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SUMMARY

We try to explain the mathematical theory of thin liquid film evolution. We start with

introducing physical processes in which thin film evolution plays an important role. Derivation of

the classical thin film equation and existing mathematical theory in the literature are also introduced.

To explain the thin film evolution we derive a new family of degenerate parabolic equations.

We prove results on existence, uniqueness, long time behavior, regularity and support properties of

solutions for this equation.

At the end of the thesis we consider the classical thin film Cauchy problem on the whole real line

for which we use asymptotic equipartition to show H1(R) convergence of solutions to the unique

self-similar solution.

vii



CHAPTER I

INTRODUCTION

1.1 Background and Physical Processes

Thin-film type evolution processes arise in our everyday life ranging from very simple processes,

such as rain drop movement on a window, to complicated industrial processes [19, 72]. Appearing

in many physical processes used in industry, thin-film dynamics attracted researchers from physics,

mathematics and various engineering departments recently. Because of the large number of appli-

cations in industry, understanding the evolution of a thin liquid film surface is extremely important.

This may lead to a better design in these processes, making our lives easier. These equations are

also an interesting source of math issues. Generally, these equations are fourth-order, degener-

ate, non linear, parabolic partial differential equations. The nature of these equations is very much

different from their second order analogs in that there is no maximum principle for these higher

order equations. Thus, one must rely on finding dissipated energies and entropies to prove rigorous

mathematical results on these equations.

Before mentioning the physical processes, let us derive the most commonly used thin film equa-

tion. Let us consider a viscous capillary driven flow of thin droplet of thickness h(t, x). Since the

surface tension is the only driving force here, the evolution of the liquid surface is caused by the

variation of the arclength. This means that the curvature causes to have the following formula for

the pressure, which is the variation of the energy functional with respect to h(t, x).

p(t, x) = −∂
2h(t, x)
∂x2 .

Hence we have δE0
δh = p(t, x) = − ∂

2h(t,x)
∂x2 , as the energy functional in this problem is E s =

∫ √

1 + h2
xdx

and this can be approximated by E0 =
1
2
∫

h2
xdx as the film is very thin. This yields

ht = − (M(h)hxxx)x , (1)

when we use the equation (2) below. Here, M(h) is called the “mobility term” and in thin the

equation (1), M(h) = hn, n = 1, 2, 3 is the most commonly used mobility term in the thin film
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theory. If E is the driving force of the evolution, then

ht =
(

M(h)(δE
δh )x

)

x
(2)

describes the evolution of the physical quantity h(t, x). By the structure of the equation (2) the

driving energy E is dissipated along the evolution defined by (2). But this is not enough to derive

qualitative results on solutions of the (2). As it will be clear in our results below, finding other

dissipated energy functionals are quite important in fourth order cases of (2), as there is no maximum

principle for these fourth order equations, which we focus on here.

To motivate the study, we just mention some of the physical settings where thin-film evolution

plays an important role. In Geology, thin-film type evolution models are employed to explain the

movement of lava flows and gravity currents under water [51, 52]. In Biophysics, the thin-film

dynamics appear as membranes, as tear films in the eye [89, 101], as the description of the motion

of the viscous fluid in a Hele-Shaw cell [72, 77, 78] or as linings of mammalian lungs [45]. In

Engineering, thin-films help in the heat and mass transfer processes, they limit fluxes and they

protect surfaces [77]. The set of applications includes dynamics of paints as fluids, membranes and

adhesives [72, 77]. De-icing of airplane rings and spin coating of microchips can also be regarded as

two industrial processes where thin-film evolution plays a crucial role [1]. It is also worth noting that

simple processes like taking shower, drinking a cup of coffee are situations where we can observe

a variant of thin-film evolution. In the following sections we will briefly introduce each interesting

physical process where the governing dynamics is thin-film type evolution.

We also note that in obtaining a model equation or system of equations, like (3) below, one first

determines the underlying governing forces that are responsible for the evolution. By careful analy-

sis of experiments, one determines the essential parameters and/or forces causing the evolution. In

most cases the fluid film height varies due to the effect of (one or more): surface tension, gravity,

surface tension gradients, viscous shear and long range molecular forces. We know from elementary

fluid dynamics (see for example [1]) that the evolution of a free surface of a fluid moving down an

inclined plane of angle α obeys the Navier-Stokes equations coupled with a condition on the fluid

velocity. Specifically, we have
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∂u
∂t + (u · ∇)u = −1

ρ
∇p + µ

ρ
∇2u + g sin(α) − g cos(α)k, (3)

∇ · u = 0, (4)

where u is the fluid velocity, ρ is the density and µ is the viscosity which is the reason for the

“friction” in the system and k is the unit normal vector perpendicular to the fluid surface. The

equation (4) is called the incompressibility condition.

Navier-Stokes equations are coupled with appropriate initial and boundary conditions. As initial

condition one just needs to prescribe the initial fluid profile. Boundary conditions reflect the inter-

action of the fluid film with the solid and with the gas at the free surface. At the fluid-solid interface,

usually ‘no-slip’ boundary condition is used. By now, we can convince ourselves that the system

of equations (3) coupled with (4) is extremely difficult to treat both analytically and numerically.

By a careful analysis of the underlying particular problem, one sometimes reduces (3) to a simpler

evolution equation, which still keeps the interesting dynamics of the real situation. Note that this

can be checked by means of experiments and simulations. In other words, one needs to keep the

balance between simplifying and keeping the characteristics of the dynamics.

In some cases, like in the thin-film type evolution processes, this is possible. Although, the

equations obtained this way are much simpler, they capture the necessary information to describe

the evolution process.

One important assumption in the analysis of thin-film type evolution is that the films considered

are sufficiently small but still thick enough to apply the continuum theory. In other words, we are

analyzing ‘long-scale’ phenomena only, meaning that we suppose variations along the horizontal

direction are much more gradual and important than the ones normal to the film surface and they

are slow in time [77]. This kind of an approach has been employed in a number of places such

as, shallow-water theory for water waves, slender-body theory in aerodynamics, fiber dynamics and

lubrication theory in the evolution of viscous films [77], which is the one we focus on here. It

turns out that this approach simplifies (3) great deal, giving a fourth-order, degenerate, parabolic

equation describing the thickness of some quantity, in our case this is thin-film thickness. The price

to pay is that the resulting partial differential equation(s) usually involve a strong nonlinearity and

higher-order spatial derivatives.
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In thin film type evolutions, besides the complexity of the governing equations, one other im-

portant issue is to explain the physics of a moving contact line, this is a triple juncture of the

liquid/air, solid/liquid, and sloid/air interfaces, the place where liquid, solid and air meet. When

we use ‘no-slip’ boundary condition, there is a contradiction, known as the ‘contact line paradox’.

No-slip boundary condition requires that the parallel component of the fluid velocity at the fluid-

solid interface is 0. On the other hand, the front of the fluid is obviously moving. There are several

approaches to this issue, but the fluid behavior around the contact line is not yet fully understood.

Inclusion of the intermolecular forces, known as the Van der Waals forces, has been a suggested

way [8, 15, 83, 67]. This introduces new driving forces into the governing equations. One can also

allow slip of fluid at the boundary. In recent investigations another interesting approach has been

employed. It is thought that the solid surface is already wetted by a very thin layer of fluid. It turns

out that this last approach is very appropriate in various situations and even in the case that the solid

surface is dry but the fluid is completely wetting. An example is the spreading of silicon oil on a

glass surface [56].

Before proceeding further to introduce physical processes, let us derive the general form of a

thin-film type equation from an asymptotic expansion of the Navier-Stokes equations with small

capillary number Ca and Reynolds number Re. We follow the approach as in [72], but we note that

other derivations can be found in [56, 77] and the references therein. We consider a thin liquid

surface flowing down an inclined plane of the angle of inclination α, where the driving forces are

surface tension, gravity, surface tension gradients and long range molecular forces.

The first step of our analysis is the non dimensionalization process. Introduce the length scales

(L0, h0) and velocity scales (U, δU), where L0 is the typical length along the film and h0 is the

typical film thickness. We note that δ = h0/L0 << 1. In the setting at hand, the leading order terms

in Navier-Stokes equations are

−(p + φ)x + uzz + B sin(α) = 0, (5)

−(p + φ)z − δB cos(α) = 0, (6)

where φ is given by φ = φ0 +
A
h3 and it represents the effect of the intermolecular forces. A is given
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by A = A′
6πδL2

0U , where A′ is the Hamaker constant.

In (5) we choose the pressure scaling µU/δ2L0 to balance the pressure with viscous forces,

which avoids a nontrivial solution in the absence of inter molecular forces in the limit δ→ 0.

We let the fluid velocities to be u and v in the directions x and y respectively and we keep the

continuity equation which reads

ux + vz = 0. (7)

The number B in equations (5) and (6) is called the Bond number and is given by B = δ2ρg
µL0

.

It measures the ratio of the gravity and viscous forces. We also note that the gravity terms are

negligible either if δB cos(α) = O(1) or B sin(α) = O(1).

The associated boundary conditions are given as follows: On the free surface, z = h(t, x) we

assume

v = ht + uhx, (8)

uz = Mσx, (9)

p = −Chxx, (10)

where M and C are constants and σ is the surface tension. On the solid substrate z = 0 the standard

boundary condition is the classical “no-slip” condition:

u = v = 0, z = 0. (11)

We will comment on the “contact line paradox” in moving contact line problem. Generally, in

moving contact line problem one may assume u = 0 with an appropriate slip condition.

Note that φ is a function of x only and so that (6) can only be linear in z. Integrating this equation,

one obtains

p = −δB cos(α)(z − h) −Chxx, (12)

which is a key observation for the problem. This is the source of the higher order derivative in the

problem and it simplifies the Navier-Stokes equation.

5



On the other hand, integrating (5) twice, and imposing boundary conditions one also has

u = (px + φx − B sin(α))( z2

2
− hz) + Mσxz (13)

and by the continuity equation

vz = −ux (14)

or equivalently

v(h) = −
∫ h

0
uxdz. (15)

The kinematic boundary condition (8), when plugged in (15), yields the governing equation for

the film height as

ht + Qx = 0, (16)

where Q =
∫ h

0 udz is the so-called fluid flux. Finally, plugging u in, this yields the general form of

the thin-film equation

ht +

[

h3

3
(Chxxx − δBhx cos(α) + B sin(α)) + A hx

h +
M
2
σxh2

]

x
= 0. (17)

We note that in some settings the term h3

3 in (17) is replaced by β(h) = h3

3 + hn, 0 < n < 3. Also,

it is worth noting that except for approximately horizontal surfaces, i.e. δ = O(1), the gravity term

in (17) is negligible in comparison to B sin(α).

Further simplification on (17) has been considered in the literature especially for analytical

studies. The governing equation considered reads

ht + (hnhxxx)x = 0, (18)

where n is a parameter in the problem. Different n values represent different physical situations.

n = 1 case is the leading order equation describing the evolution of the viscous fluid flow in a Hele-

Shaw cell, n = 2 case is the leading order equation for the situation in which the surface tension is

the driving force and not the gravity. As expected from the derivation we followed above, n = 3

case is the leading order equation describing the evolution of a free surface of a viscous flow under

6



the influence of gravity. More information on thin-film equation including different derivations can

be found in [19, 72, 77].

The following steady version of the general thin-film equation (17)

Ch3hxxx − 3Uh = −3Uh(∞), (19)

known as the Landau-Levich equation, has been used widely in the literature. (19) has been first

derived in [60] in the context of coating of a cinefilm when it is taken out of a bath with velocity

U. It has also been used to describe the behaviour of the flow at the interface between a strip under

tension and coating roller [81], the evolution of a soap film [73], and the wetting layer when a bubble

moves in a capillary tube [23].

We note that (19) can be derived from (17) by a traveling wave substitution h(t, x) = H(x − Ut)

with an appropriate choice of integration constants A = 0 = B. On the other hand, in [98] (19)

is derived by considering surface tension as the only driving force. The −Uh term stems from the

no-slip condition on a moving substrate.

Equation (19) can be considered in higher dimensions too. As the basic assumption was that in

the vertical (z− direction) the film is very thin, one dimensional version given in (17) can be seen as

a 2-dimensional process. Indeed, one can write the analogue of (17) in higher dimensional setting

as

ht + ∇ ·
[

β(h)(C∇∇2h) − δB∇h cos(α) + Br sin(α) + A hx
h +

M
2

h2∇σ
]

= 0. (20)

Let us now briefly introduce the physical processes where a variant of (17) can be used to

describe the evolution.

1.2 Physical Processes
1.2.1 Coating

Coating is the process of covering a surface with one or more thin layers of fluid. Simple examples

include: rain running down a window and manufacturing processes such as videotape production.

In general coating is not a very easy process. One faces difficulties such as: fluid rheology may

be too complex to deal with and operating conditions sometimes require a running speed and that
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leads to instabilities. Two examples in which instabilities occur are air entrainment and ribbing

[72, 80, 85]. In the literature different coating methods have been suggested, which fall into three

different categories.

(i) Free Coating : The examples are dip coating [60, 98] and spin coating, in which a fluid

spreads over a spinning surface [82].

(ii) Transfer Coating : Here a uniform film is transferred into a moving substrate. Examples

include : slot/slide curtain [40] and gravure coating [72].

(iii) Metered Coating : Here an obstacle is placed in order to limit the thickness of coating on the

substrate. Examples are blade coating and roll coating [41, 72, 98].

There are also more recent methods of coating. Let us mention a few of them here. A different

coating method is used in the paint industry to charge paint particles while spraying them onto a

work piece [72]. Heating then causes the particles to produce a uniform layer. Further discussion of

coating may be found in the references [7, 6, 40, 84].

If one considers a model of surface tension driven flow on a curved substrate, then (17) reduces

to the form [72, 87]

ht + (Cβ(h)(hsss + κs))s = 0, (21)

where β(h) = h3 + hn, s is the coordinate tangential to the substrate and κ is the curvature.

1.2.2 Hele-Shaw Experiment

The Hele-Shaw cell is made of two parallel sheets of plates with a small spacing λ [52, 77, 78]. Let

H ⊂ R2 denote the two dimensional cross section of a Hele-Shaw cell, so that H × (0, λ) ⊂ R3 is the

three dimensional gap. A viscous, incompressible fluid is squeezed between the two plates and the

rest is filled with gas.

The only driving force on the fluid is surface tension, at the fluid-gas and fluid-plate inter-

face. The three-dimensional domain filled by the fluid has a simple geometric structure; we indeed

suppose that it is a cylindrical domain of the form Ω × (a, b). Since the fluid is assumed to be in-

compressible the area of Ω is invariant. So the effective forces on the fluid are surface tension at the

8



fluid-glass boundary (∂Ω ∩ H) × (0, λ) and surface tension at the fluid-air boundary ∂Ω ∩ H. In this

case, the relevant surface energy is given by

c1λH1(Ω ∩ ∂H) + c2λH1(∂Ω ∩ H), (22)

where c1 is the surface energy per unit area of the fluid-glass interface, which may be negative, and

c2 > 0 is the surface energy per unit area at the fluid-air interface.

The boundary condition assumed is the “no-slip” at Ω×{0} and Ω×{b}. The motion is described

by the Navier Stokes equations (5). Navier-Stokes equations are hard to treat both analytically and

numerically. If λ is much smaller than the typical length scale of Ω then the fluid motion may be

well-approximated by the two dimensional Darcy-law. This leads to an easier free boundary value

problem for Ω(t) that captures also the characteristics of the original problem.

This problem is surface tension driven, single phase problem. See [52, 78] for a discussion. It is

worth noting that (22) is a Lyapunov functional for the dynamics under consideration. We assume

that the fluid touches the glass at the lateral border, Ω ∩ ∂H , ∅. Young’s law suggests that in the

equilibrium at a contact point x ∈ ∂Ω ∩ ∂H, the contact angle θ, that is the angle between ∂Ω and

∂H, is given by the relation c2 cos(θ) = −c1, which imposes |c1| < c2. We assume that θ ∈ (0, π2 ), and

this is due to the fact that we are interested in the partial wetting scenario and so 0 < −c1 < c2 is

satisfied. In the single-phase Hele-Shaw problem θ is also the dynamic contact angle, which means

that it is enforced upon ∂Ω(t) throughout the evolution.

Once again the main friction source is the no-slip boundary condition at Ω × {b} and Ω × {a}.

The friction at (Ω ∩ ∂H) × (0, b) effects the Stokes flow only in a very thin boundary layer. As a

consequence, only part of the two-dimensional velocity field in Darcy’s law, which is normal to ∂H,

needs to be non zero.

To simplify the analysis further, it is assumed that the two dimensional cross section of the

region Ω of the fluid is given by the area between the graph of a function, y = h(x) ≥ 0 and the

bottom of the Hele-Shaw cell, y = 0. In other words, we have

H = {(x, y) : y > 0}

9



and

Ω = {(x, y) : 0 < y < h(x)}.

In this case the surface energy can be written as

c1|{h > 0}| + c2

∫

{h>0}

√

1 + h2
xdx, (23)

in the free boundary problem on whole real line. In case of finite interval case one considers only

an energy functional of the form
∫

S

√

1 + h2
xdx

as the energy functional where S = {−a < x < a}, and a is a positive real number. In (23), |A|

denotes the one-dimensional Lebesgue measure of the set A and {h > 0} = {x : h(x) > 0} is the so

called wetting region. Moreover, we also have the relation

h2
x = tan2(θ) on ∂{h > 0}.

As a usual assumption we are interested in the thin region where the typical vertical length scale

of Ω is much smaller than the typical horizontal length scale. In other words, we assume that

(h′)2 << 1, and so the contact angle θ satisfies θ << 1. We deduce from this that this is only

possible if 0 < 1+ c1
c2
<< 1. Here as a general simplifying assumption it has been suggested that the

surface energy functional (23) may be well approximated by the functional

(c1 + c2)|{h > 0}| + 1
2c2

∫

{h>0}
h2

xdx (24)

in the free boundary case in the whole real line and

1
2

∫

S
h2

xdx (25)

in the finite interval case. One can eliminate the constants in above expressions obtaining

E = |{h > 0}| + 1
2

∫

{h>0}
h2

xdx (26)

and

E1 =
1
2

∫

S
h2

xdx (27)

10



respectively. The motivation behind these approximations is that for small enough x,
√

1 + x2 can

be well approximated by 1 + 1
2 x2. Discussion of the thin-film type equations in the next section

should provide a better understanding. When one substitutes the energy functional E1 into

ht =
(

M(h)(δEd
δh )x

)

x
,

the evolution equation in which Ed is the driving force, one obtains that

ht = − (hhxxx)x , (28)

whenever M(h) = h. It turns out that this is the most appropriate choice for this problem. Before

discussing the boundary conditions associated to (28), we note that the evolutionary free boundary

problem for Ω(t) = {(x, h(t, x)) : x ∈ Ω} has been transformed into a non-local evolution equation

for h(t, x). For h small( the ‘small aspect regime’) this equation is approximated by a local evolution

equation for the rescaled h(t, x). This is what is meant by the ‘lubrication approximation.’ We also

remark that both the experimental studies and simulations [20, 31, 36, 43] show that the resulting

simplifying equation captures the dynamics well enough.

Usually two types of boundary conditions are considered for the finite interval case. The fist

one is the periodic boundary condition

∂ih
∂xi (±a) = 0, i = 1, 2, 3, (29)

whose interpretation is the simulation of an infinite array of fluid. The next most commonly used

boundary condition is “no-flux” boundary condition

∂h
∂x (±a) = 0 = ∂3h

∂x3 (±a). (30)

The Cauchy problem for the equation (28) can also be considered, i.e. now x ∈ R. This free

boundary value problem, introduced first by Bernis [9, 12], has been considered in [78] and in

[26, 27].

1.2.3 Condensate Motion and Heat Exchangers

Condensation of thin liquid films has been used in a number of settings to transfer heat. Examples

include refrigerators, cooling devices and chemical plants [72].
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The main idea is to pass a vapor over metal fins that are kept below the condensation temper-

ature. In this process, condensate builds up on the fins, flows into the channel between them and

gradually drains away. It has been observed that higher flow rates decrease the transfer rate of the

heat. Surface tension has been suggested to be the reason of this difference [48, 72]. Note that in

this case there are locally thin films in the system that reduce the thermal resistance.

Surface tension dominates at the top of the fin. Formation of the large stresses, caused by the

curvature, reduces the film thickness. In the central region the curvature on the film surface is small

and the gravity dominates.

On the top or near the bottom gravity forces are negligible compared to the surface tension

forces, and the governing equation for the film thickness at these places is

(Cβ(h)hxxx )x =
γ

h∆t, (31)

where γ is a constant and ∆t is the different of the heat between fin and vapor. The term on the right

side of (31) is obtained by considering a model where build up on the fans is a multiple of ∆t [72].

It has been shown that the best drainage in this region is atteined for a sharp fin tip. The geometry

around the trough is equivalent to the geometry of dip coating. As a consequence, we can employ

the method of [60] to determine the film thickness. Moreover, numerical results suggest that the film

is very thin above the trough, by the effect of suction, and this phenomena and optimum value of the

curvature at the top of the fin seem to improve the heat transfer almost three times that suggested by

the Nasset theory [30, 48, 72].

1.2.4 Paint Drying

When observing a newly painted surface, one usually observes some uneven profile, such as brush

marks. To produce a smooth finish one must allow a downward flow due to gravity. This is called

sagging. Therefore, to have a perfect finish, one needs to keep the balance between desirable prop-

erty of leveling and undesirable one of sagging.

