Exact Ray-Traced Animation Frames
Generated by Reprojection

by

Stephen J. Adelson and Larry F. Hodges

GIT-GVU-93-30
July 1993

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA 30332-0280

Exact Ray-Traced Animation Frames Generated by Reprojection

Stephen J. Adelson and Larry F. Hodges
Graphics, Visualization, and Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

The majority of computer graphics
images are generated as part of a
sequence of animation frames. The
usual approach for producing these
images is to render each frame as if it
were a single, isolated image. A
technique is described which exploits
spatial-temporal coherence between
frames to speed up the generation of a
ray-traced animation sequence. The
concept is that the information gained
when ray-tracing a particular frame in a
sequence may be used to speed up the
generation of adjacent frames,
reprojecting samples from one frame to
the next. This approach promises
significant savings when ray-tracing
animations which have moving and
rotating viewpoints, objects and/or light
sources. The algorithm is tested on an
animation with many reflective surfaces,
yet it still attains up to 96% savings over
full ray-tracing in terms of the number of
rays cast.

Key Words: Display algorithms, Ray-
traced animation, Spatial Coherence,
Temporal Cecherence.

Introduction
Ray-tracing is an attractive method of
generating images because of its simplicity and
its ability to produce many realistic optical
effects such as refraction, reflection, and
shadowing. Ray-tracing's major drawback is its
large computational cost, due mainly to
calculating ray-object intersections [Wh80].
The computational time for complex images can
run from several minutes to several hours on
current workstations, depending on the machine
and efficiency of algorithm implementation.
General speedup techniques for ray-tracing
usually concentrate on improving ray-object
intersection algorithms by using bounding -
volumes or some type of hierarchical structuring
of the object space. For ray-tracing of
animation sequences, a further speedup
approach is to take advantage of spatio-temporal
coherence from one frame to the next. The idea
is that each frame is usually very similar to the
frames that immediately precede and succeed it.
Therefere, the information gained when ray-
tracing a particular frame in a sequence may be
used to speed up the ray-tracing of these
neighboring frames. In this paper an algorithm
is presented which exploits spatic-temporal
coherence between frames to significantly

decrease the rendering time of ray-traced
animations.

This new method produces inferred ray-traced
images of any scene which can be ray-traced
using a point-sampled method. The images
created by the algorithm are not approximated
frames created from weighted averages of other
frames (e.g. [FL90]), nor are they frames
paiched together from near-frame pixels values
(e.g. [CCOQ]). The algorithm guaraniees that a
color seen in a subpixe! would be returned by a
ray passing somewhere through that subpixel,
but not necessarily though the center.
Additionally, the algorithm will never be slower
than a traditional point-sampled ray-tracer, and
usually much faster. In some test cases, the
technique described here has generated
animation frames with as few as 3% of the
primary rays cast as compared with a standard
renderer.

This algorithm will efficiently create frames of
any view which can be ray-traced. While the
savings of the technique will increase with the
complexity of the rendered objects and a
preponderance of diffuse objects, a large degree
of savings can still be achieved with reflective
and refractive objects. However, the animation
requires that the ray-tracing method is point-
sample oriented. "Pure" ray-tracing involves
foilowing lines through the scene, and these
lines are considered infinitesimally thin. Since
samples are reproiected based upon their three-
dimensional intersection, these point samples
must be available. Methods such as beam
tracing {HH84] or cone tracing [Amg&4] are
therefore forbidden in the first levei of ray-

tracing. Anti-aliasing can still be accomplished
by a point-source oriented method such as
adaptive super-sampling or distributed ray-
tracing [CP84], and other methods of ray-tracing
may be used for the higher-order rays involved
with reflection and refraction.

Previous Work

Ray-Tracing and Animation

Many attempts have been made w speed the
ray-tracing of individual frames (images), but
most fall into only two categories. In the first,
the algorithm seeks to decrease rendering time
by reducing the number of objects for a given
intersection test. Examples of this category
include Rubin's nested bounding volumes for
testing against increasing levels of detail
[RW80], and space subdivision methods of both
Glassner's Octrees [G184] and Fujimoto's ARTS
system [Fu86]. In the second category, time is
saved by providing more efficient intersection
tests for each object. Often, this involves more
efficient bounding volumes, such as the
bounding volume work by Bouville [Bo85] and
Kay's work with intersections with convex hulls
[KK86].

