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Abstract—This paper considers a real-time algorithm for  priori but the algorithm can acquire partial information about
performance optimization of switched-mode hybrid dynamical it in real time. In these situations the objective is not to

systems. The controlled parameter consists of the switching optimize the cost functional defined by Equation (2), but
times between the modes, and the cost criterion has the form o !
rather to reduce the cost to go at certain times.

of the integral of a performance function defined on the
system’s state trajectory. The dynamic response functions (state  In previously-published papers on real-time algorithms
equations) associated with the modes are not known in advance; [10], [11], [12] the uncertainty in the system’s parameters is
;ai‘etr’ Aat fi(?gtcgrélgeatll ér:i?r):mariz efé'”;zfg ;%é}'t'sﬂétéﬂzvtig?eé due to state estimation via observers or the lack of complete
an?ilyzed in terms of %s convergpe)ncpe rate. Finally, an example knowledge of the CTOSt functlons_, and for these S'tu_at'on_s'
of a mobile robot tracking a moving target while avoiding Second-order algorithms are suitable. In contrast, in this
obstacles is presented. paper the uncertainty is due to the lack of knowledge of
the system’s dynamic response functions and the need to
estimate the functional form of the state equations, and
Consider the switched-mode hybrid dynamical systerhis imposes far-greater efforts to compute the Hessians. In
characterized by the following state equation, fact, the Hessians require numerical solutions of the state
i = f(z,0,1), 1) transition matrices and their de_rivatives_at each time, and
these may not be computable in real time. Therefore the
wheret € [0,7] for a givenT > 0, z € R" is the state algorithm considered in this paper is a first-order technique.
variable, and the input : [0,7] — T is a discrete control Furthermore, its use may have other advantages over second-
having values in a finite sdt. In this equatiori” is assumed order algorithms, including global convergence and the ab-
to be fixed, the initial state is(0) = xo for a givenzg €  sence of the need to compute inverses of the Hessian matrices
R™ and f : R" x I x [O,T] — R™ is a suitable function or approximations thereto.
guaranteeing the existence of a unique solution of the stategjmilarly to earlier works on real-time algorithms [10],
equation (1) for a class of admissible controlsI’ — [0, T].  [11], [12], this paper assumes that the mode-sequence is
The problem of optimally controlling such systems arises igjven and the variable parameter consists of the switching
various applications (see, e.g., [1] for a survey), and often fimes between the modes. The more difficult case where the

I. INTRODUCTION

amounts to minimizing & cost-functional of the form mode-sequence is a part of the optimization variable can be
T handled by ad-hoc techniques as in [11], and its systematic
] = /0 L{z, v, t)dt (2)  analysis will be done elsewhere.

) . The rest of the paper is organized as follows. Section 2
for a given performance functiofh : R” x T’ x [0,T] :— bap 9

R The obiecti £ thi is the devel i gwmulates the problem and recounts some relevant results,
*. The objective ot this ‘paper IS the development angg .o, 3 presents the algorithm, and Section 4 contains a
investigation of an algorithm for this problem in a real-time

. numerical example. Due to space limitations, the proof of
setting.

: . . some auxiliary results (lemmas) are omitted and can be found
This general nonlinear optimal control problem has beeqﬁ [13]

formulated in [2] in the setting of hybrid systems. Severa
variants of the maximum principle were derived in [3], [4],
[5], and subsequently various algorithms were developed in [I. PROBLEM FORMULATION
[6], [1], [71, [5], [8], [9]. Most of these results concern the
case where the controlled variable consists of the switching Consider a fixed sequence of values of the coniralT,
times of the discrete contral among a fixed sequence of {v;}, i =1,..., N + 1, for a givenN > 0. For everyi =
values inT', but the case of variable sequence-values was..., N +1, we will use the notatiorf;(xz,t) := f(z, v, t).
considered as well [9], [8]. More recently the question ofAssuming a given final timd’, let us denote by, ..., 7y
real-time optimization has begun to be addressed, and initile times at which the values ofare changedy = v; fort ¢
results were obtained in [10], [11], [12]. [0,71), v = vy fOr t € [11,72), etc. Denote these switching
The need for real-time algorithms typically arises whenimes collectively by the vectof := (1,...,7x)7 € RV,
complete information about the system is not available and for the sake of notation, defing := 0 and 7y 1 :=

