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Transonic flow fields are marked by shock waves of varying strength and location and are crucial for the aerodynamic

design and optimization of high-speed transport aircraft. While deep learning methods offer the potential for predicting

these fields, their deterministic outputs often lack predictive uncertainty. Moreover, their accuracy, especially near crit-

ical shock regions, needs better quantification. In this paper, we introduce a domain-informed probabilistic (DIP) deep

learning framework tailored for predicting transonic flow fields with shock waves called DIP-ShockNet. This methodol-

ogy utilizes Monte Carlo Dropout (MCD) to estimate predictive uncertainty and enhances flow field predictions near the

wall region by employing the inverse wall distance function (IWDF) based input representation of the aerodynamic flow

field. The obtained results are benchmarked against the signed distance function (SDF) and the geometric mask input

representations. The proposed framework further improves prediction accuracy in shock wave areas using a domain-

informed loss function. To quantify the accuracy of our shock wave predictions, we developed metrics to assess errors

in shock wave strength and location, achieving errors of 6.4% and 1%, respectively. Assessing the generalizability of

our method, we tested it on different training sample sizes and compared it against the proper orthogonal decomposition

(POD)-based reduced order model (ROM). Our results indicate that DIP-ShockNet outperforms POD-ROM by 60% in

predicting the complete transonic flow field.

Keywords: transonic flow field, shock wave, probabilistic deep learning, uncertainty quantification, UNet, domain-

informed loss, Monte Carlo dropout

I. INTRODUCTION

High-speed transport aircraft design remains a principal

strategic thrust within the aviation community1,2. Such air-

craft are designed to operate efficiently at transonic speeds.

This necessitates improvements in cruise efficiency and drag

divergence. Consequently, the aerodynamic design of these

aircraft must undergo rigorous analysis and evaluation for

the transonic flow regime during the early conceptual design

phase. Transonic flow fields are inherently complex, marked

by variations in shock wave strength and position, and intri-

cate interactions between shock waves and boundary layers.

In the aerospace industry, Reynolds-averaged Navier-Stokes

(RANS) based computational fluid dynamics (CFD) analysis

is the conventional approach for evaluating high-speed com-

pressible flow fields. However, for aerodynamic design, CFD

analysis often entails a many-query context where the analysis

is reiterated numerous times. Such many-query analyses in-

clude numerical optimization, uncertainty quantification, de-

sign space exploration, and more3,4. Resorting to computa-

tionally intensive RANS CFD analysis in a many-query con-

text quickly becomes computationally intractable, despite the

current advancements in computational capabilities. This un-

derscores the need for methods that can rapidly and efficiently

evaluate flow fields.

a)corresponding author

Non-intrusive, data-driven ROMs offer a promising alter-

native to high-fidelity CFD simulations5. They provide a

computationally efficient approximation of complex numer-

ical simulations and, once trained, can quickly estimate high-

dimensional flow fields. ROMs operate by determining a

low-dimensional representation, often referred to as the latent

space or subspace, of the original high-dimensional field so-

lution. POD stands out as a widely utilized ROM technique,

seeing extensive application in aerodynamics and aircraft de-

sign6–12. The appeal of POD stems from its simple formu-

lation, reduced computational requirements, minimal training

data needs, and a well-defined back mapping. However, its

limitations surface when accurately predicting nonlinearities

such as shock waves within the flow field5,13,14.

Recently, many studies within fluid mechanics and aerody-

namics have turned to deep learning (DL) methods to develop

ROMs for highly non-linear systems and capture the complex

relationships between inputs and outputs. These techniques

have been used to study unsteady flows around bluff bod-

ies15–20, address turbulence in flows21–23, heat transfer mod-

eling24,25 and reconstruction of pressure fluctuations in super-

sonic shock–boundary layer interaction26. DL has also found

applications in examining flow fields around high-speed aero-

dynamic bodies. Thuerey et al.22 used the UNet architec-

ture to predict pressure and velocity fields on various airfoils

for different Reynolds numbers and angles of attack. Bhat-

nagar et al.27 improved their convolutional neural network

(CNN) predictions on airfoils by using the SDF, introduced

by Guo et al.28, as an input channel. Their approach utilized
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single and shared decoder streams for pressure and velocity

field predictions. In their work, Duru et al.29,30 presented

a detailed solution for CNN-based predictions of flow fields

around transonic airfoils, using a training dataset of 4614 sam-

ples from 204 different airfoils at M = 0.7 across various an-

gles of attack. They achieved notable accuracy in predicting

flow fields and shock regions. However, a common theme

across these studies was the mapping of the original CFD grid

to a Cartesian grid for neural network (NN) model training.

This method can sometimes lead to interpolation errors and

loss of information in near-wall regions since the Cartesian

grid might not represent the geometry boundary accurately,

leading to oscillations in pressure field close to aerodynamic

body boundaries31.

The mesh transformation technique can be employed to

mitigate the challenges posed by mapping onto a Cartesian

grid32. Hu and Zhang33 introduced a Mesh-Conv convolu-

tional operator. They transformed the O-type grid into a Carte-

sian grid, which was then used as an input to the CNN. Their

model was tested to predict the flow field around the NACA

0012 airfoil at a low subsonic Mach number of 0.5. In a sim-

ilar vein, Chen and Thuerey34 applied an encoding technique

to convert a body-fitted, structured grid from Cartesian co-

ordinates to curvilinear coordinates. Following this transfor-

mation, a U-Net architecture was used to analyze flow fields

around various airfoils under different flow conditions. Deng

et al.35 devised a vision transformer (ViT)-based architecture,

which utilized a transformed-encoded geometric input. Their

approach achieved good prediction accuracy for flow around

transonic airfoils using a tailored loss function. However, a

common constraint with these methods is the need for the un-

derlying CFD grid to possess a specific topological order. This

stipulation restricts their applicability to grids with a struc-

tured representation. Generating these structured grids can

be particularly challenging, especially for aerodynamic bod-

ies with complex shapes.