Several algorithms also attempt to use frame-to-
frame coherence to speed up animation. Most
of these have used object space coherence for
their speed-up method. Hubschman's object
visibility tests process static convex objects
based on when they will become visible [HZ82].
Glassner created 4-D bounding volumes
extending through both time and space to reduce
both bounding volume creation and duplicated
intersection tests [G188]. Chapman designed a
method which finds the intersection of

"continuous intersections" between rays and
polygons through time, so that a pixel need only
be retraced when the current continuous
intersection ends [CC91].

Sequin stored the ray tree at each pixel so that
image attributes could be changed in the image
without having to cast any additional rays
[SS89]. The method does not work when
objects move, since the algorithm cannot
determine when visible surfaces move. This
method was extended for moving objects by
Murakami [MH90], by subdividing space into
voxels and storing a list of voxels for every ray
in each ray tree. Moving objects are noted in
the voxels, and all rays which pass through the
changed voxels are retraced. However, memory
requirements for storing the lists are very large
and the computational load is heavy because of
the many tree traversals. Further, ray trees are
completely lost if only the first ray is moved.

Jevans stored in each voxel a tag to the original
generating pixel which spawned the ray passing
through the voxel [Je92]. Changed voxels
caused the appropriate pixels to be re-traced.
Jevans' approach is limited in that it only works
for static cameras and a change in a ray of any
level causes the entire pixel to be retraced.
Also, his voxel tags represent large blocks of
pixels rather than individual pixels because of
the memory constraints.

A method was developed by the authors for
using spatio-temporal coherence in animations
where the only movement allowed is
translations and rotations of the camera [AH93].
The technique had many limitations: the

animations created were limited to "fly-overs”
of the environment, complex clean-up
techniques were required, and in some situations
the algorithm would work very inefficiently,
such as in the case of an object which moves
rapidly across the screen. The work embodied
by this paper is both an extension of that work
and an alleviation of the previous problems.

Image Space Coherence and Stereoscopic
Ray-Tracing

Badt in 1988 proposed a method of generating
frames using image space coherence by reusing
the pixels from one frame of a diffuse-object
animation to determine many of the pixels in the
next frame [Ba88]. His method led to gaps in
the new frame and unoccluded pixels which
should have been occluded. These problems
were repaired to a large degree by clean-up
routines, but not completely nor consistently.
Ezell, realizing that a stereoscopic pair is the
equivalent to two animation frames in which the
objects remain motionless and the viewpoint
moves some small distance, implemented Badt's
method for the generation of stereoscopic ray-
traced images [EH90]. However, this
implementation suffered from the same
limitations and image problems as Badt had in
his animation frames.

The causes of the image problems in Badt's
method have previously solved for stereo pairs
TAH92a]. Using the geometry of stereoscopic
viewing, the image problems were eliminated,
as well as the tests needed by Badt and Ezell
when attempting to fix their images. Further, a
method was developed to allow full ray-tracing
of stereoscopic images. It was demonstrated

that even though the higher levels of ray-tracing
must be carried out individually for each frame
(as they are eye-point dependent), the majority
of the savings will remain [AH92b]. The
algorithm presented in this paper is the result of
taking the technique back to its original
application, the generation of animation frames.

Reprojection and Volume Visualization

The algorithm in its developed form has some
superficial resemblance to the certain volume
visualization techniques. Specifically, this
algorithm looks somewhat like the dividing
cubes algorithm [CD88] and Gudmundsson's
incremental projection method [GR90].

The dividing cubes algorithm uses voxelized
data to create a set of surface points and normals
which may then be projected to the viewing
position. This is similar to the method used on
ray-traced samples in the technique described in
this paper. However, there are significant
differences between the two:

Dividing cubes keeps no color
information; instead a depth shading or a very
simple color model is used. This is in keeping
with the visualization application; realism is
sacrificed for speed.

Dividing cubes renders one static
surface. Multiple surfaces can be composited
using a depth buffer, but the hundreds or
thousands of surfaces in some animations is
unreasonable for the technique.

There are no shadows, reflection, or true
refraction (although there is translucency).

Finally, -the voxelization of the data
assumes that the viewing position is outside of

the entire set of data; this is not a reasonable
assumption for most animations.

