
Expanded Pharmacokinetic model for population studies
in Breast MRI

Vandana Mohana,b Yoshihisa Shinagawab Bing Jianb Gerardo Hermosillob

aElectrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
bSiemens Medical Solutions USA, IKM CKS, Malvern PA

ABSTRACT

We propose a new model for pharmacokinetic analysis based on the one proposed by Tofts. Our model
both eliminates the need for estimating the Arterial Input Function (AIF) and normalizes analysis so
that comparisons across patients can be performed. Previous methods have attempted to circumvent
the AIF estimation by using the pharmacokinetic parameters of multiple reference regions (RR). Viewing
anatomical structures as filters, pharmacokinetic analysis tells us that ’similar’ structures will be similar
filters. By cascading the inverse filter at a RR with the filter at the voxel being analyzed, we obtain a
transfer function relating the concentration of a voxel to that of the RR. We show that this transfer function
simplifies into a five-parameter nonlinear model with no reference to the AIF. These five parameters are
combinations of the three parameters of the original model at the RR and the region of interest. Contrary
to existing methods, ours does not require explicit estimation of the pharmacokinetic parameters of the
RR. Also, cascading filters in the frequency domain allows us to manipulate more complex models, such as
accounting for the vascular tracer component. We believe that our model can improve analysis across MR
parameters because the analyzed and reference enhancement series are from the same image. Initial results
are promising with the proposed model parameters exhibiting values that are more consistent across lesions
in multiple patients. Additionally, our model can be applied to multiple voxels to estimate the original
pharmacokinetic parameters as well as the AIF.

1. INTRODUCTION

The diagnosis of breast cancer from Magnetic Resonance Imaging (MRI) data is a tough problem exacer-
bated by the fact that a malignant lesion often displays intensity patterns similar to benign tissues and
other structures (such as the heart) in the field of view. However, malignant tissues differ from benign
tissues in how Contrast Agents (CA) flow in and leak out. These molecules affect the observed intensity
patterns because they change the longitudinal relaxation times at the voxels in the image. Unlike their
behaviour with respect to intensity itself, malignant tissues display a characteristic pattern with regard to
how much of the CA they take up, and also with regard to the rates of entry and washout of the CA. Dy-
namic Contrast-Enhanced (DCE) MRI uses this property to identify regions of interest. Pharmacokinetic
(PK) analysis then aims to quantify the washin and washout of the CA towards differentiating malignant
and benign lesions. The ideal goal of PK analysis in the context of breast MRI is to provide a framework
where the kinetics of the CA within the tissue of interest can be quantitatively described, and compared
across data sets from one or more patients and/or MR systems. However, current systems do not meet
this requirement due to difficulties in the normalization that the system can perform on the input image
data, which impairs the effectiveness of any population studies conducted.

Existing literature on Pharmacokinetic analysis for breast MR can be categorized into two broad classes
of models - compartmental and heuristic. The first class attempts to describe the microscopic view of the
breast tissues as a set of compartments and then models the interaction between these compartments with
respect to the entry and exit of the CA. Within this class, the models differ in the number of compartments
they use to model the tissue and the equations that describe the interactions. Heuristic models attempt
to model the washin and washout phenomena - as growing(/decaying) exponentials for example - and
quantify the extents and rates of the same. Of the compartmental models, the Tofts model is the most
commonly used. This is the starting model from which the proposed model is derived. A comparative
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study of different pharmacokinetic models for DCE-MRI can be found, for example in [4]. The challenges
in estimating the quantity of CA in the vascular space and the unsatisfactory normalization which impairs
population studies are the key issues that the proposed framework aims to address.

2. PREVIOUS WORK

2.1. Tofts model
The proposed model uses the Tofts two-compartment model [5] to describe the concentration at each voxel
within the image with respect to the true AIF. By applying the idea of a reference region, it uses the
expressions at two different voxels towards analytically eliminating the AIF from the analysis.

The Tofts model is a simplified model that considers the tissue of interest as one compartment (Extravas-
cular Extracellular Space or EES) and everything extraneous to it as another compartment (Plasma) and
models the kinetics of the contrast agent as an exchange between the two. The cells are not included in
either of these compartments because by the nature of the contrast agents of interest in this work, the CA
(or the tracer) cannot diffuse into the cells. The rates of the exchange between the two compartments are
denoted by the PK parameters Ktrans and kep. This is clearly illustrated in Figure 1.
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Figure 1. Microscopic View of Tofts’ Two-compartment model

This model is chosen for its relative simplicity among compartmental models and over heuristic models
since it describes the physical behavior of the underlying structure and is hence more intuitive. It starts
from the differential equation describing the exchange of the Contrast Agent (CA) as described in Figure
1 :

dce(t)
dt

= Ktranscp(t) − kepce(t) (1)

where Ktrans quantifies the flow of CA from the plasma to the EES and kep quantifies the flow of CA from
the EES to the plasma. cp(t) is the Arterial Input Function (AIF) and is the term that represents the CA
concentration in the plasma surrounding the EES, which is effectively the ’input’ to the EES itself.

