
FRAMEWORK FOR PRODUCT ARCHITECTURAL
ANALYSIS OF UNMANNED SYSTEMS AND

TECHNOLOGIES: FA2UST

A Thesis
Presented to

The Academic Faculty

by

Seth Leon Libby

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Aerospace Engineering

School of Aerospace Engineering
Georgia Institute of Technology

May 2018

Copyright c© 2018 by Seth Leon Libby

FRAMEWORK FOR PRODUCT ARCHITECTURAL
ANALYSIS OF UNMANNED SYSTEMS AND

TECHNOLOGIES: FA2UST

Approved by:

Professor Dimitri Mavris,
Committee Chair
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Olivia J. Pinon
School of Aerospace Engineering
Georgia Institute of Technology

Professor Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Christopher Jouannet
Saab Aerosystems
Saab Group

Dr. Jean Charles Domercant
Electronic Systems Laboratory
Georgia Tech Research Institute

Dr. Kristian Amadori
Saab Aerosystems
Saab Group

Professor Daniel P. Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: Jauary 2018

DEDICATION

“‘The bulk of mankind is as well equipped for flying as thinking.’

[Jonathon Swift (1711)] Which is now a more hopeful statement than

Swift intended it to be.”

- Will Durant

iii

ACKNOWLEDGEMENTS

I want to thank my committee - Dr. Dimitri Mavris, Dr. Daniel Schrage, Dr. Jean

Charles Domercant, Dr. Olivia Pinon-Fischer, Dr. Jouannet Christopher, and Dr.

Kristian Amadori. They offered their knowledge, experience, and time, for supporting

me financially and academically throughout my dissertation to ensure I reached my

goals. They provided the unwavering patience as I fine tuned my talents to become

a better student and engineer. I also would like to thank Dr. Kelly Griendling who

advised me on my research throughout my graduate studies.

Also, I want to thank my family, whose support provided the foundation necessary

for me to pursue a higher education. Without my grandfather’s and grandmother’s

unwillingness to accept failure or inferior performance, I would not have had the

drive within myself to see the completion of this degree. I am grateful to my parents

whose constant availability and love provided an unwavering foundation, allowing

me to strive for higher education. Finally, I thank my sisters, Alysia and Eden,

who provided the competitive spirit and heart I required to become the well-rounded

person I am today.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiv

LIST OF SYMBOLS OR ABBREVIATIONS xix

GLOSSARY . xix

SUMMARY . xix

I INTRODUCTION . 1

1.1 Reconfigurability and Commonality Selection
in the Systems Engineering Process 3

1.2 Defining Design, Configurations, System
Architectures, and Product Architectures 7

1.3 Expansion of Product Architectures 12

1.3.1 Defining Types of Product Architectures 12

1.3.2 Defining Types of Hybrid Product Architectures 15

1.3.3 Summary of the Product Architecture Space 18

1.4 Importance of Product Architecture Selection in the
Design Process . 20

1.5 Challenges of Selecting a Product Architecture 21

1.5.1 Review of Past Product Architecture Selections 21

1.5.2 Challenges Selecting a Product Architecture Concerning Un-
manned Aerial Vehicles . 25

1.5.3 Requirements of an Informed Product Architecture Selection 27

1.6 Problem Definition . 27

1.7 Overview of Dissertation . 30

II BACKGROUND RESEARCH . 33

2.1 Current Systems Engineering Process 33

v

2.1.1 Process Input . 33

2.1.2 Requirements Analysis . 35

2.1.3 Functional Analysis and Allocation 38

2.1.4 Design Synthesis . 43

2.1.5 System Analysis and Control 50

2.1.6 Process Output . 53

2.1.7 Requirements Loop . 55

2.1.8 Design Loop . 55

2.1.9 Verification . 56

2.1.10 Systems Engineering Process Summary 59

2.2 Existing Product Architecture Selection Methods 59

2.2.1 Quality Function Deployment (QFD) or
Relational-Oriented Systems Engineering and Technology Trade-
off
Analysis (ROSETTA) . 61

2.2.2 Unified Trade-off Environment 66

2.2.3 Customer Demands . 67

2.2.4 Robust Concept Exploration Method 70

2.2.5 Variation-Based Platform Design Methodology 72

2.2.6 Multi-Disciplinary Analysis and Optimization (MDAO) . . . 73

2.2.7 Contact and Channel Model 77

2.2.8 Architectural Enumeration and Evaluation 80

2.2.9 Architecture Selection under multiple Criteria and Evolving
Needs for improved Decision-making (ASCEND) 81

2.2.10 A Product Family Design Methodology Employing Pattern
Recognition . 84

2.2.11 Evaluation of Existing Product Architecture Selection Methods 86

2.3 Additionally Required Concepts . 88

2.3.1 Past Commonality and Reconfigurability Studies 89

2.3.2 Complex System Definition 104

vi

2.3.3 Difference between Robust Design, Flexibility, and Complexity 106

2.3.4 Software’s Impact on the Product Architecture 109

2.3.5 Additional Required Concepts Conclusion 122

2.4 Research Objective . 122

2.5 Formation of Research Questions . 124

2.5.1 Research Question 1: Establish the Need for a New Product 126

2.5.2 Research Question 2: Define the Problem or Requirements of
the
New Product . 127

2.5.3 Research Question 3: Establish Value of the Product Archi-
tecture . 128

2.5.4 Research Question 4: Generating Alternative Product
Architectures . 129

2.5.5 Research Question 5: Analysis of Alternative Product
Architectures . 129

2.5.6 Research Question 6: Determining Areas of Interest in the
Product Architecture Space 131

2.6 Summary of Background Research 131

III FORMULATION OF FRAMEWORK FOR PRODUCT ARCHI-
TECTURE ANALYSIS OF UNMANNED SYSTEMS AND TECHNO-
LOGIES: FA2UST . 133

3.1 Analyzing Customer Needs and Formulating a
Product-Based/Customer-Oriented Business Strategy 135

3.1.1 PESTEL Analysis . 138

3.1.2 The Five-Forces Model . 139

3.1.3 VRIO Framework . 142

3.1.4 Value Chain Analysis . 143

3.1.5 Selecting Business Strategy 145

3.1.6 Determining Product Needs 149

3.1.7 Checking the Formulated Product-Based, Customer-Oriented
Business Strategy . 153

vii

3.1.8 Summary of Analyzing Customer Needs and Formulating a
Business Strategy . 154

3.2 Identification of Product Architecture Selection
Drivers and their Impact . 154

3.2.1 Investigation of Past Industries 158

3.2.2 Observing the Design Drivers’ Impact on the Product
Architecture Selection . 182

3.2.3 Observing the Product Architecture Selection’s Sensitivity to
Design Drivers . 187

3.2.4 Conclusions from Test Case Determining Drivers Influence on
the Product Architecture . 188

3.2.5 Formation of Hypothesis 1 189

3.3 Establishing a Valuable Product Architecture 189

3.4 Identification of Methods to Facilitate
Generating Alternative Product Architectures 193

3.4.1 Commonality Index . 195

3.4.2 Online Reconfigurability Index 195

3.4.3 Offline Reconfigurability Index 196

3.4.4 Example F-14 Tomcat Product Family Indices Breakdown . . 198

3.5 Evaluating Alternative Product Architectures by
Quantifying Desirability, Flexibility, and Complexity 202

3.5.1 Formation of Design Problem 203

3.5.2 Creation of Desirability Metric 204

3.5.3 Creation of Requirement Flexibility Metric 206

3.5.4 Creation of Complexity Metric 208

3.5.5 Formation of Hypothesis 3 212

3.6 Formulation of Method to Identify Architectures of
Interest . 213

3.6.1 Definition of Pareto Identification 213

3.6.2 Utilization of Impact Mappings to Form Flexible Pareto Frontier214

3.6.3 Categorization and Properties of Architecture Drivers 215

3.7 Experimental Plan . 217

viii

3.7.1 Experiment 1: Testing Predisposed Assumptions in Product
Architecture Selection . 220

3.7.2 Experiment 2: Testing the Validity of using Qualitative Weig-
htings for various Metrics used to Evaluate the Product Ar-
chitectures . 222

3.7.3 Experiment 3: Validation of Product Architecture Drivers . . 224

3.7.4 Validation of Framework . 225

3.8 Formulation of Framework Conclusion 227

IV DEVELOPMENT OF THE ANALYTICAL MODULES REQUI-
RED BY FA2UST MODULE . 228

4.1 FA2UST Module Outer Layer Inputs 233

4.1.1 Inputing the Commonality of a Product Architecture 234

4.1.2 Inputing the Online Reconfigurability of a Product Architecture234

4.1.3 Inputing the Offline Reconfigurability of a Product Architecture235

4.2 FA2UST Module Inner Layer . 235

4.2.1 UAV Sizing and Synthesis Models 235

4.2.2 Automobile Sizing and Synthesis Models 290

4.3 FA2UST Module Outer Layer Outputs 294

4.3.1 Calculating a Product Architecture’s Desirability 294

4.3.2 Calculating a Product Architecture’s Requirement Flexibility 296

4.3.3 Calculating a Product Architecture’s Design Complexity . . . 297

4.4 Development of FA2UST Module Summary 297

V UNMANNED AERIAL VEHICLE CASE STUDY 300

5.1 Establishing the Need for a New UAV Product 300

5.1.1 UAV Industry External Analysis 301

5.1.2 UAV Manufacturer Internal Analysis 305

5.1.3 Selecting UAV Industry Business Strategy 308

5.1.4 Extracting Customer Needs for New UAV 310

5.1.5 Final UAV-Based, Customer-Oriented Business Strategy . . . 313

5.2 Defining the UAV Design Problem 313

ix

5.2.1 Decomposition of Tasks Required of UAV 317

5.2.2 Relating Design Missions to UAV Configuration 328

5.2.3 Determination of Drivers Relevant to UAV Design 328

5.2.4 Conclusions from Defining the UAV Design Problem 329

5.3 Establishing a “Valuable” UAV Product Architecture 329

5.4 Generating Alternative UAV Product Architectures 333

5.5 Evaluating Alternative UAV Product Architectures 336

5.5.1 Experiment 1: Testing the Evaluation Metrics Results and
Conclusions . 337

5.6 Final Decision of UAV Product Architecture to Implement 343

5.6.1 Experiment 2: Sensitivity Studies on the Evaluation Metric
Weightings Results and Conclusions 345

5.6.2 Experiment 3: Observing the Impact of Requirements on the
Product Architecture Results and Conclusions 348

5.6.3 Summary of Experiments 1, 2, & 3 354

VI CONCLUSIONS . 355

6.1 Contributions . 356

6.2 Important Insights from the Research 358

6.3 Final Thoughts . 360

APPENDIX A — AUTOMOBILE CASE STUDY 362

REFERENCES . 388

x

LIST OF TABLES

1 System Engineering Specifications and Baselines [42] 54

2 Example UAV Trade Tree Options 58

3 Evaluation of the QFD Method . 64

4 Evaluation of the ROSETTA Framework 66

5 Evaluation of UTE Method . 67

6 Evaluation of the Customer Demands Method 70

7 Evaluation of the Robust Concept Exploration Method 72

8 Evaluation of the Variation-Based Platform Design Methodology . . . 73

9 Evaluation of Multi-Disciplinary Analysis and Optimization (MDAO) 76

10 Evaluation of the Contact and Channel Model 80

11 Evaluation of the Architectural Enumeration and Evaluation Framework 82

12 Evaluation of the ASCEND Framework 84

13 Evaluation of the Product Family Design Methodology Employing Pat-
tern Recognition . 86

14 Evaluation of Existing Architecture Selection Methods 88

15 Evaluation of the Degree of Commonality Index 91

16 Evaluation of the Total Constant Commonality Index 91

17 Evaluation of the Product Line Commonality Index 93

18 Evaluation of the Percent Commonality Index 95

19 Evaluation of the Commonality Index 96

20 Evaluation of the Component Part Commonality Index 97

21 Evaluation of the Comprehensive Metric for Commonality 99

22 Evaluation of the Machine Reconfigurability Index 101

23 Evaluation of the Multi-Attribute Reconfigurability Index 103

24 Evaluation of the Previously Developed Commonality and Reconfigu-
rability Indices . 104

25 Equation 20 A Coefficient Values [81] 112

xi

26 Equation 20 Scaling Exponents (SFj) and Cost Drivers (EMi) [45] . 113

27 Evaluation of the AFCAA REVIC or COCOMO Model 114

28 Evaluation of the SEER-SEM Model 116

29 Putnam Special Skills Factor [92] . 117

30 Evaluation of the QSM SLIM-Estimate or Putnam Model 117

31 Putnam Productivity Parameter [92] 118

32 Evaluation of the Identified Software Models 119

33 Calculating the Total Number of Unadjusted Function Points [84] . . 120

34 Converting UFP to SLOC [92] . 121

35 Automobile Industry Architecture Evolution 159

36 Multi-Role Helicopter Industry Architecture Evolution 165

37 US Carrier Fighter Industry Architecture Evolution 170

38 Industry Architecture Evolution . 176

39 Product Architecture Selection Drivers Identified in Section 3.2.1 . . 183

40 Test Case and Driver Impact Framework 184

41 Breakdown of Unique Components in the F-14 Product Line 199

42 Components Broken Down by Discipline 210

43 Options of Available Airfoils in the FA2UST Module 238

44 Calculating the Total Number of Unadjusted Function Points for a
Radar [84] . 241

45 Calculating the Total Number of Unadjusted Function Points for a
EO-IR Sensor [84] . 243

46 Calculating the Total Number of Unadjusted Function Points for a
GPS [84] . 245

47 Calculating the Total Number of Unadjusted Function Points for a INS
[84] . 247

48 Calculating the Total Number of Unadjusted Function Points for a
Communications Subsystem [84] . 248

49 Calculating the Total Number of Unadjusted Function Points for a
Piston or Turboprop Engine [84] . 251

xii

50 Calculating the Total Number of Unadjusted Function Points for a
Turbofan or Turbojet Engine [84] . 254

51 Calculating the Total Number of Unadjusted Function Points for a
Main Wing [84] . 258

52 UAV Industry VRIO Analysis . 306

53 Technical Requirements of UAV Case Study 317

54 UAV Industry Civil Surveillance Design Mission [43] 319

55 UAV Industry Military-Grade Surveillance Design Mission [43] 322

56 UAV Industry Military-Grade High-Speed Design Mission [43] 326

57 Correlations between UAV Performance and Cost Metrics 330

58 UAV Civil and Military-Grade Surveillance Missions QFD 330

59 UAV Military-Grade High-Speed Mission QFD 331

60 UAV Design Variable Ranges . 334

61 First and Second Order Term’s Impact on Evaluation Metrics 341

62 Online Reconfigurability’s Interaction Term’s and their Impact on Eva-
luation Metrics . 341

63 Composition of Components for Final Selected Product Architecture 345

64 Composition of Online Reconfigurable Interfaces for Final Selected
Product Architecture . 345

65 Late 1970s Automobile Industry VRIO Analysis 368

66 Technical Requirements of Automobile Case Study 374

67 Mid-Sized and Luxury Automobile QFD 377

68 Automobile Design Variable Ranges 380

xiii

LIST OF FIGURES

1 Architecture Development [82] . 4

2 Example Operational Viewpoint of UAS Operations in the US National
Airspace System [61] . 5

3 Conceptual Product Design and Development [71] 8

4 Design Process . 9

5 Unmanned Aerial Vehicle Configurations 10

6 Reconfigurable Architecture: Porsche 918 Spyder 13

7 Product Family Architecture: Sikorsky UH-60 Black Hawk 14

8 Fixed Architecture: B-2 Bomber . 15

9 Online Reconfigurable Architecture: Grumman F-14 Tomcat 16

10 Modular Architectures . 17

11 Scale-Based Product Family Architecture: Boeing 737 18

12 Venn Diagram of Qualitative Architecture Space 19

13 USA Defense Budget as Percentage of USA GDP and Tax Revenue [3, 4] 26

14 Systems Engineering Process [42] . 34

15 Example Function Flow Block Diagram of UAV SEAD Mission 40

16 Example Simplified Functional/Physical Matrix of a UAV 42

17 Example UAV Product Breakdown Structure 44

18 Example N2 Diagram of a Basic UAV 46

19 Example UAV Trade Tree . 57

20 Quality Function Deployment [122] 63

21 Relational-Oriented Systems Engineering and Technology Trade-off Ana-
lysis (ROSETTA) [91] . 65

22 Customer Demand Method[155] . 69

23 Multidisciplinary Feasible Structure [16] 74

24 Individual Discipline Feasible Structure[16] 75

25 Contact Channel Model [15] . 78

xiv

26 Architectural Enumeration and Evaluation [157] 81

27 Architecture Selection under multiple Criteria and Evolving Needs for
improved Decision-making (ASCEND) [58] 83

28 A Product Family Design Methodology Employing Pattern Recogni-
tion [59] . 85

29 Example Complex System Design Structure 105

30 Flexibility and Robustness as a Function of the System’s Objectives
and Environment [126] . 107

31 The growth of Software in the Aerospace Industry [5] 111

32 This Dissertation’s Framework Overview 125

33 Framework for Product Architecture Analysis of Unmanned Systems
and Technologies: FA2UST . 136

34 Process to Formulate a Product-Based/Customer-Oriented Business
Strategy . 137

35 VRIO Framework [125] . 142

36 Value Chain Analysis [117] . 143

37 Strategic Position and Competitive Scope [125] 146

38 The Capability and Market Size Relational Space 147

39 Origins of Needs for a New Product 150

40 High Customer Power Market . 151

41 Low Customer Power Market . 151

42 Process to Transform Customer Needs to Functional Requirements . . 155

43 Breakdown of Requirements . 157

44 Architecture Driver Magnitude in the Space 186

45 Driver Impact Mappings . 188

46 Transformation of Product Architecture Space 194

47 Two Dimensional Representation of Quantitative Architecture Space 194

48 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems (Fuselage Platform) 196

49 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems (Wing Platform) . 197

xv

50 Grumman F-14 Tomcat in Architecture Space 198

51 Tree Diagram Outlining F-14 Tomcat Physical Interfaces between Com-
ponents and Subsystems . 201

52 Grumman F-14 Tomcat in Architecture Space 202

53 Desirability . 205

54 Overall Evaluation Criteria Creation 206

55 Flexibility . 207

56 Complexity . 209

57 Theorized Product Architecture Pareto Frontier 214

58 Theorized Driver Impact Categories: Radial and Tangential 216

59 Experimental Plan . 219

60 Verification and Validation Plan for Proposed Method 226

61 Definitions of Entities and Objects used within FA2UST 229

62 Example Planform Shape for Aerodynamic Surfaces 237

63 Example Cylindrical Geometric Entity 238

64 Range-Resolution Model Incorporated into Radar and EO-IR Sensor
Subsystems . 239

65 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems for a Traditional Tube-Body, Wing, Horizontal Tail,
and Vertical Tail Configuration . 266

66 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems for a Traditional Tube-Body, Wing, and Horizontal
Tail Configuration . 266

67 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems for a Tube-Body, Wing, and Vertical Tail Configuration266

68 UAV Tree Diagram Outlining Physical Connections of Components
and Subsystems for a Flying Wing Configuration 266

69 Final UAV Layout (m) . 280

70 Drive Cycles Used to Size and Test the Automobiles 293

71 Integration of UAV Inner Layer Models with the Outer Layer of the
FA2UST Module . 298

xvi

72 Integration of FASTSim Inner Layer with the Outer Layer of the
FA2UST Module . 299

73 The Capability and Market Size Relational Space for the UAV Industry309

74 Civil Surveillance Mission Historical Vehicles 315

75 Military-Grade Surveillance Mission Historical Vehicles 316

76 Military-Grade High-Speed Mission Historical Vehicles 318

77 Function Flow Block Diagram of UAV Civil Surveillance Mission . . . 320

78 UAV Civil Surveillance Mission Functional/Physical Matrix 321

79 Function Flow Block Diagram of UAV Military-Grade Surveillance
Mission . 323

80 UAV Military-Grade Surveillance Mission Functional/Physical Matrix 324

81 Function Flow Block Diagram of UAV Military-Grade High-Speed Mis-
sion . 325

82 UAV Military-Grade Surveillance Mission Functional/Physical Matrix 327

83 Design Variable Ranges Historical UAVs 335

84 An Example of an Online Reconfigurable Wing’s Impact on the Mat-
tingly Constraint . 336

85 The Product Architecture’s Impact on Desirability 338

86 The Product Architecture’s Impact on Flexibility 339

87 The Product Architecture’s Impact on Complexity 340

88 The FA2UST Framework Decision Facilitator 343

89 Final Decision of UAV Product Architecture 344

90 UAV Product Architecture Selection based on Desirability 346

91 UAV Product Architecture Selection based on Requirement Flexibility 347

92 UAV Product Architecture Selection based on Design Complexity . . 348

93 The Requirements’ Impact on Product Architecture Evaluation Metrics 350

94 The Final Driver Impact Mappings for the UAV Case Study 353

95 The Final Driver Sensitivity Mappings for the UAV Case Study . . . 353

96 The Capability and Market Size Relational Space for the Automobile
Industry . 371

xvii

97 Validation of FA2UST Framework Product Architecture Drivers . . . 382

98 Validation of FA2UST Framework Evaluation Metrics 384

99 Validation of Automobile Historical Case 386

xviii

SUMMARY

Recently, military and civilian entities use unmanned aerial vehicles (UAVs) in

many diverse operations because of their low cost, versatility, lack of human element

onboard, efficiency, and connectivity. However, challenges exist when developing these

platforms. UAVs are highly sensitive to changing technologies. They must satisfy

varying customer expectations, experience low levels of demand, and face stringent

regulations. UAVs have become feasible due to the recent advancements in electronics

technology and loosening of regulations. The electronics market’s and government’s

influence on the industry constantly shifts from disruptive advancements and uncer-

tain policy. As a result, UAV producers have implemented many different product

architectures, including reconfigurable and product family architectures, hoping to

satisfy all niches of a constantly changing marketplace. Reconfigurable architectures

possess system components that can be modified during or after operating, increasing

the system’s capabilities. Product-family architectures contain elements of commo-

nality with other systems which reduce the production costs. This is not just specific

to the UAV industry. The US military’s F-35, the US Navy’s Littoral Combat Ship,

and the automobile industry all vary levels of commonality and reconfigurability to

achieve ever increasing stringent requirements. However, there are some unforeseen

consequences of implementing these characteristics, including cannibalization of per-

formance from commonality and increased complexity from reconfigurability. As a

result of the expansion of choices, a new method is required to assist in the process

of selection.

Product architecture selection is a discrete categorical problem that occurs at

the beginning of the design process, often before the down-selection of configurations

xix

and the conceptual phase of design. Due to its occurrence early in the process,

all decisions made after this are directly affected, and mistakes during the selection

are compounded and grow exponentially throughout development and production

of the product. Consequences of selecting the wrong architecture include suboptimal

performance, cost overruns, loss of customers, and possible restart or scrapping of the

product’s production. From an extensive literature review, it is apparent there exists

no method that thoroughly explores product architecture alternatives. Therefore, a

new framework is presented.

The proposed methodology breaks down the process into six steps: establishing

the needs of the customer and manufacturer; identifying drivers that influence the

decision; establishing metrics to determine the favorability of a product architecture;

generating alternative product architectures; developing a means to evaluate alterna-

tive architectures; and identifying methods that help engineers make a decision. The

product architecture space is qualitative by nature, but a quantitative approach is

presented that converts the space into a quantitative one. This approach identifies

the proportion of component characteristics in the product architecture. An exami-

nation of multiple industries’ pasts identifies possible drivers. Strategically selected

architectures decompose the architecture space, to provide insights on how alternative

product architectures should be evaluated. This analysis provides evaluation criteria

based on the product architecture’s resilience to changing requirements and complex-

ity. This dissertation tests the new concepts and formulation of a new framework for

selecting product architectures, specifically in the UAV and automobile industries.

The framework identifies requirements or drivers that influence architecture se-

lection and provides a way to generate and evaluate alternative architectures. The

output of the framework is the composition of component characteristics of the pro-

duct (the percent commonality and reconfigurability). The benefits of the new fra-

mework include increased traceability of the decisions made throughout all phases of

xx

the design process and general insights on the product architecture selection problem.

xxi

CHAPTER I

INTRODUCTION

The use of unmanned aerial vehicles (UAVs) is becoming widespread across govern-

ment, military, and civil operations. UAVs possess “attributes of persistence, en-

durance, efficiency, and connectivity [which] are proven force multipliers across the

spectrum of global Joint military operations [51].” Furthermore, civilian UAV appli-

cations are expected to grow at an annual compound growth rate of 7.6 percent, meet-

ing the commercial objectives of deliveries, operations management, asset tracking,

mapping, environmental monitoring, and many other surveillance objectives [73, 29].

