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SUMMARY

The study of noncovalent interactions between aromatic rings and various

functional groups is a very popular topic in current computational chemistry. The

research presented in this thesis takes steps to bridge the gap between theoretical

prototypes and real-world systems.

The non-additive contributions to the interaction energy in stacked aromatic

systems are measured by expanding the prototype benzene dimer into trimeric and

tetrameric systems. We show that the three- and four-body interaction terms gen-

erally do not contribute significantly to the overall interaction energy, and that the

two-body terms are essentially the same as in the isolated dimer.

The sulfur–π interaction is then studied by using the H2S–benzene dimer as

a prototype system for theoretical predictions. We obtain higly-accurate potential

energy curves, as well as an interaction energy extrapolated to the complete basis set

limit. Energy decomposition analysis using symmetry-adapted perturbation theory

shows that the S–π interaction is primarily electrostatic in nature.

These theoretical results are then compared to an analysis of real S–π contacts

found by searching protein structures in the Brookhaven Protein DataBank. We find

that the most frequently seen configuration does not correspond to the theoretically

predicted equilibrium for H2S–benzene, but instead to a configuration that suggests

an alkyl–π interaction involving the carbon adjacent to the sulfur atom. We believe

our findings indicate that environmental effects within proteins are altering the

energetics of the S–π interaction so that other functional groups are preferred for

interacting with the aromatic ring.

vii



CHAPTER I

INTRODUCTION

1.1 Theoretical Study of Noncovalent Interactions

Noncovalent interactions involving aromatic systems are a key factor in many

areas of biochemistry and molecular engineering. In particular, π–π interactions

play a major role in protein folding, base-pair stacking in DNA, the mechanics of

drug intercalation into DNA, and molecular self-assembly. Unfortunately, these in-

teractions are typically very weak (< 5 kcal mol−1), which makes it difficult to study

them experimentally. This is less of a problem for theoretical chemists, however,

and a large body of research has been conducted on many different interactions,

including π–π, cation–π, alkyl–π, amino–π, oxygen–π, and sulfur–π.1–9

1.2 Thesis Objectives

The overall theme of the work in this thesis is the bridge between theoretical

prototypes and real systems. The first chapter focuses on the π–π interaction and

how it is influenced by environment in larger π–systems such as the stacked base-

pairs of DNA or the crystal structure of polymers like polystyrene. An assortment

of benzene trimers and tetramers are analyzed and then compared to the prototyp-

ical benzene dimer in order to ascertain the magnitude of any non-additive effects

present in the larger systems.

The rest of the thesis focuses on the hydrogen sulfide–benzene dimer for use
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as a prototype of S–π interactions. First, a detailed theoretical study of the H2S–

benzene dimer is conducted. High-level theoretical methods are used in order to

obtain very accurate potential energy curves, including an equilibirum interaction

energy extrapolated to the complete-basis-set (CBS) limit. The different basis

sets used are examined, and it is found that the Dunning augmented correlation-

consistent basis sets (aug-cc-pVXZ), with their full complement of diffuse functions,

are better suited to the study of weak interactions than the Pople 6-31+G* family of

basis sets, which lack diffuse polarization functions. Symmetry-adapted perturba-

tion theory (SAPT) is used to decompose the interaction energy into electrostatic,

exchange-repulsion, dispersion, and induction elements in order to more fully un-

derstand the energetics of the interaction.

The results of this study are then used as a basis for comparison in a data-

mining study of protein crystal structures from the Protein Data Bank (PDB).

Contacts between sulfur-bearing residues (cysteine and methionine) and aromatic

residues (phenylalanine, tyrosine, and tryptophan) are searched for, and their geo-

metric parameters are recorded and tabulated. 3-D histograms plotting the sulfur-

to-ring-center distance vs. polar angle vs. frequency are created for various subsets

of the residues in order to understand how the differences between the residues

affect their ability to participate in S–π interactions. Unexpectedly, two other ge-

ometries are found in higher frequencies than the lowest-energy, hydrogen-bonding

configuration. The possibility of groups competing for the H-bonding position is

proposed to account for this.

2



CHAPTER II

OVERVIEW OF THEORETICAL METHODS

This section will focus primarily on the conceptual properties of the various

theoretical methods used in the following studies. For detailed derivations and

discussion of the mathematical properties of the methods, the author recommends

Atilla Szabo and Neil S. Ostlund’s Modern Quantum Chemistry (Dover, 1996)10 and

Frank Jensen’s Introduction to Computational Chemistry (Wiley, 2003).11

2.1 The Schrodinger Equation

The ab initio methods of electronic structure theory attempt to solve the

time-independent, non-relativistic Schrdinger equation

HΨ = EΨ

The Hamiltonian operator H can be partitioned into operators denoting the kinetic

and potential energies of the nuclei and electrons.

Ĥ = T̂N + T̂e + V̂Ne + V̂ee + V̂NN

The Born-Oppenheimer approximation says that because the nuclei are much more

massive than the electrons and thus move much more slowly, the electrons can

be considered to be moving in a field of fixed nuclei. Under this approximation,

the nuclear kinetic energy TN becomes zero, and the nuclear potential energy VNN

becomes a constant that can be calculated independently of the electronic energy.

3



The remaining three terms are called the electronic Hamiltonian since they depend

directly on the electron coordinates (position and momentum) only.

Of these three terms, the first two only depend on the coordinates of a single

electron; thus, they are usually considered together as a one-electron operator. The

third term depends on the coordinates of two electrons and is called a two-electron

operator. These two operators are the primary focus of Hartree-Fock theory.

2.2 Hartree-Fock Theory

Hartree-Fock theory (HF) is based on the approximation that each electron

feels only an average electric field from the other electrons in the system. This is

achieved by representing the wavefunction as a Slater determinant in which each

electron is simultaneously associated with every orbital.

ΨHF =
1√
N !
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The Hartree-Fock energy, then, is the expectation value of the electronic Hamilto-

nian within this wavefunction plus the nuclear potential energy.

EHF =
〈

ΨHF |Ĥe|ΨHF

〉

+ VNN

The expectation value of Ĥe is given by two summations: one over simple

one-electron intergrals, and the other over two-electron integrals. (For details of the

derivations, see the references above.) The two-electron integrals are composed of

coulomb integrals, J , and exchange integrals, K.

Jij =
∫

dx1dx2χ
∗

i (x1)χ
∗

j(x2)
1

rij

χi(x1)χj(x2)
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Kij =
∫

dx1dx2χ
∗

i (x1)χ
∗

j(x2)
1

rij

χj(x1)χi(x2)

(These equations are given over spin orbitals χi(xj); similar equations exist over

spatial orbitals φi(xj).)

The J integral is structured such that, when spin is integrated out, each or-

bital’s spin function combines with itself, always giving 1. The K integral, however,

is structured such that each orbital’s spin function will combine with the other or-

bital’s spin function. If the two electrons are of opposite spins, they will cancel each

other out; only if the two electrons have parallel spins can K have a non-zero value.

Because of this, we say that the HF method correlates, to a certain extent, the

motions of electrons with parallel spin. Electrons with opposite spin, however, re-

main uncorellated in HF theory. This is the main failing of HF theory: even though

the HF energy typically accounts for 99% of the true energy of a system, the miss-

ing correlation energy can be quite essential for the proper description of chemical

phenomena. In order to “recover” this correlation energy that the HF method over-

looks, other methods such as those discussed below are applied as refinements of

the HF method.

2.3 Many-Body Perturbation Theory

The basic idea of Many-Body Perturbation Theory (MBPT) is to partition

the total Hamiltonian of the system into two parts, the zeroth-order H0 and a per-

turbation H ′. The eigenvalues and eigenfuctions are known for H0 with a reference

wavefunction, Ψ(0). The perturbation H ′ is applied to the reference in order to gen-

erate “perturbed” wavefunctions of first-order (Ψ(1)), second-order (Ψ(2)), and so

on. The expectation values of the pertubation operator between the reference and

each perturbed wavefunction are added to the reference energy as first-, second-,

5



etc.-order energy corrections (E(1), E(2), etc.).

The specific flavor of MBPT used in this thesis is Møller-Plesset Perturbation

Theory, or MPPT. In MPPT, the Hartree-Fock wavefunction is used as the refer-

ence, and the Hamiltonian is defined such that the sum of the zeroth-order energy

and the first-order energy correction is the HF energy:

EMP1 = E(0) + E(1) = EHF

Thus, the second-order MPPT correction constitutes the first improvement on the

HF energy. Third-order and higher corrections are typically much smaller than the

second-order correction, and the computational cost of obtaining these corrections

scales exponentially. Thus, the most commonly used form of MPPT is that which

stops at the second-order correction; this is called Second-Order MPPT, or MP2.

The main advantage of MPPT is that it is size-extensive, that is, the energy of

a two-part system computed with the fragments at infinite separation will be equal

to the sum of the individually computed energies for the two fragments. The HF

method is not size-consistent.

2.4 Coupled-Cluster Theory

In coupled-cluster theory, the wavefunction is expressed as an exponential

product of the reference, which is typically the HF wavefunction.

ΨCC = eT̂ ΨHF

The exponential can be expanded as:

eT̂ = 1 + T̂ +
T̂ 2

2!
+

T̂ 3

3!
+ . . .
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where the operator T̂ is defined as:

T̂ = T̂1 + T̂2 + T̂3 + . . . + T̂N

for an N -electron system. The T̂1 operator generates singly-excited wavefunctions

from the HF reference, T̂2 generates doubles, and so on.

In order to be computationally feasible, the exponential expansion and the

operator T̂ must be truncated. For the coupled-cluster singles and doubles method

(CCSD), T̂ is defined as simply T̂1+ T̂2. When this is put into the cluster expansion,

terms such as T̂ 2
1 and T̂ 3

2 are produced. These are called “disconnected” excitations

because they produce higher-order excitations as products of lower-order ones. For

example, T̂ 2
2 produces a quadruple excitation by combining two doubles. Thus, any

given level of CC theory will include contributions from higher-order excitations

through these disconnected terms.

Adding T̂3 to the definition of T̂ gives the CCSDT (CCSD + triples) method,

which, while being very accurate, is also very computationally expensive. Instead,

the CCSD(T) method is typically used, where the triple excitations are calculated

by a perturbative method rather than in the cluster expansion. This method is

commonly called the “gold standard of quantum chemistry” for its high accuracy

coupled with size extensivity.

2.5 Symmetry-Adapted Perturbation Theory

Similarly to MBPT, Symmetry-Adapted Perturbation Theory (SAPT) im-

proves on the HF wavefunction by means of a perturbation to the Hamiltonian.

The SAPT Hamiltonian is:

Ĥ = F̂ + V̂ + Ŵ

7



where F̂ is the Fock operator, which acts as a sum of individual Fock operators

for each monomer; Ŵ is the intramonomer correlation operator, similar to an MP2

perturbation on each monomer; and V̂ is the intermolecular interaction operator.

Each of the physical components of the interaction energy (electrostatic, exchange-

repulsion, induction, and dispersion) may be written in terms of different orders of

perturbation for the V̂ and Ŵ operators.

SAPT gives interaction energies for weakly bound dimers that are typically

within 1-2% of the corresponding MP2 energies,12–16 although at a much higher com-

putational cost. The benefit of SAPT is the energy decomposition, which provides

a great deal of insight into the energetics of an interaction.

8



CHAPTER III

BEYOND THE BENZENE DIMER: AN

INVESTIGATION OF THE ADDITIVITY OF

π–π INTERACTIONS

[Previously published in J. Phys. Chem. A, 2005]

3.1 Introduction

Noncovalent interactions are fundamental to supramolecular chemistry, drug

design, protein folding, crystal engineering, and other areas of molecular science.17

In particular, π–π interactions between aromatic rings are ubiquitous in biochem-

istry and they govern the properties of many organic materials. Aromatic side-

chains in proteins are often found in pairs due to the favorable energetics of the

π–π interaction,18,19 and certain drugs utilize π–π interactions to intercalate into

DNA.20 The fundamental physics of individual π–π interactions has been a subject

of several high-level quantum mechanical studies,1–5 but demonstrable convergence

of the results even for the prototype benzene dimer has been achieved only recently4

due to the extreme sensitivity of the results to electron correlation and basis set

effects.