Graph neural networks (GNNs) have recently emerged as a

tool for predicting flow fields across diverse grids36,37. Pfaff

et al.38 introduced MeshGraphNets, a GNN-based approach,

for predicting inviscid flow fields over airfoils. However, the

utilization of GNNs faces constraints related to the theory of

graph representations, hardware limitations, and challenges in

distributed solving34,35. In a notable contribution, Kashefi et

al.39 developed a deep learning framework that leverages the

PointNet architecture to capture point cloud locations of grid

vertices and use them as network inputs. This approach en-

abled them to predict flow fields in irregular domains where

the field solution is influenced by the object’s shape. Af-

ter testing their network on a range of simple shapes, they

achieved impressive results. Yet, their methodology has not

been evaluated for predicting high-speed flow fields on dense,

unstructured grids. It’s important to note that the studies dis-

cussed so far adopt a deterministic approach, predicting only

the mean values of flow fields and their associated errors.

This poses limitations for applications where aircraft design-

ers must also account for uncertainties in their designs. The

existing studies also do not explicitly quantify errors in shock

waves regions and the performance of the methods in regions

of shock waves is analyzed qualitatively.

In the present study, we introduce a probabilistic deep

learning framework DIP-ShockNet, that utilizes a domain-

informed Monte Carlo Dropout (MCD)-UNet architecture tai-

lored for predicting transonic flow fields with an emphasis on

capturing shock wave regions accurately. This approach en-

ables us to not only provide mean predictions of flow fields but

also to quantify the uncertainty associated with these predic-

tions by estimating the variance of the predicted flow fields.

For input structuring, we employ the Cartesian grid mapping

strategy. While acknowledging its inherent limitations, this

strategy proves advantageous in our context, because it en-

ables us to swiftly estimate gradients, thereby refining shock

wave predictions; as well as utilize information from high-

fidelity but highly unstructured CFD grids. Another potential

advantage of the grid mapping strategy is that it can decrease

training costs through a multi-fidelity approximation of the

model by mapping grids of varying densities onto a common

grid. To improve predictions near the wall, we use an inverse

wall distance function (IWDF). This aids our model in better

learning field distributions close to the aerodynamic surface,

leading to better accuracy in near-wall predictions. Further-

more, we quantify shock wave errors by assessing shock loca-

tion and strength. We evaluate the robustness of our model to

the number of training samples by evaluating it for different

training data sizes. We compare these results against those

derived from POD-based models. The importance of com-

paring the outcomes from computationally demanding DL

methods with simpler POD-based techniques has been well-

documented40.

The remainder of this paper is organized as follows: In Sec-

tion II, the proposed DIP-ShockNet framework is discussed

where we present the inverse wall distance function, detail the

design of the MCD-UNet network architecture, and introduce

the domain-informed loss function, all tailored to enhance the

prediction accuracy of our model. Section III introduces the

application problem used in this research and describes the

shape parametrization technique employed to develop various

designs. This section also sheds light on data generation, and

preprocessing methodologies for creating training data, and

introduces metrics devised to quantify errors in field predic-

tions as well as errors in shock wave strength and location.

Section IV examines the influence of input representation, the

domain-informed loss function, and changes in training data

size on our model’s predictions. We wrap up in Section V by

summarizing the research and offering concluding insights.

II. METHODOLOGY

In this section, we discuss in detail the proposed Domain-

Informed Probabilistic ShockNet (DIP-ShockNet) deep learn-

ing framework used to predict the transonic flow fields with

shock waves. The framework has three key components: the

IWDF as the input representation of the aerodynamic flow

field, the MCD-UNet architecture, and the domain-informed

loss function. We start by introducing the IWDF and give

its mathematical details. Then, we explain the structure and
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design of the MCD-UNet architecture. We finish by introduc-

ing a customized loss function that uses domain knowledge to

better predict the areas with shock waves.

A. Inverse Wall Distance Function

To improve prediction accuracy near aerodynamic surfaces

in our proposed model, we introduce the inverse wall dis-

tance function (IWDF). The essence of IWDF lies in assigning

higher weightage to regions where significant flow variations,

such as in boundary layers, are anticipated.

Inspired by the SDF methodology, the first step is to rep-

resent the boundary of the aerodynamic surface using a zero-

level set Z represented as:

Z = {(i, j) ∈ R
2 : Ω(i, j) = 0} (1)

where Ω(i, j) is the level-set function defined over the domain

of interest. The condition Ω(i, j) = 0 defines the surface of

the aerodynamic body. The nearest wall distance function,

D(i, j), from surface of aerodynamic body is given by:

D(i, j) = min
(i′, j′)∈Z

∥∥(i, j)− (i′, j′)
∥∥

2
(2)

where ||.||2 denotes the L2 or Euclidean norm. Subsequently,

the IWDF is computed as

IWDF(i, j) =

∣∣∣∣1−
D(i, j)

max(D(i, j))+ εo

∣∣∣∣sign(Ω(i, j)) (3)

where

sign(Ω(i, j)) =





−1 Ω(i, j)< 0

0 Ω(i, j) = 0

1 Ω(i, j)> 0

(4)

In Eq. 3, the offset εo > 0, ensures that the IWDF value does

not reduce to zero at the domain’s extremities. This distinction

allows our model to differentiate sharply between the aerody-

namic surface and the far-field regions. In this study we use a

value of 0.05 for εo.

The efficacy and versatility of IWDF, especially in compar-

ison with other prevalent geometric and distance representa-

tion methodologies, will be demonstrated in the section IV of

this paper.

B. Design of MCD-UNet architecture

Deterministic surrogate models41–45 provide output predic-

tions without any information about the uncertainty of the

predictions. Probabilistic surrogate models46–48, on the other

hand, are useful in assessing model confidence on output

predictions as they provide a measure of uncertainty. In

deep learning models, uncertainty can be incorporated with

Bayesian neural networks (BNNs)49,50 where the tunable net-

work parameters are modeled as distributions rather than

scalars. For most complex problems, BNNs are often infea-

sible to implement as the evaluation of the marginal distribu-

tion of the weights during training becomes computationally

intractable.

