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Abstract: In this research we consider the problem of path following control for a small fixed-
wing unmanned aerial vehicle (UAV). Assuming the UAV is equipped with an autopilot for
low level control, we adopt a kinematic error model with respect to the moving Serret-Frenet
frame attached to a path for tracking controller design. A kinematic path following control law
that commands heading rate is presented. Backstepping is applied to derive the roll angle
command by taking into account the approximate closed-loop roll dynamics. A parameter
adaptation technique is employed to account for the inaccurate time constant of the closed-loop
roll dynamics during actual implementation. The path following control algorithm is validated in
real-time through a high-fidelity hardware-in-the-loop simulation (HILS) environment showing
the applicability of the algorithm on a real system.

1. INTRODUCTION

For decades unmanned aerial vehicles (UAVs) have been
proposed as replacements of human pilots during several
missions. In recent years small UAVs, in particular, are
increasingly receiving attention in universities, national re-
search institutes, etc., because of their envisioned missions
in both the military and civilian sectors.

In order to accomplish these missions with minimal human
intervention, the operation of a UAV should be fully
automated from the top level of path planning, down to
the inner control loop level. At the top level of the control
hierarchy, the path planning algorithm computes a rough
approximation of the optimal path toward the goal. A path
generation algorithm then smooths the path yielding a
dynamically feasible, flyable path, by taking into account
the kinematic constraints of the UAV. Finally, the path
following algorithm is responsible for guiding the UAV to
stay close to the designed path.

Various control approaches in the literature have been
proposed to address the path following problem: Niculescu
(2001) introduced a lateral track control law, Park et al.
(2004) proposed a simple, yet effective, nonlinear control
logic and demonstrated it experimentally, Ren and Beard
(2004) considered the problem of constrained trajectory
tracking, Nelson et al. (2006) proposed a path following
control using vector fields to guide the UAV on the desired
path, and Rysdyk (2003) proposed a guidance law based
on ‘good helmsman’ behavior.

Motivated by the method proposed by Micaelli and Sam-
son (1993), kinematic control laws have been used to regu-
late the distance error from the reference path for unicycle-
type mobile robots [Lapierre and Soetanto (2007); Lapierre
et al. (2007)]. The key aspect of the proposed algorithms is
that the control laws explicitly incorporate the controlled
motion of a ‘virtual target’ along the path to be tracked.
In this article, we present a nonlinear path following algo-
rithm, which is an extension of the one by Lapierre and
Soetanto (2007) for UAV path following control. We apply
a standard backstepping technique to compute the roll
angle command from the heading rate command of the

kinematic control law. A parameter adaptation technique
is then applied to compensate for the inaccurate time con-
stant of the roll closed loop, yielding robust performance
during controller implementation. Besides rigorous proofs
for convergence of errors, the proposed path following algo-
rithm has an advantage of following a parametric reference
path with less stringent initial conditions, as compared to
the path following algorithms in the literature. The path
following control algorithm is validated through a high-
fidelity hardware-in-the-loop simulation (HILS) environ-
ment to show the applicability of the presented algorithm
on the actual system.

2. PROBLEM DESCRIPTION

A fixed-wing UAV is equipped with a low-level autopilot
with on-board sensors that provides feedback control for
attitude angles, air speed, and altitude. In a typical search
mission, the air speed and the altitude are kept constant,
so that the UAV stays inside the safe flying envelope.
Suppose that the inertial speed (V ) and the course angle
(χ; inertial speed heading) are directly measured using an
on-board GPS sensor. A simplified kinematic model in the
two dimensional plane is utilized as follows,

ẋ = V cos χ,
ẏ = V sin χ,
χ̇ = ω,

(1)

where (x, y) denotes the inertial position, and ω is the
heading rate of the UAV. By expressing the equations of
motion in terms of the ground speed and the course angle,
the equations of motion become independent of the wind
velocity. Furthermore, by using inertial measurements for
path planning control, wind disturbance is naturally re-
jected so that the performance of path following can be
improved significantly. For a fixed-wing UAV at a banked-
turn maneuver with no sideslip, and assuming that |φ| <
φmax < π/2, the heading rate ω is induced by the roll angle
φ with the inertial speed V as follows,

ω =
g

V
tan φ, (2)



I
Y

X

s

p

q

r

χ
V

χf

Fṡ
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Fig. 1. Definition of the Serret-Frenet frame for the path
following problem.

where the roll angle is assumed to be controlled by an inner
PID loop. Properly tuned PID gains result in closed-loop
roll dynamics which resemble a first-order system,

φ̇ =
1
λφ

(φc − φ), (3)

where φc is the roll angle command and λφ > 0 is the time
constant.

