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Abstract

In this note, a simple theorem on proportionality of indefinite real

quadratic forms is proved, and is used to clarify the proof of the invari-

ance of the interval in special relativity from Einstein’s postulate on

the universality of the speed of light; students are often rightfully con-

fused by the incomplete or incorrect proofs given in many texts. The

result is illuminated and generalized using Hilbert’s Nullstellensatz,

allowing one form to be a homogeneous polynomial which is not nec-

essarily quadratic. Also a condition for simultaneous diagonalizability

of semi-definite real quadratic forms is given.

1 Introduction

In the special theory of relativity, an event is a point in space-time whose
coordinates with respect to an inertial reference frame correspond to some
point (t, x, y, z) in R4. Coordinates of events in different inertial reference
frames are assumed to be connected by linear transformations, based on the
assumption of homogeneity and isotropy of space-time. A famous postulate
of Einstein is the universality of the speed of light: the speed of light in a vac-
uum is the same in all inertial reference frames, independent of the motion
of the source. One can use the postulate of the universality of the speed of
light, together with the assumption that changes of coordinates are linear,
to determine what changes of coordinates are possible. The idea is to use
this postulate to directly show the invariance of a certain quadratic func-
tion of the coordinates, which can in turn be used to determine the linear
transformations connecting the coordinates (called Lorentz transformations).
Defining the Lorentz transformations as the group of linear transformations
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which leave this quadratic function invariant is geometrically very appeal-
ing. To be most satisfying, and not circular, the invariance of the quadratic
function should be shown to be a simple and immediate consequence of the
postulates; the Lorentz transformations should only then be developed after
that.

Suppose points in space-time are specified by (t, x, y, z) in one inertial
reference frame K, and by (t′, x′, y′, z′) in a second inertial reference frame
K ′ whose origin coincides with the first (that is, t = 0, x = 0, y = 0, z = 0
in K corresponds to the same event as t′ = 0, x′ = 0, y′ = 0, z′ = 0 in K ′).
Let a pulse of light be emitted at this common event. Then events on the
wave front have coordinates satisfying x2 + y2 + z2 − c2t2 = 0 in system K,
and also x′2 + y′2 + z′2 − c2t′2 = 0 in system K ′, where c, the speed of light,
is the same in both systems. This is from Einstein’s postulate.

In 1966 the author was taking a course in “modern” physics, and remem-
bers being puzzled by the next step taken in the text [8, p. 58]. The text sim-
ply assumed without further ado that x2+y2+z2−c2t2 = x′2+y′2+z′2−c2t′2

for all events (not just those on the wave front of the pulse, when both ex-
pressions are zero) and proceeded to use that for a derivation of the form of
the Lorentz transformations. Looking in some other texts, we found the same
“unconscious” assumption of the invariance of the interval x2 +y2+z2−c2t2.
In [6, p. 90], it is even stated that “(3.27) x2 + y2 + z2 − c2t2 = 0”; “(3.28)
x′2 + y′2 + z′2 − c2t′2 = 0”; and then the amazing statement “. . . equating
lines 3.27 and 3.28, we conclude x2 +y2 +z2−c2t2 = x′2 +y′2 +z′2−c2t′2.” So
our confusion remained unresolved for the moment, puzzled by the logic of
“things that are equal when zero are always equal” that seemed to be used
in these books.

Next semester the author took a course in classical mechanics using the
text by J. B. Marion [2]. Appendix G of that book has a demonstration
of the invariance of the interval arguing directly from Einstein’s postulates,
acknowledging the issue that concerned us. (This text is still popular today.)
Here is the beginning of the proof given in Appendix G, p. 558, of that book:

(∗) The wave front is described by x2+y2+z2−c2t2 = s2 = 0 in K, and x′2+
y′2 + z′2 − c2t′2 = s′2 = 0 in K ′. “The equations of the transformation
that connect the coordinates (t, x, y, z) in K and (t′, x′, y′, z′) in K must
themselves be linear. In such a case the quadratic forms s2 and s′2 can
be connected by, at most, a proportionality factor: s′2 = κs2.” (It
is then shown by further arguments using homogeneity, isotropy, and
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continuity that in fact κ = 1.)

