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SUMMARY

Transactional memory systems are expected to enable parallel programming at lower

programming complexity, while delivering improved performance over traditional

lock-based systems. Nonetheless, there are certain situations where transactional

memory systems could actually perform worse. Transactional memory systems can

outperform locks only when the executing workloads contain sufficient parallelism.

When the workload lacks inherent parallelism, launching excessive transactions can

adversely degrade performance. These situations will actually become dominant in

future workloads when large-scale transactions are frequently executed.

In this thesis, we propose a new paradigm called adaptive transaction scheduling to

address this issue. Based on the parallelism feedback from applications, our adaptive

transaction scheduler dynamically dispatches and controls the number of concurrently

executing transactions. In our case study, we show that our low-cost mechanism not

only guarantees that hardware transactional memory systems perform no worse than

a single global lock, but also significantly improves performance for both hardware

and software transactional memory systems.
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CHAPTER I

INTRODUCTION

Due to its radically simple programming semantics, a transactional memory (TM)

system [19, 21] represents a promising technology to enable highly efficient multi-

threaded programming on the emerging multi-core platforms. Especially for hardware

transactional memory (HTM), programmers do not need to concern themselves about

the exact data conflict information. Rather, a programmer can speculatively mark a

potentially conflicting code region as a transaction, since the sequential correctness

among transactions will be guaranteed by the underlying TM implementation. In ad-

dition, by speculatively executing more than one transaction in an atomic block1, a

TM system can theoretically achieve higher performance by exploiting parallelism pro-

hibited by a conventional lock-based system. Software transactional memory (STM),

on the other hand, requires exact conflict information since transactional barriers

(i.e., transactional bookkeeping routines) are only executed by explicit calls from

the user code. However, with the recent advent of compiler-driven barrier insertion

[44, 2, 28], the STM programming model has been dramatically simplified.

In effect, TM separates the implementation from the semantics — programmers

simply denote what transactions are, and the responsibility with regard to how to

execute them falls onto the underlying TM system whose implementation details are

hidden from the high-level application programmers. Ideally, TM systems can im-

prove performance by leveraging the headroom between the implementation and the

semantics. Unfortunately, due to its high implementation complexity, most HTM

1Although it is a common practice to use the term critical section and atomic block interchange-
ably, in this thesis we limit the use of critical section to describing traditional exclusive locking, and
atomic block to describing TM approach.
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research thrusts mainly focus on implementation issues with less attention to perfor-

mance aspects [14, 1, 35, 30, 9, 26, 4].

Reducing the number of aborting transactions is one effective way to improve the

efficiency of a TM system. The impact of aborting a transaction is multidimensional.

First, all the completed work done by an aborted transaction becomes useless and

will have to be retried. If an aborted transaction had aborted other transactions

earlier, the total amount of work lost will be worse. Secondly, the cost to rollback

a transaction can be tremendous, requiring large memory capacity and bandwidth.

Thirdly, for TM implementations that keep speculative states in caches, invalidating

those cache lines upon transaction abort will further increase the number of cache

misses (Section 4.1.3.2). Likewise, because transactions are implemented on top of

threads, aborting transactions too frequently could adversely affect the virtual mem-

ory page management (Section 4.2.2.3). In the worst case, those TM systems that

detect conflicts upon each object’s acquisition (eager conflict detection) can result

in a livelock. Such ineffective transactions degrade the overall performance of a TM

system.

STM researchers were aware of these performance issues. To alleviate these prob-

lems, researchers proposed the concept of the contention manager [18, 22, 40], a

user-level code module that enforces priority among transactional accesses. The pri-

ority could be determined by several indices, such as the age of a transaction based

on timestamps, the amount of work done based on memory footprint [18, 40], etc.

When a transaction encounters a conflict, it consults its contention manager. With

the priority and other transactional information, the contention manager heuristi-

cally evaluates and decides whether aborting the offending transaction will improve

the overall throughput. When the contention manager decides not to abort the of-

fending transaction, the transaction that consulted the contention manager will use a

delay back-off, thus enabling the offending transaction to finish before the requestor

2



retries the NACKed permission. By varying the number of back-off attempts and

their intervals, contention managers can significantly reduce the number of transac-

tion aborts [40]. STM implementations employing contention managers have shown

reasonable performance improvement over STMs without contention managers, and

the capability of avoiding livelocks [18, 23, 22].

However, contention managers have their limitations. First, contention managers

are fundamentally reactive, for their policies are enforced only after a conflict is de-

tected. When a transaction invokes its contention manager due to a conflict, it cannot

wait indefinitely. Since the transaction already started executing an atomic block, the

situation would be equal to a deadlock if it indefinitely waits for the contention to dis-

appear. Hence, contention managers are only good at resolving imminent contention;

the offending transaction should commit very soon, or it would be forced to abort.

Once the contention disappears by aborting the opponent, contention managers have

no control over when the aborted transaction should resume. This is rather myopic,

since the aborted transaction can restart immediately, conflicting with other transac-

tions again. Contention managers only cure the outcome of the contention; they do

not reduce the cause of the contention itself.

Secondly, contention managers are accessed frequently. Depending on the imple-

mentation2, they are called whenever 1) a transaction starts, aborts, or commits, 2)

a transaction acquires an object, 3) a transaction reads / writes an object (to col-

lect information), or 4) a conflict is present (to enforce priority). Prior research has

shown that contention management code itself accounts for a large portion of the exe-

cution time when contention traffic is high [42]. For this reason, contention managers

tend to be distributed; they detect and resolve conflicts in per-transaction manner.

This nature significantly limits the capability of a contention manager to maintain

a system-wide coherent view of contention, and also limits the conflict resolution

2As a good example, consult the contention manager interface of RSTM [22].
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scheme to heuristics.

Lastly, since contention managers are user-level code modules, it is difficult to

incorporate a contention manager into an HTM implementation. To do so, hardware

would have to trap into software for each transactional event to collect transactional

information. Otherwise, an HTM could maintain the transactional information in

some architectural registers and expose them to contention managers, but it would be

hard to define a generic contention manager interface given that different applications

benefit from different types of contention management schemes [18, 23, 22].

To tackle these problems, we propose in this thesis a new technique called adaptive

transaction scheduling (ATS). In ATS, a scheduler adaptively controls the number of

concurrent transactions executing in atomic blocks based on the contention feedback

from the application. This is done by selectively scheduling those transactions that

tend to abort frequently.

The scheduler is designed such that it is consulted only when a transaction starts

under high contention. This infrequent access allows the scheduler to be implemented

as a centralized module, thereby enabling an advanced and coherent system-wide

scheduling scheme. Although it is a centralized scheme, under HTM it does not suffer

from scalability issues due to its adaptive and light-weight nature. The scheduling

scheme has no adverse effect on performance when contention is low, and will mitigate

performance degradation as contention grows.

Based on this framework, we designed a low-cost scheduler that can be easily

implemented on either the HTM or the STM. For the HTM, we observed that ATS

not only improves performance by reducing the number of transaction aborts, but

also improves the quality of transactions. We also show that our scheme guarantees a

performance lower bound when coarse-grained lock (CGL) critical sections are trans-

formed into transactions. On STM, we demonstrate that ATS delivers significant
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performance improvement while acting as a QoS safety net under an oversubscrip-

tion configuration. To the best of our knowledge, this thesis is the first to incorporate

transaction scheduling on TM systems to adaptively exploit the maximum parallelism.