Consider now a UAV flying along a planar path as shown
in Fig. 1. Denote the inertial position of the UAV by
p = [x y]T ∈ R

2. The geometric path is defined in terms
of the arc-length parameter s. For any given s, the inertial
position of the point associated with s is denoted by
q(s) ∈ R

2, at which the Serret-Frenet frame is attached,
and moves along the path with speed ṡ. The x-axis of the
Serret-Frenet frame is aligned with the tangent vector to
the path at q(s) and has an angle χf (s) with respect to
the inertial frame I. Let the error vector e in the Serret-
Frenet frame be decomposed in the along-track error es
and the cross-track error ed. Then the inertial error vector
r = p − q(s) expressed in the Serret-Frenet frame is
obtained by

e = RT(χf )
(
p − q(s)

)
, (4)

where,

R(χf ) =
[
cos χf − sin χf
sin χf cos χf

]
, (5)

is the rotation matrix from the Serret-Frenet frame to the
inertial frame.

By differentiating Eq. (4) with respect to time, it follows
that

ė = ṘT(χf )
(
p − q(s)

)
+ RT(χf )

(
ṗ − q̇(s)

)
, (6)

where,
Ṙ(χf ) = R(χf )S(χ̇f ), (7)

where, S(χ̇f ) is the skew-symmetric matrix,

S(χ̇f ) =
[

0 −χ̇f
χ̇f 0

]
. (8)

It follows from Eq. (1) that

ṗ = R(χ)
[
V
0

]
. (9)

Notice that q̇ is the time derivative of the point q(s), whose
speed is represented by ṡ when expressed in the Serret-
Frenet frame. It follows that

q̇ = R(χf )
[
ṡ
0

]
. (10)

Subsequently, by substituting Eqs. (9) and (10) in Eq. (6),
we obtain,

ė = −S(χ̇f )e + R(χ − χf )
[
V
0

]
−
[
ṡ
0

]
, (11)

where RT(χf )R(χ) = R(χ − χf ).

Let now the error course angle χ̃ be defined by

χ̃ � χ − χf . (12)
Hence,

˙̃χ = χ̇ − χ̇f = ω − χ̇f , (13)
and

χ̇f � dχf

dt
=

dχf

ds

ds

dt
= κ(s)ṡ, (14)

where κ(s) is the curvature of the path at q(s).

The error kinematic model of a fixed-wing UAV for the
path following problem with respect to the Serret-Frenet
frame is summarized as follows,

ės = V cos χ̃ − (1 − κ(s)ed)ṡ, (15a)
ėd = V sin χ̃ − κ(s)esṡ, (15b)
˙̃χ = ω − κ(s)ṡ. (15c)

From Eqs. (15), the path following problem reduces into
a problem of driving the errors to zero as the UAV ap-
proaches the given path. In Micaelli and Samson (1993),
the point q is found by projecting p on the path, as-
suming the projection is well defined. Hence, the control
law derived by Micaelli and Samson (1993) requires a
stringent restriction on the initial position of q in order
to avoid singularities. In contrast, Lapierre and Soetanto
(2007) proposed to employ a moving Serret-Frenet frame
along the path, which effectively provides an extra con-
trol parameter ṡ allowing q(s) to evolve along the error
states. This control parameter then mitigates the stringent
restriction on the initial condition arose in Micaelli and
Samson (1993).

3. PATH FOLLOWING CONTROLLER DESIGN

In this section we present a nonlinear path following
control logic, which steers the UAV to the reference path
with an inaccurately known time constant λφ. Beginning
with the derivation of a kinematic control law for the
heading rate command, we apply backstepping to derive
a roll control command for a fixed-wing UAV, which, in
turn, induces an equivalent control effort to the kinematic
control law. In addition, we apply a parameter adaptation
technique to deal with an inaccurately known λφ.