UAVs have inherent benefits. They are cheaper than conventional, commercial ai-

rcraft. They are used in a wide range of mission types, and do not have a human

element, hence reducing costs and risk. The reduced costs and risk lead to the emer-

gence of new uses and applications for unmanned vehicles. As the market expands,

diverse market niches will emerge. However, this developing industry has many ex-

ternal factors that influence its evolution, including economic, legal, political, and

technological constraints.

In today’s budgetary environment, government customers are under increasing

pressure to develop cost-effective, timely products that require designs with greater

capabilities to meet multiple mission requirements and objectives [51]. In the civilian

industry, there were 456 major worldwide UAV manufacturers trying to capture a

$4.5-billion market in 2016 [73, 93]. Of the $4.5 billion, $1.6 billion was generated by

commercial or civilian sales. With DJI (Dajiang) Innovations controlling 70-percent

of that market, the remaining manufacturers are competing over the remainder of

the market, making margins extremely thin. As a result, many of the manufacturers

1

no longer design vehicles for a single mission or market niche but rather multiple

missions and roles to try to capture as much of the market as possible. However,

greater capability often leads to increased complexity, inducing higher development

and production costs [20]. Though UAVs are cheaper than conventional aircraft,

UAVs are still constrained by these economic factors, requiring low acquisition and

operating costs.

In 2012 and 2013, the Federal Aviation Administration initiated the process to

integrate UAVs into the United States airspace [52, 37, 36]. Though the civilian UAV

market is not completely open, the FAA grants special exemptions to approved servi-

ces in the United States [2], and the European Union plans to have UAVs integrated

into its airspace in 2019 [37, 36]. There are still challenges in determining the best

regulatory frameworks for the UAV industry, making the FAA and Eurocontrol slow

to open up the market. As a result, performance and market requirements are still

evolving.

Unmanned systems are heavily reliant on their electronic subsystems, driving the

operational performance, capability, and cost of the system. The subsystems replace

a human presence with digital senses (sensors). The subsystems are highly sensitive

to the rate of change of the electronics industry. The rapid pace of technology and

electronic evolution hastens the obsolescence of the sensors, and consequently that of

the UAVs as well.

The tight fiscal constraints, uncertain status of regulations, market deregulation,

and technology evolution drive system engineers to develop creative solutions. These

solutions include various forms of commonality and reconfigurability in UAV design

to satisfy the cost and capability requirements. Commonality is the possession of the

same components or attributes across two or more concurrently developed entities

[142]. Reconfigurability is the ability of a system or design to rearrange its composi-

tion of elements to modify how the system behaves or performs [111]. The selected

2

level of commonality and reconfigurability must meet the present and evolving needs

of the customer, and the needs usually reflect market forces, commercial, or military

strategies. Selecting the appropriate level of commonality and reconfigurability is

essential because of its impact on the cost, performance, and business model of the

product offered to its customers and eventually on the manufacturer’s competitiveness

and market dominance.

1.1 Reconfigurability and Commonality Selection
in the Systems Engineering Process

Implementation of reconfigurability and commonality is a subset of systems engineer-

ing. Systems engineering is defined as “an interdisciplinary engineering management

process that evolves and verifies an integrated, life-cycle balanced set of system so-

lutions that satisfy customer needs [42]” where a system is “an integrated composite

of people, products, and processes that provide a capability to satisfy a stated need

or objective [42].” Applied to UAV design, a system is an integrated composite of

physical components and software control logic that provide a capability to satisfy a

stated need or objective. Implementation of reconfigurability and commonality de-

termines the relations and characteristics of or between the components within one or

more systems. In systems engineering, architectural layers help designers organize the

design problem at hand. These layers assist in determining capability, operational,

service, and systems characteristics [82, 44, 42, 66]. Breaking down the layers can

help provide the scope of the systems engineering process that applies to determining

the composition of reconfigurability and commonality.

The Handbook of Systems Engineering and Management [82] defines and identifies

four of these layers: the dynamic operational, functional, physical, and technical ar-

chitecture layers. It is important to understand that these layers do not represent the

product but are system engineering processes that break down the problem to allow

designers to make informed decisions throughout the design process. Furthermore,

3

Functional
Architecture

Physical
Architecture

Technical Architecture

Selection of Technical,
Physical, & Product

Architectures

Operational
Concept

Requirement
Analysis

Dynamics
Model

Operational-X
Architecture

Conceptual
Sizing

MOPs
MOEs

Optimization & Conceptual
Baseline Selection

Figure 1: Architecture Development [82]

these layers are implemented by designers in different ways to facilitate designing a

system and implementing various levels of commonality and reconfigurability. In the

traditional systems engineering process, engineers choose the levels of commonality

and reconfigurability through their intuition or experience, often without conside-

rate analysis [82]. Figure 1 shows system engineers apply the layers during a design

process.

The dynamic operational architecture is “a description of how the elements ope-

rate and interact over time while achieving the goals [82].” It describes how the system

in development interacts with the environment and other systems during operations

to achieve any capabilities defined by the customers or designers. It is essentially

an applied version of the Department of Defense Architectural Framework (DoDAF)

defined Operational Viewpoint, outlining connections and relations among systems or

entities enabling combined capabilities [44]. Figure 2 provides an example Operatio-

nal Viewpoint of UAS Operations in the US National Airspace System. It outlines the

entities and systems and the connections among them. The connections show where

4

Figure 2: Example Operational Viewpoint of UAS Operations in the US National
Airspace System [61]

resources are exchanged so the collaborative systems can achieve the capability of

monitoring weather and forest fires without interfering with commercial aircraft ope-

rations. A generic dynamic operational architecture defines the systems and their

interconnections. It demonstrates the relationships and logical flow between entities

and detail how these entities behave together.

The functional architecture layer is “a partially ordered list of activities or functi-

ons that are needed to accomplish the system’s requirements [82].” In a nutshell, the

functional architecture determines how the system interacts with the missions or tasks

assigned to it. The product must be able to perform one or multiple tasks. Each of

these tasks can be broken down into a step-by-step process which allows the designer

to identify the components, functions, or capabilities that are required from the pro-

posed system. By conducting this exercise, the designer can immediately eliminate

options for the product architecture since some components and characteristics will

not achieve the requirements set by the customer or developer. Four models make

5

up the functional architecture: the activity, data, rule, and dynamics model [82].

The activity model breaks down the tasks a system must perform into discrete steps

through a function flow block diagram, displaying a series of discrete events. The

data model simulates the events usually using simplified modeling, simulating the

mission, operations, or interactions that take place in the operational architecture.

If there are conditions or options the system might encounter during its task then

a rule model provides the logic chains which outline how the system should behave,

deploying a trade tree to outline all options. Finally, the dynamics model controls

the flow of the simulation determining when to move on to the next element of the

task and what information must be passed on.

The physical architecture is “a node-arc representation of physical resources and

their interconnections [82],” often displayed as an N2 diagram. The diagram shows

which components interact with each other.

The technical architecture is “an elaboration of the physical architecture that

comprises a minimal set of rules governing the arrangement, interconnections, and

interdependencies of the elements, such that system will achieve the requirements

[82].” In summary, the technical architecture is the combination of the functional

and physical architectures, displaying how the system and its components interact

with each other and the requirements.

Implementation of commonality and reconfigurability occurs in the Systems Vie-

wpoint or the technical/systems architecture. The characteristics of commonality

and reconfigurability influence the interconnections and interdependencies among the

components within one or multiple systems. Since the characteristics of commonality

and reconfigurability drive production and business relationships, the implementa-

tion is not only a part of systems engineering but also product development. Hence,

the characteristics are a part of the product architecture which combines systems

engineering principles with product development considerations.

6

1.2 Defining Design, Configurations, System
Architectures, and Product Architectures

Product development outlines the process of defining the key elements involved in the

development, production, and supporting of a new product. In the content of this

work a product is defined as “something that is made to be sold, especially something

produced by an industrial process [6].” A product can be designed separately or

concurrently with multiple variants, in a product family or product line, to satisfy

the demand of one or multiple market niches [22, 71].

Figure 3 displays the five domains in product development [71]: customer, functi-

onal, design, process, and logistics. The domains pass requirements, variables, and

constraints to each other causing coupling and interactions whose strength increases

with the system’s complexity. The customer domain is composed of the market’s,

customers’, or stakeholders’ stated or unstated needs or desires [89, 71]. Examples of

parameters in this domain include customer satisfaction and intimacy. The functi-

onal domain is composed of requirements that can be defined as “statement[s] that

identif[y] system [...] characteristic[s] or constraint[s], which [are] unambiguous, [and]

can be verified [151].” Examples include design mission(s), performance characte-

ristics, technologies, and cost(s) - acquisition, operations, and logistics. The design

domain can be defined as “qualitative and quantitative aspects of physical and functi-

onal characteristics of a component, [...] product, or system that are input to its design

process [1].” Examples of design parameters are usually component characteristics

such as wing area or engine horsepower/thrust. The process domain can be defined

as “any of those varying operational and physical conditions associated with [manu-

facturing] operation [108].” Examples of process variables include manufacturability

(cost, time, and quality) and process set up. Finally, the logistics domain is defined

as “[those variables associated with] the organization of supplies, stores, quarters,

etc. [131].” Examples include supply chain management, postponement, and results

7

Design
Param.
(DPs)

Func.
Req.

(FRs)

Customer
Needs
(CNs)

Process
Variables

(PVs)

Logistic
Variables

(LVs)

Translating
needs into FRs

Validation
to see if FRs

meet CNs

Map
requirements

to DPs

Verify
DPs achieve

FRs

Determination
of PVs and

impact of DVs

Manufacturing,
logistics, and

operation costs

Determination
of supply

chain and LVs

Logistics
and operation

costs

Product
Planning

The process of
parametricaly
or optimally
determining

system parameters
from the FRs

Production
Planning

The process of
setting up the ma-
nufacturing process

and work flow

Requirement
Analysis

The process of
determining sy-

stem functionality,
attributes, and con-
straints from CNs

Logistics
Planning

The process of
planning production

with distribution
or operation

of the product

Focus of
Dissertation

Figure 3: Conceptual Product Design and Development [71]

of operation analyses.

The process by which engineers define the variables and verify that the product

meets the customer’s needs is the design process. In the aerospace community, the

design process is “the intellectual engineering process of creating on paper a flying

machine that either meets certain requirements and performance objectives or explo-

res new concepts, technologies, and innovation [18].” During the process, designers

translate an idea into a tangible object by defining the variables that outline the di-

mensions, structures, and performance characteristics of the system. As the product

progresses through the process, designers gain more information about the product.

Aircraft design consists of three distinct phases: conceptual, preliminary, and de-

tailed design, as seen in Figure 4. Conceptual design is the first step, where the

designer conducts parametric or optimization-based analysis, determining the size,

shape, and performance of the system and its components. Furthermore, the de-

signer can analyze trade-offs amongst requirements, technologies, performance, and

approximated costs. Preliminary design is the second phase where the designer locks

8

Requirements

Technology
Availability

Conceptual Design

Architecture Selection

Initial Sizing

Refined
Sizing and

Performance
Optimization

Conceptual Baseling

Preliminary Design

High-Fidelity
Performance
Optimization

Preliminary Baseline

Detailed Design

Detailed
Component

Optimization

Production Baseline

Production Baseline

Figure 4: Design Process

in the main features of the system including the components’ explanatory design va-

riables. Higher fidelity analyses are used to make minor changes and help determine

economic feasibility. Detailed Design is the third and final phase where production

of the system starts, and final adjustments occur.

During the process of designing a product, engineers begin to form its shape

and the layout. According to Anderson, a configuration layout “[...] is a drawing

of the shape and size (dimensions) of the airplane [18].” Raymer defines a de-

sign/configuration layout as a means to “[...] depict major ideas which the designer

intends to incorporate into the actual design [121].” Raymer uses design and configu-

ration layout interchangeably in his work. Often, the choice in configuration implies

which types of components the vehicle has, since configurations’ names at times in-

corporate the types of components in the design. A good example is a quadrotor.

When the architect adds more rotors, the configuration becomes a hex or octa-rotor.

9

Figure 5: Unmanned Aerial Vehicle Configurations

Figure 5 shows four configurations: tube-and-wing, single-rotor, blended-wing-and-

body, and quadrotor, each being a description of its physical appearance.

Throughout the systems engineering world, there is a term called the physical

architecture, which “depicts the system product by showing how it is broken down

into subsystems and components [42].” For this work, a hybrid definition was created

to summarize all of these points: a configuration is a conceptual layout of the proposed

system outlining key components and subsystems incorporated into the design. The

configuration consists of all the discrete elements of the product. Components are

constituent parts of a design [8] and are added to the design to satisfy customer-

defined or designer-derived functions [42]. Sometimes, the components cannot achieve

a function alone, but can when interacting with others. For example, in a conventional

aircraft, a wing, engine, or fuselage alone cannot carry a payload from one point to

another, but together the product’s purpose is achieved. Therefore, the configuration

defines the composition of the system but does not describe how the components

interact and function together to achieve a task. How the components and subsystems

interact is the system architecture.

10

In academia, engineers define a system architecture in multiple ways. David Wal-

lace, a professor at MIT in the Mechanical Engineering Department, defines it as “the

arrangement of functional elements into physical chunks which become the building

blocks for the product or family of products [152].” Karl Ulrich, a professor at the

MIT Sloan School of Management, defines it as “the scheme by which the function

of a product is allocated to physical components [145].” Edward Crawley, a professor

at MIT Engineering Systems Division, defines it as “an abstract description of the

entities of a system and the relationships between those entities [40].” Chris Paredis,

in his robotics work, defines the system architecture as the organization of either phy-

sical components or software elements as a role-based structure which define how each

piece interacts with another [46, 133, 47]. Finally, according to the US Department

of Defense, a system architecture “identifies all the products (including enabling pro-

ducts) that are necessary to support the system and, by implication, the processes

necessary for development, production/construction, deployment, operations, sup-

port, disposal, training, and verification [42].” In the context this research, a system

architecture is defined as the arrangement or allocation of components and their re-

lations amongst each other that form an integrated solution and resultant capability.

By selecting an architecture, the designer is choosing the product’s components and

how they interact and function together. Therefore, the system architecture consists

of the configuration and the relations or interactions amongst a system’s components

and subsystems.

Often, a manufacturer designs and develops individual components by separate

entities, either internal departments or external contractors [125]. The divisions

must interact with each other to create a coherent product. Therefore, interacti-

ons amongst components occurs not only in the performance domain but also in the

production/business domain. The system does not define these relationships, especi-

ally during concurrent production of multiple products.

11

A product architecture consists of one or more systems designed using a common

product line. A product line is a group of related products usually sold by the same

business or entity. In the context of this research, a product architecture is defined

as the arrangement or allocation of components and their relations amongst multiple

systems that form an integrated solution and resultant capability across a product

line. A product can be defined by its configuration, system architecture, and product

architecture. In summary, the main difference between a system architecture and a

configuration is the functionality versus the type of components used in the design.

The difference between a product and system architecture is the relationships among

one or multiple systems.

1.3 Expansion of Product Architectures

Originally, the product architecture space was only composed of “fixed” product

architectures, but “the rate of technological advancement and complexity of these sy-

stems has increased the design configuration [and product architecture] trade space[s]

[21].” Implementing commonality and reconfigurability within a product caused two

qualitatively defined product architecture subspaces to emerge. These two subspaces

are reconfigurable and product family product architectures.

1.3.1 Defining Types of Product Architectures

Currently, three types of architectures exist: fixed, re-configurable, and product fa-

mily. A reconfigurable architecture allows a design to reconfigure itself based on mis-

sion requirements [129]. As such, reconfigurability allows for the physical components

in a configuration to be swapped, changed, or rearranged. Reconfigurability allows

a product to achieve better performance and broader capabilities. Reconfigurable

architectures can be broken down further into two types: online and offline. Online

and offline reconfigurable architectures are considered hybrid architectures (defined

in Section 1.3.2). Figure 6 displays a Porsche 918 Spyder which is designed to be a

12

high-performance hybrid automobile. It has a reconfigurable engine mode that chan-

ges the electrical and mechanical responsibilities. The driver can change modes while

operating the vehicle. The car also can use modular breaks, engines, and electronics.

The Porsche 918 collection of components defines it as a reconfigurable architecture.

Figure 6: Reconfigurable Architecture: Porsche 918 Spyder

Reconfigurable architectures allow the design to be more flexible to changing re-

quirements or various mission scenarios the product will operate under. However, the

trade-offs that emerge when implementing reconfigurability are not well understood

and any hypothetical gains in performance could be offset by emerging and unforeseen

consequences.

A product family is “a group of related products that is derived from a product

platform to satisfy a variety of market niches [132],” or “a set of products that share a

unique number of common components, [processes,] and functions with each product

having its unique specifications to meet demands of certain customers [116, 94].” In

general, product family architectures enforce commonality to reduce costs by decrea-

sing the number of processes required to produce the product. Similar to reconfigu-

rable architectures, product families can be broken down into two types: scale-based

and modular. Scale-based and modular architectures are considered hybrid architec-

tures (defined in Section 1.3.2). Figure 7 displays the Sikorsky UH-60 Black Hawk

product family, designed to be multi-role helicopters where each member specializes

13

in specific tasks. The family shares a common platform whose design variables are

“stretched” depending on the family member. The vehicles also contain modular

subsystems that can be swapped or easily upgraded.

Product family architectures reduce the number of processes involved in the pro-

duction, reducing development and production costs. However, enforcing common

components across multiple systems can often cannibalize performance [132, 110].

Figure 7: Product Family Architecture: Sikorsky UH-60 Black Hawk

A fixed architecture is a product that contains no components that are either

common or reconfigurable. It is designed to satisfy specific requirements and acheive

robust performance across multiple missions. Figure 8 displays a B-2 Bomber, de-

signed for long-range, stealth-bomber missions. The design is rarely used for other

missions, it does not change, and has no product family members. It is defined as

a purely fixed architecture. Designers implement fixed architectures to optimally or

robustly satisfy one mission. Therefore, the trade-off among performance and cost

was conducted to maximize the value to the manufacturer and customer.

14

Figure 8: Fixed Architecture: B-2 Bomber

1.3.2 Defining Types of Hybrid Product Architectures

Hybrid architectures are a combination of architectures which include online recon-

figurable, modular, and scale-based architectures. An online reconfigurable archi-

tecture is a hybrid between a fixed and reconfigurable product architecture. Online

reconfigurability allows the physical components in a configuration to rearrange or

change their orientation during operations, increasing the performance of the product

or expanding the types of missions the vehicle can perform. However, the ability to

morph the shape of the aircraft or rearrange the physical components requires extra

subsystems and structures to control the motion of the structures. Figure 9 displays

a drawing of a Grumman F-14 Tomcat, designed with the capability to launch from

an aircraft carrier but still reach supersonic speeds. The design has a wing that

changes its sweep and indirectly its aspect ratio during flight, giving it the ability to

satisfy both extreme requirements. Online reconfigurable architectures increase the

performance of a design that operates in multiple conditions. The ability to change

requires larger structures to handle changing loads and more electronics/hydraulics to

control the movement. As a result, the product’s complexity increases and flexibility

decreases.

15

Figure 9: Online Reconfigurable Architecture: Grumman F-14 Tomcat

Offline reconfigurability gives the system the ability to swap components at the

conclusion of operations. The ability to swap components requires stringent stan-

dards and oversizing of the overall product, which could offset the hypothetical gains

in performance. The standardization of interfaces between components is a common

trait of modular product architectures. Therefore, modular and offline reconfigura-

ble product architectures possess the same characteristics. In the context of this

work, they have been combined into one hybrid architecture: a modular architecture.

A modular product architecture allows components or subsystems to be swapped

when the product is offline or between operations. The ability to change the phy-

sical components increases the capability of the vehicle or the number of missions

the vehicle can perform. Modular product families contain “components [which] are

parts, structures, or subsystems that are self-contained and designed with specific

characteristics that allow them to be repeatedly removed and replaced during the

operational lifetime of the vehicle [110].” The ability to swap components require

16

(a) Structural Modular
Architecture:
Modular Automobile

(b) Capability-Based Modular
Architecture:
General Dynamics Littoral Combat Ship

Figure 10: Modular Architectures

strict standards defining the interface among different parts so swapping requires no

redesign. Modular product families can again be broken down into two sub-types:

structural and capability-based. Structural, modular product families contain com-

ponents that are added or removed from the design, changing the physical structure

of the vehicle. Capability-based, modular product families contain subsystems that

are added or removed, hence changing the vehicle’s capability. Figure 10 displays a

modular automobile (Figure 10a) and the General Dynamics Littoral Combat Ship

(Figure 10b). The modular car, which represents many of the products in the motor

vehicle industry, has interchangeable components that modify the overall structure

of the vehicle, changing its purposes or capabilities. The General Dynamics Littoral

Combat Ship has mission specific modules, changing what the vehicle can do. The

implementation of a modular architecture increases the product’s list of capabilities,

making the product more flexible. However, the greater number of components in-

creases the complexity, adding considerations and constraints during the design and

development stages. Also, the inclusion of common components can cause a reduction

in performance.

Scale-based product families use a method of design where “one or more scaling

17

variables are used to ‘stretch’ the platform in one or more dimensions to satisfy a

variety of market niches [132].” A product family tends to be manufactured concur-

rently, which reduces the manufacturing cost. The scaling of one or more variables

increases the product family’s diversity of capabilities. Figure 11 displays the Boeing

737 product family. The wing and empennage are common among all the designs; ho-

wever, the fuselage length has been stretched, and various engines are used depending

on the design. Scale-based product families increase the product’s list of capabilities,

creating multiple systems with common components and production processes. Ho-

wever, by increasing the flexibility and the product’s complexity is increased, due to

the number of constraints added to the design process.

Figure 11: Scale-Based Product Family Architecture: Boeing 737

1.3.3 Summary of the Product Architecture Space

Figure 12 shows the space projected as a Venn diagram. The circular subspaces re-

present the fixed, reconfigurable, and product-family architectures. The scale-based,

online, and offline hybrid architectures are captured by the intersection of the circular

subspaces. Figure 12 represents the component characteristics qualitatively, dividing

18

the space up into three categories and three hybrids. An area that is not identified

is the center portion which combines all of the possible characteristics. Most pro-

ducts incorporate characteristics off all three product architectures. For example,

an automobile has common components shared by other products (common chassis),

fixed components specific to the specific component (outer frame), and reconfigurable

components that change the products performance during or between operation (gear

boxes or wheels). It is important for engineers to understand early on in the design

process what proportion of each characteristic should be implemented.

Conventional
(Fixed) Architecture

Reconfigurable
Architecture

Product
Family
Architecture

Scale-
Based
Design

Modular
Design

Online
Reconf.
Design

Figure 12: Venn Diagram of Qualitative Architecture Space

Furthermore, the product architecture only defines the characteristics of the com-

ponents, not the performance or cost of the product or its configuration. The design

and configuration (physical architecture) define these product attributes.

19

1.4 Importance of Product Architecture Selection in the
Design Process

The selection of a product architecture impacts all phases and aspects of the design

process. Traditionally, systems engineers make decisions regarding the levels of com-

monality and reconfigurability desired on their knowledge or experience [121], often

without fully exploring the entire architecture space. System engineers methodically

manage the decisions regarding the requirement analysis, design, technical manage-

ment, operations, and retirement of a system. Since product architecture selection

occurs so early in the design process and impacts all of the decision that follow, the

project’s success heavily depends on the system engineers’ decisions. If the engineers

choose a poor product architecture, the product could experience:

• Sub-optimal functional performance

• Cost overruns in production or operations and support

• Long term loss of customers

• Possible restart or scrapping of the product’s design, development, or production

Two examples of poor product architecture selection are the F-35 Lightning and

the Pierce-Arrow Motor Car Company. The F-35 Lightning’s architecture has deman-

ding requirements and advanced technologies. The selected product architecture con-

tributed to the program’s acquisition cost and manufacturing time to increase 72.5%

and 104.3% respectively from 2008 to 2013 [138]. In the 1920s, the Pierce-Arrow Mo-

tor Car Company decided to pursue luxury vehicles targeting the upper-class market.