The solution for this differential equation is:

ce(t) = Ktranscp(t) ∗ e−kept (2)
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It is important to note that this expression only accounts for the tracer (equivalent to CA) component in
the EES itself. In certain scenarios (discussed in detail in [5]), the vascular tracer component cannot be
neglected. The extended Tofts model takes this component into account to yield the following expression
for the total concentration:

cT (t) = vpcp(t) + Ktranscp(t) ∗ e−kept (3)

The first term denotes the vascular tracer and the second denotes the tracer in the EES as a result of the
exchange between the two compartments. The AIF (cp(t)) is unique to each patient and crucial because,
as noted previously the tracer concentration in the plasma(explained further in [7]) is the input to the
tissue itself.

The different approaches to handle the AIF are outside the scope of this paper. The interested reader is
referred to [5]. We are interested in the most generic case where analysis is to be performed in the absence
of a measured AIF. In this case, the following model is widely used as a standard AIF(e.g. [4]):

cp(t) = D

2∑

i=1

aie
−mit (4)

where D is the dosage per kg body weight, and the ais and mis are constants that describe the
bi-exponential decay of the AIF.

The three parameters to be estimated for this original model are :
1. vp : the plasma volume. This is physically analogous to a volume fraction. (Unit : A.U.(Arbitrary
Unit))
2. Ktrans : measure of the flow of CA from the plasma to the EES. (Unit : A.U./min)
3. kep : measure of the flow of CA from the EES to the plasma. (Unit : min−1)
The use of A.U. in the units for the above quantities is because, though the model is defined on concentra-
tion, in practice, we fit it to the observed signal intensity. This same implementation detail also accounts
for why the values don’t meet the exact conditions outlined in [5]. For example, though Ktrans is ideally
expected to be much smaller in value than kep, we have generally observed the opposite to be true. Thus,
the volume fraction ve that we actually compute will be greater than 1 (and it will be in units of A.U.
rather than dimensionless).

2.2. Role of Arterial Input Function in Pharmacokinetic (PK) Analysis

In compartmental models, PK analysis models the interaction between the compartments or sections of
the anatomical structure under study. While these models are theoretically superior to heuristic models
in describing the underlying anatomy, the disadvantage is that the ’input’ to these structures needs to be
known apriori. It is simply the CA concentration in the blood being fed to the first compartment in the
model, and is referred to as the Arterial Input Function (AIF). As is obvious from the equations for the Tofts
model, the accuracy in estimating the AIF directly affects the accuracy of the estimated PK parameters.
The primary difficulty is, however, in measuring this quantity reliably, and this motivates an entire family of
approaches that attempt to analytically eliminate the AIF from PK analysis or to circumvent its estimation
by other means. The category of approaches that use data from other regions within the image towards
the AIF are typically referred to as Reference Region approaches and are discussed in the next section.
The compartmental approach and the role of the AIF can be found in greater detail in [2], [3] and [6].

2.3. Reference Region approaches

The basic assumption behind Reference Region (RR) approaches to pharmacokinetic (PK) analysis is that
all regions within a given image have the same Arterial Input Function (AIF) if the effects of differences in
dispersion are neglected. The approach then is to relate the concentration at the region being analysed to
that of a reference region, and to eliminate the AIF between the two expressions. The proposed framework
is derived starting from a similar premise. However, the formulation is such that the PK analysis can be
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performed in a different parameter space, with no assumptions of the parameters for the reference region,
while simultaneously ensuring that with appropriate choice of the reference region, the PK parameters
are naturally normalized so that data from different patients can be compared, making population studies
feasible.

3. PROPOSED MODEL

The proposed model uses Tofts model to describe concentration at each voxel with respect to the true
AIF for the case, and subsequently eliminates AIF by directly relating concentration at the voxel being
analysed to the reference voxel concentration.

3.1. Derivation of model equation

Using Tofts model, we write the expressions for the concentration at the analysed and reference voxels as
follows:

cT (t) = vpcp(t) + Ktranscp(t) ∗ e−kept (5)

cR(t) = vR
p cp(t) + KtransR

cp(t) ∗ e−kR
ept (6)

Here, cT (t) denotes the concentration at the voxel being analysed, cR(t) denotes the concentration at
the reference voxel, cp(t) denotes the true AIF, vp, Ktrans and kep are the Tofts model parameters for the
voxel being analysed, vR

p , KtransR and kR
ep are the Tofts model parameters for the reference voxel.