It was suggested that [72, 75, 76] the surface tension is the reason for leveling. Although, this

suggestion was useful for explaining the leveling of viscous films and certain paints, observations

indicate that this is not enough for solvent-based paints. As pointed out in [72], predicted results of

12



this method on maximum wave length of brush marks seem to contradict the observations. More-

over, some phenomena, such as “reversal” (a process causing peaks in the initial film to become

troughs and vice versa), can not be explained by this approach. We refer to [72] and the references

therein for details and more discussions.

Paints involving a resin in a volatile solvent were considered in [79]. A clearer explanation and

generalization is given in [50, 99]. The movement of a two component, which are resin and solvent,

paint can be understood by considering the following governing equations.

ht + Qx = −Ev, (32)

(sh)t + (sQ)x = −Ev + D(hsx)x, (33)

where Ev is the non dimensional evaporation rate and D is the non dimensional diffusion coefficient

of the solvent, s is the solvent concentration and Q, given by

Q = β(h)
µ

(Chxx − δBh)x −
h2

2µ
Msx,

is the flux where µ is the viscosity, which is not assumed to be constant, and β(h) = h3 + hn as usual.

This model explains the phenomena well and can also be used for “picture framing” or fat edges. If

there is no evaporation then Ev = 0 and (32) reduces to

ht +

(

β(h)
µ

(Chxx − δBh)x

)

x
= 0, (34)

which is a special case of (17). We refer to [58] for similar problems, defects in paint films and

more discussions.

1.2.5 Marongoni Effects

We observe in our daily life that contaminated water, such as water with detergent, foams but pure

water does not. The reason is that the contaminated water involves surfactants. These molecules

tend to cover the fluid surface so that they reduce the surface energy or surface tension.

Surfactants stabilize the films by means of two ways [72]. The first is the Gibbs elasticity:

when the film expands the concentration of surfactant decreases and surface tension increases. The
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second way is the Marangoni effect: before reaching the equilibrium the surface tension is higher

than expected due to the movement of the molecules to the surface. Both Gibbs elasticity and

Marangoni effect produce a restoring force to return the fluid to the previous state and provide film

stability [3, 72].

The Marangoni effect has been employed in some industrial processes. One method of dry-

ing, known as Marongoni drying, employs the Marangoni effect and it allows one to pull out a

hydrophilic surface from water [62, 66, 72]. This is used in the electronics industry to dry silicon

wafers, are first etched with acid and then rinsed in a water bath. After withdrawing the wafer from

the water, one observes a thin film and classical methods such as evaporation or spin drying can be

employed to dry out the film. On the other hand, if one has an alcohol vapor, the film can be pulled

back into water.

The basic mechanism of Marangoni drying can be observed by placing a piece of cotton wool

soaked in alcohol above a thin water film which causes a flow away from the alcohol source [72].

In [74], this process has been studied, in which it was shown that the leading order problem reduces

to

ht =

(

1
2 Mσxh2

)

x
, (35)

where σ is the surface tension.

The reason why Marangoni drying is preferred is the processing speed. In the spin drying case,

in the final stages the film thickness decays exponentially fast, but for the final layer evaporation

should be employed which takes longer time than the equivalent Marangoni system. Moreover,

Marangoni drying results in a clean surface. We refer to [72] and the references therein for further

discussions.

1.2.6 Long Range Molecular Forces

After reaching an equilibrium thickness, a thinning film reaches a critical value after which film

rupture occurs in a very short time-scale [72]. Since the length scale is so small, long range molec-

ular forces become extremely important. These forces have been suggested to explain the rapid film

rupture in the literature [86, 96]. To model the London Van der Waals force, which is an attractive

intermolecular force that tries to thin the film, a potential energy functional over a unit liquid volume
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φ has been suggested in [83], introducing a body force F = −∇φ in the Navier-Stokes equations.

The governing equation then reads

ht +

(

β(h)hxxx + Ahx
h

)

x
= 0 (36)

for a system in which surface tension and long range molecular forces are the only driving forces.

There has been some work on (36) in the literature [72, 83, 67]. The question whether or not

a small free surface perturbation grows or decays in the presence of intermolecular forces has been

investigated in [83]. In [67], the influence of non linear perturbations on the equation (36) has been

investigated to check the validity of the linear theory.

On the other hand, observing that the term ( hx
h )x is unrealistic at a microscopic length-scale

Bertozzi and Pugh [15] considered

ht + (hnhxxx)x + (hm)xx = 0, (37)

which describes the evolution of the scaled film height around a contact line. Both analytical and

numerical methods have been employed in [15] to show that finite time film rupture occurs in (37)

and that the front has a finite speed of propagation.

1.2.7 Foams and Free films

By a dry foam we mean a two-phase fluid where a small amount of gas is separated by a thin film.

The film is continuous and the volume fraction of the liquid is small. The films considered in this

case have negligible thickness and liquid content, and most of the liquid is in the Pletaue borders or

in the film junctions [72].

Lubrication theory applied to free films can cause problems. The reason is that zero shear on the

free surface and symmetry at the center will give two conditions for a single arbitrary constant in the

expression of the velocity gradient. Two methods have been proposed to overcome this difficulty

[72]. The first one is to consider a higher order approximation as in (32) or the second idea is to

assume that the surface is saturated with surfactant. This implies that the film is inextensible to have

constant velocity. We refer to [72] and the references therein for further discussions.
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1.2.8 Power Law Energy Functionals

On the other hand, another example is the problem of relaxation of axisymmetric crystal surfaces

with a single facet below the roughening transition. In [65] (also the references therein) this problem

is analyzed via a continuum approach that accounts for step energy g1 and step-step interaction

energy g2 > 0. We point out that the evolution of the surface morphology here is caused by the

motion of steps. The energy functional used for this problem is:

H3(h) :=
∫ (

g0 + g1|∇h| + 1
3g2|∇h|3

)

dx, (38)

where g0 term represents the surface free energy of the reference plane, g1 is the step energy and g2

includes entropic repulsions due to fluctuations at the step edges and pairwise energetic interactions

between adjacent steps. We will omit details and moreover we will not analyze the equation obtained

closely. We mention this problem to show that there are situations in which different power law

surface energy functionals are used.

The above problem, together with the observation that the other power law energy functionas

may be used in the thin film equation motivates the study of the following family of equations,

which we work in this thesis.

ht = −
(

hn
(

(p − 1)(h2
x)

p
2−1hxx

)

x

)

x
. (39)

Note that p = 2 case in (39) reduces to the classical thin film equation case. Details of our results

on the equation (39) will be stated in the upcoming chapters.

There are probably other places and physical processes in which thin film type of evolution

plays an important role. We remark that spreading of a liquid on a solid is important but this process

is poorly understood.

Let us comment on the difficulties and unsolved interesting issues. The idea in the Laplace-

Young equation is that the energy must be stationary with respect to any shift dx of the line position

[35]. Moreover, here θe, the apparent contact angle, is entirely defined in terms of thermodynamic

parameters: by which we mean that the measurement of θe gives us certain information on the

interfacial energies. Usual approaches in determining the angle θe are: direct photograph, through

the reflections or deflection of rays by the liquid prism, by interferential techniques or from the rise
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of liquid column in a fine capillary [35]. The experimental difficulty here is that one wants to avoid

a certain “pinning of the triple line L” on defects of the solid surface. This causes a hysteresis of the

contact angles, which can seriously affect the determination of θe. On the other hand, the contact

line L itself can be curved and in this case a displacement of the line modifies the core energies. This

leads to measurable effects only when the radius of curvature of the line is not too large, compared

to the core size. A measurement of θe at a distance d from the contact line should give a well-defined

θe, independent of d.

In non equilibrium situations, one may have a solid/gas interfacial energy which gives rise to so

called spreading coefficient

S = γso − γsl − γ,

where γso is the energy associated with a “dry” solid surface. Importance of spreading coefficient

has been first pointed out by Cooper and Nuttal [32, 35] in connection with the spreading of the

insecticides on leaves. S > 0 large implies spreading of liquid. But there is an ambiguity when

experimentalists observe complete spreading on macroscopic scales: they can not tell whether S = 0

or S > 0 [35]. We also note that the smaller S is the larger is the equilibrium thickness [35], which

agrees with results of Cooper and Nuttal [32], [35]. θe depends chemical constitution of both the

solid and liquid, [102].

To this end we note that solids can be categorized in two ways: high-energy surfaces and low-

energy surfaces [35]. Also we can say that there are two types of solids: hard solids, such as

covalent, ionic or metallic, and weak molecular crystals, such as molecules bound by hydrogen

bonds or molecules bound by Van der Waals forces [35]. We also note that high-energy surfaces

are wetted by molecular liquids, not because γso, the energy associated with a “dry” solid surface,

is high, but rather because the underlying solid usually has a polarizability p s much higher than the

polarizability of the liquid. This approach is very primitive but it provides us a guidance.

Low-energy surfaces, on the other hand, can give rise to both partial or complete wetting de-

pending on the liquid [35]. When plotting θe as a function of the surface tension γ of the liquid we

expect that there is a critical value γc for which θe is 0. Moreover, we also expect that such a value

should depend not only on the solid but also the liquid [35] but Zisman [102] observed that γc is

independent of the nature of the liquid, and is a characteristic of the solid alone. Whenever we want
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to have a molecular liquid wetting a low-energy surface we must choose a liquid with surface ten-

sion γ < γc. Various authors have tried to to relate the critical value γc to some physical parameters

of the solid [35] (and the references therein) and the conclusion is that it is an increasing function

of the polarizability and moreover high γc surfaces, such as nylon, PVC are most wetted surfaces

by liquid [35].

Once again, the “contact line” paradox is the problem that has been in the center of recent

investigations in physics literature [38, 37, 63, 57, 71, 90]. Additional to the mentioned approaches

Barenblatt, Beretta and Bertsch in [4] have proposed dividing the free surface of the liquid into

three regions. These regions are called basic region, contour region and precursor region [4]. In the

basic region the regular lubrication approximation is valid but in the contour region the film is not

necessarily gently slopping and the Laplace formula is not valid due to the nonequilibrium of the

character of the distribution of the cohesive forces.

1.3 Mathematical Side of the Story

As mentioned at the beginning, most of the analytical studies focus on the equation

ht + (|h|nhxxx)x = 0, (40)

where n > 0 is a parameter and on physical grounds h ≥ 0 and so the following equation replaces

(40)

ht + (hnhxxx)x = 0. (41)

Before introducing our accomplishments on the subject, let us review mathematical results and

techniques on thin-film type equations.

1.3.1 Asymptotic Results

The basic question here is to determine the steady film thickness. To this end, the method of [60]

has been used in some other situations [23, 48, 73, 88]. Far from the bath, used in dip coating,

the film has an unknown constant thickness, h(∞), and in the neighborhood of the bath the thin-film

approximation is invalid [72]. Thus, one may employ the Laplace-Young equation to determine the

18



film shape, or another approach is to assume that the film is a circular arc, and finally one must match

these two regions onto the transition region where the Landau-Levich equation (19) determines the

film thickness [72].

In the same manner, asymptotic expansion techniques have been applied to drop spreading

problem [49, 59]. Here, one needs to consider three regions if a slip term is included. As in [4],

these are: an inner region where the film height is of the same order as the slip length, the outer

region where one can apply the lubrication approximation and which describes flow in the bulk.

Finally, there is also an intermediate region where an expansion in terms of a slip length is required

[49, 59, 91].

There are also other situations in which this kind of an approach has been employed [23, 48, 68,

73, 70, 88, 92, 98].

1.3.2 Similarity Solutions

Usually in thin-film type evolution equations leading order behavior describing types of singularity

and large time behavior are important issues. Similarity solutions have been suggested to represent

these behaviors [18, 21, 72].

To describe the singularity formation one may define

h(t, x) = T (t)H( x − x̄(t)
T q(t) ) = T (t)H(η), (42)

where x̄(t) is the position of the minimum film thickness. The functions T and H should satisfy [72]

• T (t)→ 0 as the singular time is approached,

• H > 0

• H is well-behaved for η large enough, and this allows matching at the boundaries.

Plugging (42) into (41) yields an ODE of the form

Tt
T (1 − qη ∂

∂η
)H −

˙̄x
T q Hη + T n−4q(HnHηηη)η = 0. (43)
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In this form, (43) is complicated to treat analytically and so it may be simplified either by choosing

x̄ = αT q or by choosing various terms dominate [72]. Numerical work on (43) has also been

performed [21] to analyze the singularity formation in the thin-film equation.

Source type solutions to thin film equation (41) are solutions with initial data

h(0, x) = h0δ(x), (44)

where h0 is the mass and δ(x) is the Dirac delta function at x. In this case, one may employ the

similarity variables and use the dimensional analysis to obtain [13, 10, 72, 91]

h(t, x) = 1
tk H( x

tk ) = 1
tk H(η), (45)

where k = 1
n+4 . Plugging this in (41) and integrating the resulting equation, by using the symmetry

property of the source type solutions, one gets

Hn−1Hηηη = cη.

In [91], the exact solutions of this equation in the cases n = 0, 1 are found under the condition

that the solutions are symmetric at the origin and moreover at the contact line η = η∗

H(η∗) = H′(η∗) = 0.

Without showing that the series converges, the authors in [91] have obtained approximate solutions

using a Frobenious-type series expansion in the case 3
2 < n < 3. The exact form of the similarity

solution for n = 1 case is

v(∞)(x) = 1
24

(C2 − x2)2
+, (46)

where g+, as usual, is given by g+(x) = max(0, g(x)) and the constant C is determined through the

mass conservation.

In [13] and [10] similarity solutions of the thin-film equation (41) have been studied. Under

the same assumptions as [91], it was shown that compactly supported, non negative source type

solutions exist if and only if n < 3. In the case 3/2 < n < 3, this is easy to see: as η → η∗,H →
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(η∗ − η)β [10] and plugging this into the ODE and linearizing around η = η∗ yields β = 3
n , and

Hη = 0 implies n < 3.

Recently, similarity variables have been employed in [64], [27]. The idea here is to use a time

dependent change of variables to obtain a new equation that has a unique steady-state. Using the

ideas of the Kinetic theory, which is applicable if the system has a unique steady state, then the

convergence of an appropriate Lyapunov functional shows that solutions of the rescaled equation

converge eventually to the unique steady state. Using a Csiszár-Kullback type inequality this in-

formation is then translated into the convergence of solutions to the unique steady state under an

appropriate norm and the time scaling then provides the convergence of solutions of the original

equation to the self-similar solutions. We also employ such a study which we will explain in detail

in later sections.

Various numerical studies [21, 24, 70, 69, 87, 100] and stability analyses [18, 24, 29, 53, 99]

have been done on the thin-film equation (41), which we do not mention in detail. There are also

very recent investigations in this direction. Basic questions one is concerned with in numerical

studies are [72]

• whether h→ 0 in finite or infinite time

• whether h→ 0 in an interior point or at the boundary

• whether solutions have reflective symmetry about the singular point.

1.3.3 Partial Differential Equations Techniques

We now provide the main PDE techniques on the thin film type equations. The first work to this

end can be taken as the excellent work of Bernis and Friedman [14] in which most of the physical

questions have been answered in mathematically rigorous ways. Let us briefly introduce the meth-

ods of their analysis. The first step is to provide a “weak solution” concept as we do not expect to

have four derivatives of h(t, x) around the vicinity of the contact line. Hence, the following weak

solution concept has been introduced [14]

Definition : Let Ω = (−a, a), a > 0 be a finite interval. A non negative function h ∈ C 1,4
t,x ({h >

0}) ∩ C1/8,1/2
t,x (QT ) that satisfies hn/2hxxx ∈ L2({h > 0}) and hx = hxxx = 0 on ∂Ω is a weak solution
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of (41), where QT := (0,T ) × Ω, 1
p +

1
p′ = 1, β = p−1

5p−2 and f ∈ Ca,b
t,x means that the function f is

Hölder continuous of order a and b in t and x respectively, if

∫ ∞

0

∫

Ω

(h − h0)ζtdxdt +
∫ ∞

0

∫

Ω

hnhxxxζxdxdt = 0, (47)

for all ζ ∈ C1(R+ × Ω̄) such that ζ(T, ·) = 0.

We note that this weak formulation given in the above definition is obtained from (41) by multi-

plying by ζ and integrating by parts. In this way the differentiability requirement on solutions may

be weakened.

By showing that the solution of the regularized problem

ht + ((hn + ε)hxxx)x = 0, (48)

for ε > 0, are Hölder continuous with respect to x and t uniformly in ε, they show that the sequence

{hε} is bounded and equicontinuous so that by the Arzelá-Ascoli Theorem there exists a function h

so that hε → h as ε → 0. Moreover, they show that h is a weak solution of the thin film equation

(41) in the sense given in the above definition.

Now, for physical ground to make sense it needs to be shown that

h0 ≥ 0 =⇒ h(t, x) ≥ 0, ∀t > 0,∀x ∈ Ω,

which is shown in [14] by employing entropy dissipation methods. To explain, one defines an

entropy functional of the form

Gε(s) = −
∫ A

s
gε(r)dr,

where A > max(|hε |) and gε(s) = −
∫ A

s
1

f (r)+εdr and they show that Gε(·) is dissipated along any

solution of regularized equation (48). For 1 < n < 2 no restriction on the initial data is required

besides h0 ≥ 0, for n = 2 one needs to assume
∫

Ω
| log(h0)|dx < ∞ and for 2 < n < 4 one needs

∫

Ω
h2−n

0 dx < ∞ and for n ≥ 4, h0 > 0 in Ω̄. We remark also that any weak solution of (41) with n ≥ 4

is positive and so classical.

In addition, one may ask how the support of solutions behave. Such a question is first addressed

in [14] by showing that the support of the function t → h(t, ·) is increasing in time t. The positivity

result (n ≥ 4 =⇒ h(t, x) > 0 if h0 > 0 ) motivated another regularization where one defines
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fε(s) = s4sn

εsn + s4 , (49)

h0ε (x) = h0(x) + εθ, 0 < θ < 1/2 and considers

hε,t + ( fε(hε )hε,xxx)x = 0,

hε(0, x) = h0ε (x). (50)

A new weak solution h is defined by the limit hε → h as ε → 0, where hε is the positive smooth

solution of the equation (50). By defining the analogs of gε and Gε by

g1ε(s) = −
∫ A

s

dr
fε(r)

, G1ε(s) = −
∫ A

s
g1ε (r)dr

one establishes exactly the same kind of nonnegativity results.

We also note that higher-order equations of the form

ht + (−1)m−1
(

f (h)∂
2m+1h
∂x2m+1

)

x
= 0, (51)

where f (s) = |s|n f0(s) with f0(s) > 0, n ≥ 1, were also introduced in [14] and similar results are

also mentioned for these equations too.

After the excellent study of Bernis and Friedman [14], many authors have tried to extend the

results of this paper and in particular in [16] the weak solution concept has been developed. Interest-

ingly, in [21] a similar entropy functional like G1ε(·) defined above to improve the positivity result

which lead to: if n ≥ 3.5 then there is no singularity formation of the form h → 0. Let us mention

the results of [16] briefly. The authors in [16] show that there exists a non negative weak solution for

0 < n < 3 where they consider two types of solutions under periodic boundary conditions, whose

interpretation is modeling a periodic array of droplets. The first problem has initial data h0(x) ≥ 0,

for 0 < n < 3 in (41). It has also been shown in [16] that there exists a finite time T ∗ ≥ 0 so that after

this time on a weak solution becomes a positive, strong solution and moreover h → 1
|Ω|

∫

Ω
h(t, x)dx

as t → ∞. These weak solutions are in the classical sense of distributions for 3
8 < n < 3 and in the

sense of [14] for 0 < n ≤ 3
8 . Regularity of these solutions have also been established so that this

weak solution concept just includes the unique source type solutions [10] with 0 slope at the edge

of the support and they do not include any less regular solutions with positive slope at the edge of

the support [16].
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Also strictly positive initial data h0(x) > 0 of (41) for 0 < n < ∞ has been considered in [16].

It is remarkable result of [16] in this case that even if a finite time singularity of the form h → 0

occurs there exists a non negative weak solution for all time. And same type of results mentioned

in above paragraph are established.

As one may expect, the main technical idea of [16] is to introduce new classes of dissipating

entropies to prove existence and higher regularity of these weak solutions. The long time behavior

has been established by showing that the entropy is related to norms of the difference between the

solution and its mean value, which is sort of Csiszár-Kullback type inequality.

Independently, around the same time, [8] establishes results on support properties, long-time

behavior and higher regularity of non negative weak solutions. As usual, the main ingredient of

the analysis here is also the dissipation of a certain family of entropies. Indeed, they define the

following functions [8]

g2ε (s) = −
∫ A

s

αrα+n−1

fε(r)
dr,

G2ε(s) = −
∫ A

s
g2ε(r)dr,

where A > max(hε ) and 0 < s < A. Note that as hε > 0, where hε is the unique smooth solution

of the regularized equation (50) and fε is given in (49), g2ε ,G2ε are well-defined functions. By a

careful analysis, the authors prove that Gε(hε ) dissipates and in particular they deduce an integral

estimate for hε . Furthermore, it is shown in [8] that this also holds for non negative weak solution

obtained as a limit of the sequence {hε } as ε → 0. It turns out that these estimates are quite useful in

obtaining the following qualitative results on weak solutions, which we briefly introduce.

• n ≥ 2 =⇒ supp(h(t1 , x)) ⊆ supp(h(t2, ·)) for 0 ≤ t1 ≤ t2 and

n ≥ 4 =⇒ supp(h(t, x)) = supp(h0(·)), t ≥ 0.

n ≥ 7/2 and h(t0, x0) > 0 =⇒ h(t, x0) > 0, t > t0.

n ≥ 2 and h(t0, x0) > 0 =⇒ h(t, x0) > 0 almost every t > t0.