We are of the opinion that the statement above about the reason for the
proportionality of the quadratic forms would be misleading to many readers.
It is not generally true that if one quadratic form is the result of making a
linear change of variables in another quadratic form, and the two quadratic
forms have the same zero set, then they must be proportional (even when this
zero set has infinitely many points). Here is a somewhat arbitrary example
with three variables: Let s2 = 2x2 +2y2 +z2−2xz−2yz, and let s′2 = 2x′2 +
2y′2+z′2−2x′z′−2y′z′, where x′ = −2x−2y+z, y′ = 2y−2z, and z′ = −2z,
so the coordinates are connected by a linear transformation. Algebra shows
that s′2 = 8x2 + 16y2 + 10z2 + 16xy − 16xz − 24yz, which is clearly not
proportional to s2. Yet both quadratic forms are zero on the same infinite
set {(x, y, z) ∈ R

3 : z = x + y, x = y}, which is apparent after we reveal that
actually s2 = (x + y − z)2 + (x − y)2 and s′2 = 8(x + y − z)2 + 2(2y − z)2,
noting that if x+y = z, then x = y if and only if 2y = z. For another sort of
example (not really related to the statement in Marion but relevant later in
this paper), in two variables, let s2 = x2 + y2 − 2xy and s′2 = x2 − y2. Then
s2 = 0 ⇒ s′2 = 0, yet these quadratic forms are not even simultaneously
diagonalizable.

So it would seem the statement about proportionality of the quadratic
forms could use further explanation. The author fashioned a proof for him-
self, but remained puzzled why the books seemed unconcerned about the
logical gap.

Fast-forwarding 43 years, we recently had occasion, after not thinking
about physics since being an undergraduate, to come upon this topic again.
The 1985 text on general relativity by Schutz [7, p. 32] gives a logically correct
argument for the proportionality of the quadratic forms in (∗). But this does
not seem to have been propagated to the community of physics students
and textbook writers. From the 2006 relativity text [3], we find on page 10
essentially the same puzzling statements that occurred in the 1964 text [6]
mentioned above: “c2t2 − x2 − y2 − z2 = 0”; “c2t′2 − x′2 − y′2 + z′2 = 0”;
“These are equal, so c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 + z′2.” And
we have evidence, from the Physics Forums [5], that indeed other physics
students are still finding themselves confused by exactly the same thing that
we found unexplained so long ago! The answers we saw given by other
students there were unfortunately not correct and were essentially on the
level of the “unconscious” proofs of some of those texts, along with some
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rather arrogant statements about the students who didn’t understand the
“proofs” they saw in their books.

So we decided this time to fill in the gap, for the benefit of others who
might be confused, by stating and proving a more general but very simple
result about indefinite quadratic functions that settles the matter. This result
about containment of zero sets suggests a more general result, proved using
Hilbert’s Nullstellensatz. Also we prove a simple result about simultaneous
diagonalization of semidefinite quadratic forms and containment of zero sets.

2 A theorem on indefinite quadratic forms

A function q : Rn → R is a real quadratic form if there is a symmetric bilinear
function q̃ : Rn ×Rn → R such that q(x) = q̃(x,x). In matrix language, this
means there is a symmetric n×n matrix Q = [Qij ] of real numbers such that
q(x1, . . . , xn) = q(x) =

∑n
i=1

∑n
j=1

Qijxixj , i.e., q(x) = xtQx for x ∈ Rn.
The elements of the matrix Q are the components of q̃ in the standard basis.

A real quadratic form q is indefinite if it takes both positive and negative
values; this is equivalent to the matrix Q having at least one positive eigen-
value and at least one negative eigenvalue. See [4] for example, or any book
on linear algebra.

For a real quadratic form q, define Zq = {x ∈ Rn : q(x) = 0}; this is the
zero set of q.

