
Wallis ANOVA with Dunn’s post-hoc test. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P 
< 0.0001; n.s. = not significant; (n ≅ 1500 cells). (D) Median HS1 sensor ratios obtained 
in (C) as a function to PhenDC3 concentration.  

 

4.3.4. In vivo PhenDC3 increases binding of ribosomes to hemin agarose. 

To determine if rRNA G4s bind heme in vivo, we treated HEK293 cells with the 

G4 ligand PhenDC3 (48 hrs at 37 °C). PhenDC3 and heme compete for binding to G4 

rRNA in vitro (Figure 4.3). Thus, if rRNA G4s bind heme in vivo, PhenDC3 is expected to 

displace any rRNA bound heme. After cell lysis, excess hemin agarose is expected to out 

compete rRNA bound PhenDC3. Indeed, RT-qPCR reveals that PhenDC3 treatment of 

HEK293 cells causes a dose-dependent increase in binding of the LSU to hemin agarose 

(Figure 4.4B). A corresponding, but weaker signal is seen for the SSU, in agreement with 

the higher abundance of G4 regions in the LSU than in the SSU (Figure 4.1A). Treatment 

of HEK293 cells with carrier DMSO does not result in hemin agarose enrichment (Figure 

C.3B) or in heme-G4 interaction alterations (Figure C.3C). Taken together, these results 

indicate that G4s in rRNA bind heme in cells. 

4.3.5. rRNA G4s regulate heme bioavailability in vivo.  

To determine if rRNA G4s regulate heme homeostasis, we deployed a previously 

described genetically encoded ratiometric fluorescent heme sensor, HS1. HS1 is a tri-

domain fusion protein consisting of a heme binding domain, cytochrome b562, fused to 

fluorescent proteins, eGFP and mKATE2, whose fluorescence is quenched or unaffected 

by heme, respectively. Thus, the eGFP:mKATE2 fluorescence ratio is inversely correlated 
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with bioavailable heme as measured by HS1. HS1 was previously used to characterize 

heme homeostasis in yeast, bacteria, and mammalian cells, and was instrumental in 

identifying new heme trafficking factors and signals that alter heme biodistribution and 

dynamics (60, 147, 148). We asked if cytosolic heme bioavailablity is altered in response 

to PhenDC3 (60). As indicated in Figure 4.4C, single cell analysis of a population of ~1500 

HEK293 cells per condition indicate the median HS1 eGFP/mKATE2 ratio increases upon 

heme depletion in heme deficient media containing SA (HD+SA) and decreases upon 

increasing intracellular heme when cells are conditioned with the heme biosynthetic 

precursor 5-aminolevulinic acid (ALA) to drive heme synthesis. Titration of PhenDC3 

results in a dose dependent increase in HS1 sensor ratio, indicating heme is less 

bioavailable when it is displaced from G4s in rRNA. The fractional heme saturation of HS1 

decreases by ~15% (Figure 4.4D). Together, our data indicate that rRNA G4s bind heme 

and regulate intracellular heme bioavailability.  

4.4. Discussion 

The results here provide strong evidence that ribosomal tentacles form G4s in 

human cells, and that these G4s are involved in appropriating heme. Immunofluorescence 

experiments with BG4 and L19 antibodies suggest a specialized fraction of cytosolic 

ribosomes (~5%) form G4s and that most extra-nuclear G4s (~83%) are ribosomal. The 

small fraction of ribosomes observed to form G4s in vivo contrasts with the high stability 

of ribosomal G4s in vitro  (17, 111). This difference is consistent with Guo and Bartel, who 

propose that eukaryotic cells have a robust machinery that unfolds G4s (31). However, the 

high concentration of rRNA acts in opposition to the low frequency per ribosome, so the 
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RNA G4s are reasonably abundant. The RNA G-quadruplexome appears to be ribosome-

centric. 

We previously reported that surfaces of both the SSU and the LSU contain G4 

sequences (17, 111). A broad variety of data are consistent with more extensive formation 

of G4s on the LSU than on the SSU. These data include: 

o more abundant and more expansive G-tracts on the LSU than the SSU (17),  

o greater conservation over phylogeny of LSU G-tracts than SSU G-tracts (17, 111), 

o higher thermodynamic stability of LSU G4s than SSU G4s (17, 111), 

o greater heme binding to G4 oligomers from the LSU than those from the SSU 

(Figure 4.3A, Figure C.1B), 

o greater enrichment of LSU than SSU particles in BioTASQ pulldowns (Figure 

4.2D), 

o greater enrichment of LSU than SSU particles in hemin-agarose pulldowns (Figure 

4.4A), and 

o greater effect of in vivo PhenDC3 treatment on LSU than on SSU rRNA in hemin-

agarose pulldowns (Figure 4.4B). 

Our findings that rRNA G4 forms complexes with heme in vivo has major 

implications for the physiology of G4-heme interactions. Decades of in vitro biophysical 

and chemical characterization of G4-heme complexes have found that they interact with 

high affinity (KD ~ 10 nM) and are potent redox catalysts, facilitating peroxidase and 

peroxygenase reactions (50-52). However, it remained unclear if heme-G4 complexes are 

formed in vivo and if heme-G4 catalyzed reactions were physiologically relevant. 
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Gray and coworkers (63) recently proposed that heme binds to G4s in vivo, based 

on the transcriptional response of cells to PhenDC3. PhenDC3 up-regulates heme 

degrading enzymes like heme oxygenase, and other iron and heme homeostatic factors. 