The rest of the thesis is organized as follows. Chapter 2 gives a brief overview of TM

and contention manager. Chapter 3 then describes our scheduling framework. Exper-

imental results can be found in Chapter 4. Specifically, Section 4.1 and Section 4.2

discuss our implementation on LogTM and RSTM and analyze their performance. In

Chapter 5 we also propose a methodology to integrate ATS with operating system

schedulers. Related studies in TM area are discussed in Chapter 6. Finally, Chapter 7

concludes.
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CHAPTER II

TRANSACTIONAL MEMORY OVERVIEW

This chapter provides a high-level overview of TM. Rather than focusing on the imple-

mentation details, we focus on the programming semantics of TM; what a programmer

should expect from a TM implementation. We also describe contention managers —

the current state-of-the-art approach in optimizing TM system performance.

2.1 Transactional Memory

Originally proposed in [19] and revitalized in [14], TM represents a new type of con-

currency control mechanism for multithreaded applications. Especially, TM borrows

the concept of transaction from the database community. Among the four ACID

attributes of database transactions [36], transactions in TM generally implement 3

attributes: Atomicity, Consistency, and Isolation (ACI). In TM terminology, a trans-

action is a sequence of instructions that are endowed with ACI attributes.

• Atomicity requires the constituent instructions to take effect as a whole; either

all or none of them take effect on the system state. When a transaction success-

fully finishes, it commits; when it fails it aborts. A TM system can re-execute

an aborted transaction until it commits.

• Consistency enforces the system state to be consistent when seen from subse-

quent transactions. The end result of a transaction should transit the system

to another consistent state.

• Isolation requires that each transaction produce a correct result, regardless of

the other transactions executing concurrently.
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In programming language, a transaction is typically denoted as an atomic block.

Instructions within the scope of an atomic block would be executed with ACI at-

tributes. The following pseudo code depicts an application of atomic block.

atomic {

y = x++;

foo(y);

}

Notice that the resulting atomic block is dynamically scoped; it encompasses all

the instructions executed while the control is in the atomic block. So instructions that

are not lexically included in the atomic block could still be executed transactionally

if they happen to lie on the program execution path. For example, instructions from

the function foo() would be executed transactionally, although they are not lexically

included in the above atomic block.

A TM system is a set of components in hardware or software that are necessary

to endow ACI attributes to transactionally executing instructions. Endowing ACI

attributes typically requires a TM system to implement the following functionality.

First, atomicity requires that the intermediate computation results be buffered. When

a transaction commits, these buffered results are then applied to the system state.

When a transaction aborts, the buffered results are discarded. Secondly, consistency

mandates a version control system in TM. Depending on the execution outcome of

previous transactions, the version control system decides whether the subsequent

transactions be supplied with previous consistent system state or updated consistent

system state. Lastly, isolation requires the buffered results of a transaction not be

visible to other transactions.

In addition to these supports, a TM system must implement a conflict detection

scheme [21]. Conflict detection schemes can be categorized by the granularity at
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which they detect transactional conflicts. HTMs usually detect conflicts on cache line

granularity [19, 14, 1, 30]. In these approaches, typically a transactional read / write

bit is maintained for each cache line. Whenever a processor transactionally accesses

a cache line, the pertaining bit is set. Once this bit is set, the system monitors

incoming cache coherence traffic to detect conflicts. STMs can detect conflicts at

object granularity [23, 22] or cache line (word) granularity [37, 11]. In fact, lock

based STM systems [37, 11] can detect conflicts at a varying degree of granularity by

changing the hash function utilized to map each transactional location to a lock [21].

When compared to traditional thread synchronization schemes such as locks,

transactions improve abstraction and composition in programmability in that 1) it

does not identify each atomic block, and that 2) it does not specify which memory

locations are to be synchronized. This feature has been shown to radically simplify

the multithreaded programming semantics, and to foster composability among multi-

threaded codes [21]. Performance-wise, TM approach can also improve performance

by speculatively executing multiple transactions inside an atomic block, when com-

pared to the exclusive locks where only one thread is allowed to make progress inside

a critical section. TM has also been reported to eliminate some of the pitfalls in

lock-based synchronization, such as priority inversion, convoying, and deadlock [19].

Although a popular concept in the database area, nested transactions [33] are

currently supported to a limited degree on a TM system [26, 31]. More specifically,

most TM systems limit the concurrency of child transactions so that each transaction

can have at most one child transaction at a time. Such implementation is termed

as linear nesting. There exists a design paper [33] which discusses design require-

ments to support multiple concurrent child transactions, but due to its complexity

no TM implementation has been successful to implement it. In the rest of this the-

sis, our techniques for TM performance improvement would be focused on outermost

transactions.
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2.2 Contention Manager

Traditional synchronization schemes such as locks and semaphores implement blocking

synchronization; that is, the system may not make forward progress if threads are

preempted while holding exclusive access to a shared resource. On the contrary,

TM systems implement nonblocking synchronization; a stalled thread cannot cause

all other threads to stall indefinitely. Depending on the degree of forward progress

guarantee, nonblocking synchronization can be categorized as follows:

• Wait Freedom. A system implementing wait freedom guarantees that all the

threads contending for shared objects make forward progress.

• Lock Freedom. A system implementing lock freedom guarantees that at least

one thread among all the threads contending for shared objects makes forward

progress.

• Obstruction Freedom. A system implementing obstruction freedom guaran-

tees that a thread will make forward progress in the absence of contention over

shared objects.

In the degree of forward progress guarantee, wait freedom is the strongest, lock

freedom the next, and obstruction freedom the weakest. The unique feature of ob-

struction freedom is that it need not concern the system-wide progress. All it has to

guarantee is that one thread will make progress if it is left to execute without any

contention from other threads.

The performance of a TM system heavily depends on the number of transaction

aborts [18, 22, 40]. At the least, aborting a transaction amounts to the loss of

computation resources that were used up during the speculation. Even worse, those

wasted resources sometimes represent larger sunken costs — the system might have

performed better if those wasted resources were used to perform other computations,
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e.g., execute a different transaction, instead. In the worst case, for those TM systems

that detect conflicts upon each object’s acquisition (eager conflict detection) can result

in a livelock.

To reduce the number of transaction aborts, a TM system should enforce a priority

mechanism among the accesses from multiple transactions. However, exercising such

priority on a wait free or a lock free TM is not a trivial task [18]. First, determining

the priority while assuring that the system makes progress as a whole itself is not

an easy task. Moreover, maintaining the system-wide progress information inside the

priority-enforcing component usually amounts to the component becoming a central,

serialized bottleneck.

Obstruction freedom, on the contrary, gives a great leeway to implementing the

priority mechanism in a TM. All that the priority mechanism has to guarantee is

that each transaction would be guaranteed to execute in isolation at some point in

time. Then the underlying obstruction-free TM will make sure that such transaction

would execute till completion. So as long as this guarantee is met, the priority

mechanism can decide to abort any transaction at any time without worrying about

the system-wide progress. Moreover, since the obstruction freedom does not impose

any restriction on the number of threads that should be making progress at a given

point in time, priority mechanisms in obstruction-free synchronization need not be

aware of system-wide contention information; they can resolve the conflict on a peer-

to-peer basis, and this radically simplifies the design of conflict resolution policies.