The company’s luxury-based, unstandardized product architectures were not flexible

to changes in the market that occurred during the Great Depression, causing the

company to go out of business [100].

20

1.5 Challenges of Selecting a Product Architecture

1.5.1 Review of Past Product Architecture Selections

The decisions that determine the composition of commonality and reconfigurability

are incredibly important in determining the success of a designer. Over the years,

systems engineers have implemented various levels of commonality and reconfigura-

bility to meet various capability and economic constraints. Reviewing some of these

historical cases will provide more information about the problem and help identify

what information is required to select a product architecture.

1.5.1.1 Grumman F-14 Tomcat

The F-14 Tomcat was designed to conduct air-to-air, precision air strike, and naval

air defense missions while being launched from a naval aircraft carrier. To complete

the required missions, the F-14 had to be capable of defeating existing fighter aircraft.

The aircraft was required to achieve maximum speeds around Mach 2. Therefore, an

online reconfigurable wing was used to take off from a carrier and reach those speeds.

The wing sweep varies from 20◦ to 68◦ during missions [13]. Wing sweep at 20◦

performs better at subsonic speeds, while sweep at 68◦ performs better at supersonic

speeds. The reconfigurable wing also helped with storage on the carrier, since the

wing can sweep back to 75◦ when the aircraft is not operational. These benefits also

came at a cost. Variable sweeping wings increase the structural weight needed to

support and manipulate the wings and require more power consumption and control

computers [54]. Overall, the online reconfigurable architecture selection gets rid of the

carrier takeoff and high speed dash requirements interaction but increases the coupling

between wing design and structures. Its primary feature is its online reconfigurable

wing. The system has been upgraded over the years creating a product family by

giving it some commonality among variants. Therefore, the F-14 Tomcat is primarily

described as an online reconfigurable design.

21

1.5.1.2 Boeing 737 Product Family

The Boeing 737 is a scale-based product family. In the 737 MAX family, the most

recent, the wing is common, but designers stretched the fuselage among all three

designs in the product family (the 737 MAX 7, 8, and 9) [25]. The various fuselage

lengths allow for the different designs to carry more or fewer passengers. Commonality

among the different designs tends to reduce development and manufacturing costs,

however its commonality characteristics slightly reduce performance since it has the

same engines and empennage across the designs in the product line. The stretching

of the fuselage length is the product line’s main characteristic. Thus, it is primarily

described as a scale-based design.

1.5.1.3 Sikorsky UH-60 Black Hawk Product Family

The UH-60 Black Hawk is a multi-role helicopter product family platform developed

by Sikorsky [96]. Variants include the SH-60 Sea Hawk, the HH-60J Jay Hawk,

and the HH-60G Pave Hawk. Each corresponds to a different design mission. The

product family has elements of scale-based and module-based architectures. The

commonality among the designs has drastically reduced the costs of manufacturing

and development, but again, the common platform causes some drops in performance.

Its dominant characteristics are its commonality and offline reconfigurability due to

its combination of scale-based and module-based architectures. Therefore, the UH-60

is primarily described as a generic product family.

1.5.1.4 Lockheed Martin F-35 Lightning II

The Lockheed Martin F-35 Lightning II is currently designed to be the next genera-

tion fighter for the US Air Force, Navy, and Marine Corps [83]. Also, it uses multiple

outside manufacturers to produce some of the lesser components in the product line.

The stakeholders involved in the design demand very different qualities of the product

line. Each branch of the military has a corresponding vehicle. The Navy requires its

22

corresponding vehicle to have short takeoff and landing (STOL) capabilities. The

Marines require vertical takeoff and landing (VTOL) capabilities due to the variety

of missions the branch conducts. Lockheed Martin is concurrently designing all of the

vehicles since they share common components. The VTOL and STOL capabilities

require an online reconfigurable engine that operates when activated by the pilot. It

incorporates a center-oriented fan that operates during these mission segments. Since

the F-35 is a next generation fighter, the vehicle has state-of-the-art electronics and

materials to give the pilot maximum situational awareness and reduce the vehicle’s

detectability. Also, this design is extremely complex due to concurrent design, con-

tradictions among requirements, and implementation of state-of-the-art technologies.

As a result, the F-35 program has become costly and time-consuming to develop [138].

1.5.1.5 Summary of Past Product Architecture Selections

Often, the systems engineers implement reconfigurability and commonality to achieve

many of the performance and fiscal requirements. Also, systems engineers implement

a product architecture to reduce the coupling among design variables or interactions

among the requirements.

For example, the F-14 uses a online reconfigurable wing to reduce the interactions

from the aircraft-carrier takeoff and supersonic speed requirements. Another example,

the F-35 uses a combination of reconfigurability and commonality to achieve the many

stakeholder needs. However, the implementation of the product architecture has some

consequences. For example, the online reconfigurable wing forces the F-14 to adopt

more structures and subsystems to handle the movement of the wing.

The Boeing 737 product family was a part of a business strategy to provide a

commercial aircraft platform that provided multiple variants that are designed to

transport various number of passengers over various ranges. The inclusion of common

engines and empennage helps to reduce the number of processes during production,

23

reducing the cost of equipment required to produce the product family. Though the

commonality reduces the cost of producing the product family, the common parts

must be designed with respect to each variant. The concurrent design considerations

can add constraints to common parts, decreasing the amount of design freedom during

the product line’s development.

The Sikorsky UH-60 multi-purpose helicopter product family utilizes scale-based

and modular characteristics to provide multiple vehicles that can acheive the multi-

ple tasks required by various customers. Similar to the Boeing 737 product family,

designers stretched some of the dimensions of each family member to allow it to

carry various payloads and perform differing tasks. Also, the UH-60 utilizes multi-

ple mission-specific payload packages to expand the capabilities of the product line.

Again, designers must add constraints and considerations so the common components

and subsystems can be integrated into each system.

The F-35’s multiple stakeholders demanded many different requirements and ca-

pabilities in the product line. These requirements created constraints on the designs

and any design changes that were made throughout the product’s development had

a significant impact on the components incorporated in the designs. There were only

a few customers so the customers had significant influence in the product line’s de-

velopment. Therefore, as the stakeholders decisions changed throughout the F-35’s

development, costs exploded [138]. As each time a stakeholder’s demands changed,

modifications reciprocate throughout the design due to the number of constraints

limiting the design space.

All of the examples identified in this section stress the need to understand how the

requirements and the relations among the components impact the choice of product

architectures.

24

1.5.2 Challenges Selecting a Product Architecture Concerning Unman-
ned Aerial Vehicles

The Silicon Valley revolution in the 1980s and 1990s was a catalyst for emerging

unmanned systems. STEM programs and venture capitalism provided the catalyst for

increasing computational speeds, reducing the size of the computers and electronics,

and reducing power requirements [31]. The new technologies made UAVs feasible by

reducing the size and energy consumption of the subsystems required for autonomous

flight. The catalyst technologies continue to evolve at a rapid pace, causing the

electronics to become obsolete rapidly.

Currently, government programs require systems to be more affordable [51]. Be-

cause of the global reduction in defense spending, governments have continued to

search for programs that reduce costs but remain effective. Figure 13 displays the

United States’ Defense Budget as a percentage of tax revenue and GDP. Since the

formation of the North Atlantic Trade Organization (NATO), the United States has

reduced the percentage of wealth spent on Defense, as illustrated in Figure 13. (Data

collected from SIPRI and the US Department of Commerce: Bureau of Economic

Analysis [3, 4]). Since UAVs are beginning to integrate into civil operations, a UAV’s

price must reflect the market and business strategy. As a result, fiscal concerns must

be considered in the UAV industry, as is the case for most industries.

Globalization of world economies has caused businesses to expand beyond national

borders. Their products can be found all over the world in diverse environments,

causing the system to be designed to operate in extreme temperatures, sea conditions,

or dusty/dirty conditions. The diverse environment requirements drive reliability,

operation, and support costs of the systems adding additional constraints to the

design and increasing the product’s complexity.

In the past, engineers designed aircraft for one purpose or mission, such as achie-

ving a given Mach number, carrying a payload over a given range, or partaking in

25

1960 1980 2000 2020

0

20

40

60

Year

P
er

ce
n
ta

ge

USA Defense Budget % of GDP

USA Defense Budget % of Tax Revenue

Figure 13: USA Defense Budget as Percentage of USA GDP and Tax Revenue [3, 4]

air-to-air combat at a given altitude. Though designed for specific requirements, cu-

stomers often use the aircraft in other missions where their performance lacks. As a

result, designers implemented capability and robust-based principles to reduce inef-

ficiencies in design. The system’s capability is the system’s overall mission effective-

ness, and robustness is the system’s ability to perform under multiple environmental

conditions consistently.

The exploration of past product architecture selections and the analysis of the

UAV industry show product architecture selection is complicated for the following

reasons:

• Uncertain markets and customer needs/requirements

• The rapid pace of technology changes and obsolescence

• Increasingly tighter fiscal constraints and requirements for affordability

• Rapidly evolving operating environments

26

• Greater emphasis on multi-mission or joint capability across different entities

Due to the numerous economic and performance requirements that constrain the

design space, engineers can find capability and robust design principles limited. The-

refore, engineers add reconfigurable and commonality characteristics to the design.

However, the impact of the product architectural decisions is often not well under-

stood, leading to unexpected design challenges.

1.5.3 Requirements of an Informed Product Architecture Selection

The exploration of past product architecture selections and the analysis of the UAV

industry provide insights on what systems engineers require to make an informed deci-

sion regarding the levels of commonality and reconfigurability to be implemented. The

product architecture has a considerable impact on the production and management

characteristics of the overall product line. Therefore, it is important to understand the

way the manufacturer’s business strategy relates to the product architecture. From

the review of past product architecture selections, the fiscal and functional require-

ments must be considered. The requirements emerge from the customer’s needs which

reflect the manufacturer’s business strategy. Combined, it is important to create a

traceable line of logic between the customer’s demands, functional requirements, and

implemented product architecture. Finally, the past examples show how systems en-

gineers chose a product architecture often to reduce couplings among design variables

and interactions among requirements. Therefore, it is important to understand the

sensitivities and relations among the design and implementation of reconfigurability

and commonality. All of these considerations combined would provide the necessary

information to make an informed decision on the product architecture to implement.

1.6 Problem Definition

As stated in Sections 1.4 and 1.5, systems engineers have to design products that ad-

dress increasingly more demanding fiscal and capability requirements. The customers

27

demand lower acquisition and life cycle costs. They also demand that the products

to operate in different conditions or fulfill varying tasks. Therefore, engineers find

themselves making a decision between reducing cost, increasing performance, or suffi-

cing both. As a result, manufacturers try to reduce cost and increase performance by

implementing various forms of reconfigurability and commonality. Because of these

emerging complexities, “the design process [is] no longer [...] able to rely on the in-

tuitive expertise of a small number of designers to make the initial down-selections

[21].” Therefore, designers implement reconfigurable and product family architec-

tures, without full understanding of their impact. As a result, this dissertation’s

problem definition is:

28

Problem Definition:

A design framework is needed that facilitates manufacturer’s pro-

duct architecture selection process. This framework needs to ac-

count for the product line’s:

• Relation to the overall manufacturer’s business strategy

• Requirements or capabilities that drive the selection of the

product architecture

• Sensitivity to these “drivers” over time

• Relation to other product architectures allowing the compa-

rison various alternatives

• Ability to satisfy the market segment’s (identified in the bu-

siness strategy) performance and fiscal needs

• Impact on the internal design dynamics, allowing for a grea-

ter understanding of how reconfigurability and commonality

impact the relations between components, subsystems, and

disciplines

In particular, the formulated method should aid in architecture selection pro-

blems, including forecasting the impact of changing requirements. The ability to

predict customer’s desires aids architects in strategic road-mapping, determining the

most beneficial evolutionary path and resource management. The method must also

allow for trade-offs to be performed between different product architectures by iden-

tifying and managing flexibility and complexity of the design. Finally, the method

must provide a means to evaluate product architectures. A reliable and efficient fra-

mework will help manufacturer’s systems architects make decisions, increase market

competitiveness and reduce the risk associated with architecture selection.

29

1.7 Overview of Dissertation

This dissertation is organized to introduce the reader to the subject matter starting

with the background research through the formulation of a new method. Also in-

cluded are two case studies demonstrating the new framework’s benefit. Chapter 2

provides relevant background research including an extensive review of the literature

focused on methods leveraged to define the architecture space. Hence, Chapter 2

first reviews the current system engineering process, where the product architecture

selection traditionally occurs, often creating the crux of the problem. The review

of past product architecture selections analyzes past industries and system’s pro-

duct architecture selections, identifying the reasons driving the decisions. From the

observations and insights, additional terms are introduced and defined, driving the

requirements of the new framework. Finally, existing methods used in industry and

academia are identified and the benefits, and gaps of each are analyzed, creating a set

of evaluation criteria for the new framework. Finally, the chapter defines the research

objective and questions that drive the formulation of the framework.

Chapter 3 reviews the steps in the new framework. First, the manufacturer needs

to define its business strategy which outlines the market and customers the new pro-

duct should apply to. The market and customer analysis allows the systems engineers

to identify the new product’s needs. Next, methods are identified that translate the

customers’ needs to the product’s functional requirements. Also, the possible requi-

rements that drive the product architecture selection process are identified. Next,

what makes a product architecture valuable needs to be established. Though there

are many ways to evaluate a product architecture, desirability, flexibility, and com-

plexity are identified as three key metrics. Weighting among the three metrics allows

an overall metric to determine an alternative’s favorability. Next, the qualitative

architecture space must be converted into a quantitative one to facilitate the genera-

tion of alternative product architectures. To evaluate these alternatives, desirability,

30

flexibility, and complexity must be defined and quantified. These metrics reflect the

product architecture’s ability to achieve customer demands and manufacturing re-

quirements. Finally, methods to select the final product architecture are introduced.

This chapter introduces the UAV product architecture analysis tool FA2UST. Here,

the outer elements of FA2UST which include enforcing the indices and calculation

of metrics. Following the formulation of the new framework, three experiments are

developed to test the validity of the framework. These experiments are conducted in

two case studies presented in Chapter 5.

Chapter 4 breaks down the computational capabilities required by the new frame-

work in analyzing a UAV product architecture. This chapter outlines the construction

of these internal processes that exist within FA2UST that allow for the mission simu-

lation and constraint calculations.

Chapter 5 presents a case study of a UAV manufacturer. The case looks at a small-

sized manufacturing firm that is trying to distinguish itself in the UAV industry. The

case looks at the business environment and industry to develop needs and desires

of the new product line. From the new product line’s needs, design missions are

identified that the product line should be able to complete. After setting up the

problem, the product architecture options, design variable ranges, and requirement

variable ranges are set to create the space to be explored. The results provide data for

the experiments which test the assumptions and hypotheses created in the formulation

of the method. Finally, a decision is made on the composition of product architectures

to implement and the implications of this decision are discussed.

Finally, Chapter 6 summarizes the conducted research and provides overarching

conclusions and insights.

Appendix A presents a historical case of a late 1970s American car manufacturer.

This case is supposed to be a validations of framework, applying it to a very different

industry. The chapter goes through the same process conducted in Chapter 5. Once

31

the data is collected, the results from the automobile case are compared against the

results from the UAV case, providing insights on the implications of implementing

certain product architecture characteristics. A final decision is made on which pro-

duct architecture to implement. This decision is compared to what happened in the

industry.

32

CHAPTER II

BACKGROUND RESEARCH

As stated in the introduction, product architecture selection is a difficult process

and has significant consequences for the profitability and success of the manufactu-

rer. Traditionally, engineers approach the problem with logical, qualitative methods.

This research identifies these methods and creates a starting point for the research

conducted in this chapter.

2.1 Current Systems Engineering Process

Engineers and management use the current systems engineering process to select

the product architecture, refine the design, and provide traceable recordings of their

decisions. Figure 14 displays the state-of-the-art, systems engineering process.

The process consists of three stages: requirements analysis, functional analysis

and allocation, and design synthesis. Within the three phases, there are three feed-

back loops which ensure consistency and ensure the product meets its intended goals

or purposes. The three loops are the requirements, design, and verification loops.

Finally, the process results in a conceptual design with a set product architecture and

a traceable line of logic to justify decisions made throughout.

2.1.1 Process Input

Designers and engineers start with a list of inputs for the systems engineering process.

These inputs include but are not limited to the following:

• Customer Needs / Objectives / Requirements

• Missions

33

Systems Engineering
Process

Functional Analysis
and Allocation

Requirements
Analysis

Design
Synthesis

Process
Inputs

Process
Outputs

System Analysis
and Control

Requirements Loop

Design Loop

Verification

Figure 14: Systems Engineering Process [42]

• Measures of Effectiveness

• Environments

• Constraints

• Technology Base

• Output Requirements from Prior Development Effort

• Program Decision Requirements

34

• Requirements Applied through Specifications and Standards

The manufacturer and the customers set or derive the process inputs from either

market analysis, request for proposals, or requirement engineering. The manufac-

turer often has three options to develop the needs independently, working with the

customer, or receive them directly from the customer. Not all of the inputs are im-

mediately obvious. They require some quantitative and qualitative analysis during

the requirement analysis phase to justify the development of a product.

2.1.2 Requirements Analysis

The requirements analysis phase starts with the process inputs and tries to convert

them into metrics, capabilities, the product’s characteristics, and context of planned

use. Designers and engineers conduct this analysis to “refine customer objectives and

requirements, define initial performance objectives and refine them into requirements,

identify and define constraints that limit solutions, and define functional and perfor-

mance requirements based on customer provided measures of effectiveness [42].” To

achieve this goal, designers must ask the following questions:

• What are the reasons behind the system’s development?

• What are the customer’s(s’) expectations?

• Who are the users and how do they intend to use the product?

• What do the users expect of the product?

• What is their level of expertise?

• With what environmental characteristics must the system comply?

• What are existing and planned interfaces?

• What functions will the system perform, expressed in customer language?

35

• What are the constraints (hardware, software, economic, procedural) to which

the system must comply?

• What will be the final form of the product: such as model, prototype, or mass

production?

The result is three views of the product. First, the operational view (operational

architecture - Section 1.1) addresses how operators will use the system, how well it

will behave, and under what conditions. The operational view provides the systems

engineers with the information required to develop the functions required of an inde-

pendent system. The functional view (functional architecture - Section 1.1) identifies

what the system must do to achieve the desired operational behavior. The tasks iden-

tified in the functional view provide the engineers with discreet tasks. The tasks can

be paired with the subsystems or components and their interactions required to com-

plete a task. Finally, the physical view (physical architecture - Section 1.1) describes

how the product is constructed to achieve the desired functions. At this point in the

process, the product architecture is selected based on the requirements and customer

needs. Though the systems engineering process is an iterative, the engineers can only

test a few options. The choices tend to be based on intuition or the most demanding

requirements.

The analysis consists of fifteen tasks to achieve the desired result [42]:

1. Customer Expectations: Define and quantify customer expectations, including

operational requirement documents, mission needs, technology-base opportu-

nity, direct communications with customer, or requirements from the higher

system level

2. Project and Enterprise Constraints: Identify and define constraints which in-

clude:

36

• Project specific: Approve specifications and baselines previously develo-

ped, costs, updated technical and project plans, team assignments and

structure, and control mechanisms

• Enterprise: Identify and define management decisions, general enterprise

specifications, standards or guidelines, policies and procedures, domain

technologies, and physical/financial/human resource allocations

3. External Constraints: Identify and define external constraints, including public

and international laws and regulations, technology base, compliance require-

ments, threat system capabilities, and interfacing systems

4. Operational Scenarios: Identify and define operational scenarios, including inte-

ractions with the environment and other systems and physical inter-connectivities

with interfacing systems, platforms, or products

5. Measures of Effectiveness and Suitability (MOE/MOS): Identify and define sy-

stem effectiveness measures that reflect customer expectations and satisfaction

6. System Boundaries: Define which elements are under and outside of design

control

7. Interfaces: Define the functional and physical interfaces to external or higher-

level and interacting systems, platforms, and products in quantitative terms

8. Utilization Environments: Define the environments for each operational sce-

nario, including weather conditions, temperature ranges, topologies, biological,

time, and induced

9. Life Cycle Process Concepts: Analyze outputs of tasks 1-8 to define key life cycle

process requirements in developing, producing, testing, distributing, operating,

supporting, training, and disposing of the system

37

10. Functional Requirements: Define what the system must accomplish or can do

11. Performance Requirements: Define levels of performance for each higher-level

function

12. Modes of Operation: Define key modes of operation, including environmental

conditions, configuration, and operational

13. Technical Performance Measures (TPMs): Identify key indicators of system

performance which tend to be technical thresholds and goals that must be met

or production risk increases

14. Physical Characteristics: Identify and define physical characteristics, including

color, texture, size, and weight

15. Human Factors: Identify and define human factors, including physical space

limitations, ergonomics, and human interface

2.1.3 Functional Analysis and Allocation

The functional analysis and allocation phase decomposes the tasks or missions out-

lined in the requirement analysis to lower level functions. The decomposition takes

apart the mission and arranges parts into logical sequences. One of the key facilitators

to the analysis is a functional flow block diagram.

It allocates performance and other limiting requirements to the functional levels,

further defining the tasks and clarifying intangible capabilities into measurable me-

trics.

Next, the phase identifies and defines all internal and external functional interfaces

by conducting sensitivity studies on the arrangement and groupings of functions. The

rearrangement minimizes control interfaces and reduces the complexity of completing

a task.

38

Also, the phase allocates functions to components in the system, creating the sy-

stem or product architecture. By assigning functions to components, the designers

create relations among the component determining how they will interact with each

other. In the current era, software has an ever more important role in the functio-

nality of the software. During the functional analysis, the systems engineers assign

the software’s responsibilities to functions. This process determines the cost and de-

velopment time of the software which ends up becoming a driving cost of product

development [21].

Finally, the phase examines the life cycle functions (development, production,

operations and support, and disposal) for the product.

The functional architectural layer assists designers in this phase. It “is a top-down

decomposition of system functional and performance requirements [42].”

2.1.3.1 Function Flow Block Diagram

A function flow block diagram (FFBD) shows the relationship of functions or tasks

that must be achieved by a system. There is a direction to these charts, showing

what must occur to achieve a task. However, these diagrams do not provide the time

required by or complexity of a function element.

The diagrams break down a process to organize task information. The diagrams

help answer the question “what” needs to happen not “how” the task must be perfor-

med, providing the designers an open problem where unlimited options are permitted

as long as the designs achieve the required task. Figure 15 displays an example FFBD.

Each element can be broken down with its own (lower level) FFBD. The lower levels

provide a greater description of the task, and as the designer adds levels, the design

becomes increasingly constrained [76]. The example given in Figure 15 is a UAV

conducting a basic suppression of enemy air defenses (SEAD) mission.

The mission includes eleven stages. First, the aircraft must takeoff by catapult.

39

1.0

Takeoff
Catapult

2.0

Climb
Max. Rate
of Climb

3.0

Cruise
Max. Range

4.0

Descend to
Operations

5.0

Check
Fuel

6.0

Scan
Battlefield

7.0

Engage
Enemy

8.0

Check
Weapon
Payload

9.0

Climb Max.
Rate of
Climb

IF
EMPTY

10.0

Cruise
Max. Range

11.0

Land

Top Level

(6.0) Ref.
Scan

Battlefield

Max. Speed
Dash into
Combat

7.1 6.2

Conduct
Energy

Exchange

7.3

Expend
Weapon
Payload

7.4

Conduct
Rev. Energy

Exchange

7.5

Conduct
180 deg.

Max. g Turn

7.6

Max. Speed
Dash out of

Combat

(8.0) Ref.
Check Weapon

Payload

Second Level

Figure 15: Example Function Flow Block Diagram of UAV SEAD Mission

Second, it must climb at the maximum rate of climb to the cruise altitude. There,

it will cruise at speed and altitude for best range. Next, it will descend to a preset,

operational altitude. Now the task becomes an iterative loop where it checks fuel and

weapons stores while it scans for enemy targets. When it detects an enemy position,

it will engage the enemy. At the time the aircraft runs out of arms or reaches a fuel

limit, the aircraft climbs back to cruise altitude, where it cruises at speed and altitude

for best range. Finally, the aircraft lands.