These responses were interpreted to support a model in which G4s sequester and detoxify 

heme in cells (63). Here, by exploiting differential interactions of apo-rRNA and heme-

rRNA with hemin-agarose, we developed more direct methods to establish in vivo heme-

G4 interactions, with a focus on rRNA G4s. Our results are consistent with the work of 

Gray et. al. in that we too conclude that G4s bind hemin in vivo. Moreover, our observation 

of rRNA-heme interactions in vivo supports a physiological role of rRNA G4-heme 

complexes in redox chemistry (149, 150). Indeed, work by Sen concurrent with ours has 

established G4-heme interactions in vivo by exploiting the peroxidase activity of G4-hemin 

complexes to self-biotinylate G4s in RNA and DNA using a phenolic-biotin derivative. 

We propose that heme-rRNA G4 interactions may be important for protein 

hemylation reactions or buffering cytosolic heme. Indeed, PhenDC3, which competes for 

heme binding in G4s, causes a decrease in heme bioavailability as measured by the heme 

fluorescent sensor, HS1. This could be due to displacement of heme from rRNA G4s to a 

site that is less exchange labile, resulting in the observed decrease in HS1 heme binding. 

Alternatively, the upregulation in heme oxygenase due to PhenDC3 treatment (63) may 

decrease cellular heme levels, giving rise to the observed decrease in bioavailable heme. 

Overall, our results indicate rRNA G4s are sites of exchangeable heme in cells that may be 

available for heme dependent processes and hemylation reactions at the ribosome. 

Taken together, the results here suggest that structural features of the human 

ribosome coupled with its high cytosolic abundance facilitate association with endogenous 
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hemin. These results provide potentially new insights into the molecules and mechanisms 

underlying intracellular heme trafficking and bioavailability, which are currently poorly 

understood (55-57, 151). Our results suggest that ribosomes, and G4 containing rRNA in 

particular, are central hubs of heme metabolism, acting to buffer intracellular heme and 

possibly regulate heme trafficking and cotranslational hemylation. The ribosome as a hub 

for heme is consistent with its role as an abundant and versatile sink for ions and small 

molecules, including antibiotics, (152) platinum-based drugs, (153-155) certain 

metabolites (156), and metal cations Mg2+, Ca2+, Mn2+, and Fe2+, K+ (157-163).  

4.5. Methods 

4.5.1. Cell culture.  

HEK293 cells were cultured in Dulbecco's Modified Eagle Media (DMEM) 

containing 4.5 g/L Glucose without Sodium Pyruvate and L-Glutamine (Corning) 

supplemented with 10% fetal bovine serum (FBS) (Corning) and 2% penicillin-

streptomycin solution (Gibco) in a humidified incubator kept at 37 oC with a 5% carbon 

dioxide atmosphere. 

4.5.2. RNAs.  

 GQES7-a and GQES7-b were synthesized in vitro by transcription (HiScribe™ T7 

High Yield RNA Synthesis Kit; New England Biolabs). GQes3 and mutes3, were 

purchased from Integrated DNA Technologies. Human 28S and 18S rRNAs were extracted 

from HEK293 cells with TRIzol (Invitrogen). Intact rRNAs were isolated by pipetting from 

a native agarose gel after running the rRNA into wells in the center of the gel. The rRNA 
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was then precipitated with 5 M ammonium acetate-acetic acid (pH 7.5) with excess ethanol. 

RNA sequences are listed in Table C.1. 

4.5.3. RNA annealing. 

RNAs were annealed by heating at 95˚C for 5 min and cooled to 25˚C at 1˚C/min 

and incubated for 10 min at 4˚C. 

4.5.4. UV-Visible Absorbance Heme-RNA Binding. 

Stock solutions of hemin chloride (1mM) were prepared in DMSO. Prior to use, 

the hemin chloride solution was sonicated for 10 min. RNAs (GQES7-a, GQES7-b, GQes3, 

mutes3) were annealed as described above in 50 mM KCl and 10 mM Tris-HCl, pH 7.5 in 

increasing RNA concentrations (for rRNA oligomers: from 0.3 to 1 equivalents of heme). 

The annealing buffer for intact 28S and 18S rRNAs and assembled ribosomal subunits and 

polysomes was the same as that of the rRNA oligomers except for the inclusion of 10 mM 

MgCl2. After binding, heme was added to a final concentration of 3 µM. Solution were 

allowed to stand at room temperature for 30 min then loaded onto a Corning® 384 Well 

Flat Clear Bottom Microplate. Absorbances were recorded from 300 nm to 700 nm on a a 

BioTek Synergy™ H4 Hybrid plate reader. 

4.5.5. UV-Visible Absorbance, Heme-PhenDC3 Competition Assay. 

For heme - PhenDC3 competition assaya, RNAs were annealed and allowed to bind 

to heme as above. Final heme concentration was 3 µM. Final RNA concentrations were: 

GQES7-a (3 µM), intact human 18S rRNA (65 nM), intact human 28S rRNA (22 nM). 

After solutions were inclubated for 30 min at room temperature, PhenDC3 or carrier 
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DMSO was added to final concentrations consisting of 1.5 µM, 3 µM, and 6 µM. Samples 

were allowed to stand at room temperature for 15 minutes and were loaded onto a 

Corning® 384 Well Flat Clear Bottom Microplate. Absorbance was recorded from 300 nm 

to 700 nm.  

4.5.6. Total Heme Quantification of Untreated and SA-treated HEK293 cells. 

Heme was quantified as described (164). Briefly, HEK293 cells were seeded in 

complete DMEM media at an initial confluency of 10% and incubated at 37 oC for 48 hrs. 

Media for SA-treated cells was replaced by DMEM supplemented with 10% heme-

depleted FBS and 0.5 mM SA. Heme depletion of serum performed as described (165). 