In many instances, an aromatic ring may be involved in more than one π–π

interaction at a time, such as the stacking of nucleic acid bases in the double-helical

9



structure of DNA. In proteins as well, aromatic side-chains can be found in clusters;

for example, the carp parvalbumin protein (P3CPV) exhibits a cluster of 7 pheny-

lalanine residues. Burley and Petsko observed that 80% of the aromatic pairs they

identified in a protein data bank (PDB) search were involved in “pair networks” as

opposed to being isolated pairs.18 Additionally, self-assembled stacks of aromatic

macrocycles have been studied as possible molecular wires.21 It is therefore critical

to understand whether the properties of π–π interactions, as understood from pro-

totype studies of benzene dimers, change significantly when they occur in clusters

due to polarization or other many-body effects.

Some work along these lines was performed by Engkvist et al.,22 who used

simple potentials derived from CCSD(T) energies for benzene dimer to find and

analyze local minimum structures on the trimer and tetramer potential energy sur-

faces. While their objective was to explore the potential energy surfaces and shed

light on benzene cluster experiments, they did note that the two observed linear

trimers (“H” and “double-T”, which we call T1 and T2, respectively; see Fig. 3.1)

had an interaction energy about twice that of the T-shaped dimer, and that the

cyclic trimer (C, Fig. 3.1) had a total energy about three times that of the dimer.

More recent ab initio results have been reported by Ye et al.,23 who performed den-

sity functional theory (DFT) and second-order Møller-Plesset perturbation theory

(MP2) computations for small benzene clusters in a parallel-displaced (PD) con-

figuration as a model of π-stacks in polystyrene. In accord with other studies of

weak interactions (see, e.g., ref 24), these authors found DFT to be unreliable for

π-stacking. Their MP2 results indicated that the interaction energy for five ben-

zenes (−7.09 kcal mol−1) was somewhat larger than one might expect by thinking

of the pentamer simply as four benzene dimers (−6.24 kcal mol−1 at the same level

10



of theory). This implies that something other than nearest-neighbor two-body in-

teractions (i.e., benzene dimers) is making a significant contribution to the total

interaction.

To better understand and model clusters of aromatic systems, it is important

to understand the nature and magnitude of these other contributions, and to de-

termine the relative magnitude of the different kinds of contributions (two-body

vs three-body, nearest-neighbor vs non-nearest-neighbor, etc.). Here, we consider

these different contributions in benzene trimers and tetramers consisting of various

combinations of the prototypical configurations of the benzene dimer: the sand-

wich (S), T-shaped (T), and parallel-displaced (PD) configurations (see Fig. 3.1).

These configurations are chosen as interesting prototypes, but it is not our objec-

tive to survey and identify the lowest-energy configurations of the benzene trimer

and tetramer. Nevertheless, we also consider the cyclic configuration of the trimer,

which according to experiment should be the most stable.25 In addition, our inclu-

sion of diffuse functions, found to be critical in previous work4 but neglected in the

MP2 computations of Ye et al.,23 allows us to examine their role in the additivity

of these interactions.

3.2 Theoretical Methods

Due to the large size of these systems, we were unable to apply the very high

levels of theory we previously applied to the benzene dimer.4 However, we have ob-

served that MP2 in conjunction with small basis sets tends to exhibit a fortuitous

cancellation of errors: small basis sets underestimate binding, while MP2 overesti-

mates binding. We found that a modified aug-cc-pVDZ basis, which we will desig-

nate cc-pVDZ+, provides interaction energies within a few tenths of 1 kcal mol−1 of

11



(a) Trimers (b) Tetramers

Figure 3.1: Eight benzene trimer configurations and three benzene tetramer con-
figurations considered in this study.

our previous estimates of the complete basis set coupled-cluster [CCSD(T)] limit for

the geometries considered. The cc-pVDZ+ basis is the usual cc-pVDZ basis plus the

diffuse s and p functions on carbon from the aug-cc-pVDZ basis. At the MP2/cc-

pVDZ+ level of theory, using the geometries given below, we predict dimer interac-

tion energies of −1.87 (sandwich), −2.84 (parallel-displaced), and −2.35 kcal mol−1

(T-shaped), while our previous estimates of the CCSD(T)/complete-basis-set val-

ues4 were −1.81, −2.78, and −2.74 kcal mol−1, respectively.

To compute the three- and four-body interaction terms between the monomers,

we used a modified version of the Boys-Bernardi counterpoise correction26 developed

by Hankins, Moskowitz, and Stillinger,27 which defines the many-body interactions

in terms of the lower-order interaction energies. For a trimeric system, the total

energy would be:

Etot =
∑

i

E(i) +
∑

ij

∆2E(ij) + ∆3E(123)

12



where

∆2E(ij) = E(ij) − E(i) − E(j)

∆3E(123) = E(123) −
∑

i

E(i) −
∑

ij

∆2E(ij)

and all computations are performed using the full basis of the trimer. The scheme

can be extended for tetramers (denoting the four-body terms as ∆4E) or larger

clusters.

For simplicity, we use rigid monomers with parameters recommended by Gauss

and Stanton28 [re(C-C) = 1.4079 Å and re(C-H) = 1.0943 Å]; our previous work4

indicates that there is almost no relaxation of monomer geometries when the dimers

are fully optimized. We also used intermonomer parameters previously determined4

at the MP2/aug-cc-pVDZ level of theory for the dimers [RS = 3.8 Å, RT = 5.0 Å,

R1
PD = 3.4 Å, and R2

PD = 1.6 Å]. Tests of the sandwich trimer show that optimizing

the intermonomer distances results in only a 0.05 Å increase from the dimer distance

of 3.8 Å, a 0.03 kcal mol−1 change in the total energy, and changes on the order of

0.01 kcal mol−1 in the various many-body terms. With the assumption that all

systems will exhibit the same magnitude of changes upon similar optimization,

such optimization does not appear to be necessary for the purposes of this study.

For the cyclic or C-trimer configuration, which experiment suggests is the lowest-

energy configuration,25 we were unable to find any geometric parameters in the

literature. However, we found that the MP2/cc-pVDZ+ equilibrium geometry for

this configuration (subject to C3h symmetry) has a 4.8 Å intermonomer (center-to-

center) separation with each monomer tilted 12◦ away from perpendicular.

13



3.3 Results and Discussion

Theoretical results for the trimers are summarized in Table 3.1. The reported

values ∆2E and ∆3E are the sum of individual two- and three-body interaction en-

ergies, respectively, for the given trimer. A few general trends are readily apparent

from the table. One is that the nearest-neighbor two-body energies [∆2E(1) and

∆2E(23)] are in every case slightly larger than the corresponding benzene dimer

energy. This is a result of the ghost functions from the additional monomers stabi-

lizing the “dimer” systems when considered in the full basis of the trimer/tetramer.

A second trend is that in all systems besides the C-trimer (which only has nearest-

neighbor two-body interactions), the long-distance two-body interactions [∆2E(13)]

are generally small but stabilizing contributions to the overall interaction. On the

other hand, the three-body interaction terms (∆3E) are mostly small but destabi-

lizing. For the C-trimer, the three-body term is definitely significant – more than

0.3 kcal mol−1 – which might be expected because the C-trimer is a true three-

body system, with each monomer having a close interaction with both of the other

monomers. Because the three-body and long-distance two-body terms are small,

one might expect that the binding energies of these trimers might be reasonably

well estimated simply from the sum of (nearest-neighbor) benzene dimer energies

at these geometries, a quantity we denote . As shown in Table 3.1, this simple sum-

of-dimers estimate is rather good, within 0.3 kcal mol−1 of the explicitly computed

values for all but the C trimer, where the difference is 0.6 kcal mol−1.

In the tetramers, the results for which are summarized in Table 3.2, we see

similar trends in regards to the two-body interactions: nearest-neighbor interactions

are slightly more stabilizing than those in the isolated dimer, and long-distance in-

teractions are, individually, relatively small. For the three-body interactions, the
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Table 3.1: Total and Many-Body Interaction Energies ( kcal mol−1) of Var-
ious Benzene Trimers at the MP2/cc-pVDZ+ Level of Theory

S PD T1 T2 C S/PD S/T PD/T
∆2E(12) -1.93 -2.91 -2.37 -2.38 -2.52 -1.95 -1.95 -2.90
∆2E(13) -0.01 -0.05 0.01 -0.03 -2.52 -0.04 -0.12 -0.14
∆2E(23) -1.93 -2.91 -2.37 -2.38 -2.52 -2.90 -2.39 -2.39
∆2E -3.87 -5.88 -4.72 -4.80 -7.55 -4.88 -4.46 -5.42

∆3E 0.034 0.000 0.078 0.064 -0.33 0.023 -0.026 0.001

Etot -3.83 -5.88 -4.64 -4.73 -7.88 -4.86 -4.49 -5.42

Edimer
a -3.74 -5.68 -4.70 -4.70 -7.32 -4.71 -4.22 -5.19

a Edimer is the predicted interaction energy based on a simple sum of (nearest-neighbor)
benzene dimer energies. The MP2/cc-pVDZ+ interaction energies of benzene dimer
at these geometries are −1.87 (S), −2.84 (PD), −2.35 (T), and −2.44 kcal mol−1 (C).

two all-nearest-neighbor terms ∆3E(123) and ∆3E(234) correspond very closely to

the three-body term for the trimer, while the other two terms are essentially zero,

such that the tetramer ∆3E is essentially the sum of the two ∆3E’s from the trimers

(123) and (234). The four-body terms are negligible for all cases, being no more

than a hundredth of 1 kcal mol−1. Although the new types of interactions (four-

body and non-nearest-neighbor three-body terms) are negligible, the larger number

of long-distance two-body terms and all-nearest-neighbor three-body terms leads

to larger deviations from the simple sum-of-dimers estimate than was observed for

the trimers (except for the T-tetramer, which shows a fortuitous agreement with

the sum-of-dimers estimate). The aggregate effects of long-distance two-body terms

and all-nearest-neighbor three-body terms will become more significant on an abso-

lute basis for larger clusters and would need to be included if accurate total binding

energies are required. Fortunately, however, it should be possible to obtain good es-

timates of these effects simply from trimers. Overall, we observe deviations from the
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Table 3.2: Total and Many-Body In-
teraction Energies ( kcal mol−1) of Var-
ious Benzene Tetramers at the MP2/cc-
pVDZ+ Level of Theory

S PD T
∆2E(12) -1.94 -2.93 -2.37
∆2E(13) -0.01 -0.06 0.01
∆2E(14) 0.01 0.01 -0.01
∆2E(23) -1.98 -2.97 -2.39
∆2E(24) -0.01 -0.06 -0.03
∆2E(34) -1.94 -2.93 -2.39
∆2E -5.87 -8.94 -7.17

∆3E(123) 0.035 0.000 0.077
∆3E(124) 0.005 0.002 -0.006
∆3E(134) 0.005 0.002 -0.005
∆3E(234) 0.035 0.000 0.062
∆3E 0.079 0.004 0.127

∆4E -0.0002 -0.0012 -0.0050

Etot -5.80 -8.94 -7.05

Edimer
a -5.61 -8.52 -7.05

a See footnote a on Table 3.1.

sum-of-dimers estimate of about 0.4 kcal mol−1 or less for the tetramer stacks con-

sidered. This is considerably smaller than the 0.85 kcal mol−1 deviation noted for

the slightly larger PD pentamer system (with a somewhat different geometry) con-

sidered by Ye et al.23 Given the similarity between the two- and three-body terms

obtained for the trimers and tetramers, we can reasonably assume that they remain

similar for the pentamer, allowing us to obtain a simple estimate of the interaction

energy that would be obtained by adding one more benzene to our PD tetramer.

