

DESIGN AND VERIFICATION OF A SURFACE PLASMON RESONANCE

BIOSENSOR

A Thesis

Presented to
The Academic Faculty

By

Daniel R. Sommers

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in Bioengineering

Georgia Institute of Technology

September 2003

DESIGN AND VERIFICATION OF A SURFACE PLASMON RESONANCE

BIOSENSOR

Approved by:

_______________________ ______________________
Dr. William D. Hunt, Advisor Dr. Allen M. Orville

_______________________ ______________________
Dr. Cheng Zhu Mr. Doug Armstrong

_______________________ Date Approved Sept 9, 2003
Dr. Larry A. Bottomley

 iii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ...1

1.1 GOAL ..2

1.2 MOTIVATION ..3

1.3 SYSTEM OPERAION OVERVIEW..4

CHAPTER 2: SYSTEM DESIGN...6

2.1 DESIGN GOALS ...6

2.2 MAJOR COMPONENT SELECTION...6

2.2.1 TEXAS INSTURMENTS SPREETA..6

2.2.2 SIGMA CHEMICAL COMPANY ANTI-FITC ..7

2.2.3 MOTOROLA ACCOMPLI 009...8

CHAPTER 3: SPR THEORY OF OPERATION ...9

3.1 THE “IDEAL” SPR SYSTEM..10

3.2 THE SPREETA DESIGN...10

CHAPTER 4: MONOLAYER (BIOLGICAL INTERFACE) DESIGN..............................12

4.1 MONOLAYER COMPONENET SELECTION ..12

4.2 MONOLAYER IMMOBILIZATION..13

4.3 MONOLAYER VERIFICATION PROCEDURE ..14

CHAPTER 5: HARDWARE DESIGN...17

5.1 SUPPORTING CIRCUIT COMPONENT SELECTION.......................................19

5.2 IMPLEMENTATION...21

5.3 HARDWARE DEBUG..22

CHAPTER 6: SOFTWARE DESIGN ...23

6.1 REAL-TIME TASKS...24

6.2 TIME-CRITICAL TASKS..26

 iv

6.3 OFF-LINE TASKS ...30

6.4 SOFTWARE IMPLEMENTATION..30

6.5 USER INTERFACE ...32

6.6 DIFFERENTIAL DISPLAY MODE..34

6.7 SPREETA DRIVER ...37

6.8 WIRELESS NOTIFICATION..41

6.8.1 NOTIFICATION ALGORITHM DESIGN..41

6.8.2 NOTIFICATION ENTRY DESIGN...42

6.8.3 SENDING NOTIFICATION ...44

6.8.4 NOTIFICATION SECURITY..45

CHAPTER 7: BASIC SYSTEM FUNCTIONAL VERIFICATION...................................47

7.1 LED BRIGHNESS AND LIGHT INTEGRATION PERIOD..................................47

7.2 AMBIENT LIGHT ...48

7.3 DEVICE VARIATIONS...49

7.4 FREE CHARGE ..50

CHAPTER 8: IMMUNOASSAY ANALYSIS ...53

8.1 VARIATIONS/CALIBRATIONS BETWEEN DEVICES54

8.2 DIRECT LIGHT PENETRATION ...56

8.2.1 COMPENSATING FOR DIRECT LIGHT PENETRATION...........................57

8.2.2 ELIMINATING DIRECT LIGHT PENETRATION ...58

8.2.3 PERMITTIVITY BIAS VIA GOLD THCKNESS ADJUSTMENT59

8.3 TILTING...60

8.3.1 OBSERVATION..60

8.3.2 THEORETICAL EXPLANATION...61

8.3.3 MAINTAINING HORIZONTAL POSITIOINING..62

 v

8.3.4 SUMERGE SENSOR SURFACE ...63

8.4 EVAPORATION ..64

8.4.1 Observation ..65

8.4.2 THEORY...65

8.4.3 MITIGATION STRATEGIES ...67

8.5 FLOW CELL..67

8.5.1 FLOW CELL ADVANTAGES..68

8.5.2 FLOW CELL USAGE ...68

8.5.3 CONCERNS WITH FLOW CELL USAGE..69

8.6 MULTIPLE SIMULTANEOUSLY INDUCED PLASMONS..................................69

8.7 FREE CHARGE (pH)...70

8.7.1 MEASUREMENT PROCEDURE ..72

8.7.2 THEORY OF EXPECTED RESULTS ...73

8.7.3 MEASURED RESULTS..74

8.7.4 OBSERVATIONS ...78

8.7.5 NEXT STEPS: ..79

CHAPTER 9: CONCLUSIONS ..80

9.1 SUCCESSES ..80

9.2 OBSERVATIONS ..81

9.2.1 AMBIENT LIGHT ..81

9.2.2 VISCOSITY/EVAPORATION..81

9.2.3 pH...82

9.2.4 TEMPERATURE...82

9.3 IMPROVEMENTS AND ENHANCEMENTS ..82

9.3.1 SOFTWAE ALGORITHM..82

 vi

9.3.2 HARDWARE ..83

9.4 APPLICATIONS ..83

APPENDIX A: HARDWARE SCHEMATIC DETAILS ..85

APPENDIX B: SOFTWARE LISTING..89

REFERENCES..143

 vii

LIST OF FIGURES

Figure 1. Capture of Biosensor Hardware and User Interface1

Figure 2. Illustration of Anti-FITC Antibody Immobilized on Gold Surface by Protein “A”

with tightly bound FITC Analyte..2

Figure 3. Change in permittivity shifts SPR excitation...9

Figure 4. Depiction of measurable shift in SPR curve...10

Figure 5. Spreeta’s multiple SPR interrogation design..11

Figure 6. Illustration of Permittivity Change Measurable During Monolayer Assembly 15

Figure 7. Internal Design of Spreeta Sensor ...17

Figure 8. Pixel Array Design Internal to Spreeta Sensor...19

Figure 9. Logic Analyzer Hardware Debug Trace ...22

Figure 10. Main software loop...24

Figure 11. Logic Analyzer Capture: real-time control of Spreeta, A/D converter, and

Shift Register on the SPI bus. ..25

Figure 12. Biosensor screens illustrating the relationship between the “Differential” and

“Absolute” modes...28

Figure 13. Differential Screen Progression showing the same waveform magnified

(divided by) increasing powers of 2..29

Figure 14. Sending Wireless e-mail Notification..30

Figure 15. SPR Shift in Absolute and Differential Modes..35

Figure 16. Height Of Differential Curve Above & Below Thresholds37

Figure 17. Sample Rate: 790Hz..38

Figure 18. Sample Rate: 2.9KHz...39

Figure 19. Sample Rate: 45KHz..40

Figure 20. Extra test for threshold crossing when Notifications is enabled42

 viii

Figure 21. User Interface to enter Notification E-Mail Addresses................................43

Figure 22. User Interface to enter Notification Message ...44

Figure 23. Notification Sent from Sensor to E-Mail ...45

Figure 24. End-To-End Encryption in Accompli 009..46

Figure 25. Initial Waveforms from Spreeta as Displayed on Accompli A009 Screen ..49

Figure 26. FITC and Alexa with Highlighted Ionic Charges ...51

Figure 27. Micropipette Monolayer Building Blocks Directly Onto Surface..................53

Figure 28. First Actual Assay Results..54

Figure 29. Device Differences in Absolute Waveforms...54

Figure 30. Illustration of Direct Light Penetration on SPR...57

Figure 31. Illustration of Tilting Effects on SPR...61

Figure 32. Illustration of Dry Surface Effects on Spreeta ..66

Figure 33. Spreeta Flow Cell...67

Figure 34. Multiple Simultaneously Induced Plasmons ...70

Figure 35. Relative SPR Curve Shift Directions Resulting from pH Changes74

Figure 36. Baseline of TAE802 w/o pH Adjustment...74

Figure 37. TAE802 Water: pH 5.76 ..75

Figure 38. Water: pH 5.76 TAE802 (expect the shift to disappear)76

Figure 39. TAE pH 8.02 TAE868 (expect small left shift) ...76

Figure 40. TAE + Base pH 8.68 TAE pH 8.02 (expect return to original)77

Figure 41. TAE802 TAE 717 (expect near maximal right shift)77

Figure 42. TAE717 Water pH 5.76 (expect “Water” waveform as in Figure 37)78

Figure 43. Water pH 5.76 TAE627 (expect very little shift).......................................79

Figure 44. Hardware Schematic..86

 ix

LIST OF TABLES

Table 1. List of Commands for Biosensor Control...33

Table 2. Test Coverage for Sensor Characterization ..52

Table 3. pH of TAE Solutions..72

 x

ABBREVIATIONS

BAW – Bulk Acoustic Wave

CCD – Charge Coupled Device

DES – Data Encryption Standard

DSP – Digital Signal Processor

FIPS – Federal Information Processing Standards Publications

FITC – fluorescein isothiocyanate

IEEE - the Institute of Electrical and Electronics Engineers, Inc.

IR – Infrared Light

LR – Linear Regulator

MHz – MegaHertz (1x106 cycles per second)

ms – millisecond (1x10-3 seconds)

NIST – National Institute of Standards and Technology

OO – Object Oriented Software

QCM – Quart Crystal Microbalance

SAW – Surface Acoustic Wave

SPR – Surface Plasmon Resonance

TAE – Tris Base Acedic Acid EDTA

UI – User Interface

us – microsecond (1x10-6 seconds)

VU – Ultra Violet Light

 xi

SUMMARY

The Microelectronics Group has been researching sensors useful for detecting and

quantifying events in biological molecular chemistry, for example, binding events. Our

previous research has been based primarily on quartz resonators. This thesis

describes the results of our initial research of Surface Plasmon Resonance (SPR)

based technology. This study contains the design and implementation of a fully

functional SPR biosensor with detailed disclosure of monolayer construction, digital

hardware interfaces and software algorithms for process the SPR sensor’s output.

An antibody monolayer was constructed on the biosensor surface with the goal of

setting the strengths, weaknesses and limitation of measuring molecular events with

SPR technology. We documented several characteristics of molecular chemistry that

directly effect any measurements made using Surface Plasmon Resonance technology

including pH, free ions, viscosity and temperature. Furthermore, the component used

in our study introduced additional limitations due to wide variations amongst parts, the

constraint of a liquid medium and the large surface area used for molecular

interrogation. We have identified viable applications for this sensor by either

eliminating or compensating for the factors that affect the measured results.

This research has been published at the inaugural IEEE sensors conference and to our

knowledge is the first time a biosensor has been constructed by attaching a sensor to a

PDA and performing all signal processing, waveform analysis and display in the PDA’s

core processor.

 1

CHAPTER 1: INTRODUCTION

This Thesis presents the conception, design, implementation and verification of a fully

functional biosensor based on Surface Plasmon Resonance (SPR) technology. As

shown in Figure 1, the biosensor consists of a Texas Instruments SpreetaTM Surface

Plasmon Resonance device [1], interfaced to a Motorola Accompli 009TM Wireless GSM

graphical phone [2] via simple digital logic (e.g. no DSP or signal processing capability

in the digital interface). We wrote the software (see Appendix B “Software Listing”) to

read the data from the sensor, build and interpret the waveforms, drive the display, and

for broadcast the wireless notification messages on Motorola’s FlexOSTM real-time

operating system in “C” and Motorola’s FlexScriptTM Application language.

Figure 1. Capture of Biosensor Hardware and User Interface

The monolayer was based on antibody-analyte interactions [3] as illustrated in Figure 2.

The bulk of the effort to characterize the biosensor design was to build the monolayer

on the gold surface as described in detail later in this document, and attempt to detect

the binding events by exposing both positive and negative analytes to the biolayer with

 2

the expectation that there will be a predictable, measurable and repeatable signature

difference between “true” and “false” analytes.

Figure 2. Illustration of Anti-FITC Antibody Immobilized on Gold Surface by Protein “A”
with tightly bound FITC Analyte

1.1 GOAL

Surface Plasmon Resonance Technology has been well established as a useful

analytical tool for biosensor applications. Among other strengths, it offers a biomaterial

interrogation method that doesn’t (theoretically) disturb the biomaterial.

This thesis began with an industry survey of the available biosensor technology, and

the discovery that Texas Instruments offers a SPR component with sensor surface,

biological to electrical transducer and analog electrical interface all contained in a

surprisingly small package (~1 in. x 1 in. x ½ in.). This SPR biosensor has many other

appealing features such as: portable, low cost (~$35/ea), low power and readily

available. Based on this sensor component, our portable self-contained biosensor

system was implemented using the following steps:

 3

a) Build a portable hardware interface to this biosensor

b) Write software to pull the data out of the biosensor

c) Write software to interpret and display the data

d) Apply the biosensor to running antibody-analyte assays

The goal was to learn the strengths and weaknesses of SPR as a technology for a

biosensor in a continuous monitoring application such as cocaine detection in an airport

[5],[7]. And a more specific goal was to learn the strengths and weaknesses of this

Spreeta device. Thus this thesis will overview the technology of SPR, document the

hardware and software implemented in building the biosensor system and document

the results of the assays and the possible sources of error. The conclusion will then

recommend possible applications for industry and/or academic research for this

biosensor system based on its capabilities and limitations.

1.2 MOTIVATION

Recently, the industry has been calling for “substance detectors” in applications ranging

from protecting solders (and citizens) during biological warfare [8],[9] to preventing

contamination or spoilage in food preparation and transport [10]. The common principle

underlying these types of applications is that of detecting a shift in their environment

from “normal” to “dangerous”. Conveniently, the definitions of normal and dangerous

are easily characterized and quantified so the challenge is to design a biosensor that

can accurately measure and report changes in diverse environments.

One of the characteristics of a good research center is diversity. In that regard the

microelectronics and acoustics research center at Georgia Institute of Technology is no

 4

exception. This group has performed extensive research on mass changes in crystal

technologies (Quartz Crystal Microbalance, Bulk Acoustic Wave, Surface Acoustic

Wave, etc.), which result in changes in the resonant frequency of the crystal. One

technology previously unexploited at the lab was Surface Plasmon Resonance (SPR).

The research strategy for this group is to implement practical biosensor solutions based

on demand from industrial and/or research applications.

1.3 SYSTEM OPERAION OVERVIEW

After verifying the requisite components are all readily available from industry standard

sources, the basic operational capabilities of the system and defined the theoretical

deployment of the system were proposed as follows:

1) SPR Theory of Operation: the underlying principle behind SPR is that a thin

layer of gold will act as a mirror and reflect light projected at it except under

special “matching” conditions. At the resonant frequency the light energy will not

be reflected, but rather converted into a collective oscillation of electrons in the

gold film, generating the plasmon waveform. Thus by varying the frequency of

the light striking the back of the gold film, one particular wavelength will

resonate with the aggregate permittivity on the front side. A direct plot of light

frequency vs. reflected light intensity will show a marked loss of reflected energy

at the matching (resonant) wavelength

2) Antibody Monolayer Theory of Operation: the goal is to completely cover the

gold SPR film with a consistent, continuous sheet of antibodies which have

been grown to specifically bind only to the antigen of interest (Anthrax, cocaine,

etc.). When the analyte encounters the antibody, it will “stick” and thereby cause

 5

a perturbation in the permittivity, which will be measured with the SPR

technology.

3) Graphical User Interface: the main output of an SPR system is a 2-

dimensional graph of light wavelength vs. absorbed light. The system must be

sensitive enough to measure shifts in the minimum value from one wavelength

to another. Further, the user must be able to graphically set thresholds for the

maximum shift, enter e-mail addresses for notification, and calibrate the average

value output.

4) Continuous Operation: the system must monitor its environment continuously

but conserve battery life. This requires two modes: a relatively slow “wake and

sniff” mode and upon detect of an interesting level switch to a “constant monitor”

mode. Thus the detection threshold must include a user-definable level that

places the system on “alert status”.

5) Autonomous Action: upon detection of a violation of the acceptable limits set

during initialization, the system must generate a response and in this case, a

wireless notification to any number of programmable receipts. If this alert is on a

public network (e.g. cellular, paging, etc.) then the notification must be secured

such that it can be neither lost nor spoofed. The notification can be sent to a

human, or to a server, which is programmed to take specific action upon receipt

of a detection message.

 6

CHAPTER 2: SYSTEM DESIGN

Although the overall goal of this research was to demonstrate and evaluate the relative

strengths and weaknesses of Surface Plasmon Resonance technology, a secondary

goal was to build a viable biosensor that could satisfy actual use cases in the industry.

2.1 DESIGN GOALS

Based on an industry survey of electronic molecular detection devices [5] and hand-

held wireless devices in general [2], the following list of system requirements was

generated:

• Low Cost - $100’s instead of $1,000’s

• Rugged - no delicate calibration

• Portable - battery operated, hand-held

• Wireless - notification upon detection

• Autonomous - continuous, unmanned monitoring

2.2 MAJOR COMPONENT SELECTION

We met the design goals for building the sensor using industry standard parts. The

SPR component was the Texas Instruments Spreeta; the antibody component was

mouse monoclonal anti-fluorescein isothiocyanate (anti-FITC) antibodies from Sigma

Chemical Company and the PDA was the Motorola Accompli 009.

2.2.1 TEXAS INSTURMENTS SPREETA

The biosensor component that meets the system requirements is the Spreeta [3,4]. It

is an industry-standard component that is readily available for bulk purchase, thereby

satisfying the low cost goal. The battery in a wireless device meets the Spreeta’s

 7

power demands thereby satisfying the portability criterion. The Spreeta is also

satisfactorily rugged since it requires no delicate calibration, has no moving parts and

imposes no constraint on orientation relative to gravity.

The Spreeta biosensor is the only biosensor device that is commercially available that

satisfies all of the design constraints:

a) Portable (light weight and easily hand-held)

b) Low power (power requirements serviceable by a battery)

c) Low cost (manufactured using high-volume processes)

2.2.2 SIGMA CHEMICAL COMPANY ANTI-FITC

The selection of the biological component was driven by several factors, not the least of

which is the fact that research on the quartz-based sensors had been based on anti-

FITC [6] and not only was that component well characterized, it was also already in

stock. The fact that the Spreeta sensor supports only liquid assay drove the selection

of the analyte: for best results the analyte should be easily dissolved into a liquid

medium. The actual analyte, FITC, is very hydrophobic and tends to settle out of

solution rapidly whereas urinine is more hydrophilic. The binding affinity of anti-FITC

for FITC is comparable to its binding affinity for urinine.

Finally, the negative testing component for anti-FITC binding is Alexa Fluor, which

has the same basic structure as FITC and uranine and therefore the same mass, but

has charged ions that prevent it from binding with an antibody raised specifically for

FITC. Note that all of these analytes fluoresce in UV light, thereby allowing for cross-

 8

correlation of their binding at the sensor surface with alternative measurement schemes

like direct light observation through a confocal microscope.

In summary, the biolayer component selections were driven by:

a) pre-characterized monolayer assembly process

b) well known binding affinities for both positive and negative assay

c) cross-correlation techniques for sensor characterization

2.2.3 MOTOROLA ACCOMPLI 009

An understanding of the Spreeta device leads to a system design that can

accommodate the constraints. A system that meets the above constraints must be

even smaller and less expensive than a lap top computer, so the choice was Motorola’s

Accompli 009 (A009) wireless phone [2] as the biosensor’s main controller. It is fully

programmable, has a large color display, and an expansion port to use for biosensor

attachment. Additionally, it expands the “portable” concept to include “remote” because

the wireless technology has the capability to notify upon detection.

Thus the choice to host the software and interface to the Spreeta was the Motorola

Accompli 009 because it satisfied the design goals with the following strengths:

a) It has a real-time operating system

b) It has a synchronous serial port (SPI) hardware driver

c) A full development environment is available for the device

d) The final design will be hand-held (as opposed to a SPI card in a PC)

 9

CHAPTER 3: SPR THEORY OF OPERATION

Surface Plasmon Resonance [11] is a physical phenomenon for which the electrons in

a thin gold film can be excited into a collective oscillation by bombarding it with photons

(light) of a particular frequency. This phenomenon is analogous to resonant frequency

in a mechanical system in that there must be a precise match between the light’s

frequency and momentum and the characteristics of the gold. Any mismatch between

the wavelength of the light: either too short (a.k.a. “blue-shifted”) or too long (a.k.a.

“red-shifted”), and the gold will fail to exhibit the plasmon oscillation. The matching

wavelength is also dependant on the permittivity of the material on the opposite side of

the gold film (see Figure 3).

Figure 3. Change in permittivity shifts SPR excitation

Permittivity is a measure of a material’s capability to store energy in an electric field

and is defined in terms of the material’s dielectric constant.

 10

3.1 THE “IDEAL” SPR SYSTEM

In a thin film, the light actually induces an interrogation field on the opposite side of the

gold. This field interrogates the relative permittivity for a distance on the order of 1

wavelength of the light striking the surface. A biological system is not likely to be

disturbed by an electromagnetic field of low optical intensity. A biological system can,

however, invoke a change in permittivity. This change of permittivity within the

interrogation field of the SPR system can cause a measurable shift in the wavelength

required to excite the plasma state (see Figure 4).

Figure 4. Depiction of measurable shift in SPR curve

3.2 THE SPREETA DESIGN

The biosensor component that meets the system requirements is the Texas

Instruments Spreeta. It is an industry-standard component that is readily available for

bulk purchase, thereby satisfying the low cost goal. The battery in a wireless device

meets the Spreeta’s power demands thereby satisfying the portability criterion. The

Spreeta is also satisfactorily rugged since it requires no delicate calibration, has no

moving parts and imposes no constraint on orientation relative to gravity.

 11

Figure 5. Spreeta’s multiple SPR interrogation design

As shown in Figure 5, the Spreeta device has a rather ingenious design based on a

single light source shining on the entire gold surface and reflecting onto an array of 128

light sensors. Thus a single Infrared (λ = 840nm) LED is the source for the Spreeta’s

entire range of SPR interrogation wavelengths. The gold film is tilted relative to the

light source; this tilting results in a continuous change in the angle of incidence along

the face of the film. When Transverse Magnetic (TM) polarized light strikes the film at

an angle, the component of the wavelength that is parallel to the film is projected onto

the film’s surface.

An interrogation field induced by angled incidence is identical to that induced by

perpendicular incidence at the projected (shorter) wavelength. Thus with a simple

application of trigonometry it’s easy to visualize that the steepest angle of incidence −

generated at the point on the film closest to the light source − projects the longest

interrogation wavelength (analogous to the “red-shift”), and the shallowest angle of

incidence − generated at the point on the film farthest away from the source − projects

the shortest interrogation wavelength (analogous to the “blue-shift”).

 12

CHAPTER 4: MONOLAYER (BIOLGICAL INTERFACE) DESIGN

The goal of the immunoassay design was to build a consistent biological layer of

antibody attached to the gold surface of the Spreeta device. It is imperative to build a

consistent layer across the entire gold surface because the analyte binding

concentrations must be constant for every frequency. Given the portability of the

sensor and supporting system, it was no problem at all to take the entire system into

the biology lab to run the assays for the various experiments to be performed.

4.1 MONOLAYER COMPONENET SELECTION

We choose florescent analytes because they can be cross-correlated with other

methods to better characterize the results. The antibodies, on the other hand, should

be readily available and have a strong affinity to an analyte that’s tagged in some way.

The selection for the analyte was fluorescein isothiocyanate (FITC) because it

fluoresces under ultraviolet light and therefore bound analyte to antibodies attached to

a surface will remain after washing away un-bound analytes, then the monolayer can

be examined for it’s intensity of florescence. Further, using a Zeiss LSM510 confocal

fluorescent microscope we can detect individual analyte attachment, which further

clarifies the density of their attachment. With these cross-correlating methods, the

immunoassay attachment results recorded by this biosensor design can be validated

for consistency, repeatability and accuracy.

The antibody for FITC, anti-FITC is readily available and well characterized. Thus the

combination of FITC and anti-FITC would have been good for sensor validation except

that FITC is very hydrophobic and therefore does not stay in solution very well.

 13

Another analyte with similar binding affinity to FITC is urinine (aka. Fluorescein sodium

salt), which is also much more hydrophilic than FITC. Using FITC, which is not water-

soluble would have forced us to use an organic solvent, which could result in denatured

antibodies [3].

4.2 MONOLAYER IMMOBILIZATION

The procedure to prepare the surface, apply the antibody and add the antigen is

outlined below. Basically, the surface is prepared by adding ions, which adhered to the

gold, and then applying a mixture of antibodies (anti-fluorescein isothiocyanate; aka.

anti-FITC) attached to the “Protein “A”” binding sub-assembly. Upon application of the

mixture to the ion-prepared surface, the surface was a molecular stack-up of:

Gold Surface (Au) => Ions (H+, OH-) => Protein “A” => Antibody.

Once the analyte (Urinine) was added to the surface and a binding event occurred, the

molecular stack-up of material on the sensor surface became:

Gold Surface (Au) => Ions (H+, OH-) => Protein “A” => Antibody => Antigen

Procedure to prepare the Spreeta surface:

1) Pipette 250 microliters (ul) of 1 Molar Hydrochloric Acid (HCl) onto the surface

2) Wash surface with water

- Surface State: H+ ions on the surface of the sensor

3) Pipette 250ul of 1M NaOH onto the surface

4) Wash surface with water

- Surface State: OH- ions added to the surface with H+ ions

 14

5) Pipette 250ul of TAE onto the surface

6) Wash surface with water

- Surface State: OH- & H+ ions in TAE Buffer

7) Bake sensor at 70oC for 30 minutes (until dry)

8) Weigh out 0.4mg of “Protein “A””

9) Dissolve 0.4mg of “Protein “A”” in 100ul of TAE

10) Agitate mixture for 20 seconds (using “Vortex Genie 2”)

11) Pipette 15ul of fluorescein isothiocyanate (anti-FITC) into mixture

12) Agitate mixture for 20 seconds

- Result: a 100ul vial of antibody attached to “Protein “A””

13) Pipette 250ul of antibody/Protein “A” solution onto sensor surface

- Surface State: Antibody bound to “Protein “A”” bound to OH- & H+

14) Flick off all excess fluid on sensor surface

15) Pipette 250ul of 2.411x10-7 molecular weight fluorescein to the surface

- Surface State: antigen now binding to antibody in real-time

4.3 MONOLAYER VERIFICATION PROCEDURE

The test procedure was to build the immunoassay on the Spreeta’s gold surface and

introduce the analyte while running the biosensor in real-time. With this procedure, it

would be possible to:

a) Record the binding of Protein “A” to the sensor surface

b) Record the binding of the antibody to Protein “A”

c) Record the binding of the analyte to the antibody

Each of these biding event should cause changes in the permittivity of the material

within the interrogation range. Binding events of any bio-molecule should cause a

 15

gradient change at gold surface and thereby shift the concentration of free ions in the

interrogation range, which will register as a change in permittivity, measurable by the

biosensor.

So the expectation is to run the biosensor during all phases of immunoassay, from

“build to bind” and establish quantifiable metrics not only of how well the immunoassay

is binding analyte, but also of the quality of the monolayer itself. For example, a poor

binding density of Protein “A” would necessarily result in a poor antibody binding

density. Thus this design allows qualitative analysis of the actual building of the

monolayer in real-time. This design also provides closed-loop analysis for exploration

of factors that might improve the various binding events throughout the build process

(e.g. it would be possible to quantify the changes in binding density rates while

adjusting temperature, thereby allowing the user to establish the optimum temperature

for each step).

Figure 6. Illustration of Permittivity Change Measurable During Monolayer Assembly

As illustrated in Figure 6, the ion density attached to the gold surface would be an

excellent candidate to measure via a change in permittivity. Note that both H+ and OH-

are free ions and thus both will cause increases in permittivity when increasing in the

interrogation region near the gold surface. In a similar fashion, it would be possible to

 16

measure the density and even the rate of change of all materials attaching to the gold

surface. As suggested above, the Protein “A” binding density on the gold surface could

also be measured by skipping the pre-binding steps between the antibody and Protein

“A” and simply introducing un-bound Protein “A” in solution. Once the binding density

for Protein “A” in isolation has been determined, the pre-assembled Protein “A” and

antibody complex can be introduced with a known value for the maxim binding rate of

Protein “A” which can be used as an upper limit for the binding of the entire assembly.

The next two chapters: CHAPTER 5: HARDWARE DESIGN and CHAPTER 6:

SOFTWARE DESIGNare computer engineering chapters describing the details of the

sensor interface and algorithm design. CHAPTER 7: BASIC SYSTEM FUNCTIONAL

VERIFICATION is a return to the general system. Readers interested in the biological

and system aspects of this research may wish to skip over the computer centric details.