Media for untreated cells was replaced by complete media (supplemented with 10% regular 

FBS) and allowed to seed at 37 oC for 24 hrs. Cells were harvested by scrapping and 

counted using an automated TC10 cell counter (Bio-Rad). Then, 2.5x104 cells per condition 

were treated with 20 mM oxalic acid and incubated at 4 oC overnight in the dark. An equal 

volume of 2 M oxalic acid was added to the cell suspensions. Samples were split, with half 

incubated at 95 oC for 30 min and half incubated at room temperature for 30 min. Samples 

were centrifuged at 21,000g for 2 min, and 200 µL of each was transferred to a black 

Greiner Bio-one flat bottom fluorescence plate, Porphyrin fluorescence (ex: 400 nm, em: 

620 nm) was recorded on a Synergy Mx multi-modal plate reader. Heme concentration was 

calculated from a standard curve prepared by diluting a 0.1 µM hemin chloride stock 

solution in DMSO and treated as cell suspensions above. To calculate heme concentration, 

the fluorescence of the unboiled samples is taken as the background level of protoporphyrin 

IX and it is subtracted from the fluorescence of the boiled sample, which is used as the free 
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base porphyrin produced upon the release of the heme iron. Using this method, our data 

suggest SA-treatment of HEK293 cells results in a 7-fold decrease in the total cellular heme 

concentration. 

4.5.7. Hemin agarose binding. 

HEK293 cells were seeded onto a 6-well plate at an initial confluency of 20% in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% Fetal Bovine Serum (FBS) and 

allowed to seed for 48 hrs at 37 °C. Media was then replaced for DMEM with 10% heme-

depleted FBS supplemented with 0.5 mM succinyl acetone (for SA-treated cells). For 

untreated cells, media was changed for DMEM in 10% regular FBS. Both treated and 

untreated samples were allowed to incubate at 37 °C for 24 hrs. Cells were then collected 

by scrapping and lysed using 1.5 mm zirconium Beads (Benchmark). Lysates were 

quantified by Bradford assay. In the meantime, hemin agarose beads and sepharose beads 

were equilibrated 3 times by centrifugation with Lysis buffer (0.1% Triton X-100, 10 mM 

Sodium Phosphate, 50 mM KCl, 5 mM EDTA, pH 7.5, 1X protease arrest, RNasin RNase 

Inhibitor (Promega)). 100 �L of beads (50 µL bed volume) were used per biological 

replicate. After bead equilibration, each lysate was divided into two and 10 µg were loaded 

to hemin agarose and 10 µg to sepharose beads. Mixtures were allowed to bind for 60 min, 

rotating at 20 rpm at room temperature. Then, three washes were performed using Lysis 

buffer and supernatants were discarded. Each wash consisted of 10 min incubation at room 

temperature with 20 rpm rotation followed by centrifugation at 700g for 5 min. Bead bound 

fractions were eluted by a 15 min incubation at room temperature with 20 rpm rotation in 

50 µL of 1M imidazole in Lysis buffer followed by centrifugation at max. speed for 2 min 
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and supernatants were collected. RNA was then extracted from eluted fractions with 

TRIZOL using the manufacturer’s protocol. For the PhenDC3 titration in HEK293 cells 

experiment, the same protocol was followed with the difference that cells were allowed to 

seed for 24 hrs (20% initial confluency) and then PhenDC3 was added in increasing 

concentrations (5 µM, 10 µM, 20 µM). DMSO carrier treatment was performed the same 

way but with equivalent DMSO volumes. Cells were left at 37 °C for 48 hrs and collected 

and lysed as described above. 

4.5.8. RT-qPCR. 

The sets of primers used can be found in Table C.2. Luna Universal One-Step RT-

qPCR kit (New England Biolabs) was used following the manufacturer’s protocol. Fold 

enrichments were calculated by comparing the C(t) values obtained from RNAs extracted 

from hemin agarose to RNAs extracted from sepharose beads. Three biological replicates 

were performed for all the RT-qPCR experiments. For BioTASQ experiments, fold 

enrichments were calculated by comparing the C(t) values obtained from the lysates 

containing BioTASQ + beads with those containing beads only.  

4.5.9. Heme Bioavailability Assay using the HS1 Sensor. 

HEK293 cells were plated and transfected in polystyrene coated sterile 6 well plates 

(Grenier) for flow cytometry. The cells were plated in basal growth medium Dulbecco’s 

modified eagle medium (DMEM) containing 10% fetal bovine serum. At 30% confluency 

cells were transfected with the heme sensor plasmid pEF52α-hHS1 using Lipofectamine 

LTX according to the manufacturer’s protocols. After 48 hours of treatment with 

transfection reagents, cells treated with PhenDC3 (1 mM stock) in fresh DMEM 10% FBS 
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for 24 hours prior to harvesting. Heme depleted cells were treated with 500 μM 

succinylacetone (SA) in DMEM containing 10% heme depleted FBS for 72 hours prior to 

harvesting. Heme sufficient cells were treated with 350 μM 5-aminolevulinic acid (ALA) 

in DMEM 10% FBS for 24 hours. Cells were harvested in 1X PBS for flow analysis. Flow 

cytometric measurements were performed using a BD FACS Aria Ill Cell Sorter equipped 

with an argon laser (ex 488 nm) and yellow-green laser (ex 561 nm). EGFP was excited 

using the argon laser and was measured using a 530/30 nm bandpass filter, mKATE2 was 

excited using the yellow- green laser and was measured using a 610/20 nm bandpass filter. 

