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Abstract— This paper considers a real-time algorithm for
performance optimization of switched-mode hybrid dynamical
systems. The controlled parameter consists of the switching
times between the modes, and the cost criterion has the form
of the integral of a performance function defined on the
system’s state trajectory. The dynamic response functions (state
equations) associated with the modes are not known in advance;
rather, at each time t, they are estimated for all future times
s ≥ t. A first-order algorithm is proposed and its behavior is
analyzed in terms of its convergence rate. Finally, an example
of a mobile robot tracking a moving target while avoiding
obstacles is presented.

I. I NTRODUCTION

Consider the switched-mode hybrid dynamical system
characterized by the following state equation,

ẋ = f(x, v, t), (1)

where t ∈ [0, T ] for a given T > 0, x ∈ Rn is the state
variable, and the inputv : [0, T ] → Γ is a discrete control
having values in a finite setΓ. In this equationT is assumed
to be fixed, the initial state isx(0) = x0 for a givenx0 ∈
Rn, and f : Rn × Γ × [0, T ] → Rn is a suitable function
guaranteeing the existence of a unique solution of the state
equation (1) for a class of admissible controlsv : Γ → [0, T ].
The problem of optimally controlling such systems arises in
various applications (see, e.g., [1] for a survey), and often it
amounts to minimizing a cost-functional of the form

J =
∫ T

0

L(x, v, t)dt (2)

for a given performance functionL : Rn × Γ × [0, T ] :→
R. The objective of this paper is the development and
investigation of an algorithm for this problem in a real-time
setting.

This general nonlinear optimal control problem has been
formulated in [2] in the setting of hybrid systems. Several
variants of the maximum principle were derived in [3], [4],
[5], and subsequently various algorithms were developed in
[6], [1], [7], [5], [8], [9]. Most of these results concern the
case where the controlled variable consists of the switching
times of the discrete controlv among a fixed sequence of
values inΓ, but the case of variable sequence-values was
considered as well [9], [8]. More recently the question of
real-time optimization has begun to be addressed, and initial
results were obtained in [10], [11], [12].

The need for real-time algorithms typically arises when
complete information about the system is not available a
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priori but the algorithm can acquire partial information about
it in real time. In these situations the objective is not to
optimize the cost functional defined by Equation (2), but
rather to reduce the cost to go at certain times.

In previously-published papers on real-time algorithms
[10], [11], [12] the uncertainty in the system’s parameters is
due to state estimation via observers or the lack of complete
knowledge of the cost functions, and for these situations,
second-order algorithms are suitable. In contrast, in this
paper the uncertainty is due to the lack of knowledge of
the system’s dynamic response functions and the need to
estimate the functional form of the state equations, and
this imposes far-greater efforts to compute the Hessians. In
fact, the Hessians require numerical solutions of the state
transition matrices and their derivatives at each time, and
these may not be computable in real time. Therefore the
algorithm considered in this paper is a first-order technique.
Furthermore, its use may have other advantages over second-
order algorithms, including global convergence and the ab-
sence of the need to compute inverses of the Hessian matrices
or approximations thereto.

Similarly to earlier works on real-time algorithms [10],
[11], [12], this paper assumes that the mode-sequence is
given and the variable parameter consists of the switching
times between the modes. The more difficult case where the
mode-sequence is a part of the optimization variable can be
handled by ad-hoc techniques as in [11], and its systematic
analysis will be done elsewhere.

The rest of the paper is organized as follows. Section 2
formulates the problem and recounts some relevant results,
Section 3 presents the algorithm, and Section 4 contains a
numerical example. Due to space limitations, the proof of
some auxiliary results (lemmas) are omitted and can be found
in [13].

II. PROBLEM FORMULATION

Consider a fixed sequence of values of the controlv ∈ Γ,
{vi}, i = 1, . . . , N + 1, for a givenN ≥ 0. For everyi =
1, . . . , N +1, we will use the notationfi(x, t) := f(x, vi, t).
Assuming a given final timeT , let us denote byτ1, . . . , τN

the times at which the values ofv are changed:v = v1 for t ∈
[0, τ1), v = v2 for t ∈ [τ1, τ2), etc. Denote these switching
times collectively by the vector̄τ := (τ1, . . . , τN )T ∈ RN ,
and for the sake of notation, defineτ0 := 0 and τN+1 :=
T . We will consider the state equation (1) as depending on
the switching-times vector̄τ . To formalize this dependence,
define the functionF (x, t, τ̄) by F (x, t, τ̄) = fi(x, t) ∀ t ∈



[τi−1, τi), ∀ i = 1, . . . , N + 1. Then, Equation (1) becomes

ẋ = F (x, t, τ̄) := fi(x, t), ∀ t ∈ [τi−1, τi), i = 1, . . . , N+1;
(3)

and we assume a given initial conditionx(0) = x0. Given a
function L : Rn × [0, T ] → R, we define the cost functional
J , as a function of the switching times, by

J(τ̄) :=
∫ T

0

L(x, t)dt. (4)

The functionsfi, i = 1, . . . , N + 1, correspond to the
system’s modes and hence are called the modal functions; we
will use the simpler term “modes” when referring to them.
We make the following assumption.