 17

CHAPTER 5: HARDWARE DESIGN

The hardware requirements were further refined upon inspection of this data sheet for

the Spreeta. It immediately revealed several important ramifications for any design that

would incorporate it:

1) There are no moving parts on the Spreeta device

2) The Spreeta device utilizes a synchronous serial interface

3) The Spreeta device requires real-time performance to read the data

4) The output of the Spreeta device is analog

5) The data requires extensive smoothing and graphing manipulations

Figure 7. Internal Design of Spreeta Sensor

The lack of moving parts was more of a surprise than a design constraint, but it

certainly makes the part easier to manufacture, more robust and lower cost (the

Spreeta device is $30 in quantities of 100). However, this does lead to a system

constraint that if there are no moving parts, each element in the photodiode array

corresponds to a fixed angle. Thus the device becomes very easy to work with: simply

read the intensity of a particular element and you immediately have the reflected light

intensity at a given angle; there’s:

 18

a) No need of a control to advance or step through angle(s) of rotation,

b) No introduction of error due to a mechanical rotation of a mirror or prism,

c) No constraints for orientation relative to acceleration (e.g. acceleration would

certainly affect moving parts)

As shown in Figure 8, the photodiode array consists of 128 elements, each of which is

attached to the output in sequence. Every pulse on the clock pin connects the next

pixel to the output. The light intensity is captured during the integration period and

transferred to a Charge Coupled Device (e.g. a capacitor) for driving to the output stage

at the next pulse on the start (SI) pin. This introduces two important timings:

d) the time between begin integration and end integration will determine how much

light will be collected by the pixels in the array

e) the CCD is a leaky storage element thus the data must be collected from the

device before non-negligible error is introduced into the results

 19

Figure 8. Pixel Array Design Internal to Spreeta Sensor

Thus one critical system constraint of the timing is to ensure the integration period

never changes. Additionally, the LED must be tuned for the integration period: short

integration period requires a more power to the light source (brighter); longer integration

period requires less power to the light source (dimmer). In fact, if there’s too much

power in the light source for the integration period, the outputs tend to saturate.

Further, the specification for the array suggests the average value of all pixels should

be around 2.5V.

5.1 SUPPORTING CIRCUIT COMPONENT SELECTION

Once the Motorola Accompli 009 was established as the host, the next design step was

the interface hardware between the serial port on the Accompli 009 and the Spreeta.

One immediately obvious issue was the miss-match in voltage levels: the Accompli 009

uses 3.0V CMOS rails and the Spreeta uses 5.0V TTL. One solution to this issue is a

voltage shift register, but rather than burden the device with the cost, power, timing

delay and real-estate of additional hardware the issue was resolved using an HCMOS

 20

device running at 4.0V to sit between the 3.0V CMOS and the 5.0V TTL, thereby

saving the voltage shifters at the expense of an additional voltage rail.

In terms of the power sources, an advantage of two separate voltage rails (4.0V and

5.0V) was noise immunity. Given the analog nature of the design, it is critical to

minimize the electrical noise to maximize the sensitivity of the Spreeta’s output. Thus

driving the Spreeta’s power from a completely autonomous voltage source from the A/D

converter was a significant noise immunity advantage in the design. Finally, to further

insure low noise on the voltage rails the design incorporates linear (as opposed to

switching) voltage converters. This constrained the voltage input to the interface board

to be greater than 5V, and for simplicity the design incorporates a +12V DC supply

(also readily available in the industry), which interfaces to the board through a diode

bridge to yield the robustness feature of immunity to tip polarity.

The analog output of the Spreeta connects to an A/D converter. The design

incorporates a converter with 12-bit resolution, again to increase sensitivity and a

synchronous serial interface for compatibility with the SPI interface. The output voltage

range of the Spreeta is specified as 100mV to 3V. The best configuration for an analog

input to an A/D converter is to correlate the maximum value of the A/D output to the

maximum voltage of its analog input. Thus the design incorporates an A/D converter

that accepts an external reference. By using 3.0V as the reference the ranges are:

Spreeta output of 3.0V => 0xFFF on the converted digital reading

Spreeta output of 0.0V => 0x000 on the converted digital reading

 21

Another challenge was to design an interface to the two serial components with only

one chip select (the Accompli 009 provides only 1 chip-select) so the interface exploits

a “synchronous bus expander” to interface between the two serial components (A/D

and Spreeta) and the SPI port. Not only did this interface yield a critical voltage level

step to help solve the power matching difficulties outlined above, it gave the design a

lot of flexibility in controlling the A/D converter in conjunction with the Spreeta device.

The design needs enough flexibility to run the basic algorithm:

1) Clock a “pixel” (e.g. a single CCD cell in the array) from Spreeta

1a) for the first pixel, assert the Start pin to end the integration period

2) Read the digitally converted value of the pixel

3) Repeat for all 128 pixels in the array

The last component to select was the cable to interface between the Accompli 009 and

the prototype board. This proved to be quite a challenge, as the interface had never

been used before. Thus the cable was full custom and had to be built by hand.

Knowing the propensity of a prototype cable to take a lot of strain (oops! forgot to

unplug the darn thing) the cable’s design includes some strong, clear, non-conductive

epoxy poured all over the junction between the wires and the connector headers.

5.2 IMPLEMENTATION

Once all the components were acquired (mostly as free samples), the hardware

implementation was done on a breadboard using through-hole parts because they’re

easy to work with (with the exception of the 3.0V reference which wasn’t available in a

through-hole package so it was soldered as opposed to bread-boarded). To further

 22

ensure nose immunity the design incorporates several different values of power filters

(usually a decoupling capacitors behind a series resistor) to the power supplies and to

the power input pins on every component.

5.3 HARDWARE DEBUG

The design also includes a couple of LED’s to facilitate binary board probing, but these

proved to be very power-hungry so they were always disconnected during sensitive

testing and definitely during the actual immunoassay. But the main debug tool was a

logic analyzer, which is invaluable during real-time debug. It was used to verify the

timing of the signals on the SPI interface as well as timing the software algorithms.

Figure 9. Logic Analyzer Hardware Debug Trace

Some of the discoveries during the hardware design phase were a result of the Spreeta

specification missing some critical information. The technical support folks at Texas

Instruments provided the specification for the TSL1401 128x1 linear sensor array,

which is the CCD component used internally by the Spreeta:

• The Analog output of the Spreeta device requires a pull down resistor

 23

• The best values for the Potentiometer limiting power to the LED had to be

experimentally sized as there was no data available on it’s power

• The Spreeta is fast! Its analog output settles in 350ns

One of the decisions for this design was that the data stored in Spreeta’s internal ROM

not be accessed. This ROM contains data about the specific Spreeta device, which

would be useful for guaranteeing that every device responded according to a standard

(e.g. normalizing the output of all devices to eliminate manufacturing variances).

Rather than normalizing between components by reading the data and adjust the

Spreeta output, this design utilizes the innovative “differential mode” in which

manufacturing variances are eliminated programmatically for a real-time analysis.

CHAPTER 6: SOFTWARE DESIGN

There were two main aspects to the software design: the algorithms for reading and

manipulating the Spreeta data, and the User Interface. Thus the biosensor software

had to keep the data moving from the Spreeta device to the screen while maintaining a

screen update that showed the real-time aspects of the sensor’s operation and

responded quickly to user input. The basic challenges in the software design were:

• Maintaining real-time control of the Spreeta’s light integration period in its

photocell array

• Processing the data from the Spreeta using strictly integer calculations

• Defining a presentation mechanism with run-time analysis that yields

instantaneous operational results and simple limit detection

• Maintaining a continuous update on the screen

 24

• Receiving and processing user inputs for control with minimal delay

The data manipulation software was designed with a hierarchy of tasks broken up into

three categories: real-time, time-critical, and off-line (see Figure 10). The real-time tasks

are defined by the sensor hardware: the integration periods of the A/D converter and

the Spreeta photocells. The time-critical tasks are defined by the “continuous operation”

requirement and include screen updates and loop checks (e.g. check for user input).

The off-line tasks are all tasks that suspend the continuous operation of the sensor.

These are typically user initiated (print screen, set threshold, etc.) with “alert user of

threshold violation” being an example of non-user initiated task.

Figure 10. Main software loop

6.1 REAL-TIME TASKS

The Motorola Accompli 009 has a real-time operating system that supports precise

timing for the light integration period in Spreeta’s photocell array and supports

dedicating a hardware timer to the task. The timer period can be adjusted via user

input during normal operation, which sets the average value of all pixels. Adjusting the

 25

integration period also has the effect of moving the entire waveform horizontally within

the graph:

A shorter integration period => shift down in the pixel’s absolute values

A longer integration period => shift up in the pixel’s absolute values

To maximize the precision of the integration period, the algorithm shuts off interrupts,

waits for the user-programmed delay, then enters a loop of 128 cycles of clock a

photocell value to the A/D converter and read the A/D value (see Figure 11). The delay

clock resolution is 1µs, which is sufficient to minimize the waveform jitter between

cycles. The delay is initialized to 5ms (5000 ticks) and can be incremented and

decremented in 50µs increments during normal operation. Note that the timer’s

minimum resolution is 30ns but clocking faster increases power consumption while only

producing negligible improvements in jitter.

Figure 11. Logic Analyzer Capture: real-time control of Spreeta, A/D

converter, and Shift Register on the SPI bus.

One of the foremost optimizations for the software was the minimization of the time

required to cycle through the real-time loop. Unloading the 128 photocells from the

Spreeta as quickly as possible after integration minimizes any effects of voltage

 26

leakage in the Charge Coupled Devices (CCDs) used to store the collected light. The

result of these optimizations resulted in a Spreeta clock rate of 45KHz, which is well

below he minimum value specified for the array of 5KHz.

6.2 TIME-CRITICAL TASKS

 The Motorola Accompli 009 provides programmable access only to the display

processor; the DSP is dedicated to wireless communications and is therefore not

accessible by user-loaded programs. Additionally, the display processor is sized for low

cost and minimal power consumption, not intensive floating-point calculations. This

architecture imposes the constraint of “integer only” math because even a simple

floating point add takes multiple hundreds of machine cycles at 33MHz and operations

like waveform smoothing and screen mapping requires multiple floating point

operations per pixel.

Since one of the design goals is to maintain a fast screen draw to track the Spreeta’s

activity, the algorithms were designed to eliminate as much floating point processing as

possible. One example is the waveform-smoothing algorithm, which requires only shifts

and adds: the array of 128 light intensity values (I[128]) that correspond to 128 different

wavelengths projected onto the gold film, were smoothed by:

I[N] = (((I[N-1] + I[N-2] + I[N+1] + I[N+2]) >> 2) + I[N]) >> 1; (Equation 1)

After smoothing, the intensities are mapped directly onto the absolute graph which is

128 pixels wide yielding a 1-to-1 correspondence between intensities and the screen

pixels along the X-axis. The Y-axis is a voltage scale and thus requires a conversion to

the screen height (see Figure 12a). Floating point calculation was unavoidable for this

case but divides were converted to reciprocal multiples, which saved thousands of

 27

processor clocks per calculation and yielded a rate of approximately 8 full

cycles/second.

The final challenge was detecting shifts in the absolute minimum of the graphed

waveform; shifts in the minimum represent changes in permittivity at the sensor’s

surface; a change in permittivity at the sensor’s surface is the physical phenomenon

intended to be caused by molecular events occurring in real-time. Thus the system

must have an optimization point to both detect and display in obvious graphical

methods the shift in the absolute minimum of the array of pixels generated by the

Spreeta device.

The first solution was to allow the capture of an “initial” waveform and superimpose

subsequent waveform cycles in red. This had the desired effect of showing shift

continuously over time, but with a minimum resolution of 1 graphical pixel on the

screen. This led to a novel solution for displaying and amplifying SPR shifts without

requiring floating point calculation: the definition a new waveform format called

“differential mode” (see Figure 12b).

 28

Figure 12. Biosensor screens illustrating the relationship between the

“Differential” and “Absolute” modes

The differential waveform is generated by a simple 128-cycle loop, which subtracts the

“New” values from the “Original” values. After calculating this difference the algorithm

simply plots the difference values to the screen. This simple graphical presentation

method can be exploited as a powerful mechanism for continuously monitoring an SPR

shift occurring in real-time. It also yields:

a) A simple check for changes over time by marking the height of the differential

curve over the “zero level”

b) Enforcement of a threshold with a simple check against the maximum and

minimum threshold values

c) Auto-correlation of Spreeta output that normalizes waveform differences due to

device variation

 29

Figure 13. Differential Screen Progression showing the same waveform

magnified (divided by) increasing powers of 2

A final advantage of the differential format is that we can control the values on the Y-

axis. By selecting values that were an even increment of a power of 2, the algorithm is

capable of mapping the voltages to screen values by a simple left-shift (e.g. voltages/21

= voltages>>1; voltages/22 = voltages>>2 … voltages/29 = voltages>>9; 20 = no shift at

all, see Figure 13). Note that the voltages (intensities) may well be greater than the

values at the Y-axis in which case the algorithm simply “clips” the data and plots the

maximum height for the scale. This simply represents saturation for the chosen display

limits but is no loss of data: simply dividing by a greater power of 2 will allow the data to

be represented meaningfully on a graph with a broader range.

By completely eliminating floating-point calculations in differential mode, the main loop

runs at approximately 23 full cycles/second (a 3x reduction in cycle time), which results

in a faster screen update. Thus the fastest way to realize the real-time results of the

Spreeta’s operation is to choose the differential view.

 30

6.3 OFF-LINE TASKS

The off-line tasks suspend the normal operation of the sensor, perform the required

task, and then resume normal operation. One of the longest tasks is sending the e-mail

notifications upon detection of a threshold violation (see Figure 14). This routine will

encrypt the user-entered message content and send it to the e-mail destination address

list wirelessly over the public networks; secure [14] data with guaranteed delivery.

Figure 14. Sending Wireless e-mail Notification

6.4 SOFTWARE IMPLEMENTATION

There are two main areas for the design of the software: the Spreeta driver with many

real-time aspects and the display driver which is compute intensive and must accept

user input. The challenge was to get these two environments to co-exist while meeting

all of their diverse (often conflicting) requirements. Thus the software system must

solve the following list of requirements:

1) the Spreeta device must be sampled at a fixed period

2) user input must be event driven for response time but serviced only

outside the fixed period

3) screen updates must run either outside the fixed sample period or must

be interruptible by the fixed period

 31

Given this set of requirements, it was possible to design the flow of the main execution

loop:

while (quit != TRUE)
{
 SampleSpreeta(BeginIntegrationPeriod);
 StartCounter();
 RepeatLoop(TotalPixelCount)
 {
 if (TimerExpired)
 SampleSpreeta(CaptureData);
 ProcessPixelValue();
 if (TimerExpired)
 SampleSpreeta(CaptureData);
 PixelToScreen();
 }
 Wait(TimerExpiration)
 SampleSpreeta(CaptureData);
 UpdateStatistics();
 GetUserInput();
}

Thus the main flow of execution starts with sampling the Spreeta data, which has the

effect of beginning the integration period. The integration period must end at precisely

the same time for every sample, or the light intensity readings delivered by the Spreeta

will vary their intensity readings based on how long the light sensors have been

exposed to the light. To control the timing, the system sets a timer running and ends

the integration period by executing the sampling of the Spreeta data at the timer’s

expiration.

Note that the first sampling is taken during system initialization. By this method, the

algorithm is always processing the previously captured sample while the Spreeta is

integrating the next sample. Note also that while the Spreeta integration period is fixed,

the time between samples can vary depending on user input.

 32

6.5 USER INTERFACE

Since this is a fully functional Accompli 009 system, and the Spreeta has real-time

requirements, it is necessary to halt normal operations of the system and dedicate the

processor to running the Spreeta sampling algorithm. Navigating into the Spreeta

application on the desktop and launching the biosensor driver accomplishes this halting

normal operations. Upon launching the biosensor, the Accompli 009 will reset, and

upon subsequent boot, will launch only the Spreeta algorithm.

 Desktop Biosensor Launch Screen Algorithm Initialization Screen

Future implementations could certainly have the user interface running in the native

Accompli 009 desktop (written in a programming language called “FlexScript”) and have

the Spreeta driver running in real-time underneath the desktop. In this configuration,

however, the screen updates wouldn’t be as fast, but the rest of the system (e.g. GSM

connectivity) would be available. This would be advantageous for communicating

results and/or real-time detections of perturbations either by voice or automatically

sending data to servers and/or system controllers.

The inputs from the user are the keypad, and the outputs are the screen for real-time

observation of the system and the Infrared port for reading data off of the Accompli

 33

009. For simplicity, the user interface is a simple single-keystroke menu with the

command show in Table 1.

Table 1. List of Commands for Biosensor Control

• S – Start running (only used at power-up)

• A – Render data in Absolute Draw Mode

• Z – Render data in Zoom Draw Mode

• D – Render data in Differential Draw Mode

• 0-9 – Set vertical scale for Differential Draw Mode

• C – Capture baseline waveform to measure Differential

• J – move waveform down (decrease integration period)

• K - move waveform up (increase integration period)

• L – Low power mode (insert delay in main loop)

• H – High power mode (remove delay from main loop)

• P – Print screen to memory (for retrieval out IR port)

• Nav-Down – Move active cursor down one pixel

• Nav-Up – Move active cursor up one pixel

• Tab – make alternate cursor active

• N – enable wireless Notification (prompt for e-mail addr.)

• T – invoke Threshold (used mainly for test)

• Q – Quit running Biosensor program (return to phone…)

Note that the user can type either upper case or lower case.

The graph on the screen is 128 pixels wide by 90 pixels high. The width was chosen

according to the number of pixels across the angle sweep in the Spreeta device. The

height was chosen as a matter of convenience: giving as much height as possible to

the active area of the graph while leaving adequate room for the statistics. The screen

layout is driven by constants so moving the location of screen objects is

 34

straightforward; by changing the definitions, the screen-draw algorithms update the

data in the new locations.

The choices of screen draw mode (Absolute, Zoom and Differential) change how the

sample data gets processed in the “ProcessPixelValue” call outlined above. For

example, in the Absolute mode, the intensity reading read for each location in the angle

sweep is mapped directly onto the screen with a 3.0V reading mapped to the top and a

0.0V reading mapped to the bottom. Unfortunately, this mapping requires floating-point

divides and since there is no floating-point hardware support on the Accompli 009 user-

interface processor, this calculation is actually the limiting factor in how fast we can run

the sampling algorithm.

Draw_Location = (int)((Y_BOT_VERT_LABEL+TEXT_HEIGHT)
 - (int)((int)(gSpreetaPixelValue[pixel_count]

- gScreenMinValue) * gConvertADCToScreen));

The Zoom mode is basically the same as Absolute mode except that the vertical axes

are adjusted so the minimum and maximum data values shown on the screen just fit

within the definition of the axes extremes. For both modes, a data value is drawn as 2

pixels high in order to enhance the visual effect and to smooth out the graph just a little.

6.6 DIFFERENTIAL DISPLAY MODE

Perhaps core to the design of this sensor is the mode definition for differential. The

Spreeta device measures changes in the permittivity of the biolayer by detecting the

change in light intensity reflected at a given angle. Thus the amount of light energy

absorbed by the gold layer changes for different wavelengths of light, and the

wavelengths of light correspond to different angles of reflection against the gold

 35

surface. Unfortunately, the changes to the light intensity are quite small (less than a

pixel at the resolutions shown on the screen) and the waveform on the screen is far

from ideal.

To solve these difficulties, it is quite common to run through compute-intensive

smoothing algorithms and detect local minimums and maximums, thereby detecting the

absolute change in the waveform. However, given the lack of floating-point hardware

on the Accompli 009 processor and the hardware limitation of not supporting reading

the pixel variation data, running through smoothing algorithms isn’t a viable option.

Instead, detection is done simply by subtracting the original (captured) data from the

most recent sample and graphing the difference between the two (See Figure 15).

Figure 15. SPR Shift in Absolute and Differential Modes

 36

As illustrated above, if the analyte attachment causes a shift in the light intensity read

over a range of angles, there will be a shift to the right in the absolute waveform at the

local minimum for plasmon resonance. However, the shift will not be as pronounced as

shown. As stated above, the shift will be less than one pixel. Thus the differential

screen has a vertical axis that is very narrow, reacting to slight changes in the intensity

reading from the Spreeta sensor. To avoid floating-point calculations, the intensity on

the vertical axis is 8 A/D ticks per pixel: thus a change in light intensity reading of

5.86mV will cause a 1-pixel offset in differential mode.

Note that in differential mode, the red line across the middle of the graph represents

that for a given pixel the captured intensity is the same as the newly sampled intensity.

This has the effect of self-adjusting for the pixel differentials across the pixel array by

displaying only the change of a given pixel. Thus if a pixel is consistently reading high,

then:

HighValue - HighValue = 0 (Equation 2)

Alternately, if a pixel is consistently reading low, then:

LowValue – LowValue = 0 (Equation 3)

So only a change is recorded on the differential screen:

pixel offset = (captured pixel value – sampled pixel value) / 5.86x10-3 (Equation 4)

As long a each pixel is linear with respect to itself, this algorithm will show the changes

to a given pixel without requiring any interaction between the pixels. As the plasmon

resonance causes the angle of maximum absorption to shift to the right, the differential

 37

screen will move farther off of the 0-differential axis. The height above the axis is an

indication of how much the angle has shifted (as shown in Figure 16).

Figure 16. Height Of Differential Curve Above & Below Thresholds

6.7 SPREETA DRIVER

The integration period of the Spreeta samples had to be carefully controlled as outlined

above, but another constraint of the Spreeta driver is how fast it gets read. Since the

Spreeta is based on Charge Coupling (and therefore the charge can leak away) the

data captured in the Spreeta is only guaranteed to be valid for a short amount of time.

Thus the read algorithm had to be run as fast as possible. To accomplish this task, the

device is read in a tight loop:

Repeat (for all pixels)
{
 SetSPIHardwareForMaxim(); /* 12 clocks at 4 MHz */
 ReadA/Dvalue(); /* read Spreeta Pixel */
 SetSPIHardwareForSpreeta() /* 1 clock */
 ClockSpreetaDevice(); /* advance Spreeta Output */

}

This algorithm also relies on a 7.1uSec settling time for the A/D converter to sample its

input. The sampling time is controlled by the extra clock cycles in the processor to

repeat the loop. Also, the pseudo code for “SetSPIHardwareForMaxim” and

 38

“SetSPIHardwareForSpreeta” includes the control to the 74HC594 shift register to

generate the appropriate chip selects to the A/D converter or the Spreeta device. I

spent quite a bit of time tweaking and minimizing the sampling loop to achieve optimum

performance. The minimum specification for reading the Spreeta pixel array is 5KHz.

Figure 17. Sample Rate: 790Hz

As shown in Figure 17, the initial rate for sampling the Spreeta device was reading

each pixel in the array at 790Hz. This rate is below the minimum rate for the Spreeta

specification, so optimization of this loop was mandatory. Applying real-time analysis

with the logic analyzer revealed that there was a significant amount of time being spent

on the floating-point conversions identified the first optimization. The processor in the

Accompli 009 does not include a floating point processor so even simple conversions of

a voltage to a screen position is a significant amount of real time. Thus floating point

calculations were either eliminated with manifest constants or converted from divides

 39

(thousands of cycles) to multiples (hundreds of cycles) by multiplying by the reciprocal

instead of straight division.

screen_pixel_value = (int)((BOTTOM_GRAPH_BOUNDARY)
 - (Int)((int)(gCurrentSpreetaValue[pixel_count]
 - gScreenMinValue) * gConvertADCToScreen));

These conversions resulted in a reduced pixel read timing of 2.9kHz as shown in Figure

18.

Figure 18. Sample Rate: 2.9KHz

A sample rate of 2.9kHz is certainly an improvement but still not quick enough to meet

the timing requirements of the Spreeta. The final optimization was to change the basic

algorithm so that instead of reading a pixel from the Spreeta and then writing it to

screen, all the pixels were captured in a tight loop, then written to the screen when the

timing wasn’t nearly so critical.

MASK_INTERRUPTS;
START_COUNTER;
SampleSpreeta(BEGIN_INTEGRATION);
wait(gIntegrationPeriod)

 40

 SampleSpreeta(CAPTURE_PIXELS);
RESTORE_INTERRUPTS; /* re-enable interrupts */
RESET_COUNTER; /* turn off the counter to save */

/* draw the samples to the screen */
for (pixel_count = 0; pixel_count<TOTAL_SPREETA_PIXELS;
pixel_count++)
{
PixelValue = ProcessPixelValue(pixel_count,algorithm_mode);
PixelToScreen(PixelValue,pixel_count,algorithm_mode);
}

With this change, the timing sped up significantly to 45kHz as shown in Figure 19.

Figure 19. Sample Rate: 45KHz

Thus Discoveries made during the software development phase include:

A) Integration time for the Spreeta must be a fixed, non-varying value; even a

single floating-point multiply is thousands of CPU cycles and thus floating-point

must be avoided where performance is an issue

B) Reading the pixel array must be protected from all variation in timing (e.g. turn

off interrupts while reading the array)

 41

The total time to read the Spreeta array is only 128 Samples/45KHz = 2.8mSec, which

is short enough in the Accompli 009 to be comfortable with disabling interrupts. Thus

even in a fully operational environment, this driver can be event driven on a timer, and

when the timer fires the event handler could certainly turn off interrupts, run the sample

routine, then return control back to the higher-layer processes for running the full

Accompli 009 system.

6.8 WIRELESS NOTIFICATION

Because one of the system requirements was Autonomous Action: (see requirement

number “5)” on page 5) the sensor is designed with the capability to generate

notifications upon detection of threshold violations. The use case is to allow an

operator to set a limit threshold of how much the SPR curve is allowed to shift, and

enable notifications.

6.8.1 NOTIFICATION ALGORITHM DESIGN

Wireless notification is one of the intrinsic capabilities of the Accompli 009 but the

processor is consumed while that notification is being sent over the air. To ensure

smooth operation, a constant check for the crossing of the threshold has been enabled

in the time-critical loop first discussed in section 6.2, “TIME-CRITICAL TASKS“ and in

Figure 10. Main software loop”. As shown in Figure 20, enabling notification inserts an

additional check in the time-critical loop called “Crossed Threshold”. Note that this

does not affect the Real-Time Tasks within the “Capture Spreeta Data” block.

 42

Figure 20. Extra test for threshold crossing when Notifications is enabled

Upon detection of the crossing of a threshold, the algorithm detours away from the

main loop, and drops into a “Send e-mail” task. This task is actually one of the more

challenging in that it is well designed for a multi-tasking operating system and thus

event driven. However, since the main algorithm was implemented as a relatively

simple state machine for performance reasons, the only state that normally handles

events is in the “Check User Input” block. Thus this new e-mail task had to have it’s

own event handler and had to be interoperable with the user input event handler to

continue to process key events while sending messages (e.g. “Cancel”).

6.8.2 NOTIFICATION ENTRY DESIGN

The notification is intended to be prepared during system set-up and therefore has the

luxury of sitting outside the “Time-Critical Tasks” since the device isn’t expected to be

sensing during set-up. During this set-up time, the operator will set the thresholds (both

low and high) and enter the notification address and text. The user interface to enter

notification addresses is shown in Figure 21. The design of the text box allows for as

 43

many recipients as the user desires to enter, separated by a carriage return (“enter” key

on the Accompli 009). The e-mail address can be edited until they are all correct and

then the user presses the “tab” key to advance to the next screen.

Figure 21. User Interface to enter Notification E-Mail Addresses

The notification address follows the Internet e-mail address format and as such there’s

no limit on where the notification can be sent. The recipient repository of many e-mail

addresses commonly in use is machine-based and therefore capable of taking action

as directed by the e-mail content. An example of this might be an automated help-desk

or order entry system.

After entering the notification e-mail addresses, the entry design code presents the

user with another dialog box in which the operator types in the actual notification text

(see Figure 22). The notification text is free form and can be any set of characters the

operator desires to enter. This allows the freedom to have human-readable text

intermixed with machine-readable text. The machine-readable text must necessarily be

keyboard entry and delimited (such as is typical in XML formats) but this constraint is

not severely limiting to the capabilities of most automated e-mail services.