Data evaluation was conducted using FlowJo v10.4.2 software. Single cells used in the 

analysis were selected for by first gating for forward scatter (FSC) and side scatter (SSC), 

consistent with intact cells, and then by gating for cells with mKATE2 fluorescence 

intensities above background were selected. The fraction of sensor bound to heme may be 

quantified according to the following equation (60): 

%	Bound = 100	 ×	(
R − R!"#

R!$% − R!"#
) 

where R is the median eGFP/mKATE2 fluorescence ratio in regular media and Rmin and 

Rmax are the median sensor ratios when the sensor is depleted of heme or saturated with 

heme. Rmin and Rmax values are derived from cells cultured in heme deficient media 

conditioned with succinylacetone (HD+SA) or in media conditioned with ALA (60). The 

plot in Figure 4D was obtained by fitting the median sensor ratios in Figure 4C to the 

following 1-site binding model (60, 166): 
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Ratio = 	initial	ratio + ∆ratio ×	(
𝑥

𝐾& + 𝑥
) 

where x is the independent variable, [PhenDC3]. 

4.5.10. BG4 purification.  

pSANG10-3F-BG4 was a gift from Shankar Balasubramanian (Addgene plasmid # 

55756; http://n2t.net/addgene:55756; RRID:Addgene_55756). BL21 cells transformed 

with this plasmid were grown in room temperature and induced overnight with 0.1mM 

IPTG. Cells were pelleted, then resuspended in xTtractor (Takara) supplemented with 

Protease arrest (G-protein), lysozyme and DNase I. Sonicated cell lysate was combined 

with Ni-NTA resin (Invitrogen) and purified via the his-tag. BG4 was further purified by 

FPLC using a Superdex75 size exclusion column (GE Healthcare). 

4.5.11. Immunofluorescence. 

Immunofluorescence was performed by standard protocols. HEK293 cells were 

seeded onto Poly-L-lysine coated cover glass two days before the experiment and fixed in 

4% formaldehyde for 15 min. Cells were permeabilized with 0.1% Triton X-100 for 3 min 

and blocked with 5% donkey serum (Jackson ImmunoResearch), followed by incubation 

with antibodies for 1 hr at room temperature or overnight at 4 oC. Antibodies used here are: 

BG4, rabbit anti-FLAG (Cell Signaling Technology, 14793S), mouse anti-L19 (Santa Cruz 

Biotechnology, sc-100830), mouse anti-rRNA (Santa Cruz Biotechnology, sc-33678), 

mouse anti-Calnexin (Santa Cruz Biotechnology, sc-23954), Alexa Fluor 488 conjugated 

donkey anti-rabbit (Jackson ImmunoResearch, 711-545-152), Rhodamine Red-X 

conjugated donkey anti-mouse (Jackson ImmunoResearch, 715-295150). After staining 
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cells were carefully washed with DPBS supplemented with 0.1% tween-20. Nuclear DNA 

was stained with 4',6-diamidino-2-phenylindole (DAPI). Images were acquired with a 

Zeiss 700 Laser Scanning Confocal Microscope. PhenDC3 treatment consisted of 

incubation at 37 °C overnight at 10 µM final PhenDC3 concentration prior to cell fixation. 

Determination of colocalization ratios was performed as described in Zen software (Zeiss). 

No primary antibody controls as well as RNase A and PhenDC3 treated images are reported 

in Figures C.4 and C.5. The “Colocalization” image in Figure 4.2A,B is showing the G4 

signal that colocalizes with L19 and with the ER (yellow pixels) and the one that does not 

colocalize (green pixels). “L19”, “ER”, and “BG4” images only present their respective 

fluorescence signals. 

4.5.12. BioTASQ capture of cellular RNAs. 

BioTASQ experiments followed published protocols in vitro (17) and in vivo (27). 

Briefly, HEK293 cells were seeded onto a 6-well plate at 20% confluency and allowed to 

incubate at 37 °C for 48 hrs. Cells were then crosslinked with 1% paraformaldehyde/PBS 

for 5 min at room temperature. Crosslinking was stopped by incubating cells with 0.125 M 

glycine for 5 min at room temperature. Cells were harvested by scrapping and resuspended 

in Lysis Buffer (200 mM KCl, 25 mM Tris-HCl, pH 7.5, 5 mM EDTA, 0.5 mM DTT, 1% 

Triton X-100, RNasin RNAse Inhibitor, 1X protease arrest). Cells were lysed by sonication 

(30% amplitude, 10 sec. on and off intervals, 2 min sonication time). The lysate was then 

split: BioTASQ was added at a final concentration of 100 µM to one of the samples, the 

other one was left untreated. Lysates were incubated at 4 °C overnight with gentle rotation. 

Sera-Mag magnetic streptavidin-coated beads (GE Healthcare) were washed three times 
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with wash buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M KCl). Each wash was 

followed by centrifugation at 3,500 rpm for 5 min at 4 °C. Beads were then treated with 

Buffer 1 (0.1 M NaOH, 0.05 M KCl in RNase/DNase-free water) two times at room 

temperature for 2 min and then centrifuged at 3,500 rpm at 4 °C, 5 min, and washed with 

Buffer 2 (0.1 M KCl in RNase/DNase-free water). Lastly, to block, beads were treated with 

1 µg/mL BSA and 1 µg/mL yeast tRNA and allowed to incubate at 4 °C overnight with 

gentle rotation.  