Assumption 1:The functionsfi and L are C∞, namely
they have continuous derivatives of all orders.

Since the mode-sequence is fixed andτi+1 ≥ τi, we define
the feasible set for̄τ by

Λ = {τ̄ ∈ RN : 0 := τ0 ≤ τ1 ≤ . . . ,≤ τN ≤ τN+1 := T}.
(5)

Observe that we allow for the caseτi−1 = τi, which
corresponds to the presence of modei for a time interval of
duration 0. This is done in order to ensure that the feasible
set is closed. Define the optimal control (or, optimization)
problemΠ by

Π : min{J(τ̄) : τ̄ ∈ Λ}. (6)

Suppose now that the modal functions are not known in the
future but have to be estimated. More precisely, for a given
time t ∈ [0, T ), the functionsfi are not known for future
times s > t, but are estimated by functions̃fi. These are
modal functions of a state variablẽx, time t, and the future
time s ≥ t, and will be denoted bỹfi(x̃, s, t). To be precise,
this notation has the following meaning:̃fi approximates
fi in a way that depends on some data available at time
t, and it is a modal function of the future state variablex̃
and future timess ≥ t. Now fix t ∈ [0, T ), a statex ∈
Rn, and a switching-times vector̄τ ∈ RN . Consider the
evolution of the future state variablẽx in future timess ≥
t, according to the modal functions̃fi and the switching
scheduleτ̄ , starting from the initial conditionx at time t.
This future state variable depends ont, s ≥ t, x, and τ̄ , and
hence is denoted bỹx(s, t, x, τ̄). x̃(s, t, x, τ̄) is defined by
the following equation, which is similar to (3) except that
the initial time ist:

∂x̃

∂s
(s, t, x, τ̄) = f̃i

(
x̃(s, t, x, τ̄), s, t

)
,

∀ s ∈ [t, T ] ∩ [τi−1, τi), i = 1, . . . , N + 1, (7)

with the boundary conditioñx(t, t, x, τ̄) = x. We make the
following observations about this equation. First, the vector
τ̄ need not have a constant value but may be a function of
time, and hence denoted bȳτ(t) = (τ1(t), . . . , τN (t))T ∈
RN . Second, past modes that are no longer active at time
t are irrelevant to the evolution of the future state. Define

q(t) := max{i = 1, . . . , N : τi−1(t) < t}, then Eq. (7) has
the following form,

∂x̃

∂s
(s, t, x, τ̄(t)) = F (x̃, s, t, τ̄(t)) :=

f̃i

(
x̃(s, t, x, τ̄(t)), s, t

)
,

∀ s ∈ [t, T ], ∀ i = q(t), . . . , N + 1, (8)

with the boundary conditioñx(s, s, x, τ̄(t)) = x. We will be
particularly interested in the case wherex = x(t), the state
of the system defined by Eq. (3) with the slight modification
that τ̄(t) replaces̄τ . Finally, we mention that the timet and
statex(t) are called thereal time andreal state, whereas the
timess > t and future states̃x(s, t, x(t), τ̄(t)) are called the
simulatedtime and state.

Suppose next that the performance functionL(x, t) is
not known at future timess ≥ t but rather approximated
(estimated) by a functioñL(x, s, t). This notation indicates
that the approximated function at the simulated times ≥ t
depends on the time the approximation is performed, which
is t. Similarly to Eq. (4), given a switching-time vector̄τ ,
we define the cost-to-go performance function by

J̃(t, x(t), τ̄) =
∫ T

t

L̃
(
x̃(s, t, x(t), τ̄), s, t

)
ds. (9)

Given t ∈ [0, T ] and the system’s statex(t), consider
J̃(t, x(t), ·) as a function of̄τ . Past switching times, namely
those switching times that occurred before timet, cannot be
modified, and thereforẽJ(t, x(t), τ̄) can be only a function
of τi, i = q(t), . . . , N , but not of τj , j = 1, . . . , q(t) − 1.
Denoting byΛt the constraint-set

Λt := {τ̄ : t ≤ τq(t) ≤ τq(t)+1 . . . ≤ τN+1 = T}, (10)

we further denote byΠt the problem of minimizing
J̃(t, x(t), τ̄) with respect tōτ , subject to the constraint̄τ ∈
Λt, where by a slight abuse of notation we regardτ̄ as the
vector τ̄ = (τq(t), . . . , τN )T ∈ RN−q(t)+1 whose dimension
is time-varying. This is the problem that will concern us in
the sequel, and we point out that, as is common in nonlinear
programming, we seek as solution points vectorsτ̄ that
satisfy necessary local-optimality conditions, like stationary
or Kuhn-Tucker, and not global solutions.