Contention manager refers to the class of such priority enforcing mechanisms that

are implemented in an obstruction-free TM. When a transaction detects a conflict,

it consults its contention manager to decide whether to abort the offending transac-

tion. With the priority and other transactional information, the contention manager

heuristically evaluates and decides whether aborting the offending transaction will

improve the overall throughput. If it decides not to abort the offending transaction,

10



the requestor backs off hoping that the offending transaction would finish before it

retries the denied object access.

To support flexible contention resolution policies, contention managers are usually

implemented in software. In particular, it has been shown that STM implementations

employing contention managers can obtain reasonable performance improvement over

STMs without contention managers, and the capability of avoiding livelocks [18, 23,

22].
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CHAPTER III

TRANSACTION SCHEDULING

In our execution model, a thread enters and leaves multiple atomic blocks throughout

its lifetime. Upon entering an atomic block, the thread starts a transaction. The

thread might resume the transaction multiple times if the previous transaction aborts.

A thread leaves the atomic block when it commits the transaction.

Figure 1 highlights the difference between our transaction scheduling approach and

the contention manager approach. As shown in Figure 1(a), a contention manager

tries to reduce the contention by adjusting when to retry the denied object (e.g., a

cache line). To say that a contention manager employs an exponential backoff scheme

means that the retry interval expands exponentially to a maximum limit until success.

A contention manager can decide to abort a certain transaction, but it does not deal

with when to resume the aborted transaction.

In contrast, our transaction scheduling scheme in Figure 1(b) specifically deals

with when to resume the aborted transaction. It dynamically schedules the point

where an aborted transaction resumes its execution. To say that a transaction sched-

uler uses an exponential backoff scheme means that aborted transaction resumes with

Transaction

Denied access
Retry 1

Retry 2

Aborted
Resume transaction

Contention 
manager 

delaying retries

(a) Contention Manager

Transaction

Denied access
Retry 1

Aborted

Resume transaction

Scheduler delaying 
transaction resume

(b) ATS

Figure 1: Contention Manager versus ATS
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an exponentially increased interval to a maximum limit. As can be seen, these two

approaches are orthogonal, dealing with different aspects of TM’s characteristics.

We do not schedule all the transactions. Transactions resort to the scheduler

only when they face high contention. To detect when to schedule a transaction, we

introduce a dynamic metric named contention intensity.

3.1 Contention Intensity

The effectiveness of a transaction is closely related to the intensity of the contention a

transaction encounters during its execution. By limiting the number of concurrently

executing transactions at a given time, contention intensity can be dynamically con-

trolled. Once the contention intensity is kept below a desired level, we can signif-

icantly increase the transaction effectiveness, thereby improving the overall system

performance.

Contention Intensity can be detected in either a centralized or a decentralized

manner. A centralized detection scheme relies on a global module to collect the

contention information over the entire system, whereas in a decentralized scheme

each thread will keep its own contention information. In our study, we used the

decentralized scheme. To quantify the contention intensity, we define the contention

intensity as a dynamic average based on current available contention information.

Each thread maintains its contention intensity (CI) in the following manner:

CIn = α × CIn−1 + (1 − α) × CC

Maintaining contention intensity information enables a parallelism feedback mech-

anism for a TM system. Initially, CI is set to 0. This equation is then evaluated

whenever a transaction commits or aborts, based on the previous CI and the current

contention (CC). In this equation the CC term is set to 0 when a transaction com-

mits, and set to 1 when a transaction aborts. The weight variable, α, determines

which portion of the equation weighs more — either the past history or the current

13



contention information. When the α value is large, the equation biases toward past

history; the contention intensity varies slowly while canceling out the noise from the

current contention information. When the α value is small, the current contention

information is reflected more quickly. In fact, based on the past commit / abort

history, contention intensity predicts the probability that a transaction would face

another conflict.

By default, the contention intensity value should be reset to 0 when a thread

changes the entered atomic block (which starts at a different PC). To put it differently,

when a thread loops around the same single atomic block, the contention intensity is

not reset. Nonetheless, we observed that resetting the contention intensity does not

have a significant impact on performance, since by the time all the threads leave a

particular atomic block — i.e., do not re-enter that particular atomic block before

entering another atomic block — each thread’s contention intensity is already close

to 0 due to the phased behavior of multi-threaded applications.

3.2 A Low Cost Transaction Scheduler

In ATS, aside from the OS thread scheduler, we implement a transaction scheduler

directly inside a TM system. To utilize the scheduler, each thread maintains its

own contention intensity as described in Section 3.1. When a thread either begins a

transaction or resumes a transaction after abort, it compares its contention intensity

with a designated threshold. When the contention intensity surpasses the threshold,

the thread will stall and report to the scheduler, waiting a dispatch. On the contrary,

when the contention intensity is below the threshold, the thread begins a transaction

normally. So when the contention intensity is low, ATS has little effect except for

the penalty of intensity check. A thread that resorts to the scheduler will be freed

from the scheduler and begin a transaction normally when the contention intensity

subsides below the threshold.
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Dispatch 
transaction

Scheduler

Queue 
transaction

Notify 
scheduler

Begin 
transaction

Queue of Transactions

Transaction 
commit / abort

Notify 
scheduler

Figure 2: A Queue-Based Transaction Scheduler

Figure 2 shows the organization of a queue-based scheduler. This scheduler main-

tains a single centralized queue of transactions, which resembles the run queue found

in the OS thread scheduler. This queue dispatches one single transaction at a time.

If a transaction is at the head of the queue, and if no other transactions that

have been dispatched from the queue are still executing, it is dispatched immediately.

Otherwise, the transaction waits in the queue until exclusivity is met. Moreover, the

transaction that has been dispatched from the queue must notify the scheduler when

it commits or aborts. This will trigger the dispatch of the next transaction.

Note that this queuing behavior effectively serializes high contention transactions.

At one extreme, when all the transactions are queued, this mechanism gracefully

degenerates transactions into a lock. With a properly chosen weight for the mov-

ing average and a threshold, this mechanism can guarantee that the performance of

transactions would at least be comparable to a single coarse-grained lock.

It is noteworthy to point out that we strived to keep the design of the scheduler

to be as simple as possible. This way, the scheduler could be easily implemented

in an HTM system. Simplicity is not necessarily bad when it does show significant

performance improvement, as we will demonstrate later.
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3.3 Transaction Scheduler in Action

time

Contention Intensity

ThresholdTimeline 1

Timeline 2

Timeline 3

Timeline 4

Timeline 5

Queued TransactionExecuting Transaction

Figure 3: Behavior of a Queue-Based Scheduler

In Figure 3 we use an example to detail the behavior of a transaction scheduler.

For now, let us assume that there is only one atomic block throughout the entire

program with only one global transaction queue. In this figure, the timeline flows

from top to bottom; on the right side locates the hypothetical variation of contention

intensity over time (an average of all CIs from running threads). When the contention

intensity is below the threshold (Timeline 1), transactions begin execution without

resorting to the scheduler. As the contention intensity grows beyond the threshold,

some transactions start to report themselves to the queue managed by the scheduler

(Timeline 2). The scheduler dispatches only one single transaction at a time from the

queue, which effectively reduces the number of concurrently executing transactions.