After incubation overnight with BioTASQ, cell lysates were treated with 1% BSA 

for 1 hr at 4 °C. Washed magnetic beads were added to the lysates (20 µg beads /sample) 

and allowed to mix with gentle rotation at 4 °C for 1 hr. Beads were then washed three 

times with Lysis buffer for 5 min and then crosslinking was reversed by incubating the 

beads at 70 °C for 1 hr. Finally, TRIZOL was used to extract RNAs, for analysis by RT-

qPCR.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1. Conclusions 

Historically, the ribosome has been approached as an essential but passive 

macromolecular machine that translates the nucleic acid code carried by mRNAs into 

proteins. Therefore, the canonical function of ribosomes is protein synthesis. However, 

across phylogeny not all ribosomes are the same: eukaryotic ribosomes present expansion 

segments that, in cases like Homo sapiens, extend for hundreds of Angstroms from the 

ribosomal surface in the form of rRNA tentacles. Bacterial ribosomes lack these rRNA 

tentacles and hence are nearly twice as small as human ribosomes. As explained in Chapter 

1 of this thesis, the length of rRNA expansion segments correlates well with species 

complexity.  

The work described in this thesis has been focused on the discovery of non-

canonical G-quadruplex structures in specific rRNA tentacles of the human ribosome and 

their involvement in non-canonical ribosomal functions. This work is described in detail in 

chapters 2, 3, and 4. Taken together, this work describes (i) the identification of the 

sequences with G-quadruplex potential on human 28S and 18S rRNAs, (ii) the formation 

of these rRNA structures in vitro and in vivo, (iii) their conservation across phylogeny, and 

(iv) their physiological roles. We have data supporting their role in inter-molecular 

association of human ribosomes and in recruiting specific proteins to the ribosome 

(Chapter 2). Our in vivo experiments suggest that a small fraction of specialized ribosomes 
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form G-quadruplexes (~5%) and that most extra-nuclear G-quadruplexes are associated 

with ribosomes (~83%), indicating the RNA G-quadruplexome is ribosome-centric. The 

work described in Chapter 4 provides strong evidence that one of the cellular roles of rRNA 

G-quadruplexes is to regulate heme bioavailability. The ribosome as a hub for heme is 

consistent with its role as an abundant and versatile sink for ions and small molecules, 

including antibiotics, platinum-based drugs, certain metabolites, and metal cations such as 

Mg2+, Ca2+, Mn2+, and Fe2+, K+.  

Overall, the results presented in this thesis represent the first report on the in vitro 

and in vivo formation of non-canonical G-quadruplex structures on any ribosomal RNA 

and provide strong evidence on the involvement of these structures in a non-canonical 

ribosomal function: heme appropriation and regulation. Prior to this thesis work, ribosomal 

RNA had never been reported to contain sequences with G-quadruplex potential. Taking 

into account that the vast majority of RNA is cells is ribosomal (>80%), our results imply 

that most RNA G-quadruplexes are ribosomal. In addition, the work described in Chapter 

4 has major implications for the physiology of G-quadruplex-heme interactions. Current 

studies on the identification of heme trafficking factors are mainly centered on 

proteinaceous factors and largely ignore contributions from nucleic acids. Our results 

provide strong evidence that human ribosomes, and G-quadruplex containing rRNAs in 

particular, appropriate and buffer cytosolic heme. Given that the first opportunity for 

protein hemylation occurs during or just after translation, rRNA and rProteins may be 

critical for directing labile heme to newly synthesized proteins.  
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5.2. Future directions: investigating the roles of rProteins in heme regulation 

 The work performed in this thesis has been solely performed on rRNA. However, 

ribosomes are ribonucleoproteins that contain over 50 rProteins. Therefore, it is 

conceivable that rProteins are also involved in regulating heme bioavailability. Towards 

this end, we have started performing experiments with rProteins. By treating human 

ribosomes purified from human cells with protease K we observed a significant decrease 

(~30%) on their ability to bind heme in vitro, strongly suggesting specific rProteins also 

contain heme-binding properties (Figure 5.1A).  

Figure 5.1. Role of rProteins on heme binding and heme bioavailability. (A) Protease K 
digestion of human ribosomes in vitro. (B) L22a, L12a, S18b and L27b regulate cytosolic 
heme bioavailability. Fluorimetric determination of eGFP/mKATE2 fluorescence ratios of 
the indicated yeast strains expressing heme sensor HS1-M7A. Statistical significance 
relative to WT strain is represented by asterisks using ordinary one-way ANOVA with 
Dunnett’s post-hoc test. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 
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In addition, previous experiments performed both at the genome- and proteome-

wide levels in the laboratory of professor Dr. Amit Reddi at the Georgia Institute of 

Technology suggested several rProteins presented potential heme-binding properties. 

Some of this previous work consisted of transforming the heme sensor HS1 described in 

detail in Chapter 4 to all available yeast knockout strains from the yeast genome library to 

identify candidate genes involved in heme bioavailability regulation. Several rProtein 

strains presented promising results. We screened for these candidate rProtein knockouts 

and confirmed that 4 DrProtein strains exhibit different bioavailable levels of heme with 

respect to WT strains (Figure 5.1B). Specifically, deletion of rProteins L22 (eL22) and L12 

(uL11) results in an increase in the bioavailable levels of cytosolic labile heme, whereas 

deletion of rProteins L27 (eL27) and S18 (uS13) results in a decrease in the bioavailable 

levels of cytosolic labile heme. These results represent the first link between rProteins and 

heme bioavailability and, together with our rRNA-heme results, support a model in which 

ribosomes act as central hubs for heme metabolism through both rRNAs and rProteins. The 

most logical next step would be to study the roles of ribosomes in heme trafficking 

throughout cellular compartments and the potential involvement of ribosomes in 

hemylation of nascent proteins. 
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APPENDIX A 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

	

Table A.1. DNA and RNA sequences encoding Homo sapiens ES7, GQES7-a, GQES7-b, 
mtES7-a and mtES7-b. 