Now we will consider the case where the switching-time
vector, τ̄(t), is a function of t. Ideally we would like to
chooseτ̄(t) to be a solution point forΠt for every t ∈
[0, T ], but this of course is infeasible since it would require
infinite computing speed and precision. Instead, we define
and computēτ(t) by performing a single step of a gradient-
descent algorithm that aims at solvingΠt. The required
computation takes a positive amount of time, and henceτ̄(t)
will be computed only for a finite number of time-points
t ∈ [0, T ]. This will be made clear in the discussion on the
algorithm that will be carried out in the next section.

III. R EAL-TIME ALGORITHM

The algorithm considered in this section is the gradient-
descent technique with Armijo step size, adapted to the
real-time setting and particular constraints considered in this



paper. Gradient-descent algorithms with Armijo step size
have been extensively tested on optimal control problems,
and they have the properties of global convergence and linear
convergence rate [14]. We recall from [14] the basic algo-
rithm in the abstract setting of minimizing a continuously-
differentiable (C1) function g(z) : Rn → R:

Algorithm 1: Fix constantsα ∈ (0, 1) andβ ∈ (0, 1).
Step 0:Fix z0 ∈ Rn, and setj = 0.
Step 1:Computehj := −∇g(zj).
Step 2:Computekj , defined by

kj := min
{
k ≥ 0 : g(zj+βkhj)−g(zj) ≤ −αβk||hj ||2

}
.

(11)
Setλj := βkj .
Step 3:Setzj+1 = zj + λjhj , setj = j + 1, and go to Step
1.

Reference [14] presents convergence analysis and practical
implementation details. The main convergence results are
that a sequence of iteration points computed by the algo-
rithm, {zj}∞j=1, converges to stationary points at a linear
rate. Specifically, iflimj→∞zj = ẑ, then (i)∇g(ẑ) = 0; (ii)
there exist constantsA > 0 and c ∈ (0, 1) such that, for all
j = 1, 2, . . .,

||zj − ẑ|| ≤ Acj ; (12)

and (iii) there exists a constantγ ∈ (0, 1) such that, for all
j large enough,

g(zj+1)− g(ẑ) ≤ γ
(
g(zj)− g(ẑ)

)
. (13)

Various extensions of the algorithm and its analysis to
constrained problems can be found in [14].

Consider now the problemΠt for a given t ∈ [0, T ).
Given a switching-time vector̄τ(t), we next define the
feasible descent direction,h(t), and a step size,λ(t), that
will be used in the algorithm presented later.h(t) is defined
as the projection of the vector−∂J̃

∂τ̄ (t, x(t), τ̄(t)) onto the
set Λt − {τ̄(t)}; an explicit formula for it is contained in
Reference [15]. Note that if̄τ is contained in the interior of
Λt then h(t) = −∂J̃

∂τ̄ (t, x(t), τ̄(t)). Regarding the step size
λ(t), we modify Equation (11) to ensure feasibility in the
following way. Given constantsα ∈ (0, 1) and β ∈ (0, 1).
Define µ(t) := max{λ ≥ 0 : τ̄(t) + λh(t) ∈ Λt}, and
then defineλmax(t) := min{µ(t), 1}. This term,λmax(t),
is the largest-possible step size to be considered in the step-
size computation, and it ensures feasibility of the computed
switching-time vectors. Definek(t) by

k(t) : min
{

k ≥ 0 :

J̃
(
t, x(t), τ̄(t) + λmax(t)βkh(t)

)− J̃
(
t, x(t), τ̄(t)

)

≤ αλmax(t)βk
〈
h(t),

∂J̃

∂τ̄

(
t, x(t), τ̄(t)

)〉}
, (14)

where〈·, ·〉 denoted inner product inRN−q(t)+1. Then define
λ(t) := λmax(t)βk(t).

These computations take a positive amount of time, and
this must be reflected in the on-line algorithm presented
below. A typical iteration at timet starts at τ̄(t) and

computes the next switching-time vector by following a
gradient descent with Armijo step size. Assuming that the
computation takes∆t seconds, the iteration is based on the
formula τ̄(t + ∆t) = τ̄(t) + λ(t)h(t). Thus, the algorithm
can compute only a finite number of iterations in the time-
interval [0, T ].