Each of these stages can be broken down into more detail. Figure 15 looks at the

engage enemy stage and breaks it down to the second level. The engage enemy stage

consists of six sub-stages. First, the aircraft must conduct a maximum speed dash

into the battle space. Once the UAV is above the target, it drops its payload. During

this time, it must be capable of conducting two energy exchanges to avoid enemy fire.

It then makes a 180◦ turn and exits the battle space with a maximum speed dash.

This mission can be broken down even further so that designers can assign com-

ponents to each task and a physical architecture/configuration begins to emerge.

40

2.1.3.2 Functional/Physical Matrix

The functional/physical matrix is a facilitator that allows designers to relate the

functional architectural layer to the physical architecture or configuration. The matrix

allows for consistency and traceability between the functional analysis and allocation

and the design synthesis stages of systems engineering. The matrix breaks down

the task/mission required of a system into segments and relates them to components

required to complete the segment. The matrix displays the functional architectural

layer and the configuration as a table and tree diagram respectively. Figure 16 displays

an example simplified functional/physical matrix of a UAV.

In Figure 16, the functional/physical matrix breaks up a simplified suppression of

enemy air defenses mission and applies it to a reduced version of a UAV’s configura-

tion. The matrix decomposes the mission into the preflight check, load, warm-up and

taxi, take-off, cruise, scan for enemies, and engage enemies segments. Furthermore,

the UAV must be able to communicate, provide surveillance, and conduct combat.

This example ignores some of the segments since segments such as climb and cruise

would be repetitive. The configuration in this example is composed of the airframe,

engine, communications, sensors, and weapon systems.

The matrix draws connections between mission segments and components. During

the preflight check segment, operators must check all of the components. While in

the load segment, operators must load the weapon systems onto the aircraft. In the

warm-up and taxi segment, the aircraft rolls along the ground via landing gear and

is powered by the engine as the subsystems turn on and the engine heats up to the

operating temperature. In this example, the landing gear is assumed to be a part of

the air frame. In a more detailed example, designers can decompose the configuration

further. During the take-off and cruise segments, the airframe must provide lift, the

engine provides the power and propulsion, and the sensors assist in navigation of

the vehicle. In the scan for enemies segment, the communications system allow for

41

Function Performed

Preflight Check

Mission:

Load

Warm-Up/Taxi

Takeoff

Cruise

Scan for Enemies

Engage Enemies

Communicate

Surveillance

Combat

F
u
n
ct

io
n
al

A
rc

h
it

ec
tu

re

Physical Architecture

UAV

Frame Eng. Comms. Sens. Weap.

X X X X X

X X

X X

X X X

X X X

X X X X

X X X X X

X

X X

X X X

Figure 16: Example Simplified Functional/Physical Matrix of a UAV

42

communications among friendly entities. While in the engage enemies segment, the

UAV can deploy the weapons system to destroy any enemies identified.

There are three sub-functions the UAV must be capable of conducting. The UAV

must be able to communicate, scan for enemies, and engage enemies. All three sub-

functions use the communications system, the scan for and engage enemies segments

require the sensors, and the engage enemies function uses the weapons system.

2.1.4 Design Synthesis

The design synthesis phase develops tangible products with dimensions and charac-

teristics. Furthermore, it ensures the architecture can achieve the functions set and

determines whether the performance and functional requirements are feasible. This

phase achieves the following actions:

• Transform the architectural view (Functional to Physical)

• Define alternative system concepts, configuration items, and system elements

• Select preferred product and process solutions

• Define or refine physical interfaces (Internal or External Interfaces)

This phase takes advantage of numerous sizing and synthesis tools which incor-

porate multiple disciplines to determine the design and performance of a product.

These tools include “Computer-Aided Design (CAD), Computer-Aided-Systems En-

gineering (CASE), and the Computer-Aided-Engineering (CAE) can help organize,

coordinate and document the design effort [42].” In aerospace engineering, simplified

modeling tools allow designers to size aircraft based on specific missions.

The final result is a conceptual product with outlined dimensions, design variables,

and characteristics. Also, it provides a full picture of the product line and the product

architecture. Two tools that allow the systems engineers understand the physical or

43

Flight Segment

UAV Platform
Payload
Element

Weapons
System

Radar

EOIR

Electronics

Payload
Attachment

Mechanical

Electronics

Structure

Mechanical

Electrical

Thermal

Payload
Interface

UAV
Interface

Control

Navigation

Propulsion

Comms

Weapons
Interface

UAV
Interface

Figure 17: Example UAV Product Breakdown Structure

system architecture are the product breakdown structure and the N2 Diagram. Also,

systems engineers use simplified modeling in the early phases of design to understand

how the proposed system performs while completing its assigned tasks.

2.1.4.1 Product Breakdown Structure

The product breakdown structure is a hierarchical tree diagram of the components,

subsystems, hardware, software, and any other element of the design. The hierarchy

of the design displays the projects managerial organization. It also shows what parts

interact with another, as well as a vague idea how the design will look when finished

[76]. Figure 17 displays an example product breakdown structure of a UAV.

In Figure 17, the UAV is broken down into three elements which are the payload,

weapons system, and the main UAV platform. During each mission or flight segment,

44

each component and discipline have various roles and responsibilities it must attend.

The payload element consists of the Radar and EOIR sensors. The main platform

consists of the structures, mechanical, electrical, thermal, control, navigation, pro-

pulsion, and communications systems. The weapons system consists of the weapons

payload and its associated electrical and mechanical systems. The payload and wea-

pons systems each have interfaces with the main UAV platform and the main platform

with the payload and weapons systems. The product breakdown structure provides

a means to organize responsibilities for each of these components during a mission

segment, allowing the designers to ensure the physical architecture can achieve the

goals set in the functional architecture.

2.1.4.2 N2 Diagram or Design Structure Matrices

N2 diagrams are commonly used to show interdependencies between functions of

subsystems, components, or mission segments [113]. It also can display the feed

forward or feedback of information between functions. The decomposition of the sy-

stems provides the designer with an understanding of each subsystem, component

or mission requirement’s impact on the design. N2 diagrams can be displayed as

organizational charts that show how information passes from one element to anot-

her or as mathematical matrices composed of the strength of the relation. Figure

18 displays an example N2 diagram of a basic tube-body-wing UAV. The elements

(components/requirements) appear on the diagonals, and the arrows represent the

flow of information from one element to another.

In the example found in Figure 18, there are nine components, the wing, empen-

nage, fuselage, engine, computer/processor, Radar, EOIR sensor, navigation (INS/GPS)

subsystem, and communications subsystem.

45

Wing

Emp.

Fuse.

Eng.

Comp.

Radar

EOIR

Nav.

Comm.

Aero
Controls

Aero
Forces Drag

Aero
Controls

Aero
Forces Drag

Aero
Controls

Drag
Aero
Controls

Thrust
Controls &
Power Power Power Power Power

Data Data Data

Data

Data
Req.

Power
Req.

Size

Data
Req.

Power
Req.

Size

Data
Req.

Power
Req.

Size

Data
Req.

Power
Req.

Size

Power
Req.

Size

Size

Weight

Figure 18: Example N2 Diagram of a Basic UAV

46

The wing is responsible for providing lift for the aircraft. Therefore, by experien-

cing various loads and environmental conditions, the wing transfers various aerody-

namic forces to the fuselage, drag to the engine, and control characteristics of the

empennage and computer/processor.

Similar to the wing, the empennage experiences various aerodynamic loads to

control the aircraft. These forces influence the structural design of the fuselage,

thrust required of the engine, and control characteristic of the computer/processor.

The fuselage is the main platform of the UAV. It is the main structural element

of the aircraft which houses the subsystems, engine, and bulk of the fuel. Therefore,

it provides drag to the engine, aerodynamic controls to the computer/processor, and

weight to the wing.

The engine provides energy and power to the electronics and subsystems. Further-

more, it provides thrust characteristics to the computer/processor, which influences

the control of the aircraft during operations.

The computer/processor acts as the brain of the system. It provides data cha-

racteristics to the electronic subsystems (Radar, EOIR sensor, navigational unit, and

communications unit). Furthermore, it provides the power required to the engine and

size required to the fuselage.

The electronic subsystems are the Radar, EOIR sensor, navigational unit, and

communications unit. Combined with the computer/processor, they make up the

central nervous system of the aircraft. The mission requirements drive their charac-

teristics, including weight, size, and power required. The weight and size drive the

design of the fuselage, and the power required drive the design of the engine.

47

2.1.4.3 Simplified Modeling

Simplified modeling is used to understand how a system performs during a mission.

Often, simplified modeling consists of simulating the mission or functions of the pro-

posed design [113]. Designers primarily use these models to assist in making major

decisions during the conceptual phase of design. The models predict the system’s per-

formance quickly, taking advantage of past test vehicles and experiments, allowing the

designers to collect significant amounts of data. The models include mass fraction (ot-

herwise known as mass-balancing), power-balancing, force calculation, heat/cooling,

energy consumption, structural, and manufacturing process analyses [121]. Further-

more, there are systems engineering models that help designers organize and structure

the decisions made during the design process. These are the primarily used for aero-

space systems, but other models exist for other industries.

Fidelity of the models can be changed and usually relates inversely to computa-

tional time. Designers primarily use lower fidelity models in the conceptual design

phase and Higher fidelity models in preliminary and detailed design phases where

refined decisions occur.

Mass-fraction analysis incorporates energy-consumption and force-balancing. It

is used to calculate how much fuel or energy is necessary to complete a mission. The

analysis calculates the force or power required for a mission segment which relates to

the amount of consumed energy during the mission segment [121].

Power balancing analysis provides constraints for the engine and vehicle sizes for

each mission segment, with each mission segment having a model associated with

it. The models include the required power to overcome the drag and weight of the

aircraft. The engine power or thrust, wing size, and weight must not violate any of

the power constraints [121].

Force balancing models in aerospace include aerodynamic, thrust, and weight

forces. During each segment, the system must be able to provide enough lift and

48

thrust to overcome the drag and weight [121].

Heating and cooling models predict the subsystem requirements to maintain no-

minal temperatures in the electronics. Many models exist including ones that use

excess fuel, convective cooling from bypassed external air, and refrigerated subsys-

tems. Depending on the subsystem selected appropriate thermal models are needed

[49].

Structural models help size the elements that make up the structure of the aircraft.

The models require computer-aided-design (CAD) models to define the dimensions of

the structural elements and can create finite element models (FEM) which are used to

simulate and size the items based on loading characteristics. Some examples include

AutoCAD, ProE, Nastran and Patran, and Hypersizer.

Manufacturing models calculate the cost of developing and producing a system

as well as determine whether or not the design is feasible to manufacture. These

include manufacturer process scheduling, structural fabrication, and discrete time

modeling. These models require the layout of the system, manufacturing processes

and technologies, and the number produced. Without these models, it is impossible

for the producer to predict the economic feasibility of the design.

Finally, designers use systems engineering models to help organize and trace deci-

sions made during the design process. These models are called computer-aided engi-

neering (CAE) and systems engineering (CASE) models. These standardized software

packages provide documentation, three-dimensional drawings, and track technical re-

quirements of the product throughout the design process [42].

All of the analyses provide the models necessary to evaluate a design. Combined

with other techniques, the formulated methods facilitate the designer in architecture

selection.

49

2.1.5 System Analysis and Control

Systems engineers conduct system analysis and control throughout the process to

ensure the design is feasible, viable, and below a certain risk threshold. Engineers

and product management conduct the following studies to ensure these product cha-

racteristics:

• Trade-Off Studies

• Risk Management

• Configuration Management

• Technical Reviews and Audits

• Modeling and Simulation

• Metrics in Management

Trade-off studies change design variables within a possible range to determine

their impact on performance, operational, and production requirements or metrics

[42]. They tend to incorporate many disciplines and engineering teams to analyze

the incidence of each design variable. Furthermore, by changing variables, designers

create alternative designs and challenge all predetermined assumptions. The studies

consist of six steps: establish the problem, review inputs, set up method, identify

and select alternatives, measure performance, and analyze results. Thus, the studies

allow designers to make evidence and data-based decisions about the product.

Risk exists in all fields and activities in the real world. In systems engineering, risk

becomes even more apparent. Engineers can start with factors they know will change

or are unknown (known-unknowns). However, complexity adds emergent uncertainty

otherwise called unknown-unknowns. Risk management attempts to characterize all

possible uncertainties and incorporate them into the design of the product. In the

50

systems engineering environment, there are four types of risk: internal processes,

external influences, prime mission products, and supporting products [42]. First, the

risk from internal processes deal with the managing, engineering, and producing of

the product. Second, the risk from external influences arises from regulations, upper-

management, and value-chain (product raw goods or resources) dynamics. Third, the

risk from the prime mission products relates to the uncertainty that the product will

meet its performance and cost requirements. Fourth, the risk of supporting products

relate to the availability of resources the product in question is dependent on during

operations. Management uses a four-step process planning for possible outcomes,

assessing and identifying risk when it occurs, handling risk to mitigate problems, and

monitoring the results of attempting to manage the risk ensuring the steps taken

address the problem.

Configuration management allocates tasks and production to various teams and

external entities along the value-chain to ensure the development of each component

and subsystem. A manager has the options to either internally develop, taper, or

outsource production of configuration elements [125]. By building elements internally,

management has complete control over the processes, but at a significant fixed cost.

Tapering development allows some minor tasks of the value chain to be outsourced

usually reducing cost but at a loss of control. Finally, management can outsource the

production of a configuration element drastically reducing cost but completely losing

control of the production. Furthermore, barriers between firms make design changes

extremely costly. In the end, the main producer must ensure all the configuration

elements integrate in a way that achieves all of the desired operations and functional

requirements.

Technical reviews and audits are key assessments of the development of the pro-

duct. Usually, these reviews occur during all three stages of the systems engineering

process. They include the:

51

• Alternative System Review

• System Requirements Review

• System Functional Review

• Preliminary Design Review (includes System Software Specification Review)

• Critical Design Review

• Test Readiness Review

• Production Readiness Review

• Functional Configuration Audit

• System Verification Review

• Physical Configuration Audit

In the end, the reviews “assess the maturity of the design/development effort;

clarify design requirements; challenge the design and related processes; check propo-

sed design configuration against technical requirements, customer needs, and system

requirements; evaluate the system configuration at different stages; provide a forum

for communication, coordination, and integration across all disciplines; establish a

common configuration baseline from which to proceed to the next level of design; and

record design decision rationale in the decision database [42].”

Modeling and simulation is a mathematical, logical, or even physics-based process

of determining how the product will perform various operations or tasks determined

during the functional analysis [42]. There are three classes of simulations: virtual,

constructive, and live. Virtual simulations involve humans operating the product in a

simulated environment. Constructive simulations take advantage of computer-aided

models to generate the product and describe its physical features, taking advantage

52

of tools such as CAD, CAE, CAM, CASE, and life cycle costing. Live simulations

test prototypes in as-close-as-possible to real operational situations.

Metrics can provide engineers and product managers with useful indicators of

the product development’s progress. They measure the cost and time it has taken

to design and test the system and track the success of the management’s product

development strategy. Furthermore, they track the effectiveness, suitability, and per-

formance of the product, ensuring the product can achieve the desired operations and

functional requirements.

2.1.6 Process Output

The process’s output includes the system architecture, technical specifications, base-

line designs, acquisition baseline, and decision database.

The system architecture involves the composition of components, otherwise known

as the configuration, and the relations among the components. The components and

their relations detail how the system functions together to achieve all the tasks. It

allows the manufacturing entity to organize and plan further development of the

design.

The specifications detail the items, materials, or services required and the proce-

dures to determine whether the design will achieve the desired capabilities. Speci-

fications help provide “accurate estimates of necessary work and resources, act as a

negotiation and reference document for engineering changes, provide documentation

of configuration, and allow for consistent communication among those responsible for

the eight primary functions of system engineering [42].” Finally, they act as guides

during the verification process. Furthermore, there are various levels of specifications

which define corresponding baseline designs, as shown in Table 1.

Baselines document the product at the different levels of the systems engineer-

ing process [42]. There are three baselines: functional, allocated, and product. The

53

Table 1: System Engineering Specifications and Baselines [42]

Specification Content Baselines

System
Specs.

Defines mission/technical performance
requirements and allocates requirements to
functional areas and defines interfaces

Functional

Item Per-
formance
Specs.

Defines performance characteristics of CIs
and CSCIs and details design requirements
and with drawings and other documents
form the Allocated Baseline

Allocated
“Design
To”

Item
Detail
Specs.

Defines form, fit, function, performance,
and test requirements for acceptance (Item,
process, and material specs start the
Product Baseline effort, but the final
audited baseline includes all the items in
the TDP)

Product
“Build To”
or “As
Built”

Process
Specs.

Defines process performed during
fabrication

Material
Specs.

Defines production of raw materials or
semi-fabricated material used in fabrication

54

functional baseline consists of the “top-level” functions, requirements, and interfaces

that engineers derive from the operational requirements or tasks desired by the custo-

mer or set by the designers. The allocated baseline defines the lower-level subsystem

and component design criteria, interface definitions, drawings, and processes. The

product baseline defines the subsystems and components with physical characteris-

tics completely defining the product, allowing for production to start. Furthermore,

there is an acquisition program baseline which assesses the products maturity and

economic viability.

Finally, the last output of the systems engineering process is the decision database.

The database is a record of decisions made during the process, outlining the logic and

justification for each decision made during this process. The database can include

trade studies, simulations, quality function deployment (QFD) analysis, and analysis

of alternatives (AoA).

2.1.7 Requirements Loop

The requirements loop provides feedback to the initially set functions and capabilities

the system must be able to achieve. This process results “in a better understanding

of the requirements and should prompt reconsideration of the requirements analysis

[42].” The loop ensures all functions identified trace back to a specific requirement

outlined in the requirements analysis.

2.1.8 Design Loop

The design loop provides feedback to the initially set system architecture and functi-

ons outlined in the functional analysis and allocation phase. It maps the functional

architectural layer to the physical architecture. Furthermore, it provides feedback to

determine whether the architecture can meet the functional and performance metrics

set in the earlier phases. The loop also ensures the system can achieve all desired

functions and evaluates how well the system performs each of these tasks.

55

One method that helps systems engineers translate the functional view to the

physical view is the functional-physical matrix. It allows the engineers to visibly

trace the functional tasks to physical elements required to complete the tasks. Furt-

hermore, if there are multiple options available in a discrete space, a trade tree can

provide sensitivity studies showing the trades of changing the functional or physical

architectures.

2.1.8.1 Trade Trees

Trade trees are a way to organize discrete elements of the architectures where trade-off

or sensitivities studies can occur. Figure 19 displays an example trade tree diagram.

A trade tree breaks down all the possible combinations of discrete decisions. Each

path represents the series of decisions leading to a particular architecture, creating

a tree-like structure. For sensitivity studies, the designer can implement the same

approach except each branch represents a variation in one of the input variables, not

a decision [56, 19].

In Figure 19, five categories explain the possible options of the UAV’s role. The

categories include range/endurance, speed, size, configuration, and launch/recovery.

Table 2 lists the options for each below:

As the designer chooses an option from each category, the number of total options

decreases due to compatibility issues, leading the engineer down a path of decisions,

each with its consequences. Each branch of the tree diagram represents a decision

along with a path. The result is a clear role for the UAV to be designed (shown in

the matrix of the figure).

2.1.9 Verification

Verification is a process that ensures the resulting configuration from the design synt-

hesis stage achieves the customer needs and functional requirements set during the

requirements analysis stage. During verification, designers and systems engineers

56

Range/
Endurance Speed Size Configuration

Launch/
Recovery

Close Range Low Micro Fixed Wing Hand

Close Range Low Micro Rotorcraft VTOL

Close Range Low Small Fixed Wing Hand

Close Range Low Small Fixed Wing Catapult

Close Range Low Small Rotorcraft VTOL

Close Range Low Small Tilt Rotor VTOL

Close Range Low Small Tilt Wing VTOL

Close Range Low Small Tilt Wing STOL

Close Range Subsonic Mid Sized Fixed Wing Catapult

Close Range Subsonic Mid Sized Fixed Wing Runway

Close Range Subsonic Mid Sized Rotorcraft VTOL

Close Range Subsonic Mid Sized Tilt Rotor VTOL

Close Range Subsonic Mid Sized Tilt Wing VTOL

Close Range Subsonic Mid Sized Tilt Wing STOL

Mid Subsonic Mid Sized Fixed Wing Catapult

Mid Subsonic Mid Sized Fixed Wing Runway

Mid Subsonic Mid Sized Rotorcraft VTOL

Mid Subsonic Mid Sized Tilt Rotor VTOL

Mid Subsonic Mid Sized Tilt Wing VTOL

Mid Subsonic Mid Sized Tilt Wing STOL

Mid Transonic Mid Sized Fixed Wing Rocket

Mid Transonic Mid Sized Fixed Wing Runway

Mid Supersonic Mid Sized Fixed Wing Rocket

Mid Supersonic Mid Sized Fixed Wing Runway

Long Subsonic Large Fixed Wing Catapult

Long Subsonic Large Fixed Wing Runway

Long Subsonic Large Tilt Rotor VTOL

Long Subsonic Large Tilt Wing VTOL

Long Subsonic Large Tilt Wing STOL

Long Transonic Large Fixed Wing Runway

Figure 19: Example UAV Trade Tree

57

Table 2: Example UAV Trade Tree Options

Range/
Endurance

Speed Size Configuration
Launch/
Recovery

1. Close Range 1. Low 1. Micro 1. Fixed Wing 1. Hand
2. Mid 2. Subsonic 2. Small 2. Rotorcraft 2. Catapult
3. Long 3. Transonic 3. Mid Sized 3. Tilt Rotor 3. Runway

4. Supersonic 4. Large 4. Tilt Wing 4. Vertical
Takeoff and
Landing
(VTOL)
5. Short
Takeoff and
Landing
(STOL)
6. Rocket Boost

must conduct the following activities [42, 66]:

• Analysis

• Inspection

• Demonstration

• Test

The analysis uses mathematical and analytical tools to determine whether the

selected system achieves the functional requirements based on data from system,

component, and subsystem-level analysis and testing. The analysis can assist in

determining if the proposed system is feasible or viable.

Inspection is “the visual examination of the system, component, or subsystem

[42].” This process ensures the physical features or the system meets the specifications

set by the customer or manufacturer.

Demonstration examines the system during staged operations, demonstrating that

the proposed system can achieve the desired capabilities in real-life situations.

58

Testing is the process that uses the system in real-life operations to obtain detailed

data to verify the performance or provide sufficient information to verify performance

characteristics.

2.1.10 Systems Engineering Process Summary

The current systems engineering process provides frameworks and methods that al-

low the product architecture to be selected logically, but primarily provide trade-offs

between types of components and design variables rather than sensitivity of the re-

lations among the components. For all intents and purposes, the process requires

the engineers to come to a conclusion early on about which product architecture to

implement, perhaps conduct a trade-off between a few competing product architectu-

res. As a result, engineers have come up with new methods that analyze and provide

methods or frameworks to assist in selecting the most favorable system or product

architecture.

2.2 Existing Product Architecture Selection Methods

In academia and various industries, engineers have formulated methods to help fa-

cilitate product architecture selection. As discussed in the problem definition, a

framework should provide the system architect/engineer with the following means to

properly implement a product architecture. First, it must form requirements from cu-

stomer demands and business goals of the parent company. Then, the framework must

define the products functional requirements from customer demands. Furthermore,

the framework must provide the system architect with an understanding of how and

which the functional requirements drive the product architecture. These drivers must

include ones that are constantly changing and evolving. Then, the framework must

be able to efficiently generate alternative product architectures, by implementing a

way to characterize and explore the product architecture space. From the wealth

of choices, the framework must provide the architect with insights on what types of

59

product architectures manufacturers and customers favor. From the background rese-

arch conducted in this chapter, flexibility and complexity can determine the product

architecture’s favorability. In design or robust design, there are trade-offs between

performance and cost or optimality and consistency. However, when choosing pro-

duct architectures, a compromise between requirement satisfaction, flexibility, and

complexity exists. The product architecture must be able to achieve the customer

demands, be resilient to changing needs, and reduce a manufacturer’s cost by limiting

the number of design changes during production. Both resilience to changing require-

ments and reduction of design changes relate to the product architecture’s flexibility

and complexity, respectively. Finally, to decide on which product architecture to

implement, the method must provide the architect with insights on what types of

product architectures are favorable. Therefore, the framework must provide a way to

derive what qualifies a “good” product architecture.