• 0 < n < 3 =⇒ h(t, ·) ∈ C1([−a, a]) almost every t > 0, and h becomes strictly positive after

some finite time and

h(t, x)→ 1
2a

∫ a
−a h0(x)dx uniformly in [−a, a].
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Here supp( f ) is the support of the function f . They also provide a counter example for the finite

time rupture phenomena [8]. We use the ideas of [8] in the analysis of one of the equations we

derive and details of these calculations are provided in upcoming sections.

One can summarize these entropy estimates by writing: for α ∈ (max{−1, 1
2 − n}, {2 − n}) − {0}

there holds the inequality

1
α(α + 1)

∫

Ω

hα+1(T, ·)dx +
1
C

∫ T

0

∫

Ω

(|∇h(α+n+1)/4 |4 + |D2h(α+n+1)/2 |2)dxdt

≤ 1
α(α + 1)

∫

Ω

hα+1
0 (x)dx. (52)

Note that this is written in the higher dimensional setting

ht + div(hn∇∆h) = 0,

h(0, x) = h0(x) (53)

with either periodic or “no-flux” boundary conditions. The higher dimensional extension of the thin

film equation has also been studied in the literature and similar results as in the one dimensional

case have also been established [22, 33, 46, 47].

We note that there is no physical interpretation of the estimate given in (52) whereas the estimate

1
2

∫

Ω

|∇h(T, ·)|2dx +
∫ T

0

∫

Ω

hn|∇∆h|2dxdt = 1
2

∫

Ω

|∇h0|2dx (54)

has physical meaning and is called the “energy estimate.” As pointed out before, the first term on

the left in (54) is the linearized capillary energy in the complete wetting region. The second term

on the left indicates that the energy is dissipated due to the viscous friction. We note that both the

stationary and non-stationary solution to initial data h0(x) = m(A2− x2)2
+ satisfy the energy estimate

but only the non-stationary zero contact angle solution satisfies the entropy estimate [5].

After these excellent studies [8, 14, 16], more attention on fourth-order equations, as the equa-

tion (41), has been provided in the mathematics community. Rigorous studies emerged from this

curiosity, which lead to significant improvement in this field. Nevertheless, there are still interesting

open issues, some of which have been addressed pretty recently.

25



When one has a partial differential equation associated to an evolution phenomena, one is con-

cerned if the model is physically correct one. One of the characteristics of the physically correct

free boundary value problem is the finite speed of propagation. In the thin-film case the question is

that whether or not the Cauchy problem

ht + (hnhxxx)x = 0, x ∈ R, t > 0

h(0, x) = h0(x), x ∈ R (55)

has finite speed of propagation. Bernis has addressed this issue in two consecutive papers [18, 19].

In the first one [19] he proved that for 0 < n < 2 the problem (55) has a finite speed of propagation

for non negative strong solutions and thus there is an interface or free boundary separating the

regions h > 0 and h = 0. Then he observes that the interface is Hölder continuous if 1
2 < n <

2 and is right-continuous if 0 < n < 1
2 . Moreover, he studies the Cauchy problem and obtains

optimal asymptotic rates as t → ∞ for the solution and for the interface when 0 < n < 2, which

exactly match those of the source-type solutions. For 0 < n < 1 the property of the finite speed of

propagation is also provided [19]. In the consecutive paper [18], he also provides that the equation

(55) has a finite speed of propagation and that the interface is Hölder continuous for the remaining

case 2 ≤ n < 3.

When n = 1, the Cauchy problem (55) has a deeper connection to so called Wasserstein distance.

To be precise let us recall the definition.

Definition [78] : For given ρ0, ρ1 ∈ K, where

K :=
{

ρ : R→ [0,∞) : measurable,
∫

R

ρdx = 1,
∫

R

x2ρ(x)dx < ∞
}

,

which is the set of all configurations with given unit volume, introduce the space P(ρ0, ρ1) of ad-

missible “transference plans” defined as

P(ρ0, ρ1) := {p−non negative Borel measure on R × R :
∫

R×R ζ(x)p(dxdy) =
∫

R
ζ(x)ρ0(x)dx,

∫

R×R ζ(y)p(dxdy) =
∫

R
ζ(y)ρ1(y)dy,∀ζ ∈ C0

0(R)}.

The Wasserstein distance between ρ0 and ρ1, denoted by W2(ρ0, ρ1), is defined by the relation

W2
2 (ρ0, ρ1) := inf

p∈P(ρ0,ρ1)

∫

R×R
|x − y|2 p(dxdy). (56)
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We say that P(ρ0, ρ1) is the set of probability measures on R×Rwith first marginal ρ0dx and the

second marginal ρ1dy and that this set always contains the product measure ρ0(x)dx×ρ1(y)dy by the

bounds of the second moments. Brenier [11] has shown the uniqueness of the optimal transference

plan and moreover he also showed that its support is concentrated on the graph of the gradient of a

convex function.

By considering a variational scheme Otto [78] proved the long-time existence of a weak solution

h(t, x) ≥ 0 of the thin-film equation (55) in the region {h > 0} with prescribed contact angle π
4 ,

meaning

(hx)2 = 1 on ∂{h > 0}.

To this end we recall the variational scheme.

Variational Scheme [78] :

We fix a time step τ > 0, and consider sequences {h(k)}k∈N ⊂ K which satisfy

h(k) minimizes 1
2 W2

2 (h(k−1), h)2 + τE(h) among all h ∈ K for all k ∈ N and we set h(0) := h0
τ , where E

is given by E =
∫

h2
xdx. And the non negative weak solution of (55) is obtained by the limit h(k)

τ → h

as k → ∞. We refer to [78] for details.

In [33], higher dimensional case of the thin film equation has been studied. By means of en-

ergy and entropy estimates, analogs of one dimensional case, they prove existence and positivity

results in higher space dimensions for the equation (53) with non negative initial data. They also

discuss asymptotic behavior for t → ∞ of solutions and provide a counter example to the issue of

uniqueness. Grün [44] considers the same problem and solves the Cauchy problem for n ∈ [2, 3).

He observes that the new interpolation inequalities applied to the existing energy estimate controls

the third order derivatives of appropriate powers of solutions. In such a way, he extends the solution

concept of Bernis and Friedman [14] to multi-dimensional setting. Moreover, he also provides a

key integral estimate to deduce results on the qualitative behavior of solutions such as “finite speed

of propagation” or “occurrence of a waiting time phenomena.”

J.R. King introduces two generalizations of the thin film equation in [54], the first of which

reads as
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ht = −
(

hnhxxx + αhn−1hxhxx + βhn−2h3
x
)

x , (57)

which shares the same scaling properties of the thin film equation (41) and arises in applications.

The second one reads as

ht = −
(

hn|hxxx |m−1hxxx
)

x , (58)

called as the “doubly-nonlinear thin film equation” and is relevant to capillary driven flows of thin

liquid films of power-law fluids. The author in [54] gives a characterization of non negative mass

preserving compactly supported solutions, exploits local analyzes about the edge of the support

and obtains special closed form solutions. Also he notes other properties and mentions some open

problems [54].

Ansini and Giacomelli [2] prove existence of solutions to the problem (58) and obtain sharp

upper bounds for the propagation of their support. They also derive a necessary condition for the

occurrence of waiting-time phenomena [2], a recently investigated issue in the literature [42].

Recent work of Giacomelli and Grün [42] deals with finding a lower bound on waiting times

for degenerate parabolic equations and systems, which in particular includes the thin-film equation

(41). Here, they extend the method of [34] to obtain qualitative estimates on waiting times for free

boundary problems.

The art of finding new appropriate energy functionals for fourth-order equations like (41) is

extremely important tool in analyzing these equations. To this end, Laugesen [61] has introduced

new dissipated energies for the thin film equation (41). In fact, he showed that the energy Kq :=
∫ h2

x
hq dx is dissipated for positive smooth solution of (41) for some values of q , 0 when 1

2 < n < 3

We also employ this energy functional in our analysis. In particular, we ask whether or not an

inequality of the form

d
dt Kq(h(t, x)) ≤ −Φ(Kq(h(t, x))), (59)

with Φ some strictly positive monotone increasing function on R+ hold for a positive smooth solu-

tion of the equation (41) and (30). It turns out that for the physical cases n = 1 and n = 2, one can
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prove an inequality of the form (59) for a positive smooth solution of the equation (41) and (30).

An interesting recent study of Tudorascu [93] employs the Dirichlet energy E =
∫

h2
xdx as a

Lyapunov functional and uses it to deduce long-time behavior of both positive smooth solutions and

nonnegative weak solutions. The idea, which we also employ in some parts of our analysis here, is

to bound the energy production term
∫

hnh2
xxxdx in terms of the energy functional E from below and

this yields an inequality of the form (59). Interestingly, the author proves that the inequality (59) is

preserved under the regularization (49) and in the limit ε → 0.

We also note that in [15], the authors discuss a physical justification for the presence of a “porous

media term” when n = 3 and 1 < m < 2 in the equation

ht = −(hnhxxx − (hm)x)x. (60)

They proposed such behavior as a cut-off of the singular “disjointing pressure” modeling long range

Van der Waals forces, which was mentioned in the discussion of physical processes. For all n >

0, 1 < m < 2, the authors in [15] also discuss possible behavior of solutions at the edge of the

support by employing leading order asymptotic analysis of traveling wave solutions. Rigorous

weak existence theory for (60) has been presented for n > 0, 1 < m < 2. The presence of second

order term in (60) leads to non negative weak solutions that have additional regularity. Similar to

[16], they show that there is a finite time T ∗ after which weak solutions become positive strong

solutions and they eventually relax to their mean value. Several numerical calculations presented in

[15] suggest that the weak solutions described by this developed theory has compact support with

finite speed of propagation. Note that these are properties desirable for a physically correct model

[15].
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CHAPTER II

BRIEF INTRODUCTION OF OUR RESULTS

2.1 Introduction

There has been much investigation of higher order nonlinear degenerate equations of the form

ht =
(

M(h)
(

δH
δh

)

x

)

x
, (61)

where M is a specified function and H is the quadratic first order energy functional 1
2
∫

h2
xdx. The

energy functional arises in many physical models, but is not universal among higher order parabolic

equations. Recent investigations have motivated the study of other energy functionals, such as

Hp =
∫

(h2
x)p/2dx for p , 2.We undertake such a study here, proving existence of weak solutions for

appropriate boundary conditions, nonnegativity, and positivity properties of solutions. Moreover, an

entropy dissipation- entropy estimate for solutions of this equation is obtained. Support properties

and long time behavior of solutions are also discussed for various cases. In the next section we will

briefly introduce these results after which we also state the precise description of our results on the

Cauchy problem (95).

It is worth noting that the effective interface Hamiltonian taken in the derivations of the thin-

film equation is an approximation. In the physical problem we are interested in the two dimensional

cross section Ω of the fluid is given by the area between the graph of a function y = h(x) ≥ 0 and

by y = 0. Hence, Ω = {(x, y) : 0 < y < h(x)}. Note that in this framework, the surface energy can be

written as

Hs =

∫

{h>0}

√

1 + h2
xdx, (62)

where we neglected the multiplicative factor [78]. From this, the approximate energy functional
1
2
∫

h2
xdx is obtained. This is because in the classical lubrication approximation the basic assumption

is that the typical length scale in vertical direction is negligible compared to the typical horizontal

length scale. We also neglected the constant term which does not contribute to (61).
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The thin-film equation is p = 2 case of the “doubly nonlinear thin film equation” [2]:

ht +
[

|h|n|hxxx |p−2hxxx
]

x = 0, (63)

where n > 0 and p ≥ 2 are real constants. Equation (63) describes the evolution of the height

h(t, x) of a surface-tension driven thin liquid film on a solid surface in lubrication approximation

[2], [55], [77], [97]. p = 2 case in (63) corresponds to a Newtonian fluid, and p , 2 occurs

when considering “power-law” liquids. In [2], the authors prove the existence of solutions to the

problem (63), and obtain sharp upper bounds for the propagation of their support. They also derive

a necessary condition for the occurrence of waiting-time phenomena.

Another example is the problem of relaxation of axisymmetric crystal surfaces with a single

facet below the roughening transition. In [65](and the references therein) this problem is analyzed

via a continuum approach that accounts for step energy g1 and step-step interaction energy g2 >

0. The evolution of the surface morphology here is caused by the motion of steps. The energy

functional used for this problem is:

H3(h) :=
∫ (

g0 + g1|∇h| + 1
3g2|∇h|3

)

dx, (64)

where g0 term represents the surface free energy of the reference plane, g1 is the step energy and g2

includes entropic repulsions due to fluctuations at the step edges and pairwise energetic interactions

between adjacent steps. We will omit details and moreover we will not analyze the equation obtained

closely. We mention this problem to show that there are situations in which different power law

surface energy functionals are used.

To facilitate the reading we will briefly introduce our results in next two sections. The precise

statements and proof techniques of these results are also briefly mentioned to give the flavor of the

detailed proofs of the upcoming chapters.

2.2 Brief Introduction of Our Results on a New Family of Degenerate
Parabolic Equations

With the given background above as motivation, we now turn to the study of (61) for H = H p,where

Hp is given by (65) with p > 0,
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Hp(h(t, x)) := 1
p

∫

|hx(t, x)|pdx. (65)

A simple set of calculations yields that

δHp
δh = −(p − 1)(h2

x)
p
2−1hxx ,

and differentiating this with respect to x yields

(
δHp

δh )x = −(p − 1)(p − 2)(h2
x)

p
2−2hxh2

xx − (p − 1)(h2
x)

p
2−1hxxx .

Plugging this back into (61), with M(h) = hn, yields:

ht = −[hn((p − 1)(p − 2)(h2
x)

p
2−2hxh2

xx + (p − 1)(h2
x)

p
2−1hxxx)]x. (66)

Therefore the initial boundary value problem we consider here is

ht = −[hn[(p − 1)(h2
x)

p
2−1hxx]x]x, (67)

in QT := (0,T ) ×Ω, where T > 0 and Ω is the bounded interval

Ω = {−a < x < a},

with initial conditions

h(0, x) = h0(x), h0 ∈ Hp(Ω) (68)

and with no-flux boundary conditions

hx = hxx = hxxx = 0 f or x ∈ {−a, a}. (69)

Note that in (67) we write an alternate form of the equation (66) useful for certain calculations.

Fourth order parabolic equations do not have a maximum principle. Nonetheless, as in Bernis

and Friedman’s investigation of p = 2 case [14], we shall prove

initial data ≥ 0⇒ the solution ≥ 0.
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Clearly this is wrong for the linear fourth order equation ht+hxxxx = 0. Due to the lack of maximum

principle, one must rely on proving dissipation results for nonlinear entropies. Singularity formation

of the form h → 0 is therefore an interesting question for the fourth order nonlinear degenerate

parabolic equations.

A main objective of this study is to provide a range of dissipated entropy functionals that are

useful for nonnegativity, positivity and long time behavior of solutions. We divide our results into

categories as follows.

I. Nonnegativity

Using the ideas of Bernis and Friedman [14] we seek for zero’th order Lyapunov functionals

which may be useful for proving nonnegativity of solutions to the equation (67), combined

with the initial and boundary conditions (68) and (69) respectively. To this end, we define

E0[h(t, x)] :=
∫

Ω

Φ(h(t, x))dx, where Φ′′ (s) = 1
sn (70)

and prove that E0 satisfies

E0[h(t, x)] + (p − 1)
∫ t

0

∫

Ω

(h2
x)p/2−1h2

xxdxdt = E0[h0(x)]. (71)

Conclusion of these calculations is that

h(t, x) > 0 for n ≥ 2 + p
p−1 .

II. Regularization

Analogous to the thin-film equation case, we define

Pε(h) := h(2+ p
(p−1) )hn

εhn + h(2+ p
(p−1) )

, (72)

and consider the equation

ht = −(p − 1)[Pε (h)[(h2
x)p/2−1hx]xx]x. (73)
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The initial condition of the problem is also modified:

h0ε (x) = h0(x) + εθ, 0 < θ < 2/5. (74)

Finally, the boundary conditions (69) are kept unchanged. We prove the following theorem,

which states the properties of a weak solution obtained by uniform limit as ε → 0 of solutions

hε of the regularized problems.

Theorem 1 (Properties of positively approximated solution) : Any function h obtained by

letting εk → 0 so that hεk → h in Cloc(Q̄) as k → ∞, where {hε} is a sequence of solutions to

the regularized problem (73), (74) and (69) satisfies:

h ∈ Cβ,1/p′
t,x (Q̄T ), (75)

where QT := (0,T )×Ω, 1
p +

1
p′ = 1, β = p−1

5p−2 and f ∈ Ca,b
t,x means that the function f is Hölder

continuous of order a and b in t and x respectively.

ht, hx, hxx , hxxx , hxxxx ∈ C(P), (76)

where P = Q̄T − ({h = 0} ∪ {t = 0}), and

Pε(h)[(h2
x)p/2−1hxx]x ∈ L2(P), (77)

h satisfies (73) in the following sense:
"

QT

hφtdxdt + (p − 1)
"

P
hn[(h2

x)p/2−1hxx]xφxdxdt = 0, (78)

for all φ Lipschitz in Q̄T , and φ = 0 near t = 0 and near t = T,

h(0, x) = h0(x), x ∈ Ω̄, (79)

hx(t, ·)→ h0x strongly in Lp(Ω) as t → 0, (80)

and finally h satisfies the boundary conditions (69) at all points of the lateral boundary where

h , 0.

This kind of regularization is also useful for improving the result of singularity formation.

Indeed we deduce that
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for n ≥ 2 + p′ − 1
p′ , where p′ = p

p−1 singularity formation1 is not possible.

Remark : There is also another regularization which is somewhat standard in the theory of

nonlinear degenerate parabolic equations. This regularization, first introduced by Bernis and

Friedman in [14] for the thin-film equation, reads as follows:

hεt = −(p − 1)
(

(hn
ε + ε)[(h2

εx + ε)
p
2−1hεx]xx

)

x , ε > 0. (81)

Using this kind of a regularization one can show the existence of a weak solution which is a

uniform limit as ε → 0 of solutions to (81). The details of this regularization are provided

here.

III. Entropy dissipation-entropy estimate

We prove that the functional Kq(h(t, x)) :=
∫

Ω

h2
x

hq dx is an entropy functional for positive

smooth solutions of (61) with p = 3 and n = 2. We bound the rate of decrease of Kq in

terms of itself along any smooth positive solution of (61) with p = 3 and n = 2. More pre-

cisely, we prove that there exists a constant C > 0 such that

Kq(h(t, x)) ≤














2
5(Ct + 2

5 [Kq(0)]−5/2)















2/5

. (82)

This clearly gives an initial polynomial decay( like t−2/5) of positive smooth solutions to the

equilibrium and once Kq(h(t, x)) is small enough we can then use linearization to obtain an

exponential decay.

For the sake of completeness we also prove that an inequality of the form (82) is valid for

positive smooth solutions of the thin film equation (41) in the physical cases n = 1 and n = 2.

To illustrate how the linearization works we provide the details of the linearization in the thin

film equation case (41) for n = 1.

IV. Regularity and Large-time behavior

We prove the following result related to the regularity properties of solutions.

1as singularity formation we mean h → 0 throughout.
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Theorem 2 (Regularity) :

Let 0 < n < 3 and let h0 satisfy (85) and let hε be the solution of the problem (73) with initial

condition

h0ε(x) = h0(x) + δ(ε),

and boundary conditions (69), where Pε(s) is given by (72). Let h be a solution of the equation

(67) with initial and boundary conditions (68) and (69) obtained by hεk → h, as εk → 0.

Set

bn =























p
(p−1) if 0 < n ≤ 3 (p−1)

p

3
n if 3 (p−1)

p ≤ n < 3,

Then, for any b ∈ (0, bn),

h1/b(t, ·) ∈ C1([−a, a]), for almost everyt > 0. (83)

Remark. Since bn > 1 for 0 < n < 3 we my substitute bn = 1 in (83) and obtain that

h(t, x) ∈ C1([−a, a]) for almost every t > 0.

Theorem 3 (large-time behavior) : Let h and h0 be as in Theorem 1, then we have that

h(t, ·)→ 1
2a

∫ a

−a
h0(x)dx uniformly in [−a, a] as t → ∞. (84)

V. Support Properties

We prove the following result related to the support properties of solutions.

Theorem 4 (Support properties) :

Let h0 satisfy

n ∈ (0,∞), 0 ≤ h0 ∈ Hp(Ω), h0 . 0 in [−a, a] (85)

and let hε be the solution of the equation (73) with initial condition

h0ε(x) = h0(x) + δ(ε), (86)

and boundary conditions (69), where Pε(s) is given by (72). Let h be a solution of the problem

(67), (68) and (69), obtained by

hεk → h in Cloc(Q̄) as εk → 0. (87)
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Then, one has the following conclusions.

(i) If n ≥ 1 + (p−1)
p , then

supp(h(t0, ·)) ⊆ supp(h(t, ·)) for t > t0.

(ii) If n > p
p−1 then

h(t0, x0) > 0 =⇒ h(t, x0) > 0 for almost every t > t0.

(iii) If n ≥ 1 + (p−1)
p +

p
(p−1) , then

h(t0, x0) > 0 =⇒ h(t, x0) > 0 for all t > t0.

(iv) If 0 < n < 3 and h0ε satisfies (168), then there exists T = Th0 ≥ 0 such that

h(t, x) > 0 f or |x| ≤ a, t > T. (88)

(v) If n ≥ 2 + p
(p−1) , then

supp(h(t, ·)) = supp(h0), f or t > 0. (89)

Remark : In order to prove (v) we need to show that for n ≥ 2 + p/(p − 1), one has

supp(h(t, ·)) ⊆ supp(h0), t > 0,

by (i). We also note that (iv) follows from (84).