. o , _ T. We will consider the state equation (1) as depending on
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[Ti—1,7i), Yi=1,...,N + 1. Then, Equation (1) becomes ¢(¢t) := max{i=1,...,N : 7,_1(¢t) < t}, then Eq. (7) has
the following form,
&= F(x,t,7) := fi(x,t), Vt € [ri_1, 1), i=1,...,N+1;

€ O (ot 7(0) = Flst7(0) =
and we assume a given initial conditiati0) = x¢. Given a Os - -
function L : R™ x [0, 7] — R, we define the cost functional fi(a(s,t,2,7(t)), 5, 1),
J, as a function of the switching times, by Vselt,T], Vi=gqt),...,N+1, (8)
T with the boundary conditiot¥(s, s, z, 7(t)) = x. We will be
J(7) = / L(z, t)dt. (4)  particularly interested in the case where= z(t), the state
0 of the system defined by Eq. (3) with the slight modification

The functionsf;, ¢« = 1,...,N + 1, correspond to the that7(¢) replacesr. Finally, we mention that the timeand

system’s modes and hence are called the modal functions; s&tex(¢) are called theeal time andreal state, whereas the
will use the simpler term “modes” when referring to themtimess > ¢ and future state$(s, ¢, z(t), 7(¢)) are called the

We make the following assumption. simulatedtime and state.
Assumption 1:The functionsf; and L are C*°, namely Suppose next that the performance functibfw,t) is
they have continuous derivatives of all orders. not known at future times > t but rather approximated
Since the mode-sequence is fixed apd > 7;, we define (estimated) by a functioni(x, s,t). This notation indicates
the feasible set for by that the approximated function at the simulated tisng ¢
depends on the time the approximation is performed, which
A={FeRV:0:=r9<7m <....,<7v <7n41:=T}. s t. Similarly to Eq. (4), given a switching-time vectot,
(5) we define the cost-to-go performance function by
Observe that we allow for the case_; = 7;, which T
corresponds to the presence of mader a time interval of J(t,:c(t),%) - / ﬂ(a}(s,t,x(t),?), s,t)ds. 9)
duration 0. This is done in order to ensure that the feasible t

set is closed. Define the optimal control (or, optimizationiGiven ¢ € [0,7] and the system’s state(t¢), consider
problemII by J(t,z(t),-) as a function ofr. Past switching times, namely
those switching times that occurred before tithneannot be
II: min{J(7) : 7 €A} (6)  modified, and thereford (¢, z(¢), 7) can be only a function
Tin @ = q(t),...,N, but not ofr;, j =1,...,q(t) — 1.

. . of
Suppose now that the modal functions are not known in tr\ﬁenoting byA, the constraint-set

future but have to be estimated. More precisely, for a given
time ¢ € [0,T), the functionsf; are not known for future Ay = {7 : t <74 < Tyy41--- < 741 =T}, (10)

times s > t, but are estimated by functiong. These are we further denote byll, the problem of minimizing

modal functions of a state variablg time ¢, and the future > N _ ) .
. ) ~ ' ) J(t,z(t), 7) with respect tor, subject to the constraint €
time s > ¢, and will be denoted by, (Z, s,t). To be precise, (t2(), 7) P )

thi tation has the followi J imat A;, where by a slight abuse of notation we regards the
is notation has the following meaning; approximates Vector 7 = (o, ..., )7 € RN—a(®)+1 \whose dimension

fiin a way that dependg on some data avallable' aE t'“E time-varying. This is the problem that will concern us in
t, and it is a modal function (_)f the future state varialile the sequel, and we point out that, as is common in nonlinear
E{Tld ;%tgrz tslcqusinnzg-ii.ml\ézwvgétéf 66 [(ﬁép’caori?;if tie programming, we seek as solution points vecterghat

T . . : . satisfy necessary local-optimality conditions, like stationary
evolution of the future state variable in future timess > or Kuhn-Tucker, and not global solutions.