At Timeline 3, as more transactions are queued and serialized, the contention intensity

starts to decrease. When the contention intensity of a transaction drops below the

threshold, it will be dequeued from the scheduler to exploit more parallelism (Timeline

4, 5). Although demonstrated with one average CI for all running threads in this
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figure, each thread actually maintains its own CI. This design also prevents threads

from exhibiting abrupt group behavior.

The scheduler adaptively changes the number of concurrently active transactions,

so that the contention will not increase without bound (livelock). In essence, the

scheduler tries to keep the number of concurrent transactions close to the maximum

number of data parallel transactions, while the contention intensity acts as an error

signal. Since the contention intensity is updated dynamically, this scheme can also

adapt to phase changes during the execution. In other words, the scheduler will

exploit the maximum inherent parallelism at any given phase.

Now let us consider the case where there are multiple atomic blocks starting

at different PCs. When we maintain a dedicated queue for each atomic block, the

scheduler can control the number of concurrent transactions in each of the atomic

blocks. On the contrary, when we maintain a single queue for all the atomic blocks, the

scheduler would control the number of concurrent transactions executing in any of the

atomic blocks. Due to the phased behavior of multi-threaded programs, however, we

noticed that threads usually enter and leave an atomic block at roughly the same time.

Therefore, at any given point of execution, the case of different threads executing

different atomic blocks was rather rare, and a single global queue for all the atomic

blocks was sufficient. This mimics current TM systems which do not differentiate

transactional accesses from different atomic blocks. Throughout the rest of this thesis,

we only focus on the case where we have a single global queue for all the atomic blocks.

3.4 Comparison with Contention Manager

This ATS approach is completely different from the contention manager approach.

First, the two approaches take effect at different points of transaction execution. A

contention manager takes effect after a transaction has started; it is invoked when

there is a conflict. ATS takes effect before a transaction starts executing, to reduce the
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potential contention. For example, upon discovering transactions A and B conflict,

a contention manager could stall transaction B to resolve the conflict. However, it

cannot prevent another transaction C from starting execution although it is highly

likely that it will induce yet another conflict.

Second, our ATS scheme differs from the contention manager approach in the fre-

quency of module accesses. To collect transactional information, contention managers

are called whenever there is a transactional update; this forces contention managers

to be distributed. In contrast, since our transaction scheduler is accessed only when

a transaction starts under high contention, it can be centralized. This centralization

enables advanced, coherent scheduling policies; for example, controlling the number of

concurrent transactions is only possible when we have a global view of the contention.

Nonetheless, due to its adaptive nature, a centralized ATS does not undermine the

scalability of an HTM system.

Last, infrequent access and a simple design of ATS enable its low-cost integration

with HTM, as we describe in Section 4.1. More importantly, contention managers

can only be implemented on obstruction-free TM systems [17, 18]; largely due to this

assumption, contention managers can resolve conflicts on a peer-to-peer basis without

the system-wide contention information. On the contrary, ATS can be implemented

on other types of TM systems (e.g., lock-free) as well.

In fact, ATS is a complementary technique to the contention manager approach

as they address different properties of a TM system. We can say that ATS performs

macro scheduling to orchestrate when to start a transaction based on mutual con-

tention information collected, and after a transaction has started contention manager

will perform micro scheduling to reduce contention on the fly.
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CHAPTER IV

EXPERIMENTAL RESULTS

To evaluate the advantages of ATS, we implement our proposed queue-based schedul-

ing scheme in both HTM and STM systems. Section 4.1 details our ATS implementa-

tion on LogTM [30] (an HTM system), and Section 4.2 discusses our implementation

on RSTM [22] (an STM system).

4.1 Hardware Transactional Memory Integration

4.1.1 LogTM Settings

For an HTM system, we implemented ATS on LogTM [30]. LogTM is an eager

version management, eager conflict detection TM system that detects conflicts on

cache line granularity. LogTM has been released as a memory timing module of

the GEMS simulator [24]1. LogTM contains a dedicated module, the transaction

manager, which is accessed whenever a transaction starts, aborts, or commits. We

implemented our scheduling algorithm so that this transaction manager maintains

the contention intensity information.

We assume that the hardware queue resides in a central location of the system.

Since our implementation supports one active transaction per CPU, the queue depth

amounts to the total number of CPUs on the system. When a CPU decodes a

transaction begin instruction, it compares the current contention intensity value with

the threshold. When the contention intensity is above threshold, the CPU generates

a signal directed to the scheduler asking for intervention; at the same time, it stalls

1The delayRestart feature of LogTM had to be replaced with exponential backoff since it caused
deadlock in rare situations. This means that in the baseline LogTM, aborted transactions will
automatically resume execution with exponentially increased time interval to a maximum limit.

19



the thread. When the queued transaction becomes ready for execution, the scheduler

signals back the CPU to start the transaction. We assigned a 16 cycle delay for the

signal to propagate from a CPU to the global queue, and another 16 cycle delay for

the queue to notify the CPU to proceed. In our experiments, however, the actual

value of the latency did not affect the performance to a significant degree since a

queued transaction typically waited for hundreds to thousands of cycles. Table 1

specifies the simulated machine in GEMS.

Table 1: Simulation Settings for LogTM

Simulated System Settings

CPU
Sixteen 1GHz SPARCv9
single-issue, in-order
non-memory IPC=1

L1 Cache
4-way split, 64 KB
5-cycle latency

L2 Cache
4-way unified, 16 MB
10-cycle latency

Memory 4 GB

Directory centralized, 6-cycle latency

Interconnection Network
hierarchical switch topology
40-cycle link latency

LogTM Settings

m abortStartupDelay 40 cycles
m abortPerBlockDelay 20 cycles

The simulated system uses only the Ruby memory timing model of the GEMS

simulator. Thus, the CPU simulates a single-issue, in-order SPARCv9 processor.

Cache coherence is managed by a central directory and the interconnection network

is based on a hierarchical switch. In LogTM, there was a fixed delay of 40 cycles when

a transaction aborts from the system, and an additional penalty of 20 cycles that is

taxed for each block of log written back to the memory. By default, LogTM’s con-

tention management scheme is stalling [30]; the NACKed transaction keeps retrying

the access with a fixed time interval unless it detects a possible deadlock situation.

Our ATS scheme was built on top of this contention manager.
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4.1.2 Benchmark Suite

Our benchmark suite includes selected SPLASH-2 applications [45] and a modified

Deque microbenchmark included in the LogTM release. These workloads are trans-

actionized by replacing the lock with transactions. Table 2 lists the benchmark suite.

We use the same subset of SPLASH-2 applications used in the original LogTM pa-

per [30]. Those omitted ones are not considered as representative TM applications

since their atomic blocks mostly perform trivial memory operations, e.g., single in-

duction variable increments.