3.1 Kinematic controller design

Following an approach similar to Lapierre and Soetanto
(2007) we first derive a kinematic control law for the head-
ing rate. We introduce a bounded differentiable function
with respect to the cross-track error ed, as follows

δ(ed) � −χ∞ e2ked − 1
e2ked + 1

(16)

where, k > 0 and χ∞ ∈ (0, π/2) [Micaelli and Samson
(1993)]. This function is so-called the approach angle, since
it provides the desired relative course transition of the
UAV to the path as a function of the cross-track error ed.
When the cross-track error ed is zero, the approach angle
vanishes, thus imposing the condition that the course angle
of the UAV must be tangential to the path. The positive
constant k sets the effectiveness of the transient maneuver
during approach. The approach angle provides a behavior
similar to that of a ‘good helmsman’ [Rysdyk (2003)] since
it satisfies the following condition:

ed sin
(
δ(ed)

) ≤ 0, for all ed. (17)
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Fig. 2. Local vector fields generated with respect to two
distinct points on the path.

This condition steers the UAV to the path along the
correct direction (turn left when the UAV is on the right
side of the path, and turn right in the opposite situation).

The kinematic controller for path following using the error
kinematic model in Eq. (15) is given below.
Proposition 1. [Lapierre et al. (2007)] Consider the kine-
matic error model of the UAV described in Eq. (15) and
the approach angle δ(ed) defined in Eq. (16). Assume that
the speed of the UAV is non-negative. Suppose that the
reference path is parameterized by the arc-length s, and
at each s the variables κ, es, ed, and χf are well defined.
Then, the following kinematic control law,
ω = −kω

(
χ̃ − δ(ed)

)
+ κ(s)ṡ + δ′(ed)

(
V sin χ̃ − κ(s)esṡ

)
− edV

γ

(
sin χ̃ − sin

(
δ(ed)

)
χ̃ − δ(ed)

)
, (18a)

ṡ = kses + V cos χ̃, (18b)
where ks, kω and γ are positive constants, asymptotically
drives es, ed, and χ̃ towards zero.

Remarks. The objective of the closed loop system is to
steer the error states towards zero, so that the UAV follows
the virtual target moving on the path. It should be noted
that the approach angle plays an important role in steering
the UAV to the reference path. By constructing a vector
field with respect to a reference point on the path the UAV
is guided to the path, as shown in Fig. 2. As mentioned
earlier, the moving reference frame in conjunction with
the extra control command ṡ helps the errors converge
to zero. In particular, the term kses in Eq. (18) ensures
the convergence of es to zero, providing the momentum
induced by the virtual target to reduce es. Figure 2
shows the vector fields with respect to the corresponding
reference points on the path, which takes into account
the relative momentum induced by the virtual target
(drawn by dashed arrows). During implementation, the
new location of the virtual target on the path is propagated
using ṡ obtained via a numerical integration scheme, such
as the forward Euler method. Hence, if the reference path
is well defined in terms of the arc-length parameter s, then
the corresponding variables es, ed, χf , and κ as also well
defined, and thus the proposed path following algorithm
is well-posed.

3.2 Roll angle command via backstepping

For a fixed-wing UAV flying at a constant altitude, a
roll angle command is often used for heading control. A
simple way is to compute the roll angle command directly
from the heading rate command ωd using the kinematic
relationship in Eq. (2),

φd = tan−1

(
V ωd

g

)
. (19)

Note that the actual response of the roll angle differs
from the commanded value of Eq. (19), but it can be
approximated by a first-order system described as in
Eq. (3). Taking into account the approximated model of
Eq. (3), one can design a steering logic for the roll angle
command φc in order to achieve ω → ωd through φ → φd.
Following the standard backstepping technique [Spooner
et al. (2002)], we introduce an auxiliary control input ν for
the roll angle by augmenting the error model in Eq. (15)
with φ̇ = ν. Thus, the system is given as follows,

ės = V cos χ̃ − (1 − κ(s)ed)ṡ, (20a)
ėd = V sin χ̃ − κ(s)esṡ, (20b)
˙̃χ =

g

V
tan φ − κ(s)ṡ, (20c)

φ̇ = ν, (20d)
where the auxiliary control input ν is associated with the
roll command by

ν =
1
λφ

(
φc − φ

)
. (21)

Suppose that the desired heading rate ωd is obtained from
Eq. (18a) and let ωe � ω − ωd = (g/V ) tan φ − ωd be an
error state for the heading rate, whose time derivative is
calculated using (tan φ)′ = sec2 φ, as follows

ω̇e =
g

V
φ̇ sec2 φ − ω̇d. (22)