VI. Asymptotic behavior of nonnegative solutions

Using the energy functional (65) we deduce the long time behavior of both the smooth and

the weak solutions. The following result, which is a generalization of the results of [93], is

quite useful for this purpose.

Lemma 5 (A useful inequality) : For any measurable function ψ : [0,∞) → [0,∞) and for

any 0 ≤ u ∈ H3(Ω) with ux(±a) = 0, we have that

(∫

Ω

u2

ψ(u)dx
)1/2 (∫

Ω

ψ(u)[(u2
x)p/2−1uxx]2

xdx
)1/2
≥ CHp(u), (90)
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where C is a finite constant depending on a and p.Using this Lemma we deduce the following

proposition, which is useful for obtaining long time behavior result for nonnegative smooth

solutions.

Proposition 6 (Energy dissipation bound) : Suppose that 0 < n < ∞ and h is a nonnegative

smooth solution(i.e.classical solution) of the equation (67) with initial and boundary condi-

tions (68) and (69). Moreover, suppose that the initial condition h0 ∈ H1(Ω) has finite mass.

Then, we have

(i) If 0 < n < 2, then there exists a constant 0 < C = C(||h0x ||Lp(Ω), p, a, n) such that
∫

Ω

hn(t, x)[(h2
x)p/2−1hxx]xdx ≥ C[Hp(h(t, x))]2,∀t > 0. (91)

(ii) If n = 2 then (91) holds with C = C(p, a). i.e. C is now independent of ||h0x ||Lp(Ω).

(iii) If n > 2 and
∫

Ω
h2−n

0 (x)dx < ∞, then there exists a constant 0 < C = C(
∫

Ω
h2−n

0 (x)dx, p, a)

such that (91) holds.

By the Proposition we deduce that

Hp[h(t, x)] ≤ [Hp[h0]−1 +Ct]−1, t > 0. (92)

Hence, from this, Hp(h) becomes sufficiently small after some finite time and so h(t, x) be-

comes uniformly bounded from below away from 0. From this point on we can then deduce

from linearization that there is an exponential decay.

Note that we could not deduce the long time behavior of weak solutions using entropy

dissipation-entropy estimate section. However, using the usual energy it is possible to prove

the following result.

Proposition 7 (Energy dissipation for weak solutions) : Assume that n ∈ (0, 1)∩ (2,∞) and

h0 ∈ H1(Ω) satisfies
∫

Ω
h2−n

0 dx < ∞, n > 2 and has finite mass. Then, there exists a constant

C = C(
∫

Ω
h2−n

0 dx, p, a, n) > 0 such that

dHp[h(t, x)]
dt ≤ −C

(

Hp[h(t, x)]
)2
,∀t > 0. (93)
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where h(t, x) is a weak solution of the equation (67) with initial and boundary conditions (68)

and (69).

Clearly the Proposition 7 yields that

Hp[h(t, x)] ≤ Hp[h0]
(

1 + τ1Hp[h0]t
)−1

, τ1 > 0. (94)

This implies that whenever Hp[h(t, x)] is small enough h(t, x) becomes bounded below away

from 0, and after this point on we have exponential decay by linearization.

For the remaining case for n we need more work to deduce the long time behavior of weak

solutions. Here we prove the exponential decay directly. The details are given below.

Proposition 8 (Exponential decay of weak solutions for 0 < n ≤ 2) : Assume 0 < n ≤ 2

and h0 ∈ H1(Ω) is such that Hp[h0(x)] ≤ K < ∞. Then, there exists a constant C > 0

depending only on Hp[h0] and n such that the weak solution h of the equation (67) with initial

and boundary conditions (68) and (69) satisfies

Hp[h(t, x)] ≤ Hp[h0] exp(−Ct),∀t > 0.

2.3 Results on the Cauchy Problem (95)

At the end of the thesis we investigate the large–time behavior of solutions to the thin film type

Cauchy problem (95) given by

ht + (hhxxx)x = 0, x ∈ R, t > 0

h(0, x) = h0(x), x ∈ R. (95)

It was shown in previous work of Carrillo and Toscani [27] that for non negative initial data

h0 that belongs to H1(R) and also has a finite mass and second moment, the solutions relax in the

L1(R) norm at an explicit rate to the unique self–similar source type solution with the same mass.

The equation itself is gradient flow for an energy functional that controls the H 1(R) norm, and so

it is natural to expect that one should also have convergence in this norm. Carrillo and Toscani

raised this question [27], but their methods, using a different Lyapunov functions that arises in the
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theory of the porous medium equation, do not directly address this: Their Lyapunov functional does

not involve derivatives of h. Here we show that the solutions do indeed converge in the H 1(R)

norm at an explicit, albeit slow rate, though we require more than a second moment: we present

the argument assuming a fourth moment. The key to establishing convergence is that this is an

asymptotic equipartition of the excess energy part. The energy functional whose dissipation drives

the evolution through gradient flow consists of two parts: one involving derivatives of h, and one

that does not. We show that these must decay at related rates – due to the asymptotic equipartition

– and then use the results of Carrillo and Toscani [27] to control the rate for the part that does not

depend on derivatives. From this, one gets a rate on the dissipation for all of the excess energy.
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CHAPTER III

DETAILS ON A NEW FAMILY OF PARABOLIC EQUATIONS

3.1 Introduction

We now provide the details of our analysis on a new family of degenerate parabolic equations (67),

derived in the previous chapter. Some of our results here also includes the thin film equation, which

is a special case of (67).

In order to prove the existence of a solution to (67) we follow the methods of [14]. We consider

the equation (67) in QT := (0,T ) ×Ω, where T > 0 and Ω is the bounded interval

Ω = {−a < x < a}

with initial conditions (68) and with no-flux boundary conditions (69). We note that (67) is degen-

erate at h = 0, and so we approximate it by a family of non degenerate parabolic equations of the

form

hεt = −(p − 1)
(

(hn
ε + ε)[(h2

εx + ε)
p
2−1hεx]xx

)

x , ε > 0. (96)

We also note that (96) is derived by variational consideration of the following “approximate” inter-

face Hamiltonian

Hε
p := 1

p

∫

Ω

(h2
x + ε)

p
2 dx. (97)

The initial condition h0 is approximated in H p(Ω)−norm by the functions h0ε ∈ C4+α, α ∈ (0, 1).

We note that h0ε satisfies (69) and (68) is replaced by

hε(0, x) = h0ε (x). (98)

By employing the parabolic Schauder estimates [14],[39],[40] we can deduce that the initial

boundary value problem (96), (69) and (98) has a unique solution for sufficiently small time interval.

Let QT0 = (0,T0) ×Ω be the set in which this unique solution exists. The derivatives

hεt, hεx, hεxx , hεxxx , hεxxxx
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are all Hölder continuous in Q̄T0 . Below we prove that the solution hε of (96), (69) and (98) satisfies

a priori Hölder estimate in every domain QT0 arbitrary of T0. Then we can extend solution step by

step to all of QT .

Formally differentiate the “approximate” interface Hamiltonian (97) along the solution hε of

(96). Then, it is not difficult to obtain that

1
p

∫

(h2
εx + ε)

p
2 |t=T dx + (p − 1)

"
(hn
ε + ε)[hεx(h2

εx + ε)
p
2−1]2

xxdxdt

=
1
p

∫

(h2
εx + ε)

p
2 |t=0dx. (99)

Note that (99) implies
∫

Ω

(h2
εx(t, x) + ε)

p
2 dx ≤

∫

Ω

(h2
0ε,x(x) + ε)

p
2 dx. (100)

Now, for fixed t ∈ (0,T ), one has that

|hε (t, x) − hε(t, y)| ≤
∫ y

x
|hεx(z)|dz ≤

∫ y

x
(h2
εx(z) + ε)1/2dz

≤ (
∫ y

x
(h2
εx + ε)p/2dz)1/p |x − y|1/p′ , (101)

where p′ = p
p−1 . Integrating the equation (96) over (0,T ) ×Ω one also has that

∫

Ω

hεx(T, x)dx =
∫

Ω

h0,x(x)dx. (102)

Also, by the approximation procedure of the initial data we have,
∫

Ω

(h2
0ε,x + ε)

p/2 ≤ (1 + a(ε))
∫

Ω

(h2
0,x + ε)

p/2 , (103)

where a(ε) → 0 as ε → 0. From (244) and (102) we deduce that

|hε (t, x)| ≤ K in QT0 , (104)

and here K is a constant independent of ε and T0.

Moreover, from (101) and (103) we also obtain that

|hε (t, x) − hε (t, y)| ≤ C|x − y|1/p′ , (105)
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where p′ = p
p−1 . We also conclude in the light of these estimates that

(hn
ε + ε)[hεx(h2

εx + ε)
p
2−1]xx ∈ L2(QT0)

and moreover there exists a constant K1 independent of T0 and ε such that
"

QT0

(hn
ε + ε)[hεx(h2

εx + ε)
p
2−1]2

xxdxdt ≤ K1. (106)

Lemma 9 (Hölder continuity in t) : There exists a constant M independent of T0 and ε such that

|hε (t1, x) − hε (t2, x)| ≤ M|t1 − t2|β (107)

for all x ∈ Ω and t1, t2 ∈ (0,T0), and β = p−1
5p−2 .

Proof: Suppose on the contrary that

|hε(t2, x0) − hε(t1, x0)| > M|t2 − t1|β, (108)

for some x0, t1 and t2. To complete the proof we will derive an upper bound on M that is independent

of T0 and ε. Without loss of generality we suppose that hε(t2, x0) > hε (t1, x0) and t2 > t1. Hence,

(108) becomes

hε(t2, x0) − hε(t1, x0) > M(t2 − t1)β, (109)

where 0 < t1 < t2 < T0, and β = p−1
5p−2 . Notice that hε satisfies
"

QT0

hεφtdxdt = −
"

QT0

zεφxdxdt, (110)

where zε = (hn
ε + ε)[(h2

εx + ε)p/2−1hεxx]x and φ is a reasonable test function.

Since hεt is continuous in Q̄T0 and zε = 0 on the lateral boundary, we take φ as φ ∈ Lip(QT0 ), φ =

0 near t = 0 and near t = T0. Note also that φ is not necessarily 0 on the lateral boundary. We define

φ by

φ(t, x) = ψ(x)θδ(t),

where the functions ψ and θ will be defined below.
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Definition of ψ : Recall the following relations for hε ,

|hε (t, x2) − hε(t, x1)| ≤ K|x2 − x1|
p−1

p (111)

and |zε |L2(QT0 ) ≤ A, where A is independent of ε and T0. Define

ψ(x) := ψ0

















x − x0
Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β

















, (112)

where β = p−1
5p−2 . Here M is from (108) and K is from (111). Moreover, the function ψ0(x) satisfies

ψ0(x) = ψ0(−x), ψ0 ∈ C∞0 , ψ0(x) = 1, 0 ≤ x ≤ 1
2 , ψ0(x) = 0 if x ≥ 1, ψ′0(x) ≤ 0 if x ≥ 0. Notice that

we have

ψ(x) =























0 if |x − x0| ≥ Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β

1 if |x − x0| ≤ 1
2

Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β

Definition of θδ : Define

θδ(t) =
∫ t

−∞
θ′δ(s)ds,

where

θ′δ(t) =











































1
δ

if |t − t2| < δ

− 1
δ

if |t − t1| < δ

0 elsewhere,

and δ < 1
2 (t2 − t1). Note that θδ is Lipschitz continuous and that |δθ | ≤ 1, θδ = 0 near t = 0 and near

t = T0, if δ is small enough. Plugging this function φ(t, x) into (110) yields that
"

QT0

hεψ(x)θ′δ(t)dxdt = −
"

QT0

zεψ′(x)θδ(t)dxdt. (113)

As δ→ 0 the left hand side of this equality satisfies
"

QT0

hεψ(x)θδ(t)dxdt →
∫

Ω

ψ(x)(hε (t2, x) − hε (t1, x))dx, as δ→ 0. (114)

We will find a lower bound for this last expression. By the definition of ψ(x) we only need to

consider

|x − x0| ≤
Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β.

44



For such values of x, we obtain that

hε (t2, x) − hε (t1, x) = [hε (t2, x) − hε (t2, x0)]

+ [hε (t2, x0) − hε (t1, x0)] + [hε (t1, x0) − hε(t1, x)]

≥ −2K|x − x0|(p−1)/p + M(t2 − t1)

≥ M
2

(t2 − t1)β. (115)

Assume without loss of generality that the set {ψ = 1} is included in Ω. Then,
∫

Ω

ψ(x)(hε (t2, x) − hε(t1, x))dx ≥ M
2 (t2 − t1)β Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β. (116)

On the other hand, the right hand side of (113) can be bounded from above by means of the Hölder’s

inequality and definitions of ψ and θδ. Indeed, we have

|
"

QT0

zεψ′(x)θδ(t)dxdt| ≤














"
QT0

z2
εdxdt















1/2 













"
QT0

[ψ′(x)θδ(t)]2dxdt














1/2

≤ C1
Mp/(p−1)

4p/(p−1)K p/(p−1) (t2 − t1)p/(p−1)β















"
QT0

z2
εdxdt















1/2 √
2

4p/(2(p−1))
Mp/2(p−1)

K p/2(p−1) (t2 − t1)
p

2(p−1)β(t2 − t1 + δ)1/2.

Therefore, by letting δ→ 0, we deduce that

M( p
p−1+1)(t2 − t1)( p

p−1+1)β ≤ C2
Mp/2(p−1) (t2 − t1)1/2−( p

p−1+1)β
, (117)

where C2 is a constant independent of ε, M and T0. Since β = p−1
5p−2 we have M ≤ C

2(p−1)
5p−2

2 . Thus, the

proof of the lemma is complete.

�

From these calculations we deduce that there is an upper bound on the C
p−1

5p−2 ,(p−1)/p
t,x −norm of

hε in QT0 , which is independent of ε and T0. This allows us to extend hε step by step to all of QT .

Moreover, we deduce also that the sequence {hε } is uniformly bounded and equi-continuous family

in Q̄T , and therefore by the Arzelá-Ascoli theorem, for every sequence ε → 0 there is a subsequence

{εk} such that

hεk → h uniformly in Q̄T . (118)

Hence h has the same continuity properties as hε .
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3.2 Existence of Weak Solution

We consider the problem (67) combined with the initial and boundary conditions (68) and (69). The

following theorem establishes the existence of a weak solution and also provides some properties of

this weak solution.

Definition (Weak solution) : The function h satisfying the assertions of the following theorem is

called a weak solution of the problem (67) combined with the initial and boundary conditions (68)

and (69).

Theorem 10 (Properties of a weak solution) : Any function obtained by (118) satisfies:

h ∈ C(Q̄T ), actually h ∈ Cβ,1/p′
t,x (Q̄T ) (119)

where p′ = p
p−1 and β = p−1

5p−2 ,

ht, hx, hxx, hxxx , hxxxx ∈ C(P), (120)

where P = Q̄T − ({h = 0} ∩ {t = 0}), and

hn[(h2
x)p/2−1hxx]x ∈ L2(P), (121)

h satisfies (67) in the following sense:
"

QT

hφtdxdt + (p − 1)
"

P
hn[(h2

x)p/2−1hxx]xφxdxdt = 0, (122)

for all φ that is Lipschitz in Q̄T , and φ = 0 near t = 0 and near t = T,

h(0, x) = h0(x), x ∈ Ω̄, (123)

hx(t, ·)→ h0x strongly in Lp(Ω) as t → 0, (124)

and finally h satisfies the boundary conditions (69) at all points of the lateral boundary where h , 0.

Proof : We obviously have

h(0, x) = h0(x),
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and

h(t, x) ∈ Cβ,1/(p′)
t,x .

Let φ be as indicated. Then we have that
"

QT

hεφtdxdt + (p − 1)
"

QT

hn
ε [(h2

εx)p/2−1hεxx]xφxdxdt

+ (p − 1)ε
"

QT

[(h2
εx)p/2−1hεxx]xφxdxdt = 0. (125)

We know that

ε(p − 1)
"

QT

[(h2
εx)p/2−1hεxx]2

xdxdt ≤ C,

and by Cauchy-Schwartz inequality we deduce that

ε(p − 1)
"

QT

[(h2
εx)p/2−1hεxx]xφxdxdt ≤ C(p − 1)

("
QT

[(h2
εx)p/2−1hεxx]2

xdxdt
)1/2 ("

QT

φ2
xdxdt

)1/2

≤ εC(p − 1)→ 0, (126)

as ε → 0 since C is a constant independent of ε, and p > 2. Hence, we conclude that

ε(p − 1)
"

QT

[(h2
εx)p/2−1hεxx]xφxdxdt → 0, as ε → 0. (127)

Let zε := (hn
ε + ε)[(h2

εx)p/2−1hεxx]x. We have from results of the previous section that

|zε |L2(QT ) ≤ A,

where A is a constant independent of ε and T. We deduce that zε has a subsequence such that zε → z

weakly in L2(QT ).

By regularity theory of uniformly parabolic equations and the uniform Hölder continuity of hε we

deduce that

hεt, hεx, hεxx , hεxxx , hεxxxx

are uniformly convergent in any compact subset of P. Hence,

z = hn[(h2
x)p/2−1hxx]x.

h satisfies the no-flux boundary conditions (69) at all points of the lateral boundary where h , 0.

zε → z = hn[(h2
x)p/2−1hxx]x,
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weakly in L2(QT ). This implies that

hn[(h2
x)p/2−1hxx]x ∈ L2(QT ).

Let δ > 0 be arbitrary. By these observations we have that

(p − 1)
"
{|h|>δ}

hn
ε [(h2

εx)p/2−1hεxx]xφxdxdt → (p − 1)
"
{|h|>δ}

hn[(h2
x)p/2−1hxx]xφxdxdt.

Now, take ε sufficiently small, depending on δ, and consider

(p − 1)|
"
{|h|≤δ}

hn
ε [(h2

εx)p/2−1hεxx]xφxdxdt|

≤ (p − 1)
("

{|h|≤δ}
hn
ε [(h2

εx)p/2−1hεxx]2
xdxdt

)1/2 ("
{|h|≤δ}

hn
εφ

2
xdxdt

)1/2

≤ C(p − 1)δn, (128)

where we have used the dissipation result (99). Note that h0ε → h0 in Hp(Ω) and also
∫

Ω

|hεx(t, x)|pdx ≤
∫

Ω

|h0εx(x)|pdx.

Hence, we deduce that

lim supt→0

∫

Ω

|hx(t, x)|pdx ≤
∫

Ω

|h0x |pdx.

Note also that hx(t, ·)→ h0x weakly in Lp(Ω). Thus, letting ε → 0 and noting that δ > 0 is arbitrary

we conclude the proof.

�

3.3 Nonnegativity and Positivity of Solutions

Let E0 be defined by (70). Multiplying the equation (67) formally by Φ′(h(t, x)) and integrating we

have that

d
dt E0[h(t, x)] = (p − 1)(p − 2)

"
QT

(h2
x)

p
2−1h2

xxdxdt + (p − 1)
"

QT

(h2
x)

p
2−1hxhxxxdxdt. (129)

Here we have used the fact that Φ′′(s) = 1
sn . From (129) one deduces that (71) is satisfied and this

clearly implies that E0 dissipates whenever p ≥ 1. Thus, by using the Hölder continuity of h(t, x) in

x, we deduce that for n ≥ 2+ p
(p−1) there can not be singularity formation. Note that this was proved

by Bernis and Friedman in [14] for the thin film equation (41), which is p = 2 case of (67).

48



3.4 Approximation by positive hε

The calculations above suggest the following regularization of the problem. Let Pε(h) be given

by (72) and consider the regularized problem (73). The initial condition of the problem is also

modified, indeed we define h0ε (x) by (74).

Since lims→0
Pε (s)

s2+ p
(p−1)
= 1

ε
if 1 ≤ n < 2 + p

(p−1) and if n ≥ 2 + p
(p−1) then lims→0

Pε(s)

s2+ p
(p−1)
= 0, and

h0ε > 0, there exists a unique, positive smooth solution hε of the problem (73) combined with the

initial condition (74) and with no-flux boundary conditions (69). We can modify the calculations

done in [94] to deduce that there exists a limit function h such that hε → h uniformly. Moreover, we

will show that this limit function is a weak solution of the problem (67), (68) and (69).

Proof of Theorem 1: Take φ as indicated. One can easily obtain that

||Pε(h)[(h2
x)p/2−1hxx]x||L2(QT ) ≤ A,

where A is independent of ε and T. Let Zε := Pε(h)[(h2
x)p/2−1hxx]x. Then, for a subsequence such

that Zε → Z weakly in L2(QT ). By regularity theory of uniformly parabolic equations and uniform

Hölder continuity of hε we deduce that

hεt, hεx, hεxx , hεxxx , hεxxxx

are uniformly convergent in any compact subset of P = Q̄T − ({h = 0} ∪ {t = 0}). Hence,

hn[(h2
x)p/2−1hxx]x = Z, on P. Hence,

ht, hx, hxx, hxxx , hxxxx ∈ C(P),

and

hn[(h2
x)p/2−1hxx]x ∈ L2(P).