After reviewing the existing methods, an architecture selection method must in-

clude the following:

60

Essential Elements of the new Framework:

1. Relation to the overall manufacturer’s business strategy

2. Identification of major product architecture selection drivers

3. Examination of stochastic and time dependent product ar-

chitecture drivers

4. A numerical way to relate product architectures

5. Determination of a product architecture’s ability to achieve

customer needs, functional requirements, and fiscal concerns

6. Determination of the product architecture’s impact on the

interactions and couplings between various disciplines and

components

7. Identification of favorable product architectures

2.2.1 Quality Function Deployment (QFD) or
Relational-Oriented Systems Engineering and Technology Trade-off
Analysis (ROSETTA)

2.2.1.1 Qualify Function Deployment

Quality Function Deployment (QFD) is the combination of management and systems

engineering tools [122]. The method achieves two objectives:

1. “To convert the users’ needs (or customer demands) for product benefits into

substitute quality characteristics at the design stage.”

2. “To deploy the substitute quality characteristics identified at the design stage

to the production activities thereby establishing the necessary control points

and check points prior to production start-up.”

61

QFD elicits knowledge from system matter experts to identify key drivers, trades,

risk, and desirability. Alternative designs can be compared and again are weighed

based on expert knowledge. The group of experts tends to consist of individuals from

various disciplines to reduce bias. Often an expert’s bias will drive the design chosen

towards his or her “pet” project. However, with healthy group dynamics, the team

can choose an appropriate configuration.

The process uses the chart found in Figure 20. The chart can be broken down

into various spaces:

A. Customer Demands

B. Weighting of each Customer Demand

C. Relation between Customer Demands and Functional Requirements

D. Goals of each Functional Requirement

E. Functional Requirements

F. Alternatives Space

G. Relation among Customer Demands

H. Relation among Functional Requirements

I. Risk or Importance of each Functional Requirement

The ‘F’ space can be modified from configurations to product architectures for

this problem, but the designer can only analyze a limited number due to the time

required to evaluate each architecture.

Overall, QFD visually and efficiently displays trade-offs, drivers, risk, and desi-

rability. It also allows the designer to trace decisions made throughout the design

62

CBA

D

E

F

I

G

H
Figure 20: Quality Function Deployment [122]

process. However, it relies on expert opinions, analyzes a limited number of archi-

tectures, and does not account for interactions and couplings. These limitations may

cause problems later on in the design process.

Table 3 shows where the QFD provides the information required to make an

appropriate decision on what levels of reconfigurability and commonality. The QFD

provides a great way to connect the customer needs with functional requirements

to provide the systems engineers with a quality information on how to evaluate a

product architecture. Furthermore, it can identify requirements that drive the design

and selection process by providing correlations and weightings of importance between

customer needs and functional requirements. However, it does not provide sufficient

information on the time-dependency of these requirements, numerical relations among

alternative product architectures, and analysis of the interactions and couplings the

63

Table 3: Evaluation of the QFD Method

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

QFD X X � � X © ©

product architecture impacts. Though it provides key benefits it does not meet all the

requirements desired to make a decision on the product architecture to implement.

2.2.1.2 Relational-Oriented Systems Engineering and Technology Trade-off Ana-
lysis

The Relational-Oriented Systems Engineering and Technology Trade-off Analysis

(ROSETTA) shifts the QFD from expert to physics and numerical-based decision

making, [91]. It employs modeling and simulation to create data that shows trade-

offs and relations. The paradigm shift removes expert opinion and any bias that

might occur from those types of decisions. However, some of the same problems exist

as the QFD. It can analyze more, but still a limited number of architectures and can

miss some interactions and couplings during the analysis.

Table 4 shows where the ROSETTA framework provides the information required

to make an appropriate decision on what levels of reconfigurability and commona-

lity. ROSETTA provides a great way to connect the customer needs with functional

requirements to provide the systems engineers with a quality information on how to

evaluate a product architecture. Furthermore, it can identify requirements that drive

the design and selection process by providing correlations and weightings of impor-

tance between customer needs and functional requirements. It is a superior version of

a QFD since it uses historical or simulation data to provide the correlations or weig-

htings. However, it does not provide sufficient information on the time-dependency of

these requirements, numerical relations among alternative product architectures, and

64

Response Surface

Equations

C
N

W
ie

gh
ts

C
u
st

om
er

N
ee

d
M

et
ri

cs

FR Weights

Functional Req. Metrics

A
ltern

atives

MANOVA

Monte Carlo

M
on

te
C

ar
lo

Figure 21: Relational-Oriented Systems Engineering and Technology Trade-off Ana-
lysis (ROSETTA) [91]

65

Table 4: Evaluation of the ROSETTA Framework

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

ROSETTA X X � � X © ©

analysis of the interactions and couplings the product architecture impacts. Though it

provides key benefits it does not meet all the requirements desired to make a decision

on the product architecture to implement.

2.2.2 Unified Trade-off Environment

The Unified Trade-off Environment (UTE) is a method whose objective is to “capture

the simultaneous impact of requirements, technologies, and design variables [90]” by

running physics-based sizing and synthesis tools with various mission requirements,

concepts (design variables), and technologies. Usually, by integrating all of the con-

siderations, dimensionality becomes a problem. Therefore the method assumes the

impact of all three categories can be superimposed. After collecting the data, sur-

rogates provide the means to run time-efficient Monte Carlo simulations allowing

probabilistic-based design and sensitivity studies of desirables (outputs) and con-

straints.

The UTE can facilitate in probability-based design problems and allows designers

conduct sensitivity studies among design variables, requirements, and technologies.

However, it does not capture the interactions among the requirements, design varia-

bles, and technologies, since it considers each category separately. Implementing this

method in product architecture selection would involve creating data sets and models

for each architecture considered.

Table 5 shows where the UTE method provides the information required to make

an appropriate decision on what levels of reconfigurability and commonality. The

66

Table 5: Evaluation of UTE Method

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

UTE © X X � X X �

UTE method starts with the functional requirements, assuming the systems engineers

already derived the functional requirements from the customer needs. Also, it provides

systems engineers with a way to decouple requirements, design variables, and other

considerations in the design process. This feature allows the systems engineers to

identify product architecture drivers and their sensitivity to time. However, the UTE

method is often used looking at one product architecture analyzing a specific grouping

of inputs and design variables. Though, it can measure the vehicles ability to satisfy

the functional requirements and the interactions and couplings between components

it does not provide a way to relate or compare alternative product architectures easily.

Though it provides key benefits it does not meet all the requirements desired to make

a decision on the product architecture to implement.

2.2.3 Customer Demands

Defining the product architecture based on the customer demands is a method based

on logical reasoning, not purely numerical analysis [155]. One major assumption for

this approach is that manufacturing costs do not impact the choice of architecture.

Two sub-assumptions support the latter: First, fixed architectures are more cost

effective than modular architectures. Second, modular architectures are more cost

effective than multiple fixed platforms.

The method starts by interviewing customers from various target markets using

questionnaires, interviews, study groups, or conjoint analyses to identify customer

67

needs or requirements. Then, during the second round of questionnaires, the desig-

ners conduct interviews, study groups, or conjoint analyses to obtain importance of

each need or requirement. After collecting the results, the designers or management

can identify the critical needs or requirements of the product. The third round of

surveying provides target values for the critical requirements. From the results of

the third round, the designers or management can divide the customers into various

target markets, sorted by time, market, or total population, providing means and

variances of requirements. The statistical values allow the design team to select the

product architecture.

A flow diagram, displayed in Figure 22, provides the logical process the designer

should follow. The method identifies four architecture options: platform generations

(modular), fixed portfolio (fixed), platform family (product family), or adjustable

portfolio (reconfigurable) architectures. Yu does not identify what type of product

family designs to use for a platform family architectures. A platform family corre-

sponds to a scale-based product family since Yu identifies platform generations as

modular designs. Finally, an adjustable portfolio or a reconfigurable architecture is

easily upgradeable, allowing for the platform to reflect the significant standard de-

viation of customer demands. The adjustable portfolio can be modular or online

reconfigurable designs based on what the designer believes is best.

Yu’s customer demand method has some benefits drawbacks. Yu’s understanding

of the problem provides a consistent benchmark of what influences the architecture.

It also permits stochastic and time varying requirements. However, Yu only defines

four possible outcomes of the method, and a product can contain characteristics

of multiple architectures. Also, he fails to identify what makes a population mean

constant with time and what makes a standard deviation large. This lack of clarity

leaves the problem open for the designer to make heuristic decisions.

Table 6 shows where the Customer Demands method provides the information

68

Given a population
of markets, each
with their own

mean and variance

Is the
market

population’s
mean constant

with time?

Platform
Generations

No

Is the
market

population’s
variance
large?

Yes

Fixed
Portfolio

Architecture

No

Does the
market

population’s
variance equal

all of the
markets’

variances?

Yes

Platform
Family

No

Adjustable
Portfolio

Architecture

Yes

Figure 22: Customer Demand Method[155]

69

Table 6: Evaluation of the Customer Demands Method

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

Customer

Demands
X X © � � � X

required to make an appropriate decision on what levels of reconfigurability and com-

monality. The Customer Demands method requires surveying the possible customers

to determine the needs and requirements of the new product. Then, it outlines a logi-

cal process of determining what type of product architecture to implement. However,

it does not provide a relation between or a way to compare or evaluate the alternative

product architectures. Though, the method is simple to understand it provides vague

outlines on how to determine which product architecture is best. Also, it can handle

stochastic requirements but does not determine how the distributions change over

time and hoe this will impact the product architecture.

2.2.4 Robust Concept Exploration Method

The Robust Concept Exploration Method applies a parametric, robust design method

[32]. The method instructs the designer to go through the following steps:

1. Classify all design parameters

2. Determine the design parameters to evaluate

3. Set the ranges and distribution of the parameters

4. Conduct a sensitivity analysis (an ANOVA analysis) on the parameters, iden-

tifying the terms with the greatest impact on output metrics

5. Reduce the Number of Parameters using results from the sensitivity study

70

6. Create response surface equations of various architectures to reduce run time of

the analysis

7. Run a Monte Carlo

8. Select architecture evaluated using statistical process control metrics (Cdk ,Cdl ,

and Cdu). These metrics require some target and upper and lower bounds to

identify the preference of each metric.

This method can handle stochastic requirements, fully explores the design domain,

and ensures robust or flexible, modifiable top-level specifications. However, compari-

sons among architectures are difficult due to the construction of codes corresponding

to each, slowing down the process and making it hard for the architect to explore

the entire space. Therefore, the method requires some architecture down-selection

beforehand.

Table 7 shows where the Robust Concept Exploration Method provides the infor-

mation required to make an appropriate decision on what levels of reconfigurability

and commonality. The Robust Concept Exploration Method starts with distributi-

ons of functional requirements, making the assumption the systems engineers already

derived the functional requirements distributions from the customer needs. The abi-

lity of the method to handle the stochastic requirements allows system engineers to

identify drivers and make some inferences on the time-dependency of the product

architecture. However, the RCEM can only analyze one product architecture at a

time. This feature reduces the systems engineers’ ability to relate and compare the

alternative product architectures easily. Though it provides key benefits it does not

meet all the requirements desired to make a decision on the product architecture to

implement.

71

Table 7: Evaluation of the Robust Concept Exploration Method

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

RCEM © X X � X � �

2.2.5 Variation-Based Platform Design Methodology

Raviraj Nayak, Wei Chen, and Timothy Simpson developed the Variation-Based Plat-

form Design Methodology for product-family architecture optimization [103]. With

this methodology, a designer can construct a product family while maximizing com-

monality, using stochastic performance requirements.

The approach selects a common product platform while trying to maximize stan-

dardization of components. First, “information that characterizes the needs and

requirements for a product [are converted] into knowledge about a product [103],”

setting means, ranges, and goals of desirables. Second, the designer selects a com-

mon platform by entering design variables’ averages and variances into the products

analysis, then chooses a product with maximum commonality and satisfaction of all

requirements. The process selects platform variables from the design’s variables that

are similar based on mean and variance. Third, non-platform variables are optimized

for various products in the family, concerning each mission or requirements.

This method is a straightforward and easy to implement. It also can handle

stochastic requirements and design variables. Though it explores the entire product-

family architecture space, the method is not applicable to other architectures, such as

reconfigurable ones, and assumes the configuration has already been down selected.

Table 8 shows where the Variation-Based Platform Design Methodology provides

72

Table 8: Evaluation of the Variation-Based Platform Design Methodology

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

VBPCM © © © � X � �

the information required to make an appropriate decision on what levels of reconfigu-

rability and commonality. The VBPDM starts with distributions of functional requi-

rements, making the assumption the systems engineers already derived the functional

requirements distributions from the customer needs. The ability of the method to

handle the stochastic requirements allows system engineers infer which requirements

drive the selection process and make some inferences on the time-dependency of the

product architecture. However, the VBPDM can only analyze one product archi-

tecture at a time and assumes the product architecture is a product family with a

common platform. This feature reduces the systems engineers’ ability to relate and

compare the alternative product architectures easily. Though it provides key bene-

fits it does not meet all the requirements desired to make a decision on the product

architecture to implement.

2.2.6 Multi-Disciplinary Analysis and Optimization (MDAO)

Multi-Disciplinary Analysis and Optimization (MDAO) decomposes a complex sy-

stem into subsystems, disciplines, members, elements, components, sub-spaces, and

sub-problems. It also analyzes the partitioned elements individually. The indivi-

dual analyses provide design variables or constraints to the overall system, allowing

the system to be optimized using serial or parallel computation. MDAO consists of

two types of optimization methods: multidisciplinary feasible (MDF) and individual

discipline feasible (IDF).

73

Optimizer

Analyzer

X f,g,h

s

System Analyzer

X = {xs,x1,x2}

f(f1,f2)
g = {g1,g2}
h = {h1,h2}

Subspace
Analyzer

SS1

s

x1,xs f1,g1,h1

Subspace
Analyzer

SS2

s

x2,xs f2,g2,h2

y12

y21

Figure 23: Multidisciplinary Feasible Structure [16]

2.2.6.1 Multi-Disciplinary Feasible

MDF is a serial method which uses an external optimizer that sends design variables

to internal analyses that evaluate the partitioned elements’ characteristics. There are

three types of design variables: shared, local, and coupled design variables. More than

one element use shared variables and only one element uses local variables. Coupled

variables are outputs of one or multiple analyses and inputs for one or multiple analy-

ses. An analysis updates associated coupled variables and send the coupled variables

to the next analysis. This process repeats itself until the coupled variables converge,

resulting in a converged system. The external optimizer then evaluates the design and

constraints until it finds an optimal one. The external optimizer tends to use fixed

point iteration due to its simplicity. This method is computationally inexpensive if

there is low coupling. However, MDF can converge on sub-optimal designs due to

divergence in fixed point iteration algorithms. Figure 23 displays a MDF structure.

74

Optimizer

Analyzer Analyzer

s s

x1,xs1,y1j

f1,g1,h1,yi1

x2,xs2,y2j

f2,g2,h2,yi2

Figure 24: Individual Discipline Feasible Structure[16]

2.2.6.2 Individual Disciplinary Feasible

IDF is a parallel optimization which uses an external optimizer that sends design

variables to each discipline/components analysis. The external optimizer defines all

(shared, local, and coupled) design variables. The analyses calculate their constraints

and provide output variables. Since the coupled variables before and after the analyses

are not always consistent, equality constraints are added to the external optimizer to

ensure consistent coupled variables. This method is computationally more expensive

than MDF except when the coupling is high. Also, this method will always converge

on optimal designs. Figure 24 displays an IDF structure.

Although MDAO techniques are commonly used throughout industry, because

they provide a means to conduct data driven analysis, there are considerable gaps

in the implementation. Depending on the system to be evaluated, one optimization

might be better than the other. Also, since these techniques rely on optimization,

stochastic input design variables can not be used without Monte Carlo simulations

which are feasible but due to complicated optimization computation quickly becomes

75

Table 9: Evaluation of Multi-Disciplinary Analysis and Optimization (MDAO)

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

MDAO © X © � X X �

expensive. Furthermore, the designers must create specific simplified modeling must

for each architecture analyzed. Therefore it becomes costly to analyze all of the

architecture space, requiring some architecture down-selection beforehand.

2.2.6.3 Review of MDAO Methods

Table 9 shows where the Variation-Based Platform Design Methodology provides the

information required to make an appropriate decision on what levels of reconfigurabi-

lity and commonality. MDAO is a process that breaks down the design of a product

into components or disciplines with analyses assigned to each element. The analy-

ses determine the performance and other technical measures important in analyzing

the design. The combination of analyses allow the process’s operator to optimize

the design or conduct analysis of the design space. It uses functional requirements

derived from the customer needs as inputs, allowing systems engineers to determine

which requirements drive the design of the product. However, the way MDAO is

structured provides a limited amount of stochastic and time-dependent analysis. One

of the key features of MDAO is its structure that decomposes the design problem

into components and disciplines. This feature allows systems engineers to study the

interactions and couplings between disciplines and components. However, it does not

provides a way to numerically relate alternative product architectures. Studying a

product architecture using MDAO requires switch modules on and off creating a dis-

crete and categorical problem. Though it provides key benefits it does not meet all the

requirements desired to make a decision on the product architecture to implement.

76

2.2.7 Contact and Channel Model

The contact channel model (C&CM) method connects geometry information with in-

tegration analysis to analyze architectures [15]. Then, using optimization techniques,

a final architecture is selected. Elements are modeled and grouped into subsystems.

C&CM analyzes the integration of subsystems by working surface pairs (WSP) and

channel and support structures (CCS).

• “WSP are pairwise interfaces between two components or between a component

and its environment. Working surfaces can be a solid surface of a body or a

boundary, a surface of liquid, gas, or field which comes into permanent or occa-

sional contact with the working surface (WS). They take part in the interchange

of energy, material, or information within the technical system [15].”

• “CSS are a physical component a volume of liquid, gas, or space containing

field which links exactly two WSP. They do not only participate in a transfer

of energy, material, and information from one WSP to another, but they can

also store them (e.g. the mass inertia) [15].”

The method can then be broken down into three steps - generating a C&CM

dependency matrix (CDM), evaluating the CDM, and analysis of clusters in the CDM.

Figure 25 displays the method.

The first step requires some preliminary work. The designer must determine re-

quirements of the product architecture, define the importance of each requirement,

select a principal architecture and create its corresponding FFBD, and combine the

FFBD with its geometry information creating the C&CM. However, a complex sy-

stem requires many CSS and WSP. “This makes the system representation relatively

unorganized and not suitable to analyze the integration.” A CDM is a modified N2

diagram consisting of weighted importance factors for all CSS interactions (ICCS).

77

Product Architecture

Generate Product Architectures

Diagram of Product Architecture

Optimize the CDM

Optimized CDM

Evaluate the CDM

Evaluated CDM

Create the Contact & Channel Model Dependency Matrix

CDM

Define the important
factor for each target

Important
factors of targets

Determine targets
of the product ar-
chitecture defining

Targets

Requirements List

Combine the functional informantion with
approximated form/shape information

C&CM

Create an actual
function structure

of principle solution

Functional Structure

Function structure for
creating/finding ideas Principle Solution

S
te

p
1

S
te

p
2

S
te

p
3

Figure 25: Contact Channel Model [15]

78

The CSS interactions are a combination of the WSP influence associated with the

CSS’s suitability. It has a minimum value of zero and a maximum of one. The CDM

is then evaluated by breaking down the product into modules and evaluating how

well the architecture can serve its purpose. Albers recommends using Equation 1.

Z =

(∑
ICSS∑

ICSS,max

)
insidemodule

−
(∑

ICSS∑
ICSS,max

)
outsidemodule

Numberofmodules
(1)

Finally, since the goal is to maximize the architecture’s performance, a genetic

algorithm can be used to optimize the product architecture. This process finds the

number of modules in the product and arrangement of the CSS.

The contact channel model utilizes an FFBD and an N2 diagram. It even identifies

how the architecture is set up, referring to energy, force, and information transferring.

However, the process is heavily biased by heuristic determinations of WSP influence,

CSS suitability, general product architecture geometry and is only applicable to mo-

dular designs. The method has potential to be data driven if simplified models were

used to determine these parameters and geometry.

Table 10 shows where the Contact and Channel Model provides the information

required to make an appropriate decision on what levels of reconfigurability and

commonality. The Contact and Channel Model does a good job at decomposing the

design problem into components and disciplines allowing for a great understanding of

the internal dynamics of the product. The use of the CDM provides ways to evaluate

and, in a way, relate alternative product architectures. However, it is limited in its

ability to handle time-dependent requirements. It has many of the elements required

to make an informed decision about the amounts of reconfigurability and commonality

to implement, but it could probably be extended upon to improve its ability to handle

extremely complex problems.

79

Table 10: Evaluation of the Contact and Channel Model

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

C&CM © X � © X X X

2.2.8 Architectural Enumeration and Evaluation

The United Technologies Research Center (UTRC) developed the Architectural Enu-

meration and Evaluation (AEE) framework “to enable the efficient and traceable

decision making that rapidly reduces the entire design space to regions that warrant

further investigation [21, 156, 157].” AEE Decomposes the system into disciplines

or components with corresponding functions, relations, and constraints. Then, the

framework uses numeric analyses to evaluate the performance and feasibility of an

architecture and configuration pairing. Pairings are generated using a design of ex-

periments or in some cases full factorial of discrete component combinations. Ones

that can not achieve required functions, derived from the customers’ demands, are

considered infeasible and removed from further analysis. Next, the framework uses

higher fidelity analyses to evaluate the performance and cost of each feasible pairing.

If there are multiple evaluation criteria, an MADM technique can be used to rank

the possible architecture and configuration pairings. Figure 26 displays the AEE two

step process of enumeration and evaluation.

The AEE framework quickly filters and evaluates many architectures while provi-

ding performance, cost, and feasibility of each architecture numerically. However, it

does not provide a way to analyze architectures resilience to requirement change or

time dependency. Therefore it does not provide the means necessary to aid system

architects in planning product development and strategic road mapping.

Table 11 shows where the Architectural Enumeration and Evaluation framework

80

1. Knowledge Center

2. Architecture Enumeration

All Architecture
and Configuration

Combinations

3. Architecture Evaluation

4. Architecture
Visualization

Infeasible
Configurations

Feasible
Systems

Promising
Systems

Competitive
Systems

Non-
Competitive

Systems

Infeasible
Performance

L
ev

el
1

A
rc

h
it

ec
tu

re
E

n
u
m

er
at

io
n

&
E

va
lu

at
io

n
(A

E
E

)

Deeper
Analysis

Figure 26: Architectural Enumeration and Evaluation [157]

provides the information required to make an appropriate decision on what levels

of reconfigurability and commonality. The AEE framework can search all types of

architectures. It uses the functional architecture to determine which physical archi-

tectures are feasible. The connection of the functional to physical analysis allows

drivers to be easily determined. However, the framework primarily focuses on fixed

requirements and does not provide the ability to analyze the internal dynamics of the

design problem. Though, the framework has clear benefits in selecting the physical

architecture of a system, it lack some of the requirements to determine the product

architecture.

2.2.9 Architecture Selection under multiple Criteria and Evolving Needs
for improved Decision-making (ASCEND)

The ASCEND framework is a generic top-down design decision support process that

addresses the gaps in traditional design methods where engineers only analyze a few

81

Table 11: Evaluation of the Architectural Enumeration and Evaluation Framework

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

AEE X X � � X � X

physical architectures [58]. It combines performance, life-cycle cost, and safety as

a means of determining viable options. It combines traditional sizing and synthesis

techniques with functional decomposition analysis to determine the feasibility and

viability of a physical architecture.

The framework was demonstrated through a case study of a suborbital vehicle.

These vehicles require high levels of safety and manageable costs. The highly con-

strained environment requires creativity to determine which physical architecture is

the most favorable.

Figure 27 outlines the steps in the framework. First, the framework identifies

metrics of interest and constraints relative to the design problem. The metrics are

used in developing the overall evaluation criteria of the system. The constraints limit

the design space, ensuring the system can complete the task or meet customer needs.

Second, the framework breaks down the mission or capabilities required of the system.

Then, conducts a compatibility study to determine which physical architectures can

feasibly conduct the required tasks. The feasible physical architectures provide the

inputs for the performance, life-cycle cost, and safety analysis. Third, the framework

sends the alternative physical architectures to an optimizer which robustly optimizes

and evaluates each alternative with respect to stochastic and time-dependent requi-

rements. Finally, a TOPSIS method is used to determine the best alternative based

on a combination of evaluation metrics.