This estimate yields −11.96 kcal mol−1, giving a deviation of 0.6 kcal mol−1 from

our sum-of-dimers estimate. The remaining 0.25 kcal mol−1 difference between our
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Table 3.3: Total and Many-Body Interac-
tion Energies ( kcal mol−1) of Various Ben-
zene Trimers at the CCSD(T)/cc-pVDZ+
Level of Theory

S PD T1 C
∆2E(12) -0.48 -0.92 -1.62 -1.61
∆2E(13) 0.02 -0.01 0.02 -1.61
∆2E(23) -0.48 -0.92 -1.62 -1.61
∆2E -0.94 -1.85 -3.22 -4.84

∆3E 0.038 0.014 0.072 -0.25

Etot -0.90 -1.84 -3.14 -5.09

Edimer
a -0.86 -1.72 -3.20 -4.62

a Edimer is the predicted interaction energy
based on a simple sum of (nearest-neighbor)
benzene dimer energies. The CCSD(T)/cc-
pVDZ+ interaction energies of benzene dimer
at these geometries are −0.43 (S), −0.86 (PD),
−1.60 (T), and −1.54 kcal mol−1 (C).

estimate of this deviation and that of Ye et al. may be ascribed to the different

geometries and basis sets employed. We also note, however, that the lack of diffuse

functions in the MP2 computations of Ye et al. leads to considerably smaller total

interaction energies, making the discrepancy from the sum-of-dimers estimate larger

on a percentage basis. Overall, the differences between our ab initio interaction en-

ergies and the simple sum-of-dimers estimates are 1-6% for the trimers (7% for the

C-trimer), 0-5% for the tetramers, and 5% for the pentamer (estimated) versus 12%

from the work of Ye et al.

It is important to determine whether the near-addivity of the interaction en-

ergies persists when higher-level treatments of electron correlation are employed.

Therefore, we performed CCSD(T)/cc-pVDZ+ calculations on four of the trimers,
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the results of which are summarized in Table 3.3. While the total interaction ener-

gies and the nearest-neighbor two-body terms vary greatly from the MP2 energies

in Table 3.1 (consistent with our previous work4), the magnitudes of the three-body

terms are very similar to those computed via MP2, demonstrating that these three-

body terms do not depend greatly on the computational method employed. On a

percentage basis, the deviations from the sum-of-dimers estimates are 2-7% for the

S, PD, and T1 configurations, and a somewhat larger 9% for the C trimer. It is

interesting to note that the total energies for the T1 and C systems here are quite

similar to those reported by Engkvist et al.,22 who, as noted above, used CCSD(T)

results to calibrate their potential.

3.4 Conclusions

In conclusion, we have demonstrated that the interaction energies in larger

benzene clusters are fairly close to what one might expect based simply on the sum

of interaction energies for isolated benzene dimers, with an error of less than 10%

for all systems considered. Two considerations keep this simple picture from being

perfectly accurate:

1. Nearest-neighbor two-body interactions are stabilized by up to one tenth of

1 kcal mol−1 when computed in the basis set of the full system as opposed to

the dimer basis.

2. Long-distance two-body interactions, as well as nearest-neighbor three-body

terms, have an aggregate effect which will become increasingly important for

the total binding energy of larger clusters (although these effects are readily

estimated from trimers).

18



Fortunately, we find that four-body terms and three-body terms that include any

non-nearest-neighbor monomer pairs are insignificant for the configurations consid-

ered and can be safely neglected.

Because the nearest-neighbor three-body terms are fairly insensitive to the

electronic structure method, it seems worthwhile to use a less expensive method

to determine these terms, while very accurate methods may be used to determine

the dominating two-body terms. In this light, the recent multi-center model of

Hopkins and Tschumper,29 which employs high-level computations only on dimers

and low-level computations on the entire cluster, is very promising.
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CHAPTER IV

ESTIMATES OF THE AB INITIO LIMIT FOR

SULFUR–π INTERACTIONS: THE

H2S–BENZENE DIMER

[Previously published in J. Phys. Chem. A, 2005, 109, 191.]

4.1 Introduction

Non-covalent interactions involving the aromatic side chains of certain amino

acids are some of the most important factors in determining the dynamics of protein

folding. The experimental and computational aspects of π–π, cation–π, alkyl–π, and

amino–π interactions have been a subject of much recent interest.30 One type of

interaction that has not received as much attention computationally is the sulfur–π

interaction, partly because it is not as common as the others in natural systems and

partly because the presence of the sulfur atom increases the computational expense.

Morgan et al.31 first proposed the hypothesis that strong and favorable S–π

interactions exist after identifying chains of alternating “sulfur and π-bonded atoms”

in the crystal structures of eight different proteins. This finding suggested that S–

π stacking might play a significant role in stabilizing the folded conformations of

these proteins. Database searches performed by Morgan et al.32 and Reid et al.33

on the Brookhaven Protein Data Bank,34 and by Zauhar et al.7 on the Cambridge
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Crystallographic Database,35 all confirmed that S–π interactions occurred more

frequently than expected from the random association of amino acids.

Viguera and Serrano36 directly investigated the contribution of S–π interac-

tions to the stability of α-helices by calculating the helical content of a model protein

from NMR and circular dichroism spectra. The AGADIR37 algorithm, which calcu-

lates the helical content of peptides, was then parameterized in order to reproduce

the experimental results; the optimized parameters gave interaction free energies

of −2.0 kcal mol−1 for phenylalanine-cysteine interactions and −0.65 kcal mol−1 for

phenylalanine-methionine.

Cheney et al.38 performed a quantum mechanical study on the methanethiol-

benzene system as a model of cysteine-aromatic interactions. They optimized var-

ious initial configurations using Hartree-Fock theory (HF) with the 3-21G* Pople

basis set and subsequently performed single-point calculations using second-order

Møller-Plesset perturbation theory (MP2) and the 6-31G* basis set. The optimum

configuration was found at a distance of 4.4 Å between the sulfur and the center

of the benzene ring and an angle of 56◦ between the line joining these two points

and the plane of the benzene ring. The interaction energy for this geometry was

computed as −3.0 kcal mol−1. A more recent study by Duan et al.8 utilized much

larger basis sets, up to 6-311+G(2d,p). Using three different starting geometries,

they first optimized the methanethiol-benzene dimer at the MP2/6-31G** level of

theory and then performed single-point calculations using the larger basis sets in

order to construct potential energy surfaces. Their results show that the equilibrium

for the lowest-energy conformation (with the sulfur over the center of the ring) is

at 3.73 Å separation, which gave an interaction energy of −3.71 kcal mol−1. Using

their results from a previous study of the methane–benzene dimer, they were able
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to isolate the contribution of only the SH–π interaction, which they said “should be

greater than 2.6 kcal mol−1.” To our knowledge, these MP2/6-311+G(2d,p) calcu-

lations are the highest level of theory previously applied to a S–π complex. However,

our previous experience with weak interactions in the benzene dimer suggests that

this level of theory might be far from convergence.4

A molecular mechanics study of site-directed mutagenesis in staphylococcal

nuclease by Yamaotsu et al.39 reported a quite shocking result: they found that an

M32L substitution (substituting leucine for the methionine at position 32) resulted

in a structure that was 1.6 kcal mol−1 more stable than the wild type peptide, which

is unusual because peptide mutations normally result in less stable protein struc-

tures. The mutant protein was subsequently synthesized by Spencer and Stites,40

who reported a decrease in stability of 0.8 kcal mol−1 compared to the wild type,

a much more conventional result. These results inspired Pranata41 to perform a

theoretical study on the dimethyl sulfide-benzene system using both quantum me-

chanical and molecular mechanical methods. Although his MM results did not agree

with Yamaotsu’s results using the same force field, they were in good agreement

with his MP2/6-31G* QM results, which all showed that the M32L substitution

was destabilizing.

Here we present high-level quantum mechanical predictions for the simplest

possible prototype ofS–π interactions, the H2S–benzene dimer. Not only is this

system a prototype of S–π interactions in biological contexts, but H2S is a typical

oil-gas component, and its interaction with benzene is important in modeling vapor-

liquid equilibria relevant to oil and gas processing.42

At present, very few high-quality potential energy curves are available for pro-

totype noncovalent interactions. However, such results are crucial for calibrating
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new methods aimed at modeling these interactions reliably and efficiently. Cou-

pled cluster theory through perturbative triple substitutions, CCSD(T),43 is of-

ten referred to as the “gold standard of quantum chemistry” and is very reliable

for such studies. In validating his new density functional theory plus dispersion

model, Grimme44 has observed that “very accurate CCSD(T) data are still miss-

ing” for complexes of benzene with small molecules. Here we use CCSD(T) with

very large basis sets, up through augmented correlation consistent polarized valence

quadruple-zeta45 (aug-cc-pVQZ). Note that this augmented basis set, which includes

a set of diffuse functions for every angular momentum present in the basis, is much

larger than the cc-pVQZ basis set. The potential energy curves thus obtained should

be of “subchemical” accuracy — within a few tenths of 1 kcal mol−1. Our results

for the equilibrium geometry of the complex will be compared to recent microwave

experiments by Arunan et al.46 In addition, the reliability of less complete levels

of theory for S–π interactions will be evaluated in light of our benchmark results.

These comparisons will be valuable in determining appropriate levels of theory for

studies of larger models of S–π interactions.

4.2 Theoretical Methods

Energy computations using second-order Møller-Plesset perturbation theory

(MP2), coupled-cluster theory with single and double substitutions (CCSD), and

coupled-cluster including perturbative triple substitutions [CCSD(T)] were per-

formed using various basis sets.47 Rigid monomer geometries were used, according

to best values in the literature: re(C-C) = 1.3915 Å and re(C-H) = 1.0800 Å for

benzene,28 and re(S-H) = 1.3356 Å and θe(H-S-H) = 92.12◦ for hydrogen sulfide.48

The monomers were oriented with the sulfur atom directly over the center of the
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Figure 4.1: Geometry specification for the H2S–benzene dimer. A1 is in the C2v

plane of the complex, A2 is centered on the C2v axis, and the intermonomer distance
R is measured from the center of the benzene ring to the sulfur atom.

benzene ring, such that the C2v axis of H2S matches the C6h axis of benzene (Figure

4.1). Potential energy curves (PECs) for the “swing” angle, A1, and the “twist”

angle, A2, were obtained at the CCSD(T)/aug-cc-pVDZ level of theory in order

to determine the optimum values of these parameters for later computations. The

intermonomer distance R was held fixed at 3.9 Å for these computations.

PECs over the intermonomer distance R were then obtained with the MP2,

CCSD, and CCSD(T) methods in conjunction with the 6-31+G*, aug-cc-pVDZ, and

aug-cc-pVTZ basis sets. MP2 curves were also obtained with the very large aug-

cc-pVQZ basis set (932 functions). Taking advantage of the relative insensitivity

to basis set of the difference between CCSD(T) and MP2 energies, we estimate the

CCSD(T)/aug-cc-pVQZ energies as follows:

E
CCSD(T)/aug-cc-pVQZ
int = E

MP2/aug-cc-pVQZ
int + δ

CCSD(T)
MP2 ,

where

δ
CCSD(T)
MP2 = E

CCSD(T)/aug-cc-pVTZ
int − E

MP2/aug-cc-pVTZ
int

is calculated from the interaction energies computed with a smaller basis set, in this

case, aug-cc-pVTZ.

With the availability of these high-quality results, we decided to assess the
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reliability of some smaller basis sets which have commonly been used for such cal-

culations. Specifically, we obtained PECs for the 6-31++G** basis (for comparison

to aug-cc-pVDZ) and the 6-311+G(2d,p) basis (used by Duan,8 for comparison to

aug-cc-pVTZ). We also obtained PECs for three modifications of the aug-cc-pVDZ

basis: (1) aug(sp/sp)-cc-pVDZ, with the diffuse d-functions on carbon and sulfur re-

moved; (2) aug(spd/s)-cc-pVDZ, with the diffuse p-function on hydrogen removed;

and (3) aug(sp/s)-cc-pVDZ with both the d and p diffuse functions removed. The

aug(sp/s)-cc-pVDZ basis has the same number and types of contracted functions

as 6-31++G** with the only difference being in the number of primitive functions

used, thus allowing us to directly compare the inherent quality of the Pople and

Dunning basis sets for predictions of energies in van der Waals complexes.

The counterpoise (CP) correction method of Boys and Bernardi26 was used

to account for the basis set superposition error in all computations, since our pre-

vious results have shown that CP-corrected energies converge more quickly to the

complete basis set limit for π–π interactions.4 Core orbitals were constrained to

remain doubly occupied in all correlated calculations. Calculations were performed

in MOLPRO49 running on an IBM SP2 supercomputer.

Symmetry-adapted perturbation theory (SAPT)13,50 was employed to decom-

pose the energy into physically meaningful components, including electrostatic, in-

duction, dispersion, and exchange energies. The specifics of this method have been

described in detail elsewhere.51 The SAPT calculations reported here used the cor-

relation level technically designated as SAPT2, and they were carried out using the

aug-cc-pVDZ basis set at the CCSD(T)/aug-cc-pVQZ geometry. SAPT calculations

were performed using the SAPT2002 program.52
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Figure 4.2: Potential energy curves over the two configuration angles, aug-cc-pVDZ
basis.