Incremental projection is a method for
increasing the speed of ray-cast volume
visualization animations. Again, the viewpoint
is assumed to be outside of the data set, and the
set moves only by rotating along the y_axis. By
transforming the viewing positions about the
axis, the technique attempts to identify newly
hidden positions and cast rays in the image
holes which appear due to changing occlusion.

The method works sufficiently well in its
limited context, but it can easily generate
incorrect frames and falters when more than one
surface is rendered. As the goal of this paper is
to develop exact frames of any image and for
any movement, the incremental projections
method is insufficient.

A Special Case of Animation:
Stereoscopic Ray-Tracing
In stereoscopic rendering, there must be two
centers of projection so that a different
perspective view is produced for each eye.
Figure 1 illustrates that the two viewing
positions are separated parallel to the X axis by
a distance e and that they are both a distance d
from the projection plane [H092]. Stereoscopic
ray-tracing is really a special case of animation,
with the small exception that the viewing
window remains fixed in three-space while in
animation it is set at a certain distance and
orientation to the viewpoint. Therefore certain
issues in stereo are first examined before
extending them to the full animation case. The

fdllowing is a summary of work which can be
found in [AH92b].

A+y axis
P = (xp,yp.zp)

f

+2 axis

~_

+X axis

ight Center

Left Center of Projection
of Projection

N

Figure 1. The Stereoscopic Viewing
Geometry

Plene

/\ V.

Given the particulars of the stereoscopic
viewing geometry, a ray intersection at (xp, ¥ps
zp) projecting to position (X, Y) in the left-eye
view will appear on the same scan-line or
reproject to the position (X + e -e *d/zp, Y)
in the right eye view, requiring only one
addition and one multiplication (The term e * d
is a precomputed constant). Reprojected
(sub)pixels have the same diffuse color,
shadowing, three-dimensional intersection,
normal, and texture as the (sub)pixel from
which the sample originated. While reflected
components, refracted components, and
highlights will differ, first level ray-tracing
savings amount to 50-95% in most images.

When samples reproject in the stereoscopic
geometry, one of four things can happen in the
second view. First, a sampling position may
have exactly one sample value reproject into it.
These are called good pixels and their color and
position values may be used directly. Positions
which receive no reprojections are called missed

Dpixels and must be fully ray-traced. Overlapped
pixels are those in which two or more previous
sample values reproject to the same sampling
position (figure 2). Itis important that we chose
which of several projections is the correct one.

AN AN LN LN W

PIXEL2 (x2,y,0

LCoP RCoP
Figure 2. The Overlapped Pixel Problem.
Both PIXEL2 and PIXELS3 in the left view
will reproject to PIXEL1 in the right view.
Which is the correct projection?

Last, samples which were consecutive on the
original scan-line may reproject with a gap
between them, allowing other samples to be
viewed through the gap even though they should -
be obscured, as in figure 3. These last two
problems are solved in the stereoscopic
geometry by taking advantage of processing
order and the relative positions of the
viewpoints.

Animation has two-dimensional equivalents of
the overlapped and bad pixel problem, must
they are made more complex by the extra
dimensional of sample movement and no a
priori knowledge of consecutive viewpoints can
be assumed.

+X axis

LCoP RCoP
Figure 3. The Missed Pixel Problem. A gap
opens in the right-eye view through which
Object A can been seen. If the "brick" object
exists, Object A should instead be obscured.

A General Animation Technique

As in stereoscopic ray-tracing, it is possible to
make reprojection equations for a viewpoint
movement in three-space based on the original
projection location in the sampling grid.
Unfortunately, these movements are far more
computationally intensive and they do not take
into account rotations, which must be provided
separately. Instead, it is more efficient to
preserve the three-dimensional intersections
between rays and objects and project them to the
new viewing position.

Technique Overview

The algorithm requires two frames to operate:
the base frame which has been previously
rendered (by full ray-tracing or by previous
application of the algorithm itself), and the
inferred frame which will be the new frame
generated from reprojected samples of the base
frame. It is best that the base frame and inferred
frames be sequential; there are fewer differences
between succeeding frames. The aigorithm will

work if the two are not adjacent, but the savings
will diminish as the images in the frames
diverge.

The initial base frame of the animation must be
completely ray-traced. For each subpixel
sampled in the base frame, the three-
dimensional intersection point, normal vector,
diffuse color, and id-tags of the intersected
object and the shadowing object(s) are saved.
The sampling may be adaptive, if desired.