Table 12 shows where the ASCEND framework provides the information required

82

Figure 27: Architecture Selection under multiple Criteria and Evolving Needs for
improved Decision-making (ASCEND) [58]

to make an appropriate decision on what levels of reconfigurability and commonality.

The framework provides a clear connection between the functional and physical archi-

tectures of the system allowing for requirements that drive the physical architecture

to be determined. Furthermore, it is built to handle time-dependent and stochastic

requirements meaning the system is designed to robustly handle changing require-

ments. However, the framework does not present how the physical architecture might

change over time. The framework links alternative physical architectures through the

functional view but the problem is still presented as a categorical problem limiting

the ability of systems engineers to quickly relate alternatives. The framework utilizes

an MDAO method to optimize each alternative physical architecture. This implemen-

tation allows the system engineers to determine each alternative’s ability to satisfy

the customer needs, but it can only provide limited information about the internal

dynamics of the problem. The ASCEND framework provides a valuable approach to

selecting the physical architecture, but it was not designed to determine the levels of

83

Table 12: Evaluation of the ASCEND Framework

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

ASCEND © X X © X � ©

commonality and reconfigurability of a product line.

2.2.10 A Product Family Design Methodology Employing Pattern Re-
cognition

The Product Family Design Methodology Employing Pattern Recognition hopes to

address the complex problem of product family design. Since product families share

components, referred to as platforms, to “streamline design, improve manufactu-

ring, and facilitate maintenance [59],” it is important the systems engineers correctly

which components to make common and unique across the family. The methodology

attempts to reduce the combinatorial problem by using cluster analysis to identify

possible sets of commonality.

Figure 28 shows how systems engineers can break down the product family design

space into higher level capabilities, functional requirements, products, and compo-

nents. The methodology utilizes the fact that each level of the design space histo-

rically match with certain types of vehicles. Thus, clusters form in each level based

on the capabilities required by each family member in the product line. The clusters

form types of components or products. Using the clusters of historical data, engineers

can determine options of the composition of components in each family member. The

options provide the inputs to the design optimization step of the analysis.

After determining the composition of the physical architecture of each family mem-

ber, the method places commonality constraints across the product line and optimizes

the design of each alternative product architecture. The method can optimize based

84

Figure 28: A Product Family Design Methodology Employing Pattern Recognition
[59]

on absolute or robust performance and cost. The resulting performance and cost

metrics can be traded or used in decision multi-attribute decision making methods to

determine which product architecture to implement.

Table 13 shows where the Product Family Design Methodology Employing Pat-

tern Recognition provides the information required to make an appropriate decision

on what levels of reconfigurability and commonality. The method starts with the

higher-level capabilities which the method assumes were already derived from the

customer needs. The capabilities can be subjugated to noise parameter allowing for

stochastic or time-dependent analysis. The functional requirements are discrete tasks

summarized by variables to clarify the demand of each task. The combination of the

capability and functional-based analyses allow the systems engineers to identify the

drivers and their time-dependent impact on the product architecture. However, when

the method starts to select the possible product architectures, it still describes the

alternative product architectures combinatorially or categorically, lacking the ability

to relate the alternatives quantitatively. Also, it only creates alternative product ar-

chitectures with varying levels of commonality. It does not look at reconfigurability

85

Table 13: Evaluation of the Product Family Design Methodology Employing Pattern
Recognition

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

PFDMPR © X X © X � ©

at all. Finally, the method evaluates the alternative product architectures by analy-

zing their performance and cost. Analyzing the alternatives this way provides enough

information to determine the product architecture’s ability to satisfy the functional

requirements but does not analyze the internal dynamics of the design problem. Over-

all, the method provides many benefits in assisting the systems engineers select the

configurations and commonality of the product line but fails add reconfigurability

and analyze the risk of the design problem.

2.2.11 Evaluation of Existing Product Architecture Selection Methods

In general, to properly implement a product architecture, a framework should provide

the system architect/engineer with a means to form requirements from customer de-

mands and business goals of the parent company. Then, the framework must define

the products functional requirements from customer demands. Furthermore, the fra-

mework must provide the system architect with an understanding of how and which

the functional requirements drive the product architecture. These drivers must in-

clude ones that are constantly changing and evolving. Then, the framework must

be able to efficiently generate alternative product architectures, by implementing a

way to characterize and explore the product architecture space. From the wealth

of choices, the framework must provide the architect with insights on what types of

product architectures manufacturers and customers favor. From the background rese-

arch conducted in this chapter, flexibility and complexity can determine the product

86

architecture’s favorability. In design or robust design, there are trade-offs between

performance and cost or optimality and consistency. However, when choosing pro-

duct architectures, a compromise between requirement satisfaction, flexibility, and

complexity exists. The product architecture must be able to achieve the customer

demands, be resilient to changing needs, and reduce a manufacturer’s cost by limiting

the number of design changes during production. Both resilience to changing require-

ments and reduction of design changes relate to the product architecture’s flexibility

and complexity, respectively. Finally, to decide on which product architecture to

implement, the method must provide the architect with insights on what types of

product architectures are favorable. Therefore, the framework must provide a way to

derive what qualifies a “good” product architecture.

All the methods reviewed can be evaluated by whether they meet this criterion.

Figure 14 displays the evaluation. A green check mark means the method can already

achieve this requirement, a circle means the method can be modified to meet this

requirement, and a red circle with a slash through it means the method cannot achieve

this requirement.

From the evaluation, it is apparent that no method achieves these requirements.

Specifically, most of the methods or frameworks lack in the ability to relate alternative

product architectures numerically. A number of past studies have developed indices

to attempt to describe the levels of commonality and reconfigurability numerically.

The review of these studies are found in the next section. Also, the identified methods

do not sufficiently analyze the interactions that occur within the design problem. The

interactions and couplings relate to the robustness, flexibility, and complexity of the

design. Therefore, the next section introduces these terms as well.

The identified methods and frameworks inability to meet all of the attributes

required to make an informed decision on what levels of commonality and reconfigu-

rability to implement create a need for a new framework to be formulated. Therefore,

87

Table 14: Evaluation of Existing Architecture Selection Methods

Relate

Product
Architec-
ture to
Business
Strategy

Identify

Product
Architec-
ture
Drivers

Conduct

Time-
Dependent
Driver
Impact

Numerical

Relations
among
Product
Architectures

Evaluate

Product
Architec-
tures

Analyze

Design
Interacti-
ons &
Coupling

Identify

Product
Architec-
tures of
Interest

QFD X X � � X © ©
ROSETTA X X � � X © ©
UTE © X X � X X �
Customer

Demands
X X © � � � X

RCEM © X X � X � �
VBPCM © © © � X � �
MDAO © X © � X X �
C&CM © X � © X X X
AEE X X � � X � X
ASCEND © X X © X � ©
PFDMPR © X © © X � ©

this dissertation formulates one which combines some of the elements of the past

methods and introduces some new concepts, leading to the research objective of this

dissertation, found in Section 2.4.

2.3 Additionally Required Concepts

While examining past architecture selections methods in Section 2.2, the examina-

tion brought forward a couple of concepts. These concepts include commonality and

reconfigurability, complex systems, system flexibility and complexity, and software

development. The product architecture is a combination of commonality and re-

configurability implemented across a product line. Therefore, concepts of how to

represent commonality and reconfigurability must be explored. After understanding

how to represent the product architecture, complex design analysis can be used to

determine the relation between the product architecture and its capabilities. There-

fore, complex design analysis must be understood. A few key concepts of complex

88

system design are the interaction between requirements and couplings between de-

sign variables. The interactions and couplings relate to the flexibility and complexity

of the product. Therefore, flexibility and complexity must be defined in relation to

product design and development. Finally, understanding the costs related to software

development are especially important in modern product development. This section

provides definitions and a detailed examination of these terms and concepts.

2.3.1 Past Commonality and Reconfigurability Studies

One of the key features in product architecture selection that the past methods st-

ruggle to address is the ability to relate alternative product architectures numerically.

However, there have been studies in the product development field of research where

indices have been created to present a numerical representation of the commonality

and reconfigurability implemented in a product line.

Commonality and reconfigurability indices can represent a product architecture

and serve as representations of the composition characteristics implemented in a pro-

duct line. Since the indices will represent an inputed product architecture, they must

be independent of the systems engineers’ biases and qualitative decision making.

Therefore, the previously developed indices must:

• Represent the composition of commonality or reconfigurability versus fixed or

unique components

• Serve as inputs, independent of the design process analysis

• Show the relations and characteristics among the implemented components

• Represent commonality and reconfigurability across the product line

• Be independent of the systems engineers’ qualitative decision making

These qualities will ensure the indices can serve as an independent input in the ana-

lysis of product architecture’s impact on the design process. The review of previously

89

developed indices will provide possible options and traits that can be incorporated

into the development of product architecture indices.

2.3.1.1 Commonality Studies and Indices

Researchers developed commonality indices to account for manufacturing processes,

materials, assembly or fastening schemes, production volumes, and initial costs [143].

With varying respect to these considerations, many different commonality indices

have been proposed.

Degree of Commonality Index (DCI) The first is the Degree of Commonality

Index (DCI) [34]. The index is the most traditional form of reflecting “the number

of common parent items per average distinct component [141].” Equation 2 shows

the formulation of the DCI index, “where Φj is the number of immediate parents

component j has over a set of end items or product structure level(s), d is the total

number of distinct components in the set of end items or product structure level(s),

and i is the total number of end items or the total number of highest level parent

items for the product structure level(s) [141].”

DCI =

∑i+d
j=i+1 Φj

d
(2)

The index can range from 1 to infinity, depending on the number of products and

components. It represents the ratio of the number of common components to the

total number of components in the product line. It is very easy to compute but it

does not do well representing the ratio of common components when a new product

is added to the line or redesigning the product line.

Table 15 shows how the Degree of Commonality Index meets the criteria required

of a commonality index. The DCI, though a simple representation of commonality,

almost meets all of the criteria required. Its range from zero to infinity limits its

90

Table 15: Evaluation of the Degree of Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

DCI � X X © X

Table 16: Evaluation of the Total Constant Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

TCCI © X X X X

ability to measure the composition of commonality and represent commonality across

the product line.

Total Constant Commonality Index (TCCI) Another index is the Total Con-

stant Commonality Index (TCCI) [150]. The metric is an extension of the DCI,

modifying it to range from zero to one. This makes up for the inability of the DCI

to scale during redesign or adding products to the production line. Equation 3 shows

the formulation of the TCCI index.

TCCI = 1− d− 1∑i+d
j=i+1 Φj − 1

(3)

Table 16 shows how the Total Constant Commonality Index meets the criteria

required of a commonality index. The TCCI is an extended representation of the

DCI. Therefore, it makes up for the DCI’s inability to represent commonality across

the product line. However, it still has difficulty representing the ratio of common

versus unique components, especially if forms of reconfigurability are added to the

product architecture.

91

Product Line Commonality Index (PCI) The first two indexes simply measure

the ratio of common components across a production line. However, commonality can

be a function of the size, materials, manufacturing, and assembly processes used in

production. Therefore, the Product Line Commonality Index (PCI) was developed to

account for these considerations [80]. Equation 4 shows the formulation of the PCI,

“where P is the total number of non-differentiating components that can potentially

be standardized across models, N is the number of products in the product family,

ni is the number of products in the product family that have component i, f1i is the

size and shape factor for component i, f2i is the materials and manufacturing pro-

cesses factor for component i, and f3i is the assembly and fastening schemes factor

for component i. f1i is the ratio of the greatest number of models that share compo-

nent i with identical size and shape to the greatest possible number of models that

could have shared component i with identical size and shape (ni). f2i is the ratio of

the greatest number of models that share component i with identical materials and

manufacturing processes to the greatest possible number of models that could have

shared component i with identical materials and manufacturing processes (ni). f3i

is the ratio of the greatest number of models that share component i with identical

assembly and fastening schemes to the greatest possible number of models that could

have shared component i with identical assembly and fastening schemes (ni) [141].”

PCI = 100×

∑p
i=1 ni × f1i × f2i × f3i −

∑p
i=1

1
n2
i

P ×N −
∑p

i=1
1
n2
i

(4)

The PCI ensures a component is common if it has the same size, materials, ma-

nufacturing, and assembly processes used in production. Also, the index ranges from

zero to one-hundred. Comparing the PCI and TCCI metrics allows the engineer

to compare what processes are common in the development of the product. Also,

it allows the engineers to get an understanding which components are scale-based.

However, all of the three indices analyzed at this point determine the commonality

92

Table 17: Evaluation of the Product Line Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

PCI X © X X X

across a product line, not of an individual product, leading to the development of the

next index.

Table 17 shows how the Product Line Commonality Index meets the criteria re-

quired of a commonality index. The PCI incorporates some of the manufacturing

and material considerations that are relevant to determining commonality. However,

many of these considerations can be the results of the design or production analy-

ses. Therefore, the index becomes less of an input and more of an output of MDAO

analysis.

Percent Commonality Index (%C) The Percent Commonality Index (%C) was

developed to analyze the level of commonality within an individual product. It has

three viewpoints: the component viewpoint, component-to-component connections

viewpoint, and the assembly viewpoint [130]. These viewpoints can be combined

through a weighting scheme to determine the overall %C of an individual product.

Equations 5 through 8 show the formulation of the commonality viewpoints. The

component viewpoint looks at the ratio of common components (commoncomp.) to

total components (commoncomp. + uniquecomp.). Equation 5 shows the formulation of

the component viewpoint in the %C index.

Cc =
100× commoncomp.

commoncomp. + uniquecomp.
(5)

The component-to-component connection viewpoint looks at the interfaces present

in the system architecture of a product. If two components share a connection with

93

the platform component, the interface is a common connection (commonconn.). The

viewpoint looks at the ratio of these common connections to the total connections

within the system architecture (commonconn. + uniqueconn.). Equation 6 shows the

formulation of the connection viewpoint in the %C index.

Cn =
100× commonconn.

commonconn. + uniqueconn.
(6)

The assembly viewpoint can be broken down into the assembly component loading

and assembly workstation viewpoints. The assembly component loading viewpoint

looks at the sequences while the discrete workstations in the production of the com-

ponent. Both are the ratios of the common sequences (commonACL) or workstati-

ons (commonAW) to the total sequences (commonACL + uniqueACL) or workstations

(commonAW + uniqueAW). Equations 7 and 8 show the formulation of the assembly

component loading and workstation viewpoints in the %C index respectively.

Cl =
100× commonACL

commonACL + uniqueACL
(7)

Ca =
100× commonAW

commonAW + uniqueAW
(8)

Engineers can combine all of the viewpoints in the final %C index through a

normalized weighting scheme (Ix). The weightings are determined at the discretion

of the designers based on what they view are important in the product development

process. Equation 9 show the formulation of the %C index using a weighted sum of

the viewpoints previously described.

%C = Ic × Cc + In × Cn + Il × Cl + Ia × Ca (9)

The index varies from zero to one-hundred. It is able to account for manufacturing

and assembly considerations. However, it can only be applied to one product in the

94

Table 18: Evaluation of the Percent Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

%C X © X � �

product line and can’t be scaled to account for the family as a whole.

Table 18 shows how the Percent Commonality Index meets the criteria required of

a commonality index. The %C was specifically developed for individual system’s com-

monality, not across a product line. Also, it incorporates some of the manufacturing

and material considerations that are relevant to determining commonality. However,

many of these considerations can be the results of the design or production analyses.

Therefore, the index becomes less of an input and more of an output of MDAO ana-

lysis. Finally, the %C is a weight-based combination of various commonality metrics.

The weightings are dependent on the systems engineers qualitative reasoning. This

quality limits the index’s ability to be an independent input in analyzing the product

architecture’s impact on the design process.

Commonality Index (CI) Another version of the DCI is the Commonality Index

(CI) [88]. It provides a different view showing the number of unique parts present in

a product line. Equation 10 shows the formulation of the CI, “where u is the number

of unique parts, pj is the number of parts in model j, and vn is the final number of

varieties offered [141].”

CI = 1− u−maxpj∑vn
j=1 pj −maxpj

(10)

The CI is a simple index to compute and ranges from zero to one. It provides

a quick and easy way to calculate the unique components within a product line but

does not consider size, materials, manufacturing, and assembly processes used in

95

Table 19: Evaluation of the Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

CI X X X X X

production when calculating the index.

Table 19 shows how the Commonality Index meets the criteria required of a com-

monality index. The CI is an extension of the DCI and TCCI. It compensates for

the DCI’s inability to represent the composition of commonality across the product

line and for the TCCI’s inability to differentiate between the common and unique

components. As a result, the CI is the first index to meet all of the criteria.

Component Part Commonality Index (CI(C)) All of the indices analyzed so

far do not consider product volume, quantity per operation,and the cost of compo-

nent part. Thus, the Component Part Commonality Index (CI(C)) was developed to

account for these considerations. Equation 11 shows the formulation of the CI(C),

“where d is the total number of distinct component parts used in all the product

structures of a product family, j is the index of each distinct component part, Pj

is the price of each type of purchased parts or the estimated cost of each internally

made component part, m is the total number of end products in a product family,

i is the index of each member product of a product family, and Vi is the volume of

end product i in the family. Φij is the number of immediate parents for each distinct

component part dj over all the products levels of product i of the family.
∑m

i=1 Φij is

the total number of applications (repetitions) of a distinct component part dj across

all the member products in the family. Qij is the quantity of distinct component part

dj required by the product i [141].”

96

Table 20: Evaluation of the Component Part Commonality Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

CI(C) © � X X X

CI(C) =

∑d
j=1 [Pj

∑m
i=1 Φij

∑m
i=1 (ViQij)]∑d

j=1 [Pj
∑m

i=1 (ViQij)]
(11)

Technically, the CI(C) can range from one to infinity, depending on the number

of variants, components, and production quantities. This characteristic can cause

problems in understanding the implications of the index especially if there is one really

expensive component it will limit the effects of other components. Furthermore, the

need to calculate the quantity demanded and cost of each component can be time

consuming, at times using the metric is not feasible due to development scheduling.

Table 20 shows how the Component Part Commonality Index meets the criteria

required of a commonality index. The CI(C) incorporates the costs of components

into the formulation of the index. The inclusion of cost causes the index to range

from zero to infinity. This characteristic limits the ability of the metric to determine

the composition of commonality since the highest cost index can influence the metric

the greatest. Also, the inclusion of cost is directly dependent on the design and

production analysis. Therefore, instead of being an input the CI(C) is an output of

the analysis, limiting the ability of the engineers to determine product architecture’s

impact on the selection process.

Comprehensive Metric for Commonality (CMC) After a comparison of the

previously developed commonality indices, a new metric was developed to incorporate

all of the benefits identified in the past. This index is the Comprehensive Metric for

97

Commonality (CMC) [143]. The CMC accounts for manufacturing processes, mate-

rials, assembly or fastening schemes, production volumes, and initial costs. Equation

12 shows the formulation of the CMC index, “where P is the total number of com-

ponents. ni is the number of products in the product family that have component

i. f1i is the ratio of the greatest number of products that share component i with

identical size and shape to the number of products that have component i (ni). f2i

is the ratio of the greatest number of products that share component i with identical

materials to the number of products that have component i (ni). f3i is the ratio of

the greatest number of products that share component i with identical manufacturing

processes to the number of products that have component i (ni). f4i is the ratio of

the greatest number of products that share component i with identical assembly and

fastening schemes to the number of products that have component i (ni). f
max
1i is the

ratio of the greatest number of products that share component i with identical size

and shape to the greatest possible products that could have shared component i with

identical size and shape schemes. fmax2i is the ratio of the greatest number of products

that share component i with identical materials to the greatest possible number of

products that could have shared component i with identical materials. fmax3i is the

ratio of the greatest number of products that share component i with identical ma-

nufacturing processes to the greatest possible number of products that could have

shared component i with identical manufacturing processes. fmax4i is the ratio of the

greatest number of products that share component i with identical assembly and fas-

tening schemes to the greatest possible number of products that could have shared

component i with identical assembly and fastening schemes[143].”

Ci is the current total cost for component i: Ci =
∑ni

j=1Cij, where Cij is the total

cost for component i variant j (Cij = Qij × cij), where Qij is the quantity and cij

is the unit cost for component of component i variant j. Cmin
i is the minimum total

cost for component i: Cmin
i =

∑ni
j=1C

min
ij . Cmax

i is the maximum total component

98

Table 21: Evaluation of the Comprehensive Metric for Commonality

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

CMC X � X X X

cost: Cmax
i =

∑ni
j=1C

max
ij [143].

CMC =

∑P
j=1 ni × (Cmax

i − Ci)× Π4
x=1fxi∑P

j=1 ni × (Cmax
i − Cmin

i)× Π4
x=1f

max
xi

(12)

The CMC metric encompasses all elements relevant in calculating the commonality

of a product architecture. However, the use of costs, manufacturing processes, and

assembly techniques rely on the outputs of design analyzes. Therefore, the metric is

not an input but rather an output of the design process analysis.

Table 21 shows how the Comprehensive Metric for Commonality meets the criteria

required of a commonality index. The CMC incorporates all of the characteristics of

the previously reviewed commonality indices. As a result, the CMC meets all of the

criteria, except for one. It relies on the design and production analysis to calculate the

index. Therefore, it is not an input of the design process but rather an output, making

it difficult to determine the product architecture’s impact on the design process.

2.3.1.2 Reconfigurability Studies and Indices

Researchers developed reconfigurability indices to account for manufacturing proces-

ses, materials, assembly or fastening schemes, production volumes, and initial costs

[143]. With varying respect to these considerations, many different commonality

indices have been proposed.

99

Machine Reconfigurability Index (MR) A literature review found an index

that represents the architecture’s ability to change [62]. The Machine Reconfigura-

bility Index (MR) was developed to analyze manufacturing reconfigurability. It can

also be applied to a product architecture. The index ranges from zero to infinity.

Infinity suggests there is an infinite number of configurations while zero means there

is only one configuration in the product line. Equation 13 displays the formulation

suggested by Goyal in his work. Jp is the total number of family members that belong

to the product line, #CompTot j
is the total number of components in a family mem-

ber, and j represents the design index. Goyal added several more metrics including

weights for online and offline reconfigurable components (emphasizing favor of one

type of reconfigurability over another), and #CompOnj and #CompOff j
representing

the number of online and offline reconfigurable components respectively.

MR =
(Jp − 1)2

Jp∑
j=1

(
α×#CompOff j

+β×#CompOnj

#CompTotj

) (13)

Since the metric does not range from zero to one, and there is no need for reconfi-

gurability weightings, modified indexes were created for both online and offline recon-

figurability. However, these indexes look at the interfaces between components. The

reason for creating the indexes in this fashion is because online reconfigurability re-

quires a joint or interface that creates a degree of freedom and offline reconfigurability

requires a common interface between a platform component and its subcomponents.

Table 22 shows how the Machine Reconfigurability Index meets the criteria requi-

red of a reconfigurability index. The MR combines online and offline reconfigurability,

through a weight-based scheme, into an overall reconfigurability index. Furthermore,

it does not define what makes a component online or offline reconfigurable. The

weight-based scheme and lack of clarity make the determining the composition of

each type unclear.

100

Table 22: Evaluation of the Machine Reconfigurability Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

MR © X X X �

Multi-Attribute Reconfigurability Index (MAR) Another reconfigurability

index was created to account for the modularity, scalability, convertibility, and diag-

nosability [64]. The Multi-Attribute Reconfigurability Index (MAR) can be broken

down into the listed characteristics. Modularity describes the product’s number of

components and connectivity of components. Equation 14 shows the formulation of

the Single Modularity Index (SMI) [68], “where σi are the singular values of the [de-

sign structure matrix (DSM)] arranged in a descending order, and N is the number

of components (rows/columns in a DSM) [64].” The DSM is a matrix that show the

connections between components within a product.

SMI = 1− 1

N × σ1

N−1∑
i=1

σi (σi − σi+1) (14)

Scalability describes the ability to adjust the capacity of the product’s production.

As a result, it is directly related to the ability to maintain cost effectiveness as the

workload increases [64, 85]. Equation 15 shows the formulation of scalability or

effectiveness, “where t1 represents the time required to execute the work on a single

processor, [...] k is the minimum number of operations required to complete the task,

[... and] N refers to the number of processors [64].”