Bayesian Variational Inference (VI) methods have been

proposed as a practical alternative to BNNs. In VI-based

deep neural networks, Gaussian distribution is commonly as-

sumed as the marginal distribution for the weights. However,

this requires double the number of parameters of a network

to represent its uncertainty which leads to increased compu-

tational costs51,52. It has been shown52 that the use of the

regular dropout in neural networks can be interpreted as an

efficient approximation to BNNs. Traditionally, dropout has

been used only during model training as a regularization tech-

nique to avoid over-fitting. Monte Carlo Dropout (MCD) is

a technique that proposes using dropout during model infer-

ence and this enables DL methods to represent model form

uncertainty efficiently. The MCD layer randomly deactivates

some of the neurons (weights) of a neural network layer, thus

nullifying their contributions to the final output. Thus, during

inference, when the same input is fed into a trained DL model

multiple times, the outputs obtained are slightly different from

each other due to the deactivation of a different set of neurons

(weights) each time. The mean of the output predictions is

then used as the estimate, and the variance as a measure of its

uncertainty.

At the core of the DIP-ShockNet framework is the MCD-

UNet architecture. UNet is a popular CNN architecture con-

sisting of an encoder-decoder structure that learns complex

image-to-image mapping efficiently. The role of the encoder

is to apply a series of linear and non-linear operations to the

given input image and come up with an abstract reduced-order

feature representation. This intermediate reduced order output

is then passed onto the decoder which through further sequen-

tial linear and non-linear operations reshapes it back to the

output image. Further details about the UNet architecture can

be found in the existing literature53–55. The additional MCD

feature in the MCD-UNet architecture enables the estimation

of uncertainty in the prediction of the flow fields, along with

the mean estimates.

Design of the MCD-UNet architecture with optimal selec-

tion of the hyperparameters is an important step in predicting

the flow field accurately and efficiently. The training hyper-

parameters considered are the initial learning rate, the expo-

nential decay rate constant of the learning rate, the dropout

rate, and the training batch size while the architecture-based

hyperparameters considered are the depth of the architecture,

the number of channels at each depth level, and the type of

normalization applied in each convolutional layer. A random

sampling-based hyperparameter tuning is performed by gen-

erating 100 hyperparameter configurations. The MCD-UNet

architecture is then trained for each of these configurations

within the DIP-ShockNet framework and the optimal config-

uration is selected based on the validation data accuracy. Ta-

ble I lists the hyperparameter configuration selected for our

study. It is noted that the selected normalization type is group

normalization with a group size of 256 which is equivalent

to layer normalization as the maximum number of channels
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FIG. 1. Architecture of the MCD-UNet used in the DIP-ShockNet framework.

used in the architecture is also 256. The optimal MCD-UNet

architecture based on the selected configuration is shown in

Fig. 1. The input to the deep learning architecture is a 2-

channel image representation that contains information about

the airfoil geometry and the angle of attack. It is noted that a

single-channel representation may also act as an input to this

architecture as discussed later in section IV.

The encoder part of the architecture consists of 5 repeating

blocks. Each block consists of a 2×2 max pooling operation

with stride 2 for downsampling (MaxPool 2×2), followed by

the application of 2 successive 3× 3 2D convolutions (Conv

3× 3), each followed by a layer normalization (LayerNorm)

and a leaky rectified linear unit (LeakyReLU) operation. The

only exception to this block structure is the first encoder block

which does not have the max pooling layer upfront. Also, the

last 3 encoder blocks have an additional MCD layer before the

max pooling layer. The decoder part consists of 5 repeating

blocks where each block (except the first and the last block)

consists of two successive 3×3 2D convolutions (Conv 3×3),

each followed by a layer normalization (LayerNorm) and a

ReLU operation, and it is then followed by a transpose con-

volution operation (TransposeConv3× 3). The first decoder

block has only the transpose convolution layer and no stan-

dard convolution layers, while the last decoder block has the

two successive Conv 3× 3-LayerNorm-ReLU layers but no

transpose convolution. The first 3 decoder blocks have an

additional MCD layer before the transpose convolution layer.

The encoder and decoder blocks are followed by a final 1×1

convolutional layer (Conv 1× 1) which maps the 64-channel

decoder output to a single-channel output which represents the

predicted flow field. It is noted that the training of the MCD-

UNet architecture using the DIP-ShockNet framework is con-

TABLE I. Hyperparameters used in the DIP-ShockNet framework

for the MCD-UNet architecture training for flow field predictions

Hyperparameters Values

Initial learning rate 7.94e-4

Decay rate constant 0.994

Training batch size 13

Dropout rate 0.20

Architecture depth 5

No. of channels [64, 128, 128, 256, 256]

Normalization type Group normalization (group size = 256)

ducted on an NVIDIA-RTX-A6000 GPU in a local computer.

C. Domain-informed loss function

The training of the weights within our deep learning ar-

chitecture requires the minimization of a loss function. This

function is responsible for comparing various features of both

the predicted and the true flow field map, as derived from our

training data set. Within the scope of our research, our pri-

mary goal is to achieve a high degree of accuracy in predict-

ing global flow field features. Concurrently, we also aim to

capture the more intricate local features that showcase pro-

nounced variations in flow.

For this purpose, we opted for the weighted mean squared

error (wMSE) as our choice of the loss function. The wMSE

calculates the error by using the absolute true field values at

each node point within a given flow field. These values act as

weights that enable the estimation of a weighted mean squared

error for the entire flow field. The wMSE is formally defined
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as:

LwMSE =
∑

h
i=1 ∑

w
j=1 |Y

i, j|(Ỹ i, j −Y i, j)2

∑
h
i=1 ∑

w
j=1 |Y

i, j|
(5)

Here, h and w represent the height and width of the flow field,

respectively. Y i, j denotes the actual field value at the node lo-

cation (i, j), whereas Ỹ i, j signifies its predicted counterpart.

The intrinsic advantage of such a loss function is its height-

ened emphasis on higher absolute field values, leading to a

robust characterization of both vital global and local features

within the flow field.