4.3 Results and Discussion

The CCSD(T)/aug-cc-pVDZ curves showing the interaction energy as a func-

tion of the angles A1 and A2 are shown in Figure 4.2. The curve for A1 shows

a shallow minimum around 30◦ from the starting geometry; this angle would have

one of the hydrogens pointed almost directly down toward the center of the ring.

However, the energy at this point is only 0.06 kcal mol−1 below the initial Eint of

−2.35 kcal mol−1 at 0◦. This difference is so small that the curve can be considered

essentially flat near 0◦. At 180◦, the sulfur lone pairs are pointed down at the ring

and the hydrogens are pointed away; the lone pair electrons interact much less favor-

ably with the negatively charged π-cloud of the benzene, and the CCSD(T)/aug-cc-

pVDZ interaction energy becomes only −0.81 kcal mol−1. The corresponding curve

for A2 is even flatter, showing very shallow minima (< 0.01 kcal mol−1) at angles

that place the H2S hydrogens between the ring carbons. Because of this flatness

in the potential energy surface of both parameters, and because setting A1 and A2

both equal to 0◦ gives the system C2v symmetry, we decided to use this geometry
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Figure 4.3: Effects of choice of basis set and correlation method for the H2S–
benzene dimer. All curves in (a) use the CCSD(T) method; all curves in (b) use
the aug-cc-pVTZ basis set.

in order to reduce the cost of the computations.

The interaction energies as a function of intermonomer distance are shown

in Figure 4.3. Figure 3(a) shows the effect of basis set size on the CCSD(T) re-

sults; the values obtained for Req and Eint are summarized in Table 4.1. The

general trends in Req and Eint are readily observable: Req decreases and the mag-

nitude of Eint increases (Eint becomes more negative) as the size of the basis in-

creases. As the basis set becomes larger, the changes to Eint become smaller:

between 6-31+G* and aug-cc-pVDZ, Eint increases by 0.8 kcal mol−1, while it in-

creases by only 0.3 kcal mol−1 between aug-cc-pVDZ and aug-cc-pVTZ, and only

0.1 kcal mol−1 between aug-cc-pVTZ and aug-cc-pVQZ. This is as expected, since

the correlation consistent basis sets were designed around the principle of system-

atically converging the correlation energy correction with increasing basis size.53

This convergence can be estimated by correcting for the two main types of

basis set error. The first is basis set superposition error, or BSSE, which arises
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Table 4.1: Intermonomer Distance (Å) and
Interaction Energy ( kcal mol−1) at Equilib-
rium for Various Levels of Theory.a

basis set method Req Eint

6-31+G* MP2 4.00 -1.92
CCSD 4.15 -1.42
CCSD(T) 4.10 -1.58

aug-cc-pVDZ MP2 3.80 -3.06
CCSD 3.95 -1.94
CCSD(T) 3.90 -2.34

aug-cc-pVTZ MP2 3.70 -3.47
CCSD 3.90 -2.09
CCSD(T) 3.80 -2.64

aug-cc-pVQZ MP2 3.70 -3.60
CCSD(T) (3.80)b (-2.74)b

CBS CCSD(T) -2.81c

a All energies include counterpoise corrections.
b CCSD(T)/aug-cc-pVQZ results are estimated as

described in the text.
c Complete basis set extrapolation at the

CCSD(T)/aug-cc-pVQZ geometry.

because each monomer in the complex can artificially lower its energy by “borrow-

ing” basis functions from the other monomer, so that the attraction between the

two monomers is overestimated; the recommended procedure for eliminating BSSE

is the counterpoise correction,54 which we have applied to all of our results. The

second main basis set error is the basis set incompleteness error, or BSIE, which

is a consequence of the incomplete description of the electronic Coulomb cusp. In

an examination of hydrogen-bonded systems, Halkier and co-workers55 developed

a two-point extrapolation scheme to correct for the BSIE which has the following

simple closed form:

Ecorr,lim =
X3

X3 − (X − 1)3
Ecorr,X − (X − 1)3

X3 − (X − 1)3
Ecorr,X−1,

where Ecorr,X is the correlation energy obtained with the correlation consistent ba-

sis set with cardinal number X (aug-cc-pVXZ). For the various hydrogen-bonded
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systems they studied, it was found that a “3–4” MP2 extrapolation (i.e., using the

MP2/aug-cc-pVTZ and MP2/aug-cc-pVQZ correlation energies) always gave results

within 0.05 kcal mol−1 of the MP2-R12 basis set limit. Using the same “3–4” ex-

trapolation here for the CCSD(T) correlation energies, and taking the CP-corrected

SCF/aug-cc-pVQZ energy as our reference, we obtained an extrapolated, complete-

basis-set (CBS) CCSD(T) limit Eint of −2.81 kcal mol−1. This is an improvement of

only 0.07 kcal mol−1 over our CCSD(T)/aug-cc-pVQZ results. Based on Halkier’s

results, and the good reliability of CCSD(T) for such problems, it seems certain

that this result is within a few tenths of 1 kcal mol−1 of the true value.

Req and Eint show consistent trends with regards to correlation method, as

well. Figure 3(b) compares the MP2, CCSD, and CCSD(T) potential energy curves

with the aug-cc-pVTZ basis set. MP2 binds more strongly than CCSD(T) (Req is

shorter, Eint is more negative), which binds more strongly than CCSD. This finding

is consistent with the results of Hopkins and Tschumper,56 who found the same

trend in their study of various π-bonded dimers. They also concluded that the

effects of triple excitations, included here via the (T) term in CCSD(T), is required

in order to determine Eint to chemical accuracy. From the figure, we see that the

difference between CCSD(T) and MP2, δ
CCSD(T)
MP2 , is largest at short distances and

dies off to zero at large distances. This coupled-cluster correction, which was added

to the MP2/aug-cc-pVQZ results to estimate the CCSD(T)/aug-cc-pVQZ level of

theory, was found to be quite insensitive to the basis set. If we compute this

coupled-cluster correction in the smaller aug-cc-pVDZ basis set instead, the largest

discrepancy from the aug-cc-pVTZ values is only 0.03 − 0.04 kcal mol−1 at small R.

This suggests that the errors in δ
CCSD(T)
MP2 computed with the aug-cc-pVTZ basis set

are smaller than this.
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Our best theoretical results compare very well with the experimental geometry

of Arunan et al.46 Those authors reported geometrical parameters of A1 = 28.5◦ and

Req = 3.818 Å; our CCSD(T) calculations showed minima at A1=30◦ (aug-cc-pVDZ

basis) and Req =3.80 Å (aug-cc-pVQZ basis). The deviations from Arunan’s results

are well within the resolution of our curves, ±5◦ for A1 and ±0.1 Å for Req. Unfor-

tunately, we could not find any reports in the literature of experimental interaction

energies for this dimer. We can, however, compare our results to the theoretical

results of Duan et al.,8 who determined that the SH–π interaction in methyl sulfide

should be ∼ 2.6 kcal mol−1 at the MP2/6-311+G(2d,p) level of theory. Their lower-

level theoretical binding energy for the methylated model is roughly the same as

our higher-level estimated CBS CCSD(T) limit of −2.81 kcal mol−1. The binding

energy of H2S–benzene is also found to be very similar to that of H2O–benzene,

estimated by Tsuzuki et al.57 as −3.17 kcal mol−1 using computational techniques

similar to those employed here.

An interesting result from the comparison of basis set effects is the large differ-

ence between the 6-31+G* and aug-cc-pVDZ binding energies of 0.76 kcal mol−1.

Both are double-zeta basis sets with polarization and diffuse functions, with the

exception that 6-31+G* does not include diffuse and polarization functions for

hydrogen. To investigate this discrepancy, we performed computations with the

6-31++G** basis, which does include these functions. We also obtained results

with the triple-zeta 6-311+G(2d,p) basis set, used by Duan et al.,8 for comparison to

the triple-zeta aug-cc-pVTZ basis. These results are summarized in Figure 4.4 and

Table 4.2. It is readily apparent that the extra hydrogen functions provided by the

6-31++G** basis are not particularly important, as they only increased the magni-

tude of Eint by 0.054 kcal mol−1; there is still a large discrepancy (0.713 kcal mol−1)
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Figure 4.4: Comparison of Pople vs. unmodified Dunning basis sets.

Table 4.2: Intermonomer Distance (Å) and Interaction Energy ( kcal mol−1)
at Equilibrium; Comparison between Pople and Dunning Basis Sets, CCSD(T)
Method.

basis set Req Eint

6-31+G* 4.10 -1.58
6-31++G** 4.10 -1.63
aug-cc-pVDZ 3.90 -2.34
6-311+G(2d,p) 4.10 -2.02
aug-cc-pVTZ 3.80 -2.64

between the Pople 6-31++G** and Dunning aug-cc-pVDZ double-zeta basis sets.

The only other difference between the 6-31++G** and aug-cc-pVDZ basis sets is

that 6-31++G** only includes diffuse functions for the core and valence function

sets — (1s1p/1s) — while aug-cc-pVDZ also includes diffuse functions for the po-

larization sets — (1s1p1d)/(1s1p). This led us to wonder whether these diffuse

(1d/1p) functions could account for such a large difference, nearly a full kilocalorie

per mole?

To investigate this possibility, we employed modified versions of the aug-cc-pVDZ

basis set, as described in the Methods section. The results are displayed in Figure

4.5. Removing the diffuse d-functions on carbon and sulfur reduced the binding
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Figure 4.5: Comparison of Pople vs. modified Dunning basis sets.

energy by ∼ 0.30 kcal mol−1, almost half of the total difference between the basis

sets. Removing the diffuse p-functions on hydrogen had half as great of an effect,

reducing Eint by ∼ 0.16 kcal mol−1. Removing both sets of functions at the same

time reduced Eint by ∼ 0.62 kcal mol−1, leaving a difference of only ∼ 0.1 kcal mol−1

between 6-31++G** and aug(sp/s)-cc-pVDZ. It therefore appears that both the

Pople and Dunning basis sets are very similar in fundamental quality, even though

they do not use the same number of primitive Gaussians for the contractions of

valence orbitals. On the other hand, the extra diffuse functions present in the aug-

mented Dunning basis set make a fairly large contribution to lowering the interaction

energy.

A similar discrepancy also appears to exist between the two triple-zeta basis

sets, with a difference in Eint at equilibrium of 0.62 kcal mol−1. The difference in

the number of basis functions in these two basis sets is greater than the differ-

ence in the number of functions in the double-zeta sets: compared to aug-cc-pVDZ,

aug-cc-pVTZ includes an additional set of (1d1f/1p1d) polarization functions, as

well as and additional set of (1f/1d) diffuse functions. Besides the number of

valence functions, 6-311+G(2d,p) only differs from 6-31++G** by an additional
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Table 4.3: SAPT2/aug-cc-pVDZ Results for Contributions to the Interaction En-
ergy ( kcal mol−1) at CCSD(T)/aug-cc-pVQZ Equilibrium Geometry.

A1 = 0◦ 180◦

Eelst -2.37 0.01
Eexch 4.19 1.03
Eind -0.81 -0.17
Edisp -4.16 -2.14
Eint(SAPT2) -3.15 -1.27
Eint(MP2) -3.06 -1.21

(1d) polarization function on heavy atoms and the lack of a diffuse (1s) function

on hydrogen. The overall difference between 6-311+G(2d,p) and aug-cc-pVTZ is

then composed of (1f/1p1d) polarization and (1d1f/1s1p1d) diffuse functions. Even

though the difference in the number of functions is greater than that between the

double-zeta basis sets, the magnitude of the difference in energies is slightly smaller;

this is consistent with the systematic convergence of energies using the correlation

consistent basis sets. Overall, the higher angular momentum diffuse functions in

the correlation consistent basis sets, especially the diffuse d functions, contribute

significantly to the overall interaction energy and should remain important in other

van der Waals complexes.