Applying the Laplace transform to equations (5) and (6), we obtain

CT (s) = vpCp(s) + KtransCp(s)
1

s + kep
(7)

and
CR(s) = vR

p Cp(s) + KtransR
Cp(s)

1
s + kR

ep

(8)

where CT (s), CR(s) and Cp(s) are the laplace transforms of cT (t), cT (t) and cp(t) respectively.

Dividing 7 by 8 and simplifying using partial fractions, we get

CT (s)
CR(s)

=
A1

s + B1
+

A2

s + B2
+ A3 (9)

where

A1 =
KtransR

vR
p (kep − kR

ep) − KtransR

vp(kR
epvR

p + KtransR) − vR
p (kepvp + Ktrans)

vR
p

2

B1 = kR
ep +

KtransR

vR
p

(10)

A2 =
(kR

ep − kep)Ktrans

vR
p (kR

ep − kep) + KtransR

B2 = kep and A3 =
vp

vR
p
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Taking the inverse Laplace transform, we obtain the expression for the current voxel’s concentration time
series in terms of that of the reference voxel as

cT (t) = (A1e
−B1t + A2e

−B2t) ∗ cR(t) + A3cR(t) (11)

For the sake of completeness, we also need to consider the case of when the transfer function has repeated
poles. This is the case when the following condition holds.

kR
ep +

KtransR

vR
p

= kep (12)

In this special case, by a similar approach using the laplace tranform and the partial fractions simplification,
we obtain the following transfer function:

CT (s)
CR(s)

=
C1s

(s + B)2
+

C2

(s + B)
+ C3 (13)

where

C1 = −Ktrans(kR
ep − kep)

vR
p .kep

,

C2 =
vp

vR
p kep

[{
kep +

Ktrans

vp

}
kR

ep − k2
ep

]
(14)

C3 =
vp

vR
p

B = kR
ep +

KtransR

vR
p

= kep

Taking the inverse laplace transform, we obtain the following expression relating the current voxel’s con-
centration to that of the reference region:

CT (t) = C1(Bt + 1)e−Bt ∗ CR(t) + C2e
−Bt ∗ CR(t) + C3CR(t) (15)

3.2. Justification for proposed model
Viewing anatomical structures as filters, we can denote the responses for the reference and analysis regions
in different images. Let us consider two images I1 and I2(i.e., from different patients). Let H1 denote the
filter response of the reference region in I1, and Q1 denote the filter response of the analysed region in I1.
Similarly, let H2 and Q2 denote the filter responses of the reference region and analysis region respectively,
in I2.

To correlate with the original PK coefficients, Qi is analogous to vi
p, Ktransi and kep

i, where the latter
are the PK coefficients for the analysed voxel in Ii when i=1,2 etc. PK analysis compares Q1 and Q2.
The proposed approach amounts to comparing H1

−1Q1 and H2
−1Q2. Since the RRs are assumed to be

the same structure from different images, H1 = H2. Thus, the two frameworks yield the same effective
comparison. (See Figure 2 for the anatomical and filter views.)

3.3. Uniqueness of the proposed approach
The work in [7] clearly explains the significance of the AIF and the goal of RR approaches with regards
to AIF elimination. The proposed framework differs from existing RR approaches (e.g. [7]) in certain
key aspects. It is based on the extended model accounting for the vascular CA component and is thus
more generic. Also, we do not need to assign the values of the PK parameters of the reference region.
Additionally, the structure of the proposed model is such that no additional measurements or calibration
are needed in MR acquisition.
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Figure 2. Justification of the proposed model

3.4. Potential sources of error in the proposed model

It is important to note that the proposed model − like all PK models − describes the time-evolution
of CA concentration. However, in DCE-MRI, the concentration is not directly accessible and instead,
observed signal intensities are related to it nonlinearly. The linear approximation employed in the process
of fitting the signal intensities to the derived relationships, could be a potential source of error for the
proposed framework. In theory, we could account for the analytic relationship between intensity and
CA concentration and write the model directly in terms of intensities. However, this would lead to a
more complicated model and hence increase computation requirements. Hence, the extent of this effect
is first being studied through experiments. Also, the extent of normalization achieved is sensitive to how
consistently the RR can be chosen over images.

4. IMPLEMENTATION AND EXPERIMENTS

In this work, the conjugate-gradient technique was chosen to estimate the parameters of the enhanced
model. Also, in looking at the expressions for the parameters, we observe that B1 is only dependent
upon the original (Tofts model) PK parameters of the RR. This implies that by definition, this quantity is
expected to be the same for all the voxels in the given image. Thus, in our implementation, we constrain B1

to be same across all the voxels of an image as well as across images. An automatic module for the nipple
detection in [1] was used. The technique was tested over a population comprising 40 data sets, each from
a different patient. Candidate lesions within each data set were made available through a semi-automatic
segmentation of the 20 largest lesions in each data set, and this was used to evaluate the performance
of the proposed framework by comparison to the ground truth. Also, the parameter distribution within
lesions for all these cases was studied to identify patterns that could be used to distinguish malignant and
benign lesions.