Hence, we also see that h solves the problem (67) in the weak sense. For any δ > 0 one has that

(p − 1)
"
{|h|>δ}

Pε(hε )[(h2
εx)p/2−1hεxx]xφxdxdt → (p − 1)

"
{|h|>δ}

hn[(h2
x)p/2−1hxx]xφxdxdt.
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On the other hand, if ε is small enough(depending on δ), then by Cauchy-Schwartz inequality,

|(p − 1)
"
{|h|≤δ}

Pε(hε )[(h2
εx)p/2−1hεxx]xφxdxdt| ≤ C|(p − 1)|δn/2 → 0 as δ→ 0. (130)

Recall also that we have
∫

Ω

|hεx |p(t, x)dz ≤
∫

Ω

|h0εx |pdx,

and hε0 → h0 in Hp(Ω). Combining these we deduce that

lim supt→0

∫

Ω

|hx |p(t, x)dx ≤
∫

Ω

|h0x(x)|pdx,

and

hx(t, ·)→ h0x weakly in Lp(Ω) as t → 0.

We see that a weakly convergent sequence which is bounded. In fact, in this case the sequence

converges strongly to the same limit. Taking ε → 0, since δ > 0 is arbitrary, we conclude that (78)

is satisfied. This completes the proof of the theorem. �

We now use this regularization scheme to improve the result of singularity formation. To this

end, define the natural entropy by

Hε(h) :=
∫

Ω

Gε(h(t, x))dx, (131)

where Gε satisfies

Gε(h(t, x))′′Pε(h(t, x)) = hβ(t, x), β < 0. (132)

The more negative β is, the better result we obtain for the singularity formation. We can eas-

ily determine Gε(h(t, x)) using (132), where we choose the constant of the integration so that
∫

Ω
Gε(h(t, x))dx ≥ 0. Multiplying the equation (67) formally by G′(h(t, x)) and applying integra-

tion by parts we obtain that

∫

Ω

G′ε(h)htdx = −(p − 1)2
∫

Ω

hβ(h2
x)p/2−1h2

xxdx + β(β − 1)(p − 1)2

(p + 1)

∫

Ω

hβ−2(h2
x)p/2−1h4

xdx.

=: −c1 J1(h(t, x)) + c2 J2(h(t, x)). (133)

To proceed further we need the following lemma.
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Lemma 11 (Negative term beats in (133)): One has the following inequality for 0 ≤ h ∈ H 3(Ω),

satisfying hx(±a) = 0,

J1(h(t, x)) ≥ CJ2(h(t, x)), (134)

where

C := (1 − β)2

(p + 1)2 .

Proof: Inequality (134) can be verified easily by considering that, for any constant A > 0,

0 ≤
∫

Ω

[

hβ/2((h2
x)p/2−1)1/2hxx − Ahβ/2−1((h2

x)p/2−1)1/2h2
x
]2

dx. (135)

By employing integration by parts we see that (135) is equivalent to

J1(h(t, x)) + (A2 − 2A(1 − β)
(p + 1)

)J2(h(t, x)) ≥ 0. (136)

Optimizing over A, in (136) we obtain (134).

�

Using (134) we finally have that

d
dt Hε(h(t, x)) ≤ CβJ2(h(t, x)), (137)

where

Cβ := − (p − 1)2(1 − β)2

(p + 1)2 +
β(β − 1)(p − 1)2

(p + 1) .

Note that Cβ is non positive if and only if β ≥ − 1
p . Using the definition of Gε and the Hölder

continuity of h(t, x) in x we deduce that there is no singularity formation of the form h→ 0 if

n ≥ 2 + p′ − 1
p ,

where p′ = p
p−1 . Note that this obeys to p = 2 case where n ≥ 7/2 implies no singularity formation

in this case. Moreover, when p = 3 this shows that n ≥ 3.1666... implies no singularity formation

in this case.
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3.5 An Entropy dissipation-Entropy estimate for (66)

The term “entropy” is frequently used for a Lyapunov functional whose rate of decrease can be

bounded in terms of itself. That is if H( f ) is some functional of f , and along the flow of some

evolution we have
d
dt H( f ) ≤ −Φ(H( f )), (138)

with Φ some continuous strictly monotone increasing function on R+, then the functional H( f ) is

called an entropy, and the inequality (138) is called an entropy dissipation-entropy inequality. The

point is that (138) can be used to quantitatively estimate the rate of decay of H( f ).

Consider again a smooth solution h(t, x) of (67) and define the functional Kq by,

Kq(h(t, x)) :=
∫

Ω

h2
x

hq dx. (139)

We note that this functional has been discovered by Laugesen [61] for the thin-film equation. Lauge-

sen showed that Kq is a Lyapunov functional for the thin-film equation provided that q ∈ [0, 1/2].

Moreover, Kq was used in [25] to prove an entropy dissipation-entropy estimate for a thin film type

equation. Moreover, the special case n = 2 and p = 3 has been considered in [95], where it was

noted that the same kind of calculations work for wider range of p and n values.

Differentiating Kq along a smooth positive solution of (67) yields that(integrals below are over

the set Ω)

dKq(h)
dt = −2

∫ hx
hq [hn((p − 1)(p − 2)(h2

x)
p
2−2hxh2

xx + (p − 1)(h2
x)

p
2−1hxxx)]xxdx

+ q
∫ h2

x
hq+1 [hn((p − 1)(p − 2)(h2

x)
p
2−2hxh2

xx + (p − 1)(h2
x)

p
2−1hxxx)]xdx. (140)

We apply integration by parts twice to the first term and once for the second term; so that

hxxx is the highest order derivative appearing in the calculations. Collecting the likely terms after

integrating by parts by help of some algebra, we finally get that
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dKq(h)
dt =

2
3

(p − 1)(p − 2)(p − 3)
∫ (h2

x)
p
2−2h4

xx
hq−n dx

+ [2
3 (p − 2)(5q + n)(q − n + 1) − q(q + 1)(p − 1)(p − 2)]

∫ (h2
x)

p
2−1h2

xh2
xx

hq−n+2 dx

+ 4[q(p − 1) − 1
3(p − 2)(5q + n)]

∫ (h2
x)

p
2−1hxhxxhxxx
hq−n+1 dx

− 2(p − 1)
∫ (h2

x)
p
2−1h2

xxx
hq−n dx − q(q + 1)(p − 1)

∫ (h2
x)

p
2−1h3

xhxxx
hq−n+2 dx. (141)

Denoting the first term by T1, we note that using the notation in (147) and (148) below, and also

defining the constants accordingly, we can rewrite (141) as

dKq(h)
dt = c0T1 + c1I2 + c2 J12 + c3J13 + c4I1. (142)

We focus on the case p ≥ 2 in this paper, which is realistic as the first non constant term appearing

in the Taylor polynomial approximation for
√

1 + x2 is 1
2 x2. Note that for 2 ≤ p ≤ 3 the first term,

T1, in (141) is non positive so that it can be neglected in the procedure. In the case p > 3, the first

term becomes nonnegative and it does not appear in (147) or (148). Thus, to proceed further in

this case one needs to bound this term in terms of the integrals in the lists (147) and (148). For the

moment such a bound is not available to us, so we do not consider these cases here.

As mentioned above in the case 2 ≤ p ≤ 3(note that we consider integer values only, that is

we consider p = 2 and p = 3 in this case) things are relatively easier. In this case we have, by

neglecting the first term, that

d
dt Kq(h) ≤ c1I2 + c2 J12 + c3 J13 + c4I1, (143)

where the constants ci, i = 1, 2, 3, 4 are defined in (141) and I1, J12, J13 and I2 are given in (147) and

(148).

Step 1 : We show that
dKq(h)

dt ≤ −CpqnI3, (144)

where Cpqn is a positive constant which depends on p, q and n, and I3 is given in (147).

Proof of Step 1 :
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To show that the right hand side of (141) is negative, we will try to write it as a sum of negative

squares. To do this, define the nonnegative quantity A by,

A :=
∫ [

αhxxx + β
hxhxx

h + γ
h3

x
h2

]2

(h2
x)

p
2−1hn−qdx, (145)

where the numbers α, β and γ will be chosen below. (145) can be written as

A = α2I1 + β
2I2 + γ

2I3 + 2αβJ12 + 2αγJ13 + 2βγJ13, (146)

where

I1 =

∫

(h2
x)p/2−1 h2

xxx
hq−n dx, I2 =

∫

(h2
x)p/2−1 h2

xh2
xx

hq−n+2 dx, I3 =

∫

(h2
x)p/2−1 h6

x
hq−n+4 dx; (147)

J12 =

∫

(h2
x)p/2−1 hxhxxhxxx

hq−n+1 dx, J13 =

∫

(h2
x)p/2−1 h3

xhxxx
hq−n+2 dx, J23 =

∫

(h2
x)p/2−1 h4

xhxx
hq−n+3 dx.

(148)

Lemma 12 : Integration by parts yields the following relations:

I2 = −
(

1
(p + 1)

)

J13 +

(

q − n + 2
(p + 1)

)

J23 (149)

J23 =

(

(q − n + 3)
p + 3

)

I3. (150)

Proof: This is straightforward computation. �

Since there are no useful integration by parts identities for I1 and J12, we use the definition of A

appropriately to eliminate these terms from the game.

−α2I1 − 2αβJ12 = −A + β2I2 + γ
2I3 + 2αγJ13 + 2βγJ23. (151)

We use (151) in (142) appropriately.

For p = 2 or p = 3 : In this case we have to choose

α :=
√
−c4, β = − c2

2√−c4
. (152)

Using (269) in (151) and plugging this into (141), we obtain that
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d
dt Kq(h) ≤ (c1 −

c2
2

4c4
)I2 + γ

2I3 + (c3 + 2
√
−c4γ)J13 −

c2√
−c4

γJ23. (153)

Using the integration by parts relation (149) to eliminate I2 term in (153), we obtain that

d
dt Kq(h) ≤













c3 + 2
√
−c4γ −

1
(p + 1)

(c1 −
c2

2
4c4

)












J13

+













(q − n + 2
p + 1 )(c1 −

c2
2

4c4
) − c2√

−c4
γ













J23 + γ
2I3. (154)

Note that J13 can have either sign. Thus, we choose γ so that the multiple of it vanishes. This leads

to the following choice of γ.

γ :=
1

(p+1) (c1 −
c2

2
4c4

) − c3

2√−c4
. (155)

Plugging this choice of γ in (154) and also using the integration by parts identity (150), to eliminate

J23 term, we finally have that

d
dt Kq(h) ≤ C(p, q, n)I3, (156)

where C(p, q, n) is a constant defined by

C(p, q, n) :=












(q − n + 2
p + 1 (c1 −

c2
2

4c4
)) − c2√−c4













q − n + 2
p + 1 (c1 −

c2
2

4c4
)
























(q − n + 3
p + 3 )

+ (
1

(p+1) (c1 −
c2

2
4c4

) − c3

2
√
−c4

)2. (157)

A simple calculation yields that if p = 2 and n = 1 then

C1 := C(2, q, 1) = − q2

360 (3 + 18q − 53q2),

which exactly obeys the calculations in [25]. On the other hand for p = 2, n = 2 we have

C2 := C(2, q, 2) = − q2

360 (18 − 6q − 53q2),

which works perfectly fine. If 0 ≤ q < 9+4
√

15
53 then C1 ≤ 0 and for 0 ≤ q < 3

√
107−3
53 then C2 < 0.

Hence, for the thin film equation i.e. p = 2 case in (67), we can show an entropy dissipation-
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entropy estimate for the physical cases n = 1 and n = 2. On the other hand we note that numerical

calculations suggest that this can be done for a wider range of non integer values too. For the

physical case n = 3 we do not expect to have such an estimate by the results of [61].

Unfortunately for p = 3 case it seems that we can include only the physical case n = 2 and we

slightly miss n = 1 case. We note that non integer values can be included in this case too but we do

not analyze these at the moment. We have given the calculations in [95] for p = 3, n = 2 case. In

this case

C3 := C(3, q, 2) = 2371
6912

q4 +
77

432
q3 − 11

144
q2 − 1

54
q − 1

108
.

We have that for a critical value q∗ ∈ (0.4, 0.5) we have C3 ≤ 0 for q ∈ [0, q∗].

Step 2 : Now, we show that

I3 ≥ NqKq(h), (158)

where Nq is a positive constant.

Proof of Step 2 : Notice that

I3 ≥
∫ |hx |7

hq−n+4 dx =
∫

(
h2

x
hq )7/2 1

hr dx.

Letting z = h2
x

hq , and letting v = h, we have that

I3 ≥
∫

z7/2v−rdx. (159)

The function (v, s)→ v7/2 s−r is jointly convex if r ≤ 5/2, so that by Jensen’s inequality,

1
2a

∫ a

−a
z7/2v−rdx ≥

(

1
2a

∫ a

−a
hdx

)7/2 (

1
2a

∫ a

−a
vdx

)−r

=
1

2a(
∫ a
−a h0(x)dx)r

(Kq(h))7/2. (160)

Combination of (159) and (160) gives the result. Note that we have the following restriction on n

r = −5/2q − n + 4 ≤ 5/2 ⇐⇒ n ≥ 3
2 −

5
2q, (161)

which is satisfied for small values of q satisfying the conclusion of Step 1.

Step 3 : Consequence:
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For the physical cases (p, n) ∈ {(2, 1), (2, 2), (3, 2)} one can deduce using the above calculations

that

Kq(h(t, x)) ≤














2
5(Ct + 2

5 [Kq(0)]−5/2)















2/5

. (162)

This clearly gives an initial polynomial decay( like t−2/5) of positive smooth solutions to the

equilibrium and once Kq(h) is small enough we can then use linearization to obtain an exponential

decay. We provide the details of the linearization for thin film equation case (41) when n = 1.

We now apply the entropy dissipation results to quantify the rate of convergence provided by

the dissipation of Kq. Given positive, continuous initial data h0, let M denote the mean height; i.e.,

M = (2a)−1
∫ a

−a
h0(x)dx , (163)

so that M is the constant value of the equilibrium solution corresponding to h0. For the classi-

cal solution h of the thin film equation (41) with n = 1 and with positive initial data h0, clearly

(2a)−1
∫ a
−a h(t, x)dx = M for all t.

It is not hard to see that when Kq(h) is small, then so is ‖h − M‖∞. This fact will be used below,

and so we give a formal statement in the following lemma, which provides a sort of Poincare–

Sobolev inequality for the functional Kq.

Lemma 13: For p = 2 and for any q with 0 < q < 2, and any positive function h for which Kq(h) is

finite,

||h − M||2∞ ≤ 2a
(

M1−p/2 + (1 − p/2)(2a)1/2(Kq(h))1/2
)2p/(2−p)

Kq(h). (164)

After the polynomial decay, provided by the entropy dissipation, has gone on long enough, we

reach a sufficiently small neighborhood of the equilibrium that it is possible to control the errors in

linearization, and from this point onward, the decay is exponentially fast.

The following theorem, which makes this precise, is relatively easy to prove. However it is

meaningful only on account of dissipation results and Lemma 13 that guarantee its applicability to

solutions of our equation with initial data in a fairly general class.

Proof of Lemma 13:
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Notice that with g defined by g = (1 − p/2)−1h1−p/2,Kq(h) =
∫ a
−a(gx)2dx. Then since g(b) =

(1 − p/2)−1 M1−p/2 for some b with −a < b < a,

||g − (1 − p/2)−1 M1−p/2||2∞ ≤
(∫ a

−a
|gx|2dx

)2
≤ 2aKq(h). (165)

Introduce u = h − M. Then

|g − (1 − p/2)−1 M1−p/2| = (1 − p/2)−1 |(M + h)1−p/2 − M1−p/2|

≥ |u|/W, (166)

where W is the maximum of M p/2 and ||M + u||p/2∞ . Since (M + u)p/2 = hp/2 = ((1 − p/2)g)p/(2−p) ,

we have from (165) that W ≤
(

M1−2/p + (1 − p/2)(2a)1/2(Kq(h))1/2
)2p/(2−p)

. Combining this with

(166), which says that

||h − M||∞ ≤ W ||g − (1 − p/2)−1 M1−p/2||∞,

and then with (165), we obtain the result. �

Theorem 14: For any positive classical solution of the thin film equation (41) with n = 1, let M

be the corresponding equilibrium value, and suppose the initial data h0 is such that Kq(h0) < ∞

for some q with 0 < q < (9 + 4
√

15)/53. Then for any ε > 0, there is a finite time Tε , explicitly

computable in terms of M and Kq(h0) so that for all t > Tε , ‖h − M‖∞ ≤ ε. Moreover, for all t > Tε ,

we have

K0(h) ≤ K0(h0)e−(t−Tε )2(M−ε)(π/a)4

in case we are using periodic boundary conditions, and

K0(h) ≤ K0(h0)e−(t−Tε )2(M−ε)(π/2a)4

in case we are using “no flux” boundary conditions.

Recall that K0(h) =
∫

h2
xdx, for this case, so Theorem 14 proves that this Sobolev norm decays

to zero exponentially fast. Of course ‖h − M‖2∞ ≤ (2a)K0(h), and so Theorem 14 also ensures an

exponential rate of convergence to the equilibrium in the uniform norm. As will be clear from the

proof, which is based on linearization, the rates are essentially best possible, as one cannot hope

for faster convergence than one would get from the linearized equation. While explicit exponential
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convergence to equilibrium was obtained in the L1 norm earlier, the rates were considerably slower.

To our knowledge, Theorem 14 provides the first proof that
∫

h2
xdx decreases to zero at any rate for

any class of initial data that is not already close to equilibrium.

Proof of Theorem 14: Since if ‖h − M‖∞ ≤ ε then h ≥ M − ε, we have that

d
dt K0(h) = − 2

∫ a

−a
h(hxxx)2dx

≤ −2(M − ε)
∫ a

−a
(hxxx)2dx .

(167)

Under periodic boundary condition, hx is orthogonal to the constant functions; i.e., the null

space of the operator −d2/dx2 with periodic boundary conditions on [−a, a]. The least of the positive

eigenvalues for this operator is (π/a)2, so that under periodic boundary conditions, we obtain from

(167) that
d
dt K0(h) ≤ −2(M − ε)

(

π

a

)4
K0(h) .

Under the “no flux” boundary conditions, hx(±a) = hxxx(±a) = 0, hx belongs to the domain of

−d2/dx2 with Dirichlet boundary conditions on [−a, a]. Its smallest eigenvalue (in absolute value)

is (π/(2a))2. In this case we obtain from (167) that

d
dt K0(h) ≤ −2(M − ε)

(

π

2a

)4
K0(h) .

�

We note that one can use the linearization for other physical cases for which we have shown the

dissipation of the entropy functional Kq(h) above but we do not present the details for these cases.

3.6 Integral Estimates

Proposition 15 (Integral estimate for hε) : Let h0 satisfy (85), Pε be defined by (72) and let hε be

the solution of the regularized problem (73) with the initial condition

h(0, x) = h0ε (x), x ∈ Ω,

and with boundary conditions (69).
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Suppose that

h0ε ∈ C∞([−a, a]), h0ε > 0, for x ∈ [−a, a], h0ε → h0 in Hp((−a, a)) as ε → 0 (168)

and moreover suppose that h0ε satisfies the corresponding boundary conditions (69).

Let α , 0 be a real number such that

p − 1
p ≤ α + n ≤ 2, (169)

let T > 0, and let ζ ∈ C4(Ω) be a nonnegative function with support in (−a, a). Assume either

h0 > 0 in supp(ζ) (170)

or h0ε satisfies

h0ε(x) ≥ h0(x) + εθ, 0 < θ ≤ 2
5 (171)

and h0 satisfies

∫

Ω

ζ4hα+1
0 (x)dx < ∞, α , −1 (172)

∫

Ω

ζ4| ln(h0(x))|dx < ∞, α = −1. (173)

Then, there exists constants C∗1 and C∗2 which are independent of ε such that
∫

Ω

ζ4hα+1
ε (t, x)dx ≤ C∗1, 0 < t ≤ T, α , −1, (174)

∫

Ω

ζ4| ln(hε (t, x)|dx ≤ C∗2, 0 < t ≤ T, α = −1. (175)

If γ is a real number satisfying

γ1 ≤ γ ≤ γ2, (176)

where

γ1 :=
(α + n + p − 1) −

√

(α + n − 2)(p − 1 − p(α + n))
(p + 1) , (177)

and

γ2 :=
(α + n + p − 1) +

√

(α + n − 2)(p − 1 − p(α + n))
(p + 1) , (178)
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then

∫ t

0

∫

Ω

ζ4hα+n−2γ+1
ε (hγε )2

xx(h2
εx)p/2−1dxdt ≤ C∗3, (179)

and if
p − 1

p < α + n < 2,

then
∫ t

0

∫

Ω

ζ4hα+n−3
ε h4

εx(h2
εx)p/2−1dxdt ≤ C∗4, (180)

where C∗3 and C∗4 are positive constants independent of ε.

Remark 1.

If the conditions of the proposition are satisfied and h is a solution of the corresponding limiting

case where ε → 0, then, by Fatou’s lemma one deduces that

∫

Ω

ζ4hα+1(t, x)dx < ∞, t > 0, α , −1, (181)

∫

Ω

ζ4| ln(h(t, x))|dx < ∞, t > 0, α = −1. (182)

Remark 2.

The inequality (179) becomes
∫ t

0

∫

Ω

ζ4h1/p
ε (h(p−1)/p

ε )2
xxdxdt ≤ C∗3 (183)

if α + n = p−1
p , γ =

p−1
p and n , p−1

p (i.e., α , 0), and it becomes

∫ t

0

∫

Ω

ζ4hεh2
εxxdxdt ≤ C∗3 (184)

if α + n = 2, γ = 1 and n , 2(i.e., α , 0).

Proof :

Define the following function

gε(s) := −
∫

αrα+n−1

Pε(r)
dr = c1sc2 + sα − c1Ac2 − Aα, (185)
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where the constants c1 and c2 are given by

c1 := αε

n + α − 2 − p
(p−1)

c2 := n + α − 2 − p
(p − 1) .