Theorem 1 Let q be an indefinite real quadratic form on Rn, and let r be a

real quadratic form on Rn such that Zq ⊂ Zr; that is, q(x) = 0 ⇒ r(x) = 0.
Then r is proportional to q; that is, there exists a real number α such that

r(x) = αq(x) for all x. If α is not zero, then r is also indefinite and has the

same zero set as q.

Proof. There exists a basis {v1, . . . ,vn} for Rn such that the matrix Qij =
q̃(vi,vj) representing q in this basis is diagonal, with only 1’s, −1’s, and 0’s
on the diagonal, and Qii = 1 for 1 ≤ i ≤ k; Qii = −1 for k + 1 ≤ i ≤ k + m;
Qii = 0 for k + m + 1 ≤ i ≤ n; and Qij = 0 for i 6= j. The numbers k

and m here are unique: k is the number of positive eigenvalues and m is
the number of negative eigenvalues of any matrix representing q (Sylvester’s
law of inertia; see [4, p. 202]). Since q is indefinite, k > 0 and m > 0. So
without loss of generality, in the proof which follows we will just assume that
Q is a diagonal matrix with k ones and m negative ones and the rest (if any)
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zeroes on the diagonal, in order, as described above. (In the application to
invariance of the interval which motivated this discussion, Q is already of
this form, but we wanted to treat the general case.) Let R be the symmetric
matrix representing r in this basis.

The idea is to make judicious choices of points where q is zero, and to
conclude that R must also be diagonal and that the on-diagonal elements of
R are a common multiple of those of Q.

To that end, let j be an integer such that k + 1 ≤ j ≤ k + m. Let
x have components x1 = 1, xj = 1, and all other components zero. Then
q(x) = Q11x

2
1+Qjjx

2
j = 1−1 = 0, so r(x) = R11x

2
1+Rjjx

2
j +2R1jx1xj = R11+

Rjj + 2R1j = 0, by hypothesis. Now change the sign of the jth component
of x so that xj = −1 but leave the other components of x unchanged; then
q(x) = 0 still, so r(x) = R11x

2
1 + Rjjx

2
j + 2R1jx1xj = R11 + Rjj − 2R1j = 0

also. These two equations together imply R1j = 0 and then Rjj = −R11.
Then for 1 < i ≤ k, using i in place of 1 in the argument above shows
Rii = −Rjj = R11, and Rij = 0.

Next let j be an integer (if any) such that m + k + 1 ≤ j ≤ n. First let
x be the vector with xj = 1 and all other components zero. Then q(x) =
Qjj = 0, so r(x) = Rjj = 0. Next let 1 < i ≤ k, k + 1 ≤ l ≤ k + m,
and let x be the vector with components xi = 1, xl = 1, xj = 1, and all
other components zero. Then q(x) = Qii + Qll + Qjj = 1 − 1 + 0 = 0, so
r(x) = Rii +Rll +Rjj +2Ril +2Rij +2Rlj = 2Rij +2Rlj = 0 also. Changing
x so that xi = −1 and x is otherwise unchanged leads to −2Rij + 2Rlj = 0.
This implies that Rij = 0, and then Rlj = 0.

Suppose that k ≥ 2. Let 1 ≤ i < j ≤ k, k + 1 ≤ l ≤ k + m, and
let x be the vector with components xi = 3, xj = 4, xl = 5, and all other
components zero. Then q(x) = Qiix

2
i + Qjjx

2
j + Qllx

2
l = 9 + 16 − 25 = 0, so

r(x) = Riix
2
i +Rjjx

2
j +Rllx

2
l +2Rijxixj +2Rilxixl +2Rjlxjxl = R11(9+16−

25) + 2Rij(12) = 0 also (note we have already shown that Ril = Rjl = 0 and
the proportionality of the diagonal elements). This proves Rij = 0. Similarly,
if m ≥ 2 or n − (k + m) ≥ 2, the corresponding off-diagonal terms of R are
zero.