Table 2: LogTM Benchmark Suite

Workload Input Set # Threads

Water-nsquared 512 15

Water-spatial 512 15

Ocean (contiguous partitions) 258 8

Raytrace teapot 15

Cholesky 14 15

Barnes 512 bodies 15

Radiosity test 15

Deque N/A 15

For the Deque microbenchmark, each transaction first enqueues (dequeues) a value

on the left (right) of a global deque. It then performs a local job, and increments the

global counter at the end. The major difference from the released version of Deque

benchmark is that the amount of local job done by a transaction is adjustable by

the parameter transaction length. This parameter controls the length of a transac-

tion — shorter transactions typically increase the level of parallelism while longer

transactions tend to reduce its likelihood. By continuously adjusting the param-

eter, we could examine our scheduler’s behavior over a wide spectrum of poten-

tial parallelism. When comparing the performance to a lock-based implementation,

BEGIN TRANSACTION and END TRANSACTION macros were substituted with

pthread mutex lock() and pthread mutex unlock() to a single global lock, respectively.
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Table 3: Execution Time Statistics on LogTM

Benchmark Execution Time Xact Begin Commit Abort (%)
base ATS base ATS base ATS base ATS

Water-nsquared 52383081 52383081 17664 17664 17664 17664 0 (0%) 0 (0%)
Water-spatial 65462563 65462563 285 285 285 285 0 (0%) 0 (0%)
Ocean 291813916 291813916 1666 1666 1664 1664 2 (0.1%) 2 (0.1%)

Raytrace 50333882 50852127 48654 48128 47782 47781 872 347
(1.8%) (0.7%)

Cholesky 22596229 22258328 6754 6550 5938 5935 816 615
(12.1%) (9.4%)

Barnes 25015887 23878230 3055 2575 2319 2319 736 256
(24.0%) (10.0%)

Deque-14436 24037196 20970633 3713 1783 1200 1200 2513 583
(67.7%) (32.7%)

Deque-2048 20081574 13783990 3492 1866 1200 1200 2292 666
(65.2%) (35.7%)

Radiosity 472253209 239312955 490658 336154 276917 278711 213741 57443
(43.6%) (17.1%)

Despite its small size, this microbenchmark heavily stresses the transaction scheduling

and the contention management scheme of the underlying TM system. As more TM

systems become available, we expect this type of coarse-grained, frequent transaction

will become more prevalent [29].

In all of these benchmarks, one out of 16 CPUs was dedicated for the OS to

prevent the kernel thread from preempting application threads. Hence, most of the

workloads were executed with 15 threads. Benchmark Ocean was executed with 8

threads, for it requires the number of threads to be power of two. Moreover, to

maximize concurrency, thread affinity was fixed so that each thread executes on a

single CPU. Throughout the experiments, α was fixed to 0.7, while the threshold was

fixed to 0.5.

4.1.3 LogTM Result Analysis

4.1.3.1 Execution Time Characteristics

Table 3 shows a variety of execution time statistics gathered for the parallel sec-

tions of each benchmark. For each category, we show the numbers for the baseline
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LogTM (base) and the LogTM enhanced with ATS. Also, we experimented two Deque

scenarios denoted by Deque-14436 and Deque-2048 that set their transaction length

parameters to 14436 and 2048 memory operations, respectively.

The most prominent effect by ATS is the reduction of execution time. Figure 4

shows the speedup over the baseline LogTM by measuring the parallel sections of the

program. Based on the application characteristics, we divided the applications into

three groups: low-contention, medium-contention, and high-contention workloads.

Figure 5 shows the transaction abort rate for each application.
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Figure 4: Execution Time Speedup

Not surprisingly, low-contention workloads exhibit zero or negligible abort rates.

As explained in Section 4.1.2, atomic blocks performing simple induction variable

increments are the most common in this category. For this type of workload, the

scheduler has neither positive nor negative effect. Hence, the execution time remains

the same.

With the medium-contention workloads, the abort rates become more noticeable.

Raytrace, Cholskey, and Barnes belong to this category. ATS shows marginal perfor-

mance effect in these cases. As shown in Figure 4, Cholskey and Barnes show 2% and
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Figure 5: Transaction Abort Rate

5% speedup respectively. For Raytrace, the chosen α value (0.7) turned out to be

too conservative such that the scheduler overly serialized transactions, resulting in

1% slowdown. Nevertheless, the scheduler significantly reduces the transaction abort

rate for all three workloads. Note that the Xact Begin column of Table 3 shows the

baseline starting transactions in excess but committing nearly the same amount of

transactions as the ATS-enabled LogTM. In those workloads that rely on convergence

as their termination condition the number of committed transactions could be slightly

different from the baseline case since ATS changes the application behavior.

ATS shows a huge benefit when running high-contention workloads. Both Deque

microbenchmark programs show 15% and 46% speedup respectively, while Radiosity

is improved by 97%. As also shown, the scheduler nearly halves the transaction abort

rates. In addition, Table 3 indicates that for high contention workloads the baseline

issues 50% to 100% more transactions than the ATS-enabled LogTM. Aside from

performance advantages, reducing the number of aborted transactions would also

improve power consumption and cache pollution when thread affinity is not applied.
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4.1.3.2 Improving the Quality of Transactions

Not only does ATS reduce execution time and transaction abort rate, it also improves

the quality of each transaction. Table 4 denotes the characteristics related to the

quality of transactions. Same as in Table 3, we show the numbers for the baseline

LogTM (base) and the LogTM enhanced with ATS for each category.

Table 4: Transaction Quality Statistics on LogTM

Benchmark Xact Latency (stdv) L1D MPKI
base ATS base ATS

Water-nsquared 1548 (315) 1548 (315) 2.70 2.70
Water-spatial 501 (4764) 501 (4764) 1.25 1.25
Ocean 849 (279) 849 (279) 2.33 2.33

Raytrace 6857 6332 6.73 6.67
(37280) (11499)

Cholesky 1553 1174 1.10 1.11
(4824) (2720)

Barnes 9326 2245 0.96 0.95
(74878) (4736)

Deque-14436 129541 39045 5.06 2.32
(143462) (35107)

Deque-2048 72857 10641 2.50 1.54
(102182) (8948)

Radiosity 16488 1738 12.96 3.99
(60769) (4975)

The first of such characteristics is the transaction latency, i.e., the number of cycles

of a committed transaction’s lifetime. In LogTM, when there is a contention, it does

not abort the offending transaction right away. It stalls the requesting transaction

until the memory request can be satisfied [30]. Hence higher contention typically leads

to longer transaction latency. While stalling for the opponent, the stalled transaction

graduates no useful instructions. It simply squanders CPU cycles and energy. Figure

6 shows the normalized average transaction latency for the committed transactions.

For example, the transaction latency of Radiosity was reduced down to around

10% of the baseline. Moreover, not only does our scheduler reduce the average of

transaction latency, it also reduces the standard deviation of transaction latency. The
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Figure 6: Normalized Transaction Latency

stdv values in Table 4 show this trend. The implication is that the scheduler not only

shortens the transactions, but also makes them more deterministic and predictable,

something expected from a “high-quality scheduler.”

Combined with the results from Section 4.1.3.1, the ATS mechanism demonstrates

fewer CPU cycles are wasted while performing the same amount of work, leading

to performance improvement and energy savings. Moreover, under a multitasking

OS, the overall throughput could be improved by context-switching to a thread of a

different process while ATS delays resuming a transaction2.

Nevertheless, as explained by Amdahl’s law, the transaction latency reduction

cannot always be translated to a proportional speedup. For example, in Barnes the

amount of time when there is at least one transaction executing was less than 30%

of the total execution time. Further, we found that the execution time of Barnes

is usually dominated by only a few long transactions. As such, even though the

latencies of the majority of the transactions were reduced, the overall execution time

did not decrease much as long as the execution times of those long transactions were

2We could not obtain performance results for such cases since a transaction in the baseline LogTM
cannot survive a context switch.
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not reduced. We expect our scheduler to perform better when the lengths of the

transactions are of uniform duration.