Now define,

Gε(s) := −
∫ A

s
gε (r)dr, (186)

where A > max hε , and 0 < s < A. As hε > 0 the functions gε and Gε are well defined.

Let α , −1. Multiplying the equation (73) by ζ4gε (h) and integrating by parts, for any t ∈ (0,T ],

one has that(note that we represent the solution of (73) by h to simplify notation. At the end of the

proof we will return to the original notation.)

1
α

∫

Ω

ζ4Gε(h(t, x))dx − 1
α

∫

Ω

ζ4Gε(h0ε (x))dx

= (p − 1)
∫ t

0

∫

Ω

ζ4hα+n−1hx[(h2
x)p/2−1hxx]xdx + (p − 1)

α

∫ t

0

∫

Ω

(ζ4)xgε (h)Pε (h)[(h2
x)p/2−1hxx]xdx

=: L1 + L2. (187)

We can integrate by parts and write L1 as

L1 = − (p − 1)
∫ t

0

∫

Ω

(ζ4)xhα+n−1(h2
x)p/2−1hxhxxdxdt

− (p − 1)(α + n − 1)
∫ t

0

∫

Ω

ζ4hα+n−2(h2
x)p/2−1h2

xhxxdxdt

− (p − 1)
∫ t

0

∫

Ω

ζ4hα+n−1(h2
x)p/2−1h2

xxdxdt

=: −c1L1,1 − c2L1,2 − c1L1,c. (188)

To benefit fully from the sign of the term L1,c in (188) we use the following substitution, which was

used in [8],

h2
xx =

1
γ2 h2−2γ(hγ)2

xx − (γ − 1)2h−2h4
x − 2(γ − 1)h−1h2

xhxx , (189)

where γ is a positive constant.
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Using (189) in (188) and collecting the likely terms together we obtain that

L1 = − c1L1,1 − c1(α + n − 2γ + 1)L1,2

− (p − 1)
γ2

∫ t

0

∫

Ω

ζ4hα+n−2γ+1(h2
x)p/2−1(hγ)2

xxdxdt

+ (p − 1)(γ − 1)2
∫ t

0

∫

Ω

ζ4hα+n−3(h2
x)p/2−1h4

xdxdt

=: −c1L1,1 − c3L1,2 − c4L1,3 + c5L1,4, (190)

where in (190) we define the quantities on the right hand side according to the occurrence of the

quantities on the left hand side.

Before proceeding further we prove the following result.

Lemma 16 : One has the following integration by parts relations.

L1,2 = − (α + n − 2)
(p + 1) L1,4 −

1
(p + 1)

∫ t

0

∫

Ω

(ζ4)xhα+n−2(h2
x)p/2−1h3

xdxdt

=: −c6L1,4 − c7L1,5. (191)

L1,1 =
(α + n − 1)

p L1,5 −
1
p

∫ t

0

∫

Ω

(ζ4)xxhα+n−1(h2
x)p/2−1h2

xdxdt

=: −c8L1,5 −
1
p L1,6. (192)

Proof: This is a straight forward calculation.

�

Using (191) and (192) and also collecting the likely terms together we finally obtain that

L1 = −c4L1,3 − c(α + n, γ)L1,4 + R1. (193)

Here,

c(α + n, γ) := −[(p − 1)(γ − 1)2 +
(p − 1)
(p + 1) (α + n − 2γ + 1)(α + n − 2)] (194)

and

R1 = K1L1,5 + ( p − 1
p )L1,6, (195)
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where

K1 := (p − 1)
p (α + n − 1) − (p − 1)

(p + 1) (2γ − 1 − (α + n)). (196)

One can easily obtain that

c(α + n, γ) = 0⇔ γ = γ1 or γ = γ2, (197)

where γ1 and γ2 are given by (177) and (178) respectively. Moreover,

c(α + n, γ) ≥ 0⇐⇒ γ1 ≤ γ ≤ γ2. (198)

Now we start estimating L2. For this purpose we write

1
α

Pε(h)gε (h) = m(h) + cεPε(h), (199)

where

m(h) := 1
α

Pε(h)[ αε

(α + n − 2 − p/(p − 1)) h(α+n−2−p/(p−1)) + hα], (200)

and

cε := − 1
α

Aα − ε

(α + n − 2 − p/(p − 1)) A(α+n−2−p/(p−1)) . (201)

Using these we can rewrite L2 as

L2 =

∫ t

0

∫

Ω

(ζ4)xm(h)[(h2
x)p/2−1hxx]xdxdt

+ cε
∫ t

0

∫

Ω

(ζ4)xPε(h)[(h2
x)p/2−1hxx]xdxdt

=: L2,1 + cεL2,2. (202)

One keeps the second term and integrates by parts the first term to obtain

L2 = cεL2,2 −
∫ t

0

∫

Ω

[(ζ4)xm(h)]x[(h2
x)p/2−1hxx]dxdt =: cεL2,2 − L2,3. (203)

To proceed further we need to prove the following result.

Lemma 17 : One has the following integration by parts relation.
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−L2,3 =
1

(p − 1)

∫ t

0

∫

Ω

(ζ4)xxxm(h)(h2
x)p/2−1hxdxdt

+
2p − 1

p(p − 1)

∫ t

0

∫

Ω

(ζ4)xxm′(h)(h2
x)p/2−1h2

xdxdt

+
1
p

∫ t

0

∫

Ω

(ζ4)xm′′(h)(h2
x)p/2−1h3

xdxdt

=: c4L2,4 + c5L2,5 + c6L2,6. (204)

Proof: This is a straight forward calculation.

�

Using (204) and also collecting likely terms together, we finally deduce that

L2 = cεL2,2 + c5L2,5 + c6L2,6

− 1
(p − 1)

∫ t

0

∫

Ω

(ζ4)xxxx (h2
x)p/2−1 M1(h)dxdt

− (p − 2)
(p − 1)

∫ t

0

∫

Ω

(ζ4)xxx(h2
x)p/2−2hxhxx M1(h)dxdt

=: cεL2,2 + c5L2,5 + c6L2,6 − c7L2,7 − c8L2,8, (205)

where

M1(h) :=
∫ h

0
m(r)dr.

Let s ∈ (0, A), by considering the definitions of m(h) and Pε , we can deduce the following

estimates

|m(s)| ≤ K2sn+α, |m′(s)| ≤ K3sn+α−1; (206)

|m′′(s)| ≤ K4 sn+α−2, |M1(s)| ≤ K5 sn+α+1. (207)

Using these estimates we will bound R1 + L2. But first we state the following result.

Lemma 18 : One has the following integration by parts relation.
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L2,8 = − 1
(p − 2)

L2,7 −
1

(p − 2)

∫ t

0

∫

Ω

(ζ4)xxx(h2
x)p/2−2m(h)h3

xdxdt

=: − 1
(p − 2)

(L2,7 + L2,9
)

. (208)

Proof: This is a straight forward calculation.

�

Using these, together with the smoothness of ζ, we obtain that

|R1 + L2| ≤ |cε |
∫ t

0

∫

Ω

(ζ4)xPε(h)[(h2
x)p/2−1hxx]xdxdt

+ C2

∫ t

0

∫

Ω

ζ2hα+n−1(h2
x)p/2−1h2

xdxdt

+ C3

∫ t

0

∫

Ω

ζ3hα+n−2(h2
x)p/2−1 |h3

x |dxdt

+ C4

∫ t

0

∫

Ω

hα+n+1(h2
x)p/2−1dxdt

+ C5

∫ t

0

∫

Ω

ζhα+n(h2
x)p/2−1|hx |dxdt

=: |cε |L2,r,1 +C2L2,r,2 +C3L2,r,3 +C4L2,r,4 +C5L2,r,5. (209)

The first term in (209) is uniformly bounded by the dissipation result and uniform boundedness

of the terms cε and Pε(h). Indeed, by the Hölder’s inequality we have that

|cε |L2,r,1 ≤ |cε |
(∫ t

0

∫

Ω

Pε(h)([(h2
x)p/2−1hxx]x)2dxdt

)1/2 (∫ t

0

∫

Ω

|(ζ4)x|2Pε(h)dxdt
)1/2

≤ C′|cε |
(∫ t

0

∫

Ω

|(ζ4)x|2Pε(h)dxdt
)1/2
≤ C′′, (210)

where we have used the dissipation result, and uniform boundedness of cε , Pε(h) and |(ζ4)x|.

Now, we will show that last two terms in (209) are uniformly bounded. Indeed, by the Hölder’s

inequality we have that

C4L2,r,4 ≤ C4

(∫ t

0

∫

Ω

(h2
x)p/2dxdt

)(p−2)/p (∫ t

0

∫

Ω

h
p
2 (α+n+1)dxdt

)2/p
≤ C, (211)

where we have used the energy dissipation and the fact that p
2 (α + n + 1) > 0.

Similarly, we have that
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C5L2,r,5 ≤ C5

(∫ t

0

∫

Ω

(h2
x)p/2dxdt

)(p−1)/p (∫ t

0

∫

Ω

ζhp(α+n)dxdt
)1/p
≤ C, (212)

where again we used the energy dissipation and the fact that p(α + n) > 0. Collecting these re-

sults together and using the fact that ζ is a smooth bounded function and hε is a smooth, positive

function(so that it is bounded from below), we deduce from (209) that

|R1 + L2| ≤ C′1

+ c6

∫ t

0

∫

Ω

(h2
x)p/2−1h2

xdxdt

+ c7

∫ t

0

∫

Ω

(h2
x)p/2−1 |h3

x |dxdt

=: C′1 + c6L2,r,6 + c7L2,r,7, (213)

where C′1, c6, c7 are constants. To bound the last two terms in (213), we let β = 0 in (132) and we

deduce that

∫ t

0

∫

Ω

[(h2
x)p/4

x ]2dxdt < ∞. (214)

Using this we obtain that

∫ t

0
||hx ||pL∞dt =

∫ t

0
||(h2

x)p/2||2L∞dt ≤ c
∫ t

0

∫

Ω

[(h2
x)p/4

x ]2dxdt ≤ C. (215)

Now, rewriting the the second term in (213) we have that

|c6|L2,r,6 = |c6|
∫ t

0

∫

Ω

|hx |pdxdt ≤ |c6|
∫ t

0

∫

Ω

||hx ||pL∞dxdt ≤ 2aC. (216)

Similarly, the last term in (213) can be bounded by

|c7|L2,r,7 =

∫ t

0

∫

Ω

|hx |p+1dxdt ≤
∫ t

0
||hx ||L∞ (

∫

Ω

|hx|pdx)dt ≤ C
∫ t

0
||hx ||L∞dt ≤ C1. (217)

Collecting what we have obtained so far we finally deduce that

1
α

∫

Ω

ζ4Gε(h(x, t))dx + c4L1,3 + c(α + n, γ)L1,4 ≤
1
α

∫ a

−a
ζ4Gε(h0ε (x))dx + K̄, (218)
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where K̄ is a constant. Notice that by assumption

1
α

∫

Ω

ζ4Gε(h0ε (x))dx ≤ K′, (219)

where K′ is a constant independent of ε. Finally using (219) in (218) and the definition of G ε we

deduce that(now we start using the original notation...)

c4L1,3 + c(α + n, γ)L1,4 +
ε

c∗(c∗ − 1)

∫

Ω

ζ4hc∗
ε (t, x)dx ≤ − 1

α(α + 1)

∫

Ω

ζ4hα+1
ε (t, x)dx + K̃

⇐⇒

c4L1,3 + c(α + n, γ)L1,4 + c̃∗L̃ ≤ −cαLα + K̃, (220)

where c∗ = α+n− p
(p−1) −1 and K̃ is a constant independent of ε. Note that Lα is uniformly bounded

if α + 1 > 0 and has a negative coefficient when α + 1 < 0, we then deduce that

c4L1,3 + c(α + n, γ)L1,4 + c̃∗L̃ + |cα|Lα ≤ K∗ (221)

where K∗ is a constant independent of ε. Since the terms on the left hand side of (221) are nonneg-

ative, we obtain that for t ∈ (0,T ]

Lα ≤ C∗1, (222)

where C∗1 is a constant independent of ε.

Moreover, we also obtain that

L1,3 ≤ C∗3, (223)

where again C∗3 is a constant independent of ε. Choosing α, n and γ so that c(α+n, γ) > 0, we finally

deduce that

L1,4 ≤ C∗4, (224)

where C∗4 is a constant independent of ε.

One can modify the calculations for α , 1 and obtain
∫

Ω
ζ4| ln(hε (t, x))|dx ≤ C∗2 for t ∈ (0,T ].

�
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Corollary 19 (A useful integral estimate) : Let α , 0 and γ be real numbers satisfying

p − 1
p < α + n < 2,

α + n + p − 1 < 3γ < α + n + p − 1 +
√

(α + n − 2)(p − 1 − p(α + n)). (225)

Let T > 0, and assume that h0, h0ε , Pε , ζ satisfy the conditions of the proposition and let hε be the

solution of the regularized problem (73) with the initial condition

h(0, x) = h0ε (x), x ∈ Ω,

and with boundary conditions (69). Then, there exists a constant C, independent of ε, such that
∫ t

0

∫

Ω

ζ4|(|(hγε )x|(4−q)/q)x|q(h2
εx)p/2−1dxdt ≤ C, (226)

where

q = 4γ − 1 − n − α
γ

∈ (1, 2). (227)

Proof. By the proposition 16 hε satisfies the integral estimates. We can rewrite (179) as
∫ t

0

∫

Ω

ζ4(hγε )4
xhα+n+1−4γ
ε (h2

εx)p/2−1dxdt ≤ C∗3.

Note also that we write (226) in the given form as constants were worked out in [8]. This simplifies

some of the calculations below.

We will choose q ∈ (1, 2) and λ > 0 below and we set p∗ = 4−q
q . We apply the Hölder’s

inequality with exponents p′ = 2/q and q′ = 2/(2 − q) to obtain that

∫ t

0

∫

Ω

ζ4|(|(hγε )x |p
∗ )x|q(h2

εx)p/2−1dxdt

≤ C
(∫ t

0

∫

Ω

ζ4|(hγε )xx |2h2γ/q
ε (h2

εx)p/2−1dxdt
)q/2 (∫ t

0

∫

Ω

ζ4|(hγε )x |4h−2γ/(2−q)
ε (h2

εx)p/2−1dxdt
)(2−q)/q

.(228)

Hence, to proceed further we need to show that we can choose λ > 0 and 1 < q < 2 such that

−λ 2
2 − q ≥ α + n + 1 − 4γ, 2λ

q ≥ α + n + 1 − 2γ. (229)

Setting q as in (227) and

λ =
2 − q

2
(4γ − 1 − n − α),
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we see that in order to show that (229) is satisfied we need to assume (225). This completes the

proof.

�

Corollary 20 (The case T = +∞) : Let α , 0 and n > 0 satisfy

p − 1
p ≤ α + n ≤ 2,

and let γ satisfy

γ1 ≤ γ ≤ γ2, (230)

where

Let h0, h0ε and Pε satisfy the conditions given in the Proposition 16, and let ζ = 1 in [−a, a]. If

hε is the solution of (73) with no flux boundary conditions then there exist constants C1,C2 which

are independent of ε such that

∫ ∞

0

∫

Ω

hα+n−2γ+1
ε (hγε )2

xx(h2
εx)p/2−1dxdt ≤ C1, (231)

and if p−1
p < α + n < 2, then

∫ ∞

0

∫

Ω

hα+n−3
ε h4

εx(h2
εx)p/2−1dxdt ≤ C2. (232)

If α, n and γ satisfy (227), then there exists a constant C3, which is independent of ε such that
∫ ∞

0

∫

Ω

|(|(hγε )x |(4−q)/q)x|q(h2
εx)p/2−1dxdt ≤ C3, (233)

where q is defined by (227).

Proof. The proof of the Proposition 16 and the proof of the Corollary 20 work if we take Q =

(0,∞) ×Ω instead of QT = (0,T ) ×Ω and take ζ ≡ 1 in [−a, a].

�

Lemma 21 (Integral estimates for h) : Let α , 0 and n > 0 satisfy

p − 1
p < α + n < 2.
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Let h0 satisfy the conditions of the Proposition 16 above with ζ ≡ 1 in [−a, a], and let h be a solution

of the problem (67), (68) and (69). Then

∫ ∞

0

∫

Ω

hα+n−3h4
x(h2

x)p/2−1dxdt < ∞, (234)

and for almost every t > 0 there exists a constant C(t) < ∞ such that

if h(t, y) = 0 for some y ∈ [−a, a], then

|h(t, x)| ≤ C(t)|x − y|m, f or x ∈ [−a, a], (235)

where

m := p + 1
α + n + p − 1 .

Moreover, if α, n and γ satisfy (225), then
∫ ∞

0

∫

Ω

|(|(hγ)x|(4−q)/q)x|q(h2
x)p/2−1dxdt < ∞, (236)

where q is defined by (227).

Proof. Notice that we write (236) in the above form because the constants are already worked out

in [8]. By (87) and (180), we deduce that

(hτ1
εk )x → (hτ1 )x, weakly in Lp+2

loc (Q̄) as εk → 0,

where

τ1 := α + n + p − 1
p + 2 . (237)

This shows that (234) holds.

Claim1. We have the following convergence result.

(hτεk )x → (hτ)x

strongly in Lp+2
loc (Q̄), as εk → 0 for any τ > τ1, where τ1 is given by (237)

Proof of Claim1. We have

|(hτεk )x − (hτ)x | ≤ |hτ−τ1
εk − hτ−τ1 ||(hτ1

εk )x | + hτ−τ1 |(hτ1
εk )x − (hτ1 )x |. (238)
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Notice that (87) and (180) imply that the first term on the right hand side of (242) converges strongly

to 0 in Lp+2
loc (Q̄).

For the second term we fix T and consider the sets

Q1
r := {(t, x) ∈ QT : 0 ≤ h ≤ r}

and

Q2
r := {(t, x) ∈ QT : h > r},

where r is an arbitrary positive number. Since τ > τ1 we deduce from (234) and (180) that
"

Q1
r

h(p+2)(τ−τ1 )|(hτ1
εk )x − (hτ1 )x|dxdt → 0

uniformly in εk as r → 0. On the other hand, since the derivatives of hεk converge uniformly on

compact subsets of the set Q2
r we deduce immediately that

"
Q2

r

h(p+2)(τ−τ1)|(hτ1
εk )x − (hτ1 )x |dxdt → 0 as εk → 0.

Hence the proof of the claim is complete.

Now note that we can rewrite (234) as follows:
"

Q
|(((hr)x)b)x|qdxdt ≤ C < ∞, (239)

where

r := 1 +
(1 − 1

γ
)(α + n + 1)

p + 2 − q , (240)

b := p + 2 − q
q , (241)

and q is given by (227).

As γ > τ1 and 2+p−q
q < p + 2, by claim1 we deduce that (hγεk )x → (hγ)x strongly in L

p+2−q
q

loc (Q̄) as

εk → 0. Hence, we may pass to the limit as εk → 0 and deduce that (234) holds.

Since p−1
p < α+ n < 2 there exists γ as assumed in the statement of lemma. Also , by (239) and

the Sobolev Embedding theorem, for almost every t > 0, there exists a constant C1(t) < ∞ such that

||(hr)x |b(t, x) − |(hr)x |b(t, y)| ≤ C1(t)|x − y|
q−1

q ,∀x, y ∈ [−a, a],
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where b and r are given by (241) and (240) respectively. Hence, assuming h(t, y) = 0 and integrating

this inequality yield (235).

�

3.7 Regularity and Large-Time Behavior of Solutions

Proof of Theorem 2

We note that since 0 < n < 3 we may choose α > −1(α , 0) satisfying the conditions necessary

for the integral estimates proved above. Moreover, it is enough to show that

if 0 < b < bn, then there is a constant τ > 0 such that for almost every t > 0 there exists C(t) < ∞

such that

if h(t, y) = 0, then

|(h1/b)x(t, x)| ≤ C(t)|x − y|τ, x ∈ Ω. (242)

By the integral estimates for the solution h of the problem (67), (68) and (69) we deduce that if

h(t, y) = 0, then for some finite constant C, we have that

|h(t, x)| ≤ C(t)|x − y|
p+1

α+n+p−1 , (243)

where p−1
p < α + n < 2. We also have from the proof of Lemma 21 that if h(t, y) = 0, then

|(hr)x | ≤ C(t)|x − y|
q−1
bq , (244)

where

b = p + 2 − q
q , r = 1 +

(1 − 1
γ
)(α + n + 1)

p + 2 − q ,

γ is a positive constant which was extensively used in the calculations above and q is given by

q = 4γ − (α + n + 1)
γ

∈ (1, 2). (245)

Combining (243) and (244) and assuming br < 1, we deduce that

|(h1/b)| ≤ C(t)|x − y|(
1
br−1) r(p+1)

α+n+p−1 |x − y|
q−1

p+2−q

≤ C(t)|x − y|
1
b ( p+1

α+n+p−1 )−1
. (246)
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Therefore to proceed we have to prove that

Given 0 < n < 3 and 0 < b < bn, we can choose α > −1(α , 0) and γ satisfying

(i) br < 1,

(ii) p−1
p < α + n < 2,

(iii) α + n + p − 1 < 3γ < α + n + p − 1 +
√

(α + n − 2)(p − 1 − p(α + n)).