This completes the proof that R = R11Q, and the proof of the theo-
rem. �
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3 An alternate proof using Hilbert’s Nullstel-

lensatz, and a stronger result

The containment of zero sets in the hypothesis of Theorem 1 suggests Hilbert’s
Nullstellensatz [1, p. 254], of importance in algebraic geometry. We can also
prove Theorem 1 using this theorem rather than using diagonalization and
bases as we did above; and although the proof above is certainly simple
enough, there is some insight to be gained from this alternate proof, and a
more general result can be proved this way as well. The Nullstellensatz con-
cerns zero sets of ideals in the ring of polynomials in several variables over
an algebraically closed field. For our application the ideal in question will be
simply the principal ideal generated by a single polynomial q. If the reader
is not familiar with ideal theory and the Nullstellensatz, it will not matter
because we shall use only the following immediate consequence of Hilbert’s
theorem:

If q(x) and r(x) are complex polynomials in n variables such that x ∈ Cn

and q(x) = 0 implies r(x) = 0, then rp(x) = q(x)s(x) for some polynomial
s(x) and positive integer p. If q is square-free (that is, the irreducible factors
of q occur only to the first power), p can be taken to be one.

In Theorem 1, q and r are quadratic forms with real coefficients, q is
indefinite, and the real zeroes of q are assumed to be zeros r of by hypothesis.
If q were not square-free, it would be the square of a linear polynomial or the
negative of such a square, contrary to the indefiniteness of q, so we can take
p to be one in our application (it is easy to see that q is actually irreducible
when its rank exceeds two, but we don’t need that). Thus all we need to
do is to show that, as a consequence of the indefiniteness of q, the complex
zeroes of q are also zeroes of r, and the conclusion of Theorem 1 will follow
from the Nullstellensatz, since the degrees of q and r being two requires s to
be constant.

To that end, suppose q(x+iy) = 0, for some x,y ∈ R
n, so q(x)−q(y) = 0

and q̃(x,y) = 0. If q(x) = 0 (hence q(y) = 0) then q(x + y) = 0, so
r(x) = r(y) = r(x + y) = 0, which implies r̃(x,y) = 0 and so r(x + iy) = 0.

Suppose then that q(x) > 0 (the opposite case would be handled simi-
larly); by rescaling assume q(x) = 1. Since q is indefinite, there is u ∈ Rn

such that q(u) < 0. Let w = u − q̃(u,x)x − q̃(u,y)y, so q̃(w,x) = 0
and q̃(w,y) = 0 (a “Gram-Schmidt” construction). Now q(w) = q̃(w,u) =
q(u)− q̃(u,x)2 − q̃(u,y)2 < 0. By rescaling we may assume that q(w) = −1,
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q̃(w,x) = 0, and q̃(w,y) = 0. Thus q(w + αx + βy) = −1 + α2 + β2 = 0
whenever α2 + β2 = 1, so by hypothesis r(w + αx + βy) = r(w) + α2r(x) +
β2r(y)+2αr̃(w,x)+2βr̃(w,y)+2αβr̃(x,y) = 0 also for α2+β2 = 1. Taking
α = ±1, β = 0, we conclude that r̃(w,x) = 0, and similarly r̃(w,y) = 0.
Then choosing α = 2−1/2, β = ±α, we conclude that r̃(x,y) = 0. Then
choosing α = 1, β = 0 and α = 0, β = 1, we see that r(x) = r(y), and thus
r(x + iy) = 0, concluding the proof.

This proof from the Nullstellensatz is perhaps slightly cleaner than the
first proof of Theorem 1. But also one can prove more this way, with a little
more work. The quadratic form r is a polynomial in n variables in which each
term has degree 2. In general, a polynomial in n variables for which each
term has the same degree d is called a homogeneous polynomial of degree d.

Theorem 2 Suppose r is a homogeneous real polynomial in n variables, not

necessarily a quadratic form, with the other hypotheses of Theorem 1 un-

changed. Then q is a factor of r; that is, r(x) = q(x)s(x) for some polyno-

mial s(x).