However, while the wMSE performs adequately on a global

scale, giving equal emphasis across the entire flow domain,

it occasionally struggles with highly localized features in the

flow, such as shock waves. Recognizing this limitation, we

refined our approach by developing a custom loss function,

enriched with domain-specific information.

Shock waves are characterized by sudden changes in flow

properties, predominantly in the flow direction. To effectively

capture these nonlinear features, we compute the gradient of

the flow field using finite differencing, albeit with an under-

standing of the inherent approximations involved due to grid

transformation and the finite discretization of the Cartesian

grid. Figure 2 demonstrates this through contour plots of gra-

dient fields along the w (width) and h (height) directions of

the flow field. The gradient in the flow-wise direction (width)

is particularly instrumental in locating the shock wave, while

the gradient along the height direction reveals the curvature

associated with the shock wave.

In our improved loss function, we introduce an additional

term: the weighted mean squared error of the flow field gra-

dient (wMSEg), derived using central differencing techniques

across both the height and width of the flow field, denoted as

∆Yh and ∆Yw.

∆Y
i, j
h =

(Y i+1, j −Y i−1, j)

2∆h

∆Y i, j
w =

(Y i, j+1 −Y i, j−1)

2∆w

(6)

where ∆h and ∆w represent the grid spacing in the h and w

directions respectively.

It’s important to clarify that our primary aim here is not to

calculate exact gradients, but rather to utilize these gradient

approximations to locate regions of shock waves, where there

is a pronounced jump in field values. By incorporating these

approximate gradients into our domain-informed loss func-

tion, the DIP-ShockNet model is trained to focus more on ar-

eas with shock waves, thereby enhancing predictive accuracy

in these crucial regions. Using these gradients, we can define

the gradient-focused loss function as:

LwMSEg =
∑

h
i=1 ∑

w
j=1 |∆Y

i, j
h |(∆Ỹ

i, j
h −∆Y

i, j
h )2

∑
h
i=1 ∑

w
j=1 |∆Y

i, j
h |

+
∑

h
i=1 ∑

w
j=1 |∆Y

i, j
w |(∆Ỹ

i, j
w −∆Y

i, j
w )2

∑
h
i=1 ∑

w
j=1 |∆Y

i, j
w |

(7)

where ∆Ỹh and ∆Ỹw represents the predicted gradients.

Building upon these individual loss functions, our proposed

domain-informed loss function is a combination, taking into

account both the wMSE and wMSEg. This domain-informed

loss function is described as:

LDI = LwMSE +w0 ∗LwMSEg (8)

Within this equation, w0 is a weight factor, determining

the relative contribution of the gradient loss to the domain-

informed loss function.

III. APPLICATION PROBLEM

We assess the efficacy of our proposed model, particularly

in predicting aerodynamic flow fields and shock waves, us-

ing the transonic flow over the RAE2822 airfoil as a test case.

This airfoil represents the typical profiles found in transonic

wings of commercial transport aircraft. Moreover, it serves

as the foundational geometry for the second benchmark prob-

lem set forth by the AIAA Aerodynamic Design Optimization

Discussion Group (ADODG)56,57.

A. Shape parametrization

To generate various airfoil designs for evaluating our pro-

posed method, we employ a geometric parameterization tech-

nique, using the RAE2822 airfoil as the baseline. Several

shape parameterization methods have been proposed in the

literature for the effective parameterization of airfoils and

wings58–60. A detailed review of these techniques has been

provided by Masters et al.61. Among these methods, we adopt

the free-form deformation (FFD) technique for this study. The

fundamental principle of FFD involves enclosing the aero-

dynamic body within an FFD box. Within this box, we de-

fine specific control points, termed as FFD nodes. Altering

the position of these FFD nodes consequently modifies the

shape of the enclosed geometry. A linear elasticity approach

is then employed to disseminate the geometric displacements

throughout the grid62.

For the scope of this study, the RAE2822 airfoil is encap-

sulated within a 4× 2 FFD box, as illustrated in Fig. 3. The

four corner nodes of the FFD box remain stationary, while the

remaining nodes are constrained to vertical motion, subjected

to a maximum displacement limit of ±0.03 times the chord

length.

B. Data generation and preprocessing

For the aerodynamic analysis around the airfoil, we employ

an unstructured grid due to its inherent advantages: enhanced

flexibility, capability for local grid refinement, and efficiency

in terms of grid generation time and effort. A boundary layer

is constructed adjacent to the airfoil, with the initial cell of this
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FIG. 2. Contour plot of gradient field used in domain-informed loss function: (a) CFD Cp field, (b) ∆Cpw
field and, (c) ∆Cph

field.

(a) (b) 

FIG. 3. Shape parametrization of RAE2822 using FFD technique: (a) original geometry and, (b) deformed geometry.

layer positioned to ensure y+ < 1. A grid independence study

was performed to ascertain the optimal grid configuration for

our test case. Detailed insights from the grid independence

study can be found in the work by Mufti et al.63,64. The final

grid selection contains 954 points on the airfoil surface and a

total grid size of 96,913 nodes as shown in Fig. 4.

The RANS-based CFD simulations are executed using the

open-source SU2 code65. Simulations are conducted under

free stream flight conditions of M = 0.729 and Re= 6.5×106.

To discern the behavior of transonic flow over the airfoil and

to capture shock waves of varying magnitudes and positions,

we utilized an angle of attack (α) sweep ranging from 0◦ to 4◦.

The Spalart-Allmaras model was chosen for turbulence mod-

eling, while a backward Euler scheme ensured the attainment

of steady flow conditions.

To populate our design space, Latin hypercube sampling

(LHS) was employed, generating a total of 2754 samples from

a design space defined by 5 design variables (comprising 4

FFD nodes and α). It is pertinent to note that each sam-

ple in our dataset represents a unique airfoil configuration,

stemming from a distinct combination of the 4 FFD design

variables. This diversity ensures a broad spectrum of airfoil

shapes, adding complexity to the problem at hand.