 44

Figure 22. User Interface to enter Notification Message

Note that the Accompli 009 is capable of sending binary data (as opposed to ASCII

data) but the design doesn’t support the entry of binary data from the keyboard. This

capability could be added in any of several ways including download of messages via

the IR port or defining some escape keys in the keyboard input to allow binary typing

(rather tedious to type it, however).

6.8.3 SENDING NOTIFICATION

As illustrated in Figure 23, when the sensor detects a crossing of the threshold, it will

automatically generate the wireless messages sent to each recipient in the notification

list. There are error checks in place to verify that the e-mail successfully traversed the

wireless network and it is possible to implement “read receipts” for further checks to

ensure the recipients consumed the notifications (although this feature has not been

implemented at the time of this writing).

 45

Figure 23. Notification Sent from Sensor to E-Mail

Note that the example shown has “Press <esc> to continue…” which would be

unacceptable in an actual autonomous monitoring situation. The user interface has the

capability to disable the requirement of a key input to turn return to monitoring. It is

simply much harder to capture a screen shot without the pause in place.

6.8.4 NOTIFICATION SECURITY

One serious aspect of this type of wireless transaction is “spoofing”. Since these

addresses are wide open on the Internet, any e-mail system is capable of sending

notifications to them. It is obviously unacceptable to be wide open to “spoofing” where

any hacker with an e-mail account sends out warnings that the system under test has

been compromised. The Accompli 009 has destination specific encryption capability

using triple-DES algorithms and FIPAS 140-1certified key management strategies [18]

that will ensure that the recipient can verify any messages have come directly from this

sensor without any chance of being modified along the way. The security implemented

 46

by the Accompli A009 is part of the Motorola Messaging Platform (MMP) [19] and the

basic architecture is as shown in Figure 24.

Figure 24. End-To-End Encryption in Accompli 009

 47

CHAPTER 7: BASIC SYSTEM FUNCTIONAL VERIFICATION

Once the system was up and running with the hardware and the software, the next step

was to connect up a fully functional Spreeta device to see what types of reading could

be extracted from it. Note that for the initial hardware & software development phases,

the only Spreeta component we had to work with was a mechanical sample that was

functional but not expected to yield as strong results as a device that was considered

fully functional.

7.1 LED BRIGHNESS AND LIGHT INTEGRATION PERIOD

The first step was to connect up the device and adjust the LED brightness against the

integration period. To simplify initial calibration, I decided to keep a fixed integration

period and adjust the LED brightness with a Potentiometer. By using an actual working

sample, I found that when the integration period was too short, the LED needed to be

adjusted to a very high intensity by adjusting the resistance in the LED’s path to a very

small value: on the order of 25 Ohms. I also learned that there is a definite upper-limit

to the brightness of the LED, and adjustments beyond that limit cause the device to

stop functioning.

At this point we requested additional samples from Texas Instruments (they graciously

sent me 5, for free) and I resumed calibrating the system. The final choice for the two

parameters has settled out to be:

1) Integration period default = 20mSec

2) LED resistance = 10Kohm Potentiometer + 67ohm fixed

 48

Given this configuration, it is possible to adjust the potentiometer by hand and easily

move the output waveform up to saturated (all outputs > 3.0V) or down to almost 0 with

no shape to the waveform at all. According to the Spreeta spec. The best average

value for all readings is 2.5V.

7.2 AMBIENT LIGHT

Another discovery during the system verification phase is that the sensor is very

sensitive to ambient light. It was a bit of a surprise to see the entire waveform move up

and down on the absolute scale depending on whether the sensor is in a dark

environment or a lighted environment. Since I was covering up the sensor with my

hand, I had the theory that the sensor might be registering the capacitive coupling

between the gold plate and my hand, but covering the sensor with a non-conductive

material (a black anti-static bag) caused the same effect.

Thus the gold plate on the face of the Spreeta is thin enough to pass some ambient

light that the photo-diode array can sense. So discoveries made during the verification

phase include:

a) the LED can burn out with hard connection to the voltage rail

b) a potentiometer of 10K yields sufficient sensitivity to control the LED power

c) the Spreeta is sensitive to ambient light and all Assays should be run in a

dark environment

 49

We accomplished the final testing of the sensor hardware and software by dumping

water on the surface of the Spreeta device and adding a grain of salt. I was very

pleased to see the sensitivity of the Spreeta sensor in differential mode, but surprised

by the shape of the absolute waveform. I expected to see a “textbook” curve where the

waveform was flat across the top, then had a dip at the angle of Plasmon excitation.

Instead, the waveform looks anything but smooth (see Figure 25).

Figure 25. Initial Waveforms from Spreeta as Displayed on Accompli A009 Screen

7.3 DEVICE VARIATIONS

The next step in basic system verification was to determine if different Spreeta devices

behaved in different ways. A “broad brush” technique was to purchase a standard tray

of 25 devices, label each device and cycle all 25 through the sensor with deionized

water applied to the surface to get a rough idea of the variation in the SPR waveforms.

This proved very educational and of the 25 units purchased, we identified 4 units that

showed the best waveforms in terms of flat lines with sharp dips at the resonant

frequency: unit 10; unit 17; unit 20 and unit 22. Conversely, there was one unit, unit

19, which looked for all the world like a constellation of stars instead of an SPR

waveform with a characteristic resonance dip.

 50

Most of the waveforms presented in this thesis were generated on the 4 units that

looked most like “text book” SPR curves. Note that this characterization of a tray of 25

units purchased and presumably fully qualified by Texas Instruments led to two

conclusions:

1) there is a wide variation of SPR curve between parts

2) The Texas Instruments qualification process on their Spreeta devices is

not based on “raw” waveform

Texas Instruments does vend a hardware interface kit and processing software for use

with the Spreeta device. Based on the experience I have had with that software, it

does extensive wave shaping on the raw data coming from the device and therefore

may not be as sensitive to the general waveform as the design in my sensor design.

On the other hand, there is something to be said for presenting the “raw” data because

a heavy algorithm might occlude some detail of the SPR shift that proves critical to

analysis. In a conversation with the Spreeta physicist, I discussed a phenomenon I had

observed with the waveform changing its shape as well as shifting position and he had

never been able to observe that type of behavior from the vantage point of the software

processing in the Texas Instrument software.

7.4 FREE CHARGE

A repeating theme throughout our analysis of SPR and throughout this thesis is the

concept of free charge and its affects on permittivity. The formal definitions for

permittivity are presented in section 8.7 “FREE CHARGE (pH)” but as a overview, the

basic premise is the permittivity of a material can be quantified by its capability to

conduct electrical current. For deionized water, the capability to conduct electricity is

 51

low due to water’s basic dipole arrangements causing relatively little free charge for

conduction. However, by adding salt to water (e.g. adding free ions), the capability of

that new solution to conduct electricity is greatly increased.

One of the earliest observations of this research is the difference between QCM and

SPR: QCM measurements are based on mass loading whereas SPR measurements

are based on changes in free charge. As illustrated in Figure 26, there is a significant

charge difference between FITC (or urinine) and Alexa. Note specifically the purple

charges on the triplet of aromatic rings at the base of the molecule in Alexa: 2x of −
3SO

and 1x of +
2NH which for the purposes of charge is a total of 3 (note that both positive

and negative charge contribute to changes in permittivity). As an aside, the binding

pocket in anti-FITC is believed to be at the base of the triplet and the charged ions at

the base of Alexa which are absent in both FITC and urinine, are the cause for a

molecule of the same size and structure to bind with much less affinity. Finally, note

that the mass of FITC and Alexa are comparable (QCM “friendly”) but the charge is

significantly different (SPR “unfriendly”).

Figure 26. FITC and Alexa with Highlighted Ionic Charges

The assay used in this research was based on a positive tests for binding between anti-

FITC isolated on the surface of the sensor (QCM or SPR) and measuring an increase in

molecular binding. For positive tests, the sensor is baselined with no analyte present,

 52

then capture a constant measurement while introducing the urinine and use the change

in the measurements as the “signature” for the binding events. For the negative tests,

we use baseline as usual but introduce Alexa, which has the same basic structure and

mass but weaker binding affinity. The results from these two assays are contrasted to

eliminate any common sensor reactions (e.g. sensitivity to pressure changes due to the

introduction of analyte) and the resultant waveform is the unique, positive signature.

The four assays that can be derived from these components are shown in Table 2.

Table 2. Test Coverage for Sensor Characterization

Test Condition Test Coverage

Uranine with no monolayer Negative (Control)

Alexa with no monolayer Negative (Control)

Uranine with anti-FITC monolayer Positive

Alexa with anti-FITC monolayer Negative

Once the system was calibrated and verified functional, the next step was to see how it

performed in an actual assay with antibodies isolated on the surface. To run this

assay, I had to enlist the help of a molecular research specialist. Given the portability

of the sensor and supporting system, it was no problem at all to take the entire system

into the biology lab to run the assay.

 53

CHAPTER 8: IMMUNOASSAY ANALYSIS

Once the design of all phases (Hardware, Software and Monolayer) was completed, the

next phase was characterization of system performance. We preformed the earliest

tests by applying the building blocks directly to the gold surface using a micropipette as

shown in Figure 27.

Figure 27. Micropipette Monolayer Building Blocks Directly Onto Surface

The earliest results were fairly positive as shown in Figure 28 but further analysis of

these early results showed that molecular binding events were not the cause of the

observed shifts. Although it was most gratifying to see such results in the earliest

testing, there are unfortunately a myriad of side effects that must be carefully

controlled, accounted for and/or eliminated if Surface Plasmon Resonance is to yield

quantifiable results on molecular binding events. Note that Figure 28 was generated on

earlier versions of the software and the red difference line has not yet been

implemented in the Zoom and Absolute screen shots.

 54

Figure 28. First Actual Assay Results

The remainder of this section will present the factors encountered while working to

quantify the side effects that cause shifts in the waveforms. Some of the side effects

cause changes in permittivity that are not the result of molecular binding events and

others are artifacts of SPR in general and some are specific to SPR as implemented in

the Spreeta device.

8.1 VARIATIONS/CALIBRATIONS BETWEEN DEVICES

As illustrated in Figure 29, the waveforms produced by different Spreeta devices vary

significantly. This is one of the reasons the Spreeta device will not be capable of

yielding absolute results in terms of SPR shift. The amount of shift registered is

necessarily dependent on the initial waveform. It is possible to calibrate a single device

and therefore measure the relative shift, but with the observed variation in waveforms a

molecular event may well be occurring at a point of less sensitivity on one device than

that same event on a device with more sensitivity at that frequency.

Figure 29. Device Differences in Absolute Waveforms

 55

For example, the waveform at the far left of Figure 29 does not have the characteristic

sharp dip at the resonant frequency. The waveform in the center shows a shift with

more change in the “Y” direction than in the “X” direction. It is easy to imagine that

equal changes in permittivity on the three different parts shown will result in different

amounts of shift being registered by the biosensor.

In the comparison of SPR to QCM we looked at the possibility of using two Spreetas to

cancel each other out thereby increasing the accuracy of our results. One issue with

the Spreeta is wide variations from device to device that not only react to changes in

permeability by shifting the SPR curve, but also deform the waveform differently from

device to device. We explored the possibility of “differencing” two Spreetas as a

baseline but we couldn’t come to agreement on what to do when they registered

differing results for the same input.

We then proposed the possibility of a threshold beyond which the parts were declared

“too different” and the results ignored. We all agreed that QCM has fewer sources of

variation and are thereby easier to calibrate against each other. In fact, we sometimes

adjust a crystal to get it into a known starting frequency to achieve the very goal of

calibrated (or at leas correlated) starting points. Calibrating a Spreeta to shift the SPR

curve by a known quantity for a known input is certainly possible, but calibrating two to

shift/deform prohibitively is problematic.

There is a possibility via software to measure the shift/deformation and extract the

known differences between the two. We discussed this but it would require a lot of up-

front calibration and correlation to a known good (or even theoretical “ideal”) reference.

 56

Sources of variation between Spreeta devices:

1) gold film thickness

2) optical properties of cavity “filler”

3) miss-match between top “filler” and bottom “filler”

4) alignment of CDC array (detector)

5) consistent sensitivity of each CDC cell in the array

6) variations in LED polarizer (rotation, tilt, etch quality, etc.)

7) variations in LED spectrum

All of these possible sources of variation are potential contributors to the Spreeta’s

observed variations from part to part. Regardless or which ones dominate or which

ones aren’t significant factors at all, there is a large observed variation in Spreeta

devices. This variation makes it impractical to try to combine two Spreeta devices in

some sort of negative feedback or interferometer configuration because their

sensitivities are not constant across every frequency of the spectrum.

8.2 DIRECT LIGHT PENETRATION

Another property of the Spreeta, but not necessarily of SPR in general is the fact that

the gold film on the face of the Spreeta is so thin (500 angstroms according to the TI

engineer supporting our questions) that light can directly traverse it. Thus, as illustrated

in Figure 30, the photodiode array measures all light hitting its surface and not just the

light generated by the internal LED and reflected off the sensor surface. Both the light

 57

passing through the gold surface and the optical properties of the liquid also directly

affects the photodiode array; liquid properties such as:

• Thickness

• Translucence

• Surface Tension

Figure 30. Illustration of Direct Light Penetration on SPR

8.2.1 COMPENSATING FOR DIRECT LIGHT PENETRATION

All of these properties can affect the travel of light including reflection, refraction and

diffusion. Whatever light penetrates through the liquid and the gold film will be

collected in the photodiode array and registered as signal. Ideally this would be a

simple “bias” that could be subtracted from the desired signal by exploiting the

integration period adjustment provided in the software. However, given the multiple

 58

non-homogenous optical layers in the stack-up of “liquid-on-sensor-surface” there’s no

reason to expect all light penetration to be constant across the entire face of the

photodiode array.

It would be necessary to measure the amount of interference per frequency and adjust

each individual photocell, which isn’t a capability of the hardware but could theoretically

be done in software with a “dark” vs. “light” calibration step. Of course, if this calibration

were to be made, it would build the assumption into an assay that the amount of

ambient light penetrating each cell would be a constant which implies the binding

events would cause no shift in optical properties, the ambient light wouldn’t change

(e.g. sun movement) etc.

8.2.2 ELIMINATING DIRECT LIGHT PENETRATION

The microelectronics laboratory is equipped with a high-quality evaporator so with the

working hypothesis that since the gold on the surface of the Spreeta is only 500

angstroms thick, perhaps an additional 2000 angstroms on the surface would make the

gold opaque. The extra gold, 2000 angstroms, was successfully added (high praise to

Sang on his inventing a fixture for the Spreeta and his operation of the equipment) but

unfortunately the resonant dip in the SPR curve disappeared.

The result was a straight line across the entire array indicating a constant value of light

across all elements in the photodiode array. The device appeared to be functional as

proven by adjusting the integration period and verifying that the waveform adjusted “up”

and “down” indicating that the infrared LED was turned on and the photodiode array

was measuring the light. Additionally, ambient light no longer penetrated into the

 59

photodiode array as verified by holding the device up to light and seeing no change in

the waveform as measured by the photocell array.

The cause the disappearance of the resonant frequency dip in the sensor must be a

result of a change in permittivity. A previous observation that the photodiode array has

been placed such that it registers only liquid-based resonant frequencies is the clue:

the thicker gold has caused a shift in the resonant frequency. Consider a gold slab

thicker than the interrogation field of visible light (e.g. thicker than Infrared’s frequency

of 840nm). Then the only material interrogated by the light will be gold and the only

SPR that could be registered is that of gold’s. By thinning this theoretical gold slab into

the interrogation field of the light, the resonant frequency becomes a combination of

the gold and the material above it.

8.2.3 PERMITTIVITY BIAS VIA GOLD THCKNESS ADJUSTMENT

In the case of this experiment, the change in the gold’s thickness from 500 angstroms

to 2500 angstroms still leaves plenty of interrogation height into the material on the

opposite side of the gold (even blue light is 400nm and the gold is only 250nm thick).

However, the amount of gold interrogated increased 5 fold, which was enough to shift

the resonance frequency to one beyond the capability of the photodiode array to

measure. This is merely a mechanical limitation of the Spreeta device, but a real one

nonetheless. Conversely, thickening the gold on the surface of the sensor may be a

good method of biasing the device to read permittivity on materials too high to register

on the Spreeta’s photodiode array.

 60

8.3 TILTING

As state above, early testing was with a Spreeta attached directly to the breadboard as

shown in Figure 1. In this configuration, the slope of the gold surface is very sharp and

it’s not possible for liquid with any viscosity to sit still on such a steep incline. Thus a

simple solution to this problem was to tilt the whole breadboard until the board was at a

steep angle and the gold surface was horizontal. By tilting the board, the chemicals,

proteins and antibodies were applied directly to the gold surface via micropipette as

described in CHAPTER 4: “MONOLAYER (BIOLGICAL INTERFACE) DESIGN”.

With the monolayer chemicals thus introduced to the surface, the procedure called for

introduction of the analyte and the real-time recording of the analyte binding events.

The time allotted for the binding was on the order of 10’s of minutes and during this

time, the SPR curve did indeed shift which was at first a very exciting observation.

However, the experiments were never repeatable so it became a source of frustration

as to why the binding events sometimes showed shifts to the left, other times shifts to

the right and most surprisingly, shifts that changed direction.

8.3.1 OBSERVATION

The important discovery during this analysis phase was that the Spreeta device is

sensitive to “tipping”. As illustrated in Figure 31, the Spreeta is very sensitive to the

actual depth of the liquid on the face of the sensor. The observed phenomenon was

the SPR curve would shift when the Spreeta was tilted and it was actually possible to

watch the SPR curve “crawl” off the end of the diode array. Needless to say this

discovery was both a relief to know another source of variability in SPR technology

along with another puzzle as to why the Spreeta is so sensitive to tilting.

 61

Figure 31. Illustration of Tilting Effects on SPR

8.3.2 THEORETICAL EXPLANATION

This phenomenon was not easily dismissed as the surface going “dry” because at the

molecular level, and even at the wavelength interrogation level the surface certainly

didn’t dry out. So the theory of the observed shift has two components: direct light

penetration and change in permittivity. The direct light penetration theory has to do

with the changing thickness of the liquid and the light source from inside the Spreeta

penetrating the gold surface and being reflected back down into the diode array in

some fashion. In this theoretical model, the light reflected would be affected by

changes in the liquid depth, surface tension and the relative density of impurities.

However, while reflected light is a possible source of “noise” to the diode array, it is not

the cause of resonance or of resonance shift in SPR technology. A change in the

amount of reflected light would tend to shift the entire waveform up and down as the

amount of collected light might vary, but it would not easily explain a sift in resonant

frequency.

The second component of the observed change in waveform goes straight back to the

basic premise of Surface Plasmon Resonance: a change in permittivity. If shifting

 62

(pouring) the liquid off the surface of the Spreeta changes the permittivity at the gold

surface, the SPR curve would shift as well. Since the permittivity measured by the

Spreeta is the concentration of free ions at the surface, it is reasonable to conclude that

the concentration of free ions is changing as the liquid is poured away. This would

imply that either the free ions (e.g. analyte, Protein “A”, antibodies and Protein

“A”/Antibody complexes) are flowing away with the liquid or are being left behind as the

fluid leaves.

Either condition is possible but there’s another source of impurity not associated with

the buffer or the biological particles: the buffer had been mixed with a 1% solution of

agarose gel. This gel has the property of building up a meshed structure throughout

the body of the liquid it inhabits [20]. Therefore it is unlikely to be as viscous as the

liquid flowing through it. Thus the theory is the agarose gel forms a structure

throughout the liquid and when the liquid is pulled away, in this case by gravity, the

agarose remains behind. Thus the agarose gel being left behind while the liquid

squeezed out from around it could explain the change in permittivity. The permittivity

change is the increase in concentration of the agarose gel as the TAE buffer

concentration decreases. This is similar to the evaporation phenomenon discussed in

section 8.4 “EVAPORATION” in which all impurities would increase in concentration as

the liquid evaporates away.

8.3.3 MAINTAINING HORIZONTAL POSITIOINING

The obvious fix to this issue of tilting is to attempt to keep the surface horizontal for the

duration of the molecular binding time. However, this proved impractical due to the

instability of the circuit board sitting at a sharp angle on a bench top. Simple acts like

 63

placing the black bag over the board to avoid ambient light was enough to change the

angle of the board and introduce a “tilt shift”. Even taping the board to the bench top

was not enough to keep the system stable. The challenge is to maintain a constant

concentration of free ions and the tilting phenomenon had to be eliminated.

8.3.4 SUMERGE SENSOR SURFACE

This adjustment was based on the theory that if the Spreeta is sensitive to liquid

thickness, and more importantly changes in liquid thickness, then it might make sense

to eliminate any possibility for changes in liquid thickness. To accomplish this “infinite”

depth of liquid, the Spreeta was partially submerged in a beaker filled with analyte. The

goal is to completely submerge the gold surface without submerging the pins, as the

pins carry electrical signals and a beaker of analyte will short out the pins and make the

device inoperable (or potentially damage either the driver or the Spreeta).

This experiment required a change in the circuitry: specifically, the Spreeta had to be

put on a long tether (aka. umbilical) so the driver circuitry could remain on the bench

top while the Spreeta was free to be dipped into the beaker. The cable was hand-wired

and roughly 2 feet long with the ground line wrapped around the signal pins for

increased noise immunity.

8.3.4.1 EXPERIMENTAL RESULTS

The results of the Spreeta on a tethered cable dipped into a beaker of analyte were

encouraging in that the set-up remained fully functional and the Spreeta generated a

consistent reading of a characteristic plasmon resonance dip, but the experiment

became too unconstrained. Some of the difficulties using the device in this

configuration were:

 64

1) liquid getting on the pins of the device (e.g. the Spreeta dipping too far into the

beaker)

2) motion of the Spreeta whenever the beaker was even slightly disturbed

3) ambient light (we even unscrewed the light bulbs in the lab)

4) introducing the analyte: bubbling vapor into the beaker was especially

challenging

8.3.4.2 APPLICABLE USE CASES

This experiment showed some promise for a specially adapted environment to this

arrangement in which the Spreeta pins are sufficiently protected from the analyte.

Another challenge with this arrangement is the required bulk of the analyte: enough to

dip the Spreeta. The use case for “dipping” might be a food processing plant in which

the analyte is constantly flowing across the stationary Spreeta device. In this use case,

there would be plenty of depth for the Spreeta, the environment could be ambient

controlled and the sensing to be a change in some characteristic of the product beyond

manufacturing tolerance. For example, a yogurt manufacturer where the product has

become too alkaline (sour) or a fish hatchery that requires a carefully controlled

balance of nutrients in the water. The Spreeta could simultaneously monitor for

ambient light, which might be an indicator that the water level in the tank has become

too low.

8.4 EVAPORATION

Part of the initial design of the Spreeta monolayer was to cover over the monolayer with

a 1% concentration of agarose in the TAE buffer to build a “wet” environment for the

antibodies. This type of covering was theorized to keep the antibodies healthy and

 65

active for a prolonged period of time. Allowing the antibodies to dry out would render

them incapable of performing their analyte attachment activities. Further, the analyte

was theorized to be small enough to work its way into the hydrogel and attach to the

antibody.

8.4.1 Observation

Our findings show that during an assay the hydrogel evaporates off the face of the

surface in about an hour. This observation was very surprising and we wondered why

the evaporation was so rapid. We expected the hydrogel to survive on the surface for

days as opposed to minutes. Further, what we thought was antibody activity as

registered by a shift in the SPR waveform was merely the observation of the

evaporation of the liquid on the surface.

8.4.2 THEORY

Our theory as to why evaporation would cause a shift in SPR is a direct response to a

measured changed in permittivity. In this case, the permittivity of the biomaterial in the

interrogation field of the Spreeta device would be an increased concentration of

“impurities” left behind by the pure water transitioning into vapor (see Figure 32).

 66

Figure 32. Illustration of Dry Surface Effects on Spreeta

Thus to keep the hydrogel on the surface longer we made three adjustments:

1) increase the concentration of agarose in the hydrogel

2) control the ambient temperature

3) reduce the power of the internal Spreeta LED

Increasing the concentration of the agarose in the hydrogel should have significantly

slowed the evaporation process. Additionally, keeping the hydrogel in a cool

environment should likewise slow evaporation as before we had been quite cavalier

about working in Atlanta’s hot weather. Neither experiment showed a significant

decrease in the evaporation rate. So we turned our attention to the gold surface of the

Spreeta, which perhaps was acting like a hot plate.

 67

8.4.3 MITIGATION STRATEGIES

We reduced the power of the Spreeta’s internal LED by adding circuitry and software to

turn off the LED when we were not capturing data and turning it on only when running

an interrogation of the surface. We also adjusted the light intensity. Neither

adjustment had any significant affect on the evaporation rate of the hydrogel.

As a final experiment, we covered a Spreeta surface with hydrogel and without even

turning on the device, placed it in a 4oC temperature chamber. In less than 24 hours,

the surface was dry. Thus we abandoned the idea of controlling evaporation on the

surface of a Spreeta open to ambient air. The best environment for Spreeta usage

would be one where evaporation was eliminated and a constant supply of analyte was

being presented to the Spreeta surface.

8.5 FLOW CELL

Many of the issues discovered with this research can be mitigated using the “Flow Cell”

available directly from Texas Instruments. This cell is a custom fit mechanical housing

for the Spreeta device and exposes a sealed liquid channel across the gold surface of

the inserted device (see Figure 33).

Figure 33. Spreeta Flow Cell

 68

8.5.1 FLOW CELL ADVANTAGES

The flow cell is designed to mitigate some of the factors that affect SPR readings such

as:

 1) elimination of ambient light

 2) constant liquid thickness

8.5.2 FLOW CELL USAGE

Additionally, the flow cell provides a convenient mechanism to introduce analyte to the

Spreeta by using a syringe to add the solution containing the analyte. We used this

tool to run both positive (urinine) and negative (Alexa) tests on the Spreeta device.

Some of the issues to overcome in using the flow cell are:

1) Keep a constant pressure

 - don’t stomp on the syringe

 - block outlet when changing syringes

2) Avoid air pockets (don’t let the paper towel at the outlet suck out the liquid)

3) Fill the entire chamber when introducing new liquids

By following these simple rules, we were able to achieve results that were more

consistent with our expectations. There were no more issues with trying to perform

assays with the lab lights turned off or covering the Spreeta with a baggie. The flow

cell does, however, introduce a phenomenon with building the monolayer: with the

Spreeta in the flow cell, the channel for protein “A” complex binding is now 3-

dimensional.

 69

8.5.3 CONCERNS WITH FLOW CELL USAGE

The channel is narrower than the full size of the Spreeta gold surface so rather than

build the monolayer on the gold surface with a micropipette, we built the monolayer by

introducing the chemicals and biomaterials via the syringe. Thus we were always

concerned about the cover/lid of the flow cell and the gasket that sealed the lid to the

gold surface, wondering if they were introducing contamination or if the protein “A” or

the anti-FITC would stick to those materials. Additionally, we were concerned about

turbulence in the channel during introduction of the analyte.

8.6 MULTIPLE SIMULTANEOUSLY INDUCED PLASMONS

At this next step we gained valuable insight into the Spreeta itself: rather than think of

the Spreeta as a single SPR biosensor, it is more conducive to proper interpretation of

the output to think of it as 128 simultaneous SPR engines all operating at progressively

increasing wavelengths. This must be clearly understood because the temptation is to

assume the biolayer is “text-book perfect” across the entire face of the Spreeta sensor

surface and there should be exactly one resonant frequency at all times. Our findings

demonstrate that this is assumption will lead to false interpretation of the output.

As illustrated in Figure 34, it is straightforward to imagine several locations along the

face of the gold film resonating with the inconsistent levels of permittivity within the

interrogation fields. Three possible causes for simultaneous resonance are illustrated:

resonance at the expected wavelength induced by the ideal conditions (far left),

resonance at the wavelength interrogating a patch of non-specific (random) binding,

and resonance due to variations in interrogation depths caused by shorter wavelengths

(far right). For the third example, consider a charge distribution gradient that is highest

 70

near the structure of the monolayer and gradually lessening as distance increases into

the random particle distribution of the buffer. In such a gradient the “blue shifted”

interrogation will be stronger in the higher charge densities but the “red shifted”

interrogation will penetrate farther into the lower charge densities.