Algorithm 2: Fix constantsα ∈ (0, 1) andβ ∈ (0, 1).
Step 0:Define t0 := 0, fix τ̄(t0) = 0, and setj = 0.
Step 1:Compute∂J̃

∂τ̄ (tj , x(tj), τ̄(tj)).
Step 2:Computeh(tj), defined as the projection of
-∂J̃

∂τ̄ (tj , x(tj), τ̄(tj)) onto the setΛtj − {τ̄(tj)}.
Step 3:Compute

µ(tj) := max{λ ≥ 0 : τ̄(tj) + λh(tj) ∈ Λtj
}, (15)

and computeλmax(tj) := min{µ(tj), 1}.
Step 4:Computek(tj), defined by

k(tj) : min
{

k ≥ 0 :

J̃
(
tj , x(tj), τ̄(tj) + λmax(tj)βkh(tj)

)− J̃
(
tj , x(tj), τ̄(tj)

)

≤ αλmax(tj)βk
〈
h(tj),

∂J̃

∂τ̄

(
tj , x(tj), τ̄(tj)

)〉}
. (16)

Step 5: Set λ(tj) := λmax(tj)βk(tj) and set τ̄(tj+1) =
τ̄(tj) + λ(tj)h(tj). Set tj+1 := tj + ∆t. If tj+1 ≥ T then
stop; otherwise setj = j + 1 and go to Step 1.

The algorithm’s behavior cannot be described by asymp-
totic concepts since it computes but a finite number of points,
and therefore we analyze it in terms ofconvergence rateby
modifying equations (12) and (13).

To start with, let us defineJ(t, x(t), τ̄) to be the “true”
cost to go, namely

J(t, x(t), τ̄) :=
∫ T

t

L(x(s), s)ds, (17)

where, for a given switching vector̄τ , x(s) is the state
trajectory of the system as defined in (3). The following
result relates certain minimum points forJ(0, x0, ·) to those
for J(t, x(t), ·).

Lemma 1:Let τ̂ := (τ̂1, . . . , τ̂N )T be a minimum point
for J(0, x0, ·), and assume that̂τN < T . Let {x(t)} be the
state trajectory associated witĥτ . Suppose that the Hessian
matrix ∂2J

∂τ̄2 (0, x0, τ̂) is positive definite. Then, for everyt ∈
[0, τ̄N ], (i) τ̄ is a minimum point forJ(t, x(t), ·), and (ii)
there existm > 0 and M ≥ m such that for everyt ∈
[0, τ̂N ], all the eigenvalues of∂

2J
∂τ̄2 (t, x(t), τ̂) lie betweenm

andM .
Proof: Please see [13].

The source of errors between the real costJ and the
simulated cost̃J are the discrepancies between the dynamic
response functionsF and F̃ , and between the performance
functions L and L̃. These discrepancies can be quantified
in terms of upper bounds on theL1 norms of the error
terms F̃ − F and L̃ − L, and their derivatives, along the
system’s state trajectories, which translate into upper bounds
on the L∞ norms of the error functionJ̃ − J and its
derivatives. The following analysis is carried out in terms



of the latter bounds. Thus, for everyt ∈ [0, T ), define
ε0(t) := ||J̃(t, x(t), ·) − J(t, x(t), ·)||L∞ and ε1(t) :=
||∂J̃

∂τ̄ (t, x(t), ·) − ∂J
∂τ̄ (t, x(t), ·)||L∞ (where theL∞ norm is

with respect to the variablēτ ∈ Λt), and define, for̀ = 0, 1,

E`(t) := max{ε`(s) : s ∈ [t, T ]}. (18)

Our main results concerning the convergence rate of Algo-
rithm 2 is along the lines of Equations (12) and (13). Letτ̂ be
a solution point forΠ, and recall that̄τ(tj) is thejth iteration
point computed by the algorithm. Now̄τ(tj) and τ̄(tj+1)
may have different dimensions since the controlled variable
consists only of future and present switching times, and to
make a comparison meaningful, we will assume that they
have the same dimension, i.e.,q(tj) = q(tj+1). Thus, we will
implicitly assume throughout the following discussion that
for all time t and τ̄ := (τ1, . . . , τN )T under consideration,
t < τ1. Furthermore, the argument is greatly complicated
when points τ̄(tj) lying on the boundary of the feasible
set Λ are explicitly considered; therefore, and due to space
limitations, we will consider only the case wherēτ(tj) is
contained in the interior ofΛ while deferring the general
case to a later publication that permits more space.