To prepare the data for our model, the CFD flow fields were

transferred to a structured Cartesian grid. As highlighted in

section I, such a mapping can introduce interpolation errors

and potentially result in the loss of information, especially

within the boundary layer close to the airfoil surface. To as-

sess the fidelity of the flow field on the Cartesian grid post-

mapping, we compared the pressure coefficient (Cp) field near

the airfoil surface for Cartesian grids of resolutions 64× 64,

128× 128 and 256× 256 with those obtained from the un-

structured CFD grid. From Fig. 5, it is observed that for the

64× 64 grid, the Cp distribution and shock wave representa-

tion do not align well with the CFD grid results. However, as

the grid size is increased to 128×128 and then to 256×256,

the alignment of the flow field features with the CFD results

improves significantly. Comparing the Cp distribution, shock

wave strength, and location for the 128× 128 and 256× 256

grids demonstrates that the flow features are not sensitive to

the grid size. Based on these findings, the 128×128 structured

grid was selected for subsequent analyses. Utilizing this struc-

tured grid not only aids in enhancing the model’s capability to

predict shock waves but also facilitates the development of

metrics to quantify discrepancies in shock wave predictions.

C. Performance metrics

In this study, the Cp field is selected as our primary output

due to its pivotal role in aircraft design. It critically influences

aerodynamic coefficients and is vital for aero-structural de-

sign and optimization. While our focus is on the Cp field in

this work, the proposed framework is versatile, allowing for

adaptation to other aerodynamic fields such as temperature

and velocity. These fields, also essential in capturing shock

wave dynamics, can be predicted with minor modifications to

our domain-informed loss function and performance metrics.

Additionally, the MCD-UNet deep learning architecture can

also be used to predict multiple output fields of interest simul-

taneously by only modifying the final output channel dimen-

sions. For example, if Cp, temperature and velocity are the

three output fields of interest, the number of output channels

should be set to 3. In the present study, since Cp is the only

field considered, the number of output channels is set to 1.

1. Field prediction error

To assess the global predictive capability of our model

within the chosen flow domain, the root-mean-squared error

(RMSE) is employed. Given a testing set of nt designs, which

were excluded during both training and validation phases, the

RMSE is formulated as:

E(Y ) =

√
∑

nt
i=1∥Yi − Ỹi∥2

2

nt

(9)
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(a) (b) 

FIG. 4. Unstructured grid used for analysis: (a) full domain, (b) close-up of grid around airfoil
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FIG. 5. Comparison of Cp distribution at airfoil surface for different grids for three randomly selected samples from the complete dataset.

Here, Yi represents the ground truth i-th field solution in the

testing set, while Ỹi denotes the corresponding DL field pre-

diction. Equation (9) can be used to compute the RMSE for

either the mean of the multiple output instances of the field

or a certain predictive instance When applied to the mean pre-

diction, it is termed the mean field prediction error. In order to

facilitate error comparisons between different methodologies,

the prediction error is normalized by the standard deviation of

the testing dataset, expressed as:

Ê(Y ) =
E(Y )√

∑
nt
i=1∥Yi −Y ∥2

2/nt

(10)

It is imperative to note that we avoid utilizing relative error

for field accuracy quantification. This is particularly relevant

as the Cp field values hover around the free-stream Cp value of

0. Dividing by a value that closely approaches zero might lead

to a significantly inflated relative error, even if the deviation

between the actual and predicted pressures is minimal. Intro-

ducing a bias term could potentially circumvent the near-zero

values, but such a term is dependent on the scale29.

2. Shock wave location and strength error

Traditionally, errors in shock wave regions have predom-

inantly been assessed qualitatively. Some recent studies at-

tempted a more quantitative assessment by utilizing heuris-

tics, identifying nodes in proximity to the shockwave region

where the deviations in predicted values exceeded a defined

threshold13,66. This heuristic method, however, carries an im-

plicit assumption that models inherently perform a lot worse

in the shock wave region compared to elsewhere in the flow

field. This assumption might not hold, especially for models

demonstrating adeptness in shock wave prediction. Therefore,
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in this study, we introduce metrics aimed at rigorously quan-

tifying prediction accuracy concerning shock wave location

and strength.

Consider the Cp distribution along a horizontal line above

the airfoil surface where shockwaves are prevalent as shown

in Fig. 6. On this line, shockwaves can be identified through

a sudden increase in the Cp value. When computing the gra-

dient of Cp along this line, a pronounced spike identifies the

shock wave position. To rigorously ascertain the shock wave

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Cp

Actual

Predicted

Actual Gradient

Predicted Gradient

−10

0

10

20

30

∂Cp

∂x

FIG. 6. Representation of shock wave on a horizontal line plotted

over airfoil surface

location, xs, along the airfoil chord, we first identify the index

i such that:
(

∂Cp

∂x

)
i(

∂Cp

∂x

)
max

> γ (11)

where γ is a threshold. For this study, γ = 0.1 was selected

based on engineering judgment and after analyzing various

flow fields of the actual data set. We can now compute the

error in shock wave location prediction by comparing actual

xs with the predicted x̃s. By estimating this error across multi-

ple horizontal lines, drawn at varied Y-coordinates (along the

height), a mean error estimate can be derived. This is rep-

resentative of the shock wave propagation through the outer

flow field. Therefore, the shock location error for the test set

is:

Êsl(x
s(i)) =

1

nt ·na

nt

∑
j=1

na

∑
k=1

[
|xs(i)− x̃s(i)|

|xs(i)|

]

j,k

(12)

where na is the number of horizontal lines used to derive an

average shock wave location estimate for the entire flow field.