b r? cgolrdlng ttot'the medatllh fup (.:tt.'olnﬁ ag.g the fv,;’.'tCh':g Now we will consider the case where the switching-time
scheduler, starting from ine initial condition: at time . vector, 7(t), is a function oft. Ideally we would like to

This future state variable depends @ > ¢, x, and7, and choose7(t) to be a solution point forl, for every ¢ ¢

hence is Qenoted b.y(s’t’m.’ T)'. w(s.’t?x’T) is defined by [0, 77, but this of course is infeasible since it would require
the .f°.”.°W'T‘9 e_qufamon, which is similar to (3) except thatinfinite computing speed and precision. Instead, we define
the initial time ist: and computer(t) by performing a single step of a gradient-
oz _ s _ descent algorithm that aims at solviid,. The required
g(‘”’ ©,7) = fi(¥(st,2,7), 1), computation takes a positive amount of time, and heri{¢g
Vselt,T|N[ri-1,1), i=1,...,N+1, (7)  will be computed only for a finite number of time-points
t € [0,T]. This will be made clear in the discussion on the

with the boundary condition(, ¢, z,7) = . We make the a|gorithm that will be carried out in the next section.
following observations about this equation. First, the vector

7 need not have a constant value but may be a function of Il REAL-TIME ALGORITHM

time, and hence denoted by(t) = (r1(t),...,7n(t)T € The algorithm considered in this section is the gradient-
RY. Second, past modes that are no longer active at tint@scent technique with Armijo step size, adapted to the
t are irrelevant to the evolution of the future state. Defineeal-time setting and particular constraints considered in this



paper. Gradient-descent algorithms with Armijo step sizeomputes the next switching-time vector by following a
have been extensively tested on optimal control problemgradient descent with Armijo step size. Assuming that the
and they have the properties of global convergence and lineasmputation takeg\¢ seconds, the iteration is based on the
convergence rate [14]. We recall from [14] the basic algoformula 7(t + At) = 7(¢) + A(t)h(t). Thus, the algorithm

rithm in the abstract setting of minimizing a continuously-can compute only a finite number of iterations in the time-

differentiable C!) function g(z) : R™ — R: interval [0, T').

Algorithm 1: Fix constantsy € (0,1) and € (0, 1). Algorithm 2: Fix constantsy € (0,1) and 3 € (0, 1).
Step 0:Fix zg € R™, and setj = 0. Step 0:Definet, := 0, fix 7(t9) = 0, and setj = 0.
Step 1:Computeh; := —Vg(z;). Step 1:Computeg—;(tj,:z:(tj),q"(tj)).

Step 2:Computek;, defined by Step 2:Computeh(t;), defined as the projection of

. S99 (¢ x(t;), 7(t;)) onto the set\,, — {7(¢;)}.
by o= min{k >0 1 g(z;+8"h;)—g(z;) < —af||hs][*}. s‘ié;() 13@03[3@2&;)) b~ {7(t)}

(11)
Set)\; = 3. p(ty) = max{\ >0 : 7(t;) + Ah(t;) € Ay, }, (15)
Step 3:Setz;11 = z; + A\jh;, setj = j+ 1, and go to Step
1. and compute\,,,q;(t;) := min{u(t;), 1}.

Reference [14] presents convergence analysis and practi€d¢p 4:Computek(t;), defined by
implementation details. The main convergence results are . '
that a sequence of iteration points computed by the algo- k(t;) mm{k 0
rithm, {z;}52,, converges to stetionary. poinEs at a .l.i”earj(tj,m(tj),%(tj)Jr Amaa (t;)BR(t ) - j( 2(t;), 7(t;))
rate. Specifically, iflim;_...z; = £, then (i) Vg(2) = 0; (ii) 8J
there exist constantd > 0 andc € (0, 1) such that, for all < QAaa(t))BF((t; (tj, x(t )>} (16)
llz; — 2| < Ad; (12) Step 5:Set A(t;) = A,,,m,(tj)ﬂk% and set7(tjy1) =

i=12,..,
- . . ). . = . . . >

and (iii) there exists a constante (0, 1) such that, for all ;t(é;)) ;ﬁg{,ﬂﬁgﬁefftﬁﬁ anéj;ﬁ; SIIngrll =1 then
J large enough, The algorithm’s behavior cannot be described by asymp-