Succeeding inferred frames will be created in
four steps. The first step, reprojection, takes the
samples from the base frame and projects them
to the new view point, accounting for object
movement or transformation as well as camera
movement and rotation. The second step is
verification, in which reprojected samples are
tested to see if they are now obscured due to a
moving object or point of view. Third, the
positions are enhanced by reflection, refraction,
and specular highlights, phenomena which
generally cannot be guaranteed to have -
remained unchanged since the previous frame.
Finally, the samples are filtered down to image
resolution.

If the sampling is adaptive, the verification and
enhancement steps should be performed only as
needed in order to save time. It is possible that
some reprojections will not be utilized in a
given inferred frame. Nonetheless, they may
considered valid samples until verification
shows otherwise, and any unused data is written
out with the verified data and reprojected in
later frames.

New frames may be created in which the camera
position has been rotated, translated, or zoomed;
objects have moved or undergone a
transformation which can be described in a
function or matrix; and/or the light sources have
In the
description to follow, camera or object

moved or changed characteristics.

"movement" should be read to mean any of the
above transformations. A single light source is
discussed, but the same algorithm applies to
multiple light sources when the appropriate
steps are taken for each source.

New Frame - Reprojection Phase

The first step in generating a new frame is to
reproject the positions from the previous frame.
A file of object movements is provided which
contains the incremental movement since the
last frame of all objects which have moved. The
object data file must be rewritten to take into
account these movements as well. These two
steps insure that previous samples will be
moved in three space to the new object location,
and that any rays which must be cast will strike
the objects in their shifted position. Any affine
transformation can thus be modeled by creating
the appropriate four by four matrix A and
"hanging" it off of the object datastructure so
that samples of the objects can be properly
transformed.

The camera in the new frame is given to be d
units from the preojection plane, which need not
be the same d as the base frame. A four by four
matrix T is created which rotates the axes to
match the orthogonal worid axes and translates
The

sampies are read in one at g time. If it is a

the new viewing position to {0, 0, 0).

~1

sample from a moving object (which can be
determined by the existence of an A matrix
associated with the sample's object), the
projection is transformed to the new object
specifications. All samples are passed through
T to derive the three-dimensional point (x¢, yt,
zt). This point is projected to the new viewing
position by the equations

X=xt*d/z,
Y=yt*d/z%

in the usual situation where the view plane is
orthogonal to the direction of view and centered
on the viewing direction vector. When this is
not the case, some other projection may be used,
but the transformation steps still hold. This
process is illustrated in figure 4.

Intersection

AN

Projected
Point #1

Viewing
l Position #2
Viewing
Position #1

Figure 4. Reprojecticn. A three-dimensional
intersection point which appeared in
Projected Point #1 from Viewing Position #1
will reproject to Projected Point #2 in a frame
whose eye point is Viewing Position #2.

Since samples may move in any direction
because of a camera or object movement, a full-
size (window sized) data structure to hold the
reprojected samples is required. Each sampling
cell will retain the world-coordinate intersection
point, normal vector, color information, and id
tags to the intersected object and the closest
shadowing object. This data will be used in
calculating specular highlights, reflection,
refraction, checking shadows if needed, as well
as being written to disk for use in creating the
next frame.

The overlapped pixel problem, where more than
one sample from the base frame projects to the
same sampling grid position in the new frame, is
an artifact of changing occlusion, both
interobject and self-occlusion. In most cases,
the value which is physically closest to the
viewpoint will be the correct value. Therefore,
in such a case the closest position will remain in
the sampling grid, and it will be later verified.

Verification Phase

After reprojecting all values, there still may be a
two-dimensional equivalent to the bad pixel
problem, where holes in the image (caused by
the samples of the visible objects covering a
larger image area in the new frame) may allow
positions which should be obscured to remain
visible. Additionally, objects may have moved,
obscuring positions which otherwise would
remain visible. To preclude this, all bounding
boxes (or other bounding structure) between the
intersection and the new view point are checked
for intersections. In most cases, only the
intersected object will be hit. If another object
is struck, however, the intersection with the

intervening object must be calculated. Even the
most efficient ray-tracer would need to check
this minimum number of objects, and in most
cases this algorithm will allow the object
intersection routine to be eliminated since the
intersection, normal, and often a portion of the
color calculation can be reused.