The following assumption will be made.
Assumption 2:(i). For everyt ∈ [0, T ) and for every state

x(t), the functionsJ(t, x(t), ·) and J̃(t, x(t), ·) are three-
times continuously differentiable. (ii). There existsK0 >
0 such that, for everyt ∈ [0, T ), statex(t), and τ̄ ∈ Λ,
||∂2J

∂τ2 (t, x(t), τ̄)|| ≤ K0 and ||∂2J̃
∂τ2 (t, x(t), τ̄)|| ≤ K0.

Lemma 2:Let ẑ ∈ Rn be a local minimum forg(·), and
suppose thatH(ẑ) is positive definite. There existm > 0,
M ≥ m, and ε > 0 such that, ifz ∈ B(ẑ, ε), then the
following two equations are in force,

1
2
m||z − ẑ||2 ≤ g(z)− g(ẑ) ≤ 1

2
M ||z − ẑ||2, (19)

and
0 ≤ g(z)− g(ẑ) ≤ 1

2m
||∇g(z)||2. (20)

Proof: Please see Lemma 1.3.6 in [14]
The next result implies that the Armijo step size is

bounded from below by a positive quantity that depends only
on an upper bound on the second derivative ofg(·), but not
on any other particular feature ofg(·).

Lemma 3:Let Ω ⊂ Rn be a convex, open set containing
ẑ, and suppose that there existsK0 > 0 such that, for every
z ∈ Ω, ||H(z)|| ≤ K0. If zj ∈ Ω and zj −∇g(zj) ∈ Ω for
somej = 1, 2, . . ., then

λj ≥ 2
K0

β(1− α), (21)

whereλj is the step size computed in Step 2 of Algorithm
1, andβ andα are the constants set for that algorithm.

Proof: Please see [13]
The following is the main result of the paper.
Proposition 1: Suppose that Assumption 2 is in force. Let

τ̂ be a solution point forΠ lying in the interior ofΛ, and
suppose that the matrix∂

2J
∂τ̄2 (0, x0, τ̂) is positive definite.

Then there existε > 0, γ ∈ (0, 1), c ∈ (0, 1), and constants

K1 > 0, K2 > 0, K3 > 0, and K4 > 0, such that, if
τ̄(tj) ∈ B(τ̂ , ε), and τ̄(tj+1) ∈ B(τ̂ , ε); λmax(tj) = 1 (see
Step 3); andtj+1 < τ̂1 − ε, then,

J
(
tj+1, x(tj+1), τ̄(tj+1)

)− J(tj+1, x(tj+1), τ̂
) ≤

γ
(
J
(
tj , x(tj), τ̄(tj)

)− J(tj , x(tj), τ̂)
))

+

2E0(tj) + K1E1(tj). (22)

Furthermore, ifτ̄(tj) ∈ B(τ̂ , ε) for all j = j0, j0 + 1, . . . ,
for somej0 ≥ 0, then

||τ̄(tj)−τ̂ || ≤ K2c
j−j0 +K3

(
E0(tj)

)1/2+K4

(
E1(tj)

)1/2
.

(23)
Proof: For everyε > 0, if tj+1 < τ̂1 − ε, ||τ̄(tj+1) −

τ̂ || < ε, and ||τ̄(tj) − τ̂ || < ε, then simple algebra yields
that τ1(tj+1) > τ̂1 − ε and tj+1 < τ1(tj+1), and likewise,
τ1(tj) > τ̂1 − ε and tj < τ1(tj). This implies that, when
the real system evolves with either one of the switching
times τ̄(tj), τ̄(tj+1), or τ̂ , at all time t ≤ tj+1, all of the
switching times are in the future. Consequently (see (3)), the
state variables of these respective systems are identical for
all t ≤ tj+1, and hence. and by (4),

J
(
tj+1, x(tj+1), τ̄(tj+1)

)− J
(
tj+1, x(tj+1), τ̂

)
=

J
(
tj , x(tj), τ̄(tj+1)

)− J
(
tj , x(tj), τ̂

)
. (24)

Consequently, and by (17),

J
(
tj+1, x(tj+1), τ̄(tj+1)

)− J
(
tj+1, x(tj+1), τ̂

) ≤
J̃
(
tj , x(tj), τ̄(tj+1)

)− J
(
tj , x(tj), τ̂

)
+ E0(tj). (25)

Furthermore, by subtracting and addingJ̃
(
tj , x(tj), τ̄(tj)

)
+

J
(
tj , x(tj), τ̄(tj)

)
to the difference term in the RHS of (25),

J̃
(
tj , x(tj), τ̄(tj+1)

)− J
(
tj , x(tj), τ̂

) ≤
J̃
(
tj , x(tj), τ̄(tj+1)