9(zj41) — 9(2) < V(Q(Zj) —g(é)). (13) totic concepts since it compu.tes but a finite number of points,

and therefore we analyze it in terms @snvergence rat®éy
Various extensions of the algorithm and its analysis tenodifying equations (12) and (13).
constrained problems can be found in [14]. To start with, let us define/ (¢, «(¢),7) to be the “true”
Consider now the problenil; for a givent € [0,7). costto go, namely

Given a switching-time vectorr(¢t), we next define the T
feasible descent directiom,(t), and a step size\(t¢), that J(t,x(t),7) = / L(x(s), s)ds, (17)
will be used in the algorithm presented lateft) is defined t
as the projection of the vector &2 (¢, z(t),7(t)) onto the where, for a given switching vector, z(s) is the state
setA; — {7(t)}; an explicit formula for it is contained in trajectory of the system as defined in (3). The following
Reference [15]. Note that if is contained in the interior of result relates certain minimum points f@(0, zo, -) to those
A; thenh(t) = (t x(t),7(t)). Regarding the step size for J(t,z(t),-).
At), we modify Equatlon (11) to ensure feasibility in the Lemma 1:Let 7 := (#1,...,7n5)" be a minimum point
following way. Given constanta: € (0,1) and3 € (0,1).  for J(0,z, ), and assume thaty < T. Let {z(t)} be the
Define pu(t) := max{\ > 0 : 7(t) + M(t) € As}, and state tra{;ectory associated with Suppose that the Hessian
then defineAq. (t) := min{pu(t), 1}. This term, Anq.(t),  matrix 94 (0, zo, 7) is positive definite. Then, for evenye
is the largest-possible step size to be considered in the step-7y], (i) 7 is a minimum point for.J(t,z(t),-), and (ii)
size computation, and it ensures feasibility of the computeghere existrn > 0 and M > m such that for everyt e

switching-time vectors. Defing(t) by [0, 7], all the eigenvalues of=% (¢, z(t), 7) lie betweenm
o _ and M.

k(t) : mm{k >0 Proof: Please see [13]. [ ]

J(t,x(t), 7(t) + Amaz (1) BER(E)) — J(t,2(t), 7(t)) The source of errors between the real cdsiand the

oJ simulated cost/ are the discrepancies between the dynamic
< @maz () B(A(t), 5= - (t,z(t), ‘(t)))}, (14) response functiong’ and F', and between the performance
T functions L and L. These discrepancies can be quantified
where(, -) denoted inner product iRY —9()+1, Then define in terms of upper bounds on the' norms of the error
A1) == Apnaz (t) 350, terms ' — F and L — L, and their derivatives, along the
These computations take a positive amount of time, argl/stem’s state trajectories, which translate into upper bounds
this must be reflected in the on-line algorithm presentedn the L norms of the error function/ — J and its
below. A typical iteration at timet starts at7(¢t) and derivatives. The following analysis is carried out in terms



of the latter bounds. Thus, for evewy € [0,T), define K; > 0, K» > 0, K3 > 0, and K; > 0, such that, if
eo(t) = |[J(t,x(t),) = J(t,z(t), )| and e (t) := 7(t;) € B(7,¢), and7(t;11) € B(7,€); Amaz(tj) = 1 (se€
122 (t,2(t), ) — 2Z(t, 2(t),")||~ (where theL> norm is Step 3); andt;41 < 71 — ¢, then,
with respect to the variabte € A;), and define, fol = 0, 1, _ .