The SAPT-derived components of the binding energy are summarized in Table

4.3. Although we were only able to perform the SAPT analysis at the SAPT2/aug-

cc-pVDZ level of theory, which gives total binding energies very similar to those from

counterpoise-corrected MP2/aug-cc-pVDZ, this level of theory features a favorable

cancellation of basis set and correlation errors and yields a binding energy similar to

that of CCSD(T)/aug-cc-pVQZ. To simplify the analysis, for present purposes we

have designated the exchange-dispersion and exchange-induction terms as dispersion

and induction, respectively. Additionally, the term δEHF
int,resp, which includes third-

and higher-order HF induction and exchange induction contributions, has been
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designated as induction. From the table, we see that electrostatic terms make

a fairly strong attractive contribution, −2.37 kcal mol−1, arising primarily from

the interaction between the partial positive charge on the H2S hydrogens and the

partial negative charge in the benzene π–cloud. The exchange energy is repulsive

(4.19 kcal mol−1), and has nearly twice the magnitude of the electrostatic energy.

The induction energy is a product of the interaction between each monomer and the

static electric field of the other; here it contributes a modest attractive component

(−0.80 kcal mol−1) to the binding energy. The dispersion energy is by far the largest

attractive component (−4.16 kcal mol−1), with nearly twice the magnitude of the

electrostatic energy. It is interesting that the magnitude of the dispersion energy

is nearly equivalent to the exchange energy, which roughly holds for substituted

benzene dimer systems also.51

We also performed an SAPT decomposition at the inverted, sulfur-down ge-

ometry, A1 = 180◦. In this geometry, instead of the electron-deficient hydrogen

atoms, the sulfur lone pairs are directed toward the benzene ring. As one might

expect, this causes the electrostatic component of the interaction to decrease and

even become slightly repulsive. The other three energy components also decrease

in magnitude because the electron density from the sulfur lone pairs does not ex-

tend as far from the sulfur as the electron density associated with the hydrogens in

H2S. This might be anticipated from simple VSEPR considerations, which would

suggest that the very small H-S-H bond angle of 92◦ would imply a large angle

between the sulfur lone pairs. We note that the exchange-repulsion is reduced in

magnitude much more than the dispersion interaction, so that the sum of exchange-

repulsion and dispersion is now somewhat attractive (−1.11 kcal mol−1) rather than

34



almost zero as in the hydrogens-down A1 = 0◦ configuration. However, the reduc-

tion in the electrostatic term outweighs this effect, so that overall, the sulfur-down

configuration is 1.88 kcal mol−1 less favorable than the hydrogens-down configura-

tion at the SAPT2/aug-cc-pVDZ level of theory [1.54 kcal mol−1 less favorable for

CCSD(T)/aug-cc-pVDZ]. Based on these considerations, the “S–π” interaction, at

least in this model system, is best thought of as being primarily an electrostatic

attraction between the H2S hydrogens and the aromatic π–cloud.

4.4 Conclusions

In this study, we examined the H2S–benzene dimer as the simplest model

of S–π interactions. Calculations using several basis sets and different levels of

electron correlation were performed to obtain potential energy curves for the inter-

monomer geometric parameters A1, A2, and R. Estimates of the CCSD(T)/aug-

cc-pVQZ potential energy curves presented here for the C2v configuration represent

a great leap forward in the reliability of theoretical data for this system, and they

should be suitable as benchmarks for the calibration of new theoretical methods

for noncovalent interactions. The results at our highest levels of theory, A1 =

30◦ for CCSD(T)/aug-cc-pVDZ, Req = 3.80 Å and Eint = −2.74 kcal mol−1 for

CCSD(T)/aug-cc-pVQZ, are in good agreement with previous experimental and

lower-level theoretical results. Complete basis set extrapolations yield a CCSD(T)

interaction energy of −2.81 kcal mol−1, which is very similar to our aug-cc-pVQZ

result and suggests that errors due to basis set incompleteness are very small.

Analysis of the interaction using symmetry-adapted perturbation theory, to-

gether with the potential energy curve for rotation of the H2S unit relative to the
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benzene ring, suggests that the S–π interaction here is primarily an electrostatic at-

traction between the partial positive hydrogens in H2S and the negatively-charged

π electrons of benzene.

Comparison of different theoretical treatments showed that MP2 overbinds

and CCSD underbinds with respect to CCSD(T), in accord with studies on other van

der Waals systems. The extra (1d/1p) diffuse functions present in the aug-cc-pVDZ

basis set improve the overall quality of results obtained with that basis over those ob-

tained with the otherwise comparable 6-31++G** basis set by a significant amount.

The extra functions in the aug-cc-pVTZ basis produce a similar but smaller effect

compared to the 6-311+G(2d,p) basis. It is therefore recommended that the more

complete aug-cc-pVXZ basis sets be employed when possible in future computa-

tional studies of this and similar van der Waals systems.
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CHAPTER V

ANALYSIS OF S–π CONTACTS IN PROTEIN

STRUCTURES AND COMPARISON TO

THEORETICAL PREDICTIONS

5.1 Introduction

In the previous chapter, we studied the H2S–benzene dimer in a hydrogen-

bonded geometry with high-level computational methods in order to ascertain the

energetics of this interaction. Because we used such high-level methods as well as

large basis sets, any residual error from basis set incompleteness or from unrecovered

correlation energy should be very small, and our results should match very well with

gas-phase experimental data. We compared our results to those of Arunan et al.,46

who used microwave spectrometry to study the geometry of gas-phase H2S–benzene

clusters. Our results matched theirs very closely — as close as possible given the

resolution of our potential energy surfaces.

The long-range goal of studying the H2S–benzene system was to use it as

a prototype for modeling S–π interactions in proteins. Unfortunately, there are

many environmental effects introduced in shifting our focus from the simple model

system to a pair of amino acids within a protein. Obviously, there are many more

atoms involved in the system, and each of these can contribute to a number of

environmental effects. While it would be possible to extend the theoretical side
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of our previous comparison to perform theoretical calculations on systems that are

more representative of real proteins, the high computational cost would limit the

study to lower levels of theory and smaller basis sets, which would also limit the

accuracy of the results. Instead, what we can do is to compare the theoretical

results on the model system to experimental results on real systems, i.e. protein

crystal structures.

Two large and well-known repositories of these are the Brookhaven Protein

DataBank (PDB)34 and the Cambridge Crystallographic Database (CCD);35 the

“data-mining” of these collections has nearly become a scientific field in itself. In

the previous chapter, we mentioned two studies which performed this data-mining in

relation to the S–π interaction: Zauhar et al. extracted data on Met–Phe contacts

from the CCD,7 while Duan et al. used the PDB to compile data on Cys–Phe

contacts.8 Zauhar reported that Met–Phe contacts strongly prefer a geometry where

the sulfur is in the plane of the phenyl ring, with the sulfur lone pairs pointed towards

the ring. Duan reported the same result for Cys–Phe contacts, which seemed odd

considering that this configuration has a much less favorable interaction energy than

the H-bonded geometry.

In this study, we extract data on all possible S–π contacts (including both Cys

and Met residues for sulfur, as well as Phe, Tyr, and Trp for aromatic rings) from

a large dataset of PDB protein structures. We then analyze these data in light of

theoretical calculations on three geometries of the H2S–benzene dimer: the optimal

H-bond geometry (reported in the previous chapter), an “inverted” geometry, and

an “in-plane” geometry (both reported here).
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5.2 Methods

The dataset was constructed by culling all structures from the PDB which

contained protein only and were resolved to 1.5 Å or less; this produced a set of 946

high-resolution protein structures for analysis.

A custom Perl script was written to process these files and return data about

sulfur-π contacts within each protein, as per the following steps:

1. For each file, the coordinates of all sulfur atoms and ring carbons (as well

as the ring nitrogen for tryptophan) are pulled directly from the ATOM info

and stored in hashes sorted by residue type. Cysteine sulfurs participating

in a disulfide bond (as designated on the SSBOND lines) are sorted into a

separate hash named CDI. The five-membered and six-membered rings of each

tryptophan are treated separately as TRP5 and TRP6 for the calculations.

The master hash thus contain three types of sulfurs (Met, Cys, and cystine)

and four types of rings (Phe, Tyr, and both the five and six rings of Trp).

2. For each ring, the geometric center is computed from the coordinates of its

ring atoms. The program then loops over all possible sulfur-ring combinations

and calculates the sulfur-to-ring-center distance R for each pair.

3. For each ring, the vector normal to the ring plane is computed. The program

again loops over all sulfur-ring combinations, computes the S–π vector, and

then computes the angle (θ) between the normal vector and the S–π vector

for each combination. The normal vector of the ring is used as the reference

for θ = 0◦; see Figure 5.1.

4. To prevent double-counting of tryptophan contacts, the set of TRP5 contacts
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Figure 5.1: Definition of R, θ, and ~n for the H2S–benzene Dimer

is checked against the set of TRP6 contacts; if contacts with the same sulfur

occur in both sets, the one with the longer distance is deleted.

5. For each contact that has a distance less than a certain threshold (10 Å in this

study), the source protein ID, sulfur residue ID, ring residue ID, distance, and

angle are output to a text file for further processing in a spreadsheet program.

6. Total occurrences of each residue are counted over the entire dataset and

output at the end of the operation.

(All of the actual calculations performed within this program are encapsulated

within subroutines, making it a simple matter to modify the main code to obtain

data on any other contact of interest. The overall source code is reproduced in

Appendix A.)

The S–π contact data returned from the processing of these files was then

analyzed in Microsoft Excel. All contacts were counted into an array of “bins”,

each of which was defined by a 0.5 Å increment of R and a 10◦ increment of θ. The

spatial volume defined by each of these bins is different - the size of the spherical

wedge defined by each increment of θ increases as θ increases; also, the size of the

spherical shell defined by each increment of R increases as R increases. Because of

this, the final counts of all bins were divided by the spatial volume of that bin (in

Å
3

) in order to produce an evenly-scaled dataset of relative frequencies. [Neither of
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the previously mentioned data-mining studies took this into account, but we believe

it to be the proper way to interpret this data.]

3-D histograms plotting R vs θ vs Relative Frequency were then produced

for the full dataset and various subsets thereof, such as Cys sulfurs only, Phe rings

only, or Met-Tyr contacts only. No contacts were found below R = 3.0 Å, and

beyond R = 8.0 Å the frequency of contacts simply increased steadily as a function

of increasing volume; thus we used these two points as our limits on R.

Additional PECs were computed corresponding to the inverted and in-plane

geometries of the H2S–benzene dimer as shown in Figure 5.2. MP2, CCSD, and

CCSD(T) levels of theory were used with the aug-cc-pVTZ basis set. Our previous

study showed that using the aug-cc-pVQZ basis yielded only a minimal improvement

over aug-cc-pVTZ, and we felt that this small increase in accuracy did not justify

the use of the larger basis in this case. All calculations are counterpoise-corrected

and use the same rigid monomers defined in the previous chapter.

5.3 Results and Discussion

The results of our additional theoretical calculations are shown in Figure 5.2.

The predicted equilibrium for the inverted geometry lies at Req = ∼ 3.6 Å and

Eint = −1.12 kcal mol−1. This R is very close to our previously predicted Req

for the H-bonded geometry of 3.80 kcal mol−1, which is somewhat unfortunate for

our PDB analysis. Since most protein crystal structures have a resolution much

larger than 0.2 Å (the smallest in our dataset is 0.5 Å), and since PDB structures

generally do not include hydrogen data, it is difficult to differentiate between these

two interaction geometries in our analysis. When this is the case, we will refer to

these two geometries collectively as the perpendicular configurations.
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(a) Inverted geometry (b) In-plane geometry

Figure 5.2: Structure and PES for inverted and in-plane geometry of H2S–benzene,
CCSD(T)/aug-cc-pVTZ level of theory.

The predicted equilibrium for the in-plane geometry is at Req = 5.1 Å and

Eint = −1.03 kcal mol−1. This Eint is less than half of that predicted for the H-

bond (−2.81 kcal mol−1), a result that agrees quite nicely with the results of Duan

et al.8 Thus, in the absence of other considerations, we would expect to see about

a 2:1 ratio between the optimum and in-plane geometries for contacts involving

cysteines. On the other hand, we expect those involving methionine to be evenly

distributed between the two configurations, as the Eint for the inverted and in-plane

geometries are very similar.

These expectations did not hold in light of our PDB analysis, however. The

overall histogram is shown in Figure 5.3 (see section 5.5, where one can see that

the H-bond geometry is actually slightly less favored than the in-plane geometry.