)− J̃
(
tj , x(tj), τ̄(tj)

)
+

J
(
tj , x(tj), τ̄(tj)

)− J
(
tj , x(tj), τ̂)

)
+ E0(tj). (26)

By Lemma 3 and Assumption 2, there existsλ̄ > 0 such that
(see Steps 4-5),

J̃
(
tj , x(tj), τ̄(tj+1

)− J̃
(
tj , x(tj), τ̄(tj)

)
<

−αλ̄||∂J̃

∂τ̄

(
tj , x(tj), τ̄(tj)

∣∣|2. (27)

By Lemma 2 and Assumption 2 there existε > 0, B1 > 0,
andB2 > 0 such that, if||τ̄(tj)− τ̂ || < ε then

||∂J

∂τ̄

(
tj , x(tj), τ̄(tj)

)||2 ≥

B1

(
J
(
tj , x(tj), τ̄(tj)

)− J
(
tj , x(tj), τ̂

))
, (28)

and
∣∣∣ ||∂J̃

∂τ̄

(
tj , x(tj), τ̄(tj)

)||2 − ||∂J

∂τ̄

(
tj , x(tj), τ̄(tj)

)||2
∣∣∣

≤ B2E1(tj). (29)

Finally, by (17),

J̃
(
tj , x(tj), τ̄(tj)

)− J̃
(
tj , x(tj), τ̂

) ≤
J
(
tj , x(tj), τ̄(tj)

)− J
(
tj , x(tj), τ̂

)
+ 2E0(tj). (30)



Now putting together Equations (25) - (30) we obtain,

J
(
tj+1, x(tj+1), τ̄(tj+1)

)− J(tj+1, x(tj+1), τ̂
) ≤

(1− αλ̄B1)
(
J
(
tj , x(tj), τ̄(tj)

)− J(tj , x(tj), τ̂)
))

+

+2E0(tj) + αλ̄B2E1(tj). (31)

Define K1 := αλ̄B2. Define γ := 1 − αλ̄B1 if 1 −
αλ̄B1 > 0, and otherwise choose anyγ ∈ (0, 1). Since
J
(
tj+1, x(tj+1), τ̄(tj+1)

) − J(tj+1, x(tj+1), τ̂
) ≥ 0 and

J
(
tj , x(tj), τ̄(tj)

)−J(tj , x(tj), τ̂)
) ≥ 0, it follows that (22)

is satisfied with these values ofK1 andγ.
Next, suppose that||τ̄(tj) − τ̂ || < ε for all j ≥ j0

for some j0 ≥ 0. Define A := J
(
tj0 , x(tj0), τ̄(tj0)

) −
J
(
tj0 , x(tj0), τ̂

)
. By (24), for all j ≥ j0,

J
(
tj , x(tj), τ̄(tj)

)− J
(
tj , x(tj), τ̂

) ≤
Aγj−j0 +

1
1− γ

(
2E0(tj) + K1E1(tj)

)
. (32)

By Lemma 2 (Equation (19)) we can assume (by reducingε
if necessary) that there existsB > 0 such that, for allj ≥ j0,

||τ̄(tj)− τ̂ ||2 ≤ B
(
J
(
tj , x(tj), τ̄(tj)

)− J
(
tj , x(tj), τ̂

))
.

(33)

Define c :=
√

γ, K2 := (AB)1/2, K3 :=
(

2B
1−γ

)1/2

, and

K4 :=
(

K1B
1−γ

)1/2

. By (33) and (32), with a bit of algebra,
Equation (23) follows.

Observe that each one of the bounds in Equations () and
() contains two terms: The first term characterizes linear
convergence rate when the functions and their gradients
could be computed exactly, and the last respective terms are
due to the estimation errors.

IV. SIMULATION EXAMPLE

This section considers the scenario of a mobile robot track-
ing a moving target while avoiding two obstacles along the
way. The robot does not know the future planned trajectory
of the target. However, it can sense the target’s position
and velocity at each timet, and it uses this information
to estimate the future trajectory of the target via linear
interpolation.

Let xR (t) ∈ R2
and be the position (location) of the

mobile robot andxG (t) ∈ R2
be the location of the target at

each timet ∈ [0, T ]. Let xΦ, xΨ ∈ R2
be the fixed positions

of Obstacle 1 and Obstacle 2, respectively. Furthermore, at
each timet ∈ [0, T ], the estimated position of the target
at future timess ≥ t is defined via the following linear
interpolation,

x̃G (s, t, xG (t)) := xG (t) + ẋG (t) (s− t) . (34)

The state of the robot is given byx (t) = (xR (t)T
x3 (t))T ,

wherex3 (t) ∈ [0, 2π) denotes its heading angle. We assume
that it moves at a constant speedv̄ unless||xR−xG|| < r for
a given (small)r > 0, in which case its speed isv̄r ||xR−xG||.