P ) J(tjn,a(tjp), T(t41)) — J(tje1, 2(tj41),7) <

E(t) = max{e(s):s € [t,T]}. (18) W(J(tj,x(tj),?(tj)) _ J(tj,x(tj),f'))) n
Our main results concerning the convergence rate of Algo- 2Ey(t;) + K1 By (t)). (22)
rithm 2 is along the lines of Equations (12) and (13). téie L A o
a solution point foflT, and recall that(t;) is thejth iteration ~ Furthermore, ifr(t;) € B(7,¢) for all j = jo,jo + 1,...,
point computed by the algorithm. Now(t;) and 7(t,,,) Of Somejo = 0, then
may have different dimensions since the controlled variabl E(8) 7| < Kodd 04 K, (Eo(t-))1/2+K4(E1(t-))1/2.
consists only of future and present switching times, and t / - J I (23)
make a comparison meaningful, we will assume that they  pyos For everye > 0, if tj11 < 71— ¢, ||7(tj11) —
have the same dimension, i.g(t;) = ¢(t;+1). Thus, we will #| < e and|[7(t;) — #|| < ¢ then simple algebra yields
implicitl_y assume throughout the following discgssior) tha{hat Ti(tii1) > 71 — e andt; 4, < m1(tj41), and likewise,
for all time t and 7 := (1y,...,7n5)7 gnder con5|derat!on, Ti(t;) > 71 — e andt; < 7(¢;). This implies that, when
t < 7. Furthermore, the argument is greatly complicateg,e “rea| system evoives with either one of the switching
when pomtsf(tlj) lying on the boundary of the feasible times 7(;), 7(t;41), or 7, at all imet < t;,1, all of the
setA are explicitly considered, therefore, and due to spacgjitching times are in the future. Consequently (see (3)), the

limitations, we will consider only the case whef€t;) iS  giate variables of these respective systems are identical for
contained in the interior of\ while deferring the general ), < t;,1, and hence. and by (4),

case to a later publication that permits more space.
The following assumption will be made. J(tir1, (1), 7)) — J(tj11, (1), 7) =
Assumption 2:(|). For everyt € [0, T) and for every state J(t,x(t;), 7(tj11)) — I (t,2(t;), 7). (24)
x(t), the functionsJ(t,z(t),-) and J(t,z(t),-) are three-
times continuously differentiable. (ii). There exisi§, >
?Iasg?? ﬂz;t,‘f)ﬁlr <6V;r)t d I[?éZTf)('tSt?;)ex‘()tl)I'<a;?% €A Il eltin), 7)) = It a(t). 7)<
a7z (L 2\L), T)| = o and ] 5z (1, 2(2), 7)]] < Ho. J(tj,2(t;), 7(tj1)) — J(t;,2(t;),7) + Eo(t;). (25
Lemma 2:Let 2 € R” be a local minimum fory(-), and (1, 2(5), 7(t541) (1, J)’j) + Eolty)- (29)
suppose thafi () is positive definite. There exisk > 0, Furthermore, by subtracting and addmgtj,x(tj),%(tj))+
M > m, ande > 0 such that, ifz € B(%,¢€), then the J(t;,z(t;),7(t;)) to the difference term in the RHS of (25),

following two equations are in force, = _ .
J(tg, x(ty), 7(tj11)) — I (t5, 2(t;),7) <

Consequently, and by (17),

%mﬂz—iﬂz < 9(z) —g(2) < %M||Z—2||27 (19) T(ty,2(t;), 7(tj1)) = J (5, 2(t5), 7(t;)) +
and J(t;,z(t;), 7(t;)) — J(tj, 2(t;), 7)) + Eo(t;).  (26)
0 < g(z)—g(2) < L\|vg(z)||2. (20) By Lemma 3 and Assumption 2, there exists- 0 such that
Proof: Please see Lemma1.3.6 in [14] m (see Steps 4-5),

The next result implies t_hgt the Armijo step size is j(tj,x(tj),%(tjﬂ) _ j(tj7x(tj),%(tj)) <
bounded from below by a positive quantity that depends only =
on an upper bound on the second derivativey@j, but not —a5\||6—{(tj,x(tj),%(tj)Hz. (27)
on any other particular feature of-). or

Lemma 3:Let @ C R™ be a convex, open set containingBy Lemma 2 and Assumption 2 there exist- 0, B, > 0,
2, and suppose that there exigts > 0 such that, for every and B, > 0 such that, if||7(¢;) — 7|| < e then

e 12 4. 2te), 7)) P >
A > Kio (1-a), 1) By (J(ty"x(tj)f(tj)) —J(tjafc(tj)f))» (28)
where )\; is the step size computed in Step 2 of Algorithmand -
1, ansrgoa;?dPTezrseet::ecar;s],tants set for that algorithmi ’ ||%(t- x(tj)ﬂ_—(tj))HQ _ H%(f' a(t;) %(tj))||2 ’
The following is the main result of the paper. < BaEi(t)). (29)