A similar trend can be seen when the results were broken down by the type of
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sulfur residue: Met (Figure 5.4) and Cys (Figure 5.5) contacts both show a the

same slight preference for the in-plane geometry. When divided by the type of ring

residue, however, the trend can only be seen for Phe (Figure 5.6) and Tyr (5.7)

residues; Trp residues (Figure 5.8) show extremely few contacts at all for the in-

plane geometry. This seems to indicate that there are indeed some environmental

effects that are changing the energetics of this S–π interaction.

Exactly what these environmental effects are, however, is not readily appar-

ent from our analysis. One possibility is that the sulfur atom is having to compete

with other functional groups for the spot over the ring center, and when the other

groups have a more favorable interaction, the sulfur is displaced to the secondary

minimum at the in-plane geometry. Possible candidates for this H–π–bonding com-

petition are –OH, –NH, and –CH groups. Studies by Tsuzuki et al. on prototype

dimer (water–benzene, ammonia–benzene, and methane–benzene) have shown that

these interactions can have Eint up to −3.17, −2.22, and −1.45 kcal mol−1, respec-

tively (all calculated with CCSD(T) at the CBS limit).3,6 The –OH–π interaction

is stronger than -SH–π, while the other two are weaker. Still, as we have said be-

fore, environmental effects could alter these interactions as well. One such effect is

polarization of the H-bonding atom (C, N, O, or S) due to ionic or strongly polar

groups nearby in the protein structure. Since sulfur has a much larger atomic po-

larizability than C, N, or O (see Table 5.1), it would be more easily polarized and

its interaction with aromatic rings would be more greatly affected.

Looking back at the histograms, one can see that there is more going on than

the interplay between the perpendicular and in-plane geometries. In particular,

there is an interesting cluster of large peaks near R = 5.0 Å and θ = 0◦. Based

on the PECs in our previous study, the S–π interaction in the H-bond geometry
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Table 5.1: Atomic polarizabilities of H-bonding elements

Element Polarizability (Å
3

)
C 1.8
N 1.1
O 0.793
S 2.9

at this distance would have an Eint of only −1.1 kcal mol−1, about the same as

the optimum Eint for both the inverted and in-plane geometries. Looking at the

separate Met and Cys histograms, one sees a much larger set of peaks in this area

for Met residues than for Cys; in fact, the peaks for Met in this region are larger

than any of those in the perpendicular or in-plane regions! All three ring-residue

histograms show similar groupings of peaks in this region.

Because of this, we believe that this grouping of contacts indicates a –CH–π

interaction involving the terminal ε–C on Met or the β–C on Cys. From Tsuzuki’s

work,6 the Req for methane–benzene is 3.8 Å, and the average length of a C–S

bond from PDB data is 1.3 Å, making the total sulfur-to-ring-center distance 5.1 Å

(assuming that the C–S bond is directly collinear with the ring center). Recent

work in our group has shown that the methane–phenol and methane–indole dimers

both show similar Eint and Req as the Tsuzuki data, with the indole interaction

being somewhat stronger (by about 0.5 kcal mol−1).58

In Table 5.2 we give the number of contacts found in each interesting region,

along with the percentage of the total contacts for that residue that this number

represents. From this we can make inferences about the relative probabilities of

the different residues to enter into the different kinds of contacts. First, we see

that while Met and Cys are equally as likely to enter into either perpendicular or

in-plane contacts, Met residues are twice as likely to form alkyl–π contacts. This
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Table 5.2: Numerical analysis of S–π contacts in PDB based on
geometry and type of residue

Cys Met Phe Tyr Trp Total
Residues 3869 3964 8676 7735 3283 7833
Contacts 5577 5405 4397 3476 3109 10982

Perpendicular contactsa 64 80 75 28 41 144
Percent 1.15 1.48 1.70 0.80 1.32 1.31

Alkyl–π contactsb 264 456 286 187 247 720
Percent 4.73 8.44 6.50 5.38 7.94 6.56

In-plane contactsc 430 407 279 176 84 837
Percent 7.71 7.53 6.34 5.06 2.70 7.62

a Perpendicular contacts include both the H-bond and inverted geometries and
are defined as {R ≤ 4.0 Å} and {A ≤ 30◦}

b Alkyl–π contacts are defined as {4.5 Å ≤ R ≤ 6.0 Å} and {A ≤ 30◦}
c In-plane contacts are defined as {4.5 Å ≤ R ≤ 6.0 Å} and {80◦ ≤ A ≤ 90◦}

make sense since the ε–C of Met has a much higher degree of freedom than the β–C

of Cys and can more easily enter into a close contact with an aromatic ring.

As for the different ring residues, we see that in all cases, Phe and Tyr are

about equally likely to enter into the different contact geometries, with Tyr having

slightly lower percentages (although this may not be statistically significant). Trp

residues are the least likely to have in-plane contacts by a large margin, but they are

the most likely to have alkyl–π contacts. The aversion to in-plane contacts is not

well understood, although the stronger interaction mentioned for methane–indole

above is probably the cause of the preference for alkyl–π contacts.

5.4 Conclusions

We have shown that in proteins, contrary to theoretical expectations, S–π

contacts show approximately equal preferences for the perpendicular and in-plane
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geometries, while also showing a strong preference for configurations that put the

Met ε–C and the Cys β–C into a alkyl–π type contact. These preferences are

exhibited by all residues except Trp, which shows an unusual aversion for in-plane

contacts.

We proposed an explanation for the discrepancies between this analysis and

our theoretical predictions for the H2S–benzene dimer, namely, that other functional

groups are competing with the sulfur for the H-bonding position. While this idea

is quite reasonable in light of our data, it should be explored further in order to

determine which other groups are most likely to displace the sulfur residues from

the H-bond position. A double-contact search could be performed, where in-plane

S–π contacts in which the ring was also in contact with a different (-φ, -CH, -

NH, or -OH) side-chain would be sought out. Studying the environment around

these contacts could then provide insight into how environmental effects alter the

energetics of the different interactions.
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5.5 Histograms of S–π Contacts

The data for all histograms in this section are scaled based on the actual

volume (in Å
3

) of the space defined by the R and θ bins for each sector. R is

measured from the ring center to the sulfur atom; θ is measured from the normal

vector of the ring. Each label n on the R axis designates a bin containing data

for {n − 0.5 < R ≤ n}; likewise, each label n on the θ axis designates a bin for

{n − 10 < θ ≤ n}.
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Figure 5.3: Overall S–π contacts.

48



Figure 5.4: All S–π contacts involving methionine.
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Figure 5.5: All S–π contacts involving cysteine.
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Figure 5.6: All S–π contacts involving phenylalanine.

51



Figure 5.7: All S–π contacts involving tyrosine.
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Figure 5.8: All S–π contacts involving tryptophan.
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APPENDIX A

SOURCE CODE FOR PDB ANALYSIS

PROGRAM

1 #!/usr/bin/perl -w

use strict;

use warnings;

use Benchmark;

#use BeginPerlBioinfo;

use Math::Trig;

my $t0 = new Benchmark;

11

#####

# Main

#####

# Threshold for determining "interesting" S-pi contacts , in

# angstroms

my $dist_thr = 10;

# Flag for differentiating cystines from cysteines

21 my $cystineflag = 1;

my $filecount = 0;

my $folder = "data";

my @files = ();

opendir (DIR , $folder) or die "Can’t open folder: $!\n";

@files = readdir(DIR);

closedir (DIR);

31 open (OFP , ">output.txt") or die "Can’t open output file:

$!\n";
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# Variables to count the total occurences of each residue

my $cyscount = 0;

my $cdicount = 0;

my $metcount = 0;

my $phecount = 0;

my $tyrcount = 0;

my $trp5count = 0;

41 my $trp6count = 0;

foreach my $input (sort @files) {

unless ($input =~ /.ent$/) { next; };

my ($protein , $ext) = split /\./, $input;

$input = $folder."/".$input unless $folder eq ’.’;

$filecount++;

print "Now processing file $filecount: $input ...\n";

51

#####

# Variables

#####

# Hash to hold all atomic data parsed from .ent file

my %biglist = (

’ALA’ => [],

’VAL’ => [],

’LEU’ => [],

61 ’ILE’ => [],

’PRO’ => [],

’TRP’ => [],

’PHE’ => [],

’MET’ => [],

’GLY’ => [],

’SER’ => [],

’THR’ => [],

’TYR’ => [],

’CYS’ => [],

71 ’CDI’ => [],

’ASN’ => [],

’GLN’ => [],

’LYS’ => [],

’ARG’ => [],

’HIS’ => [],

’ASP’ => [],

’GLU’ => [],
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);

81 # Inidividual arrays to hold coordinates of sulfurs and

# ring centers

my @cyssulfurs = ();

my @cdisulfurs = ();

my @metsulfurs = ();

my @phecenters = ();

my @tyrcenters = ();

my @trp5centers = ();

my @trp6centers = ();

91 # Hash to store S-pi distances

my %spidist = ( cys => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

cdi => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

101 },

met => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

);

# Hash to store matrices of vectors from ring centers to

# sulfurs

111 my %spivecs = ( cys => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

cdi => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

121 met => { phe => [],

tyr => [],

trp5 => [],
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trp6 => [],

},

);

# Hash to store arrays of normal vectors of pi-rings

my %pinorms = ( phe => [],

tyr => [],

131 trp5 => [],

trp6 => [],

);

# Hash to store reference vectors of pi rings

my %pirefs = ( phe => [],

tyr => [],

trp5 => [],

trp6 => [],

);

141

# Hash to store projections of S-pi vector onto pi-normal

my %spiproj = ( cys => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

cdi => { phe => [],

tyr => [],

trp5 => [],

151 trp6 => [],

},

met => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

);

161 # Hash for easy interconversion from 3-letter -code to

# data array

my %spiarrays = ( cys => \@cyssulfurs ,

cdi => \@cdisulfurs ,

met => \@metsulfurs ,

phe => \@phecenters ,

tyr => \@tyrcenters ,

trp5 => \@trp5centers ,
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trp6 => \@trp6centers ,

);

171

# Hash for conversion of 3-letter code to full name

my %spinames = ( cys => "Cysteine ",

cdi => "Cystine",

met => "Methionine",

phe => "Phenylalanine",

tyr => "Tyrosine ",

trp5 => "Tryptophan(5)",

trp6 => "Tryptophan(6)",

);

181

# Hash to store S-pi elevation angles

my %spiangs = ( cys => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

cdi => { phe => [],

tyr => [],

trp5 => [],

191 trp6 => [],

},

met => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

);

# Arrays to store S-pi orientational angles

201 my %spiphis = ( cys => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

cdi => { phe => [],

tyr => [],

trp5 => [],

trp6 => [],

},

211 met => { phe => [],

tyr => [],

trp5 => [],
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trp6 => [],

},

);

# Build hash of all atom data keyed by residue type

get_res_list($input , %biglist);

221 # Extract sulfur data from cysteines and methionines in

# biglist

foreach my $cysref (@{$biglist{’CYS’}}) {

if (defined(@$cysref [5]) && $$cysref [5][0] =~ ’SG’) {

push @cyssulfurs , @$cysref [5];

}

else { push @cyssulfurs , ’dummy’ }

}

$cyscount += scalar(@cyssulfurs);

231 foreach my $cdiref (@{$biglist{’CDI’}}) {

if (defined(@$cdiref [5]) && $$cdiref [5][0] =~ ’SG’) {

push @cdisulfurs , @$cdiref [5];

}

else { push @cyssulfurs , ’dummy’ }

}

$cdicount += scalar(@cdisulfurs);

foreach my $metref (@{$biglist{’MET’}}) {

if (defined(@$metref [6]) && $$metref [6][0] =~ ’SD’) {

241 push @metsulfurs , @$metref [6];

}

else { push @metsulfurs , ’dummy’ }

}

$metcount += scalar(@metsulfurs);

# Calculate ring center data for PHE , TRP , and TYR5&6

foreach my $pheref (@{$biglist{’PHE’}}) {

if (defined(@$pheref [5]) && defined(@$pheref [6]) &&

defined(@$pheref [7]) && defined(@$pheref [8]) &&

251 defined(@$pheref [9]) && defined(@$pheref [10]) &&

$$pheref [5][0] =~ ’CG’ && $$pheref [6][0] =~ ’CD1’ &&

$$pheref [7][0] =~ ’CD2’ && $$pheref [8][0] =~ ’CE1’ &&

$$pheref [9][0] =~ ’CE2’ && $$pheref [10][0] =~ ’CZ’)