Thus, denoting the robot’s actual speed byv, its dynamic
equation of motion is

ẋ (t) =




v cos (x3 (t))
v sin (x3 (t))
u− x3 (t)


 . (35)

Note that the third coordinate of this equation steers the
heading anglex3(t) towards a desired headingu. The control
u depends on the robot’s mode of operation, and there are
three modes: Go to Goal, Avoid Obstacle 1, and Avoid
Obstacle 2, henceforth denoted byG2G, Avoid1, andAvoid2,
respectively. In the G2G mode the angleu is defined by

u = tan−1

(
xG,2 (t)− xR,2 (t)
xG,1 (t)− xR,1 (t)

)
, (36)

where the subscript indices1 and 2 indicate the first and
second elements of the vector, respectively. It can be seen
by Eq. (35) that the robot’s heading angle approaches the
direction of the goal in this mode. ForAvoid1, define the
control as

u =
{

φΦ − π
2 , if φΦ − x3 (t) ≥ 0

φΦ + π
2 , if φΦ − x3 (t) < 0 , (37)

where φΦ = tan−1
(

xΦ,2−xR,2(t)
xΦ,1−xR,1(t)

)
. In this mode, the ro-

bot circumvents the obstacle counterclockwise or clockwise
according to the sign of the angleφΦ − x3(t). A similar
equation holds for theAvoid2mode except that the subscript
Φ is replaced byΨ.

The problem Π that we consider is to compute the
switching times between modes in a given sequence that
minimize the integral of a performance functionL(x(t), t)
which penalizes proximity to the obstacles and distance from
the goal. We chose the performance function to be

L (x (t) , t) = ρ ||xR (t)− xG (t) ||2

+α1 exp

(
−||xR (t)− xΦ||2

β1

)

+α2 exp

(
−||xR (t)− xΨ||2

β2

)
, (38)

for some givenρ, α1, α2, β1, β2 > 0. However, in the real-
time scenario of this paper the robot does not know the
planned trajectory of the goal, and in theG2G mode it
attempts to approach̃xG(s, t, xG(t)) as defined by (34).
Let us denote the future simulated state of the robot from
time t onward byx̃(s, t, x(t), τ̄(t)), which is defined by the
following equation,

∂

∂s
x̃ (s, t, x (t) , τ̄ (t)) =




v cos (x̃3 (s, t, x (t) , τ̄ (t)))
v sin (x̃3 (s, t, x (t) , τ̄ (t)))
u− x̃3 (s, t, x (t) , τ̄ (t))


 ,

(39)
where the speed v is the constant v̄ as long
as ||x̃(s, t, x(t), τ̄(t)) − x̃G(s, t, xG(t))|| ≥ r,
and v̄

r ||x̃(s, t, x(t), τ̄(t)) − x̃G(s, t, xG(t))|| if
||x̃(s, t, x(t), τ̄(t))− x̃G(s, t, xG(t))|| < r. The controlu is
defined via Equations (36)-(37) except thatxR(t) andxG(t)
are replaced byx̃R(s, t, x(t), τ̄(t)) and x̃G(s, t, xG(g)),
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Fig. 1. Robot Trajectory

respectively, and similar replacements to (38) define the
simulated performance functioñL (x̃ (s, t, x (t) , τ̄ (t)) , s, t).

Consider the scenario shown in Figure 1, where the
positions of the obstacles 1 and 2 are indicated by the circle
and square, respectively, and the trajectory of the target is
shown by the dotted curve. Initiallyx(0) = (0,−1, π

2 )T , and
we made the (reasonable) choice of the mode-sequence to be
{G2G,Avoid1, G2G,Avoid2, G2G}. We ran Algorithm 2
with the initial switching-time vector̄τ(0) = (1 15 16 17)T .
The final time isT = 18 and the iteration-computation time
is ∆t = 0.1, so the algorithm ran for 180 iterations. We chose
the valuesα = β = 0.5 for the Armijo step size,̄v = 1,
r = 0.5, and for Equation (38),ρ = 0.1, α1 = α2 = 500,
andβ1 = β2 = 0.8.

Figure 2 shows the graphs of the switching timesτk(t),
k = 1, 2, 3, 4, for a run of the algorithm. The diagonal line in
the figure represents the real time, and once a switching time
crosses it it “freezes”, namely remains a constant thereafter.
We can see thatτ1 freezes early, at aboutt = 1.0, while
the remaining switching times have enough time to stabilize
before freezing. We note thatτ3 and τ4 coalesce at about
t = 7; at this point the descent direction in Algorithm
2 becomes the projected gradient as defined in Step 2.
This coalescence eliminates the4th mode, namelyAvoid2,
from the system’s state, and the mode-sequence becomes
{G2G,Avoid1, G2G}.