Figure 34. Multiple Simultaneously Induced Plasmons

Our observations of the waveform output from the Spreeta correlate with this “multiple

simultaneous resonance” theory in that we have clearly seen cases where the curve

widened or narrowed as opposed to strictly shifting right or left, indicative of a change

in resonance in one region without a complimentary change at the opposing region.

Thus it is beneficial to study the “raw” data coming from the Spreeta, which may be

yielding quantitative information about the monolayer itself as opposed to just

operational information about resonance shift. It may be yielding information on both

shifting and “skipping” at the same time.

8.7 FREE CHARGE (pH)

The underlying premise of Surface Plasmon Resonance is its measurement of Relative

Permittivity. The Relative Permittivity can also be defined as a material’s “dielectric

constant”:

 71

A dielectric material is a substance that is a poor conductor of electricity, but an

efficient supporter of electrostatic fields. If the flow of current between opposite

electric charge poles is kept to a minimum while the electrostatic lines of flux are

not impeded or interrupted, an electrostatic field can store energy. [17]

In layman’s terms, permittivity is the measure of how well a material can conduct

electricity. It is inversely proportional to a material’s dielectric properties which is a

measure of the extent a material will hold it’s charge. A good dielectric is a good

insulator; a material with high permittivity is a good conductor. The amount of free

charge, or charged particles, in a liquid determines its conductivity or permittivity. Pure

water (de-ionized water) is the standard of neutrality for pH (pH=7) but this doesn’t

imply that there is no free charge in deionized water. In fact, there is a balance of free

positive (H+) and free negative (OH-) particles.

However, this research supports the observation that free charge, as measured by pH,

can also be directly measured by the Spreeta device and therefore is a measure of the

permittivity registered by the sensor. Permittivity has a real component and a complex

component. The real component represents the arrangement of the atoms in a fixed

structure. An example is the dielectric material used in a standard capacitor. In this

example,the dialcomplex part of permittiity is ignored. However the complex part of the

permittivity is due to mobile ions. So although a capacitor dielectric has negligible free

ions, a biological immunoassay in aqueous solution does not. Thus one would expect

a profound effect on the optics of a SPR biosensor due to the free ions within the field

of interrogation of the incident light excitation.

 72

8.7.1 MEASUREMENT PROCEDURE

As the foundation of the biological interface is the TAE buffer, the procedure to

measure the effects of free charge (pH) on the Spreeta surface was simply to eliminate

all other biological materials and work only with the buffer. Thus a variety of different

pH buffers were prepared using TAE as a base and mixing in appropriate

concentrations of either Amino Ethanol (NH2CH2CH2OH- Base) to lower the pH of the

solution or Sulfuric Acid (H2SO4 -Acid) to raise the pH of the solution. With these

mixtures, it was possible to adjust only one variable of pH while keeping constant the

other characteristics of the TAE buffer. The final pH of each solution was verified using

a pH meter in the biology lab.

Table 3. pH of TAE Solutions

TAE802 pH 8.02 (used as reference)

TAE868: TAE + Base pH 8.68

TAE717: TAE + Acid pH 7.17

TAE627: TAE717 + Acid pH 6.27

TAE417: TAE627 + Acid pH 4.17

Water pH 5.76

As shown in Table 3, the pH of the TAE buffer was adjusted and measured.

Additionally, the water in the Biolab was measured as well and found to be pH 5.76 (as

opposed to 7.0). The de-ionized water is set to be pH of 5.76 due to its use in a

biology lab. It is calibrated to be as close to physiological pH as possible to facilitate

the bioresearch typically conducted in the lab.

 73

8.7.2 THEORY OF EXPECTED RESULTS

SPR measures permittivity and as such measures the biolayer’s capability to sustain an

electrical field. The more free charge there is in a material the less that material can

maintain an electric field. Thus at pH of 7.0, the TAE buffer should be the least ionic

and have the lowest permittivity. Either raising the pH (increased positive free ions) or

lowering the pH (increased negative free ions) will increase the permittivity and register

a shift to the SPR curve.

As illustrated in Figure 35, as pH changes the SPR curve should theoretically shift

accordingly. The SPR curve will be at the farthest point to the right at the most neutral

pH and shift left for both positive and negative ionic concentration increases. Thus an

increase in positive free charge: a change in pH from 7.0 6.0; will shift the

resonance curve to the left. An equal but opposite increase in negative free charge: a

change in pH from 7.0 8.0; will also shift the resonance curve to the left and by the

same amount as the positive shift.

 74

Figure 35. Relative SPR Curve Shift Directions Resulting from pH Changes

Thus the SPR curve can shift left or right as the concentration of free charge increases

or decreases in the field of interrogation. It all depends on the free charge in the

“before” case as opposed to the free charge in the “after” case.

8.7.3 MEASURED RESULTS

The first step was to capture the initial waveform at TAE buffer pH 8.02 as shown in

Figure 36. With TAE802 as the baseline, the result of adding other solutions will cause a

left shift in the SPR curve indicating “more ionic” and a right shift for “less ionic”:

Figure 36. Baseline of TAE802 w/o pH Adjustment

 75

Capture the initial waveform at TAE buffer pH 8.02. This will cause a left shift in the

SPR curve indicating “more ionic” and a right shift for “less ionic”:

pH 7.0 Right Shift 1 graticule

pH 6.0 No Shift (same ion concentration as 8.0)

pH 5.0 & 9.0 Left Shift 1 graticule

pH 4.0 & 10.0 Left Shift 2 graticules

Figure 37. TAE802 Water: pH 5.76

As shown in Figure 37, the result was a very large shift to the right. We can’t quite

explain the drastic difference or the direction of the shift since the expected result was

a small shift to the left (5.0 would yield a 1-graticule shift left > 5.0 so the shift left

should be even smaller than one graticule with 5.76). Also note the deformation of the

curve in the absolute picture: the red (new position) curve doesn’t hit the green cursor

as the black (original position) curve does. Note also the red curve is more “rounded”

at the resonance curves.

 76

Figure 38. Water: pH 5.76 TAE802 (expect the shift to disappear)

As shown in Figure 38, the result was very close to “as expected” although not perfect.

Possibly the water cause a permanent shift by changing the characteristics of the gold

film surface. Perhaps the observation is due to a hydrophobic or hydrophilic change at

the sensor’s surface.

Figure 39. TAE pH 8.02 TAE868 (expect small left shift)

This result, as shown in Figure 39, shows the waveform is relatively close to “as

expected” and the Spreeta is capable of measurable sensitivity to a relatively small

change in pH:

8.68-8.02 = 0.66 0.366V High/-0.218V Low Change

 77

Thus a graticule of a full pH change would be expected to be even bigger than the one

registered for this change.

Figure 40. TAE + Base pH 8.68 TAE pH 8.02 (expect return to original)

As shown in Figure 40, the waveform is very close to original waveform except there’s

even more deformation of the original curve which can easily be seen on the differential

plot. The waveform seems to have an overall widening towards the right as opposed to

a shifting in either direction as can be seen from the multiple negative dips with no

positive peaks.

Figure 41. TAE802 TAE 717 (expect near maximal right shift)

 78

The waveform in Figure 41 is the biggest shift left registered yet. This result is very

hard to explain using only pH as a motivation for the measured change in permittivity,

but it was clearly measured and preserved here for further analysis.

Figure 42. TAE717 Water pH 5.76 (expect “Water” waveform as in Figure 37)

As shown in Figure 42, the original waveform is as expected; it is basically the water

waveform with the characteristic rounded SPR curve except that it is shaped differently

based on the differential data:

Figure 37 High: 0.192/Low: -0.293 vs. Figure 42 High: 0.133/Low –0.308

8.7.4 OBSERVATIONS

Unfortunately, these exact same results could not be obtained with multiple trials.

There is obviously something affecting the SPR curve shift readings either over time or

between assays. Under the assumption that the Spreeta measures only permittivity,

there’s no reason to think that “water early” is different than “water late”. Variations

over time could be:

• heat

• shifting inside flow cell (gasket, Spreeta, Inlet & Outlet tubes, etc.)

 79

• leakage of liquid onto electronics

• air pockets trapped inside Spreeta (perhaps in the form of bubbles)

Figure 43. Water pH 5.76 TAE627 (expect very little shift)

As shown in Figure 43, the final result was a large right shift.

8.7.5 NEXT STEPS:

These results need to be correlated with the QCM results (where no shift due to pH

change is expected since changing pH shouldn’t make a “stiffness” change to the

quartz). We also need independent measurements of our prepared samples to

validate these results. As it was a surprise that the water in the lab was so acidic, it

may be that the TAE didn’t start from pH 8.02 which would be an important factor to

interpreting these results.

 80

CHAPTER 9: CONCLUSIONS

This department has gained significant insight and even a publication as a direct result

of this research. This project enjoyed early successes in the hardware design and the

software design (both algorithmic and device control). Additionally, this research

provided curtail insight for Surface Plasmon Technology as another alternative for

detecting and monitoring molecular events in the sensors portfolio.

9.1 SUCCESSES

First of all, the most important conclusion is that the system is fully operational and can

detect and display analyte attachment for immunoassays in real-time. The system is

robust enough to withstand multiple runs of experiments and as portable as hoped.

From running salt-water experiments in my office, to running immunoassays at Georgia

Institute of Technology, the system performed without failure.

The goal of this experiment was to determine if a commercially available Surface

Plasmon Resonance device is a viable component in a biosensor, and the result of this

experiment shows that indeed, the Spreeta from Texas Instruments can be used quite

easily and reliably to detect changes in liquid assays: from changes in bulk density

(increase in salt content) to analyte attachment in an immunoassay, the Spreeta yields

results.

The amount of hardware and software required to capture these results is quite minimal

and definitely low cost: the hardware required is simple, industry standard and readily

available, and the amount of software required to run the entire system (including the

 81

screen draw routines) is only 1555 lines of “C” code (including comments, and I write a

lot of comments). The information to attach the device is right on the Texas

Instruments website and the direct support from the help desk was easily accessible: all

e-mail was answered in less than 24 hours.

9.2 OBSERVATIONS

To successfully apply the general technology of SPR and specifically with the Spreeta

deice, there must be strict control on many, many parameters. Any change in any of

the listed parameters will directly result in a shift of the resonant frequency and

therefore register as a characteristic change. The amount of shift due to these artifacts

can likely be measured and subtracted from the shift leaving just the shift due to the

actual events under test. Thus this technology can be applied to molecular events but

must be carefully controlled and characterized.

9.2.1 AMBIENT LIGHT

Although this is not a general artifact of SPR, the Spreeta’s design, with the thin film

exposed to light penetration, makes ambient light penetration of the film an artifact that

will affect the waveform.

9.2.2 VISCOSITY/EVAPORATION

As the water content of the liquid under test evaporates, the “impurities” in that water

will increase in concentration in the remaining liquid. This will necessarily increase the

“impurities” in the field of interrogation and once again cause a shift in the SPR

resonant frequency.

 82

9.2.3 pH

A change in pH will directly affect the permittivity over the entire liquid field, which will

directly cause a shift in the SPR resonant frequency.

9.2.4 TEMPERATURE

As temperature changes, a liquid typically becomes either more or less dense. A

change in the density of the liquid will change the concentration of the “impurities” in

that liquid and perhaps even the permittivity of the liquid medium itself. Either of these

phenomenon will cause a shift in the SPR resonant frequency.

9.3 IMPROVEMENTS AND ENHANCEMENTS

Several improvements and enhancements can be made to the biosensor design as

currently implemented for this thesis effort.

9.3.1 SOFTWAE ALGORITHM

1) Allow the vertical sensitivity of the differential mode to be dynamic: having the

value fixed at 5.86mV may not apply to all assays.

2) Provide a horizontal zoom in addition to the vertical zoom; in fact, the vertical

zoom has not proven very useful in all of the testing to date.

3) Print more of the significant digits for the RIU reading on the screen, since

there’s only a 0.042 RIU spread between the minimum and maxim values, the

display should provide more information on the exact location of the minimum &

maximum

4) Provide two scroll bars the user can move over the waveforms with the readings

along the side of the screen reporting the pixel value and RIU at each scroll bar

 83

5) Add the threshold capability outlined above and enhance the UI so the user can

identify what action to take when the differential screen crosses the thresholds

(e.g. enter an e-mail address and text to be sent, enter a phone number to call

and record a message to be played, etc

9.3.2 HARDWARE

1) The low-power mode of the hardware could be explored and perhaps turning off

the LED can be compensated such that it doesn’t affect the readings.

2) Eliminate the power-line hook-up and let the Accompli 009 source the power for

the Spreeta and the connection circuitry.

3) Build a cable adapter between the Accompli 009 serial port and a PC in order to

pump the data through to the PC-based algorithms developed by Texas

Instruments. This would provide direct correlation between any results gathered

by this sensor design and any published results using the standard software

package.

9.4 APPLICATIONS

This biosensor can readily serve any application where the goal is to detect real-time

drift away from a calibrated (e.g. “known good”) starting point. An application in

manufacturing process control springs immediately to mind. For example the sensor

can be immersed in vitro into a chemical processing plant and upon detection of a drift

outside the calibrated limits (or better yet drifting towards violation of the calibration

limits) the biosensor can wirelessly notify the system administrator and/or adjust the

process’ inputs.

 84

This sensor can continuously monitor and, as a component in a feedback control

environment, maintain the quality of the output. There are practical applications in food

processing, drug manufacturing, oil refineries and waste management. Note that this

sensor is only suited to liquid applications as constrained by the Spreeta device and as

implemented does not have direct application in any sort of “vapor phase” analysis.

 85

APPENDIX A: HARDWARE SCHEMATIC DETAILS

 86

As shown in Figure 44, the hardware schematic for this project was hand-drawn instead

Figure 44. Hardware Schematic

 87

of captured on a logic-capture system. Since the project was implemented on a bread-

board with through-hole parts, there was no compelling reason to use a logic-capture

system. This was the fastest way from design to implementation. As explained in

CHAPTER 5:, “HARDWARE DESIGN”, the entire project was built from readily

available componenets such as free samples from the vendors and low-cost

components from Radio ShackTM. The design was intended to be robust and never

cause any loss of time which is why there are extra circuits like a diode bridge in the

power input circuit to avoid reversed tip polarity.

A stack of 20-pin sockets was always used to ensure the integrity of the connectors to

the Spreeta and for easy repair if a pin was broken during instertion/extraction. The

connector to the Accompli 009 as well as the connector to the Spreeta was soldered

and when verified was covered over with plastic cement (non-conductive) so no amont

of yanking on the wires (which happens a lot when a board gets dragged aound for two

years) would break the connections.

The power supply need only deliver a DC voltage of greater than 5V so any supply

from 6V up will work well. The only constraint on the power supply comes from the 5V

linear regulator: the board draws approximately 200mA when running full out and if the

DC voltage is too high, the linear regulator will be converting a fair amount of that

voltage drop into heat. There’s been no issue with heat using a 9V supply but if a 12V

supply is readily available, there’s no reason to hesitate to use that power supply

instead. Simply check the 5V regulator to make sure it isn’t overheating if there’s ever

any concern. Note that running in low-power mode makes this even less of an issue.

 88

In a production implementation, it might be prudent to switch the 5V rail to a switching

power supply as long as the voltage supplied to the A/D converter is carefully designed

to be ripple free (low-pass filters likely required). Admitidly, the design shown is over

cautious about noise so there is opportunity for circuit reduction if this design is ever to

be taken into actual production. Addtionally, as mentioned in section 9.3.2

“HARDWARE”, a production implementation would likely eliminate the external power

supply and run off the Accompli 009 battery directly which would be another motivation

to re-visit the power distribution design.

 89

APPENDIX B: SOFTWARE LISTING

 90

/***
 *
 * Thesis Research Project
 * Biosensors
 * Dr. William Hunt
 * Fall, 2003
 *
 * Project: build a working Spreeta BioSensor
 * w/wireless notification
 *

 *
 * Module Name:
 * spreeta.c
 *
 * Creator:
 * Author: dsommers
 * Date: 2/20/2001
 *
 * Purpose:
 * Continuously transfer the TI Spreeta device to the LCD
 *
 * Note: the algorithm attempts to do most of the overhead processing when
 * the pixel value equals 0 or when the user changes modes because
during
 * those moments, we're not in the middle of gathering data from the
 * Spreeta and thus the timing is not nearly so critical...
 *
 * Revision A: Add capability to turn off Spreeta's LED as we seem to be
boiling
 * away the liquid on the sensor. This will save power as well as
 * reduce the energy absorbed into the gold surface
 *
 * Revision B: add user inputs for controlling low power vs. high speed
 * and adjustable integration period.
 * June 7, 2001 DRS
 *
 * Revision C: show the change in the waveforms as red lines while keeping
 * the black lines so it's easier to see change.
 * July 12, 2001 DRS
 *
 * Revision D: smooth the waveforms so they don't jump around so much
 * while the sensor is running. Also useful to eliminate "rogue"
 * detector cells
 * October 10, 2001 DRS
 *
 * Revision E: add the threshold cursors to be able to detect when the
 * sensor has changed significantly
 * February 15, 2002 DRS
 *
 * Revision F: send wireless notification upon violation of threshold
 * May 15, 2002 DRS
 *
 **/

#define VFMAPI_H
#define GSM
#include <features.h>
#include <stdio.h>
#include <stdlib.h>
#include <types.h>

#include "mbatypes.h"
#include "mbadefs.h"
#include "mbaproto.h"

 91

#include <modes.h>
#include <signal.h>
#include <string.h>
#include <airrun.h>
#include <thread.h>
#undef PWM_PERIOD

#include <sgstat.h>
#include <cglob.h>
#include <process.h>
#include <as_sigs.h>
#include <error.h>

#include <common.h>
#include <event.h>
#include <os_proto.h>
#include <fis.h>
#include <memory.h>
#include <module.h>
#include <emerald.h>
#include <regs_vz.h>
#include <compress.h>
#include <math.h>
#undef SIG_REORG
#include <mdsdefs.h>

#undef ERROR

/* function prototypes */
void CopyBitmapToScreen(char *FileBitmapName);
void display_absolute_screen(void);
void PrintTextToScreen(int16 y, int16 x, string txt);
void tmode_nopause(void);
void SampleSpreeta(int CaptureMode);
int ProcessUserInput(u_char input_data, int *algorithm_mode);
fisID_t BuildSMSMessage(char *AddressList, char *MessageText);
void SpawnNotification(void);
int CapturePopUpText(char **CaptureString, Point_t CurrPoint);

#define TOTAL_SPREETA_PIXELS 128
#define SPREETA_RESET_CLOCKS 18
#define RIU_MAX 1.368
#define RIU_MIN 1.320
#define WELCOME_SCREEN_FILE "MODULE:welcome.rob"
#define SIMULATION_ABSOLUTE_FILE "MODULE:sim_abs.rob"
#define SIMULATION_DIFFERENTIAL_FILE "MODULE:sim_diff.rob"
#define SLEEP_1_SECOND 100
#define SLEEP_HALF_SECOND 50

#define DRAW_ABSOLUTE 1000
#define DRAW_ZOOM 1001
#define DRAW_DIFFERENTIAL 1002

#define CONTINUE_ALGORITHM 2000
#define RESTART_ALGORITHM 2001
#define QUIT_ALGORITHM 2002

/* define the return values for the cursor interference checks */
#define NO_INTERFERENCE 3000
#define ERASURE_COMPLETE 3001
/* define the modes for spreeta capture */
#define CAPTURE_PIXELS 3001
#define BEGIN_INTEGRATION 3002

#define TEXT_HEIGHT 8
#define TEXT_WIDTH 8

 92

#define SPACE_BETWEEN_TEXT_LINES 1
#define TEXT_LINE_SPACING (TEXT_HEIGHT + SPACE_BETWEEN_TEXT_LINES)
#define CURSOR_WIDTH TEXT_WIDTH - 4
#define CURSOR_HEIGHT TEXT_HEIGHT - 2

/* all of the locations for the draws */
#define Y_TITLE 10
#define X_TITLE 70
#define X_VERT_AXIS 45
#define X_VERT_LABEL 10
#define X_TIME_LABEL (X_VERT_AXIS + 19)
#define Y_TOP_VERT_LABEL 25
#define VERTICAL_AXIS_TEXT "Intensity"
#define Y_VERT_LABEL_SPACING 30
#define Y_2ND_VERT_LABEL (Y_TOP_VERT_LABEL + Y_VERT_LABEL_SPACING)
#define Y_3RD_VERT_LABEL (Y_2ND_VERT_LABEL + Y_VERT_LABEL_SPACING)
#define Y_BOT_VERT_LABEL (Y_3RD_VERT_LABEL + Y_VERT_LABEL_SPACING)
#define Y_HORZ_AXIS_VALUES (Y_BOT_VERT_LABEL + TEXT_HEIGHT + 4)
#define Y_HORZ_AXIS_LABEL (Y_HORZ_AXIS_VALUES + TEXT_LINE_SPACING+1)
#define X_HORZ_AXIS_LABEL (X_VERT_AXIS+28)
#define X_SAMPLE_LABEL (X_HORZ_AXIS_LABEL + 50)
#define X_SAMPLE_COUNT 76
#define Y_SAMPLE_COUNT_LABEL (Y_HORZ_AXIS_LABEL + TEXT_LINE_SPACING+2)
#define STATUS_BAR_HEIGHT TEXT_HEIGHT
#define Y_HORZ_AXIS (Y_BOT_VERT_LABEL + TEXT_HEIGHT)
#define HORIZONTAL_AXIS_TEXT "Incident Angle"

#define X_AVG_MIN_MAX_LABEL 180
#define Y_AVG_LABEL (Y_TOP_VERT_LABEL + 7)
#define Y_MAX_LABEL (Y_AVG_LABEL + TEXT_LINE_SPACING + 15)
#define Y_MIN_LABEL (Y_MAX_LABEL + TEXT_LINE_SPACING*2 + 15)
#define X_AVG_MIN_MAX_VALUE X_AVG_MIN_MAX_LABEL

#define TOP_GRAPH_BOUNDARY Y_TOP_VERT_LABEL+TEXT_HEIGHT
#define BOTTOM_GRAPH_BOUNDARY Y_BOT_VERT_LABEL+TEXT_HEIGHT
#define POPUP_TOP_X 15
#define POPUP_TOP_Y 20
#define POPUP_BOTTOM_X 224
#define POPUP_BOTTOM_Y 145
#define POPUP_BOARDER_THICKNESS 5
#define ERROR_NO_TEXT_CAPTURE 911
#define MAX_POPUP_TEXT_LINES 20
#define MAX_POPUP_LINE_LENGTH 200

/* define some of the purrrrdy collers */
#define COLOR_BLACK 3
#define COLOR_WHITE 0
#define COLOR_TRANSPARENT 4
#define COLOR_BLUE 8
#define COLOR_BLUE_GREEN 31
#define COLOR_RED 171
#define COLOR_YELLOW 249
#define COLOR_GREEN 33
#define COLOR_DK_GREEN 111
#define COLOR_BROWN 193
#define COLOR_PRUPLE 46
#define COLOR_BURGUNDY 87
#define COLOR_LIGHT_RED 220

/* leave some room above and below the zoom inital values */
#define SCREEN_MAX_OFFSET 40
#define SCREEN_MIN_OFFSET 40

/* keep the TICKS PER PIXEL an even power of two to avoid floating point */
#define DIFFERENTIAL_ADC_TICKS_PER_SCREEN_PIXEL 8

/* A/D converter value corresponding to Spreeta's maximum output */

 93

#define SPREETA_ADC_3V_VALUE 0xFFF
#define SPREETA_ADC_2V_VALUE ((SPREETA_ADC_3V_VALUE * 2) / 3)

/* define the different handles for styles of text */
#define NORMAL 0
#define EMPHASIZED 1
#define LARGE 2
#define LGEMPHASIZED 3
#define CAPTION 5
#define HILITCAPTION 6
#define CONTROL 7
#define HILITCONTROL 8
#define INACTCONTROL 9
#define LGCONTROL 10
#define LGHILITCONTROL 11
#define LGINACTCONTROL 12
#define STATUSBAR 13
#define SYSTEMCONSOLE 14
#define MINIME_TEXT 15
#define CLOCK_TEXT 16
#define NELSON_PROP_TEXT 17
#define GARNER_SAN_SERIF_TEXT 18
#define MASON_SAN_SERIF_TEXT 19
#define SPITFIRE_TEXT 20
#define SPITFIRE_LARGE_NONPROP 21

/* SPI register control data */
/* note: the book is wrong! the transmit & receive registers are 16 bits wide
*/
#define SPI_RECEIVE ((volatile u_int16*)0xFFFFF700)
#define SPI_TRANSMIT ((volatile u_int16*)0xFFFFF702)
#define SPI_CONTROL ((volatile u_int16*)0xFFFFF704)
#define SPI_STATUS ((volatile u_int16*)0xFFFFF706)
#define SPI_SAMPLE ((volatile u_int16*)0xFFFFF70A)
#define SPI_EXCHANGE *SPI_CONTROL |= 0x0100

/* configure SPREETA: 3 bit data transfer; 8MHz clock rate (sysclk/4) */
#define SPI_SET_SPREETA *SPI_CONTROL &= ~(0xE00F); *SPI_CONTROL |= 0x0003
/* configure MAXIIM: 13 bit data transfer; 2MHz clock rate (sysclk/16) */
#define SPI_SET_MAXIM *SPI_CONTROL &= ~(0xE00F); *SPI_CONTROL |= 0x400C
#define WAIT_EXCHANGE while ((*SPI_STATUS & 0x0008) == 0) {;}

/* define the SPI data for the shift register */
#define MAXIM_CS 0x0000
#define SPREETA_START 0x0006
#define SPREETA_CLOCK 0x0005
#define SPREETA_BOTH 0x0007
#define SHIFT_REG_ALL_OFF 0x0004
#define SPREETA_LED_ON 0x0008

/* interrupt controller definitions */
#define INTERRUPT_MASK_REGISTER ((volatile u_int32*)0xFFFFF304)
#define MASK_ALL_INTERRUPTS 0xFFFFFFFF
#define MASK_INTERRUPTS gSavedInterruptMaskValue =
*INTERRUPT_MASK_REGISTER; \
 *INTERRUPT_MASK_REGISTER = MASK_ALL_INTERRUPTS
#define RESTORE_INTERRUPTS *INTERRUPT_MASK_REGISTER =
gSavedInterruptMaskValue

/* PWM definitions */
#define PWM1_PERIOD ((volatile u_int8*)0xFFFFF504)
#define PWM1_COUNTER ((volatile u_int8*)0xFFFFF505)
#define PWM1_SAMPLE ((volatile u_int8*)0xFFFFF503)
#define PWM1_CONTROL ((volatile u_int16*)0xFFFFF500)
/* for 32mA LED current, ideal integration period is ~25mSec
 1/32.768KHz = 30.52uSec
 25mSec = 30.52uSec * 820

 94

 Use default count set to 128 to insure room for increase/decrease
 25mSec/128 = 195.3uSec
 Thus divide the 32KHz clock by: 195.3/30.52 = 6.4 = ~6
*/

/* PWM1_CONTROL = 0x8310; 1 32KHz Crystal clock source
 0000011 prescaler of 3 for 195uSec tick rate
 0 Interrupt Request
 0 Disable Interrupt
 0 FIFO Available
 1 Enabled
 00 No samples repeated
 00 Divide Clock Source by 2 for 61.1uSec
Tick Rate */

/* note: must re-init PWM1 every usage because keyboard beeps & clicks will
change it */
/*
#define START_COUNTER *PWM1_CONTROL = 0x8310; *PWM1_PERIOD = 0xFF;
*PWM1_SAMPLE = 0xFF
#define RESET_COUNTER (*PWM1_CONTROL &= ~(0x0010))
*/
/* 32.768KHz/6 * 25mSec = 136 sample count:
 each increment/decrement of the integration timeout
 increases/decreases the integration period by 183.1uSec
*/
/*
#define DEFAULT_INTEGRATION_TIMEOUT (u_int8)136
*/

/* Note: can't get enough resolution out of the PWM, so use Timer2 set to
10uSec */
#define TMR2_COUNTER ((volatile u_int16*)0xFFFFF618)
#define TMR2_PRESCALE ((volatile u_int16*)0xFFFFF612)
#define TMR2_CONTROL ((volatile u_int16*)0xFFFFF610)

/* want 1uSec resolution: use SYSCLK/16 = 32MHz/16 = 2MHz
 1uSec => 1MHz
 2MHz/1MHz = 2 = prescale 2
 for 10mSec delay 10mSec/1uSec = 10000 = Timeout Value
 Integration increment = 50uSec => 50
*/