Gene Sequence (5’ to 3’) 

H. sapiens ES7 GAATTCTAATACGACTCACTATAGGGCGGGTGGGGTCCGCGCAGT
CCGCCCGGAGGATTCAACCCGGCGGCGGGTCCGGCCGTGTCGG
CGGCCCGGCGGATCTTTCCCGCCCCCCGTTCCTCCCGACCCCTC
CACCCGCCCTCCCTTCCCCCGCCGCCCCTCCTCCTCCTCCCCGGA
GGGGGCGGGCTCCGGCGGGTGCGGGGGTGGGCGGGCGGGGCC
GGGGGTGGGGTCGGCGGGGGACCGTCCCCCGACCGGCGACCGG
CCGCCGCCGGGCGCATTTCCACCGCGGCGGTGCGCCGCGACCG
GCTCCGGGACGGCTGGGAAGGCCCGGCGGGGAAGGTGGCTCGG
GGGGCCCCGTCCGTCCGTCCGTCCGTCCTCCTCCTCCCCCGTCTC
CGCCCCCCGGCCCCGCGTCCTCCCTCGGGAGGGCGCGCGGGTC
GGGGCGGCGGCGGCGGCGGCGGTGGCGGCGGCGGCGGCGGCG
GCGGGACCGAAACCCCCCCCGAGTGTTACAGCCCCCCCGGCAG
CAGCACTCGCCGAATCCCGGGGCCGAGGGAGCGAGACCCGTCG
CCGCGCTCTCCCCCCTCCCGGCGCCCACCCCCGCGGGGAATCCC
CCGCGAGGGGGGTCTCCCCCGCGGGGGCGCGCCGGCGTCTCCT
CGTGGGGGGGCCGGGCCACCCCTCCCACGGCGCGACCGCTCTC
CCACCCCTCCTCCCCGCGCCCCCGCCCCGGCGACGGGGGGGGT
GCCGCGCGCGGGTCGGGGGGCGGGGCGGACTGTCCCCAGTGCG
CCCCGGGCGGGTCGCGCCGTCGGGCCCGGGGGAGGTTCTCTCG
GGGCCACGCGCGCGTCCCCCGAAGAGGGGGACGGCGGAGCGA
GCGCACGGGGTCGGCGGCGACGTCGGCTACCCACCCGTCGATC
CGGTTCGCCGGATCCAAATCGGGCTTCGGTCCGGTTCAAGC
TT 
 

GQES7-a GAATTCTAATACGACTCACTATAGGGCGGAGGGGGCGGGCTCCG
GCGGGTGCGGGGGTGGGCGGGCGGGGCCGGGGGTGGGGTC
GGCGGGGGACCGAAGCTT 
 

mtES7-a CGGAGAGAGCAGUCUCCGGCAGAUGCGAUAGUGAUCAGACG
UUGCCGUAUGUGAAGUCGGCGAAUGACCG 
 

GQES7-b GAATTCTAATACGACTCACTATAGGGCCTCGGGAGGGCGCGCGG
GTCGGGGCGGCAAGCTT 
 

mtES7-s CCUCAGUAUUGCGCGCAAGUCGAUGCGGC 
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• The T7 promoter region is in italics, restriction sites are underscored (EcoRI 5’, 

HindIII 3’), and the Weeks cassette (167) (used to performed SHAPE footprinting, 

data not published) is in bold.  G-tracts and G-tract mutations are underscored and 

in bold. 

	

	

	

Figure A.1. Total RNA was extracted from HEK293T cells using TRI reagent. a) Total 
RNA loaded on a 1% agarose gel. When the 18S and 28S rRNAs passed through the second 
set of wells (in the middle of the gel) they were extracted by pipetting and further purified 
by ammonium acetate/ethanol precipitation; b) The final integrity and purity of the 18S 
and 28S rRNAs are indicated on an agarose gel.  
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Figure A.2. tRNA from baker’s yeast was folded under the indicated conditions followed 
by incubation with MBN before denaturing gel electrophoresis. 

	 	



 101 
 

	

Figure A.3. CD spectrum of GQES7-a-Biotin confirms that the biotinylation of GQES7-a 
does not disrupt G-quadruplexes. 

 

Table A.2. Distribution of G-quadruplex-forming sequences across LSU ES tentacles of 
Eukaryotes from the SEREB database. G-scores were calculated with QGRS Mapper (72).	

Species	 ES	
tentacle	 Position	 Sequence	 G-

score	

H.	sapiens	

ES7a	

587-
612	 GGGGGCGGGCUCCGGCGGGUGCGGG	 38	

615-
632	 GGGCGGGCGGGGCCGGG	 41	

ES7b	 829-
849	 GGGAGGGCGCGCGGGUCGGG	 38	
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ES27	 2896-
2918	 GGGCUGGGUCGGUCGGGCUGGG	 38	

ES27a	 3110-
3140	 GGGGGCGGCGGCGGGGGGAGAAGGGUCGGG	 38	

P.	troglodytes	

ES7a	

583-
608	 GGGGGCGGGCUCCGGCGGGUGCGGG	 38	

611-
628	 GGGCGGGCGGGGCCGGG	 41	

ES7b	 816-
836	 GGGAGGGCGCGCGGGUCGGG	 38	

ES27	 2890-
2912	 GGGCUGGGUCGGUUGGGCUGGG	 38	

ES27b	 3255-
3283	 GGGCAGGGAGUGAUUGGGUGUCGGUGGG	 37	

ES30	 3829-
3853	 GGGGGUGGGGUGGGGUCCUGUGGG	 39	

R.	norvegicus	

ES7a	

633-
662	 GGGCGCGGGGUGUGGUGGGGGCGCGCGGG	 39	

663-
687	 GGGGCCGGGGGUGGGGUCGGCGGG	 40	

ES7f	 1041-
1067	 GGGGGUCCGGGGGCCCGGGGGGCGGG	 42	

ES27	 2736-
2758	 GGGCUGGGUCGGUCGGGCUGGG	 38	

ES27a	 2935-
2952	 GGGGGGGACGGGGCGGG	 41	
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ES27b	 3214-
3240	 GGGGUCGGGGGUUCCCGGGGUUCGGG	 41	