In Figure 5 the verification step can be seen.
The line from the intersection point to the
viewing position does not intersect the bounding
boxes of objects 1 and 2, and ignores them. It
does hit the bounding box of object 3, checks
the intersection with 3, discovers that in fact
there is no intersection, and retains the original
object information without further calculations.

Viewing
Position

Figure 5. Verification Step. In most cases,
there is no intersection with other objects.

Note that if the camera is set in a three-
dimensional position, motionless objects need to

be verified only against the moving or
transformed objects. Rotation of the camera or
a change in the field of view will not change the
occlusion of objects. Jevans claimed that many
animations spend most of their time with a static
camera [Je92]. If this is true, then the
verification phase will be much faster than the
best ray-tracer as the projected positions will
need to be verified against a subset of the data.

If the camera does move, some portion of the
image will be unique to the inferred frame: the
part which was not visible in the base frame.
These positions must be ray-traced in a normal
fashion, but they obviously will not need to be
verified.

If the light source or objects move, the first
shadow ray of reprojected samples must also be
verified. If the light source is static, positions
which are self-shadowed and unmoving will
remain self-shadowed, and need not be checked.
Likewise a shadowed static position whose
shadowing object has not moved will still be
shadowed. Unshadowed static samples need
check against only the moving objects, while a
shadowed moving position first checks against
its shadowing object and then against all other
possible objects.

When the light source moves, all positions first
check for self-shadowing or current shadowing
object (if any), and then against all other
objects.

Color Calculation
Under most circumstances at least part of the
color calculation can be retained. Certainly the

ambient term remains unchanged. The diffuse
term will be retained if the light source is static,
the object in question is static, and its
shadowing information remain unchanged. It
may also be kept if it was previously shadowed
and remains so. Note that it is possible for an
object to be found to have a different shadowing
object in the verification phase and yet retain the
same diffuse color. Likewise if a posiﬁon stops
being self-shadowed but becomes shadowed by
another object or vice versa. If there is
foreknowledge that the light sources, camera,
and the object in question are all static, the
specular term may also be retained from frame
to frame. Otherwise, the normal and
intersection are already calculated and can be
utilized to determine the specular highlight.

Enhancement Phase

During the enhancement phase, all eye-point
dependent phenomena are added. This includes
the specular term (if not retained in the color
calculation) and any reflective or refractive rays
which may be cast by the object. The number of
rays cast in the enhancement phase will be
approximately equal to those cast during a full
ray-tracing on the image.

Filtering
Once the samples are enhanced, the image can
be generated by using any desired filter.

Summary

Rays are checked during verification phase only
as needed; in the best case, the color of a sample
is used directly from the base frame without any
need for verification. In the worst, verification
will reveal that the reprojected position has been

obscured in the inferred frame, but this is no
worse than casting a ray through that position
using an efficient ray-tracer.

Overall, there is some overhead involved with
projecting the previous samples, but this is small
as compared to the total time (it accounts for
less than 2% of the total). Verification is a
subset of the necessary steps of ray-tracing, and
the algorithm will therefore usually be much
faster than ray-tracing.

The Significance of Savings

This algorithm saves time when calculating the
first level of ray-tracing, also known as ray-
casting. The exact quantity of time saved will
be the function of the number of samples which
reproject into the inferred frame and survive
verification, and the relative cost of casting rays.
The cost is dependent on the implementation of
the ray-tracer, but in general if C is the cost
function, C(primary ray) < C(shadow ray) <
C(reflection ray) < C(refraction ray). In naive
ray-tracers the four cost functions are nearly
identical, but the possibility of complete internal
reflection makes refractive rays somewhat more
costly. In an ideal ray-tracer, the costs would
also be nearly identical, though with a much
lower expense than the naive one. Most real-
world ray-tracers have a strictly increasing order
of the four costs above.

It is possible to utilize some special techniques
such as reflection mapping, refraction mapping,
or environment mapping [BN76, Gr86] so that
the cost of the higher level rays are significantly
This
algorithm, used with such methods, would

less than primary and shadow rays.

10

demonstrate higher savings than when rendering
images with true reflective or refractive rays.

Performance Tests

To test the algorithm, three short animations
were generated. The first had a length of 20
seconds (600 frames) and consisted of 755
polygons and 41 quadric surfaces with a single
light source. Of these surfaces, 578 of the
polygons and all 41 quadrics were partially
reflective; additionally, four of the quadrics
were also partially refractive. The animation
was rendered with one light source at 640 by
480 resolution and one ray per pixel. Camera
movement included rotations about all three
axes.