/* TMR2_CONTROL = 0x0105; 1 Free Running mode
 00 Disable Capture
 0 Active-low Pulse
 0 Disable Compare Interrupt
 010 SYSCLK/16
 1 Timer Enabled
*/

#define START_COUNTER *TMR2_CONTROL = 0x0105; *TMR2_PRESCALE = 2;
#define RESET_COUNTER (*TMR2_CONTROL &= ~(0x0001))

#define DEFAULT_INTEGRATION_TIMEOUT (u_int16)10000
#define TIME_PERIOD_OF_5mSEC 5000
#define INTEGRATION_INCREMENT 50
/* Port J Definitions; used to control SPI_SS programmatically instead of SPI
driven */
#define PJ_DIRECTION ((volatile u_int8*)0xFFFFF438)
#define PJ_DATA ((volatile u_int8*)0xFFFFF439)
#define PJ_PUEN ((volatile u_int8*)0xFFFFF43A)
#define PJ_SELECT ((volatile u_int8*)0xFFFFF43B)
#define SPI_CS_LOW *PJ_DATA &= ~(0x08)
#define SPI_CS_HIGH *PJ_DATA |= (0x08)

 95

/* Port B Definitions; used to control Alert Volume (e.g. turn it off so we
can use TIMER2 for timing) */
#define PB_DIRECTION ((volatile u_int8*)0xFFFFF408)
#define PB_DATA ((volatile u_int8*)0xFFFFF409)
#define PB_PUEN ((volatile u_int8*)0xFFFFF40A)
#define PB_SELECT ((volatile u_int8*)0xFFFFF40B)
#define ALERT_VOLUME_OFF *PB_DATA |= (0x80)
#define ALERT_VOLUME_MAX *PB_DATA &= ~(0x80)

/* FIS Type & ID */
#define BITMAP_FIS_TYPE 6
#define BITMAP_FIS_ID 18901
#define MAILOBJ_FIS_ID 18901

/* Speed Modes */
#define LOW_POWER_MODE 0x00000000
#define HIGH_SPEED_MODE 0xFFFFFFFF

/* Threshold Cursor Definitions */
#define CURSOR_SOLID 1
#define CURSOR_DASHED 2
#define CURSOR_DEFAULT_COLOR COLOR_GREEN;
#define CURSOR_SELECTED_COLOR COLOR_BLUE_GREEN;
#define MAX_CONSECUTIVE_THRESHOLD_VIOLATIONS 3

struct HorizontalCursor{
 int PositionDifferential; /* pixel position of the cursor on the
Differential Screen */
 int PositionAbsolute; /* pixel position of the cursor on the
Absolute Screen */
 int Color; /* line color */
 int Width; /* line width in pixels */
 int Style; /* line style: e.g. dashed, solid, etc.) */
 struct HorizontalCursor *Next; /* next cursor in the linked list */
};

/* notificaiton status states */
#define NOTIFICATION_DORMANT 0
#define NOTIFICATION_ENABLED 1
#define NOTIFICATION_IN_PROGRESS 2

struct SMSNotification{
 fisID_t SMS_ID; /* the FIS ID of the SMS struct */
 int Sent;
 char *Address; /* the e-mail address for this notification */
 struct SMSNotification *Next; /* next SMS notification in the linked
list */
};

/* Global variables */
u_int16 gCurrentSpreetaValue[TOTAL_SPREETA_PIXELS];
u_int16 gBaselinedSpreetaValue[TOTAL_SPREETA_PIXELS]; /* used for
differential mode */
u_int16 gPreviousScreenValue[TOTAL_SPREETA_PIXELS]; /* used to erase
previous screen pixel */
u_int16 gCapturedAbosluteScreenValue[TOTAL_SPREETA_PIXELS]; /* used to show
change since last capture */
u_int16 gCapturedZoomScreenValue[TOTAL_SPREETA_PIXELS]; /* used to show
change since last capture */
int gSpreetaAvgValue; /* average of all Spreeta Values */
int gSpreetaMaxValue;
int gSpreetaMaxValueLocation;
int gSpreetaMinValue;
int gSpreetaMinValueLocation;
int gScreenMaxValue; /* used for calculating the differential and zoom
maximum and minimum */
int gScreenMinValue;

 96

int gSampleCount; /* tracks the count for statistical fun... */
float gConvertADCToScreen; /* used to eliminate a FloatingPoint divide
during the main loop */
path_id keypad_path; /* path number to /kpad */
u_int32 gSavedInterruptMaskValue; /* data read from the interrupt mask
register */
int gSpreetaPixelsBaselined; /* used to ensure we don't try to run
differential until we have a capture */
int gDifferentialTicksPerPixelPower; /* keep an even power of 2 */
int gIntegrationPeriod; /* the time the LED is on and we're integrating
*/
u_int32 gHighSpeedMode; /* enables/disables the sleep period for low power
vs. high speed */

/* declare 2 horizontal cursors in a circular linked list */
struct HorizontalCursor gHorizontalCursor1, gHorizontalCursor2;
struct HorizontalCursor *gHorizontalCursorActive; /* pointer to the active
cursor */
struct HorizontalCursor gDifferentialCenterLine; /* red line is implemented
as a cursor */

/* globals for tracking notificaiton */
int gNotificationStatus; /* track if there's an SMS to send out upon
detection of threshold violaiton */
int gThresholdCrossedCount; /* count of number of consecutive
violations of the threshold (e.g. violation filter) */
struct SMSNotification *gpSMSNotificationList; /* pointer to linked list of
SMS messages */

extern RenderingContext_t DefaultRenderingContext; /* defined and manitained
by the LCD driver */

/* #define NOISY */ /* Uncomment if you want printf's out the A009 datacable
*/
/* #define VERY_NOISY */ /* Uncomment if you want a whole lot more printf's */
/*

**

 * Function Name: doPerformReorg
 *
 * Inputs:
 * count how many reorgs are done
 * reorgType whether to reorg the NRB area or not
 * Outputs:
 * none
 * Return:
 * none
 * Description: This function is just a stub function to make Spreeta compile
correctly
 * The actual code to the actual function is in vm/thread/event.c.
* Cautions:
 *

**

 */
void doPerformReorg(u_int16 count, u_int16 reorgType)
{
}

/***

 *
 * PrintTextToScreen()
 *
 * takes the text in the string txt and draws it to the screen at the

 97

 * (x,y) location using porportional font
 *

**
***/
void PrintTextToScreen(int16 y, int16 x, string txt)
{
 Point_t currPoint;
 WinBase_t TextWindow;

 if ((y==-1) && (x==-1))
 {
 ClearScreen(&DefaultRenderingContext,COLOR_WHITE);
 x = y = 0;
 }

 currPoint.yCoord = y;
 currPoint.xCoord = x;
 TextWindow.Rect.RX1 = 0; /* define the region of the text area as the
full screen */
 TextWindow.Rect.RY1 = 0;
 TextWindow.Rect.RX2 = 239;
 TextWindow.Rect.RY2 = 159;

 WinDrawTextT(&DefaultRenderingContext, &TextWindow, &currPoint,
COLOR_BLACK, COLOR_WHITE, COLOR_TRANSPARENT,
 MINIME_TEXT, txt, strlen((const char *)txt));
 SetTextCursor(&currPoint); /* update the cursor point to the end of the
text line */

 /* This only does non-proportional fonts
 SetTextCursor(&currPoint);
 DrawText(txt, strlen((const char *)txt)); */

}

/***

 *
 * UpdateValueOnScreen()
 *
 * Erases the text field on the screen so we can update in place. Reason
 * for this is the proportional Font leaves gaps between the characters and
 * if un-erased, the old data will show through the cracks between the
 * characters and the field will become a real mess
 *
**
***/
void UpdateValueOnScreen(int16 y, int16 x, string txt)
{
 Point_t CurrPoint;

 CurrPoint.xCoord = x;
 CurrPoint.yCoord = y;
 SetDrawingCursor(&CurrPoint);
 CurrPoint.xCoord += ((TEXT_WIDTH-2)*strlen((char *)txt))+3;
 CurrPoint.yCoord += TEXT_HEIGHT;
 Box(&DefaultRenderingContext, &CurrPoint, 1, COLOR_WHITE);

 PrintTextToScreen(y, x, txt);

}

/***

 *
 * PrintTextCursor()

 98

 *
 * print the cursor at the end of the text string
 *

**
***/
void PrintTextCursor(void)
{
 Point_t CurrPoint;

 GetTextCursor(&CurrPoint);
 SetDrawingCursor(&CurrPoint);
 CurrPoint.xCoord += CURSOR_WIDTH;
 CurrPoint.yCoord += CURSOR_HEIGHT;
 Box(&DefaultRenderingContext, &CurrPoint, 1, COLOR_BLACK);

}

/***

 *
 * EraseTextCursor()
 *
 * Erases the text cursor so we can print the next character
 *

**
***/
void EraseTextCursor(void)
{
 Point_t CurrPoint;

 GetTextCursor(&CurrPoint);
 SetDrawingCursor(&CurrPoint);
 CurrPoint.xCoord += CURSOR_WIDTH; /* erase the cursor */
 CurrPoint.yCoord += CURSOR_HEIGHT;
 Box(&DefaultRenderingContext, &CurrPoint, 1, COLOR_WHITE);

}
/***

*
 * EraseLastCharacter()
 *
 * Erases the last character in the line of text and the cursor
 *

**
***/
void EraseLastCharacter(Point_t CurrPoint, string txt)
{

 Point_t ErasePoint;

 EraseTextCursor();
 /* back up at least one character space */
 GetTextCursor(&ErasePoint);
 ErasePoint.xCoord -= TEXT_WIDTH;
 SetDrawingCursor(&ErasePoint);
 ErasePoint.xCoord += TEXT_WIDTH;
 ErasePoint.yCoord += TEXT_HEIGHT;
 Box(&DefaultRenderingContext, &ErasePoint, 1, COLOR_WHITE);
 txt[strlen((const char *)txt)-1] = 0x00; /* erase the last character
out of the buffer */
 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord, txt);
 PrintTextCursor();

 99

}

/***

 *
 * PrintNextCharacter()
 *
 * Prints the next character
 *
 * 1) erase the cursor
 * 2) print the new character by printing the entire string
 * 3) draw the cursor at the new position
 *

**
***/
void PrintNextCharacter(Point_t CurrPoint, string txt)
{

 #ifdef NOISY
 printf("Entering PrintNextCharacter with string \"%s\"\n",txt);
 #endif

 EraseTextCursor();
 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord, txt);
 PrintTextCursor();

}

 /*

**

 * Function Name: getTicks
 *
 * Simply returns the number of ticks in the OS. A tick is 10mSec
 *

**

 */
u_int32 getTicks(void)
{
 u_int32 time, date, ticks;
 u_int16 day;

 _os9_getime(3, /* julian with ticks */
 &time,
 &date,
 &day,
 &ticks);
 return ((time * (ticks >> 16)) + (ticks & 0xFFFF));

}

/*

**

 * Function Name: UpdateDateOnScreen()
 *
 * Inputs:
 * *piHour- 0-23, where 0 indicates midnight and 12 is noon
 * *piMinute- 0-59
 * *piSecond- 0-59
 *
 * Outputs:

 100

 * format- used in call to _os9_getime
 * 0 - Gregorian format
 * 1 - Julian format
 * 2 - Gregorian format w/ticks
 * 3 - Julian format w/ticks
 * *piHour- 0-23, where 0 indicates midnight and 12 is noon
 * *piMinute- 0-59
 * *piSecond- 0-59
 *
 * Return:
 * OK- the time was successfully received
 * EVTERR_TIMER_READ_FAILURE- an error occurred when _os9_getime was
called
 *
 * Description: Retrieves the Time Of Day from the internal real-time clock.
It is
 * intended to be called by FLEX Script programs.
 *
 * Cautions: Use the calls to _os9 because they work better than the _os calls
 *

**

 */
ErrorCode UpdateDateOnScreen (void)
{
 u_int32 format = GREGORIAN_FORMAT;
 u_int32 time;
 u_int32 date;
 u_int16 day; /* we get the day & throw it away */
 u_int32 ticks; /* we get the ticks & throw it away */
 u_int16 piYear, piMonth, piDate;
 char pScreenValue[50];
 ErrorCode return_val = OK;

 if ((_os9_getime (format, &time, &date, &day, &ticks)) != OK)
 {
 return_val = EVTERR_TIMER_READ_FAILURE;
 }
 else
 {
 piYear = (u_int16)(date >> 16); /* pull year, month & day out of 32-
bit integer */
 date &= 0x0000FFFF;
 piMonth = (u_int16)(date >> 8);
 date &= 0x000000FF;
 piDate = (u_int16)date;

 sprintf(pScreenValue,"%d/%d/%02d",piMonth,piDate,piYear-2000);

 UpdateValueOnScreen(Y_SAMPLE_COUNT_LABEL,X_VERT_LABEL,(string)pScreenVa
lue);
 }

 return(return_val);
}

/*

**

 * Function Name: UpdateTimeOnScreen()
 *
 * Inputs:
 * *piHour- 0-23, where 0 indicates midnight and 12 is noon
 * *piMinute- 0-59

 101

 * *piSecond- 0-59
 *
 * Outputs:
 * format- used in call to _os9_getime
 * 0 - Gregorian format
 * 1 - Julian format
 * 2 - Gregorian format w/ticks
 * 3 - Julian format w/ticks
 * *piHour- 0-23, where 0 indicates midnight and 12 is noon
 * *piMinute- 0-59
 * *piSecond- 0-59
 *
 * Return:
 * OK- the time was successfully received
 * EVTERR_TIMER_READ_FAILURE- an error occurred when _os9_getime was
called
 *
 * Description: Retrieves the Time Of Day from the internal real-time clock.
It is
 * intended to be called by FLEX Script programs.
 *
 * Cautions: Use the calls to _os9 because they work better than the _os calls
 *

**

 */
ErrorCode UpdateTimeOnScreen (void)
{
 u_int32 format = GREGORIAN_FORMAT;
 u_int32 time;
 u_int32 date;
 u_int16 day; /* we get the day & throw it away */
 u_int32 ticks; /* we get the ticks & throw it away */
 u_int16 piHour, piMinute, piSecond;
 char pScreenValue[50];
 ErrorCode return_val = OK;

 if ((_os9_getime (format, &time, &date, &day, &ticks)) != OK)
 {
 return_val = EVTERR_TIMER_READ_FAILURE;
 }
 else
 {
 piHour = (u_int16)(time >> 16); /* pull Hour, Minutes & Seconds out
of 32-bit integer */
 piHour &= 0x001F; /* bug: lop off the top bits because sometimes
hours >32 */
 time &= 0x0000FFFF;
 piMinute = (u_int16)(time >> 8);
 piSecond = (u_int16)(time & 0x0000FF);

 sprintf(pScreenValue,"%d:%02d:%02d",piHour,piMinute,piSecond);

 UpdateValueOnScreen(Y_SAMPLE_COUNT_LABEL,X_TIME_LABEL,(string)pScreenVa
lue);
 }

 return(return_val);
}

/**
 *
 * DeleteAllSpreetaMailObjs()
 *
 * search through FIS for MailObjs that were created by this Spreeta

 102

 * code and delete them. They would be defined as orphans otherwise...
 *
 * Returns:
 **/
void DeleteAllSpreetaMailObjs(void)
{
 fisID_t fisID;

 #ifdef NOISY
 printf("entering DeleteAllSpreetaMailObjs\n");
 #endif

 /* create mailobjects in a seperate place to keep track of them and
distroy them */
 fisID = MAILOBJ_FIS_ID;

 /* search for all Spreeta-Created MailObjs and delete them... */
 while (FISDelete(INCOMING_MAIL_TYPE, fisID) != E_ITEM_NOT_FOUND)
 {
 #ifdef NOISY
 printf("Deleting MailObj ID: %d\n",fisID);
 #endif
 fisID++;
 }
}

/**
 *
 * InitMessagingSubSYstem()
 *
 * this routine set up the WhiteCap for sending messages
 *
 * Returns:
 * SUCCESS - everything fine
 * FAILURE - something went wrong
 **/
int InitMessagingSubSystem(void)
{
 eventmsg InitWCEventMsg; /* used to enable phone mode */
 process_id SpreetaPID;
 process_id MDSPID;

 DeleteAllSpreetaMailObjs(); /* clean out all lingering orphans */
 name2pid("spreeta", &SpreetaPID);
 name2pid("mmds", &MDSPID);

 InitWCEventMsg.FromPid = SpreetaPID;
 InitWCEventMsg.EventCode = EVENT_BATTERYDOOR_OPEN;
 InitWCEventMsg.asTask = 0;
 InitWCEventMsg.Param1 = SUBEV_PS_ME_ERROR_REPORT;
 InitWCEventMsg.Param2 = 0; /* not used */
 #ifdef NOISY
 printf("Sending SUBEV_PS_ME_ERROR_REPORT (0x%x) event to
MDS\n",SUBEV_PS_ME_ERROR_REPORT);
 #endif
 SendMsg(MDSPID, &InitWCEventMsg);

 InitWCEventMsg.Param1 = SUBEV_MS_MEMORY_STATUS_AVAILABLE;
 #ifdef NOISY
 printf("Sending SUBEV_MS_MEMORY_STATUS_AVAILABLE (0x%x) event to
MDS\n",SUBEV_MS_MEMORY_STATUS_AVAILABLE);
 #endif
 SendMsg(MDSPID, &InitWCEventMsg);

 InitWCEventMsg.EventCode = EVENT_TRANSMITTER_CNTRL;
 InitWCEventMsg.Param1 = POWER_WHITECAP_PHONE_MODE;
 #ifdef NOISY

 103

 printf("Sending EVENT_TRANSMITTER_CNTRL (0x%08x) event to
MDS\n",EVENT_TRANSMITTER_CNTRL);
 #endif
 SendMsg(MDSPID, &InitWCEventMsg);

 while (GetMsg(&InitWCEventMsg) == SUCCESS)
 {
 #ifdef NOISY
 printf("Received event 0x%x; Param1: 0x%x from
MDS\n",InitWCEventMsg.EventCode, InitWCEventMsg.Param1);
 #endif
 }
 return(SUCCESS);
}

/**
 *
 * initalize_system()
 *
 * this routine will:
 *
 * 1) initalize the LCD (bitmaps & text)
 * 2) initalize the keypad input
 * 3) initalize the Spreeta hardware
 **/
int initalize_system(int *pAlgorithmMode)
{
 path_id keypad_path; /* path number to /kpad */
 kpad_mode_t my_mode;
 kpad_msgmode_t my_msgmode;
 int algorithm_status;
 volatile int i; /* loop counter and general variable;
poorly named */
 ErrorCode error; /* used for debug */

 #ifdef DEBUG_MESSAGE_SEND
 fisID_t fisID;

 fisID = BuildSMSMessage("dan.sommers@motorola.com", "Danzadope");
 SpawnNotification(fisID);
 #endif

 #ifdef NOISY
 printf("Entering Device and Spreeta initalization routine.\n");
 #endif

 tmode_nopause(); /* turn off screen pause mode for debug output to
stdout */
 lcd_suspend_time(0); /* disable screen timeout */
 suspend_time(0); /* disable system sleep */

 InitializeFileSystem(); /* allows access to files; most FW calls
rely on this */
 /* InitializeDBMS(); */ /* allows access to main database */
 InitializeDisplay(); /* initalize the LCD hardware */
 Init_NonVolatile_Date();

 #ifdef VERY_NOISY
 printf("DefaultRenderingContext.Device.DisplayHeight = %d;
DefaultRenderingContext.Device.DisplayWidth = %d\n",

DefaultRenderingContext.Device.DisplayHeight,DefaultRenderingContext.Device.Di
splayWidth);
 printf("DefaultRenderingContext.Device.BitsPerPixel = %d;
DefaultRenderingContext.Device.LineWidth = %d\n",

 104

DefaultRenderingContext.Device.BitsPerPixel,DefaultRenderingContext.Device.Lin
eWidth);
 printf("DefaultRenderingContext.Device.PixelPerByte =
%d\n",DefaultRenderingContext.Device.PixelPerByte);
 printf("DefaultRenderingContext.Device.DisplayMemory =
0x%08x\n",DefaultRenderingContext.Device.DisplayMemory);
 #endif

 CopyBitmapToScreen(WELCOME_SCREEN_FILE);
 lcd_baklit_on(); /* turn on the backlight for maximum User Experiance
pleasure */

 /* initalize the text system */
 error = InitText();
 SelectFont(MINIME_TEXT);
 SetTextColor(COLOR_BLACK, COLOR_WHITE); /* Black text on White Background
*/

 /**
 * initialize Kepyad Driver
 **/
 if ((error = _os_open ("/kpad", FAM_READ+FAM_WRITE, &keypad_path)) !=
SUCCESS)
 {
 #ifdef NOISY
 printf("Can't open path to /kpad (error 0x%x)\n", error);
 #endif
 }
 else
 {
 #ifdef NOISY
 printf("Opened path to /kpad (path # = %d)\n", keypad_path);
 #endif
 }

 /**
 * Set Processing Mode for Keypad:
 *
 * COOKED => we want only keys that have
 * been processed as a single
 * key value return
 **/
 if ((error = kpad_set_mode(keypad_path, COOKED)) != SUCCESS)
 {
 printf("kpad_set_mode() error (0x%2x)\n", error);
 exit(0);
 }
 if ((error = kpad_get_mode(keypad_path, &my_mode)) != SUCCESS)
 {
 printf("kpad_get_mode() error (0x%2x)\n", error);
 exit(0);
 }
 if (my_mode != COOKED)
 {
 printf("kpad_get_mode() error (returned wrong mode)\n");
 exit(0);
 }

 /***
 * Set Keypad Signalling Mode
 *
 * IPMQ => all keys will queue up into the input Queue
 * and wait patiently until we get around to processing them
 **/
 if ((error = kpad_set_msgmode(keypad_path, IPMQ)) != SUCCESS)
 {

 105

 printf("kpad_set_mode() error (0x%2x)\n", error);
 exit(0);
 }
 if ((error = kpad_get_msgmode(keypad_path, &my_msgmode)) != SUCCESS)
 {
 printf("kpad_get_mode() error (0x%2x)\n", error);
 exit(0);
 }
 if (my_msgmode != IPMQ)
 {
 printf("kpad_get_mode() error (returned wrong mode)\n");
 exit(0);
 }

 kpad_set_click (keypad_path, CLICK_OFF); /* must turn off clicks
because we re-use PWM1
 for the timing loop */
 /*
 * Initialize InterProcess Messaging Queue
 */
 if ((error = InitMsg(10, FALSE)) != SUCCESS)
 {
 printf("InitMsg Failed rc = %x\n", error);
 exit(0);
 }

 /* initalize the arrays for first-time through calculations */
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 gCurrentSpreetaValue[i] = SPREETA_ADC_3V_VALUE/2; /* average
value will be average volatge */
 gBaselinedSpreetaValue[i] = gCurrentSpreetaValue[i];
 gPreviousScreenValue[i] = Y_HORZ_AXIS - (int)(gCurrentSpreetaValue[i]
* (float)3/SPREETA_ADC_3V_VALUE);
 gCapturedAbosluteScreenValue[i] = 0; /* guaranteed to be off-
graph */
 gCapturedZoomScreenValue[i] = 0; /* guaranteed to be off-graph
*/
 }
 gSpreetaPixelsBaselined = FALSE; /* no Differential Mode until capture
*/
 gSpreetaMaxValue = 0;
 gSpreetaMinValue = SPREETA_ADC_3V_VALUE;
 gDifferentialTicksPerPixelPower = 3; /* defaults to 2^3=8 Ticks per
Pixel */
 gIntegrationPeriod = DEFAULT_INTEGRATION_TIMEOUT;
 gHighSpeedMode = HIGH_SPEED_MODE; /* default to false so we can adjust
the system before sampling */

 /* initalize SPI driver */

 PJ_SELECT &= ~(0x0F); / enable MOSI-bit0; MISO-bit1; SPICLK1-bit2;
SPI_SS-bit3 as functions */
 PJ_PUEN &= ~(0x0F); / turn off PULLUPS for MOSI; MISO; SPICLI1; SS
*/

 SPI_CONTROL = 0x4642; / 010 SysClock/16 => 2.06 MHz
 00 DataReady Don't Care
 1 SPI Master
 1 SPI Interface Enabled
 0 No Exchange
 0 SS Polarity Active Low
 1 SS Waveform Select Insert Pulse Between
Transfers
 0 Phase 0 Operation
 0 Active Hight Polarity

 106

 0010 3-bit exchange (Spreeta Serial Shift
Register value */
 SPI_SAMPLE = 0x0000; / 0 clocks between transfers */

 SPI_SET_SPREETA; /* initialize the Shift register outputs */
 SPI_TRANSMIT = SHIFT_REG_ALL_OFF; / load the FIFO to clear Spreeta's
Clock & Start; Set Maxim's CS High */
 SPI_EXCHANGE;
 WAIT_EXCHANGE;
 i = *SPI_RECEIVE; /* read out the four bits of junk that came in */

 SampleSpreeta(BEGIN_INTEGRATION); /* run through a capture to
initalize the system */

 /* initialize Volume */
 PB_DIRECTION |= 0x80; / set ALERT Volume (PWMO) to an output */
 PB_SELECT |= 0x80; / choose the I/O port function */
 ALERT_VOLUME_OFF;

 /* _os_sysdbg((void*)0xCAFEBABE, (void*)0xDEADBEEF); */ /* use only
if rombug installed */

 /* initialize the horizontal cursors */
 gHorizontalCursor1.PositionDifferential = TOP_GRAPH_BOUNDARY +
(BOTTOM_GRAPH_BOUNDARY - TOP_GRAPH_BOUNDARY)/4;
 gHorizontalCursor2.PositionDifferential = TOP_GRAPH_BOUNDARY +
3*(BOTTOM_GRAPH_BOUNDARY - TOP_GRAPH_BOUNDARY)/4;

 gHorizontalCursor1.PositionAbsolute =
gHorizontalCursor1.PositionDifferential;
 gHorizontalCursor2.PositionAbsolute =
gHorizontalCursor2.PositionDifferential;

 /* set line with of the cursor to 2 */
 gHorizontalCursor1.Width = 2;
 gHorizontalCursor2.Width = 2;

 gHorizontalCursor1.Color = CURSOR_DEFAULT_COLOR;
 gHorizontalCursor2.Color = CURSOR_DEFAULT_COLOR;

 /* establish the linked list for the cursors */
 gHorizontalCursor1.Next = &gHorizontalCursor2;
 gHorizontalCursor2.Next = &gHorizontalCursor1;

 /* set the active cursor */
 gHorizontalCursorActive = &gHorizontalCursor1;
 gHorizontalCursorActive->Color = CURSOR_SELECTED_COLOR;

 /* turn off notification */
 gNotificationStatus = NOTIFICATION_DORMANT;
 gThresholdCrossedCount = 0;

 /* the center line for the differential screen is implemented as a cursor
*/
 gDifferentialCenterLine.PositionAbsolute = TOP_GRAPH_BOUNDARY +
(Y_BOT_VERT_LABEL - Y_TOP_VERT_LABEL)/2;
 gDifferentialCenterLine.PositionDifferential = TOP_GRAPH_BOUNDARY +
(Y_BOT_VERT_LABEL - Y_TOP_VERT_LABEL)/2;
 gDifferentialCenterLine.Color = COLOR_RED;
 gDifferentialCenterLine.Width = 2;
 gDifferentialCenterLine.Next = NULL;

 /* this takes a long time so let it get started... */
 InitMessagingSubSystem();

 /*
 * With welcome screen showing, wait for user to start program

 107

 */
 #ifdef NOISY
 printf("So... press the \"any\" key and we'll get on with it...\n");
 #endif
 {
 eventmsg FirstMsg;
 int ContinueInput = TRUE;
 while ((ContinueInput == TRUE) && (ReadMsg(&FirstMsg) ==
SUCCESS)) /* blocking read */
 {
 if ((FirstMsg.EventCode == EVENT_KEY)
 || (FirstMsg.EventCode == EVENT_SYSKEY)
 || (FirstMsg.EventCode == EVENT_MODIFIER_STATE_CHANGE))
 {
 ContinueInput = FALSE;
 }
 }
 #ifdef NOISY
 printf("Received Event %d (EVENT_KEY is
5)\n",FirstMsg.EventCode);
 #endif
 }
 algorithm_status = ProcessUserInput('s',pAlgorithmMode);
 display_absolute_screen();
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
 return (algorithm_status);
}

/**
 *
 * deinitalize_system()
 *
 * this routine will:
 *
 * 1) destroy the path to the keypad
 **/
 void deinitalize_system(void)
 {
 ErrorCode rc;

 _os_close (keypad_path); /* _os_close() forces unlink of kpad */

 DeleteAllSpreetaMailObjs(); /* destroy all orphans lingering during
this session */
 rc = DeInitMsg(); /* close down the queue */
 if (rc != SUCCESS)
 {
 if (rc != ERROR_NOQ) /* ignore if InitMsg hasn't been called yet */
 {
 printf("DeInitMsg failed: returned %x\n, rc");
 }
 }

 DeInitText();
 DeInitializeDisplay();

} /* end deinitalize_system() */

/**
 *
 * CopyBitmapToScreen()
 *
 * draws some nice pictures and pride-generators to the screen
 *
 * The Welcome Screen is one big honker that covers the entire LCD
 * and has lots of good formatting...