M.	musculus	

ES7a	 627-
646	 GGGCGGGGCCGGGGGUGGG	 41	

ES7d	 907-
926	 GGGCGGGCGUGGGGGUGGG	 40	

ES27	 2663-
2685	 GGGCUGGGUCGGUCGGGCUGGG	 38	

M.	domestica	

ES7a	 572-
594	 GGGGCGGCGGGCGAGGGCCGGG	 40	

ES7b	 729-
759	 GGGGGUGGCGGGGGCCAGAGGGGGCCCGGG	 41	

ES7d	 995-
1019	 GGGCCCGGGUUCCCGGGGGACGGG	 40	

ES27	 2726-
2748	 GGGCUGGGUCGGUCGGGCUGGG	 38	

ES27a	

2932-
2949	 GGGCGGGGGGGGACGGG	 41	

2949-
2978	 GGGGGCGCGCGGGGGGUCGGGGGCGCGGG	 41	

3045-
3061	 GGGGGGGCAGGGGGGG	 41	

3123-
3149	 GGGGUCCGGGGUUCGGGCCCGGCGGG	 40	

ES27b	 3242-
3266	 GGGCCCGGGGAGCCCGGGGGCGGG	 40	
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ES39a	 4728-
4749	 GGGGGGGCCUCGGGGGCCGGG	 39	

G.	gallus	

ES7a	

557-
577	 GGGGCGGGGCGGGCCCAGGG	 40	

577-
594	 GGGGCGGGCGGGCCGGG	 41	

ES7d	 933-
953	 GGGGCGCGGGGGCGGGGGGG	 40	

ES27	 2651-
2673	 GGGCUGGGUCGGUCGGGCUGGG	 38	

ES27a	 2755-
2774	 GGGGCGCCGGGGGGGGGGG	 39	

ES27b	 3018-
3040	 GGGCGGGGCGGUCCCGGGCGGG	 36	

A.	
carolinensis	

ES7a	 537-
559	 GGGGAAGGGGUUCCCGGGAGGG	 38	

ES27	 2365-
2387	 GGGCUGGGCCGGUCGGGCUGGG	 38	

X.	laevis	

ES7d	 793-
814	 GGGGCGGGGAAGGGGGAAGGG	 42	

ES9	 1085-
1111	 GGGGGCGGGGGGGGGGCGCCGGCGGG	 42	

ES27	 2412-
2434	 GGGCUGGGUCGGUCGGGCUGGG	 38	

ES27a	 2532-
2555	 GGGGGGCCGCGGGGGCGGGGGGG	 39	
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L.	chalumnae	 ES27	 2260-
2282	 GGGCUGGGUCGGUCGGGCCGGG	 38	

D.	rerio	

ES7d	 751-
773	 GGGGGGGGCUCGGAGGGACGGG	 38	

ES27a	

2514-
2537	 GGGCUCGGGGUGGGUGUUGCGGG	 38	

2566-
2587	 GGGUCGGGGCCUGCGGGGGGG	 38	

ES27b	 2695-
2715	 GGGGGGAGGGCACGGGCGGG	 40	

ES30	 3122-
3153	 GGGAGGCCCUGGGGCCCUCGGGCCCAGCGGG	 21	
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Table A.3. Species used in phylogenetic analysis of ES7. 

Species	names	 Species	
alias	

Common	
name	

Taxonomy	
identifier	 Order	 Comment	

Homo	sapiens	 H.	sapiens	 Human 9606	 Primates	
SEREB	
Database	
(64)	

Pan	troglodytes	 P.	
troglodytes	

Common	
chimpanze

e 
9598	 Primates	 SEREB	

Rattus	
norvegicus	

R.	
norvegicus	

Common	
rat 10116	 Rodentia	 SEREB	

Mus	musculus	 M.	
musculus	

House	
mouse 10090	 Rodentia	 SEREB	

Felis	catus	 F.	catus	 Domestic	
cat 9685	 Carnivor

a	 Predicted	

Equus	caballus	 E.	caballus	 Horse 9798	 Perissod
actyla	 Partial	

Dasypus	
novemcinctus	 DASNO	

Nine-
banded	
armadillo 

9361	 Cingulat
a	

Predicted;	
partial	

Monodelphis	
domestica	

M.	
domestica	

Gray	short-
tailed	
opossum 

13616	 Didelphi
morphia	 SEREB	

Caloenas	
nicobarica	

C.	
nicobarica	

Nicobar	
pigeon 187106	 Columbif

ormes	 	
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Gallus	gallus	 G.	gallus	 Chicken 9031	 Gallifor
mes	 SEREB	

Apteryx	australis	 A.	australis	 Common	
kiwi 8822	 Apterygi

formes	
Predicted;	
partial	

Crocodylus	
porosus	 C.	porosus	 Saltwater	

crocodile 8502	 Crocodili
a	 Predicted	

Chrysemys	
species	

Chrysemys	
sp.	

Painted	
turtle 307036	 Testudin

es	 Predicted	

Anolis	
carolinensis	

A.	
carolinensi

s	

American	
anole 28377	 Squamat

a	 SEREB	

Xenopus	laevis	 X.	laevis	 African	
clawed	frog 8355	 Anura	 SEREB	

Latimeria	
chalumnae	

L.	
chalumnae	 Coelacanth 7897	

Coelacan
thiforme

s	
SEREB	

Danio	rerio	 D.	rerio	 Zebrafish 7955	 Cyprinif
ormes	 SEREB	
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APPENDIX B 

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

 

 
Figure B.1. Distribution of solvent-accessible surface area for each residue of the a) human 
LSU rRNA and b) human SSU rRNA. 
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Figure B.2. Secondary structures of the human LSU and SSU rRNAs with all identified 3 
x 4 (red) and 2 x 4 (blue) G-quadruplex regions.  