To further characterize the shockwave, the strength of the

shock wave can be estimated by finding its end location, xe,

which can be identified where the gradient reverts below our

threshold after the start index
(

∂Cp

∂x

)
i∗(

∂Cp

∂x

)
max

< γ (13)

This allows us to compute the shock strength, δCp, as the dif-

ference in Cp values at xs and xe. The error in shock strength

can then be quantified as:

Êss(δCp) =
1

nt ·na

nt

∑
j=1

na

∑
k=1

[
|δCp − ˜δCp|

|δCp|

]

j,k

(14)

where δCp = |Cp(x
s)−Cp(x

e)|. Equations (12) and (14) can

be applied either to individual predictive instances or to the

mean field prediction. For the mean field, the resulting er-

rors are referred to as the mean shock wave strength and mean

location errors, respectively. In calculating the shock wave

strength and location error across the entire testing dataset,

we exclude cases devoid of a shock wave to ensure the error

metric is not unduly influenced. The error metrics introduced

in this section will be further leveraged in section IV to as-

sess the precision of our proposed methodology in forecasting

shock waves with diverse strengths and positions.

IV. RESULTS AND DISCUSSION

This section presents the performance of the DIP-ShockNet

model on the RAE2822 airfoil test case. To assess the impact

of different input representations and the domain-informed

loss function, we partitioned the generated dataset into train-

ing, validation, and test sets with 2100, 400, and 274 samples,

respectively. Later in this section, we investigate the influ-

ence of varying training sample sizes and compare our find-

ings with the POD-based ROM. This analysis involves modi-

fying the number of samples in the training and validation sets

while maintaining a consistent test set.

A. Effect of input representations

To understand the effect of input representation on the pre-

diction capability of the proposed method, we explored three

different input representations, as illustrated in Fig. 7 and de-

tailed in Table II. Initially, we used an α-mask to capture in-

formation about the airfoil geometry and the free stream con-

ditions. In this mask, the value inside the airfoil is set to 0,

while the free stream α is distributed across the rest of the

domain. This α-mask was then combined with both SDF and

IWDF, leading to two input configurations with two channels

each.

From the data in Table II, it is evident that the model us-

ing only the α-mask input incurs the highest mean field pre-

diction error of 5.95%. While the α-mask input informs the

model about the airfoil shape and angle of attack, it lacks in-

sights into the flow domain and distance. Combining the α-

mask with distance maps enhances the model’s spatial com-

prehension of the flow domain, thus elevating prediction accu-

racy. Of all representations, the one employing IWDF records

the lowest prediction error, standing at 3.45%. The IWDF

offers enriched physical and mathematical details, assisting

the model in differentiating between the airfoil surface, ex-

ternal flow domain, and the airfoil’s interior. Consequently,

this leads to an approximate 8% improvement in mean field

prediction error when compared with the SDF representation.
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FIG. 7. Different input representations: (a) airfoil mask, (b) SDF, and, (c) IWDF.

TABLE II. Effect of input representation on mean field error.

Input Channel Ê

No. Type

1 α-mask 5.95% (+42%)

2 α-mask + SDF 3.75% (+8%)

2 α-mask + IWDF 3.45%

Examining Fig. 8, we observed that the Cp distribution on

the airfoil surface for the IWDF representation showed fewer

oscillations compared to the single-channel α-mask and the

two-channel SDF. IWDF assigns a higher positive weight to

the flow field’s boundary layer and a stronger negative weight

near the inner wall of the airfoil. This distinction helps the

model differentiate between the airfoil’s surface and the sur-

rounding flow, leading to a more accurate representation of

the flow inside the boundary layer. As a result, the Cp predic-

tions using IWDF align more closely with the physics of the

problem under study and is used as the input representation

for the rest of this paper.

B. Effect of the domain-informed loss function

Our introduction of the domain-informed loss function, as

shown in Eq. (8), aimed to enhance the model’s capability

in recognizing local shifts in Cp, especially those arising from

shock waves. The importance of gradient loss within the over-

all loss is controlled by the weight factor w0. To truly gauge

the impact of the domain-informed loss function, and to as-

certain the best value for w0, we carried out multiple training

sessions of our model using different w0 values. Subsequently,

we matched the outcomes with a model that was trained using

only the weighted mean squared error loss function.

The results are compiled in Table III, detailing the mean

field, mean shock wave strength, and mean location errors

for the different loss functions and various w0 values. With

a small weight factor set at w0 = 0.01, the model exhib-

ited marked improvement in predicting both the location

and strength of shock waves. This is primarily because the

gradient-loss portion of our domain-informed loss function

gives special attention to regions where there’s a noticeable

gap between the actual and predicted gradients. Such regions

typically align with the shock wave areas. Consequently, this

TABLE III. Variation of mean field, mean shock wave strength and

mean location prediction errors with the weight of domain-informed

loss function.

Loss function Ê Êss Êsl

LwMSE 3.45% 7.0% 2.01%

LDI (w0 = 0.01) 3.40% 6.65% 1.93%

LDI (w0 = 0.1) 3.23% 6.40% 0.99%

LDI (w0 = 1) 3.97% 6.59% 1.03%

enhanced accuracy in the shock wave zones contributed to a

decrease in the global field error.

By adjusting w0 to 0.1, we observed a further dip in predic-

tion errors. Specifically, the mean field, mean shock wave

strength, and mean location errors were logged at 3.23%,

6.40%, and 0.99% respectively. However, increasing w0 to

1 swung the balance, causing the model to lean heavily to-

wards gradient loss. While this heightened focus produced

accurate shock wave predictions, it inadvertently elevated er-

rors in other field regions that were not as close to the shock

wave areas. Taking these observations into account, and af-

ter a series of tests, we finalized using a weight factor of 0.1

for our DIP-ShockNet model throughout the remainder of the

paper.

C. Prediction of shock waves in the flow field

To evaluate the general performance of our model, we ex-

amined the flow field predictions for various airfoil designs

and combinations of α . Fig. 9 presents the actual fields,

mean predicted fields, error (Cp − C̃p) fields, and uncertainty

σ(C̃p) fields for four distinct cases, each characterized by

shock waves of different intensities and positions. In scenar-

ios where no shock wave is detected (case I) or where a weak

normal shock appears near the trailing edge (case II), the DIP-

ShockNet model demonstrates a high level of accuracy in its

flow field predictions. The low uncertainty in these predic-

tions indicates a strong confidence in the model’s results.