The second animation used a single overhead
view of the above scene with a spinning four-
sided reflective object, for a total of 759
polygons and 41 quadrics. The camera was
static throughout the entire animation, which
was 10 seconds long (300 frames). Two levels
of adaptive super-sampling were used.

The third animation used the original camera
movements and object files, but added a moving
blimp and large weight which was dropped to
the ground (789 polygons and 43 quadrics). The
total length of the animation was slightly over
32 seconds (932 frames). Two levels of
adaptive super-sampling were used.

The images displayed a large degree of
interretlection, from which no reduction in
rendering time is attained. Therefore the
savings generated is called an informal lower
bound.

There are two ways of measuring performance
of this algorithm. The first is the number of
total rays saved. This gives an indication of
how much time is saved, but it does not take
into account the overhead of the reprojection. If
instead the actual time required to generate
frames is taken as the metric, the
implementation method as well as the load on
the rendering machine at any given moment will
affect the measurements. Therefore, both
measures of savings are indicated, with the
claim that the actual savings is somewhere
between the two.

Frame0 of animations 1 and 3 (seen in figure 6)
was completely ray-traced to serve as the base
data frame. It would have been more efficient
to fully ray-trace frame 300, which would allow
frames to be inferred towards both ends of the
animation simultaneously. However, frame 0
contains nothing except the ground and sky
planes, meaning that the "meat” of the animation
must be inferred by this algorithm. For
demonstration purposes, this method best
illustrates the abilities of the method.

In the first animation, despite an average of over
196,000 secondary rays per frame, over 60% of
the total number of rays cast were retained.
Ignoring machine load effects on rendering
time, a 53% speedup in rendering time was
achieved over a standard ray-tracer .

Many algorithms which purport to speed
animation generation time use diffuse images
for testing. These measurements did not do so
in order to show the power of the technique. It
is a simple matter to count rays, however, and

were this a strictly diffuse animation, almost
80% of the ray casting would be saved by using
this method. Even if the same amount of time
for reprojection and verification overhead is
assumed, a diffuse image would save over 70%
in rendering time.

Figure 6. Frame 0 of animations 1 and 3.

Two infinite planes.

In the second animation, the average number of
primary rays actually computed per pixel was
0.05, or about 3% of the primary rays in the
entire image, and the time savings was on the
order of 65 - 70%. The static camera of the
animation meant that no position checking
needed to be done except against the moving
object. However, this also meant that all
unshadowed positions must consider the moving
object in the shadow ray verification; hence, the
difference between the percentage of rays cast
and the rendering time savings. One frame of
the second animation is shown in figure 7.

The final animation contained moving objects
and a moving camera, so that most position and
shadow rays needed to be verified. Despite this,
55 - 60% fewer rays were cast and the image

was generated 40 - 50% faster than completely
ray-tracing the image.

Figure 7. A frame of the second animation.

Other Concerns

Image Quality

No quantity of ray savings is significant if the
animation frames produced are not of quality.
The algorithm as described is equivalent to ray-
tracing an image which has been jittered by
some random value within the sampling cell.
This effect reduces aliasing by introducing noise
into the image.

In figures 8-10 are inferred frame 150 from
animation 3, the same frame fully ray-traced,
and the difference image between the two with
enhanced pixel values for easier viewing. The
same has been provided in figures 11-13 for
frame 450.

Visually, there is little difference between the
inferred frames and the fully ray-traced frames.
The difference images reveal that the disparity
occurs on edge boundaries. This exists because
the boundaries in the inferred frames have
reprojected from other frames and, while they

12

can be seen if a ray is cast somewhere through
that pixel, they do not always match up with the
rays sent through a different portion of the
pixels in the fully ray-traced view.

Figure 8. Inferred frame 150.

Figure 9. Fully ray-traced frame 150

Finally, figure 14 is presented. This is inferred
frame 599 of animation 1, inferred through 598
steps from the initial frame. No visible image
quality is lost by the algorithm no matter the
number of continuous inferred frames.

Figure 10. Difference image of figures 8 and

9. Pixel values in the range of 0-50 have been

mapped to 0-255.

Figure 11. Inferred frame 430.