 



 110 
 

Figure B.3.  Thermal denaturation of GQes12 (A) and GQes3 (B) as monitored by changes 
in circular dichroism.  Panels A and B show the decrease in amplitudes in CD spectra as 
temperature is increased.   
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Figure B.4.  Possible hairpin structure of GQes12 calculated using the mFold RNA server. 

 



 112 
 

Figure B.5. Relative ThT fluorescence spectra of the GQes3 and GQes12 rRNA oligomers 
annealed in the presence of potassium or lithium ions. 
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Figure B.6. Increasing concentrations of GQes3 result in a shift from the monomer to the 
dimer species. Band intensities were quantified using ImageJ and the ratio of dimer to 
monomer was plotted. The increase in the ratio indicates that the monomer-dimer 
equilibrium is shifted to the latter upon the increase in the RNA concentration. RNA was 
resolved on a 6% Native PAGE.  

 

Table B.1. DNA and RNA sequences encoding RNAs used. 

Gene Sequence (5’ to 3’) 

GQES7-a GAATTCTAATACGACTCACTATAGGGCGGAGGGGGCGGG
CTCCGGCGGGTGCGGGGGTGGGCGGGCGGGGCCGGG
GGTGGGGTCGGCGGGGGACCGAAGCTT 
 

GQES7-b GAATTCTAATACGACTCACTATAGGGCCTCGGGAGGGCGC
GCGGGTCGGGGCGGCAAGCTT 
 

GQes3 GGCCCCGGCCGGGGGGCGGGCGCCGG 
mutes3 AACCCCAACCGAAAAGCGAAGCCAA 
GQes12 GGGGUCGGCCCACGGCCCUGGCGG 
mutes12 AAAGUCAACCCACAACCCUAACGG 

 

• The T7 promoter region is in italics, restriction sites are underscored (EcoRI 5’, 

HindIII 3’). G-tracts and G-tract mutations are underscored and in bold. 
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APPENDIX C 

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 
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Figure C.1. UV-Vis spectra of increasing concentrations of GQES7-b (A), GQes3 (B), 
mutes3 (C), intact human 28S rRNA (D), intact human 18S rRNA (E), and assembled small 
subunit (F) to a constant concentration of heme.  
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Figure C.2. UV-Vis spectra of titration of PhenDC3 to constant heme and (A) human 
assembled SSU, (B) intact human 28S rRNA, (C) intact human 18S rRNA, and (D) and 
mutes3. (E) UV-Vis spectra of PhenDC3 reveals peak at 350 nm is intrinsic of PhenDC3. 

 

 

 

Figure C.3. (A) RT-qPCR analysis oif 28S and 18S rRNAs from PhenDC3-treated 
HEK293 cells. PhenDC3 treatment consisted of 48 hrs at 37 °C in the concentrations listed 
in the figure. Each dot represents a technical replicate coming from individual biological 
replicates. (B) RT-qPCR analysis of 28S rRNA from HEK293 cells treated with 10 mM 
PhenDC3 or carrier DMSO. Each dot in (B) represents a technical replicate coming from 
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2 biological replicates. (C) UV-Vis spectra of increasing concentrations of PhenDC3 or 
carrier DMSO to constant heme and GQES7-a show DMSO does not affect the binding of 
heme to ribosomal G4s. Data in (A) and (B) are represented as RNA enrichment in hemin 
agarose beads relative to control sepharose beads. Statistical significance is represented by 
asterisks using ordinary one-way ANOVA with Dunnett’s post-hoc test. * P < 0.05; ** P 
< 0.01. 

 

Figure C.4. Confocal microscopy images of fixed HEK293 cells without the primary 
antibodies a-FLAG (green channel) and without a-L19 antibody (red channel). Results 
demonstrate signals obtained in confocal microscopy images are coming from the primary 
antibodies. 
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Figure C.5. Confocal microscopy images of fixed HEK293 cells treated with (A) PhenDC3 
or (B) RNase A. Results demonstrate BG4 signal is coming from cellular RNA G-
quadruplexes. Note that “merged” images presented here are not shown in terms of BG4-
L19 colocalization.  

 

Table C.1. DNA and RNA sequences encoding RNAs used. 

Gene Sequence (5’ to 3’) 

GQES7-a GAATTCTAATACGACTCACTATAGGGCGGAGGGGGCGGG
CTCCGGCGGGTGCGGGGGTGGGCGGGCGGGGCCGGG
GGTGGGGTCGGCGGGGGACCGAAGCTT 
 

GQES7-b GAATTCTAATACGACTCACTATAGGGCCTCGGGAGGGCGC
GCGGGTCGGGGCGGCAAGCTT 
 

GQes3 GGCCCCGGCCGGGGGGCGGGCGCCGG 
mutes3 AACCCCAACCGAAAAGCGAAGCCAA 

 

• The T7 promoter region is in italics, restriction sites are underscored (EcoRI 5’, 

HindIII 3’). G-tracts and G-tract mutations are underscored and in bold. 
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Table C.2. Primer sets used for RT-qPCR 

Target RNA Forward Reverse 

28S rRNA AGAGGTAAACGGGTGGGGTC GGGGTCGGGAGGAACGG 

18S rRNA GATGGTAGTCGCCGTGCC GCCTGCTGCCTTCCTTGG 
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