Proposition 1: Suppose that Assumption 2 is in force. Letrinaly, by (17),
7 be a solution point fodl lying in the interior of A, and . .
suppose that the matrif=4(0,z,7) is positive definite. Ity a(ty), 7(t;)) — J(tj,2(t5), 7) <
Then there exist > 0, v € (0,1), ¢ € (0,1), and constants J(t;,x(t;), 7(t;)) — J(tj, x(t;), 7) + 2Eo(t;).  (30)



Now putting together Equations (25) - (30) we obtain, Thus, denoting the robot’s actual speed #4yits dynamic
equation of motion is
J(tjs1,2(tje1), T(tj41)) — I (i1, 2(tjn), 7) <
_ vcos (z3 (t))
(]. - Oé)\Bl)(J(tj,(E(tj),%(tj)) - J(tj,:v(tj),f'))) + T (t) = |: v Sin (.%'5 (t)) ] . (35)
+2Ey(t;) + aABo Ey (1), (31) u— 3 (1)

) _ ) _ ] Note that the third coordinate of this equation steers the
Define K; := aAD,. Definey := 1 — aABi if 1 —  pheqading angle;(t) towards a desired heading The control
aAB; > 0, and otherwise choose any € (0,1). Sincé , gepends on the robot's mode of operation, and there are
Jétjﬂvx(tﬂl)f(tﬂl)) — J(tj1,2(ti41),7) = 0 and  ypee modes: Go to Goal, Avoid Obstacle 1, and Avoid

(L, 2(t;), 7(t;) = T (85, 2(1;), 7)) = 0, it follows that (22)  opstacle 2, henceforth denoted B2G, Avoid] andAvoid2
is satisfied with these values &f; and~.

Next, suppose thaf|7(t;) — 7|| < € for all j > jo
for somejo > 0. Define A := J(tj,,(t;,), 7(tj,)) — w— tan- (:vc;,z (t) — Ry (f)> 7 (36)
J(tjs. x(t),), 7). By (24), for all j > jo, zGa (t) — 2R (1)
where the subscript indicek and 2 indicate the first and

respectively. In the G2G mode the anglds defined by

J(tj’x(tj)’%l(tj)) = J(t,2(t),7) < second elements of the vector, respectively. It can be seen
Ani—io 4 (2Eo(t;) + K1 By (t5)). (32) by Eq. (35) that the robot_’s heading ang_le appr_oaches the
lL—v direction of the goal in this mode. Fakvoidl, define the
control as

By Lemma 2 (Equation (19)) we can assume (by redueing
if necessary) that there exisBs > 0 such that, for allj > jo, y— { do — 5, if ¢ps —x3(t) >0

|[7(;) I& ( ( (t;),7( )) ( (t,) )) s+ 5, if ¢po —w3(t) <0 ’
7(ty) = 7l < B( T (1, 2(t), 7(t5)) = T (1. 2(t;), 7) ).
j o s 33) Wwhere g = tan! ’"‘“_7““(“) In this mode, the ro-

za,1—TR,1(t)
1/2 c
Definec := /7, K> := (AB)Y/2, K5 := (2’3> , and

(37)

2B bot circumvents the obstacle counterclockwise or clockwise
12 1=y according to the sign of the anglgs — x5(¢t). A similar
K, = KlB) . By (33) and (32), with a hit of algebra, €quation holds for théwoid2mode except that the subscript

1—v .
Equation (23) follows. m @ isreplaced byl.

Observe that each one of the bounds in Equations () andThE_ proplemlg) that we c(cj)nsu_jer Is to compute thi
() contains two terms: The first term characterizes lineatVIlching times between modes In a given sequence that
convergence rate when the functions and their gradienf&nimize the integral of a performance functidriz(t), )

could be computed exactly, and the last respective terms Engch penalizes proximity to the obstacles and distance from
due to the estimation errors the goal. We chose the performance function to be