Effectiveness =
t1 ×N
k2

(15)

Convertibility captures the ability of a product to change its functionality or mo-

dify itself [64]. It is composed of three elements: configuration (CC), machine (CM),

101

and material handling (CH) convertibility [86]. Overall convertibility is a weighted

sum of all three. Equation 16 shows the formulation of configuration convertibility,

“where R refers to the number of routing connections in each configuration, X is the

minimum number of replicated machines at a particular stage in the process plan,

and I is the minimum increment of conversion [64].”

CC =
R×X
I

(16)

Equation 17 shows the formulation of machine convertibility, where C ′M refers to

a single machine’s convertibility [64]. The C ′M should represent whether a machine is

equipped with an automatic tool changer or multi head spindle, easily reprogrammed,

with flexible software, equipped with flexible hardware components, equipped with

flexible fixturing capability, or equipped with a large capacity tool magazine [64, 86].

CM =

∑N
i=1C

′
M

N
(17)

Equation 18 shows the formulation of material handling convertibility, where C ′H

refers to each material handling device’s convertibility. The C ′H assesses whether the

device follows a free route, is multi-directional, is reprogrammable, has asynchronous

motion, and is automatic [64, 86].

CH =

∑N
i=1C

′
H

N
(18)

Diagnosability incorporates the time that passes until a failure occurs and is recog-

nized, time until a failure will occur, and the time it takes to replace the component

that was the cause of failure. The later is the distinguishability (D) which can re-

present diagnosability since it drives the time until the system is functional again.

Equation 19 shows the formulation of distinguishability, “where n is the total num-

ber of possible indications, CLRU is the total number of LRUs, Ci is the number of

candidates for each indication i, and PIi is the probability of indication i [64].”

102

Table 23: Evaluation of the Multi-Attribute Reconfigurability Index

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

MAR X © X X �

D =

∑n
i=1

[
PIi

(
1
Ci
− 1

CLRU

)]
(

1− 1
CLRU

)∑n
i=1 PIi

(19)

Gumasta combines modularity, scalability, convertibility, and diagnosability to

create an overall reconfigurability index. The combination is a weight-based sum of

the four variables. The use of weighting systems and some of the production and

supply chain characteristics make the index dependent on analysis from the design

process and at the whim of what the designers believe is important. Therefore, the

index becomes less of an input but rather an output of the design process.

Table 23 shows how the Multi-Attribute Reconfigurability Index meets the criteria

required of a reconfigurability index. The MAR combines production and material

considerations into its formulation. Furthermore, it frequently relies on weightings

to combine multiple concepts into its formulation. These two characteristics of the

index do not make it independent of the design process analysis and mean the index

can change depending on the systems engineer’s whim. Overall the index is primarily

developed to calculate the offline reconfigurability of the system with no consideration

of online reconfigurability.

2.3.1.3 Summary of Previously Developed Commonality and Reconfigurability In-
dices

The indices identified provide multiple ways to represent the commonality and recon-

figurability of a product architecture. Table 24 shows the review of all of the indices

with respect to the criteria identified to represent the product architecture.

103

Table 24: Evaluation of the Previously Developed Commonality and Reconfigurability
Indices

Represent
the Compo-
sition of
Components

Independent
of the Design
Process
Analysis

Shows Cha-
racteristics
among
Components

Represent
Across the
Product Line

Independent
of Qual.
Decision
Making

Commonality
DCI � X X © X
TCCI © X X X X
PCI X © X X X
%C X © X � �
CI X X X X X
CI(C) © � X X X
CMC X � X X X

Reconfigurability
MR © X X X �
MAR X © © X �

Concerning commonality, Table 24 shows that the CI meets all the criteria. It re-

presents the composition of common components, is independent of the design process

analysis, shows common characteristics among components, represents commonality

cross the product line, and is independent of any qualitative decisions. Concerning

reconfigurability, neither index identified meets all the criteria. MR can be transla-

ted from production analysis to product architecture analysis. However, the limited

information on what makes a component online or offline reconfigurable makes the

translation a bit difficult. Therefore, by taking some of the concepts from indices

identified, two online and offline reconfigurability indices can be developed.

2.3.2 Complex System Definition

A complex system is “a system comprised of a (usually large) number of (usually

strongly) interacting entities, processes, or agents, the understanding of which re-

quires the development, or the use of, new scientific tools, nonlinear models, out-of

equilibrium descriptions and computer simulations [123].” In a design problem of a

104

Component 2

Component 1

Component 3

Design Variables

Aircraft Design

• Customer Needs

• Perfomance
Requirements

Requirements

Input Variables

Figure 29: Example Complex System Design Structure

complex system, variables are input into component analyses determining the size and

performance of the product. Figure 29 displays an example of the design problem.

During the design process, there are two types of variables: input and design vari-

ables. Input variables include requirements and technologies, and design variables are

physical and performance characteristics. The problem tends to be highly nonlinear

because of input interactions and design variable couplings. Interactions occur when

one input variable’s impact on a design variable depends on the value of another input

variable [48]. Coupling is the inter-dependency/relation between two design variables

[69].

The degree of inter-dependency relates to a systems complexity. In academia

and industry, there are many ways to calculate a product’s complexity, including

information in design, traditional in design, as size, as coupling, and as solvability

[139, 50].

Information complexity in design takes the relationship between design require-

ments and parameters to determine the independence and coupling among the design

requirements and determines the uncertainty associated with the design problem.

These two concepts create real and imaginary complexity. The first relating to the

probability the product will achieve all the functional requirements, and the second

105

relating to the probability the product will accidentally achieve a requirement.

Traditional complexity in design takes a hierarchical approach to quantify com-

plexity. A product’s purpose or function consists of multiple levels. For example, a

functional flow block diagram breaks down the task into multiple stages and levels.

This approach combines the number of functions at each level to calculate complexity.

Complexity as size uses the degrees of freedom and interfaces amongst variables

to calculate the difficulty of the design problem. The size includes the number of

independent and dependent design variables, design requirement, measures of perfor-

mance, independent and dependent modules, and evaluation or synthesis operators.

Complexity as coupling uses graph theory to organize connections among compo-

nents or disciplines through connectivity. The connections are the dependent variables

that rely on outputs of other modules. The number of connections then provide a

surrogate for the calculation.

Complexity as solvability determines how difficult it is to execute the design pro-

cess. Instead of looking at the size of the problem, it looks at the number of analyses

and processes the design of the product requires. This approach focuses on the pro-

cess rather than the problem. Therefore, it relates to complexity as size but varies

slightly.

The exploration of existing methods to calculate complexity outlines reasons and

goals of the research. This dissertation proposes using complexity to evaluate product

architectures. From this research, a new framework must calculate complexity that

is related to the past methods, combining elements of each.

2.3.3 Difference between Robust Design, Flexibility, and Complexity

Before this dissertation continues, it is important to distinguish between robust de-

sign, flexibility, and complexity.

Robust Design “is a design methodology developed in order to make a product’s

106

Optimized
Design

Poor
Design

Robust
Design

Flexible
Design

Changing

Fixed

Known Unknown Environment

System’s
Objectives

after Fielding

Figure 30: Flexibility and Robustness as a Function of the System’s Objectives and
Environment [126]

performance insensitive to raw material variation, manufacturing variability, and va-

riations in the operating environment [114].” Therefore, as the environment surroun-

ding the product, design, process, or other engineered product changes the product

will still perform at a high standard.

Flexibility “implies an ability of the design to be changed in order to track requi-

rement changes [127, 126],” suggesting if a product is flexible and an operator uses it

for a purpose other than originally designed for, then it will still perform well.

The best way to the differential between the two is in Figure 30, which displays

what type of design engineers should implement relative to the environment and

system objectives.

Figure 30 shows three options and one poor design region. If the environment is

known and the system’s objectives are constant, then the engineers can develop an

optimized product. Second, if the environment is unknown, but the system’s objecti-

ves are constant, then the engineers must employ robust design methods to ensure

the system operates consistently over changing environmental conditions. Third, if

107

the environment is unknown and the system’s objectives are changing, then the en-

gineers must develop a flexible design that performs consistently over multiple tasks

and environmental conditions. The last case occurs if the environment is known, but

the system’s objectives are changing. If the design experiences these conditions, then

the engineers probably blundered setting up the problem or created a faulty product.

Complexity is characterized as the combination of [21]:

• Numbers: number of domains, functions, or disciplines

• Degree of Interdependency: level of interdependency among the domains, functi-

ons, or disciplines

• Intricacy or difficulty: novelty of project

• Limitations: level constraints’ stringency

Complexity varies from flexibility because it looks at the inner workings of the

product. It increases with the number of components or subsystems, the number

or strength of constraints, interdependency between the components or limitations,

and whether the designers/engineers have approached a problem like this one before.

When it comes to the cost of producing a complex product, it is not only important to

understand the product itself, but also the business or entity that will be producing

a product. A complex product requires many people working in different disciplines.

Therefore, one of the best ways to combat complexity is to ensure clear and concise

communication amongst teams. Furthermore, the best way to determine if a busi-

ness or entity will succeed producing a product is to see whether the organizational

structure is built to handle the problem.

Though there are many ways to evaluate architectures, this dissertation focuses

on desirability, flexibility, and complexity. Many “-ities” exist to evaluate architec-

tures, such as maintainability, availability, reliability, manufacturability, and more.

108

Depending on the design problem, it may be advisable to switch out or include other

metrics. However, based on the background research, this dissertation recommends

desirability, flexibility, and complexity since these metrics apply to the development

and production of the product.

2.3.4 Software’s Impact on the Product Architecture

Unmanned aerial vehicles have various levels of autonomy. They can fly supervi-

sed, semi-, or entirely autonomously. For each of these states, the pilot or computer

controlling the aircraft’s flight must rely on data provided by the vehicle’s sensors.

Today, much of this information is preprocessed by a computer on board, using com-

plicated software embedded within. When a system engineer analyzes the Dynamic

Operational Architecture of a UAV, it is impossible to ignore the impact software has

on the product’s capability and cost of the design.

The software’s relation with the design and product architecture is purely a

capability-cost trade-off. Since the software controls many of the electronics and

subsystems in modern products, the capability of the system relates to the complex-

ity of the software, meaning the higher the capability - the higher the cost and of the

software’s development. Therefore, the software development’s cost directly impacts

the choice of product architecture. As the functions or controls of the system incre-

ase, the software incorporated into the product line requires more lines of code and

greater effort. Since cost is a major factor in the selection of a product architecture,

the increase in software development cost could impact the final decision in which

product architecture to implement.

The software’s complexity can be broken down two ways. First, it depends on the

controllability of the system. If the system’s behavior is physically or conceptually

unstable, the software is given greater responsibility to make the system stable or

controllable. Therefore, if the behavior is non-linear or categorical, then more modules

109

or software functions are required. The number of modules and relations amongst

them requires many lines of code often in the order of magnitudes of thousands or

millions. In the future, the magnitude could be even higher.

The second in the number of functions relating to process subsystem information.

Software controls functions of individual components, and in an integrated system,

the components must work together to achieve the tasks required. Therefore, more

lines of code are required to integrate the subsystems and sub-functions. The or-

der of magnitude of lines of code is proportional to the factorial of the number of

sub-functions [139]. For example, approximately 90% of the F-35s functions are ma-

naged by software [21]. Thus, the F-35’s product development costs consisted of 20%

software development costs [21].

Figure 31 displays the exponential growth of software in the aerospace industry

over the last century. The number of lines of code relates to the time and cost of

software development. Therefore, designers must consider software development’s

impact on performance, cost, and therefore the architecture.

Since the software controls many of the functions and autonomous activities that

occur while operating a product, the cost for software development can be approx-

imated from the number of functions the software package must control during its

operations. With this knowledge, the model used to determine the cost of software

development can be chosen. Therefore, to calculate the cost it takes to develop the

software required of a product a model must:

• Calculate the total cost it will take to develop the software

• Relate the functions the software must conduct to the cost of the software

• Be available to the organization developing the product (If the company does

not want to pay for proprietary programs, the model must be publicly available)

110

1950 1960 1970 1980 1990 2000 2010

0

1,000

2,000

3,000

4,000

Year

K
il

o-
S

of
tw

ar
e

L
in

es
of

C
o
d

e
(K

S
L

O
C

)

Commercial Aircraft Industry

Military Aircraft Industry

Figure 31: The growth of Software in the Aerospace Industry [5]

2.3.4.1 Existing Estimation Models of Software Development Cost and Time

There are multiple models that estimate the effort (cost and time) to develop the

software required of a new system. An extensive literature review identified three

models of interest. These models are the Air Force Cost Analysis Agency’s Revised

Enhanced Version of the Constructive Cost Model (AFCAA REVIC / COCOMO),

Galorath’s System Evaluation and Estimation of Resources - Software Estimating

Model (SEER-SEM), and Quality Software Management’s Software Life-cycle Mana-

gement Estimate (SLIM-Estimate). These models are primarily proprietary but their

development were based on a couple publicly available concepts.

Air Force Cost Analysis Agency Revised Enhanced Version of the Con-

structive Cost Model (AFCAA REVIC) The AFCAA REVIC is a model de-

veloped by the United States Air Force to predict the effort (person-months) and time

it takes to develop software. Its based on the Constructive Cost Model (COCOMO)

111

Table 25: Equation 20 A Coefficient Values [81]

Model Organic Semi-detached Embedded

A 3.2 3.0 2.8

which was developed in 1981 by Barry Bohem [81]. The model uses simple power

functions to approximate the effort and time to develop software. Equation 20 shows

how COCOMO calculates the effort required to develop the software, where E is the

effort (person-months), A is a work-environment coefficients (shown in Table 25), SFj

are scaling exponents, EMi are cost drivers, and KSLOC is the size of the project

(kilo-lines-of-code).

E = A×KSLOC1.01+
∑5
j=1 SFj × Π17

i=1EMi (20)

The A coefficients in Equation 20 depend on the type of work environment the

software is developed in. The three options are [81]:

• Organic “relativity small software teams developing software in a highly fami-

liar, in-house environment”

• Embedded “operating within tight constraints where the product is strongly

tied to a complex of hardware, software, regulations and operational procedures”

• Semi-detached “an intermediate stage somewhere in between organic and em-

bedded”

After determining the type of work environment, Table 25 shows how the work

environment relates to the coefficients value.

For the scaling exponents and cost drivers, Table 26 shows the various cost drivers

and their corresponding coefficients. The cost drivers are qualitative and have six

levels: very low (VL), low (L), nominal (N), high (H), very high (VH), and extra high

(XH).

112

Table 26: Equation 20 Scaling Exponents (SFj) and Cost Drivers (EMi) [45]

Driver Sym VL L N H VH XH

Precendentedness SF1 0.05 0.04 0.03 0.02 0.01 0.0
Development Flexibility SF2 0.05 0.04 0.03 0.02 0.01 0.0
Architecture and Risk Resolution SF3 0.05 0.04 0.03 0.02 0.01 0.0
Team Cohesion SF4 0.05 0.04 0.03 0.02 0.01 0.0
Process Maturity SF5 0.05 0.04 0.03 0.02 0.01 0.0
Required Software Reliability EM1 0.75 0.88 1.00 1.15 1.40
Data Base Size EM2 0.94 1.00 1.08 1.16
Product Complexity EM3 0.75 0.88 1.00 1.15 1.30 1.65
Required Reusability EM4 0.89 1.00 1.16 1.34 1.56
Documentation Match to LC Needs EM5 0.85 0.93 1.00 1.08 1.17
Time Constraint EM6 1.00 1.11 1.30 1.66
Storage Constraint EM7 1.00 1.06 1.21 1.56
Platform Volatility EM8 0.87 1.00 1.15 1.30
Analyst Capability EM9 1.5 1.22 1.00 0.83 0.67
Programmer Capability EM10 1.37 1.16 1.00 0.87 0.74
Personnel Continuity EM11 1.26 1.11 1.00 0.91 0.83
Applications Experience EM12 1.23 1.10 1.00 0.88 0.80
Platform Experience EM13 1.26 1.12 1.00 0.88 0.80
Language and Tool Experience EM14 1.24 1.11 1.00 0.9 0.82
Use of Software Tools EM15 1.20 1.10 1.00 0.88 0.75
Multi-Site Development EM16 1.24 1.10 1.00 0.92 0.85 0.79
Required Development Schedule EM17 1.23 1.08 1.00 1.04 1.10

113

Table 27: Evaluation of the AFCAA REVIC or COCOMO Model

Ability to Calculate
Software
Development Cost

Connects Software

Functions to Cost

Publicly Available

(Optional)

COCOMO X � X

The problem with using the REVIC or COCOMO model is the dependence on

already having the size of the software determined before using the model. Also, there

is no link between the functions the software must perform and the effort required

for its development.

Table 27 shows how the AFCAA REVIC or COCOMO Model meets the criteria set

for a software development cost model when analyzing the product architecture. The

COCOMO model calculates the effort of the project which can be translated to cost

by multiplying the effort by a nominal computer scientist salary. Also, the model’s

parameters have been released allowing for the model to be implemented, even if the

organization developing the product does not want to pay for a proprietary program.

However, its inability to relate the software’s functions to its costs fail to relate the

software to the product architecture.

Galorath System Evaluation and Estimation of Resources - Software Esti-

mating Model (SEER-SEM) The second model is Galorath’s System Evaluation

and Estimation of Resources - Software Estimating Model (SEER-SEM). The model

can predict the effort (person-months) and time required to develop software. It

“began with the Jensen model and diverged significantly in the early 1990s. Barry

Boehm’s Constructive Cost Model work provided for the redefinition of some of the

original Jensen model parameters into SEER-SEM [57].”

The model first estimates the size of the project by either using an estimate or

by using function-based sizing. Equation 21 shows how SEER-SEM predicts the

114

effective size of the project (Se), where Lx is a language-dependent expansion factor;

AdjFactor is a combination of factors that consider phase at estimate, operating

environment, application type, and application complexity; UFP is the function-

based sizing, unadjusted function points required in the software to acheive the desired

functions; and Entropy ranges from 1.04 to 1.2 depending on the type of software

being developed [57].

Se = Lx× (AdjFactor × UFP)
Entropy

1.2 (21)

The effective size of the project is not necessarily the lines of code in a project,

rather an internal size parameter within SEER-SEM. After being calculated, the

effective size is used to predict the effort required to develop the software for the pro-

ject. Equation 22 shows how SEER-SEM calculates the effort required to develop the

software, where Cte is effective technology a composite metric that captures factors

relating to the efficiency or productivity with which development can be carried out

and D is staffing complexity a rating of the project’s inherent difficulty in terms of

the rate at which staff are added to a project [57].

E = D0.4 Se
Cte

1.2

(22)

SEER-SEM is a proprietary tool which coefficients are not publicly available even

though Galorath did release the functions and structure of the model it uses. Though

the model itself is not usable without paying for the SEER license, reviewing the model

shows there are methods that predict the size and effort of software development based

on the functions required of the software.

Table 28 shows how the SEER-SEM Model meets the criteria set for a software

development cost model when analyzing the product architecture. SEER-SEM calcu-

lates the effort of the project which can be translated to cost by multiplying the effort

115

Table 28: Evaluation of the SEER-SEM Model

Ability to Calculate
Software
Development Cost

Connects Software

Functions to Cost

Publicly Available

(Optional)

SEER-SEM X © �

by a nominal computer scientist salary. Also, SEER-SEM shows there are was to cal-

culate the size of the project to the number of functions the software must control.

However, the model’s parameters have not been released, meaning the organization

has to pay for a proprietary program.

Quality Software Management’s Software Life-cycle Management Estimate

(SLIM-Estimate) and Putnam’s Model QSM’s SLIM-Estimate model is based

off of Lawrence Putnam’s model he developed in 1978 [120]. The model predicts the

time and effort (person-months) to develop software. Equation 23 shows how SLIM

calculates the effort, where B is a special skills factor and a function of the project

size, SLOC is the project size in lines of code, P is a productivity parameter which

accounts for the ability of the organization to produce software at a particular defect

rate, and Time is the time alloted for the software’s development [92]. Tables 29

and 31 provide reference values of the special skills factor (B) and the productivity

parameter (P).

E = 125B

(
SLOC

P

)3
1

Time4
(23)

Since many firms might not have all the software development’s scheduling infor-

mation, Putnam’s Model and SLIM uses the default formula in Equation 24 [120].

E = 56.4B

(
SLOC

P

)9/7

(24)

116

Table 2 shows general references of what the special skills factor (B) should be

based on the project size (SLOC).

Table 29: Putnam Special Skills Factor [92]

Size (SLOC) B

5-15K 0.16
20K 0.18
30K 0.28
40K 0.34
50K 0.37
>70K 0.39

Table 31 provides references for the productivity parameter. The table also provi-

des specific examples of applications that allow the user of the model to have baselines

of the parameter’s values based on past projects. Putnam’s model is easy to use and

much of the parameters are publicly available. However, the model still relies on an

estimate of the project’s size to calculate the effort or time to develop the software.

Table 30 shows how the QSM SLIM-Estimate or Putnam Model meets the criteria

set for a software development cost model when analyzing the product architecture.

The Putnam Model calculates the effort of the project which can be translated to cost

by multiplying the effort by a nominal computer scientist salary. Also, the model’s

parameters have been released allowing for the model to be implemented, even if the

organization developing the product does not want to pay for a proprietary program.

However, its inability to relate the software’s functions to its costs fail to relate the

software to the product architecture.

Table 30: Evaluation of the QSM SLIM-Estimate or Putnam Model

Ability to Calculate
Software
Development Cost

Connects Software

Functions to Cost

Publicly Available

(Optional)

Putnam X � X

117

Table 31: Putnam Productivity Parameter [92]

Productivity Index Productivity Parameter Application Type

1 754
2 987 Microcode
3 1,220
4 1,597 Firmware (ROM)
5 1,974 Real-time embedded, Avionics
6 2,584
7 3,194 Radar systems
8 4,181 Command and control
9 5,186 Process control
10 6,765
11 8,362 Telecommunications
12 10,946
13 21,892
14 13,530 Systems software, Scientific systems
15 17,711
16 28,657 Business systems
17 35,422
18 46,368
19 57,314
20 75,025
21 92,736
22 121,393
23 150,050
24 196,418
25 242,786 Highest value found so far
26 317,811
27 392,836
28 514,229
29 635,622
30 832,040
31 1,028,458
32 1,346,269
33 1,664,080
34 2,178,309
35 2,692,538
36 3,524,578

118

Table 32: Evaluation of the Identified Software Models

Ability to Calculate
Software
Development Cost

Connects Software

Functions to Cost

Publicly Available

(Optional)

COCOMO X � X
SEER-SEM X © �
Putnam X � X

2.3.4.2 Summary of Software Development Cost Estimation

After reviewing previously developed software development cost estimation, all of the

identified models do not meet the criteria required to relate the software’s development

to the product architecture. Table 32 shows the results of the review. Since none of

the models meet the criteria, either a new model must be created or the models must

be combined.

Development of a new model is outside the scope of the research and could be

costly and time consuming. As a result, either the COCOMO or Putnam model can

be combined with a function-based sizing model creating the connection between the

software’s functions and the cost. Observing SEER-SEM, it used a function-based

sizing model to predict the size of the project. So first, it is important to understand

unadjusted function points.

Function point analysis is a way to translate any type of coding language to a

standard way of calculating the size of a software project [84]. It takes complicated

concepts of coding and translates them into five major components: external inputs,

external outputs, external inquiries, internal logical files, and external interface files.

An external input is a process where data flows across some sort of boundary into

the project or software package in question. An external output is a process where

data flows across some sort of boundary out of the project or software package in

question. An external inquiry is a process where an external entities retrieves data

119

Table 33: Calculating the Total Number of Unadjusted Function Points [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs x 3 = x 4 = x 6 =
External Outputs x 4 = x 5 = x 7 =
External Inquiries x 3 = x 4 = x 6 =
Internal Logical Files x 7 = x 10 = x 15 =
External Interface Files x 5 = x 7 = x 10 =

Total Number of Unadjusted Function Points =

from one or more internal logical files and external interface files. An internal logical

file is “a user identifiable group of logically related data that resides entirely within

the applications boundary and is maintained through external inputs [84].” Finally,

an external interface file “a user identifiable group of logically related data that is

used for reference purposes only [84]” to relate the package with others.

Breaking down the required functions into these components allows for the stan-

dardization of software development analysis. After breaking down the functions into

components the engineer must bucket the components into three levels of complex-

ity. Sorting the components allows the unadjusted function points (UFPs) to be

calculated using the structure, found in Table 33.

After calculating the number of UFPs, they still need to be converted to the lines

of code. Through the review of past methods, Table 34 was discovered. It provides

estimates of the lines of code per UFP for the following coding languages.