Proof. We only need to show that any complex zeroes of q are zeroes of r.
Suppose q(x+ iy) = 0, and suppose that q(x) > 0. As above, we can assume
that q(x) = q(y) = 1, q̃(x,y) = 0, and there is w such that q(w) = −1, w is
q-orthogonal to x and y, and q(w + αx + βy) = 0, so r(w + αx + βy) = 0
also, whenever α2 + β2 = 1. Suppose that r has even degree 2m. Now
r(γw+αx+βy) is a homogeneous polynomial of degree 2m in the variables
α, β, and γ that is zero when γ = 1 and α2 + β2 = 1. We may write
r(γw + αx + βy) =

∑
j+k≤2m αjβkγ2m−j−kc(j, k) where the indices j and

k are nonnegative. By changing the signs of α and β separately, and then
together, we see that for γ = 1 and α2 + β2 = 1,

∑

j+k≤2m, j odd, k even

αjβkc(j, k) = 0,

∑

j+k≤2m, j even, k odd

αjβkc(j, k) = 0,

∑

j+k≤2m, j and k odd

αjβkc(j, k) = 0,

and
∑

j+k≤2m, j and k even

αjβkc(j, k) = 0.

7



Consider the last expression above (with both indices even), which can
be rewritten with a change of indices as

∑

j+k≤m

(α2)j(1 − α2)kc(2j, 2k) = 0

for α2 ≤ 1. This is a polynomial of degree 2m in α; the coefficient of the high-
est power term α2m must be zero because of the constancy of the polynomial
on an infinite set, so

∑

j≤m

(−1)m−jc(2j, 2m − 2j) = 0.

Next consider the next-to-last expression (with both indices odd) which can
be rewritten

αβ
∑

j+k≤m−1

(α2)j(1 − α2)kc(2j + 1, 2k + 1) = 0,

so for 0 < α2 < 1,

∑

j+k≤m−1

(α2)j(1 − α2)kc(2j + 1, 2k + 1) = 0.

Setting the coefficient of the highest power term in the polynomial in α

(which occurs when k = m − j − 1) to zero, we get

∑

j≤m−1

(−1)m−j−1c(2j + 1, 2m − 2j − 1) = 0.

Since r is homogeneous of degree 2m,

r(x + iy) = r(0w + 1x + iy) =
∑

j≤m

(−1)m−jc(2j, 2m − 2j)

+ i
∑

j≤m−1

(−1)m−j−1c(2j + 1, 2m − 2j − 1),

because i2m−2j = (−1)m−j and i2m−2j−1 = (−1)m−j−1i. The results just
proved show this is zero, completing the proof of the theorem when the
degree of r is even and q(x) > 0.
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Now suppose r has odd degree 2m − 1. Then

r(γw + αx + βy) =
∑

j+k≤2m−1

αjβkγ2m−1−j−kc(j, k),

and this breaks into four sums equaling zero when γ = 1 and α2 + β2 = 1
as before, depending on the parities of the indices. Consider first the sum
corresponding to j odd and k even; this can be rewritten

α
∑

j+k≤m−1

(α2)j(1 − α2)kc(2j + 1, 2k) = 0

for α2 ≤ 1. Setting the coefficient of the highest power to zero gives
∑

j≤m−1

(−1)m−j−1c(2j + 1, 2m − 2j − 2) = 0.

Now consider the sum corresponding to j even and k odd, which can be
rewritten

β
∑

j+k≤m−1

(α2)j(1 − α2)kc(2j, 2k + 1) = 0,

so ∑

j+k≤m−1

(α2)j(1 − α2)kc(2j, 2k + 1) = 0

for α2 < 1, which implies
∑

j≤m−1

(−1)m−j−1c(2j, 2m − 2j − 1) = 0.

But

r(x + iy) = r(0w + 1x + iy) =
∑

j≤m−1

(−1)m−j−1c(2j + 1, 2m − 2j − 2)

+ i
∑

j≤m−1

(−1)m−j−1c(2j, 2m − 2j − 1),

so this is zero, and the proof is concluded when r is of odd degree and
q(x) > 0.