Notice that once we prove these, then (242) follows with τ = 1
b

p+1
α+n+p−1 − 1. We begin by

choosing γ by

γ =
1
bn
+ ν =























p−1
p + ν if 0 < n ≤ 3 (p−1)

p

n
3 + ν if 3 (p−1)

p ≤ n < 3,

Note that (i) is satisfied if

0 < ν < dn := min(ν1, ν2),

where

ν1 := α + n + 1
(α + n + 1)b − p + 2 −

p − 1
p , ν2 := α + n + 1

(α + n + 1)b − p + 2 −
n
3 .

We now fix ν ∈ (0, dn) and we choose α by

α =
3
bn
− n − 1 + µ =























3 p−1
p − n − 1 + µ if 0 < n ≤ 3 (p−1)

p

−1 + µ if 3 (p−1)
p ≤ n < 3,

,

where µ > 0 so that α , 0. Clearly, α > −1. α + n >
p−1

p is satisfied as p ≥ 2. On the other hand,

α + n + p − 1 < 3γ is satisfied if µ < 3ν + 2 − p. As p ≥ 2 this says µ < 3ν = 3(1 − 1
bn

). Thus,

α + n < 2. Finally, we note that the last inequality in (iii) is valid if 0 < µ < 3ν + 2 − p such that

3ν + 2 − p − µ is small enough.

This completes the proof. �

Proof of Theorem 3: From the integral estimates proved above for the equation under consideration

we deduce that
∫ T

0

∫ a

−a
|(hM )x|Rdx < ∞, (247)
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where

M := α + n − 3
p + 2 + 1, R := p + 2.

From this, if we define

K(t) := max
[−a,a]

h
α+n+p−1

p+2 (t, ·) − min
[−a,a]

h
α+n+p−1

p+2 (t, ·),

we deduce that K ∈ L1(R). Thus, K(t) → 0 as t → ∞ as K(t) is uniformly continuous in R+(by

uniform Hölder continuity of u). Hence, we deuce that

max
[−a,a]

h(t, ·) − min
[−a,a]

h(t, ·)→ 0 as t → ∞. (248)

Combining (248) with the mass conservation we conclude the theorem.

�

3.8 Support properties of Solutions

Proof of Theorem 4:

(i): Let h0(x) > 0 in some interval (b, c) ⊂ (−a, a) and let ζ be a smooth nonnegative function

with support in (b, c). First assume that n > 1 + (p−1)
p . Then, we can find an α < −1 satisfying

p−1
p ≤ α + n < 2 such that

∫

Ω

ζ4hα+1(t, x)dx < ∞, f or t > 0. (249)

Since α < −1 we obtain the result in this case.

Now, if n = 1 + (p−1)
p , then we choose α = −1 and we know that

∫

Ω

ζ4| ln(h(t, x))|dx f or t > 0 (250)

But this implies the result.

(ii): Since h0(x0) > 0 and h0 is continuous there exists a δ > 0 such that h0(x) > 0 for x ∈

(x0 − 2δ, x0 + 2δ). Let ζ(x) be a smooth nonnegtaive function with support in (x0 − 2δ, x0 + 2δ)

satisfying

0 ≤ ζ ≤ 1 in [−a, a], ζ ≡ 1 in [x0 − δ, x0 + δ].
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Then h0 > 0 in the support of ζ and hence (249) holds for α , −1, Since, n >
p

p−1 we can choose
p−1

p − n < α < −1 such that p+1
α+n+p−1 (α + 1) ≤ −1. By (235) we get a contradiction and this proves

the result.

(iii): Suppose that the assertion is not true. i.e. h(t, x0) = 0. Since n ≥ 1 + (p−1)
p +

p
(p−1) we may

choose α such that p−1
p < α < −1 such that p−1

p (α+ 1) ≤ −1 and this yields a contradiction to (249),

by uniform Hölder continuity of h(t, x) in x.

(v): We suppose on the contrary that there exists a time t > 0, a constant δ > 0 and a smooth

function φ with support in Ω satisfying

h(t, x) > δ > 0 for x ∈ supp(φ),

supp(φ) ∩ supp(h0) = ∅.

Let c > 0 be a constant. By the dissipation results, we proved in the introduction of this chapter,

we deduce that ht ∈ L2(0,T ; H−1((−a, a))). Thus, we may choose ψ = φ

h+c as test function in (251)

given by

"
Q

hψtdxdt +
"

P
hn((h2

x)p/2−1hxx)xψxdxdt = 0. (251)

This gives us
∫

Ω

φ(x) ln(h(t, x) + c)dx −
∫

Ω

φ(x) ln(h0(x) + c)dx

=

"
P∩Qt

((h2
x)p/2−1hxx)x

φ′hn

h + cdxdt −
"

P∩Qt

((h2
x)p/2−1hxx)x

φhxhn

(h + c)2 dxdt =: L1 + L2. (252)

By the choice of φ, we know that
∫

Ω

φ(x) ln(h(x, t) + c)dx −
∫

Ω

φ(x) ln(h0(x) + c)dx → ∞ as c→ 0. (253)

Since n ≥ 2 + p/(p − 1), hn/2((h2
x)p/2−1hxx)x ∈ L2(P ∩ Qt), hx ∈ L2(Qt) and h is bounded in

Qt. Now, to get a contradiction, we will try to bound the last two terms in (252) uniformly. Let

Pt := P ∩ Qt.

|L1| ≤
("

Pt

hn((h2
x)p/2−1hxx)2

xdxdt
)1/2 ("

Pt

hn−2( φ
′h

h + c )2
)1/2
≤ C1. (254)
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|L2| ≤
("

Pt

hn((h2
x)p/2−1hxx)2

xdxdt
)1/2 ("

Pt

hn−(2+p/(p−1))(
φ2h2

xh2+p/(p−1)

h + c )4
)1/2

≤ C2. (255)

Since C1 and C2 are constants independent of c we get a contradiction.

�

3.9 Asymptotic Behavior of Nonnegative Solutions

In this section first we consider nonnegative smooth solutions and prove asymptotic decay and then

we do the same thing for nonnegative weak solutions. Some preliminary results proved in the

smooth case will also be useful for the weak solution case. The main idea is to control the rate of

decrease of the energy functional in terms of itself, which was the same motivation in [93]. For

certain reasons we divide this section into two parts.

Asymptotic Behavior of Nonnegative Smooth Solutions

In this section we will use the energy functional Hp( f ), defined in (65), to obtain asymptotic be-

havior of the nonnegative smooth solutions of the equation (67) with initial and boundary conditions

(68) and (69).

Note that
d
dt Hp[h(t, x)] = −(p − 1)2

∫

Ω

hn[(h2
x)p/2−1hxx]2

xdx ≤ 0.

Thus, Hp(h(t, x)) is a Lyapunov functional for nonnegative smooth solutions of (67).

Lemma 22 (A zero’th order dissipated energy) : Let h be a nonnegative smooth solution of the

problem (67), (68) and (69) with p ≥ 1. Then

t →
∫

Ω

h2−ndx, n ≥ 2

is non increasing.

Proof: Indeed by differentiating and integrating by parts we have that, for simplicity we write

h = h(t, x),
d
dt

∫

Ω

h2−ndx = (2 − n)
∫

Ω

h1−nhtdx
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= −(n − 2)(n − 1)(p − 1)
∫

Ω

(h2
x)p/2−1h2

xxdx ≤ 0,

as n ≥ 2 and p ≥ 1.

�

Proof of Lemma 5: Note that an integration by parts yields that

pHp(u) = −(p − 1)
∫

Ω

u[(u2
x)p/2−1uxx]dx.

Keeping this in mind we also note that for all x0, x ∈ Ω one has by Cauchy-Schwartz inequality that

−
∫ x

x0

u[(u2
x)p/2−1uxx]x ≤ (

∫

Ω

u2

ψ(u)
dx)1/2(

∫

Ω

ψ(u)[(u2
x)p/2−1uxx]2

xdx)1/2. (256)

On the other hand, by integration by parts we have

−
∫ x

x0

u[(u2
x)p/2−1uxx]xdx = −u(x)[(u2

x)p/2−1uxx](x)+u(x0)[(u2
x)p/2−1uxx](x0)+

∫ x

x0

ux(u2
x)p/2−1uxxdx.

Thus, if we denote the right hand side of (256) by A ∈ [0,∞) we have, by assuming u x(x0) = 0

A ≥ −u(x)(u2
x)p/2−1uxx(x) + 1

p (u2
x)p/2(x).

Now integrating this in x over Ω and applying integration by parts to the first integral we finally

deduce that

A ≥ CHp(u),

where

C := 2p − 1
2ap(p − 1) .

This immediately gives the result.

�

Proof of Proposition 6:

(i) By the energy dissipation, we deduce that t → ||hx ||Lp(Ω) is non increasing. Moreover, since

the mass of h0 is finite there exists a constant K = K(p) such that

||h(t, x)||L∞(Ω) ≤ K||h0x ||Lp =: R0.
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Using Lemma 5 with ψ(h) ≡ hn and u ≡ h we deduce that

E[h]D[h] ≥ CH2
p[h],

where

E[h] :=
∫

Ω

h2−ndx, (257)

D[h] :=
∫

Ω

hn[(h2
x)p/2−1hxx]2

xdx, (258)

and

C1 := 2p − 1
2pa(p − 1)

.

On the other hand since 0 < n < 2 we have

E[h] ≤ R2−n
0

∫

Ω

dx = 2aR2−n
0 .

Thus, we have that

D[h] ≥ C[Hp(h)]2,

where

C :=
[ 2p−1

2pa(p−1) ]2

2aR2−n
0

p2.

(ii) Note that the above proof works and C = [ 2p−1
2pa(p−1) ]2 p2

2a .

(iii) By Lemma 5 and Lemma 22 we deduce that

D[h] ≥ C2H2
p[h],

where

C2 :=
[ 2p−1

2pa(p−1) ]2
∫

Ω
h2−n

0 dx
.

This easily gives the result. Note that we can get the proof of (ii) from here as well.
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By the Proposition 6 we deduce that

Hp[h(t, x)] ≤ [Hp[h0]−1 +Ct]−1, t > 0. (259)

Hence, from this, Hp(h(t, x)) becomes sufficiently small after some finite time and so h(t, x)

becomes uniformly bounded from below away from 0. From this point on we can then deduce from

linearization that there is an exponential decay.

Asymptotic Behavior of Nonnegative Weak Solutions

We now consider a weak solution of the problem (67), (68) and (69). We assume that
∫

Ω

h0(x)2−ndx < ∞, n > 2 (260)

∫

Ω

| log(h0(x))|dx < ∞, n = 2. (261)

and also
∫

Ω
h0(x)dx =: M < ∞. These assumptions guarantee the existence of a weak solution.

Recall also the entropy Hε defined by

Hε(h) =
∫

Ω

Gε(h)dx,

where

G′′ε (h) = 1
Pε(h) ,

and Pε(h) is given by (72).

Case 0 < n < 1 or n > 2

In this case we have that

Hε[h] =
∫

Ω

ε

c(c − 1)
hc + cnh2−ndx, (262)

where

c := 2 − (p + p/(p − 1)), (263)
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and

cn := 1
(n − 1)(n − 2) . (264)

Note also that both of the terms appearing in (262) are positive and we have, by the dissipation of

the entropy Hε , that

Hε[h0ε ] ≥























1
c(c−1)

∫

Ω
[εhc + h2−n]dx if 1

c(c−1) > cn,

cn
∫

Ω
[εhc + h2−n]dx if cn >

1
c(c−1) .

Note also that it is not difficult to show

Hε[h0ε ] ≤
∫

Ω

[

Cpε
(1−c)θ + cnh2−n

0
]

dx,

where c and cn are given by (263) and (264) respectively and C p is a finite constant depending on

p. This clearly gives a uniform upper bound on Hε[hε ] as ε ↘ 0.

Proof of Proposition 7 : Given t > 0, we first note that it is not difficult to show that Hε[h0ε ] is

bounded from above and from below uniformly in ε as ε ↘ 0. Note also that

Hp[h0ε ] = Hp[h0],

Hε[h0ε ]→ cnE[h0],

where cn and E are given by (263) and (257) respectively. Applying the Lemma 5 with u ≡ hε(t, x)

and ψ ≡ Pε(hε (t, x)) and noticing that

h2
ε

Pε(hε )
=

ε

hc
ε

+ h2−n
ε ,

where c is given by (263), we deduce that

cpnHε[h0ε ]Dε[hε ] ≥ KpH2
p[hε (t, x)], (265)

where cpn,Kp are positive constants which can be determined explicitly(we leave this for the reader),

and

Dε[hε ] :=
∫

Ω

Pε(hε (t, x)){[(h2
εx)p/2−1hεxx]x}2dx. (266)

On the other hand, we have

d
dt Hp[hε (t, x)] = −(p − 1)Dε[hε (t, x)], (267)
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where Dε is given by (266). Combination of (265) and (267) and letting ε → 0 finishes the proof.

�

Clearly the Proposition 7 yields that

Hp[h(t, x)] ≤ Hp[h0]
(

1 + τ1Hp[h0]t
)−1

, τ1 > 0. (268)

This implies that whenever Hp[h(t, x)] is small enough h(t, x) becomes bounded below away from

0, and after this point on we have exponential decay by linearization.

Remaining case for n :

Now we consider the remaining case. First let us introduce the notation. For t ≥ 0 we define

Jε(t) := 1
p

∫

Ω

|hεx|pdx,

and

Iε(t) := (p − 1)
∫

Ω

Pε
[

(h2
εx)p/2−1hεxx

]2
x dx,

where Pε is given in (72). It is easy to see that

−
∫

Ω

P1/2
ε

[

(h2
εx)p/2−1hεxx

]

x hεxdx ≤ (CIε Jε)1/2,

where C is a positive constant depending on p, |Ω|, ||h0x ||Lp(Ω). We also use the following notation

gε(s) := P1/2
ε (s). For future reference we compute

gε (s) = s(2+p/(p−1))/2
(

ε + s2+p/(p−1)−n)−1/2

and from this one easily gets

g′′ε (s) = (ε + sm)−5/2
[

C1εsα+m−2 +C2ε
2 sα−2 +C3s2m+α−2

]

,

where

α := p
2(p − 1) + 1, m := 2 + p

p − 1 − n, (269)

C1 := (−3
2
αm + α(α − 1) + (α − 1

2
m)(α + m − 1)),

C2 := α(α − 1),

C3 := (α − 1
2

m)(α + m − 1) − 3
2

m(α − 1
2

m).
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Note that for n ∈ [1, 2]
p

(p − 1) ≤ m ≤ 1 + p
(p − 1) < 2 + p

(p − 1) ,

which is the analogous inequality for our case. Note that this actually works for 0 < n < 2 + p
(p−1) .

It is not difficult to see that the coefficients C1 and C3 are non negative and hence we can eliminate

the terms involving C1 and C3. This leads to

(CIε Jε)1/2 ≥
∫

Ω

gε(hε )(h2
εx)p/2−1h2

εxxdx

− ε2α(α − 1)
(p + 1)

∫

Ω

(ε + hm
ε )−5/2hα−2

ε (h2
εx)p/2−1h4

εxdx

=: I1 −
1

(p + 1)
C2ε

2I2,2. (270)

It is also not difficult to obtain an upper bound for the L∞ norm of h(t, .) uniformly in t. Let Mε be

the upper bound for |hε |L∞(Ω). Also we can easily deduce that

gε(hε ) ≥ (ε + Mm
ε )−1/2(ε + Mε)−(p−2)/(2(p−1))h2

ε .

Using this we obtain that

(CIε Jε)1/2 ≥ (ε + Mm
ε )−1/2(ε + Mε)−(p−2)/(2(p−1))

∫

Ω

h2
ε (h2

εx)p/2−1h2
εxxdx

− 1
(p + 1)C2ε

2I2,2 =: Lε J1 −
1

(p + 1)C2ε
2I2,2. (271)

For the second term in (271), using exactly the same idea as in Lemma 2 of [93], we obtain.

(CIε Jε)1/2 ≥ Lε J1 − S εε
w
∫

Ω

h−2
ε (h2

εx)p/2−1h4
εxdx

= Lε J1 − S εε
w J2. (272)

We note that the constants can be determined explicitly and moreover S ε is a finite constant with

S ε → S as ε → 0 and S is finite. On the other hand, Lε → L, where L is finite constant, as ε → 0.

To proceed further we need to use Lemma 11 and prove the following Lemma that is analogous

to Lemma 4 of [93].

Lemma 23 : Let v := hε be the solution of (73). Then there exists constants C and α such that
∫

Ω

v2(v2
x)p/2−1v2

xxdx ≥ Crα
∫

Ω

|vx |pdx, (273)
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where r :=
∫

Ω
hεdx > 0.

Proof: Note that an integration by parts yields
∫

Ω

|vx |pdx = −(p − 3)
∫

Ω

v(v2
x)p/2−1vxxdx.

Note also that by Cauchy-Schwarz inequality

Jε(hε) ≤ C(Mε ,m)
(∫

Ω

h1+p/(2(p−1))
ε (h2

εx)p/2−1h2
εxxdx

)1/2
Jε(hε )(p−2)/p |Ω|4/p.

Letting J∗1 :=
∫

Ω
h1+p/(2(p−1))
ε (h2

εx)p/2−1h2
εxxdx we get

J∗1 ≥ A(Mε ,m, p, |Ω|)J4/p
ε , (274)

where A is a finite constant. For any 0 < λ < ( r
|Ω|C1

)p, where C1 is a constant given below, we have

J∗1 ≥ Cλ4/p−1(
∫

Ω
|hεx |pdx), if

∫

Ω
|hεx |pdx ≥ λ. On the other hand, by using Sobolev and Poincare

inequalities we also have

J∗1 ≥ C( r
|Ω|
−C1λ

1/p)p(
∫

Ω

|hεx|pdx),

whenever
∫

Ω
|hεx|pdx ≤ λ. It follows, as in [93], that

J∗1 ≥ min{Cλ4/p−1,C′( r
|Ω| −C1λ

1/p)p}
∫

Ω

|hεx |pdx

for 0 < λ < ( r
|Ω|C1

)p. It follows that

J∗1 ≥ CJε , (275)

where the finite constant C can be obtained explicitly, and it depends on m, p, |Ω|,
∫

Ω
hεdx and con-

stants of the Sobolev and Poincare inequalities. �

Combining what we have so far we deduce that

Cε Jε − (CIε Jε)1/2 ≤ CpCεε
w
∫

Ω

(h2
εx)p/2−1h2

εxxdx, (276)

from which we obtain

C2
pε Jε ≤ Iε +CpCεε

w
∫

Ω

(h2
εx)p/2−1h2

εxxdx. (277)
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Noting that Iε = d
dt Jε , we obtain from (277)

d
dt Jε ≤ −C∗pC2

ε Jε +CpCεε
w
∫

Ω

(h2
εx)p/2−1h2

εxxdx, (278)

where C∗p,Cε ,Cp,w are all positive. Applying a version of the Gronwall’s inequality we deduce

that

Jε(t) ≤ e−CpC2
ε t[Jε(0) +CpCεε

w
∫ t

0

∫

Ω

(h2
εx)p/2−1h2

εxxdxdt]

≤ e−CpC2
ε t Jε(0) +CpCεε

w
∫ t

0

∫

Ω

(h2
εx)p/2−1h2

εxxdxdt. (279)

Noting that w > 0,
∫ t

0

∫

Ω
(h2
εx)p/2−1h2

εxxdxdt < ∞ by the energy dissipation and Cε → C0 < ∞ as

ε → 0 and
∫

Ω

|hx|pdx ≤ lim inf
ε↘0

∫

Ω

|hεx |pdx,∀t > 0,

we pass to the limit as ε ↘ 0 and deduce finally that

J[h(t, .)] ≤ J[h0(·)] exp(−Ct),

where C is a finite positive constant.

�

Hence we proved the exponential decay directly in this case.

Remark : The approach of [93, 95] can be employed to similar equations. Consider the so called

“modified thin film equation” [11, 9, 18] given by

ut = −unuxxxx , (280)

under periodic or no-flux boundary conditions. Here if one considers the energy functional E[u(t, x)] :=
∫

Ω
u2

xxdx then the following dissipation result holds for positive smooth solutions of (280).

d
dt

∫

Ω

u2
xxdx = −

∫

Ω

unu2
xxxxdx.

On the other hand we also have by Cauchy-Schwarz inequality that

∫

Ω

uuxxxxdx ≤
(∫

Ω

unu2
xxxx

)1/2 (∫

Ω

u2−n
)1/2

.
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This yields after integration by parts, and using the boundary conditions that

D[u(t, x)] :=
∫

Ω

unu2
xxxxdx ≥ E2[u(t, x)]

∫

Ω
u2−ndx

. (281)

Thus, if n ≤ 2 then we have

D[u(t, x)] ≥ CE2[u(t, x)].

Finally, we obtain that

E[u(t, x)] ≤ E[u0]
1 +CE[u0]t , (282)

where u0(x) = u(t = 0, x). Note that (282) gives a polynomial decay of positive smooth solutions of

(280).
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CHAPTER IV

DETAILS OF THE RESULTS ON THE CAUCHY PROBLEM (95)

4.1 Introduction

In the remaining part of the thesis we study the asymptotic behavior of smooth solutions h(t, x) to

the thin film equation

ht = − (hhxxx)x , x ∈ R, t > 0, (283)

with

h(0, x) = h0(x) ≥ 0, x ∈ R. (284)

Equation (283) is a special case of the so-called thin film equation

ht = −(hnhxxx)x, x ∈ R, t > 0, (285)

for n > 0. (285) has been derived from a lubrication approximation to model the surface tension

dominated motion of viscous liquid films and spreading droplets [12, 19, 72].

We show that for a fairly general class of initial data, the classical solutions of (283) converge

toward certain self–similar solutions in the H1(�) norm. We also estimate the rate of convergence.