 108

 *
 **/
void CopyBitmapToScreen(char *BitmapFileName)
{
 Point_t ScreenPosition;

 ScreenPosition.xCoord = 0; /* bitmaps drawn from (0,0) */
 ScreenPosition.yCoord = 0;

 #ifdef NOISY
 printf("Entering CopyBitmapToScreen to slap up: \"%s\"\n",BitmapFileName);
 #endif

FileBitmapToScreen(&DefaultRenderingContext,&ScreenPosition,(string)BitmapFile
Name);
}

/**
 *
 * DrawHorizontalCursor()
 *
 * Simply draw a horizontal line across the screen
 *
 * Inputs:
 * HC_ptr - pointer to the horizontal cursor structure
 * DrawMode - differential vs. absolute
 *
 *
 **/
void DrawHorizontalCursor(struct HorizontalCursor *HC_ptr, int DrawMode)
{
 Point_t CurrPoint;

 CurrPoint.xCoord = X_VERT_AXIS+1; /* don't write on top of the vertical
axis */
 switch (DrawMode)
 {
 case DRAW_DIFFERENTIAL:
 CurrPoint.yCoord = HC_ptr->PositionDifferential;
 break;
 case DRAW_ZOOM:
 case DRAW_ABSOLUTE:
 CurrPoint.yCoord = HC_ptr->PositionAbsolute;
 break;
 default: /* what the heck happened here?!? */
 CurrPoint.yCoord = HC_ptr->PositionAbsolute;
 break;
 }
 SetDrawingCursor(&CurrPoint);
 CurrPoint.xCoord += TOTAL_SPREETA_PIXELS-1;
 CurrPoint.yCoord += HC_ptr->Width - 1;
 Box(&DefaultRenderingContext, &CurrPoint, 1, HC_ptr->Color);

}

/**
 *
 * EraseHorizontalCursor()
 *
 * Simply erase a horizontal line across the screen
 *
 * Inputs:
 * HC_ptr - pointer to the horizontal cursor structure
 * DrawMode - differential vs. absolute
 *

 109

 *
 **/
void EraseHorizontalCursor(struct HorizontalCursor *HC_ptr, int DrawMode)
{
 Point_t CurrPoint;

 CurrPoint.xCoord = X_VERT_AXIS+1; /* don't write on top of the vertical
axis */
 switch (DrawMode)
 {
 case DRAW_DIFFERENTIAL:
 CurrPoint.yCoord = HC_ptr->PositionDifferential;
 break;
 case DRAW_ZOOM:
 case DRAW_ABSOLUTE:
 CurrPoint.yCoord = HC_ptr->PositionAbsolute;
 break;
 default: /* what the heck happened here?!? */
 CurrPoint.yCoord = HC_ptr->PositionAbsolute;
 break;
 }
 SetDrawingCursor(&CurrPoint);
 CurrPoint.xCoord += TOTAL_SPREETA_PIXELS-1;
 CurrPoint.yCoord += HC_ptr->Width - 1;
 Box(&DefaultRenderingContext, &CurrPoint, 1, COLOR_WHITE);

}
/**
 *
 * CheckEraseAtCursor()
 *
 * Check for graph draw overlay with cursor and execute a draw only if
 * interference is detected; If the cursor and the pixel are exactly
 * on top of each other, the cursor is showing and no erase in necessary.
 *
 * Inputs:
 * PixelCount - the pixel location to be erased from the graph (2 high)
 * CursorPosition - the horizontal height of the cursor
 * CursorColor - the erase color for interference...
 *
 * returns:
 * ERASURE_COMPLETE if interference was detected
 * NO_INTERFERENCE otherwise
 *
 **/
int CheckEraseAtCursor(int PixelCount, int CursorPosition, int CursorColor)
{
 switch (gPreviousScreenValue[PixelCount] - CursorPosition)
 {
 case 0: /* don't do any work */
 break;
 case -1: /* erase 1/2 above red line and 1/2 on red line */

 WritePixel(&DefaultRenderingContext,X_VERT_AXIS+1+PixelCount,gPreviousS
creenValue[PixelCount],COLOR_WHITE);

 WritePixel(&DefaultRenderingContext,X_VERT_AXIS+1+PixelCount,gPreviousS
creenValue[PixelCount]+1,CursorColor);
 break;
 case 1: /* erase 1/2 below red line and 1/2 on red line */

 WritePixel(&DefaultRenderingContext,X_VERT_AXIS+1+PixelCount,gPreviousS
creenValue[PixelCount],CursorColor);

 WritePixel(&DefaultRenderingContext,X_VERT_AXIS+1+PixelCount,gPreviousS
creenValue[PixelCount]+1,COLOR_WHITE);
 break;

 110

 default:
 return(NO_INTERFERENCE);
 /* break; */ /* compiler warning if break is left in
after return*/
 /* actually, it's a pretty impressive
compiler, eh? */
 }

 return(ERASURE_COMPLETE);
}
/**
 *
 * DrawAxes()
 *
 * Just gather the draws into one convenient spot so we don't have to
 * maintain them in more than one spot...
 *
 **/
void DrawAxes(void)
{
 int i;
 char pScreenBuff[20]; /* room for the sprintf() text */

 WriteLine(&DefaultRenderingContext, /* Vertical Axis */

X_VERT_AXIS,Y_TOP_VERT_LABEL,X_VERT_AXIS,Y_HORZ_AXIS,COLOR_BLACK);
 WriteLine(&DefaultRenderingContext, /* Horizontal Axis */

X_VERT_AXIS,Y_HORZ_AXIS,X_VERT_AXIS+TOTAL_SPREETA_PIXELS,Y_HORZ_AXIS,COLOR_BLA
CK);
 WriteLine(&DefaultRenderingContext, /* top Tick */
 X_VERT_AXIS-
2,TOP_GRAPH_BOUNDARY,X_VERT_AXIS+2,TOP_GRAPH_BOUNDARY,COLOR_BLACK);

 for (i=0; i<=3; i++)
 {
 sprintf(pScreenBuff, "%-04.3f",RIU_MIN + ((RIU_MAX - RIU_MIN) *
(float)i / 3));

 PrintTextToScreen(Y_HORZ_AXIS_VALUES,(int)((X_VERT_AXIS+(float)i/3*TOTA
L_SPREETA_PIXELS)-14),(string)pScreenBuff);
 WriteLine(&DefaultRenderingContext,

(int)(X_VERT_AXIS+(float)i/3*TOTAL_SPREETA_PIXELS),Y_HORZ_AXIS-2,

(int)(X_VERT_AXIS+(float)i/3*TOTAL_SPREETA_PIXELS),Y_HORZ_AXIS+2,
 COLOR_BLACK);
 }

 PrintTextToScreen(Y_TOP_VERT_LABEL-TEXT_LINE_SPACING-
1,X_VERT_LABEL,VERTICAL_AXIS_TEXT);
 PrintTextToScreen(Y_HORZ_AXIS_LABEL,X_HORZ_AXIS_LABEL,HORIZONTAL_AXIS_T
EXT);
 PrintTextToScreen(Y_SAMPLE_COUNT_LABEL,X_SAMPLE_LABEL,"Sample Count:");
 PrintTextToScreen(Y_AVG_LABEL,X_AVG_MIN_MAX_LABEL,"Avg Val");
 PrintTextToScreen(Y_AVG_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE,"0.
000 V");
 PrintTextToScreen(Y_MIN_LABEL,X_AVG_MIN_MAX_LABEL,"Min Val");
 PrintTextToScreen(Y_MIN_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE,"0.
000 V");
 PrintTextToScreen(Y_MIN_LABEL+TEXT_LINE_SPACING*2,X_AVG_MIN_MAX_VALUE,"
0.000 RIU");
 PrintTextToScreen(Y_MAX_LABEL,X_AVG_MIN_MAX_LABEL,"Max Val");
 PrintTextToScreen(Y_MAX_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE,"0.
000 V");

 111

 PrintTextToScreen(Y_MAX_LABEL+TEXT_LINE_SPACING*2,X_AVG_MIN_MAX_VALUE,"
0.000 RIU");

}

/**
 *
 * display_absolute_screen()
 *
 * builds the screen for the "absolute data" mode
 *
 * with title, x&y axes, status bar, etc...
 *
 * 5 => Draw Mode
 * 10 => 3.00V \
 * \ Avg Val
 * \ 0
 * 50 => 2.00V *******************
 * \ Min Val
 * \ 0
 * 90 => 1.00V \
 * \ Max Val
 * \ 0
 * 130 => 0.00V ______________________________
 * 140 => Min Incident Angle Max
 * 150 => Sample Count: 0
 *
 * ^ ^ ^ ^ ^
 * 10 30 80 158 170
 **/
void display_absolute_screen(void)
{
 #ifdef NOISY
 printf("entering display_absolute_screen()\n");
 #endif

 ClearScreen(&DefaultRenderingContext,COLOR_WHITE);
 DrawAxes();
 WriteLine(&DefaultRenderingContext, /* 2nd Tick */
 X_VERT_AXIS-
2,Y_2ND_VERT_LABEL+TEXT_HEIGHT,X_VERT_AXIS+2,Y_2ND_VERT_LABEL+TEXT_HEIGHT,COLO
R_BLACK);
 WriteLine(&DefaultRenderingContext, /* 3rd Tick */
 X_VERT_AXIS-
2,Y_3RD_VERT_LABEL+TEXT_HEIGHT,X_VERT_AXIS+2,Y_3RD_VERT_LABEL+TEXT_HEIGHT,COLO
R_BLACK);
 PrintTextToScreen(Y_TITLE,X_TITLE,"Absolute Value Scale");
 PrintTextToScreen(Y_TOP_VERT_LABEL+(TEXT_HEIGHT/2),X_VERT_LABEL,"3.00V"
);
 PrintTextToScreen(Y_2ND_VERT_LABEL+(TEXT_HEIGHT/2),X_VERT_LABEL,"2.00V"
);
 PrintTextToScreen(Y_3RD_VERT_LABEL+(TEXT_HEIGHT/2),X_VERT_LABEL,"1.00V"
);
 PrintTextToScreen(Y_BOT_VERT_LABEL+2,X_VERT_LABEL,"0.00V");

 DrawHorizontalCursor(&gHorizontalCursor1,DRAW_ABSOLUTE);
 DrawHorizontalCursor(&gHorizontalCursor2,DRAW_ABSOLUTE);
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
}

/**
 *
 * display_differential_screen()
 *
 * builds the screen for the "differential data" mode

 112

 *
 * with title, x&y axes, status bar, etc...
 *
 * 5 => Draw Mode
 * 10 => +XV \
 * \ Avg Val
 * \ 0
 * 50 => \
 * 0V ******************* Min Val
 * \ 0
 * 90 => \
 * \ Max Val
 * \ 0
 * 130 => -XV ______________________________
 * 140 => Min Incident Angle Max
 * 150 => Sample Count: 0
 *
 * ^ ^ ^ ^ ^
 * 10 30 80 158 170
 **/
void display_differential_screen(void)
{
 char pScreenBuff[50]; /* used for printing the vertical axis labels to
the screen */

 #ifdef NOISY
 printf("entering display_differential_screen()\n");
 #endif

 ClearScreen(&DefaultRenderingContext,COLOR_WHITE);
 DrawAxes();
 PrintTextToScreen(Y_TITLE,X_TITLE,"Differential Value Scale");

 gScreenMaxValue = (Y_BOT_VERT_LABEL -
Y_TOP_VERT_LABEL)/2
 *
(int)(pow(2,(double)gDifferentialTicksPerPixelPower));
 gScreenMinValue = -gScreenMaxValue;

 /* calculate the values to print to the screen for the Vertical-Axis */
 sprintf(pScreenBuff, "%-04.2fV",(Y_BOT_VERT_LABEL - Y_TOP_VERT_LABEL)/2
 *
(int)(pow(2,(double)gDifferentialTicksPerPixelPower))
 *
((float)3/SPREETA_ADC_3V_VALUE));
 PrintTextToScreen(Y_TOP_VERT_LABEL+(TEXT_HEIGHT/2),X_VERT_LABEL,(string
)pScreenBuff);

 sprintf(pScreenBuff, "%-04.2fV",0.0);
 PrintTextToScreen(Y_TOP_VERT_LABEL+(TEXT_HEIGHT/2) + (Y_BOT_VERT_LABEL
- Y_TOP_VERT_LABEL)/2,X_VERT_LABEL,(string)pScreenBuff);

 sprintf(pScreenBuff, "%-04.2fV",-(Y_BOT_VERT_LABEL - Y_TOP_VERT_LABEL)/2
 *
(int)(pow(2,(double)gDifferentialTicksPerPixelPower))
 *
((float)3/SPREETA_ADC_3V_VALUE));
 PrintTextToScreen(Y_BOT_VERT_LABEL+2,X_VERT_LABEL-(TEXT_WIDTH -
2),(string)pScreenBuff);

 DrawHorizontalCursor(&gHorizontalCursor1,DRAW_DIFFERENTIAL);
 DrawHorizontalCursor(&gHorizontalCursor2,DRAW_DIFFERENTIAL);

 /* draw the red line at the 0 differential point */
 DrawHorizontalCursor(&gDifferentialCenterLine,DRAW_DIFFERENTIAL);

 113

 WriteLine(&DefaultRenderingContext, /* Midle Tick */
 X_VERT_AXIS-2,gDifferentialCenterLine.PositionDifferential,

X_VERT_AXIS+2,gDifferentialCenterLine.PositionDifferential,COLOR_BLACK);
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
}

/**
 *
 * display_zoom_screen()
 *
 * builds the screen for the "zoom data" mode
 *
 * with title, x&y axes, status bar, etc...
 *
 * 5 => Draw Mode
 * 10 => MAXV \
 * \ Avg Val
 * \ 0
 * 50 => MIDV *******************
 * \ Min Val
 * \ 0
 * 90 => MIDV \
 * \ Max Val
 * \ 0
 * 130 => MINV ______________________________
 * 140 => Min Incident Angle Max
 * 150 => Sample Count: 0
 *
 * ^ ^ ^ ^ ^
 * 10 30 80 158 170
 **/
void display_zoom_screen(void)
{

 char pScreenBuff[50]; /* used for printing the vertical axis labels to
the screen */
 int i; /* poorly named loop counter habit left over from old die-hard
school examples */

 #ifdef NOISY
 printf("entering display_zoom_screen()\n");
 #endif

 ClearScreen(&DefaultRenderingContext,COLOR_WHITE);
 DrawAxes();
 WriteLine(&DefaultRenderingContext, /* 2nd Tick */
 X_VERT_AXIS-
2,Y_2ND_VERT_LABEL+TEXT_HEIGHT,X_VERT_AXIS+2,Y_2ND_VERT_LABEL+TEXT_HEIGHT,COLO
R_BLACK);
 WriteLine(&DefaultRenderingContext, /* 3rd Tick */
 X_VERT_AXIS-
2,Y_3RD_VERT_LABEL+TEXT_HEIGHT,X_VERT_AXIS+2,Y_3RD_VERT_LABEL+TEXT_HEIGHT,COLO
R_BLACK);
 PrintTextToScreen(Y_TITLE,X_TITLE,"Zoom Value Scale");

 /* calculate the values to print to the screen for the Vertical-Axis */
 for (i=0; i<=3; i++)
 {
 sprintf(pScreenBuff, "%-04.2fV",((gScreenMinValue + (gScreenMaxValue -
gScreenMinValue) * (float)i / 3)) * ((float)3/SPREETA_ADC_3V_VALUE));
 PrintTextToScreen(Y_BOT_VERT_LABEL-
(Y_VERT_LABEL_SPACING*i),X_VERT_LABEL,(string)pScreenBuff);
 }

 DrawHorizontalCursor(&gHorizontalCursor1,DRAW_ZOOM);

 114

 DrawHorizontalCursor(&gHorizontalCursor2,DRAW_ZOOM);
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
} /* end: display_zoom_screen */

/**
 *
 * OutlineBox()
 *
 * Draws a un-filled box around the perimiter of a boxed area
 *
 * Inputs:
 * TopLeft: the (x,y) of the top left of the box
 * BottomRight: the (x,y) of the bottom right of the box
 *
 **/
OutlineBox(Point_t TopLeft, Point_t BottomRight, int LineColor)
{
 WriteLine(&DefaultRenderingContext, /* Top */

TopLeft.xCoord,TopLeft.yCoord,BottomRight.xCoord,TopLeft.yCoord,LineColor);
 WriteLine(&DefaultRenderingContext, /* Bottom */

TopLeft.xCoord,BottomRight.yCoord,BottomRight.xCoord,BottomRight.yCoord,LineCo
lor);
 WriteLine(&DefaultRenderingContext, /* Left */

TopLeft.xCoord,TopLeft.yCoord,TopLeft.xCoord,BottomRight.yCoord,LineColor);
 WriteLine(&DefaultRenderingContext, /* Right */

BottomRight.xCoord,TopLeft.yCoord,BottomRight.xCoord,BottomRight.yCoord,LineCo
lor);

} /* end OutlineBox */

/**
 *
 * DrawPopUp()
 *
 * builds the pop-up for user data input
 *
 * Input:
 * TitleText - the text to center in the title of the PopUp
 *
 * Output:
 * TextPoint - the (x,y) point of the cursor
 *
 *
 * 30 => ______________________________
 * \ \
 * \ Title Of PopUp \
 * ______________________________\
 * * \
 * \ \
 * \ \
 * \ \
 * \ \
 * \ \
 * 129 => ______________________________\
 *
 * ^ ^
 * 30 209
 **/
Point_t DrawPopUp(char *TitleText)
{

 115

 Point_t TopLeft, BottomRight;

 #ifdef NOISY
 printf("entering DrawPopUp\n");
 #endif

 /* Draw the main outer box */
 TopLeft.xCoord = POPUP_TOP_X;
 TopLeft.yCoord = POPUP_TOP_Y;
 SetDrawingCursor(&TopLeft);
 BottomRight.xCoord = POPUP_BOTTOM_X;
 BottomRight.yCoord = POPUP_BOTTOM_Y;
 Box(&DefaultRenderingContext, &BottomRight, 1, COLOR_LIGHT_RED);
 OutlineBox(TopLeft, BottomRight, COLOR_BLACK);

 /* Draw the title Box */
 TopLeft.xCoord = POPUP_TOP_X+POPUP_BOARDER_THICKNESS;
 TopLeft.yCoord = POPUP_TOP_Y+POPUP_BOARDER_THICKNESS;
 SetDrawingCursor(&TopLeft);
 BottomRight.xCoord = POPUP_BOTTOM_X - POPUP_BOARDER_THICKNESS;
 BottomRight.yCoord = TopLeft.yCoord + (TEXT_HEIGHT +
SPACE_BETWEEN_TEXT_LINES*2) + 2;
 Box(&DefaultRenderingContext, &BottomRight, 1, COLOR_WHITE);
 OutlineBox(TopLeft, BottomRight,COLOR_BLACK);

 /* Center the text in the PopUp title */
 TopLeft.xCoord += (POPUP_BOTTOM_X - POPUP_TOP_X)/2 -
StringWidth((string)TitleText,MINIME_TEXT)/2;
 TopLeft.yCoord += SPACE_BETWEEN_TEXT_LINES +2;
 PrintTextToScreen(TopLeft.yCoord, TopLeft.xCoord, (string)TitleText);

 /* Draw the User Input Box */
 TopLeft.xCoord = POPUP_TOP_X+POPUP_BOARDER_THICKNESS;
 TopLeft.yCoord += TEXT_HEIGHT + SPACE_BETWEEN_TEXT_LINES +
POPUP_BOARDER_THICKNESS;
 SetDrawingCursor(&TopLeft);
 BottomRight.xCoord = POPUP_BOTTOM_X - POPUP_BOARDER_THICKNESS;
 BottomRight.yCoord = POPUP_BOTTOM_Y - POPUP_BOARDER_THICKNESS;
 Box(&DefaultRenderingContext, &BottomRight, 1, COLOR_WHITE);
 OutlineBox(TopLeft, BottomRight, COLOR_BLACK);

 /* Initialize the cursor in the User Input box */
 TopLeft.xCoord += CURSOR_WIDTH;
 TopLeft.yCoord += CURSOR_HEIGHT;
 SetDrawingCursor(&TopLeft);
 BottomRight.xCoord = TopLeft.xCoord + CURSOR_WIDTH;
 BottomRight.yCoord = TopLeft.yCoord + CURSOR_HEIGHT;
 Box(&DefaultRenderingContext, &BottomRight, 1, COLOR_BLACK);

 /* Initialize the Text Cursor */
 SetTextCursor(&TopLeft);
 return(TopLeft);

} /* end: DrawPopUp */

/***
 * SampleSpreeta()
 *
 * captures all the spreeta data for a single run uf samples. This is a
 * very optimized loop to keep the sample rate as:
 * a) fast as possible (min Sample Frequency is 5KHz)
 * b) consistant as possible (data values delivered by the pixel array
 * are a function of sample rate
 *
 * the input paramater tells us if we're just priming the Spreeta or if
 * we're truly capturing the data:

 116

 * CAPTURE_PIXELS: store data read into the captured values array
 * BEGIN_INTEGRATION: run through a sampel cycle but thow away the data

 * Note: if we give a runt ChipSelect to the Maxim part, even if we
 * aren't reading the device, it will give us garbage data
 * on the next real conversion...
 *
 **/
 void SampleSpreeta(int CaptureMode)
 {

 volatile int DummyData; /* used to throw away SPI data we don't care
about */
 int PixelCount; /* Outer Loop control for reading the entire
array */
 int BitsToShift; /* only need 18 clocks if
BEGIN_INTEGRATION */
 u_int16 SpreetaBoth;
 u_int16 SpreetaStart;
 u_int16 SpreetaClock;
 u_int16 MaximCS;
 u_int16 ShiftRegAllOff;

 /* if we're beginning integration, turn on the LED simultaniously with
the Start
 bit to the spreeta. Then give 18 clocks to end the reset period and
begin
 the integration period. Thus the LED must be turned on and stay on
 until the next capture */
 if (CaptureMode == BEGIN_INTEGRATION)
 {
 /* BitsToShift = SPREETA_RESET_CLOCKS; */
 BitsToShift = TOTAL_SPREETA_PIXELS;
 SpreetaBoth = SPREETA_BOTH | SPREETA_LED_ON;
 SpreetaStart = SPREETA_START | SPREETA_LED_ON;
 SpreetaClock = SPREETA_CLOCK | SPREETA_LED_ON;
 MaximCS = MAXIM_CS | SPREETA_LED_ON;
 ShiftRegAllOff = SHIFT_REG_ALL_OFF | SPREETA_LED_ON;
 }
 else
 {
 BitsToShift = TOTAL_SPREETA_PIXELS;
 SpreetaBoth = SPREETA_BOTH;
 SpreetaStart = SPREETA_START;
 SpreetaClock = SPREETA_CLOCK;
 MaximCS = MAXIM_CS;
 ShiftRegAllOff = SHIFT_REG_ALL_OFF;
 }

 SPI_SET_SPREETA;
 /* set Spreeta's Start Bit */
 *SPI_TRANSMIT = SpreetaStart;
 SPI_EXCHANGE; /* shift out the Start data to the shift register */
 WAIT_EXCHANGE;
 DummyData = *SPI_RECEIVE; /* empty out the receive buffer */

 /* Set Spreeta's Clock while maintaing Start */
 *SPI_TRANSMIT = SpreetaBoth;
 SPI_EXCHANGE; /* shift out the Clock and Start data to the shift
register */
 WAIT_EXCHANGE;
 DummyData = *SPI_RECEIVE; /* empty out the receive buffer */

 /* Start the sample on the A/D converter
 * note that the Clock just went high and the Start bit is high
 * the Spreeta takes 350ns to drive it's output:

 117

 * the DragonBall runs at 33MHz => a clock cycle is 30ns
 * the memory is 1 wait-state so every bus cycle is 4x30ns = 120ns
 * the bus is only 16 bits wide so every instruction is at least 2
bus cycles = 240ns
 * thus 2 instructions is plenty of time, no delay loop needed
 *
 * as measured on the logic analyzer, we have ~800ns between Spreeta
Clock and Maxim CS*/

 *SPI_TRANSMIT = MaximCS;
 SPI_EXCHANGE; /* Drive the Maxim CS low */
 WAIT_EXCHANGE;

 for (PixelCount=0; PixelCount<BitsToShift; PixelCount++)
 {
 /* want to maximize delay between MAXIM_CS and Reading the Maxim
data
 becaue there's a spec. of 7.1uSec for the sample capture in
the IC
 - the loop control will add the delay no matter if we're just
entering
 it or if we're repeating */
 DummyData = *SPI_RECEIVE; /* empty out the receive buffer here to
increase delay */

 SPI_SET_MAXIM; /* set up for a 13-clock transfer */
 SPI_TRANSMIT = SpreetaClock; / load the FIFO to set the Spreeta
clock at the end of reading the Maxim A/D */
 SPI_EXCHANGE; /* read the 12 data bits into the status
register */
 WAIT_EXCHANGE;

 if (CaptureMode == CAPTURE_PIXELS)
 gCurrentSpreetaValue[PixelCount] = *SPI_RECEIVE & ~(0xF000);
/* clear off the top junk bit(s) */
 else /* BEGIN_INTEGRATION */
 DummyData = *SPI_RECEIVE; /* throw away the data */

 SPI_SET_SPREETA;
 *SPI_TRANSMIT = MaximCS;
 SPI_EXCHANGE; /* Drive the Maxim CS low */
 /* WAIT_EXCHANGE */ /* no need for a delay, the loop control will
instert plenty */
 #ifdef VERY_NOISY
 help!! If interrupts are disabled, this isn't goona work...
 printf("Spreeta Value:
0x%03x\n",gCurrentSpreetaValue[PixelCount]);
 #endif

 } /* end outer for loop */

 /* upon exit from the loop, we just asserted the MAXIM chip select, so
we need
 to turn it back off and initalize the system back to everything
turned off */
 DummyData = *SPI_RECEIVE; /* empty out the receive buffer for the MAXIM
CS Assertion */
 SPI_TRANSMIT = ShiftRegAllOff; / turn off the Maxim CS; leave LED on
if BEGIN_INTEGRATION */
 SPI_EXCHANGE; /* drive the 4 data bits into the shift register */
 WAIT_EXCHANGE;
 DummyData = *SPI_RECEIVE;

} /* end SampleSpreeta */

/***
 * SmoothingAlgorithm()

 118

 *
 * passes back an averaged value.
 *
 * in this instantiation it's hard-coded to be one
 * simple function and optmized to not involve division:
 *
 * SmoothValue = ((2_to_the_left + 1_to_the_left + 1_to_the_right +
2_to_the_right)/4
 * + pixelValue)/2
 *
 * the algorithm can smooth 5 values, giving heavier weighting to the
 * value at the actual location and weighting to the values left & right.
 **/
int SmoothingAlgorithm(int pixel_count)
{
 int SmoothedSpreetaValue; /* return value for this function */

 /* skip pixels 0, 1, 126, 127 */
 if ((pixel_count >= 2) && (pixel_count < TOTAL_SPREETA_PIXELS - 2))
 {
 /* average the 2 to the left + the 2 to the right */
 SmoothedSpreetaValue = gCurrentSpreetaValue[pixel_count-2]
 + gCurrentSpreetaValue[pixel_count-1]
 + gCurrentSpreetaValue[pixel_count+1]
 + gCurrentSpreetaValue[pixel_count+2];