{

push @phecenters , [ get_center($$pheref [5],

$$pheref [6],

$$pheref [7],
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$$pheref [8],

$$pheref [9],

261 $$pheref [10]) ];

} else { push @phecenters , ’dummy’ }

}

$phecount += scalar(@phecenters);

foreach my $tyrref (@{$biglist{’TYR’}}) {

if (defined(@$tyrref [5]) && defined(@$tyrref [6]) && defined

(@$tyrref [7]) &&

defined(@$tyrref [8]) && defined(@$tyrref [9]) && defined

(@$tyrref [10]) &&

$$tyrref [5][0] =~ ’CG’ && $$tyrref [6][0] =~ ’CD1’ &&

$$tyrref [7][0] =~ ’CD2’ &&

$$tyrref [8][0] =~ ’CE1’ && $$tyrref [9][0] =~ ’CE2’ &&

$$tyrref [10][0] =~ ’CZ’ ) {

271 push @tyrcenters , [ get_center($$tyrref [5], $$tyrref

[6], $$tyrref [7], $$tyrref [8], $$tyrref [9], $$tyrref

[10]) ];

} else { push @tyrcenters , ’dummy’ }

}

$tyrcount += scalar(@tyrcenters);

foreach my $trpref (@{$biglist{’TRP’}}) {

if (defined(@$trpref [5]) && defined(@$trpref [6]) && defined

(@$trpref [7]) &&

defined(@$trpref [8]) && defined(@$trpref [9]) &&

$$trpref [5][0] =~ ’CG’ && $$trpref [6][0] =~ ’CD1’ &&

$$trpref [7][0] =~ ’CD2’ &&

$$trpref [8][0] =~ ’NE1’ && $$trpref [9][0] =~ ’CE2’

281 ) {

push @trp5centers , [ get_center($$trpref [5], $$trpref

[6], $$trpref [7], $$trpref [8], $$trpref [9]) ]

} else { push @trp5centers , ’dummy’ }

if (defined(@$trpref [7]) && defined(@$trpref [9]) && defined

(@$trpref [10]) &&

defined(@$trpref [11]) && defined(@$trpref [12]) &&

defined(@$trpref [13]) &&

$$trpref [7][0] =~ ’CD2’ && $$trpref [9][0] =~ ’CE2’ &&

$$trpref [10][0] =~ ’CE3’ &&

$$trpref [11][0] =~ ’CZ2’ && $$trpref [12][0] =~ ’CZ3’ &&

$$trpref [13][0] =~ ’CH2’

) {
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push @trp6centers , [ get_center($$trpref [7], $$trpref

[9], $$trpref [10], $$trpref [11], $$trpref [12],

$$trpref [13]) ]

291 } else { push @trp6centers , ’dummy’ }

}

$trp5count += scalar(@trp5centers);

$trp6count += scalar(@trp6centers);

# Calculate distance matrices for each S-pi pair

foreach my $sulfur (sort keys %spidist) {

foreach my $ring (sort keys %{$spidist {$sulfur }}) {

@{$spidist{$sulfur }{$ring}} = calc_dist_mat($spiarrays{

$sulfur}, $spiarrays{$ring});

# print_mat(" $spinames{$sulfur}-$spinames{$ring}

distances", $sulfur , substr($ring , 0, 3), @{$spidist {

$sulfur }{$ring}});

301 }

}

# Prepare to calculate elevation angles for each pair

# Calculate array of normal vectors of pi rings

foreach my $ring (keys %{$spivecs {cys}}) {

my $ring2 = uc(substr($ring , 0, 3));

my $piarray = $spiarrays{$ring};

for my $i (0..$# $piarray ) {

if ($$piarray[$i] eq ’dummy’) {

311 $pinorms{$ring}[$i] = ’dummy’;

next;

}

if ($ring eq "phe" || $ring eq "tyr") {

$pinorms{$ring}[$i] = [ normal_3points( $biglist {$ring2}[

$i][6], $biglist{$ring2}[$i][8], $biglist{$ring2}[$i

][10] ) ];

}

elsif ($ring eq "trp5") {

$pinorms{$ring}[$i] = [ normal_3points( $biglist {$ring2}[

$i][5], $biglist{$ring2}[$i][7], $biglist{$ring2}[$i

][9] ) ];

}

elsif ($ring eq "trp6") {

321 $pinorms{$ring}[$i] = [ normal_3points( $biglist {$ring2}[

$i][9], $biglist{$ring2}[$i][10], $biglist{$ring2}[$i

][13] ) ];

}

}
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}

foreach my $sulfur (keys %spivecs) {

foreach my $ring (keys %{ $spivecs{$sulfur }}) {

my $ring2 = uc(substr($ring , 0, 3));

my $sarray = $spiarrays{$sulfur};

my $piarray = $spiarrays{$ring};

# Calculate matrix of vectors from center of rings to

sulfurs

331 for my $i (0..$# $sarray) {

for my $j (0..$# $piarray) {

if ($$piarray[$j] eq ’dummy’ || $$sarray [$i] eq ’

dummy’) {

$spivecs {$sulfur }{ $ring}[$i][$j] = ’dummy’;

next;

}

my $x = $$sarray[$i][1] - $$piarray[$j][1];

my $y = $$sarray[$i][2] - $$piarray[$j][2];

my $z = $$sarray[$i][3] - $$piarray[$j][3];

$spivecs{$sulfur }{$ring}[$i][$j] = [$x, $y, $z];

341 }

}

}

}

# Calculate elevation angles for each pair

foreach my $sulfur (sort keys %spiangs) {

foreach my $ring (sort keys %{$spiangs {$sulfur }}) {

@{$spiangs{$sulfur }{$ring}} = calc_angle_mat($spivecs {

$sulfur }{$ring}, $pinorms{$ring});

# print_mat(" $spinames{$sulfur}-$spinames{$ring}

elevation angles", $sulfur , substr($ring , 0, 3), @{

$spiangs {$sulfur }{ $ring}});

351 }

}

# Prepare to calculate orientational angles for each pair

foreach my $sulfur (keys %spivecs) {

foreach my $ring (keys %{ $spivecs{$sulfur }}) {

my $ring2 = uc(substr($ring , 0, 3));

my $sarray = $spiarrays{$sulfur};

my $piarray = $spiarrays{$ring};

for my $i (0..$# $sarray) {

361 for my $j (0..$# $piarray) {

if ($$sarray[$i] eq ’dummy’ || $$piarray[$j] eq ’

dummy’) {
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$spiproj {$sulfur }{ $ring}[$i][$j] = ’dummy’;

next;

}

my ($nx , $ny , $nz) = @{$pinorms{$ring}[$j]};

my ($sx , $sy , $sz) = @{$spivecs{$sulfur }{$ring}[$i][

$j]};

my $theta = deg2rad($spiangs {$sulfur }{$ring}[$i][$j])

;

# Calculate projection of S-pi vector into pi-plane

by difference from projection onto pi-normal

371 my $slen = sqrt($sx*$sx + $sy *$sy + $sz*$sz);

my $plen = $slen * cos($theta);

my ($px , $py , $pz) = ($nx*$plen , $ny*$plen , $nz*$plen

);

$spiproj{$sulfur }{$ring}[$i][$j] = [$sx -$px , $sy -$py ,

$sz -$pz];

}

}

# Calculate vector defining ’zero’ angle for ring ,

referenced to backbone carbon

for my $i (0..$# $piarray ) {

if ($$piarray[$i] eq ’dummy’) {

$pirefs{$ring}[$i] = ’dummy’;

381 next;

}

my ($cx , $cy , $cz);

if ($ring ne ’trp6’) {

($cx , $cy, $cz) = ($biglist{$ring2}[$i][5][1],

$biglist{$ring2}[$i][5][2], $biglist {$ring2}[$i

][5][3]);

}

else {

($cx , $cy, $cz) = ($biglist{$ring2}[$i][7][1],

$biglist{$ring2}[$i][7][2], $biglist {$ring2}[$i

][7][3]);

}

$pirefs{$ring}[$i] = [ $cx -$$piarray[$i][1], $cy -

$$piarray[$i][2], $cz -$$piarray[$i][3] ];

391 }

}

}

# Calculate orientational angles for each pair

foreach my $sulfur (sort keys %spiphis) {
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foreach my $ring (sort keys %{$spiphis {$sulfur }}) {

@{$spiphis{$sulfur }{$ring}} = calc_angle_mat($spiproj {

$sulfur }{$ring}, $pirefs{$ring});

# print_mat(" $spinames{$sulfur}-$spinames{$ring}

orientational angles", $sulfur , substr($ring , 0, 3), @{

$spiphis {$sulfur }{ $ring}});

}

401 }

# Extract data on "interesting" contacts as determined by

$dist_thr

foreach my $sulfur (sort keys %spidist) {

foreach my $ring (sort keys %{$spidist {$sulfur }}) {

my $ofp2 = $sulfur.$ring.".txt";

open (OFP2 , ">>$ofp2") or die "Can’t open output file

$ofp2: $!\n";

for my $i (0..$#{ $spidist{$sulfur }{$ring}}) {

for my $j (0..$#{ $spidist {$sulfur}{ $ring}[$i]}) {

if ($spidist{$sulfur }{$ring}[$i][$j] ne ’dummy’ &&

$spidist{$sulfur }{$ring}[$i][$j] < $dist_thr) {

411 printf OFP "%s %-5s %-5s %5.4f %7.3f %7.3f\n",

$protein , $sulfur.$i, $ring.$j, $spidist{$sulfur }{

$ring}[$i][$j],

$spiangs {$sulfur }{ $ring}[$i][$j], $spiphis {$sulfur }{

$ring}[$i][$j];

printf OFP2 "%s %-5s %-5s %5.4f %7.3f %7.3f\n",

$protein , $sulfur.$i, $ring.$j, $spidist{$sulfur }{

$ring}[$i][$j],

$spiangs {$sulfur }{ $ring}[$i][$j], $spiphis {$sulfur }{

$ring}[$i][$j];

}

}

}

close (OFP2);

}

421 }

# End foreach $input (@files)

}

open (OFP2 , ">count.txt") or die "Can’t open output file

count.txt: $!\n";
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print OFP2 "Cys $cyscount\nCdi $cdicount\nMet $metcount\

nPhe $phecount\nTyr $tyrcount\nTrp5 $trp5count\nTrp6

$trp6count\n";

close (OFP2);

close (OFP);

431

my $t1 = new Benchmark;

my $td = timediff($t1 , $t0);

print "$filecount files processed in ", timestr($td), "\n";

exit;

441 #####

# Subroutines

#####

# get_res_list($filename , %hash)

#

# given a PDB filename , extracts atomic names and coordinates

# and returns them in a hash keyed on residue type

#

# hash is formatted: %hash{residue type}[res number][atom

number ][0-3]

451 # 0: atom name

# 1-3: xyz coordinates

sub get_res_list {

my ($input , %reshash) = @_;

my %cystines = ();

my $lastresnum = 0;

my $lastresname = ’’;

my $lastchain = ’’;

461 my @res = ();

open (IFP , "$input") or die "Can’t open $input for

reading: $!\n";

# Extract list of cystines from SSBOND lines if requested

if ($cystineflag) {

my $found = 0;
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while (<IFP >) {

# If we reach EOF , there is no SSBOND section; reset

file pointer

if (eof(IFP)) {

471 seek (IFP , 0,0);

last;

}

# Skip lines until we find the SSBOND section

/^SSBOND/ or next unless $found;

$found = 1;

# Make sure we leave the loop after we finish the

SSBOND section

last unless /^ SSBOND/;

my ($chain1 , $res1 , $chain2 , $res2) = ($_ =~

/^.{15}(.{1})(.{5}) .{8}(.{1})(.{5}) ../);

481

if (!defined($cystines{$chain1 })) {

$cystines{$chain1} = ();

}

push @{$cystines{$chain1}}, $res1;

push @{$cystines{$chain2}}, $res2;

}

# Sort each element of %cystines for quicker searching

later

foreach my $chain (keys %cystines) {

491 @{$cystines{$chain}} = sort { $a <=> $b } @{$cystines{

$chain}};

}

}

while (<IFP >) {

# Skip everything that doesn’t define atoms

/^ATOM/ or next;