Figure 12. Fully ray-traced frame 450.

13

J

Figure 13. Difference image of figures 11 and
12. Again, pixel values hzve been enhanced.

Figure 14. Inferred frame 599.

Ray-Tracing Efficiencies

Most methods for increasing the speed of
generating ray-traced images can be used to
generate the rays of inferred images on both the
missed positions and the high-level rays which
need to be generated. For example, hierarchical
buffers,
partitioning, pixel row planes [Me93], pixel

bounding boxes, shadow space
boxes (more efficient two-dimensional pixel
row planes), and octrees can all be used without
alteration in the algorithm. Any technique

which allows point sampling at the first level of

ray-tracing can be used in generating the
inferred animation frames.

Moving Light Sources
Light source movement requires that most
shadow rays be recast and that the diffuse color

be recalculated. In the algorithm as

implemented, movement of the light sources -

allows only about 10% savings over full ray-
tracing. This percentage, however, might be
larger with a more efficient shadow ray
algorithm, and will not be worse than
completely ray-tracing the image.

Motion Biur

One method of generating motion blur is to use
distributed ray-tracing, where the samples are
jittered both spatially and temporally. The
inferred frames algorithm can be used with
distributed ray-tracing and motion blur except
that the new viewing positions may vary
spatially, requiring a different projection for
each sample. A random spread of temporal
points can be expected in an inferred motion
blurred image, but it cannot be guaranteed that
the inferred temporal locations will cover all of
the time quantum represented in the frame.

A small problem with motion blur and inferred
frames is that it is possible for several samples
at different temporal locations to reproject to the
same position spatially. Since the time
coordinate is random, any of these points may
be used, and in any case the sample will be
verified at its temporal location during the

verification phase.

14

Storage Details

The RAM needed when calculating frames is
not insignificant. Each position must hold the
three-dimensional intersection and normal
vector, 3 bytes for the diffuse color, an object id
tag, and a shadow tag for each light source. The
intersection and normal can also be kept as
floats, but all math should convert them to
doubles. The id tags may be 2 byte integers if

the number of objects in the image is less than
216,

This requires a minimum of 29 bytes per
sample. For a 640 by 480 image rendered at 16
samples per pixel, over 142 M are required.
This number does not include the memory
requirements of the image object file. While
this quantity will not be problematic in the
future, for now images must be created which
are smaller, sampled less frequently, or created
in sections.

Given an arbitrarily large memory, this
algorithm could be extended to retain |
information for the entire ray-tree, effectively
verifying each ray as needed. Moving cameras
would preclude using the information after the
first level, but it would provide for an estimate
of which object is intersected. Static camera
animations could use the information to reuse
rays and colors to any depth.

Parallclization of Frame Generation

The creation of animation frames using this
technique is a linear process; the previous frame
must be completed before the next frame can be
begun. It may be desirous in long animations to
machines.

render frames on different

Obviously, camera cuts are natural points of
breaking the animation. Otherwise, it is
suggested that if an anti-aliasing technique is
used that every kth frame be fully ray-traced (k
an arbitrarily large odd integer, but based on the
number of machines available and their relative
speed), and infer the | k/2] frames on either side
of the fully ray-traced image.

If anti-aliasing is not being used, the aliasing
artifacts will not match at the join points, so the
matching points should be placed in sections of
fast camera movement.

Conclusions

Decreasing animation frame generation time by
exploiting spatio-temporal coherence with a
moving camera position has been largely
ignored because of the general perception that
all information is lost when the camera moves.
It has been shown not only that data can be
saved from the first level of ray-tracing, but that
the shadow ray information may also be retained
in many cases. While some savings are lost to
the eye-point dependent reflection and refraction
rays, it should be noted that most of the world is
not reflective and refractive but predominately
diffuse.

In the animation performance test with static
light sources, the algorithm saved 50 - 90% of
the rays, and 45 - 66% in rendering time. A
similar animation with diffuse-only objects
would have resuited in an 6G-96% reduction in
rays cast. The animation consisted of polygons
and quadric surfaces, but the technique is not
limited to these objecis. Any scene which can

15

‘be ray-traced in a point-sampled manner is
usable material for the algorithm.

References

[AH92a] Adelson SJ and Hodges LF Visible
Surface Ray-Tracing of Stereoscopic Images.
Proc SE ACM: 148-157

[AH92b] Adelson SJ and Hodges LF
Stereoscopic Ray-Tracing. Georgia Tech TR
GIT-GVU-92-17. To appear in The Visual

Computer.