For cases exhibiting a strong normal shock at the center of

the airfoil’s top surface (case III), a region of shock-induced

boundary layer separation is apparent near the airfoil surface.

This represents a challenging phenomenon. Nonetheless, the
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FIG. 8. Effect of input representation on Cp distribution at airfoil surface: (a) airfoil mask, (b) airfoil mask + SDF, and, (c) airfoil mask +

IWDF.
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Field
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FIG. 9. Contour plots for four different cases: (a)-(d) CFD Cp field, (e)-(h) mean predicted C̃p field, (i)-(l) mean error Cp − C̃p field, and,

(m)-(p) uncertainty σ(C̃p) field.

model succeeds in capturing both the normal shock wave and

the shock-induced separation. The error field reveals a slender

region of prediction error close to the shock, though the er-

ror magnitude remains modest. Apart from this narrow area,

the model’s predictions exhibit certainty throughout the entire

flow domain. Only when the shock wave assumes a compli-

cated, curved shape (case IV) do we notice a broader region

of error and increased prediction uncertainty near the shock

wave. On the whole, the model performs admirably in predict-

ing the entire flow field and shock waves of diverse strengths.

To better understand the model’s predictive accuracy in the

shock wave area, we plotted the Cp distribution on a horizon-

tal line situated above the airfoil’s top surface. Figure 10 illus-

trates the Cp distribution at y = 0.1 for the four cases depicted

in Fig. 9. For all these cases, the actual Cp distribution lies

within the model’s 95% confidence interval (CI). A sudden

spike in the Cp value along this line indicates the presence

of a shock wave. The model predicts the shock wave’s loca-

tion with notable precision, with slight discrepancies observed

only in the predicted strength of the shock wave.

D. Effect of variation in training sample size

Predictive models for evaluating aerodynamic flow fields

necessitate access to a significant amount of training data.

However, in many design applications, the quantity of training

data that can be generated is constrained by the computational
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FIG. 10. Variation of Cp along a horizontal line drawn at y = 0.1 for four cases given in Fig. 9: (a) case I, (b) case II, (c) case III, and, (d) case

IV. The shock wave can be visualized by a sudden jump in Cp

TABLE IV. Comparison of mean field, mean shock wave strength and mean location prediction errors between DIP-ShockNet and POD-ROM

for different training sample sizes.

n1 Ê Êss Êsl

POD-ROM DIP-ShockNet POD-ROM DIP-ShockNet POD-ROM DIP-ShockNet

100 13.99% 14.11% (+0.85%) 49.06% 24.22% (-50.18%) 16.3% 8.45% (-48.15%)

500 10.49% 8.19% (-21.89%) 42.82% 12.12% (-71.79%) 13.77% 4.09% (-70.29%)

1500 8.80% 4.93% (-43.88%) 33.35% 6.96% (-77.3%) 12.11% 1.89%(-84.39%)

2500 8.23% 3.23% (-60.75%) 29.63% 6.40% (-78.40%) 11.85% 0.99%(-91.64%)

budget. To replace the computationally intensive CFD simu-

lation with a DL model, it’s imperative that the model delivers

reliable predictions with a limited dataset. To probe this as-

pect, we trained the DIP-ShockNet framework using varying

training sample sizes.

0 500 1000 1500 2000 2500

n1

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

Ê

DIP-ShockNet

POD-ROM

FIG. 11. Comparison of mean field prediction error with the number

of training samples for DIP-ShockNet and POD-ROM.

Our approach is compared with the POD-based ROM tech-

nique, which, as discussed in section I, has demonstrated pro-

ficiency in predicting flow fields with high accuracy, even with

a constrained number of training samples. Figure 11 illus-

trates the variation of field prediction error as a function of

training samples for both DIP-ShockNet and POD-ROM. For

DIP-ShockNet, this includes both training and validation sets

with a train/validation split of 84%/16%. The test set remains

consistent across all cases, with both models evaluated on a

dataset comprising 274 samples. Within Fig. 11, the solid

line for DIP-ShockNet denotes the mean field prediction error,

with the error bars signifying the uncertainty in the prediction.

With a limited number of training samples, i.e., n1 = 100, the

field prediction performance of the two models is almost sim-

ilar, with POD-ROM slightly outperforming DIP-ShockNet.

Given its linear nature, POD finds a linear low-dimensional

subspace of the high-dimensional field solution. This enables

good prediction accuracy across the field even with limited

data. Conversely, DIP-ShockNet, a non-linear DL technique,

seeks a non-linear subspace of the high-dimensional solution,

encountering challenges in establishing non-linear relation-

ships with sparse data. The pronounced height of the error bar

for DIP-ShockNet symbolizes significant model uncertainty

when training samples are few.

Increasing the number of training samples leads to a decline

in the field error for both models. However, after reaching a

specific threshold, the prediction error curve for POD-ROM

starts to plateau, indicating that further samples don’t signifi-

cantly refine the model’s learning. In contrast, DIP-ShockNet

exhibits a continuous decline in mean field error and a reduc-

tion in uncertainty with additional samples, signifying its ca-

pability to learn intricate non-linear relationships with more

extensive training.

Table IV presents the mean field prediction error for both

techniques. When trained on just 100 samples, POD-ROM

surpasses DIP-ShockNet by 0.85%. However, as the training

sample size increases, the predictive accuracy gap between

the two methods widens. The DIP-ShockNet accuracy when
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FIG. 12. Comparison of shock wave prediction errors with the number of training samples for DIP-ShockNet and POD-ROM: (a) mean

strength error, and, (b) mean location error.
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= 500 n

1
= 1500 n

1
= 2500

FIG. 13. Contour plots for various training sample sizes for weak shock case: (a) CFD Cp field, (b)-(e) DIP-ShockNet predicted C̃p field,

(f)-(i) DIP-ShockNet Error Cp −C̃p field, (j)-(m) POD- ROM predicted C̃p field, and, (n)-(q) POD-ROM error Cp −C̃p field.

compared to POD-ROM improves by 21.89% at n1 = 500, and

this difference further magnifies to 60.75% for the complete

training set.