# Extract relevant info from each ATOM line

my ($name , $resname , $thischain , $thisresnum , $x, $y, $z) =

($_ =~ /^.{13}(.{3}).{1}(.{3}).{1}(.{1})(.{4})

.{4}(.{8})(.{8}) (.{8}) ../);

501

# See if we’ve begun a new residue; if so, push current

@res to %reslist and reset @res

if ($thisresnum != $lastresnum) {
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if ($cystineflag) {

# Check residue against cystine list; change $lastresname

as appropriate

# Elements of %cystines have been sorted; need only

compare to first value , then pop that value when

matched.

if (defined($cystines{$lastchain}[0]) && $lastresnum ==

$cystines{$lastchain}[0]) {

$lastresname = ’CDI’;

shift @{$cystines{$lastchain}};

511 }

}

push @{$reshash {$lastresname}}, [@res];

@res = ();

}

# Add atom to current residue

push @res , [$name , $x, $y, $z];

521 $lastchain = $thischain;

$lastresnum = $thisresnum;

$lastresname = $resname ;

}

# Dont forget the last residue!

if ($cystineflag) {

if (defined($cystines{$lastchain}[0]) && $lastresnum ==

$cystines{$lastchain}[0]) {

$lastresname = ’CDI’;

shift @{$cystines{$lastchain}};

}

531 }

push @{$reshash {$lastresname}}, [@res];

close (IFP);

return;

}

# get_center($atomref *)

#

541 # given a list of atoms , returns the geometric center

#

# atom is an array like that returned in get_res_list ,

# with elements 0-3 defined as:
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# 0: atom name

# 1-3: xyz coordinates

sub get_center {

my @points = @_;

551

my $sumx = 0;

my $sumy = 0;

my $sumz = 0;

my @center = ();

for my $i (0..$# points) {

$sumx += $points[$i][1];

$sumy += $points[$i][2];

$sumz += $points[$i][3];

561 }

$center [0] = "X".scalar(@points);

$center [1] = $sumx / scalar(@points);

$center [2] = $sumy / scalar(@points);

$center [3] = $sumz / scalar(@points);

return @center;

}

571 # calc_dist_mat($atomarrayref , $atomarrayref)

#

# given two atom arrays (or matrices ), return a matrix of the

# distances between each pair

sub calc_dist_mat {

my ($aref , $bref) = @_;

my ($i, $j);

my @distances = ();

581

for my $i (0..$# $aref) {

if ($$aref[$i] eq ’dummy’) {

for my $j (0..$# $bref) {

$distances[$i][$j] = ’dummy’;

}

next;

}
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my ($ax , $ay , $az) = ($$aref[$i][1], $$aref[$i][2], $$aref[

$i][3]);

for my $j (0..$# $bref) {

591 if ($$bref[$j] eq ’dummy’) {

$distances[$i][$j] = ’dummy’;

next;

}

my ($bx , $by , $bz) = ($$bref[$j][1], $$bref[$j][2],

$$bref[$j][3]);

my $delx = $ax - $bx;

my $dely = $ay - $by;

my $delz = $az - $bz;

my $dist = sqrt($delx*$delx + $dely*$dely + $delz*$delz

);

$distances[$i][$j] = $dist;

601 }

}

return @distances;

}

# calc_angle_mat($vectorarrayref , $vectorarrayref)

#

# given two vector arrays (not atoms; element 0 != atom name)

,

# returns a matrix of the angles between each pair

611

sub calc_angle_mat {

my ($aref , $bref) = @_;

my ($i, $j);

my @angles = ();

for $i (0..$# $bref) {

if ($$bref[$i] eq ’dummy’) {

for my $j (0..$# $aref) {

621 $angles[$j][$i] = ’dummy’;

}

next;

}

my ($bx , $by , $bz) = ($$bref[$i][0], $$bref[$i][1], $$bref[

$i][2]);

for $j (0..$# $aref) {

if ($$aref[$j] eq ’dummy’ || ( ref($$aref[$j]) eq ’

ARRAY’ && $$aref[$j][$i] eq ’dummy’)) {
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$angles[$j][$i] = ’dummy’;

next;

}

631 my ($ax , $ay , $az) = ($$aref[$j][0], $$aref[$j][1],

$$aref[$j][2]);

if (ref($$aref[$j]) eq ’ARRAY’) {

$ax = $$aref[$j][$i][0];

$ay = $$aref[$j][$i][1];

$az = $$aref[$j][$i][2];

}

my $dotprod = $ax*$bx + $ay*$by + $az*$bz;

my $alen = sqrt($ax*$ax + $ay*$ay + $az*$az);

my $blen = sqrt($bx*$bx + $by*$by + $bz*$bz);

my $theta = acos($dotprod /($alen*$blen));

641 $angles[$j][$i] = rad2deg($theta);

}

}

return @angles;

}

# print_mat($title , $xlabel , $ylabel , @matrix);

#

# given a matrix (array of arrays), title , and x and y labels

,

651 # prints out the labeled matrix to the global output file

sub print_mat {

my ($title , $x, $y, @mat) = @_;

my ($i, $j);

print OFP "\n$title\n";

for $i (0..$# mat) {

print OFP "\t\t$x$i" unless $mat[$i][0] eq ’dummy’;

661 }

print OFP "\n";

for $j (0..$#{ $mat[0]}) {

next if $mat[0][$j] eq ’dummy’;

print OFP "$y$j\t";

for $i (0..$#mat) {

printf OFP "%12.6f\t", $mat[$i][$j] unless $mat[$i][$j]

eq ’dummy’;

}
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print OFP "\n";

671 }

}

# normal_3points($atomref , $atomref , $atomref )

#

# given three atoms , returns the normal vector of the plane

# defined by those atoms

sub normal_3points {

681

my ($a, $b, $c) = @_;

my @ab = ( ($$b[1]-$$a [1]), ($$b[2]-$$a[2]), ($$b[3]-$$a

[3]) );

my @ac = ( ($$c[1]-$$a [1]), ($$c[2]-$$a[2]), ($$c[3]-$$a

[3]) );

my @normal = ( ($ab[1]*$ac[2] - $ac[1]*$ab[2]), -($ab[0]*

$ac[2] - $ac[0]*$ab[2]), ($ab [0]*$ac[1] - $ac[0]*$ab

[1]) );

my $length = sqrt($normal [0]*$normal [0] + $normal [1]*

$normal [1] + $normal [2]*$normal [2]);

$normal [0] /= $length;

$normal [1] /= $length;

691 $normal [2] /= $length;

return @normal;

}

71



BIBLIOGRAPHY

[1] Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Am. Chem. Soc., 1994, 116, 3500.

[2] Jaffe, R. L.; Smith, G. D. J. Chem. Phys., 1996, 105, 2780.

[3] Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K. Chem.

Phys. Lett., 2000, 319, 547.

[4] Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J. Am. Chem. Soc., 2002, 124,
10887.

[5] Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am. Chem.

Soc., 2002, 124, 104.

[6] Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am. Chem.

Soc., 2000, 122, 3746.

[7] Zauhar, R. J.; Colbert, C. L.; Morgan, R. S.; Welsh, W. J. Biopolymers, 2000,
53, 233.

[8] Duan, G. L.; Smith Jr., V. H.; Weaver, D. F. Mol. Phys., 2001, 99, 1689.

[9] Tauer, T. P.; Derrick, M. E.; Sherrill, C. D. J. Phys. Chem. A, 2005, 109, 191.

[10] Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Ad-

vanced Electronic Structure Theory. Dover: New York, 1996.

[11] Jensen, F. Introduction to Computational Chemistry. Wiley & Sons: West
Sussex, England, 2003.

[12] Rybak, S.; Szalewicz, K.; Jeziorski, B. J. Chem. Phys., 1989, 91, 4779.

[13] Williams, H. L.; Szalewicz, K.; Jeziorski, B.; Moszynski, R.; Rybak, S. J.

Chem. Phys., 1993, 98, 1279.

[14] Bukowski, R.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys., 1996, 104, 3306.

[15] Mas, E. M.; Szalewicz, K. J. Chem. Phys., 1996, 104, 7606.

[16] Willimas, H. L.; Korona, T.; Bukowski, R.; Jeziorski, B.; Szalewicz, K. Chem.

Phys. Lett., 1996, 262, 431.

72



[17] Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives. VCH: New
York, 1995.

[18] Burley, S. K.; Petsko, G. A. Science, 1985, 229, 23.

[19] Hunter, C. A.; Singh, J.; Thornton, J. M. J. Mol. Biol., 1991, 218, 837.

[20] Brana, M. F.; Cacho, M.; Gradillas, A.; de Pascual-Teresa, B.; Ramos, A.
Curr. Pharm. Design, 2001, 7, 1745.

[21] van de Craats, A. M.; Warman, J. M.; Mullen, K.; Geerts, Y.; Brand, J. D.
Adv Mater, 1998, 10, 36.

[22] Engkvist, O.; Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Chem. Phys., 1999,
110, 5758.

[23] Ye, X. Y.; Li, Z. H.; Wang, W. N.; Fan, K. N.; Xu, W.; Hua, Z. Y. Chem.

Phys. Lett., 2004, 397, 56.

[24] Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A. Chem. Phys. Lett., 2004, 394,
334.

[25] de Meijere, A.; Huisken, F. J. Chem. Phys., 1990, 92, 5826.

[26] Boys, S. F.; Bernardi, F. Mol. Phys., 1970, 19, 553.

[27] Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys., 1970, 53,
4544.

[28] Gauss, J.; Stanton, J. F. J. Phys. Chem. A, 2000, 104, 2865.

[29] Hopkins, B. W.; Tschumper, G. S. Chem. Phys. Lett., 2005, 407, 362.

[30] Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int. Ed., 2003,
42, 1210.

[31] Morgan, R. S.; Tatsch, C. E.; Gushard, R. H.; Mcadon, J. M.; Warme, P. K.
Int. J. Pept. Prot. Res, 1978, 11, 209.

[32] Morgan, R. S.; Mcadon, J. M. Int. J. Pept. Prot. Res, 1980, 15, 177.

[33] Reid, K. S. C.; Lindley, P. F.; Thornton, J. M. FEBS Lett., 1985, 190, 209.

[34] Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.;
Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. J. Mol. Biol., 1977,
112, 535.

[35] Allen, F. H. Acta Crystallogr. B, 2002, 58, 380.

73



[36] Viguera, A. R.; Serrano, L. Biochemistry, 1995, 34, 8771.

[37] Munoz, V.; Serrano, L. J. Mol. Biol., 1995, 245, 275.

[38] Cheney, B. V.; Schulz, M. W.; Cheney, J. Biochim. Biophys. Acta, 1989, 996,
116.

[39] Yamaotsu, N.; Moriguchi, I.; Kollman, P. A.; Hirono, S. Biochim. Biophys.

Acta, 1993, 1163, 81.

[40] Spencer, D. S.; Stites, W. E. J. Mol. Biol., 1996, 257, 497.

[41] Pranata, J. Bioorg. Chem., 1997, 25, 213.

[42] Prikhod’ko, I. V.; Vinogradova, I. V. Russ. J. Appl. Chem., 2002, 75, 1774.

[43] Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys.

Lett., 1989, 157, 479.

[44] Grimme, S. J. Comp. Chem., 2004, 25, 1463.

[45] Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys., 1992, 96,
6796.

[46] Arunan, E.; Emilsson, T.; Gutowsky, H. S.; Fraser, G. T.; de Oliveira, G.;
Dykstra, C. E. J. Chem. Phys., 2002, 117, 9766.

[47] Basis sets were obtained from the Extensible Computational Chemistry Envi-
ronment Basis Set Database, Version 12/03/03, as developed and distributed by
the Molecular Science Computing Facility, Environmental and Molecular Sci-
ences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box
999, Richland, Washington 99352, USA, and funded by the U.S. Department of
Energy. The Pacific Northwest Laboratory is a multi-program laboratory oper-
ated by Battelle Memorial Institute for the U.S. Department of Energy under
contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for
further information.

[48] Edwards, T. H.; Moncur, N. K.; Snyder, L. E. J. Chem. Phys., 1967, 46, 2139.

[49] MOLPRO, a package of ab initio programs designed by H.-J.Werner and P. J.
Knowles, version 2002.1, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani,
D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Het-
zer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas,
F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer,
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