L(z(t),t) = pllar(t)—za )]
IV. SIMULATION EXAMPLE lzg () — 2o |2
i i ; : . +aq exp (—)
This section considers the scenario of a mobile robot track- ! B1

way. The robot does not know the future planned trajectory B

of the target. However, it can sense the target's positio]% r some aiven 1.6, > 0. However, in the real-
and velocity at each time, and it uses this information . QIVenp, a1, &z, O, P2 > 0. ’
trlme scenario of this paper the robot does not know the

Fo est|mqte the future trajectory of the target via “neaplanned trajectory of the goal, and in t1@2G mode it
interpolation. _ .
Let ; R2 and be th i locat f th attempts to approachic(s,t,z¢(t)) as defined by (34).

e_ g (l) € an Reg € posi 'Or_' (location) of the Let us denote the future simulated state of the robot from
mobﬂg robot andei (t) € be theZIocatlon pf the tar.g.et at time ¢ onward byi(s, t, z(t), 7(t)), which is defined by the
each timet € [0, 7). Letzg,ry € R” be the fixed positions following equation
of Obstacle 1 and Obstacle 2, respectively. Furthermore, at . B
each timet € [0,7], the estimated position of the target o veos (3 (s, b,z (1), 7

iy vsin (T3 (s,t,x (t),T
U—fg (S,t,.ﬁ(t),%

ing a moving target while avoiding two obstacles along the 2R (1) — z¢l)?
4agerp | ——————— |, (38)

at future timess > ¢ is defined via the following linear .7 (s,t,2(t),7 (t)) =
interpolation,

(1))
@) |
(®))

9)

Zg (s, t,xg (1) = za(t)+ig(t)(s—1). (34) where the speedv is the constantv as long

as |lz(s,t,2(t),7(t)) — Zals,t,za@®)l =

The state of the robot is given by(t) = (x5 (t) 23 (t))T, and L|E(s, t,z(t),7(t) —  Zals,t,aa(t))]| if

wherezs (t) € [0, 27) denotes its heading angle. We assuméz(s, t, z(t),7(t)) — Za(s, t,z¢(t))|| < r. The controlu is
that it moves at a constant speednless||zg —z¢|| < r for  defined via Equations (36)-(37) except thai(t) andzq(¢)
a given (smally: > 0, in which case its speed {§|zr—z||. are replaced byzg(s,t,z(t),7(t)) and Zg(s,t, za(g)),
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Fig. 1. Robot Trajectory

respectively, and similar replacements to (38) define the
simulated performance functiah(z (s, t, z (t) , 7 (t)) , s, t).

Consider the scenario shown in Figure 1, where the
positions of the obstacles 1 and 2 are indicated by the circle
and square, respectively, and the trajectory of the target is
shown by the dotted curve. Initially(0) = (0, -1, 3)7, and
we made the (reasonable) choice of the mode-sequence to be
{G2G, Avoidl, G2G, Avoid2, G2G}. We ran Algorithm 2
with the initial switching-time vectof(0) = (1 15 16 17)T".
The final time isT' = 18 and the iteration-computation time
is At = 0.1, so the algorithm ran for 180 iterations. We chose
the valuesae = § = 0.5 for the Armijo step sizep = 1,

r = 0.5, and for Equation (38)p = 0.1, a; = ay = 500,
and ﬂl = 52 = 0.8.

Figure 2 shows the graphs of the switching timest),
k=1,2,3,4, for a run of the algorithm. The diagonal line in
the figure represents the real time, and once a switching time
crosses it it “freezes”, namely remains a constant thereaftelf]
We can see that; freezes early, at about = 1.0, while
the remaining switching times have enough time to stabilizg7
before freezing. We note tha and r, coalesce at about
t = 7, at this point the descent direction in Algorithm 8]
2 becomes the projected gradient as defined in Step i
This coalescence eliminates theh mode, namelyAvoid2
from the system’s state, and the mode-sequence becomﬁﬁ,
{G2G, Avoidl, G2G}.

We also computed (“off-line”) a local-minimum point for
J, 7 = (1.5233,9.0680, 16.4365, 16.8769)T, where J (7)
22.8588. Figure 3 shows the graph of(7(t)) — J(7(t))
which, not surprisingly, is monotone decreasing. The fact that
it does not go to O is due to the early freezingrfwhich [11]
results in a positive estimation error at all future times.

(5]

[10]
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