The second aspect of the quality of a transaction is observed from the cache miss

rate. Upon each transaction abort, TM implementations that keep speculative results

in caches (eager version management [30]) must invalidate buffered results following

the cache coherence protocol. Frequent aborts amount to more cache line invalidations

which lead to a higher cache miss rate when a transaction resumes. The L1D MPKI

column in Table 4 shows the L1D cache Misses Per Kilo Instructions. As expected,

we can see that high-contention workloads benefit from our technique.

4.1.3.3 Guaranteeing Performance Lower Bound

One way to obtain a TM workload is to convert critical sections guarded by coarse-

grained locks into atomic blocks (transactions). This amounts to expanding the con-

tention scope of threads, since threads that were contending on different locks will

now contend with each other. This contention scope is similar to that where all the

critical sections are synchronized by a single global lock.

Due to its queue-based nature, ATS would serialize most of the transactions under

extreme contention. This amounts to degenerating its behavior to that of a single

global lock. In other words, 1) ATS can guarantee a performance lower bound for

workloads that were obtained by transforming coarse-grained lock critical sections

into transactions, and 2) the performance in this situation will be comparable to the

case where all the critical sections are synchronized by a single global lock.

TM implementations that detect conflict at commit time (lazy conflict detection)

can guarantee a similar performance lower bound since at least one transaction would

commit at a single commit phase [14]. TMs that detect conflict at object acquisition

(eager conflict detection), unfortunately, cannot guarantee such a bound as transac-

tions can repeatedly abort each other under high contention. ATS gives a performance
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lower bound to such eager conflict detection TMs. Considering that most of the cur-

rent TM workloads are generated by the aforementioned approach, this performance

guarantee would be necessary.
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Figure 7: Throughput on Deque Microbenchmark

Figure 7 shows the throughput variation of Deque microbenchmark with varied

transaction lengths. The longer the transaction length is, the harder to parallelize

the workload. Overall, we see a gradual decrease in throughput for all three schemes

as transaction length increases. The baseline LogTM occasionally exhibits worse

performance compared to the single global lock (SGL). On the contrary, ATS-enabled

LogTM always shows better or on-par performance with respect to the single global

lock.

This serialization is particularly well suited for those HTM implementations that

stall all other transactions in favor of one overflown transaction or a transaction

performing I/O or a system call [4, 5]. In our scheduling framework, stalling all other

transactions amounts to forcing all transactions to report to the scheduler, with the

overflown (syscall) transaction positioning at the head of the queue.
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4.2 Software Transactional Memory Integration

4.2.1 RSTM Settings

As for the STM, we implemented our ATS on top of the RSTM framework from the

University of Rochester [22]. RSTM is a C++ TM library that implements per-object

transactions. When an object is passed as an argument to a template, the template

returns a transaction-enabled wrapper object. Between BEGIN TRANSACTION

and END TRANSACTION macros, all the accesses through the read / write method

of this wrapper object are treated as transactional reads / writes. Managing these

transactions are completely handled by a software library.

We keep the contention intensity information in each thread’s local storage where

RSTM keeps each transaction’s transaction descriptor. Moreover, the access to the

central scheduling queue was serialized with a single global lock, and the conditional

variables found in the pthread library were used to synchronize the communication

between the scheduler and transactions. For proper synchronization, each conditional

variable was again guarded with a local lock. Compared to the baseline RSTM, the

performance of our scheduler implementation is actually penalized since the global

lock and the locks guarding conditional variables introduce synchronization overheads

in scheduling.

To quantify the performance, we measured the throughput of the entire sys-

tem with 5 microbenchmark programs from the RSTM library: RBTree, HashTable,

LinkedList, RandomGraph, and LFUCache, which are the common benchmarks repeat-

edly used in STM literature [40, 22, 42].

The contention manager Polka [40] was used as the default in our experiments.

Polka implements a mixture of exponential back-off and memory footprint-size based

priority mechanism. RSTM also allows programmers to configure 1) the visibility of

the read-only transactions to other transactions, and 2) the conflict detection mech-

anism (eager or lazy). We selected the best configuration for each workload [22].
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Namely, RBTree, HashTable, and LinkedList were executed with (invisible, eager) con-

figuration while RandomGraph and LFUCache were executed with (visible, lazy) con-

figuration.

Our ATS-enabled library was implemented on top of the same contention manager

using the same configurations. When comparing the throughput with the lock-based

implementation, we used the cgl library included in RSTM release which transforms

transactions back into critical sections guarded by a single global lock.

We measured the throughput on two real machines: a 2-way SMP system and

an 8-way SMP system. The 2-way SMP represents the current top-of-the-line dual

processor system, while the 8-way SMP system projects the future many-core pro-

cessors but running at a stripped-down configuration with lower clock frequency and

slower bus speed3. Table 5 describes the specifications of those two machines and

their operating systems.

Table 5: RSTM Hardware Settings

2-way SMP System

CPU

2, Intel Xeon 3.0 GHz
Front-Side Bus: 800 MHz
L2: 2 MB
HyperThreading off

Memory 2 GB

Operating System
Red Hat Enterprise Linux AS release 4
2.6.9-34.0.1.ELsmp

8-way SMP System

CPU
8, Intel Pentium III 550 MHz
Front-Side Bus: 100 MHz
L2: 2 MB

Memory 4 GB

Operating System
Red Hat Enterprise Linux AS release 4
2.6.9-11.ELsmp

3Due to the absence of hardware resources we could access, performance results on a 4-way SMP
cannot be obtained. Moreover, 8-way SMP was the largest machine we had access to.
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4.2.2 RSTM Result Analysis

4.2.2.1 Results on a 2-way SMP Machine

To study the sensitivity of our contention intensity equation to the value of α, we

executed the benchmarks with 3 different α values: α = 0.3, 0.5, and 0.7. Throughout

these experiments the threshold was set to 0.5. Figure 8 summarizes the results.
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Figure 8: Sensitivity Study on a 2-way SMP Machine

In this figure, the y axis denotes the relative throughput of ATS-enabled RSTM

over the baseline RSTM; the x axis denotes the number of concurrent threads. Each

data point denotes the harmonic mean of relative throughput calculated over the 5

benchmarks. Although the trend for the three α values gets entangled when signif-

icant number of threads execute (thread count ≥ 15), we can see that the α = 0.3

case generally outperforms the other cases. This means that for these benchmarks

weighing current contention information more than the past history brings about

more performance improvement.

At this α value, the performance of ATS-enabled RSTM is then compared with

the baseline RSTM and locks in Figure 9. In each subfigure, the x-axis plots the

number of concurrent threads, while the y-axis plots the throughput at log scale.

Unlike the HTM systems, the performance of STM systems can be much worse than
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Figure 9: Individual Benchmark Results on a 2-way SMP Machine
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locks since managing the per-object transaction information in software causes sig-

nificant overheads. As shown, ATS improves the throughput substantially over the

baseline RSTM for RBTree, HashTable, and LFUCache, while showing almost on-par

(RandomGraph) or slightly lower (LinkedList) performance in the others.