 #ifdef NOISY_SMOOTHING
 printf("Smooth[%d]: %04x + %04x + %04x + %04x = %04x\n",
 pixel_count,
 gCurrentSpreetaValue[pixel_count-2],
 gCurrentSpreetaValue[pixel_count-1],
 gCurrentSpreetaValue[pixel_count+1],
 gCurrentSpreetaValue[pixel_count+2],
 SmoothedSpreetaValue);
 #endif

 SmoothedSpreetaValue >>= 2; /* divide by 4 */
 #ifdef NOISY_SMOOTHING
 printf("Smooth: Div_4: %04x\n",SmoothedSpreetaValue);
 #endif

 /* now average the center value with the averaged 2 left & 2
right */

 #ifdef NOISY_SMOOTHING
 printf("Smooth: %04x + %04x =",SmoothedSpreetaValue,
gCurrentSpreetaValue[pixel_count]);
 #endif
 SmoothedSpreetaValue += gCurrentSpreetaValue[pixel_count];
 #ifdef NOISY_SMOOTHING
 printf(" %04x\n",SmoothedSpreetaValue);
 #endif
 SmoothedSpreetaValue >>= 1; /* divide by 2 */
 #ifdef NOISY_SMOOTHING
 printf("Smooth: Div_2: %04x\n",SmoothedSpreetaValue);
 #endif
 }
 else /* we're at the ends of the sample, just use the raw value */
 {
 SmoothedSpreetaValue = gCurrentSpreetaValue[pixel_count];
 #ifdef NOISY
 printf("Smooth[%d] raw value: %04x\n",
 pixel_count, SmoothedSpreetaValue);
 #endif
 }

 return(SmoothedSpreetaValue);

 119

}

/***
 * ProcessPixelValue()
 *
 * passes back the pixel value to draw to the screen.
 *
 * works in two modes:
 *
 * a) in differential mode, it subtracts the previous value from the last
falue
 * b) in aboslute mode, it simply passes back the pixel value
 *
 * this route also maintains the "previous data" buffer
 * so it can calculate the differential (if neccessairy)
 *
 *
 * VREF = 3.0V
 *
 * 3.0V => FFF => 4095
 * 2.0V => AAA => 2730
 * conversion to decimal: 3 x spreet_pixel_value / 4095
 *
 * conversion to absolute screen location:
 * Y_TOP_VERT_LABEL + (4095 - gCurrentSpreetaValue)/((4095 -
2730)/Y_VERT_LABEL_SPACING)
 *
 **/
int ProcessPixelValue(int pixel_count, int algorithm_mode)
{
 int screen_pixel_value=0; /* algorithm-specific value returned for
drawing to the screen */
 int SmoothedSpreetaValue = 0; /* smooth the value before plotting */

 switch (algorithm_mode)
 {
 case DRAW_ABSOLUTE:
 case DRAW_ZOOM:
 /*
 * Y_AXIS + (SPREETA_DATA * SPREETA=>SCREEN
Conversion)
 */

 screen_pixel_value = (int)((BOTTOM_GRAPH_BOUNDARY) /* the
zero axis minus the screen offset (minus moves up) */
 -
(int)((int)(gCurrentSpreetaValue[pixel_count] - gScreenMinValue) *
gConvertADCToScreen)
);

 break;
 case DRAW_DIFFERENTIAL:

 /*
 * Draws a flat line in the middle of the screen,
waiting for a pixel to move
 * off of that flat line, either up or down, depending
on whether the light has increased
 * or decreased at that particular angle...
 *
 * Y_AXIS + (OLD_SPREETA_DATA - NEW_SPREETA_DATA +
MIDSCREEN_Offset) * (SPREETA=>SCREEN Conversion)
 */

 SmoothedSpreetaValue = SmoothingAlgorithm(pixel_count);

 120

 screen_pixel_value = TOP_GRAPH_BOUNDARY + (Y_BOT_VERT_LABEL -
Y_TOP_VERT_LABEL)/2 /* midpoint of screen */
 + (
(gBaselinedSpreetaValue[pixel_count] - SmoothedSpreetaValue)
 >>
gDifferentialTicksPerPixelPower /* right shift avoids floating-point */
)
 ;
 break;
 default:
 screen_pixel_value = TOP_GRAPH_BOUNDARY;
 #ifdef NOISY
 printf("in ProcessPixelValue: error!! invalid
algorithm_mode: %d\n",algorithm_mode);
 #endif
 break;
 } /* end switch algorithm_mode */

 #ifdef VERY_NOISY
 printf("Screen value: %d\n",screen_pixel_value);
 #endif

 /* keep the values on the screen... */
 if (screen_pixel_value > Y_HORZ_AXIS-2)
 screen_pixel_value = Y_HORZ_AXIS-2;

 if (screen_pixel_value < TOP_GRAPH_BOUNDARY)
 screen_pixel_value = TOP_GRAPH_BOUNDARY;

 return(screen_pixel_value);
}

void CompareMaxValue(int CompareValue, int PixelCount)
{
 if (PixelCount == 0)
 {
 gSpreetaMaxValue = CompareValue;
 gSpreetaMaxValueLocation = PixelCount;
 }
 else
 {
 if (CompareValue > gSpreetaMaxValue)
 {
 gSpreetaMaxValue = CompareValue;
 gSpreetaMaxValueLocation = PixelCount;
 }
 }
}

void CompareMinValue(int CompareValue, int PixelCount)
{
 if (PixelCount == 0)
 {
 gSpreetaMinValue = CompareValue;
 gSpreetaMinValueLocation = PixelCount;
 }
 else
 {
 if (CompareValue < gSpreetaMinValue)
 {
 gSpreetaMinValue = CompareValue;
 gSpreetaMinValueLocation = PixelCount;
 }
 }
}

 121

/***
 * BuildSMSMessage
 *
 * Upon detection of a threshold violation, this routine will spawn
 * the wireless notification to the user
 *
 **/
fisID_t BuildSMSMessage(char *AddressList, char *MessageText)
{
 methodParam_t methodParam;
 mailObject_t obj;
 int erc;
 fisID_t fisID;
 u_int8 DummyReadBuff[8]; /* read buffer to search for unused mailobj
*/
 u_int32 BuffLen;

 #ifdef NOISY
 printf("[SPREETA] entering BuildSMSMessage with (%s) and (%s)\n",
 AddressList, MessageText);
 #endif

 /* Initialize the mail object */
 erc = mailObject(&obj, MSG_CREATE_OBJECT, &methodParam);

 if (!erc)
 {
 erc = mailObject(&obj, MSG_SETUARDEFAULTS, &methodParam);

 methodParam.Param = 1;
 erc = mailObject(&obj, SET_ADRLISTCNT, &methodParam);

 /* Set the carrier id to Reflex 50 */
 methodParam.Param = ADR_TYPE_EMAIL;
 methodParam.ItemNum = 1;
 erc = mailObject(&obj, SET_ADRTYPE, &methodParam);

 methodParam.ParamStr = AddressList;
 methodParam.ItemNum = 1;
 erc = mailObject(&obj, SET_ADRVAL, &methodParam);

 methodParam.Param = strlen(MessageText);
 erc = mailObject(&obj, SET_CONTENTLEN, &methodParam);

 methodParam.ParamStr = (char *) MessageText;
 methodParam.ItemNum = 1;
 erc = mailObject(&obj, SET_CONTENTVAL, &methodParam);

 /* create mailobjects in a seperate place to keep track of them
and distroy them */
 fisID = MAILOBJ_FIS_ID;
 BuffLen = sizeof(DummyReadBuff);

 /* search for a free ID to store the bitmap */
 while (FISRead(INCOMING_MAIL_TYPE, fisID, DummyReadBuff,&BuffLen)
!= E_ITEM_NOT_FOUND)
 {
 #ifdef NOISY
 printf("[SPREETA] Skipping over MailObj ID: %d\n",fisID);
 #endif
 fisID++;
 }

 methodParam.Param = COMPOSE_FIS_ID(INCOMING_MAIL_TYPE,fisID);
 obj.objectHdr.mailbinID = methodParam.Param;
 erc = mailObject(&obj, MSG_SAVE, &methodParam);

 122

 fisID = methodParam.Param;

#ifdef NOISY
 if (!erc)
 printf("Just created item %d\n", fisID);
 else
 printf("MSG_SAVE returned %d\n", erc);
#endif
 erc = mailObject(&obj, MSG_DESTROY_OBJECT, &methodParam);
 }
 return fisID;
}

/***
 * SpawnNotification
 *
 * Upon detection of a threshold violation, this routine will spawn
 * the wireless notification to the user
 *
 **/
void SpawnNotification(void)
{

 eventmsg SMSEventMsg;
 process_id SpreetaPID;
 process_id MDSPID;
 struct SMSNotification *SearchSMSList;
 Point_t CurrPoint;
 char *PrintString;

 #ifdef NOISY
 printf("entering SpawnNotification\n");
 #endif

 for (SearchSMSList = gpSMSNotificationList;
 (SearchSMSList != NULL) && (SearchSMSList->Sent == TRUE);
 SearchSMSList = SearchSMSList->Next)
 {}

 if (SearchSMSList != NULL)
 {
 if (gNotificationStatus == NOTIFICATION_ENABLED)
 {
 CurrPoint = DrawPopUp("Sending Notificaiton(s)");
 EraseTextCursor();
 }

 GetTextCursor(&CurrPoint);
 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord, "Sending
alert to address:");
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 PrintString = malloc(strlen(SearchSMSList->Address)+2);
 strcpy(PrintString," ");
 strcat(PrintString,SearchSMSList->Address);
 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord,
(string)PrintString);
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);

 gNotificationStatus = NOTIFICATION_IN_PROGRESS;
 name2pid("spreeta", &SpreetaPID);
 name2pid("mmds", &MDSPID);

 SMSEventMsg.FromPid = SpreetaPID;
 SMSEventMsg.EventCode = EVENT_NEW_OUTMAIL;
 SMSEventMsg.asTask = 0;

 123

 SMSEventMsg.Param1 = COMPOSE_FIS_ID(INCOMING_MAIL_TYPE,
SearchSMSList->SMS_ID); /* MailbinID is in param1 */
 SMSEventMsg.Param2 = CARRIER_REFLEX_50; /* Carrier ID is in
param2 */

 #ifdef NOISY
 printf("Sending EVENT_NEW_OUTMAIL (0x%08x) event to
MDS\n",EVENT_NEW_OUTMAIL);
 #endif
 SendMsg(MDSPID, &SMSEventMsg);
 SearchSMSList->Sent = TRUE;
 }
 else /* clean up the linked list */
 {
 while (gpSMSNotificationList != NULL)
 {
 SearchSMSList = gpSMSNotificationList;
 gpSMSNotificationList = gpSMSNotificationList->Next;
 free(SearchSMSList->Address);
 free(SearchSMSList);
 }
 GetTextCursor(&CurrPoint);
 /* very dangerous, if we get out of sequence, we're going to look
rediculous right on the screen */
 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord, "Press
<esc> to continue...");
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);
 gNotificationStatus = NOTIFICATION_DORMANT;
 }
}
/***
 * ProcessSystemEvent
 *
 * Input from the event handler that isn't a keypress. Presumably
 * it's from MDS in repsonse to the SMS message...
 *
 **/
void ProcessSystemEvent(eventmsg InputEvent)
{

 Point_t CurrPoint;

 #ifdef NOISY
 printf("[SPREETA] entering ProcessSystemEvent with event:
0x%x\n",InputEvent.EventCode);
 #endif

 switch (InputEvent.EventCode)
 {
 case EVENT_PROFILE_CHANGE:
 #ifdef NOISY
 printf("[SPREETA] SystemEvent EVENT_PROFILE_CHANGE: you're
in PDA Mode?\n");
 #endif
 break;

 case EVENT_SIGNAL_STRENGTH:
 #ifdef NOISY
 printf("[SPREETA] SystemEvent EVENT_SIGNAL_STRENGTH:
ignoring...\n");
 #endif
 break;

 case EVENT_BATTERYDOOR_CLOSE:
 #ifdef NOISY

 124

 printf("[SPREETA] SystemEvent EVENT_BATTERYDOOR_CLOSE;
SubEvent 0x%x:\n",InputEvent.Param1);
 #endif
 switch (InputEvent.Param1)
 {
 default:
 break;
 }
 break;
 case EVENT_MAIL_STATUS:
 #ifdef NOISY
 printf("[SPREETA] SystemEvent EVENT_MAIL_STATUS;
Param1 0x%x; Param2 0x%x\n",InputEvent.Param1,InputEvent.Param2);
 #endif
 if ((InputEvent.Param1 == 0x1000) &&
(InputEvent.Param2 == 0x10))
 {
 #ifdef NOISY
 printf("[SPREETA] You're in PDA Mode, install
your SIM Card, Fool!!\n");
 #endif
 }
 else if (InputEvent.Param1 > 0x10000)
 {
 #ifdef NOISY
 printf("[SPREETA] Successful Send! Sent ID:
%d; Sending the next one :-)\n",InputEvent.Param1 & 0xFFFF);
 #endif
 GetTextCursor(&CurrPoint);
 PrintTextToScreen(CurrPoint.yCoord,
CurrPoint.xCoord, "Message sent successfully.");
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);
 SpawnNotification();
 }
 else /* dunno what this is but we'd better try again
*/
 {
 #ifdef NOISY
 printf("[SPREETA] Unknown Event,
retry...\n");
 #endif
 if (gNotificationStatus ==
NOTIFICATION_IN_PROGRESS)
 {
 GetTextCursor(&CurrPoint);
 PrintTextToScreen(CurrPoint.yCoord,
CurrPoint.xCoord, "Message Failed; Retrying...");
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);
 SpawnNotification();
 }
 }
 break;
 default:
 #ifdef NOISY
 printf("[SPREETA] SystemEvent %d; SubEvent
0x%x:\n",InputEvent.EventCode, InputEvent.Param1);
 #endif
 if (gNotificationStatus == NOTIFICATION_IN_PROGRESS)
 SpawnNotification();
 break;
 }
}

/***
 * UpdateStatistics(algorithm_mode)

 125

 *
 * This takes a long time with all the floating point arithmetic
 * so do the work when there's not any timing-sensitive conversions
 * taking place...
 *
 * Even so, don't take any more time in this routine than necessary,
 * to minimize time, only update one statistic per call to this routine.
 * Use gSampleCount to determine which statistic to update
 *
 * also save off the spreeta pixel values in case we switch to differential
 * mode during the next set of captures
 *
 **/
void UpdateStatistics(int algorithm_mode)
{
 long TotalValue;
 float AverageValue;
 int i;
 char pScreenValue[20]; /* space for the data to print */
 int x_print_offset = 0; /* used to offset for negative
number printing */

 /* in low-power mode (aka. slow) we'll update all statistics every call
*/
 switch (gSampleCount & 0x00000003 & gHighSpeedMode) /* Low_Power_Mode =
0 */
 {
 /* High_Speed_Mode = 0xFFFFFFFF */
 case 0x00000000: /* update MAX value */
 /* find the Max value */
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 if (algorithm_mode == DRAW_DIFFERENTIAL)
 CompareMaxValue(gCurrentSpreetaValue[i] -
gBaselinedSpreetaValue[i],i);
 else
 CompareMaxValue(gCurrentSpreetaValue[i],i);
 }

 if (gSpreetaMaxValue < 0)
 x_print_offset = (TEXT_WIDTH-1);

 /* update the MAX value */
 sprintf(pScreenValue,"%-
05.3f",gSpreetaMaxValue*(float)3/SPREETA_ADC_3V_VALUE);

 UpdateValueOnScreen(Y_MAX_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE-
x_print_offset,(string)pScreenValue);

 /* update the MAX angle */
 sprintf(pScreenValue,"%-05.3f",RIU_MIN +
gSpreetaMaxValueLocation*((float)RIU_MAX - RIU_MIN)/(TOTAL_SPREETA_PIXELS-1));

 UpdateValueOnScreen(Y_MAX_LABEL+TEXT_LINE_SPACING*2,X_AVG_MIN_MAX_VALUE
,(string)pScreenValue);

 #ifdef NOISY
 printf("Max Value Voltage: %-05.3f;
",gSpreetaMaxValue*(float)3/SPREETA_ADC_3V_VALUE);
 printf("at pixel %d with RIU value of:
%05.3f\n",gSpreetaMaxValueLocation,gSpreetaMaxValueLocation*((float)RIU_MAX -
RIU_MIN)/(TOTAL_SPREETA_PIXELS-1));
 #endif

 if (gHighSpeedMode == HIGH_SPEED_MODE)
 break; /* break out and don't execute case
0x00000001 in high-speed mode */

 126

 case 0x00000001: /* update MIN value */
 /* find the Min value */
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 if (algorithm_mode == DRAW_DIFFERENTIAL)
 CompareMinValue(gCurrentSpreetaValue[i] -
gBaselinedSpreetaValue[i],i);
 else
 CompareMinValue(gCurrentSpreetaValue[i],i);
 }

 if (gSpreetaMinValue < 0)
 x_print_offset = (TEXT_WIDTH-1);

 /* update the MIN value */
 sprintf(pScreenValue,"%-
05.3f",gSpreetaMinValue*(float)3/SPREETA_ADC_3V_VALUE);

 UpdateValueOnScreen(Y_MIN_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE-
x_print_offset,(string)pScreenValue);
 /* update the MIN angle */
 sprintf(pScreenValue,"%-05.3f",RIU_MIN +
gSpreetaMinValueLocation*((float)RIU_MAX - RIU_MIN)/(TOTAL_SPREETA_PIXELS-1));

 UpdateValueOnScreen(Y_MIN_LABEL+TEXT_LINE_SPACING*2,X_AVG_MIN_MAX_VALUE
,(string)pScreenValue);
 #ifdef NOISY
 printf("Min Value Voltage was: %-05.3f;
",gSpreetaMinValue*(float)3/SPREETA_ADC_3V_VALUE);
 printf("at pixel %d with RIU value of: %-
05.3f\n",gSpreetaMinValueLocation,gSpreetaMinValueLocation* ((float)RIU_MAX -
RIU_MIN)/(TOTAL_SPREETA_PIXELS-1));
 #endif

 if (gHighSpeedMode == HIGH_SPEED_MODE)
 break; /* break out and don't execute case
0x00000002 in high-speed mode */

 case 0x00000002: /* update average value */
 TotalValue = 0;
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 /* upate the Average value */
 TotalValue += gCurrentSpreetaValue[i];
 }

 AverageValue = (TotalValue /
(float)TOTAL_SPREETA_PIXELS)*(float)3/SPREETA_ADC_3V_VALUE;
 sprintf(pScreenValue,"%-05.3f",AverageValue);

 UpdateValueOnScreen(Y_AVG_LABEL+TEXT_LINE_SPACING,X_AVG_MIN_MAX_VALUE,(
string)pScreenValue);
 if (gHighSpeedMode == HIGH_SPEED_MODE)
 break; /* break out and don't execute case
0x00000003 in high-speed mode */

 case 0x00000003: /* Print the time to the screen */
 {
 UpdateTimeOnScreen();
 /* check for the max value crossing the threshold */
 if ((algorithm_mode == DRAW_DIFFERENTIAL) &&
(gNotificationStatus == NOTIFICATION_ENABLED))
 {
 if ((
(gPreviousScreenValue[gSpreetaMaxValueLocation] <=
gHorizontalCursor1.PositionDifferential)

 127

 &&
(gPreviousScreenValue[gSpreetaMaxValueLocation] <=
gHorizontalCursor2.PositionDifferential))
 || (
(gPreviousScreenValue[gSpreetaMinValueLocation] >=
gHorizontalCursor1.PositionDifferential)
 &&
(gPreviousScreenValue[gSpreetaMinValueLocation] >=
gHorizontalCursor2.PositionDifferential)))
 {
 gThresholdCrossedCount++;
 #ifdef NOISY
 printf("Crossed the Threshold! Count:
%d\n",gThresholdCrossedCount);
 #endif
 /* if we've been sitting outside the
threshold range long enough, tell somebody! */
 if (gThresholdCrossedCount >=
MAX_CONSECUTIVE_THRESHOLD_VIOLATIONS)
 {
 Point_t CurrPoint;
 char *PopUpMessage;

 SpawnNotification();
 /* dummy call to make sure we're
still processing input *and*
 that we can escape out if
there's trouble... */
 GetTextCursor(&CurrPoint);
 CapturePopUpText(&PopUpMessage,
CurrPoint);
 /* I don't care why I came back,
the game's over */
 free(PopUpMessage);
 gNotificationStatus =
NOTIFICATION_DORMANT;
 DeleteAllSpreetaMailObjs();
 gThresholdCrossedCount = 0;
 display_differential_screen();
/* destroy pop-up by re-drawing the differential screen */
 }
 }
 else
 gThresholdCrossedCount = 0;
 }
 }
 break;
 } /* end switch */

 /* update the sample count to provide a visual of how fast the samples
are running */
 sprintf(pScreenValue,"%d",gSampleCount++);
 UpdateValueOnScreen(Y_SAMPLE_COUNT_LABEL,X_SAMPLE_LABEL+X_SAMPLE_COUNT,
(string)pScreenValue);

}

/***
 * PixelToScreen()
 *
 * draws the pixel value to the screen
 *
 * works in two modes:
 *
 * a) in differential mode...
 * b) in aboslute mode...

 128

 *
 * in either case, this route also maintains the "previous data" buffer
 * so it can erase the previous pixel data
 *
 **/
void PixelToScreen(int screen_pixel_value, int pixel_count, int
algorithm_mode)
{

 u_int16 CapturedScreenValue; /* distinquish between Zoom & Abolute */

 #ifdef VERY_NOISY
 printf("Entering PixelToScreen with screen_pixel_value:
%d\n",screen_pixel_value);
 #endif

 if (algorithm_mode == DRAW_DIFFERENTIAL)
 {
 /* erase the previously drawn pixel */
 if (CheckEraseAtCursor(pixel_count,
gDifferentialCenterLine.PositionDifferential, gDifferentialCenterLine.Color)
!= ERASURE_COMPLETE)
 if (CheckEraseAtCursor(pixel_count,
gHorizontalCursor1.PositionDifferential, gHorizontalCursor1.Color) !=
ERASURE_COMPLETE)
 if (CheckEraseAtCursor(pixel_count,
gHorizontalCursor2.PositionDifferential, gHorizontalCursor2.Color) !=
ERASURE_COMPLETE)
 /* no interference detected, erase in
white... */

WriteLine(&DefaultRenderingContext,X_VERT_AXIS+1+pixel_count,gPreviousScreenVa
lue[pixel_count],

X_VERT_AXIS+1+pixel_count,gPreviousScreenValue[pixel_count]+1,COLOR_WHITE);

 if ((screen_pixel_value !=
gDifferentialCenterLine.PositionDifferential)
 && (screen_pixel_value !=
gHorizontalCursor1.PositionDifferential)
 && (screen_pixel_value !=
gHorizontalCursor2.PositionDifferential)
)
 {
 /* draw the new pixel */

WriteLine(&DefaultRenderingContext,X_VERT_AXIS+1+pixel_count,screen_pixel_valu
e,

X_VERT_AXIS+1+pixel_count,screen_pixel_value+1,COLOR_BLACK);
 } /* end test for no interference */
 }
 else
 {
 if (gSpreetaPixelsBaselined == TRUE)
 {
 if (algorithm_mode == DRAW_ABSOLUTE)

 CapturedScreenValue=gCapturedAbosluteScreenValue[pixel_count];
 else

 CapturedScreenValue=gCapturedZoomScreenValue[pixel_count];
 }
 else /* no capture of the data yet, don't use the data in the
array */
 {

 129

 CapturedScreenValue = screen_pixel_value; /* use the
current value until we get a capture */
 }

 /* erase the previously drawn pixel */
 if (CheckEraseAtCursor(pixel_count,
gHorizontalCursor1.PositionAbsolute, gHorizontalCursor1.Color) !=
ERASURE_COMPLETE)
 if (CheckEraseAtCursor(pixel_count,
gHorizontalCursor2.PositionAbsolute, gHorizontalCursor2.Color) !=
ERASURE_COMPLETE)

WriteLine(&DefaultRenderingContext,X_VERT_AXIS+1+pixel_count,gPreviousScreenVa
lue[pixel_count],

X_VERT_AXIS+1+pixel_count,gPreviousScreenValue[pixel_count]+1,COLOR_WHITE);

 /* draw the originally captured pixel in the graph, Black */
 if ((CapturedScreenValue !=
gHorizontalCursor1.PositionAbsolute)
 && (CapturedScreenValue !=
gHorizontalCursor2.PositionAbsolute)
)

WriteLine(&DefaultRenderingContext,X_VERT_AXIS+1+pixel_count,CapturedScreenVal
ue,

X_VERT_AXIS+1+pixel_count,CapturedScreenValue+1,COLOR_BLACK);

 /* draw the new value of the pixel in the graph, Red */
 if (CapturedScreenValue != screen_pixel_value) /* is new
different from old? */
 if ((screen_pixel_value !=
gHorizontalCursor1.PositionAbsolute)
 && (screen_pixel_value !=
gHorizontalCursor2.PositionAbsolute)
)

WriteLine(&DefaultRenderingContext,X_VERT_AXIS+1+pixel_count,screen_pixel_valu
e,

X_VERT_AXIS+1+pixel_count,screen_pixel_value+1,COLOR_RED);
 }
 /* update the previous value array */
 gPreviousScreenValue[pixel_count] = screen_pixel_value;

}

/***
 * signal intercept routine
 *
 * upon receiving an asyncronous signal, this routine will handle the signal
 * and take the appropriate action. Note that we don't expect any input
 * on this channel, but better safe than sorry.
 *
 * For debug, we can always type ^C and if the signal handler is running,
 * we can return control to the OS, run cleanup, etc....
 *
 **/
void sighandler (int signal)
{

 _os_sigmask (1); /* mask signals during signal handler */

 #ifdef NOISY
 printf("in sighandler with signal 0x%08x\n",signal);
 #endif

 130

 switch (signal)
 {
 case SIGINT: /* ^C = keyboard interrupt signal */
 case SIGQUIT: /* ^E = keyboard abort signal */
 #ifdef NOISY
 printf("Termination signal received\n");
 #endif
 deinitalize_system();
 exit (signal);
 break;

 case SIG_QUEUE:
 #ifdef NOISY
 printf("SIG_QUEUE signal received\n");
 #endif
 break;

 default:
 #ifdef NOISY
 printf("Unknown signal received ==> %d\n", signal);
 #endif
 break;
 }

 _os_sigmask (-1); /* unmask signals upon exit of signal handler */
 _os_rte(); /* cannot use 'return', must use _os_rte() upon
 * return from signal handler */
}

/**
 *
 * tmode_nopause()
 *
 * this function turns off screen pause mode so the scrolling of the debug
outputs
 * won't get stuck due to lack of input from stdin
 *
 * equivalent to 'tmode nopause' from shell
 *
 **/
void tmode_nopause(void)
{
 struct sgbuf termopts;

 _gs_opt(1, &termopts);
 termopts.sg_pause = 0;
 _ss_opt(1, &termopts);
}

/**
 *
 * delay()
 *
 * pass in the value of "duration" which is computed in terms
 * of "ticks"
 *
 * a tick is 10mSec in this instantiation of the OS.
 *
 * special cases: tick = 0: sleep forever
 * tick = 1; give up the current time slice
 *
 **/
void delay(int duration)
{
 u_int32 sleepval;

 131

 sleepval = duration;
 while (sleepval > 1) /* if we exit sleep early, re-invoke until
duration elapses */
 {
 _os9_sleep(&sleepval);
 #ifdef NOISY
 printf("exited _os9_sleep() with a value of %d\n",sleepval);
 #endif
 }
}
/***'
 *
 * CapturePopUpText()
 *
 * gather the input from the user
 *
 * Returns:
 * SUCCESS - if the user does't cancel out
 * FAILURE - if the user does cancel out
 *
 * Captured Inputs:
 * 1) standard keys for printing and adding to the string
 * 2) TAB - end of input
 * 3) Enter - make a new line
 * 4) Escape - cancel out of the function and return "FAILURE"
 * 5) BackSpace - back up one character
 *
 ***/
int CapturePopUpText(char **CaptureString, Point_t CurrPoint)
{
 char *TextLines[MAX_POPUP_TEXT_LINES]; /* lines of text in the
popup */
 u_char input_data; /* the character input from the keypad */
 eventmsg RcvMsg; /* the input Queue for the keypad */
 int CurLine = 0; /* the current line being entered by the
user */
 int ContinueInput;
 int ReturnValue = ERROR_NO_TEXT_CAPTURE;