Proposition 2. Consider the kinematic error model of the
UAV described in Eqs. (20) and the approach angle
δ(ed) defined in Eq. (16). Assume that the speed of the
UAV is non-negative. Suppose that the reference path
is parameterized by the arc-length s, and at each s the
variables κ, es, ed, and χf are well defined. Then, the
control input,

ν =
V

g sec2 φ

(
− keωe − χ̃ + δ(ed) + ω̇d

)
, (23)

where ke is a positive constant and ωd is given in Eq. (18a),
asymptotically drives es, ed, and χ̃ towards zero, while
ω → ωd. It should be noted that ω̇d can be calculated by
numerical differentiation of ωd. However, in order to avoid
any high frequency noise effect due to differentiation, ω̇d in
the actual implementation is obtained by using a pseudo
differentiation filter in conjunction with saturation, as a
transfer function D(s) = sat

(
s/(τs + 1)

)
where τ > 0 is

employed.

Proof. Let V1 be a candidate Lyapunov function given
by,

V1 � 1
2γ

(
e2
s + e2

d

)
+

1
2
(
χ̃ − δ(ed)

)2 +
1
2
ω2

e . (24)

Differentiating with respect to time one obtains,

V̇1 =
1

γ

(
esės + edėd

)
+
(
χ̃ − δ(ed)

)( ˙̃χ − δ̇(ed)
)

+ ωeω̇e

=
1

γ
es(V cos χ̃ − ṡ) +

1

γ
edV sin

(
δ(ed)

)
+
(
χ̃ − δ(ed)

){ g

V
tan φ + ωd − ωd − κ(s)ṡ

− δ′(ed)
(
V sin χ̃ − κ(s)esṡ

)
+

edV

γ

sin χ̃ − sin
(
δ(ed)

)
χ̃ − δ(ed)

}
+ ωe

(
g

V
φ̇ sec2 φ − ω̇d

)
.

(25)

By the definition of ωe, and substituting the desired ωd
from Eq. (18a) and ṡ from Eq. (18b), the term inside of
the bracket collapses to



V̇1 = − ks

γ
e2
s +

edV

γ
sin
(
δ(ed)

)− kω

(
χ̃ − δ(ed)

)2
+ ωe

(
g

V
φ̇ sec2 φ + χ̃ − δ(ed) − ω̇d

)
.

(26)

Choosing φ̇ through the auxiliary control input in Eq. (23),
that is,

φ̇ = ν =
V

g sec2 φ

(
− keωe − χ̃ + δ(ed) + ω̇d

)
, (27)

results in,

V̇1 = −ks

γ
e2
s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃ − δ(ed)

)2 − keω2
e ≤ 0.

(28)

The last inequality implies, in particular, that es, ed, χ̃
and ωe are bounded. Furthermore, δ(ed) is also bounded
from (16) since ed is bounded. It is also easy to show,
using (18a), that ωd is bounded. To this end, notice that
all signals in the rhs of (18a) except the last are bounded.
Moreover, since

sin χ̃ − sin
(
δ(ed)

)
χ̃ − (δ(ed)

)
= sinc

(
1
2
(
χ̃ − δ(ed)

))
cos
(

1
2
(
χ̃ + δ(ed)

)) (29)

and since the sinc function is bounded, the last term in
the rhs of (18a) is also bounded. Since ωd and ωe are
bounded, it follows that |φ| < π/2 and the control (23)
is well defined.

To complete the proof, note that V1 is radially unbounded,
hence the set Ωc = {V1(es, ed, χ̃, ωe) ≤ c} is a compact,
positively invariant set. Let E1 be the set of all points in
Ωc where V̇1 = 0. The set E1 is given by E1 = {es =
ed = 0, χ̃ = δ, and (g/V ) tan φ = ωd}. Noticing that δ(·)
is a function of the cross-track error ed, one can easily
verify that any point starting from the set E1 will remain
in the set, i.e. E1 is an invariant set. By the LaSalle’s
invariance principle, we have that every trajectory starting
inside the set Ωc approaches E1 as t → ∞. Therefore,
limt→∞ es = 0, limt→∞ ed = 0, and limt→∞ χ̃ = 0 since
δ(ed) → 0. We also have (g/V ) tan φ → ωd as t → ∞. �

3.3 Parameter adaptation

Note that the actual roll angle command is computed from
Eq. (3) and (23),

φc = λφν + φ, (30)
where, λφ is the time constant of the system.