Note that the special case of the repeated poles in Equation 15 is mentioned in this paper for completeness.
In practice, it is not possible to know apriori which model should be fit to the data being analysed since
that would require knowledge of the parameters of the Tofts model itself. A simple solution would be to
attempt to fit both models to each voxel and pick the one with lower value of error. However, due to
the increased computational burden that this would present, we chose to fit the general model as given in
Equation 9 everywhere.
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Figure 3. Results comparing the manually segmented ground truth (Column 1) with results from Tofts Model
(Column 2) and the Proposed model (Column 3). Note the improved localization of regions of interest, and the
reduction in false positives.
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5. RESULTS

Figure 3 shows the results of the experiments comparing pharmacokinetic analysis using Tofts model with
the proposed model. All five cases included here were malignant. Column 1 indicates the ground truth,
while Columns 2 and 3 show the regions of interest as localized by analysis using the Tofts model and
the proposed model respectively. The data in these figures (on which the localized regions of interest
are superimposed in color with blue being the highest in value) is inverted so that in interpreting these
figures, darker regions indicate greater enhancement and brighter regions indicate lesser enhancement. The
lesion localization and lesion areas as indicated in these images can be directly compared to compare the
performance of the two models.

Figure 4. ROC curves for (a) Tofts Model, (b) Proposed Model

5.1. Observations

The estimated parameters for the proposed five-parameter model are observed to be better correlated
across different patients than the original Tofts parameters as estimated with the standard AIF. However,
the parameters are sensitive to the RR chosen and hence the extent of normalization across patients is
dependent on how consistently the RR is chosen across images. The current RR of choice is the nipple
region. The main reasons for this choice are that the enhancement characteristics of the nipple are relatively
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similar across images and also that the nipple is a relatively clear structure and easy to automatically locate
in the breast MR. An alternate choice for the RR would be the pectoral muscle. It would be interesting
to use the pectoral muscle for the RR and compare the results obtained with those from the current work.
It is also important to note that there are breast MR images in which the nipple is not clear or not seen
or in cases of lumpectomy, the nipple might be missing in which case a structure like the pectoral muscle
might prove more reliable as a RR.

As is clear in Figure 3, visually the proposed model localizes the malignant lesions better than the analysis
that uses the Tofts model with a standard AIF. Also, the number of false positives or spurious voxels
picked up is far lesser for the proposed model. These two aspects clearly demonstrate the effectiveness of
the proposed model in visually highlighting suspicious voxels for further analysis by radiologists. In order
to better understand the performance of the proposed model in population studies, both the proposed
framework and the framework based on the Tofts model were applied to all 40 data sets. The results
from classification using both approaches were compared using Receiver Operating Characteristics (ROC)
curves. These are shown in Figure 4. These clearly indicate that the proposed model allows better
classification than the extended Tofts model, in the sense of yielding higher sensitivity than the latter
at comparable discrimination thresholds. This clearly illustrates the potential for the proposed model
in population studies. It is also expected that with more robust RR selection and more accurate model
fitting, the classification accuracy obtained with the proposed model can be improved further.

6. CONCLUSIONS AND FUTURE WORK

The work discussed in this paper proposes an enhanced model for pharmacokinetic analysis based on
the Tofts model. The new model offers the advantages of eliminating the estimation of the AIF, and
normalizing the resulting parameters so as to facilitate population studies. In our experiments across 40
patients, the estimated parameters for the proposed model displayed greater correlation across patients
than did the Tofts model parameters (with standard AIF). Also, on visual inspection and by thresholding,
the results from the enhanced model were less noisy while still capturing most of the lesion area which is
very promising.

Since the enhanced model parameters are functions of those of the Tofts model at the voxels being analysed
and used for reference, it is theoritically possible to estimate the Tofts model parameters without the AIF
estimation or to directly estimate the AIF for any subsequent analysis by using the proposed framework.
Using this framework on a pair of voxels yields five parameters that are functions of the original PK
parameters (three each) of the two individual voxels. Using v voxels, there would be 3v unknowns and
5 v(v−1)

2 equations. Solving the inequality, we see that three or more voxels will be sufficient for solving for
the individual PK parameter values. We can then use the CA time-series and PK parameters to estimate
the AIF itself.

Our experiments so far indicate great potential in the proposed model and validate it for population
pharmacokinetic studies. It is of interest to test this framework on larger data sets as well as on unseen
data, to study how effective the normalization is and how sensitive it is to the choice of reference region. It is
also of interest to understand the physical significance of the enhanced model parameters by studying their
relationships to the Tofts model parameters whose physical significance is understood. Tthe frameworks
for AIF estimation and Tofts model parameter estimation are currently being pursued.
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