Previous work [27] had established this convergence in the L1(�), and while these authors raised

the question of H1(�) convergence, which is natural for the equation, their methods did not address

the issue.

In what follows here, we make use of functionals involving higher order derivatives, and to

justify the calculations we make, we must assume that the solutions with which we work are clas-

sical. This is in contrast to the work in [27], where strong solutions were treated. The results in

[17], where the issue of finite time blow up of solutions for the thin film type equations has been

discussed, show that in general it is possible for classical solutions to break down in finite time.

However, the equipartition mechanism that we introduce here provides a new perspective on equi-

libriation, and it may well be possible to establish it for a more general class of solutions.
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The equation (283) is gradient flow for the energy E0(u) where

E0(h) = 1
2

∫

R

h2
x(x)dx ,

in that

ht =

(

h
(

δE0(u)
δh

)

x

)

x
.

This has the consequence that for solutions h(t, ·), E0(h(t, ·)) is monotone decreasing in time. Also,

since the equation is also a conservation law, the total mass

M =
∫

R

h(t, x)dx

is conserved.

Moreover, the equation (283) has a scale invariance, and self–similar solutions. If one introduces

v(t, x) = α(t)h(β(t), α(t)x), (286)

where

α(t) = et and β(t) = e5t − 1
5 , (287)

it becomes

vt = (xv − vvxxx)x , x ∈ R, t > 0, (288)

v(0, x) = v0(x), x ∈ R. (289)

The equation (288) has a unique steady state, found by Smythe and Hill [91]:

v(∞)(x) = 1
24

(

C2 − x2
)2
+
, (290)

where g+ indicates the positive part of g, and where the constant C = C(M) is determined by the

requirement that
∫

R
v(∞)(x)dx =

∫

R
h0(x)dx. Source type solutions of the thin film equation (285) has

been studied in [10] and the uniqueness of the steady states of the rescaled equation in the general

case is derived from the uniqueness of source type solutions U(t, x) for (285), requiring U x(t, x) = 0

at the edge o the support.
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Clearly, if a solution v(t, x) of (288) approaches v(∞), the corresponding solution h(t, x) of (283)

approaches to the corresponding self–similar solution. For the investigation of the rates at which this

takes place, it is important that (288) also describes a gradient flow: Introduce the energy functional

E(v) where

E(v) = 1
2

∫

R

(v2
x(x) + x2v(x))dx .

Then, (288) can be rewritten as

vt =

(

v
(

δE(v)
δv

)

x

)

x
.

Clearly then, for any solution v(t, x) of (288), E(v(t, ·)) is non increasing in t. Define

E(v|v(∞)) = 1
2

∫

R

|vx − v(∞)
x |2dx ,

where v(∞) is the stationary solution with the same mass as v. Our goal is to estimate the rate of

at which E(v(t, ·)|v(∞)) converges to zero. Indeed, our analysis will provide the first proof that for

general initial conditions this convergence does indeed take place. Note that this convergence is

exactly the convergence of v(t, ·) to v(∞) in the H1(�) norm.

By using the explicit formula for the function v(∞) and proceeding as in the analysis of second-

order degenerate diffusion in [28] we obtain

E(v|v(∞)) = 1
2

∫

R

|vx − v(∞)
x |2dx

= E(v) − E(v(∞)) −
∫

{v(∞)=0}

x2

2 vdx − C2

6

∫

{v(∞)=0}
vdx

≤ E(v) − E(v(∞)), (291)

where C is the constant appearing in the definition of v(∞).

To estimate the rate of convergence in H1(�), it therefore suffices to prove that the excess energy,

E(v) − E(v∞), decreases to zero. Toward this end we define the energy dissipation, DE(v), given by

DE(v(t, ·)) = − d
dt (E(v) − E(v∞)) = − d

dt E(v) .

It follows from (288) that DE(v) is given by

DE(v) :=
∫

R

v (vxxx − x)2 dx (292)
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Our object here is to prove a lower bound on DE(v(t, ·)) in terms of E(v(t, ·)|v(∞)) which we shall

use to prove that for a broad class of initial data, limt→∞ E(v(t, ·)|v(∞)) = 0, and to estimate the rate

at which this convergence takes place.

In obtaining our energy dissipation bound, we shall make crucial use of an entropy dissipation

bound. Indeed, as shown in [27], the equation (288) can be written as

vt = −
(

Φ(v)
[

x2

2 + h(v)
]

xx

)

xx
+

(

v
[

x2

2 + h(v)
]

x

)

x
,

with h(v) =
√

6v1/2 and Φ(v) = vh′(v). This leads to the exact form of the entropy associated to the

unique steady state v(∞), given in (290), which is

H(v) =
∫

R















x2

2 v(x) + 2
√

2
3v3/2(x)















dx .

One defines the relative entropy by

H(v|v(∞)) = H(v) − H(v(∞)) .

As one can check, v(∞) minimizes H for given total mass. This relative entropy had already been

investigated earlier in the context of a second order evolution equation, namely a special case of the

porous medium equation for which v(∞) is also a stationary solution. In fact, the porous medium

equation in question is simply the gradient flow for H(v) in the same way that (288) is gradient flow

for the energy E. A truly remarkable discovery [27] of Carrillo and Toscani is that H(v(t, ·)) is also

monotone decreasing for solutions of (288), despite the fact that this equation is gradient flow for

the entropy and not the energy. Indeed, Carrillo and Toscani have proved that

d
dt H(v(t, ·)|v(∞)) ≤ −DH(v(t, ·))

where the partial entropy dissipation DH(v) is given by

DH(v) :=
∫

R

v
(

x2

2 +
√

6v1/2
)2

x
dx . (293)

We use the term partial since full entropy dissipation is the sum of two positive terms, one of which

is DH. Interestingly enough, DH is the exact entropy dissipation for H(v|v(∞)) for solutions of a

porous medium equation. Moreover, as was already established in the investigation of the porous

medium equation, one has the entropy–entropy dissipation bound

H(v|v(∞)) ≤ 1
2

DH(v) . (294)
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This has the consequence that for solution of (288)

H(v(t, ·)|v(∞)) ≤ e−2tH(v0|v(∞)) .

Unfortunately, DE is a much more complicated functional than DH, and we do not possess a

bound of this simple type relating E(v|v(∞)) and DE(v), and it is not even clear at this point that

E(v(t, ·)|v(∞)) will generally tend to zero at all.

We shall show here that this convergence does occur, and estimate the rate, using an equiparti-

tion theorem for solutions of (288).

To explain, consider any smooth solution of (288) with finite energy E(v(t, ·)). Define

α(v) = 1
2

∫

R

x2v(x)dx and β(v) = 1
2

∫

R

v2
x(x)dx

so that

E(v) = α(v) + β(v) .

By a simple computation,

d
dtα(v(t, ·)) = −2α(v(t, ·)) + 3β(v(t, ·)) .

It follows that

2α(v(∞)) = 3β(v(∞)) . (295)

Analogously to the way to we defined relative entropies and energies, we define α(v|v(∞)) and

β(v|v(∞)) respectively by

α(v|v(∞)) = α(v(t, ·)) − α(v(∞)) β(v|v(∞)) = β(v(t, ·)) − β(v(∞)).

Then, by (295),

2α(v|v(∞)) − 3β(v|v(∞)) = 2α(v) − 3β(v) . (296)

We shall prove here that for a general class of classical solutions to (288),

lim
t→∞

(2α(v(t, ·)) − 3β(v(t, ·))) = 0 . (297)

We refer to this as asymptotic equipartition for solutions of (288).
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To employ this, we use the entropic convergence result of Carrillo and Toscani to show that

furthermore,

lim
t→∞

(α(v(t, ·)) − α(v(∞))) = 0 . (298)

Combining (295), (297) and (298), we then have that

lim
t→∞

(β(v(t, ·)) − β(v(∞)) = 0 . (299)

Combining ( (298) and (299), we then have that limt→∞ E(v(t, ·)|v(∞)) = 0. In proving all of this

we shall keep track of the rate, so that our final result is quantitative.

The key to all of this is an identity expressing 2α(v) − 3β(v) in terms of a iterated integrals.

Suppose that v is a nonnegative smooth function, then as we shall see,

2α(v) − 3β(v) = 2
∫ 0

−∞

(∫ x

−∞
v(z)(vzzz(z) − z)dz

)

dx − 2
∫ ∞

0

(∫ ∞

x
v(z)(vzzz(z) − z)dz

)

dx . (300)

Comparing this with (292), one see the possibility of estimating 2α(v)−3β(v) in terms of something

involving DE(v). In fact, we shall show, under the condition the fourth moment of the initial data is

finite, that there is a finite constant K so that

|2α(v) − 3β(v)| ≤ K(DE(v))1/2 . (301)

This shall be enough to deduce (298). Here is our main result.

Theorem 24 (The Main Theorem) :

For all classical solutions v(t, x) of (288) with smooth, non negative initial data v0 such that

M0(v0), M4(v0) and E(v0) are all finite, there is a finite constant C, depending only on M0(v0),

M4(v0) and E(v0), such that for all t > 0, v(x, t) satisfies

E(v(t, ·)|v(∞)) ≤ C
√

t
. (302)

As noted above, E(v(t, ·)|v(∞)) = 1
2
∫

R
|vx(t, ·) − v(∞)

x |2dx, so this explicitly estimates the rate of

convergence of v(t, ·) to v(∞) in the H1(�) norm. The fact that this is only power law decay reflects

the fact that our proof only gives a power law decay on the rate of equipartition. If one could show

the equipartition to take place exponentially fast, then one would get exponential convergence in

Theorem 24. But we do not, at present, know whether the equipartition will in general take place
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exponentially fast. However, it is possible to get a slightly better rate with the present methods: As

we shall explain following the proof of Theorem 24, one can improve the right hand side to C ε/T 1−ε

for any ε > 0.

4.2 Some a priori bounds

The main result in the section is the moment bound in Lemma 27. Its proof requires some simpler

bounds which we give in the first two lemmas.

Lemma 25 : Any integrable non negative function v on � for which E(v) < ∞ is bounded. More

precisely,

‖v‖∞ ≤ M +
(∫

R

v2
x(x)dx

)1/2
≤ M + (E(v))1/2

where M is the total mass
∫

R
v(x)dx.

Proof: For any x0, the average value of v over the interval [x0, x0 + 1] is no greater than M since the

length of the interval is 1 and
∫

[x0,x0+1]
v(x)dx ≤ M .

Hence there is a point y0 ∈ [x0, x0 + 1] such that v(y0) ≤ M. But then

v(x0) = v(y0) −
∫ y0

x0

vx(x)dx ≤ M +
(∫

R

v2
x(x)dx

)1/2
.

�

Lemma 26 : Any integrable non negative function v on � for which E(v) < ∞ and DE(v) < ∞

satisfies
∫

R

v−3/2v4
xdx ≤ 2DE(v) + 36H(v) .

Proof: By the Minkowskii inequality in L2(�, v(x)dx),
(∫

R

v(vxxx)2dx
) 1

2
=

(∫

R

v((vxxx − x) + x)2dx
)1/2
≤ (DE(v))1/2 +

(∫

R

vx2dx
)1/2

.

Now, for A > 0 consider the following inequality:
∫

R

(

v1/2vxxx + Avx
)2

dx ≥ 0.

Integrating this by parts, we deduce that
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∫

R

v(vxxx)2dx + A2
∫

R

v2
xdx ≥ A

6

∫

R

v−3/2v4
xdx + 2A

∫

R

v1/2v2
xxdx. (303)

Choosing A = 6, we deduce the result. �

We shall need certain moment bounds. For future use, let us define for all positive integers k,

Mk(v) =
∫

R

xkv(x)dx .

Since our goal is to show that a solution v(t, x) of (288) is tending towards a functions of compact

support, namely v(∞), one would expect to be able to show that Mk(v(t, ·)) stays bounded uniformly

in t for all k. For k = 2, this is obvious since E(v) ≥ M2(v), and E(v(t, ·)) is non increasing. Our

analysis shall require a bound in M4(v(t, ·)).

Theorem 27 : Let v(t, x) be any classical solution of (288) for which the initial data v0 is integrable

and non negative, and satisfies M4(v0) < ∞ and E(v0) < ∞. Then

M4(v(t, ·)) ≤ 2DE(v) + 36E(v) .

Proof: We first compute

d
dt M4(v(t, ·)) = d

dt

∫

R

x4v(t, x)dx =
∫

R

x4(xv − vvxxx)xdx

= −4
∫

R

x4vdx − 4
∫

R

v2dx + 18
∫

R

x2v2
xdx. (304)

The next to last term on the right can be discarded, but the last term requires further analysis.

Using Lemmas 25 and 26, and the Cauchy-Schwartz inequality, we deduce that

∫

R

x2v2
xdx =

∫

R

x2v3/4v−3/4v2
xdx

≤
(∫

R

x4v3/2dx
)1/2 (∫

R

v4
x

v3/2 dx
)1/2

≤ C1 (C2 + DE(v(t, ·)))1/2 (M4(v(t, ·)))1/2 , (305)

where C1 and C2 are constants depending only on E(v0) and the total mass of v0. Now, define

φ(t) = (M4(v(t, ·)))1/2 and f (t) = 18C1 (C2 + DE(v(t, ·)))1/2 .
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Then we deduce from (304) and (305) that

d
dtφ(t) ≤ −4φ(t) + f (t) .

Therefore,

φ(t) ≤ φ(0) + e−4t
∫ t

0
e4s f (s)ds .

Note that f (t) ≤ f1(t) + f2(t) where

f1(t) = 18C1(C2)1/2 and f2(t) = 18C1 (D(v(t, ·)))1/2 .

Note that f1 is bounded on �+ , and f2 is square integrable on �+:
∫ ∞

0
f 2
2 (t)dt = (18C1)2

∫ ∞

0
D(v(t, ·))dt ≤ (18C1)2H(v0) .

But clearly,

e−4t
∫ t

0
e4s f1(s)ds ≤ ‖ f1‖∞e−4t

∫ t

0
e4sds ≤ ‖ f1‖∞4 ,

and

e−4t
∫ t

0
e4s f1(s)ds ≤ e−4t

(

e8t − 1
8

)1/2
‖ f ‖2 ≤

‖ f ‖2√
8
.

Hence we have

φ(t) ≤ φ(0) + ‖ f1‖∞4 +
‖ f ‖2√

8
uniformly in t. The right hand side is a constant depending only on M4(v0), E(v0), and the total

mass of v0, M0(v0). �

4.3 The iterated integral identity

The key to result in this section is an identity for 2α(v) − 3β(v) in terms of iterated integrals, where

the integrand is related the the integrand in DE(v).

Lemma 28: For any smooth function v that vanishes at ±∞

2α(v) − 3β(v) = 2
∫ 0

−∞

(∫ x

−∞
v(z)(vzzz(z) − z)dz

)

dx − 2
∫ ∞

0

(∫ ∞

x
v(z)(vzzz(z) − z)dz

)

dx . (306)

Proof: We first compute

J1 :=
∫ 0

−∞

(∫ x

−∞
v(z)vzzz(z)dz

)

dx −
∫ ∞

0

(∫ ∞

x
v(z)vzzz(z)dz

)

dx .
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Integrating by parts in the inner integrals, we obtain respectively that
∫ x

−∞
v(z)vzzz(z)dz = v(x)vxx(x) −

∫ x

−∞
vz(z)vzz(z)dz

= v(x)vxx(x) −
∫ x

−∞
(vz(z)/2)2

z dz

= v(x)vxx(x) − (vx(x)/2)2

(307)

∫ ∞

x
v(z)vzzz(z)dz = −v(x)vxx(x) −

∫ ∞

x
vz(z)vzz(z)dz

= −v(x)vxx(x) −
∫ ∞

x
(vz(z)/2)2

z dz

= −v(x)vxx(x) + (vx(x)/2)2

(308)

Therefore, integrating by parts once more,

J1 = −
3
2

∫ +∞

−∞
v2

x(x)dx .

Next, we compute

J2 := −
∫ 0

−∞

(∫ x

−∞
v(z)zdz

)

dx +
∫ ∞

0

(∫ ∞

x
v(z)zdz

)

dx .

Changing the order of integration we easily find

J2 =

∫ +∞

−∞
x2v(x)dx .

Combining the pieces, the identity is proved. �

Lemma 29 : For any smooth, non negative v such that M0(v), M4(v) and E(v) are all finite, there is

a finite constant K, depending only on M0(v), M4(v) and E(v), such that

|2α(v) − 3β(v)| ≤ K (DE(v))1/2 . (309)

Proof: We first apply our uniform bound on the M4(v(t, ·)) coming from Lemma 27 to conclude

respectively that
∫ x

−∞
vdt ≤

∫ x

−∞

( t
x

)4
v(t)dt ≤ 1

x4

∫ 0

−∞
t4v(t)dt ≤ min

{C2
x4 , M

}

≤ C3
1 + x4 (310)
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∫ ∞

x
vdt ≤

∫ ∞

x

( t
x

)4
v(t)dt ≤ 1

x4

∫ ∞

0
t4v(t)dt ≤ min

{C∗2
x4 , M

}

≤
C∗3

1 + x4 . (311)

Hence, by Lemma 27 and the Cauchy–Scwarz inequality,
∣

∣

∣

∣

∣

∣

∫ 0

−∞

(∫ x

−∞
v(vxxx − t)dt

)

dx
∣

∣

∣

∣

∣

∣

≤
∫ 0

−∞















(∫ x

−∞
vdt

)1/2 (∫ x

−∞
v(vxxx − t)2dt

)1/2












dx

≤
∫ 0

−∞















(∫ x

−∞

C3
1 + t4 dt

)1/2 (∫ 0

−∞
v(vxxx − t)2dt

)1/2












dx

≤














∫ 0

−∞

(∫ x

−∞

C3
1 + t4 dt

)1/2
dx















(DE(v))1/2 .

(312)

∣

∣

∣

∣

∣

∣

∫ ∞

0

(∫ ∞

x
v(vxxx − t)dt

)

dx
∣

∣

∣

∣

∣

∣

≤
∫ ∞

0















(∫ ∞

x
vdt

)1/2 (∫ ∞

x
v(vxxx − t)2dt

)1/2












dx

≤
∫ ∞

0















(∫ ∞

x

C∗3
1 + t4 dt

)1/2 (∫ 0

−∞
v(vxxx − t)2dt

)1/2












dx

≤














∫ ∞

0

(∫ ∞

x

C∗3
1 + t4 dt

)1/2
dx















(DE(v))1/2 .

(313)

The remaining iterated integrals in (312) and (313) are clearly finite. The result then follows by

the triangle inequality. �

4.4 Asymptotic equipartition

Lemma 30 : Under the same conditions imposed in Lemma 25, with the same constant K, we have

that for all T > 0,

inf
T≤t≤2T

{ |2α(v(t, ·)) − 3β(v(t, ·))| } ≤ KE1/2(v0)
√

T
. (314)

Proof: For any T > 0, we have from Lemma 25 that

1
T

∫ 2T

T
|2α(v(t, ·)) − 3β(v(t, ·))|dt ≤ 1

T

∫ 2T

T
KD1/2

E (v(t, ·))dt
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By Cauchy–Schwarz inequality,
∫ 2T

T
D1/2

E (v(t, ·))dt ≤
√

T
(∫ 2T

T
DE(v(t, ·))dt

)1/2

≤
√

T
(∫ ∞

0
DE(v(t, ·))dt

)1/2

≤
√

T (E(v0))1/2

(315)

Finally, infT≤t≤2T { |2α(v(t, ·))−3β(v(t, ·))| } is no greater than the average |2α(v(t, ·))−3β(v(t, ·))| over

the interval [T, 2T ]. �

Lemma 31 : Under the same conditions imposed in Lemma 25, for all t > 0,

|β(v(t, ·)) − β(v(∞))| ≤ Ce−t/2 . (316)

Proof: As Carrillo and Toscani [27] have shown, there is a constant C so that

‖v(t, ·) − v(∞)‖L1(�) ≤ CH(v(t, ·)|v(∞)) ,

and thus there is another constant C so that

‖v(t, ·) − v(∞)‖L1(�) ≤ Ce−t ,

Now, for any R > 0,

|β(v(t, ·)) − β(v(∞))| ≤
∫

|x|<R
x2|v(t, x) − v(∞)(x)|dx +

∫

|x|>R
x2|v(t, x) − v(∞)(x)|dx

≤ R2
∫

|x|<R
|v(t, x) − v(∞)(x)|dx + 1

R2

∫

|x|>R
x4(|v(t, x)| + |v(∞)(x)|)dx

≤ c
(

R2s−t +
1

R2

)

.

(317)

The optimal choice of R2 is R2 = et/2, which yields the result. �

Proof of Theorem 24: Since

2(α(v|v(∞))+β(v|v(∞))) = 5β(v|v(∞))+(2α(v|v(∞))−3β(v|v(∞))) ≤ 5β(v|v(∞))+ |2α(v|v(∞))−3β(v|v(∞))| ,

it follows from the last two lemmas and (296) that for some t in the interval [T, 2T ],
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2E(v|v(∞))) ≤ { α(v|v(∞)) + β(v|v(∞)) }

≤ 5Ce−t/2 +
KE1/2(v0)
√

T
(318)

Since E(v|v(∞))) is monotone decreasing, this implies that

E(v(2T, ·)|v(∞))) ≤ Ce−T/2 +
KE1/2(v0)
√

T
.

Now, possessing this bound, we can go back and use it to improve (315). Doing so will give a

bound in terms of T−3/4. Returning to (315) again and using this yields a bound in terms of T −7/8.

Continuing, we can obtain a bound in terms of T ε−1 for any ε > 0.
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