We also computed (“off-line”) a local-minimum point for
J , τ̂ = (1.5233, 9.0680, 16.4365, 16.8769)T , whereJ(τ̂) =
22.8588. Figure 3 shows the graph ofJ(τ̄(t)) − J(τ̂(t))
which, not surprisingly, is monotone decreasing. The fact that
it does not go to 0 is due to the early freezing ofτ1 which
results in a positive estimation error at all future times.

REFERENCES

[1] X. Xu and P. Antsaklis, “Optimal Control of Switched Autonomous
Systems”, inProc. IEEE Conference on Decision and Control, Las
Vegas, Nevada, December 10-13, 2002.

[2] M.S. Branicky, V.S. Borkar, and S.K. Mitter, “A Unified Framework
for Hybrid Control: Model and Optimal Control Theory”IEEE Trans.
on Automatic Control, Vol. 43, pp. 31-45, 1998.

[3] B. Piccoli, “Hybrid Systems and Optimal Control”,Proc. IEEE
Conference on Decision and Control, Tampa, Florida, December 16-
18, pp. 13-18, 1998.

[4] H.J. Sussmann, “Set-Valued Differentials and the Hybrid Maximum
Principle”, in Proc. IEEE Conf. on Decision and Control, Sydney,
Australia, December 12-15, pp. 558–563, 2000.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

Time

S
w

itc
hi

ng
 T

im
es

Fig. 2. Evolution of Switching Times

0 5 10 15 20
0

10

20

30

40

50

60

Time

J(
τ 

ba
r)

 −
 J

(τ
 h

at
)

Fig. 3. Cost Functional

[5] M.S. Shaikh and P. Caines, “On Trajectory Optimization for Hybrid
Systems: Theory and Algorithms for Fixed Schedules”, inProc. IEEE
Conf. on Decision and Control, Las Vegas, Nevada, December 10-13,
pp. 1997–1998, 2002.

[6] S. Hedlund and A. Rantzer, “Optimal Control of Hybrid Systems”,
in Proc. IEEE Conf. on Decision and Control, Phoenix, Arizona,
December 7-10, pp. 3972-3977, 1999.

[7] X. Xu and P.J. Antsaklis, “Optimal Control of Switched Systems
via Nonlinear Optimization Based on Direct Differentiations of Value
Functions”,Int. J. of Control, Vol. 75, pp. 1406-1426, 2002.

[8] P. Caines and M.S. Shaikh, “Optimality Zone Algorithms for Hybrid
Systems Computation and Control: Exponential to Linear Complex-
ity”, in Proc. 13th Mediterranean Conference on Control and Automa-
tion, Limassol, Cyprus, pp. 1292-1297, June 27-29, 2005.

[9] S.A. Attia, M. Alamir, and C. Canudas de Wit, “Sub Optimal Con-
trol of Switched Nonlinear Systems Under Location and Switching
Constraints”, inProc. 16th IFAC World Congress, Prague, the Czech
Republic, July 3-8, 2005.

[10] S. Azuma, M. Egerstedt, and Y. Wardi, “Output-Based Optimal Timing
Control of Switched Systems”, inProc. Hybrid Systems: Computation
and Control, Springer-Verlag, pp. 64-78, Santa Barbara, CA, March
2006.

[11] X.C. Ding, Y. Wardi, and M. Egerstedt, “On-Line Optimization of
Switched-Mode Dynamical Systems”,IEEE Transactions on Auto-
matic Control, Vol. 54, No. 9, pp. 2266-2271, 2009.

[12] X.C. Ding, Y. Wardi, and M. Egerstedt, “On-line Adaptive Optimal
Timing Control of Switched Systems”, inProc. IEEE CDC, Shanghai,
China, Dec. 16-18, 2009.

[13] Y. Wardi, P. Twu, and M. Egerstedt, “On-line Optimal Tim-
ing Control of Switched Systems”, Technical Memorandum,
http://www.ece.gatech.edu/∼magnus/OnlineOptimalTiming.pdf.

[14] E. Polak, Optimization Algorithms and Consistent Approximations,
Springer-Verlag, New York, New York, 1997.

[15] H. Axelsson, M. Egerstedt, G. Vachtsevanos, and Y. Wardi, “Algo-
rithms for Switching-Time Optimization in Hybrid Systems”, inProc.
13th Mediterranean Conference on Control and Automation, Limassol,
Cyprus, June 27-29, 2005.