The case q(x) < 0 is handled in a similar way. Finally, if q(x + iy) = 0
and q(x) = 0, then since q(y) = 0 and q̃(x,y) = 0, q(x + αy) = 0 and thus
r(x + αy) = 0 for all real numbers α. Now r(x + αy) is a polynomial in
α which is identically zero, so all its coefficients are zero, and this clearly
implies that r(x + iy) = 0, which concludes the proof of Theorem 2. �
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4 Simultaneous diagonalization of quadratic

forms

Theorem 1 implies a result on simultaneous diagonalizability: if q is an in-
definite real quadratic form on Rn and r is a real quadratic form on Rn such
that Zq ⊂ Zr, then q and r are simultaneously diagonalizable (meaning there
is a basis in which the matrices representing q and r are both diagonal).

However, if q is a semi-definite real quadratic form on Rn (semi-definite

means q(x) ≥ 0 for all x or q(x) ≤ 0 for all x), and r is a real quadratic form
on Rn such that Zq ⊂ Zr, then q and r are not necessarily simultaneously
diagonalizable. For an example in R2, let q(x) = (x − y)2 and let r(x) =
x2 − y2; this example (already mentioned in the introduction) satisfies the
conditions and it is easy to see these are not simultaneously diagonalizable.

But if q and r are both assumed semi-definite, there is a similar (and
similarly easy) result on containment of zero sets implying simultaneous di-
agonalizability.

Theorem 3 Let q and r be semi-definite real quadratic forms on Rn such

that Zq ⊂ Zr. Then r and q are simultaneously diagonalizable.

Proof. Without loss of generality assume they are both positive semi-
definite. First observe that the zero sets are subspaces: Let q(x) = 0 and
q(y) = 0; then q(ax + by) = a2q(x) + b2q(y) + 2abq̃(x,y) = 2abq̃(x,y) ≥ 0
for all real numbers a, b implies q̃(x,y) = 0, so q(ax + by) = 0. This is
quite different from the indefinite case where the zero sets are cones and not
subspaces.

There is a subspace M such that Rn = M ⊕ Zq (choose any basis for
Zq and extend it to a basis for Rn, and M is the span of those added-on
basis vectors). Let x = y + z with y ∈ M and z ∈ Zq. Then q(y + αz) =
q(y) + 2αq̃(y, z) + α2q(z) = q(y) + 2αq̃(y, z) ≥ 0 for all real α implies
q̃(x,y) = 0, so q(y + z) = q(y). Similarly, r(y + z) = r(y) for y ∈ M and
z ∈ Zq, since Zq ⊂ Zr.

Thus q and r may be considered as positive semi-definite quadratic forms
on M , and in fact q is positive definite on M , because if y ∈ M and q(y) = 0,
then y ∈ Zq by definition, so y = 0. By a well-known theorem [4, p. 218], this
implies q and r are simultaneously diagonalizable on M , and they are then
simultaneously diagonalizable on Rn = M ⊕ Zq, with zeroes on the diagonal
corresponding to the basis vectors for Zq. �
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5 Application to the proof of invariance of

the interval

Suppose the coordinates x = (t, x, y, z) in K and x′ = (t′, x′, y′, z′) in K ′ are
connected by a linear transformation, so x′ = Lx for some 4 × 4 matrix L.
Let q(x) = −c2t2 +x2 +y2 +z2 = xtQx, where Q is the diagonal matrix with
diagonal entries (−c2, 1, 1, 1). Let r(x) = −c2t′2+x′2+y′2+z′2 = (Lx)tQLx =
xt(LtQL)x, so r(x) = xtRx, where R = LtQL. Now q is indefinite, and
r(x) = 0 precisely when q(x) = 0, from (∗) above. So the conditions of
Theorem 1 are in force, and we may conclude that r is proportional to q,
which is equivalent to the statement from (∗) that we wanted to prove, namely
that s′2 is proportional to s2.

Acknowledgment. We would like to thank Michael Loss for suggesting
looking at Hilbert’s Nullstellensatz for a connection with the topic in this
note.
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