 #ifdef NOISY
 printf("Enter CapturePopUpText; CurrPoint.x:%d;
CurrPoint.y:%d\n",CurrPoint.xCoord,CurrPoint.yCoord);
 #endif

 TextLines[CurLine] = malloc(MAX_POPUP_LINE_LENGTH);
 TextLines[CurLine] = 0x00; / null out the string */
 ContinueInput = TRUE;

 while ((ContinueInput == TRUE) && (ReadMsg(&RcvMsg) == SUCCESS)) /*
blocking read */
 {
 if ((RcvMsg.EventCode != EVENT_KEY)
 && (RcvMsg.EventCode != EVENT_SYSKEY)
 && (RcvMsg.EventCode != EVENT_MODIFIER_STATE_CHANGE))
 {
 #ifdef NOISY
 printf("Received System event %d
(0x%x)\n",RcvMsg.EventCode,RcvMsg.EventCode);
 #endif
 ProcessSystemEvent(RcvMsg);
 }
 else
 {
 input_data = (u_char)RcvMsg.Param1;
 #ifdef NOISY
 printf("Pop-Up Capture of \"%c\"
(0x%02x)\n",input_data,input_data);

 132

 #endif

 switch (input_data)
 {
 case TAB_KEY:
 ContinueInput = FALSE; /* User has ended the
input */
 {
 int i;
 CaptureString = malloc((CurLine+1)
MAX_POPUP_LINE_LENGTH);
 **CaptureString = 0x00; /* NULL
Terminate the string */
 for (i=0; i<= CurLine; i++) /*
return the user's data */
 {
 strcat(*CaptureString,
TextLines[i]);
 #ifdef NOISY
 printf("Line[%d]:
(%s)\n",i,TextLines[i]);
 #endif
 free(TextLines[i]);
 }
 #ifdef NOISY
 printf("CaptureString:
(%s)\n",*CaptureString);
 #endif
 }
 ReturnValue = SUCCESS;
 break;
 case RETURN_KEY:
 /* terminate current line and generate a new
one */
 strncat(TextLines[CurLine],(const char
*)&input_data,1);
 CurLine++;
 TextLines[CurLine] =
malloc(MAX_POPUP_LINE_LENGTH);
 *TextLines[CurLine] = 0x00;
 /* position the cursor at the beginning of
the new line */
 EraseTextCursor();
 CurrPoint.xCoord =
POPUP_TOP_X+POPUP_BOARDER_THICKNESS+CURSOR_WIDTH;
 CurrPoint.yCoord += TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);
 PrintTextCursor();
 #ifdef NOISY
 printf("Creating Line No: %d\n",CurLine);
 #endif
 break;
 case BACKSPACE_KEY:
 #ifdef NOISY
 printf("Erasing Last Character\n");
 #endif
 EraseLastCharacter(CurrPoint,
(string)TextLines[CurLine]);
 break;
 case EXIT_KEY:
 case HOME_KEY:
 case 0x84:
 case 0x8C:
 case 0x8D: /* press & hold Home key */
 case 0x8F: /* sometimes it's an 0x8F, dunno why?? */
 #ifdef NOISY
 printf("Escape From User Input\n");

 133

 #endif
 ContinueInput = FALSE; /* User has ended the
input */
 ReturnValue = ERROR_NO_TEXT_CAPTURE;
 break;
 default:
 if ((input_data >= 0x20) /* printable key
*/
 && (input_data <= 0x80))
 {
 Point_t CheckPoint;

 strncat(TextLines[CurLine],(const char
*)&input_data,1);

 /* wrap to the next row if at the edge
of the pop-up */
 GetTextCursor(&CheckPoint);
 if (CheckPoint.xCoord > POPUP_BOTTOM_X
- POPUP_BOARDER_THICKNESS - TEXT_WIDTH*2)
 {
 EraseTextCursor();

 PrintTextToScreen(CurrPoint.yCoord, CurrPoint.xCoord,
(string)TextLines[CurLine]);
 CurLine++;
 TextLines[CurLine] =
malloc(MAX_POPUP_LINE_LENGTH);
 *TextLines[CurLine] = 0x00;
 /* position the cursor at the
beginning of the new line */
 CurrPoint.xCoord =
POPUP_TOP_X+POPUP_BOARDER_THICKNESS+CURSOR_WIDTH;
 CurrPoint.yCoord +=
TEXT_LINE_SPACING;
 SetTextCursor(&CurrPoint);
 PrintTextCursor();
 #ifdef NOISY
 printf("Wrapping to the next
line: %d\n",CurLine);
 #endif
 }
 else /* not at end of line; no need to
wrap */
 {
 PrintNextCharacter(CurrPoint,
(string)TextLines[CurLine]);
 }
 }
 else
 {
 #ifdef NOISY
 printf("Sorry, that particular key
doesn't do anything...\n");
 #endif
 }
 break;
 } /* end case */
 } /* end else */
 } /* end if */
 return(ReturnValue);
} /* end CapturePopUpText() */

/***'
 *
 * ProcessInput()
 *

 134

 * used to determine changes to the program while running.
 *
 * in the simplest form. we have four basic commands:
 *
 * s - start reading spreeta data
 * a - display the data in "absolute" mode
 * d - display the data in "differential" mode
 * c - capture the Spreeta Data (prerequisite for Differential Mode)
 * p - print the current screen to memory
 * j - move graph down by decreasing integration period
 * k - move graph up by increasing integration period
 * l - change to low-power mode (e.g. sample less often)
 * h - change to high speed mode (e.g. smaple more often)
 * n - enable wireless notification
 * q - quit the program
 *
 ***/
int ProcessUserInput(u_char input_data, int *algorithm_mode)
{
 int return_val,i;

 #ifdef NOISY
 printf("crazy user pressed a \"%c\" (0x%02x)\n",input_data,input_data);
 fflush(stdout);
 #endif

 switch (input_data)
 {
 case 's':
 case 'S':
 case 'a':
 case 'A':
 *algorithm_mode = DRAW_ABSOLUTE;
 return_val = RESTART_ALGORITHM;
 gScreenMaxValue = SPREETA_ADC_3V_VALUE;
 gScreenMinValue = 0;
 break;
 case 'd':
 case 'D':
 if (gSpreetaPixelsBaselined == FALSE) /* run a capture
now... */
 {
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 /* save off the data values for
differential mode calculations */
 gBaselinedSpreetaValue[i] =
SmoothingAlgorithm(i);
 }
 }
 gSpreetaPixelsBaselined = TRUE;
 *algorithm_mode = DRAW_DIFFERENTIAL;
 return_val = RESTART_ALGORITHM;
 /* screen Max & Min have no meaning in Differential
Mode */
 gScreenMaxValue = SPREETA_ADC_3V_VALUE;
 gScreenMinValue = 0;
 break;
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 if (*algorithm_mode == DRAW_DIFFERENTIAL) /* numbers
adjust differential zoom only */
 {
 /* while differential screen being displayed */
 return_val = RESTART_ALGORITHM; /* force a re-
draw of the screen */

 135

 gDifferentialTicksPerPixelPower = input_data -
'0';
 }
 else
 {
 return_val = CONTINUE_ALGORITHM;
 }
 break;
 case 'z':
 case 'Z':
 *algorithm_mode = DRAW_ZOOM;
 return_val = RESTART_ALGORITHM;
 /* calculate screen Max & Min limits */
 gScreenMaxValue = gSpreetaMaxValue +
SCREEN_MAX_OFFSET;
 gScreenMinValue = gSpreetaMinValue -
SCREEN_MIN_OFFSET;
 /* need to adjust cursor position values here
 and adjust 'em back when changing to aboslute screen
*/
 break;
 case 'c': /* Caputre */
 case 'C':
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;;
 for (i=0; i<TOTAL_SPREETA_PIXELS; i++)
 {
 /* save off the data values for differential mode
calculations */
 gBaselinedSpreetaValue[i] =
SmoothingAlgorithm(i);
 gCapturedAbosluteScreenValue[i] =
ProcessPixelValue(i,DRAW_ABSOLUTE);
 gCapturedZoomScreenValue[i] =
ProcessPixelValue(i,DRAW_ZOOM);
 }
 gSpreetaPixelsBaselined = TRUE;
 gSampleCount = 0; /* start the sample count over at 0 */

UpdateValueOnScreen(Y_SAMPLE_COUNT_LABEL,X_SAMPLE_LABEL+X_SAMPLE_COUNT,"0
");
 break;
 case 'j':
 case 'J': /* move waveform down by decreasing integration period
*/
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 gIntegrationPeriod -= INTEGRATION_INCREMENT;
 break;
 case 'k':
 case 'K': /* move waveform up by increasing integration period */
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 gIntegrationPeriod += INTEGRATION_INCREMENT;
 break;
 case 'l':
 case 'L': /* change to low-power mode by enabling sleep */
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 gHighSpeedMode = LOW_POWER_MODE;
 break;
 case 'h':
 case 'H': /* change to High-Speed mode by disabling sleep */
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 gHighSpeedMode = HIGH_SPEED_MODE;
 break;

 136

 case 'n':
 case 'N': /* enable wireless notification */
 {
 char *eMailAddressList;
 char *NotificationMessage;
 Point_t CurrPoint;

 /* get user's input for address and message */
 CurrPoint = DrawPopUp("Enter E-Mail Address(es)");
 if (CapturePopUpText(&eMailAddressList, CurrPoint)
== SUCCESS)
 {
 CurrPoint = DrawPopUp("Enter Notificaiton
Message");
 if
(CapturePopUpText(&NotificationMessage,CurrPoint) == SUCCESS)
 {
 struct SMSNotification
pLocalSMSNotification; / pointer to linked list of SMS messages */
 char *eMailAddress, *ListChar,
*FillChar;

 DeleteAllSpreetaMailObjs(); /* clean
out all lingering orphans */
 gNotificationStatus = TRUE; /* set
notification to TRUE */
 gpSMSNotificationList = NULL;
 eMailAddress =
malloc(MAX_POPUP_LINE_LENGTH);
 *eMailAddress = 0x00;
 FillChar = eMailAddress;
 ListChar = eMailAddressList;
 do
 {
 while((*ListChar != '\n') &&
(*ListChar != 0x00))
 {
 *FillChar++ =
ListChar++; / copy the next e-mail address from the list */
 }
 FillChar = 0x00; / terminate
the string */
 #ifdef NOISY
 printf("E-Mail Address:
(%s)\n",eMailAddress);
 #endif

 if (*ListChar != 0x00)
 ListChar++; /* skip the
newline */

 if (strchr(eMailAddress,'@')
!= NULL) /* only process valid e-mail addresses */
 {
 pLocalSMSNotification =
malloc(sizeof(struct SMSNotification));
 pLocalSMSNotification-
>SMS_ID = BuildSMSMessage(eMailAddress, NotificationMessage);
 pLocalSMSNotification-
>Sent = FALSE;
 pLocalSMSNotification-
>Address = malloc(strlen(eMailAddress));

strcpy(pLocalSMSNotification->Address,eMailAddress);
 pLocalSMSNotification-
>Next = gpSMSNotificationList;

 137

 gpSMSNotificationList =
pLocalSMSNotification;
 FillChar = eMailAddress;
/* set up for the next address copy */
 }
 }
 while(*ListChar != 0x00);
 #ifdef NOISY
 printf("Finished building SMS Message
List: (");
 for (pLocalSMSNotification =
gpSMSNotificationList;
 pLocalSMSNotification != NULL;
 pLocalSMSNotification =
pLocalSMSNotification->Next)
 {

printf("%d,",pLocalSMSNotification->SMS_ID);
 }
 printf(")\n");
 #endif
 free(NotificationMessage);
 }
 free(eMailAddressList);
 }
 }

 /* erase pop-up by re-drawing the screen */
 return_val = RESTART_ALGORITHM;

 break;
 case DOWN_KEY: /* move the active cursor down one pixel */
 case 0xC2:
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;

EraseHorizontalCursor(gHorizontalCursorActive,*algorithm_mode);
 if (*algorithm_mode == DRAW_DIFFERENTIAL)
 {
 gHorizontalCursorActive-
>PositionDifferential++;
 if ((gHorizontalCursorActive-
>PositionDifferential + gHorizontalCursorActive->Width)
 ==
(gDifferentialCenterLine.PositionDifferential - 1))
 /* the cursor has invaded the space of
the differential line so jump over it... */
 gHorizontalCursorActive-
>PositionDifferential = gDifferentialCenterLine.PositionDifferential +
gDifferentialCenterLine.Width + 2;

 /* don't let it run off the bottom of the
screen */
 if (gHorizontalCursorActive-
>PositionDifferential >= (BOTTOM_GRAPH_BOUNDARY-(gHorizontalCursorActive-
>Width-1)))
 gHorizontalCursorActive-
>PositionDifferential--;
 }
 else
 {
 gHorizontalCursorActive->PositionAbsolute++;

 /* don't let it run off the bottom of the screen
*/
 if (gHorizontalCursorActive->PositionAbsolute >=
(BOTTOM_GRAPH_BOUNDARY-(gHorizontalCursorActive->Width-1)))

 138

 gHorizontalCursorActive->PositionAbsolute--;
 }

DrawHorizontalCursor(gHorizontalCursorActive,*algorithm_mode);
 break;
 case UP_KEY: /* move the active cursor up one pixel */
 case 0xC3:

EraseHorizontalCursor(gHorizontalCursorActive,*algorithm_mode);
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 if (*algorithm_mode == DRAW_DIFFERENTIAL)
 {
 gHorizontalCursorActive->PositionDifferential--;
 if ((gHorizontalCursorActive->PositionDifferential
- 1)
 ==
(gDifferentialCenterLine.PositionDifferential +
gDifferentialCenterLine.Width))
 /* the cursor has invaded the space of the
differential center line so jump over it... */
 gHorizontalCursorActive-
>PositionDifferential = gDifferentialCenterLine.PositionDifferential -
gHorizontalCursorActive->Width - 2;

 /* don't let it run off the top of the screen */
 if (gHorizontalCursorActive->PositionDifferential
<= TOP_GRAPH_BOUNDARY)
 gHorizontalCursorActive-
>PositionDifferential++;
 }
 else
 {
 gHorizontalCursorActive->PositionAbsolute--;
 /* don't let it run off the top of the screen */
 if (gHorizontalCursorActive->PositionAbsolute <=
TOP_GRAPH_BOUNDARY)
 gHorizontalCursorActive->PositionAbsolute++;
 }

DrawHorizontalCursor(gHorizontalCursorActive,*algorithm_mode);
 break;
 case TAB_KEY: /* Switch the active cursor */
 /* don't change the algorithm mode */
 return_val = CONTINUE_ALGORITHM;
 /* deselect current cursor */
 gHorizontalCursorActive->Color = CURSOR_DEFAULT_COLOR;
 /* switch active cursor */
 gHorizontalCursorActive = gHorizontalCursorActive->Next;
 gHorizontalCursorActive->Color = CURSOR_SELECTED_COLOR;
 /* re-draw the cursors: no need to erase first because
they're not moving */

DrawHorizontalCursor(&gHorizontalCursor1,*algorithm_mode);

DrawHorizontalCursor(&gHorizontalCursor2,*algorithm_mode);
 break;
 case 'p':
 case 'P':
 /* print the current screen to non-volatile storage */
 return_val = CONTINUE_ALGORITHM;
 {
 Bitmap_t Bitmap;
 u_int8 DummyReadBuff[8]; /* read buffer to
search for unused bitmap */
 fisID_t FISid;
 char BitmapFileName[20];

 139

 u_int32 BuffLen;

 #ifdef NOISY
 u_int32 minalloc, /* min. allocation size */
 memsegs, /* number of memory
segments */
 totramst, /* total ram at startup */
 ctotram; /* current total
ram */

 _os_get_blkmap(NULL, NULL, 0,
&minalloc,&memsegs, &totramst, &ctotram);
 printf("Total Free RAM upon entry to PrintScreen:
%d\n",ctotram);
 #endif /* NOISY */

 /* capture the current screen */
 ScreenToBitmap(&DefaultRenderingContext, NULL,
&Bitmap, UN_COMPRESSED_ROB_FILE_TYPE);
 /* ScreenToBitmap(&DefaultRenderingContext, NULL,
&Bitmap, ROB_FILE_COMPRESSION_METHOD_RC2); */

 FISid = BITMAP_FIS_ID;
 BuffLen = sizeof(DummyReadBuff);

 /* search for a free ID to store the bitmap */
 while (FISRead(BITMAP_FIS_TYPE, FISid,
DummyReadBuff,&BuffLen) != E_ITEM_NOT_FOUND)
 FISid++;

sprintf(BitmapFileName,"FIS:%d.%d",BITMAP_FIS_TYPE,FISid);
 StoreBitmap((string)BitmapFileName, &Bitmap);
 /* DestroyBitmap(&Bitmap); */ /* free up the
memory for the compressed version */

 #ifdef NOISY
 _os_get_blkmap(NULL, NULL, 0,
&minalloc,&memsegs, &totramst, &ctotram);
 printf("Total Free RAM upon exit from PrintScreen:
%d\n",ctotram);
 #endif /* NOISY */
 }
 break;
 case 'q':
 case 'Q':
 algorithm_mode = -1; / doesn't really matter, but
send SOMETHING */
 return_val = QUIT_ALGORITHM;
 break;
 case 't':
 case 'T': /* threshold violation invoked by user */
 return_val = RESTART_ALGORITHM;
 if (gNotificationStatus != NOTIFICATION_DORMANT)
 {
 int ContinueInput = TRUE;
 eventmsg RcvMsg;
 char *PopUpMessage;
 Point_t CurrPoint;

 CopyBitmapToScreen(SIMULATION_ABSOLUTE_FILE);
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
 while ((ContinueInput == TRUE) && (ReadMsg(&RcvMsg)
== SUCCESS)) /* blocking read */
 {
 if ((RcvMsg.EventCode == EVENT_KEY)

 140

 || (RcvMsg.EventCode == EVENT_SYSKEY)
 || (RcvMsg.EventCode ==
EVENT_MODIFIER_STATE_CHANGE))
 {
 ContinueInput = FALSE;
 }
 }
 CopyBitmapToScreen(SIMULATION_DIFFERENTIAL_FILE);
 UpdateDateOnScreen();
 UpdateTimeOnScreen();
 ContinueInput = TRUE;
 while ((ContinueInput == TRUE) && (ReadMsg(&RcvMsg)
== SUCCESS)) /* blocking read */
 {
 if ((RcvMsg.EventCode == EVENT_KEY)
 || (RcvMsg.EventCode == EVENT_SYSKEY)
 || (RcvMsg.EventCode ==
EVENT_MODIFIER_STATE_CHANGE))
 {
 ContinueInput = FALSE;
 }
 }
 SpawnNotification();

 /* dummy call to make sure we're still processing
input *and*
 that we can escape out if there's trouble... */
 GetTextCursor(&CurrPoint);
 CapturePopUpText(&PopUpMessage, CurrPoint);
 /* I don't care why I came back, the game's over */
 free(PopUpMessage);
 gNotificationStatus = NOTIFICATION_DORMANT;
 DeleteAllSpreetaMailObjs();

 }
 break;
 default:
 return_val = CONTINUE_ALGORITHM;
 #ifdef NOISY
 printf("Sorry, that particular key doesn't do
anything...\n");
 #endif
 break;

 } /* end case */

 if (return_val == RESTART_ALGORITHM)
 {
 /* re-initalize the globals */
 #ifdef NOISY
 printf("gScreenMaxValue = %d; gScreenMinValue =
%d\n",gScreenMaxValue,gScreenMinValue);
 printf("gScreenMaxValue-gScreenMinValue =
%f\n",(float)(gScreenMaxValue-gScreenMinValue));
 #endif NOISY
 gConvertADCToScreen = (Y_BOT_VERT_LABEL-
Y_TOP_VERT_LABEL)/(float)(gScreenMaxValue-gScreenMinValue);

 if (gScreenMinValue < 0) /* floor funciton for minimum screen value
*/
 gScreenMinValue=0;

 if (gScreenMaxValue > SPREETA_ADC_3V_VALUE) /* celing funciton
for maximum screen value */
 gScreenMaxValue=SPREETA_ADC_3V_VALUE;
 }
 return(return_val);

 141

}

/**
 *
 * Main()
 *
 * the main algorithm is:
 * 1) initalize system
 * 2) read pixels from Spreeta
 * 3) draw pixels to screen
 *
 ***/
int main(int argc, string argv[])
{
 int pixel_count; /* current pixel number for read from
spreeta */
 int algorithm_status; /* tells when to re-start the inner loop or
quit the program */
 int algorithm_mode; /* tells absolute mode vs.
differential mode */
 int quit = FALSE; /* loop controlling variable */
 int PixelValue;
 eventmsg RcvMsg; /* events from keypad, MDS, etc. */

 algorithm_status = initalize_system(&algorithm_mode); /* does
all init for keypad, LCD and Spreeta device */

 while (quit != TRUE)
 {
 MASK_INTERRUPTS; /* keep the timing for the read as consistant
as possible */
 START_COUNTER; /* for exact sample control, use a dedicated,
very precise timer */
 SampleSpreeta(BEGIN_INTEGRATION); /* start an integration period */
 while (*TMR2_COUNTER < gIntegrationPeriod)
 {
 /* make sure this loop isn't optimized out by the compiler:
 the "volatile" declaration of TMR2_COUNTER should be sufficient
*/
 #ifdef NOISY_INTS_NOT_MASKED
 printf("%d<%d\n",*TMR2_COUNTER,gIntegrationPeriod);
 #endif
 }

 SampleSpreeta(CAPTURE_PIXELS); /* sample now that integration period
has expried */
 RESTORE_INTERRUPTS; /* re-enable interrupts */
 RESET_COUNTER; /* turn off the counter to save power and restart
it at zero */

 /* draw the samples to the screen */
 for (pixel_count = 0;pixel_count < TOTAL_SPREETA_PIXELS;
pixel_count++)
 {

 PixelValue =
ProcessPixelValue(pixel_count,algorithm_mode);

 PixelToScreen(PixelValue,pixel_count,algorithm_mode);
 }

 UpdateStatistics(algorithm_mode);

 if (gHighSpeedMode == LOW_POWER_MODE)
 {
 #ifdef NOISY
 printf("Entering sleep to save power\n");

 142

 #endif
 delay(SLEEP_HALF_SECOND);
 }

 /* check for new messages: Key events and MDS responses */
 if (GetMsg(&RcvMsg) == SUCCESS)
 {
 switch (RcvMsg.EventCode)
 {
 case EVENT_KEY:
 case EVENT_SYSKEY:
 case EVENT_MODIFIER_STATE_CHANGE:
 #ifdef NOISY
 printf("Received Keypad Input event %d
(0x%x)\n",RcvMsg.EventCode,RcvMsg.EventCode);
 #endif
 algorithm_status =
ProcessUserInput((u_char)RcvMsg.Param1, &algorithm_mode); /* non-blocking
call to see if the user wants anything... */
 /* process algorithm status changes from user
input (if any) */
 switch (algorithm_status)
 {
 case CONTINUE_ALGORITHM:
 break;

 case RESTART_ALGORITHM:
 switch(algorithm_mode)
 {
 case DRAW_ABSOLUTE:

 display_absolute_screen();
 break;
 case DRAW_ZOOM:

 display_zoom_screen();
 break;
 case
DRAW_DIFFERENTIAL:

 display_differential_screen();
 break;
 }
 break;
 case QUIT_ALGORITHM:
 quit = TRUE; /* end the
outer loop */
 break;
 } /* end switch */
 break;
 default:
 ProcessSystemEvent(RcvMsg);
 break;
 }
 }
 } /* end outer While loop */

 deinitalize_system();
 reset(); /* let the system return to full Messaging mode */
 return 0; /* only here to squelch compiler warnings */
} /* main */

 143

REFERENCES

[1] Texas Instrument’s Spreeta SPR Biosensor Technology Overview, Texas
Instruments Incorporated, Dallas, TX, 2003 [Online]. Available:
http://www.ti.com/spreeta

[2] Motorola’s Accompli 009 Personal Communicator Product Overview, 1994-2003
Motorola Inc. Corporate Headquarters Schaumburg, IL, 2003 [Online]. Available:
http://www.motorola.com/accompli009

[3] Stubbs, D. D., Hunt, W.D., Lee, S.H. and Doyle, D.F. (2002). "Gas phase activity of
anti-FITC antibodies immobilized on a surface acoustic wave resonator" in press,
Biosensors and Bioelectronics.

[4] Sommers, D. R., Stubbs, D. D., Hunt, W.D., “Investigation of SPR Technology
Using Texas Instruments’ SpreetaTM Sensor”, IEEE Sensors Conference, 2002

[5] NDS-2000 Hand-held Drug Detector from Scintrex Trace Corp., Scintrex Trace
Corp., wholly owned subsidiary of Control Screening LP, Fairfield, NJ, 2003
[Online]. Available: http://tracedetection.com/narcotics_detector.html

[6] Sigma-Aldrich Product Home page, “Monoclonal Anti-FITC antibody produced in
mouse” 2003 Sigma-Aldrich Inc. [Online]. Available: http://www.sigmaaldrich.com

[7] US Customs & Border Protection, US Department of Homeland Security, NW
Washington, D.C., 2003 [Online]: Available: http://www.customs.ustreas.gov

[8] National Research Council: Division on Engineering and Physical Sciences, Making
the Nation Safer: The Role of Science and Technology in Countering Terrorism,
National Academy Press, 2002, pp. 113-117 Available:
http://www.nap.edu/catalog/10415.html?onpi_newsdo062402

[9] S. P. Layne, T. J. Beugelsdijk, and C. K. N. Patel, Firepower in the Lab: Automation
in the Fight Against Infectious Diseases and Bioterrorism, Joseph Henry Press,
2001, pp. 143-164 Available:
http://books.nap.edu/books/0309068495/html/150.html#pagetop

[10] K. G. Ong, K. Zeng, C. A. Grimes, “A Wireless, Passive Carbon Nanotube-Based
Gas Sensor”, IEEE Sensors Journal, vol. 2, No. 2, April 2002 Available:
http://www.ee.psu.edu/grimes/publications/IEEE_nanotube.pdf

[11] Kress-Rogers, E., Biosensors and Electronic Noses Chapter 7, CRC Press Inc.,
1997

[12] Nomadics’ Surface Plasmon Resonance Evaluation Kit, Nomadics Inc., Stillwater,
OK , 2002 [Online]. Available:
http://www.aigproducts.com/surface_plasmon_resonance/spr.htm

[13] Sigma-Aldrich Chemical Company, St. Louis, MO, 2002 [Online] Available:
http://www.sigmaaldrich.com/

[14] NIST certification for Motorola Accompli 009 for FIPS 140-1 Available: http://cs-
www.ncsl.nist.gov/cryptval/140-1/1401val.htm

 144

[15] Maxim Samples and Literature Request Page, Maxim Integrated Products,
Sunnyvale, CA, 2002 [Online]. Available: http://www.maxim-ic.com/samples

[16] Texas Instruments Sample Request Page, Texas Instruments Incorporated,
Dallas, TX, 2002 [Online]. Available: http://www.ti.com/sc/docs/sampreq.htm

[17] TechTarget Network, Hardware, Electronics, Dielectric Material, TechTarget,
Needham, MA 02494 [Online]. Available:
http://whatis.techtarget.com/definition/0,,sid9_gci211945,00.html

[18] Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules, 140-1 and 140-2
Validation List; Certification number 260, NIST Certification Website, 2002
[Online]. Available: http://csrc.nist.gov/cryptval/140-1/1401val2002.htm

[19] Messaging Sofware Plaforms, Motorola Messaging Platform (MMP), 1994-2003
Motorola, Inc., Corporate Headquarters Schaumburg, IL, 2003 [Online]. Available:
http://www.motorola.com/MSP/mmp/index.html

[20] Molecular Biology CyberLab, Gel Electrophoresis of DNA, University of Illinois,
2003, Urbana-Champaign [Online] Available:
http://www.life.uiuc.edu/molbio/geldigest/electro.html