Figure 10 summarizes all the RSTM experimental results on 2-way SMP machine.

In the figure, the lower end of each vertical bar represents the minimum relative

throughput of our scheduling method for the five benchmarks. In the same manner,

the upper end of each vertical bar represents the maximum relative throughput. The

line across these vertical bars represents the harmonic mean of 5 relative throughputs

for each thread count. The aggregate performance speedup in harmonic mean is

around 1.3x ∼ 1.5x, while the maximum relative throughput can be as high as 5.9x.

The vertical bars skewing toward the y ≥ 1 region indicates the effectiveness of our

ATS scheme in performance across the different number of threads used.
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Figure 10: Scheduler Performance on a 2-way SMP Machine

4.2.2.2 Results on an 8-way SMP Machine

The same sensitivity study as in Section 4.2.2.1 was performed on an 8-way SMP

machine. Figure 11 shows the results.
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Figure 11: Sensitivity Study on an 8-way SMP machine

In this experiment, the α = 0.5 case outperforms the others when sufficient number

of threads (thread count ≥ 15) are executing. With α = 0.5, a new thread will

encounter two consecutive aborts before resorting to the scheduler.

The performance results on our 8-way SMP machine is shown in Figure 12. We

attribute the widened gap between RSTM implementations and the lock to the slow

FSB speed (100MHz) of our machine. Nonetheless, note the common trend in RBTree,

HashTable, LinkedList, and RandomGraph; when the number of concurrent threads is

small (thread count ≤ 15), the ATS and the baseline show similar throughputs.

However, as the thread count increases, the ATS-enabled RSTM starts to perform

better than the baseline. This trend is summarized in Figure 13.

As shown in the figure, when the number of concurrent threads is small, the

relative throughput remains around 1. In these scenarios, the overheads of the queue

synchronization actually bring slight performance degradation. As the contention

increases with more concurrent threads (≥ 17), the ATS-enabled RSTM starts to show

performance improvement. The aggregate performance improvement ranges from 1.1x

to 1.4x. Although there are some cases where minimum relative throughput goes
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Figure 12: Individual Benchmark Results on an 8-way SMP Machine
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Figure 13: Scheduler Performance on an 8-way SMP Machine

below 1, that those vertical bars position higher than 1 indicates that the scheduling

mechanism results in an overall net performance gain.

4.2.2.3 Effect of Page Faults on Performance

To better explain the significant performance improvement of ATS, we collected SAR

counters while the workloads are running. SAR is a Linux performance monitor-

ing tool that collects OS level statistics such as CPU utilization, number of context

switches, interrupts, page faults, etc., for a specified time interval. We resorted to

OS level counters since it has been reported that OS level counters play a key role in

identifying the behavior of an application using a runtime library [8].

By manually performing correlation analysis over the collected counters, we found

that the number of page faults (including major and minor page faults4) shows the

best correlation to the performance improvement.

Figure 14(a) shows the throughput trend of RBTree on the 2-way SMP system as

the number of threads increases. We chose it for our further analysis as ATS shows

the most noticeable performance gain. Figure 14(b) shows the numbers of page faults

4Major faults are those faults that actually end up loading a memory page from disk. Minor
faults are those faults that only miss in the OS frame cache.
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as the sampling sequence increases. The figure has been flipped against x-axis to show

the similarity of the trend to Figure 14(a). The SAR counter sampling frequency was

not perfectly synchronized with the thread count increase. Nonetheless, these two

graphs show that the performance improvement of ATS has close correlation to the

reduction of page faults.

We attribute this to our scheduling scheme reducing the number of transactions

that start execution. When there are more transactions, they tend to allocate more
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pages. Especially in Linux where page frame is managed on a per-CPU basis [6],

when some of those transactions are aborted, pages that were brought in without

contributing to the overall progress would adversely pollute the per-CPU page frame

cache [6]. By reducing the number of transactions dispatched, ATS increases the hit

rate of page frame cache, which leads to better performance.

One could argue why someone would want to run a TM system in such an oversub-

scribed configuration. Unlike HTM systems, one of the key virtues of STM systems

was to provide virtualized transactions that can survive context switches. There-

fore, for an STM system, performance results for the oversubscribed configuration

are equally important to those of the undersubscribed configuration. Many studies

report the performance results of STM systems under an oversubscribed configuration

[22, 40, 39, 41].

More specifically, there are two likely scenarios where a user might launch more

threads than there are in the system. First, we can never assume that the end-user will

dedicate the entire system to execute a single TM workload. For a dynamic scenario

where multiple workloads are running in the system, a user cannot pre-determine

the correct number of threads to execute. Second, under the strict nested transaction

model [33] a transaction can spawn multiple concurrent child transactions. Therefore,

a TM implementation should not pose any upper bounds on the number of threads.

These two scenarios will be prevalent once TM systems get deployed. Under such

situation, ATS would act as a safety net to provide a reliable QoS on the overall

system throughput.

4.2.2.4 Tuning the α Value Dynamically

Throughout our experimental results we have shown that the value of α plays a signif-

icant role in determining the overall ATS performance. In this section we discuss how

to adapt the α-value automatically for performance given an application’s dynamic
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behavior.

Recall from Section 3.1 that the contention intensity is comprised of two parts:

past history and current contention. The past history and the current contention

act as two different conflict predictors, while the α-value determining which predictor

to weigh more. By applying competitive learning between these two predictors, the

α-value can be adjusted automatically. In this scheme, penalizing one predictor will

reward the other. The following pseudo-code describes the algorithm:

if ( abort == true) {

if ( current_contention == 0) {

// penalize current contention

alpha += Scheduler::DELTA;

}

if ( past_history <= Scheduler::THRESHOLD) {

// penalize past history

alpha -= Scheduler::DELTA;

}

// clip alpha value

alpha = (alpha < 0) ? 0 : alpha;

alpha = (alpha > 1) ? 1 : alpha;

}

current_contention = abort ? 1 : 0;

past_history = alpha * past_history +

(1 - alpha) * current_contention;

This algorithm adjusts the α-value only when an abort has materialized due to a

misprediction. Upon each abort, α is adjusted by a step function to penalize the pre-

dictor that mispredicted. Penalizing the current contention rewards the past history,

and vice versa, but the α-value does not change when both predictors mispredict.

39



Figure 15 shows the result of applying the above algorithm to the ATS-enabled

RSTM. All the performance results were measured with the same 5 microbenchmarks

on the 2-way SMP machine. We specifically chose this 2-way configuration since ATS

showed the most sensitivity over the α-value.

Each line in the figure represents the harmonic mean of the relative throughput

at a particular α configuration. Three of the lines represent the α-values previously

used for the sensitivity analysis: 0.3, 0.5, and 0.7. The other implemented the above

algorithm with α initially set to 0.5, and the constant adjustment set to 0.1.
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Figure 15: Automatic Tuning of the α Value (2-way SMP)

Although α was initially set to 0.5, we can see that the adaptive scheme more

closely follows the performance of α = 0.3, which is the best setting among the

three constant α-values. We also observed that no matter the initialization value, α

converged to 0.4 for most of the workloads. With this training technique, the ATS

scheduler will be able to adapt dynamically to maximize transaction throughput based

on the online workload behavior observed.
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CHAPTER V

OPERATING SYSTEM INTEGRATION

Implementing ATS in an STM actually amounts to a user-level thread scheduling.