In practice, λφ is determined by the characteristics of
the UAV airframe and PID gains, thus it is not known
accurately. The actual roll command φ̂c is then given by

φ̂c = λ̂φν + φ, (31)

where λ̂φ is an estimate of λφ.

In order to compensate for any uncertainty in λφ, we apply
a parameter adaptation technique. To this end, let V2 be
a candidate Lyapunov function defined by

V2 � V1 +
1
2

1
kaλφ

λ̃2
φ, (32)

where V1 is given in Eq. (24) and λ̃φ � λφ − λ̂φ is the
estimate error. Differentiating with respect to time, we get

V̇2 = V̇1 +
1

kaλφ
λ̃φ

˙̃
λφ

= −ks

γ
e2
s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃ − δ(ed)

)2
+ ωe

(
g

V
φ̇ sec2 φ + χ̃ − δ(ed) − ω̇d

)
+

1

kaλφ
λ̃φ

˙̃
λφ.

(33)

The actual value of φ̇ is calculated from Eq. (3) in
conjunction with the actual roll command in Eq. (31) and
ν given in Eq. (23). Subsequently, substituting the actual
φ̇ in Eq. (33), we get

V̇2 = −ks

γ
e2
s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃ − δ(ed)

)2 − λ̂φ

λφ
keω2

e

+ ωe
λ̃φ

λφ

(
χ̃ − δ(ed) − ω̇d

)
+

1

kaλφ
λ̃φ

˙̃
λφ.

(34)

Choosing ˙̃
λφ as,

˙̃
λφ = −kaωe

(
χ̃ − δ(ed) − ω̇d

)
, (35)

where ka is a positive constant. It follows that

V̇2 = −ks

γ
e2
s +

edV

γ
sin
(
δ(ed)

)− kω

(
χ̃ − δ(ed)

)2
− λ̂φ

λφ
keω

2
e ≤ 0.

(36)

Assuming λφ is constant, the parameter update law is
readily obtained from Eq. (35) as follows,

˙̂
λφ = kaωe

(
χ̃ − δ(ed) − ω̇d

)
. (37)

Proposition 3. Let the control law in Eqs. (18) and (23).
With the parameter update law given by Eq. (37) the
actual roll command of Eq. (31) guarantees that the
signals es, ed, and χ̃ asymptotically tend to zero, while
(g/V ) tan φ → ωd.

Proof. In order to prove the proposition notice that
limt→∞ V2(t) exists since V2 is bounded from below and
is non-increasing. It therefore suffices to show that V̇2
is uniformly continuous, in which case we can invoke
Barbalat’s lemma to ensure that limt→∞ V̇2(t) = 0.

To this end, consider the expression of V̇2 in Eq. (36),
from which it follows that ed, es, χ̃, ωe, λ̂φ, and λ̃φ are
all bounded. As with the proof of Proposition 2, it follows
from (18b) that ṡ is bounded, and from (18a) that ωd is
bounded as well. The boundedness of ωd and ωe imply
that |φ| < π/2. Using (20) we conclude that ės, ėd, ˙̃χ are
also bounded. Differentiating Eq. (18a) with respect to
time, one can show that all terms are bounded, while the
last term is also bounded since the derivative of the sinc
function is bounded (see also Eq. (29)). Hence, it can be
shown that ω̇d is bounded. Furthermore, δ(ed) and its time
derivative δ̇(ed) = δ′(ed)ėd are bounded. A straightforward
calculation shows that

ω̇e =
λ̂φ

λφ

(− keωe − χ̃ + δ(ed)
)− λ̃φ

λφ
ω̇d. (38)

From the previous equation it follows that ω̇e is bounded.
Furthermore, ˙̂

λφ is also bounded from (37). Consider now
the expression for V̈2, given by

V̈2 = −ks

γ
esės +

V ėd

γ
sin
(
δ(ed)

)
+

V ed

γ
δ̇(ed) cos

(
δ(ed)

)
− 2kω

(
χ̃ − δ(ed)

)( ˙̃χ − δ̇(ed)
)
− λ̂φ

λφ
keωeω̇e,

(39)



Table 1. Simulation parameters.