The relationship between shock wave location and strength

error and the number of training samples is illustrated in

Fig. 12. With a limited dataset of 100 samples, our proposed

model encounters challenges in pinpointing the shock wave,

manifesting in a strength and location error of 24.22% and

8.45% respectively. Nevertheless, it surpasses the POD-ROM

by nearly 50% for both error metrics as depicted in Table IV.

The linear nature of POD-ROM limits its capacity to accu-

rately represent the nonlinear shock wave phenomenon. Ex-
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FIG. 14. Comparison of Cp along a horizontal line drawn at y= 0.1 for weak shock case and different training sizes: (a) n1 = 100, (b) n1 = 500,

(c) n1 = 1500, and, (d) n1 = 2500.

panding the training dataset leads to reductions in both shock

strength and location errors, enabling our model to capture

flow intricacies more proficiently. We also observe a reduc-

tion in predictive uncertainty for both error metrics with an

increase in training data size. Utilizing the complete training

set, the DIP-ShockNet model reduces the shock wave strength

error to 6.40% and attains a location error below 1%.

To evaluate the influence of training sample size on pre-

dicting the entire flow field and shock waves, flow field con-

tours were plotted for varying training dataset sizes for both

DIP-ShockNet and POD-ROM. Figure 13 presents contours

for a scenario depicting a weak shock wave on the airfoil’s

upper surface near its leading edge. At n1 = 100, both tech-

niques face difficulties in representing the flow, leading to

pronounced field errors, particularly in shock wave regions.

For this scenario, POD-ROM seemingly outperforms the DL

approach. Increasing n1 improves field prediction, shrinking

the error-prone areas. Training DIP-ShockNet on the entire

dataset yields predictions closely aligned with the actual field,

whereas POD-ROM continues to exhibit errors near shock

wave regions.

Figure 14 plots the Cp distribution on a horizontal line,

highlighting that with fewer samples, both models struggle to

capture the pressure jump in the shock wave region. Even with

the full dataset, POD-ROM struggles to predict the accurate

strength and position of the shock wave. Figure 15 showcases

contour plots for a scenario characterized by a pronounced

shock wave at the airfoil’s midsection. With fewer training

samples, substantial error contours emerge around the shock

wave for both DIP-ShockNet and POD-ROM. Increasing the

dataset size diminishes these errors for both models. With the

full dataset, our DIP-ShockNet model delivers a good repre-

sentation of the shock wave. However, POD-ROM still pro-

duces some non-physical, artificial fluctuations – known as

spurious oscillations, particularly in regions close to shock

waves. These oscillations do not reflect actual physical phe-

nomena but rather result from modeling limitations inherent

in the POD-ROM approach, especially in capturing complex

nonlinear behaviors such as shock waves. Figure 16 offers a

depiction of the shock wave via the Cp jump on a horizon-

tal line. This visualization emphasizes DIP-ShockNet’s pro-

ficiency in capturing the shock wave strength and location,

whereas the oscillations in POD-ROM’s predictions become

evident near the shock wave.

V. CONCLUSION

In this study, we presented DIP-ShockNet, a novel domain-

informed probabilistic deep learning approach tailored to pre-

dict transonic flow fields containing shock waves. The signif-

icant contributions and outcomes of this research are summa-

rized as:

1. Uncertainty Prediction: At the heart of the DIP-

ShockNet framework is the MCD-UNet architecture.

This structure serves a dual purpose: accurately learn-

ing the complex mapping between the input and out-

put fields and introducing the ability to predict uncer-

tainty, essential for real-world aerodynamic design ap-

plications.

2. Inverse Wall Distance Function (IWDF): The intro-

duction of the IWDF was pivotal in enhancing our

model’s performance near-wall regions. By provid-

ing distance field information, the IWDF emphasized

field locations close to the airfoil surface, resulting in a

marked reduction in prediction oscillations, especially

in the boundary layer area. When pitted against com-

mon input methods like the airfoil geometric mask and

the SDF, IWDF consistently exhibited superior perfor-

mance resulting in an improvement of predictive perfor-

mance by 42% and 8% respectively.

3. Domain-Informed Loss Function: A central feature

of our approach was the domain-informed loss func-

tion. This function incorporated gradient information,

enabling the model to better identify the presence of

shock waves and the variations across them. Through

this method, we achieved commendable results, with

shock strength errors as low as 6.40% and shock loca-

tion errors under 1%.
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FIG. 15. Contour plots for various training sample sizes for strong shock case: (a) CFD Cp field, (b)-(e) DIP-ShockNet predicted C̃p field,

(f)-(i) DIP-ShockNet Error Cp −C̃p field, (j)-(m) POD- ROM predicted C̃p field, and, (n)-(q) POD-ROM error Cp −C̃p field.
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FIG. 16. Comparison of Cp along a horizontal line drawn at y = 0.1 for strong shock case and different training sizes: (a) n1 = 100, (b)

n1 = 500, (c) n1 = 1500, and, (d) n1 = 2500.

4. Robustness to Training Data: We also evaluated our

model’s resilience across different training data sizes.

The results were conclusive: DIP-ShockNet consis-

tently outperformed the traditional POD-based ROM

in predicting both shock wave location and strength.

Particularly, with a comprehensive training set of 2500

samples, our model exhibited a 60% improvement in

accuracy over the POD-ROM.

In our future efforts, we aim to decrease the training cost

associated with the DIP-ShockNet. Our plan is to integrate

the technique with an adaptive sampling process. Starting

with a limited set of CFD data, the adaptive sampling will

identify and target regions where CFD sampling significantly

improves model accuracy. Additionally, we’re looking to fur-

ther reduce the sample generation cost by introducing a multi-

fidelity version of our method. This approach involves gen-
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erating grids of varying fidelity for the same problem. While

dense grids will be used for a select number of high-quality

solutions, the less resource-intensive sparse grids will produce

a larger set of training data. By aligning these grids, we ex-

pect an increase in the volume of training samples without a

proportional rise in cost.
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