Since synchronization overhead could sometimes degrade the performance, it would

be better to delegate transaction scheduling to a central module that is inherently

synchronized: the OS scheduler. Implementing transaction scheduling in the OS also

has the benefit that the OS can assume an active role to optimize TM performance

regardless of the optimization approach taken in the actual TM implementation.

This is also true for the HTM. Although we have shown in Section 4.1 that a simple

transaction scheduling could bring about significant performance improvement, the

scheduling algorithm was confined to be simple so that it could be implemented in

hardware. Implementing ATS in the OS alleviates this limitation, thus enabling a

more sophisticated scheduling algorithm.

To integrate ATS, the OS should first introduce an exclusive scheduling class for

threads currently executing transactions: i.e., the TX class. Threads of the TX class

should be favored in scheduling over other threads. Moreover, there should be a

dedicated queue to keep track of those threads that belong to the TX class, such as

the real time queue found in Solaris [27]. Ideally, the OS should maintain one such

queue for each process.

On the hardware side, the processor should dedicate one of its interrupt number

to trap into the OS scheduler when necessary. If we assume to implement the same

contention intensity detection algorithm as in Section 3.1, the processor should also

provide two registers for the α value and the threshold. Moreover, there should be

a bit denoting whether to trap to scheduler or not. This could be implemented as
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a bitmask that could be set or cleared by the OS. Note that these registers and the

bitmask are part of the thread context and must be backed up and restored across

context switches. Figure 16 and 17 shows the interaction of the proposed hardware /

OS interface.

trap_to_scheduler bit 
set?

Transaction 
commit or abort

Yes

Calculate contention intensity 
with specified alpha value

Trap to scheduler

No

Contention intensity 
over threshold?

Yes

No

Proceed normal

Store contention 
intensity

Figure 16: Processor Transition

Bootup sequence
- Register scheduler routine in trap table
- Initialize alpha and threshold registers
- Clear trap_to_scheduler bit

- Boost scheduling class to TX
- Set trap_to_scheduler bit

Trap from processor

trap_to_scheduler bit 
set?

NoYes

Contention intensity over 
threshold?

Yes

 Queue thread to TX queue
- Demote to normal scheduling class
- Migrate thread to normal queue
- Clear trap_to_scheduler bit

No

Return

Retrieve contention 
intensity

Figure 17: Operating System Transition

Upon bootup, the OS registers the transaction scheduler routine in the trap

table. In addition, it initializes the α and the threshold register, and clears the
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trap to scheduler bit. When the trap to scheduler bit is not set, the processor be-

gins, commits, and aborts a transaction as usual. Meanwhile, the processor updates

contention intensity upon every transaction’s commit or abort.

When the contention intensity is below the threshold, it proceeds as normal, other-

wise, the processor stores the contention intensity in a predetermined location (either

in memory or a software trap argument register), then traps to the scheduler. Note

that trapping to the OS in this situation does not degrade performance significantly

since the processor would have been losing performance due to high contention any-

ways.

The scheduler first checks the trap to scheduler bit upon trap. 1) If the bit is

not set, this is the first time the thread consulting the scheduler. In this case, the

scheduling class of the thread is raised to TX, the trap to scheduler bit is set, and

the thread gets queued in the TX queue. 2) If the bit is set, the thread has already

consulted the scheduler earlier. The scheduler then decides whether the thread should

remain in the TX class by examining the contention intensity. If the value is still above

threshold, the thread gets queued at the back of the TX queue. If the value is below

threshold, the scheduler demotes the thread to normal scheduling class, migrates it

to a normal scheduling queue, and finally clears the trap to scheduler bit.

Once the trap to scheduler bit is set, the start of a transaction is controlled by the

OS thread scheduling policy. Moreover, when the bit is set, the processor should trap

to the scheduler when a transaction commits or aborts.
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CHAPTER VI

RELATED WORK

TM [19, 21] is one kind of approach to maximize parallel performance by speculative

execution. Other approaches utilizing speculation also include Rajwar and Good-

man’s speculative lock elision [34] and speculative synchronization from Martnez and

Torrellas [25]. Nonetheless, speculative methods potentially suffer from backfire if

speculation fails frequently. Our thesis minimizes this negative effect on TM systems.

Other approaches to maximize the performance of TM systems include contention

managers [18, 40]. Contention managers try to maximize the performance by effec-

tively handling the contention after it has been detected. Hardware support to utilize

this information has also been discussed [47]. Rather than to take action after the

contention has been detected, our method fundamentally reduces the contention it-

self. Bai et al. [3] also propose a different method to reduce the contention itself.

Nonetheless, the approach is limited in that it requires the Java executor framework,

and it is only applicable to dictionary-based structures. ATS is more closely related

to admission control found in an OS [43]. Under admission control, an OS can delay

the admission of the work until the system utilization subsides below some threshold.

Previously proposed retry construct [15] is also similar to ATS in a sense that it

delays the resume of a read transaction until a value in its read set changes. However,

retry is more of a language construct for transactional synchronization, not meant

to be used as a performance optimization feature. Moreover, the construct does not

specify in which order retried transactions should resume. We suspect that the resume

order would have significant impact on workload performance, and in that case our

scheduler could be utilized to impose ordering on the retrying transactions.
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There have been several HTM implementations [19, 14, 1, 30, 26, 4, 7, 46]. STM

systems have seen similar releases [18, 16, 12, 23, 22, 37, 11, 13]. The current trend

in HTM research is to accelerate STM with hardware components [38, 42, 29], or

to implement a hybrid [10, 20]. As long as there are transaction aborts, ATS can

be implemented to improve performance. The queue-based transaction scheduler is

particularly suitable for those TM systems that stall all other transactions in favor

of one overflown transaction or a transaction performing I/O or a system call [4, 5].

The energy aspect of transactional memory has already been studied [32]. Nonethe-

less, the authors in [32] sacrifice performance in favor of energy reduction by blindly

serializing all the transactions. Due to its adaptive nature, our scheme is expected to

save energy while increasing performance.
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CHAPTER VII

CONCLUSION

In this thesis, we propose the concept of adaptive transaction scheduling, called ATS,

that addresses performance issues caused by excessive transactions in both hardware

transactional memory and software transactional memory systems. With the runtime

parallelism feedback obtained from the contention intensity detection mechanism, we

can significantly increase transaction effectiveness for workloads that lack parallelism

due to high contention. Differing from a contention manager that manages con-

tention after it has been detected, our ATS proactively reduces contention itself upon

transaction scheduling. In our experiments, we show that our ATS scheme is a com-

plementary technique that delivers additional performance on top of a contention

manager.

Based on this notion, we demonstrated a very low-cost adaptive transaction sched-

uler. In this scheme, the number of concurrent transactions are adaptively adjusted

by dynamically controlling the execution point of a transaction to maximally exploit

the parallelism inherent within a given program phase. Through our case study, we

have shown that our scheduler not only guarantees that an ATS-enabled HTM sys-

tem can perform better than approaches using single global lock, but also significantly

improve performance for both generic HTM and STM systems. In our experiments,

the maximum performance speedup on an HTM system reaches 1.97x. Relative per-

formance speedup’s on STM are from 1.3x to 1.5x while the speedup of the peak

performance is 5.9x.
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