V = 20 [m/s] k = 0.01 ks = 0.4 kω = 0.001 |φmax
c | = π/6

ke = 1.1 ka = 0.7 γ = 4000 λφ ≈ 1.1

where, all expressions in the rhs of the equation have
been shown to be bounded. It follows that V̈2 is bounded
and hence V̇2 is uniformly continuous. Applying Barbalat’s
lemma, it follows that V̇2 → 0 as t → 0. �

4. HARDWARE IN-THE-LOOP SIMULATION
RESULTS

4.1 Simulation environment

A realistic hardware-in-the-loop simulation (HILS) envi-
ronment has been developed to validate the UAV autopi-
lot hardware and software development utilizing Matlab�

and Simulink�. A full 6-DOF nonlinear aircraft model is
used in conjunction with a linear approximation of the
aerodynamic forces and moments, along with Earth grav-
itational (WGS-84) and magnetic field models. Detailed
models for the sensors and actuators have also been incor-
porated. Four independent computer systems are used in
the hardware-in-the-loop simulation (HILS) as illustrated
in Fig. 3. A 6-DOF simulator, the flight visualization
computer, the autopilot micro-controller, and the ground
station computer console are involved in the simulation.
Further details about the UAV platform, autopilot and
HILS set-up can be found in Jung et al. (2005); Jung and
Tsiotras (2007a) and Jung and Tsiotras (2007b).

Computer
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BinaryStates

Control

autopilot
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Flight 
Dynamics 
Simulator

Flight 
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;FlightGear v1.9
;Cockpit view

;Matlab/Simulink
;6DOF nonlinear model
;Real-time simulation
;Remote pilot switching

;Flight control executable
- Inner/Outer loop controller
;Sensor data processing (20Hz)
;Communication to GS ;Ground station GUI

;Communication to autopilot
;Data logging / monitoring
;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Fig. 3. High fidelity hardware-in-the-loop simulation
(HILS) environment for validating the path following
algorithm

4.2 Simulation results

This section illustrates the performance of the derived
path-following control law. The reference path is given by
a quartic B-spline over a non-decreasing knot parameter
u which is monotonic to the arc-length s. Hence, we
can compute q(s), χf (s), and κ(s) in terms of the knot
parameter as follows,

χf (s) = tan−1 y′

x′ , κ(s) =
x′y′′ − x′′y′

(x′2 + y′2)3/2
. (40)

where (·)′ and (·)′′ are the derivatives with respect to u.
The knot parameter is propagated along with Eq. (18) as
follows,

du

dt
=

ds

dt

/ ds

du
= ṡ/

√
x′2 + y′2. (41)

The parameters used in the simulations are shown in
Table 1. We present the results from two simulations.
In the first case, we calculate the roll angle command
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Fig. 4. Reference path and actual trajectory of the UAV
without parameter adaptation.
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Fig. 5. Error states and command inputs without param-
eter adaptation.

from Eq. (30) using a time constant λφ = 0.4 which is
inaccurately known. Without parameter adaptation, as
shown in Fig. 4, we observe a sluggish and low damped
response of the actual trajectory. The error variables are
shown in Fig. 5. In the second case, we calculate the roll
angle command from Eq. (31) with the parameter update
law of Eq. (37). Figures 6-8 show the results. The error
states tend to zero asymptotically as shown in Fig. 7.
Because the roll angle command is limited within ±π/6,
the UAV is unable to exactly follow the path where the
curvature exceeds the maximum curvature achievable by
the UAV at the speed of 20 [m/sec]. Nevertheless, the
path following control law forces the UAV converge to the
path asymptotically after a short transient. It should be
noted that the simulation was carried out in conjunction
with realistic sensor noises and constant wind disturbance,
showing that the adaptation law is more or less robust to
the presence of such measurement noises and disturbances.
Fig. 8 displays the time history of the estimate of λφ,
which shows that from the initial guess of λ̂φ = 0.4,
the parameter estimate converges to the actual value of
λφ ≈ 1.1.
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Fig. 6. Reference path and actual trajectory of the UAV
with parameter adaptation.
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(b) Course angle error
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(c) Heading rate command
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Fig. 7. Error states and command inputs with parameter
adaptation.
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Fig. 8. Parameter estimate of λφ.

5. CONCLUSION

In this research a nonlinear path following control law has
been developed for a small UAV using backstepping of the
heading rate command. The kinematic control law realizes
cooperative path following so that the motion of a virtual
target is controlled by an extra control input to help
the convergence of the error variables. A roll command

that gives rise to the desired heading rate has been
derived by taking into account the inaccurate system time
constant. The path following control algorithm is validated
through a high-fidelity hardware-in-the-loop simulation
(HILS) environment, which verifies the applicability of the
presented algorithm to the actual UAV.
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