[AH93] Adelson SJ and Hodges LF
Exploiting Spatio-Temporal Coherence in Ray-
Traced Animation Frames. Georgia Tech TR
GIT-GVU-93-01.

[Am84] Amanatides J Ray Tracing with
Cones. Comput Graph 18 (3): 129-135.

[Ba88] Badt, Jr. S Two algorithms taking
advantage of temporal coherence in ray tracing.
Vis Comput 4 (3): 123-132

[BN76] Blinn JF and Newell ME Texture and
Reflection in Computer Generated Images.
Commun ACM 19 (10): 542-547.

[Bo85] Bouville C Bounding Ellipsoids for
Ray-Fractal Intersection. Comp Graph 19 (3):
45-52

[CCS90] Chapman J, Calvert TW and Dill J
Exploiting Temporal Coherence in Ray Tracin g.
Proc Graph Interface 90: 196-204

[CC91] Chapman J, Calvert TW and Dill J
Spatio-Temporal Coherence in Ray Tracing.
Proc Graph Interface 91: 101-108

i6

[CD88] Cline HE, Lorenson WE, Ludke S,
Crawford CR, and Teeter BC. Two Algorithms
for the Three-Dimensional Reconstruction of
Tomograms. Med Phys 15 (3): 320-327.

[CP84] Cook RL, Porter T, and Carpenter L
Distributed Ray Tracing. Comput Graph 18 (3):
137-145.

[EH90] Ezell JD and Hodges LF Some
preliminary results on using spatial locality to
speed up ray tracing of stereoscopic images.
SPIE Proc 1256: 298-306

[FL90] Foley TA, Lane DA and Nielson GM
Towards Animating Ray-Traced Volume
Visualization. Jour Vis Comput Anim 1 (1): 2-8

[Fu86] Fujimoto A ARTS: Accelerated Ray
Tracing System. IEEE Comput Graph Appl 6
(4): 16-26

[G184] Glassner AS Space Subdivision for
Fast Ray Tracing. IEEE Comput Graph Appl 4
(10): 15-22

[GI88] Glassner AS Spacetime Ray-Tracing
For Animation. IEEE Comput Graph Appl 8
(2): 60-70

[Gr86] Greene N Environment Mapping and
Other Applications of World Projections. IEEE
Comput Graph Appl 6 (11): 21-29.

[GR90] Gudmundsson B and Randen M
Incremental Generation of Projections of CT-

Volumes. Proc First Conf Vis Biomed Comput:
27-34.

[HH84] Heckbert PS and Hanrahan P Beam
Tracing Polygonal Objects. Comput Graph 18
(3): 119-127.

[Ho92] Hodges LF
stereoscopic computer graphics. IEEE Comput
Graph Appl 12 (2): 20-30

. Time-multiplexed

[HZ82] Hubschman H and Zucker SW Frame
to Frame Coherence and the Hidden Surface
Problem: Constraints for a Convex World.
ACM Trans Graph 1 (2): 129-162

[KK86] Kay TL and Kajiya JT Ray Tracing
Complex Surfaces. Comput Graph 19 (3): 269-
278

[Je92]
Coherence for Ray Tracing.
Interface 92: 176-183

Jevans DA Object Space Temporal
Proc Graph

[Me93]
Ray

Meyer TC Efficiency Techniques for
Tracing Computer Graphics.
Undergraduate research project for Dr. Larry F.

Hodges, College of Computing, Georgia Tech.

[MH90] Murikami K and Hirota K
Incremental Ray Tracing. Eurograph Workshop
on Photosimulation, Realism, and Phys Comput
Graph 23 (3): 15-29

[RW80] Rubin SM and Whitted T A 3-
Dimensional Representation for Fast Rendering
of Complex Scenes. Comput Graph 14 (3): 110-
116

[SS89] Sequin CH and Smyr EK
Parameterized Ray Tracing. Comput Graph 23
(3):307-314

[Wh80] Whitted T An Improved Illumination
Model for Shaded Display. Commun ACM 23
(6): 343-349.)

Acknowledgments

"3D Buzz" was modeled by Thomas Meyer
using the Wavefront render. The city model
was created by Augusto Opdenbosh using
AutoCAD.