After reviewing all of the concepts present in software development cost esti-

mation, a process can be formulated combining certain concepts. As a result, the

proposed process consists of the following steps:

1. Break down the product into its individual components and subsystems

2. Identify which components or subsystems have internal software packages

3. Identify which component’s functions are controlled by a central processor

120

Table 34: Converting UFP to SLOC [92]

Language SLOC/UFP

Ada 71
AI Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI/Quick/Turbo Basic 64
Basic-Compiled 91
Basic-Interpreted 128
C 128
C++ 29
ANSI COBOL 85 91
Fortran 77 105
Forth 64
Jovial 105
Lisp 64
Modula 2 80
Pascal 91

4. Calculate all of the UFPs for the components or subsystems with internal soft-

ware packages

5. Calculate the UFPs required to integrate all components and subsystem functi-

ons to the central processor

6. Convert the total-integrated UFPs into lines of code (Average Value 100 SLOC/UFP

- Table 34)

7. Use any of the identified models to calculate the effort required to develop the

software (Depending on preference on the use of proprietary models)

8. Convert effort into cost using a nominal salary of a coder or computer scientist

(˜$80,000 US2017 [7])

This approach will give an estimate of the cost required to develop the software

that controls many of the functions in a product. Chapter 4 provides more details on

121

the calculation of the UFPs associated with each component.

2.3.5 Additional Required Concepts Conclusion

This section defined additional concepts that are relevant to product architecture

selection. By implementing product architectures, the designer is creating a complex

problem. Therefore, this section introduced the definition and concepts of complex

systems. Furthermore, the analysis of past product architecture selections shows

designers often consider flexibility and complexity as essential concepts when selecting

the appropriate product architecture. Flexibility is easily confused with robust design.

Therefore, the comparison between the two was presented to clarify their difference.

Finally, this section introduced the importance of software development due to UAVs’

and other modern products’ reliance on software to control many of the product’s

activities.

Now that the concepts that dominate product architecture selection have been

introduced, the next section will introduce the research objective followed by the

research question that will help formulate a new framework to facilitate systems

engineers in the selection of a product architecture.

2.4 Research Objective

As stated in Section 1.4, products are traditionally sized to fulfill one primary mission.

When multiple missions are involved, the designer makes compromises, to make the

aircraft perform robustly in all conditions. Compromises tend to result in decreased

performance. Thus, new product architectures have been introduced to reduce the

losses in performance, maintain manufacturability, increase product flexibility, and

reduce design complexity. Conventional product architecture selection tends to be a

heuristically based process where experts down-select options without fully exploring

the product architecture space. This dissertation shifts away from this paradigm.

Furthermore, as stated in Section 1.4, it is important to select the most favorable

122

architecture early in the design process since it will influence subsequent steps. The-

refore, a new framework must be formulated to facilitate the decision-making process.

The framework must be able to compare many competing architectures, consider

changes in design drivers (market, technology, and performance requirements), and

aid system architects in performing trade-offs between competing architecture designs.

Specifically, the framework will:

• Derive need of the product from the customer(s) or business strategy

• Implement a method to clearly define the product’s functional requirements

from the needs

• Provide an understanding of how and which functional requirements drive the

architecture

• Provide the architect with insights on what types of product architectures are

favored

• Implement a way to characterize and explore the space of alternative product

architectures

• Derive what qualifies a “good” product architecture

All these considerations provide the research objective stated below:

Research Objective:

Formulate a framework that aids the system architect in choo-

sing the most appropriate product architecture when developing

vehicles and planning their evolution.

The result of this dissertation is a transition from qualitative to quantitative ana-

lysis of product architectures. Furthermore, it will provide an understanding of key

123

performance and manufacturing requirements that drive design considerations and a

traceable link to the impact of key product requirements that drive design considera-

tions. The benefit of this dissertation is a method/framework that provides a means

to produce and evaluate alternative product architectures concerning changing and

fixed requirements and increase the traceability of the product architecture selection

throughout the design process.

2.5 Formation of Research Questions

The research objective, as stated in Section 2.4, requires a new architecture selection

framework to be formulated. The framework must satisfy the criterion listed in

Section 2.2.11. Thus, it follows the generic engineering decision support process,

which follows six steps outlined in Figure 32. The steps consist of establishing the

need for the product, define the problem or functions the product must perform, esta-

blishing how the product will be evaluated, generate alternative product architectures,

analyze these alternatives, and make a decision about which product architecture to

implement.

The need for a new product arises from a problem or gap identified by potential

customers or a business strategy developed by the manufacturer. General practices

can be used to establish a need for a new product. Analyzing the industry and

the manufacturer’s capabilities can ensure the development of the product is in the

manufacturer’s interest and whether the product can accomplish the need.

The functional requirements help define the problem the product is hoping

to address. Traditional systems engineering practices such as requirement analysis

and functional allocation and analysis can set up the design of the system and drive

the selection of the architecture. Here, the engineers set the functional requirements

and select the configuration (physical architecture) of the system. This dissertation

124

Establish
the Need

- Use a general
approach to de-
veloping needs
for a product

Define the
Problem

- Identify major
drivers of archi-
tecture selection
- Comprehend
requirements
that impact the
architecture
- Examine
stochastic &
time-dependent
requirements

Must determine:
- Which require-
ments drive the
architecture se-
lection process?

Establish
Value

- Define desira-
bility, flexibility,
and complex-
ity which archi-
tecture can be
evaluated by

Generate
Alternatives

- Define commo-
nality, online,
and offline re-
configurability
characteristics
to allow studies
of varying de-
grees of each

Analysis of
Alternatives

- Identify met-
hods to quan-
tify desirability,
flexibility, and
complexity

Must determine
the following:
- Are the choi-
ces of me-
trics/selection
criteria suffi-
cient for analy-
zing alternati-
ves?
- Are the presu-
med reasons for
implementing
various product
architectures
correct?

Make a
Decision

- Identify met-
hods that aid
systems engi-
neers in down-
selecting areas
of interest in the
product arechi-
tecture space

Figure 32: This Dissertation’s Framework Overview

attempts to identify which of these requirements drive the product architecture im-

plemented.

From the background research, specifically the investigation of industries’ history

and past architecture sections (Section 1.5.1), product architectures implementation

trades among desirability, flexibility, and complexity. Before generating and analyzing

various alternative product architectures, the system engineers must establish value

(metrics) that can evaluate the product architectures.

Product architectures implement three characteristics among the interfaces of the

components or subsystems. Therefore, designers can vary commonality, online and

offline reconfigurability to generate alternative product architectures. A numerical

representation of the product architecture space can be used to capture the impact

of varying all three characteristics.

Desirability is the ability of the product to achieve performance and cost require-

ments; flexibility is the ability of a product to conduct tasks other than those initially

125

intended, and complexity is the difficulty in designing the product. Analyzing Al-

ternative product architectures requires comparing the three terms. Therefore, all of

these terms must be defined and given numerical representations to evaluate product

architectures.

Once the method generates alternative product architectures, analysis of the

alternatives provides the designer or system engineer with a wealth of knowledge

about the problem. The designers must implement methods to quantify desirability,

flexibility, and complexity.

Finally, the designer must make a decision on what levels of commonality, on-

line, and offline reconfigurability the architecture should have. The designers must

implement a method or techniques to help identify areas of interest in the product

architecture space. However, before real analysis begins, the metrics determining the

desirability, flexibility, and complexity of the product must be justified as sufficient.

Then, the method of down-selecting regions of interest can be warranted as well.

The following subsections propose questions that drive the formulation of this

framework.

2.5.1 Research Question 1: Establish the Need for a New Product

A manufacturer must have a reason to develop a new product. Development of a new

product requires the manufacturer’s understanding of the industry/market’s state

and trends, including opportunities, threats, risk factors, and constraints. Therefore,

the need can be either derived or received from the external factors impacting the

manufacturer. However, the manufacturer must also be able to recognize their inter-

nal strengths and capabilities, ensuring the manufacturer can produce the proposed

product. This process of analysis will allow the manufacturer to formulate a product-

based/customer-oriented strategy. The analysis and formulation of a need for a new

product require structured methods or techniques, leading to Research Question 1:

126

Research Question 1:

Which methods can a manufacturer and its engineers utilize to

establish a need for a new product and develop inputs to facilitate

the formation of functional requirements of the product?

Section 3.1 describes the process of formulating a product-based/customer-oriented

strategy. Once the manufacturer formulates its business strategy, requirements can

be derived from the need, defining the product.

2.5.2 Research Question 2: Define the Problem or Requirements of the
New Product

Once the manufacturer establishes the need for a new product, the manufacturer must

derive requirements that define and constrain it. The derived requirements influence

manufacturers to favor certain architectures over others. These requirements include

functions, technology levels, life cycle costs, environmental considerations, and legal

considerations. They often evolve with time, causing requirement drift. The fu-

ture market directly affects the architecture selection decision since the manufacturer

wants to dominate the market with the selected product architecture for the longest

period, often requiring the architecture to change. In this dissertation, drivers are the

requirements that drive the choice in a product architecture. These considerations

lead to Research Question 2:

Research Question 2:

What are the typical design drivers that lead system architects

towards different architecture implementation strategies (fixed,

reconfigurable, or product family)?

Once the research identifies the drivers, designers must have the ability to deter-

mine trends among how the requirements or drivers are structured and the selected

product architecture, leading to Research Question 2.a:

127

Research Question 2.a:

Is there some effect from how drivers are structured early in the

design process that tends to favor one implementation strategy

over another?

Finally, designers must have the ability to identify trends among the changing

requirements/drivers and the selected product architecture, leading to Research Que-

stion 2.b:

Research Question 2.b:

How do we capture the impacts of changing drivers on the product

architecture?

Section 3.2 describes the process of determining product architecture drivers. This

dissertation conducts studies on the drivers impact on the product architecture, allo-

wing for the formulation of a new framework.

2.5.3 Research Question 3: Establish Value of the Product Architecture

Due to highly complex nature of modern products and their architectures, this dis-

sertation creates new evaluation criteria. Traditionally, metrics are used to evaluate

configurations which included but were not limited to performance and cost. Because

of the complication from adding new architectures and configurations, it is of even

greater importance to compare alternatives ability to satisfy customer demands and

manufacturer goals. These needs for new way to establish value of product architec-

ture, leading to Research Question 3:

Research Question 3:

What quantifiable ways can engineers utilize to determine whether

an architecture is “good” or favorable?

128

2.5.4 Research Question 4: Generating Alternative Product
Architectures

Defining a system’s architecture is not transparent due to qualitative definitions of

architectures. Many systems contain elements of multiple architectures making a nu-

meric definition of the architecture space difficult. Competing product architecture

alternatives will vary regarding the following key component characteristics: online,

offline reconfigurability and commonality, as identified in Section 1.3, resulting in va-

rious levels of modularity, customization, and reconfigurability. The vague properties

of the architecture space lead to Research Question 4:

Research Question 4:

What methods can be used to aid in the generation of alternative

product architectures?

A quantitative architecture space is defined in Section 3.4 to provide the architect

with a means to map and compare different designs concerning each other. Defining

the architecture space also simplifies any trade-off or optimization analysis. Without

a quantifiable architecture space, creation of a framework is impractical.

2.5.5 Research Question 5: Analysis of Alternative Product
Architectures

As stated in Section 2.3.3, there are many ways to evaluate architectures, such as

maintainability, availability, reliability, manufacturability, and more. Depending on

the design problem, it may be advisable to switch out or include other metrics. Ho-

wever, based on the background research, the focus of this dissertation will be on

desirability, flexibility, and complexity, leading to Research Question 5:

129

Research Question 5:

How are product architectures evaluated in a way that determines

a product architecture’s ability to satisfy requirements, resilience

to changes in the industry associated with time, and the internal

difficulty of developing and producing the new product quantified

(desirability, flexibility, and complexity)?

First, desirability relates to the architectures ability to achieve customer demands

and manufacturer’s goals. Second, flexibility is the system’s ability to be used for

purposes or tasks other than originally designed. Third, complexity relates to the

system’s difficulty to develop, produce, and support. The research in this dissertation

provides quantifiable representations of all three that captures each defined quality.

The requirement to quantify desirability leads to Research Question 5.a:

Research Question 5.a:

How is the desirability of the product architecture determined?

More research is required to define flexibility applied to product architectures and

provide a mathematical representation, leading to Research Question 5.b:

Research Question 5.b:

What is an appropriate definition and quantification of flexibility

in the context of product architectures?

Once flexibility concerning product architecture selection has been identified, more

research is required to define complexity concerning product architectures and provide

a mathematical representation, leading to Research Questions 5.c:

130

Research Question 5.c:

What is an appropriate definition and quantification of complexity

in the context of product architectures?

Section 3.5 describes the formulation of new criteria.

2.5.6 Research Question 6: Determining Areas of Interest in the Product
Architecture Space

System engineers need to identify types of architectures and regions in the architecture

space that are favorable. The research in this dissertation must describe a technique

that allows for the analysis and down-selection of alternative architectures, leading

to Research Question 5:

Research Question 6:

What techniques can facilitate the process of analyzing and down-

selecting regions of interest in the product architecture space?

Section 3.6 describes the techniques that can facilitate the analysis of alternatives

and decision-making process.

2.6 Summary of Background Research

Throughout the Background Research, this chapter reviews the systems engineering

process (Section 2.1). It provided a benchmark of how the product architecture is

selected. The system engineering process consists of analyses that break down the

problem and logically develop a conceptual product that meets customer needs and

manufacturing entity requirements. Following the review of the systems engineering

process, Section 2.2 conducted an extensive review of existing methods for physical,

system, and product architecture selection. Section 2.2 identified gaps in current

architecture selection techniques and develops criteria a new framework must have.

131

The review of past methods and the product architecture selection problem iden-

tified a couple key concepts that influence the process. Section 2.3 reviews these

concepts which were commonality and reconfigurability indices, complex system ana-

lysis, requirement flexibility and design complexity, and software development. The

commonality and reconfigurability indices provide a way to represent a product archi-

tecture numerically. Also, implementing the product architecture has a direct impact

on complex system analysis. Complex system analysis involve managing interactions

between requirements and couplings between design variables. These concepts relate

to the requirement flexibility and design complexity and Section 2.3.3 defines both.

Finally, in the modern era all products contain some software that controls their

functions. Thus, software development is an emerging discipline that influences the

product architecture selection process. Section 2.3.4 introduces a way to calculate

the cost of software development as it relates to the product architecture. Finally,

with all of the concepts explored and reviewed, Section 2.4 defines the objective of

the research which calls for a new framework that facilitates in the product architec-

ture selection process. Next, Section 2.5 provides questions that serve to guide the

research during the development of the new framework.

In the past, designers have down selected architectures before analyzing the ar-

chitecture space. Furthermore, the prior methods lack analyses that determine the

architectures’ performance, cost, and resilience to design and requirement changes.

The next chapter presents the formulation of the new framework.

132

CHAPTER III

FORMULATION OF FRAMEWORK FOR PRODUCT

ARCHITECTURE ANALYSIS OF UNMANNED

SYSTEMS AND TECHNOLOGIES: FA2UST

The proposed framework aims to satisfy the concerns and gaps of existing product

architecture selection methods identified in Chapter 2. Most of the gaps presented in

the previous chapter concern the inclusion of the business strategy in the analysis, full

exploration of the product architecture space, and the ability to analyze the product

architecture’s impact on the interactions and couplings present in complex system

design. Therefore, all of the concerns are incorporated into one framework: FA2UST.

The framework consists of six stages:

1. Establishing a need for a new product line

2. Identifying requirements or drivers that influence product architecture selection

relevant to the design problem

3. Establishing metrics and weightings that provide value to an alternative product

architecture

4. Developing a numerical representation of the product architecture space allo-

wing for the comparison of the alternative product architectures

5. Developing evaluation metrics that consider the interactions and couplings pre-

sent in complex design problems

6. Utilizing or creating new methods that allow systems engineers to make infor-

med decisions on which product architecture to implement

133

FA2UST ties all of these stages together by sending information gathered in one

to inform the ones that follow. When a final decision is made, the systems engineers

can trace the information back through each stage to ensure the selection meets the

manufacturer’s business strategy, customer’s needs, and all the derived functional

requirements. Also, the systems engineers will gain information about the risks asso-

ciated with meeting multiple requirement and the complexity of the problem. From

this information, the systems engineers can implement appropriate actions to offset

these risks.

Figure 33 outlines how information within the framework flows. First, the mana-

gement and engineers within a firm must identify an industry they wish to penetrate

with a new product line. Here, they must develop a business strategy that reflects

their strengths, while taking advantage of any opportunities the industry presents.

The research conducted during this stage helps inform the engineers when they de-

velop the functional requirements in the following stage Also, this information helps

the engineer determine a way to evaluate alternative architectures in the third stage.

In the second stage, the systems engineers take the information acquired from the

research conducted in the first stage to develop functional requirements of the new

product line. The functional requirements help inform the overall evaluation crite-

ria (OEC) used to evaluate the alternative product architectures in the third stage.

Through functional decomposition, the engineer can identify feasible and infeasible

combinations of components which therefore influence the feasible and infeasible pro-

duct architectures that should be examined, providing information for the fourth

stage. In the third stage, the systems engineers must derive the OEC from the custo-

mer’s needs identified in the first stage and the functional requirements derived in the

second stage. Also, the industry and internal research conducted in the first stage can

help provide qualitative information to help set weightings on three critical metrics:

desirability, requirement flexibility, and design complexity. The OEC and weightings

134

provide the information necessary to evaluate the alternative product architectures

in the fifth stage. In the fourth stage, the feasible product architectures identified

through the functional decomposition are generated in a numerical space. In the fifth

stage, these alternatives are run through appropriate analysis to calculate each pro-

duct architecture’s desirability, requirement flexibility, and design complexity. The

weightings are then applied to provide an overall evaluation metric for each alterna-

tive. In the sixth stage, the systems engineers analyze the results from the fifth stage

and select a product architecture to implement. Finally, the systems engineers must

compare the selected product architecture to the manufacturer’s business strategy,

internal capabilities, and customer’s needs to validate it meets all of these criteria.

The rest of this chapter goes into detail of each stage, elaborating on the various

methods and practices that will result in an appropriately selected product architec-

ture.

3.1 Analyzing Customer Needs and Formulating a
Product-Based/Customer-Oriented Business Strategy

The need to develop the new product comes from the request of customers, collabora-

tion among end-users and the manufacturer, or the manufacturer’s implementation of

a business strategy. The resultant product should either be a solution to a problem,

a filler to a gap in the market, or a new integrated solution that disrupts the current

market paradigm.

This dissertation introduces a framework that utilizes multiple methods that help

the manufacturer determine the desires of the customers and whether the manu-

facturer can satisfy them, answering the Research Question 1: Which methods can

a manufacturer and its engineers utilize to establish a need for a new product, and

develop inputs to facilitate the formation of functional requirements of the product?

Figure 34 displays the process of formulating a product-based/customer-oriented

strategy. Many business academics believe product-oriented strategies are inflexible

135

Establish
Need

Define
Problem

Establish
Value

Generate
Alternatives

Evaluate
Alternatives

Make
Decision

1 2

3 4

5

6

7

8

Flow of Information:

1. Market, industry, and internal research to inform derivision of functional
requirements

2. Market, industry, and internal research on internal processes and
customer’s desires, enabling the development of an overal evaluation
criteria (OEC) and weights for desirability, requirement flexibility, and
design complexity

3. Functional requirements enabling the development of an OEC

4. Functional analysis creating options of feasible and infeasible
configurations and product architectures

5. OEC and weights for desirability, requirement flexibility, and design
complexity allowing each alternative product architecture to be
evaluated

6. The alternative product architectures to be evaluated

7. Results from the evaluations allowing for a decision to be made

8. Selected product architecture is validated ensuring it meets the
manufacturer’s business strategy, internal capabilities, and customer
needs

Figure 33: Framework for Product Architecture Analysis of Unmanned Systems and
Technologies: FA2UST

136

to a changing business environment [125] due to the manufacturer’s focus on a spe-

cific product, but with the proper analysis and innovative drive these product-based

strategies can adapt and prove successful. The proposed framework addresses this

issues by incorporating business strategy and systems engineering.

Selected Industry

PESTEL
Framework

Five-Forces
Model

External
Analysis

VRIO
Framework

Value Chain
Analysis

Internal
Analysis

Select
Business
Strategy

Determination
of Product

Needs

Product-Based/Customer-Oriented
Business Strategy

Figure 34: Process to Formulate a Product-Based/Customer-Oriented Business Stra-
tegy

First, the manufacturer selects the industry they wish to enter or pursue the

development of a product. Then, the manufacturer must analyze that industry and

their own internal business.

In the external analysis, a PESTEL Framework (Section 3.1.1) determines the fac-

tors that influence the industry, and a Five-Forces Analysis (Section 3.1.2) determines

137

the average bargaining and competitive strength the manufacturer has in the indu-

stry. In the internal analysis, the manufacturer must first revisit its mission, values,

and vision, aligning the culture of the company with the entrance into the selected

industry or development of a new product. Second, a VRIO Analysis (Section 3.1.3)

allows the manufacturer to identify resources and capabilities unique to itself that are

useful in the selected industry, and a Value Chain Analysis (Section 3.1.4) determines

what resources and capacity are required to produce a product in this industry. At

first, this analysis is an initial guess but receives feedback from the configuration and

product selection. More frameworks can be utilized depending on the industry and

global breadth of operations, but these two frameworks provide sufficient analysis for

product development.

From the external and internal analysis, the manufacturer selects a business stra-

tegy (Section 3.1.5) that leverages its capabilities, resources, and insights about the

industry. The management team must ensure the business strategy, determining how

the firm will compete in the industry. Finally, guidelines setting the number to pro-

duce, price-points, and capabilities of the product can be configured, establishing the

needs of the product (Section 3.1.6) and setting a product-based/customer-oriented

business strategy (Section 3.1.7).

3.1.1 PESTEL Analysis

The external environment of an industry consists of the factors that influence it

[125]. Analyzing these factors can provide key insights to the manufacturer, including

trends, threats, and opportunities. The manufacturer can do little to influence these

factors, subjecting the business to the whims of the of each. The factors that compose

the PESTEL Framework are:

• Political: the impact of actions of governing bodies that impact the market

• Economic: the macroeconomic factors influencing global consumer and market

138

behavior

• Sociocultural: society’s culture and values that embody the overall view of the

industry

• Technological: the products or processes that affect the performance or cost of

the goods offered in the industry

• Ecological: environmental issues that interact with the industry

• Legal: laws, mandates, regulations, and court decisions that constrain and direct

an industry

These factors impact every industry. Many of the concepts explored using this

framework are abstract. The concepts help determine the current and possible future

states of the industry. The factors require research to obtain numerical trends or

qualitative future options. Managers must consider the insights gained from the fra-

mework to determine the best course of action ensuring long-term success. Without

knowledge of these factors in a product-oriented can lead to a failed release of a new

product causing a drastic loss in invested capital. Also, the research conducted on

these factors provides a great amount on information on the external factors that in-

fluence the functional requirements. The next stage can use this information provided

by the PESTEL analysis to create benchmarks or regulatory constraints.

3.1.2 The Five-Forces Model

The Five-Forces Model derives the profit potential of the industry, the bargaining,

and competitive strength of an entity within the industry [125, 118]. Most of the

information pertaining to the analysis of the five forces comes from the external

factors analyzed in the PESTEL Framework. The analysis provides a starting point

for the Five-Forces model. The model consists of the forces:

139

• Bargaining Power of Buyers

• Bargaining Power of Suppliers

• Threat of New Entrants

• Threat of Substitute Products or Services

• Rivalry among Existing Competitors

The power of the buyers relates to the ability of the business entity’s customers to

demand lower costs and higher quality of a product, diminishing returns for the firm.

Low prices reduce the revenue, and higher quality increases the cost per product for

the business. Power of buyers relates to the number of customers, level of standar-

dization, switching costs, and the threat of backward integration. Additionally, the

type of clients, their budget structure, and quality control relate to the price sensiti-

vity to the product. If economic factors change the price of the firms product, then

the price is directly affected.

The power of suppliers relates to the company’s negotiating strength to purchase

the goods to produce the business’s product. Suppliers control the price and quality

of the input materials or goods directly, impacting the firm’s price or performance

offered. The power of vendors relates to the number of suppliers, the supplier’s

dependence on the company’s industry, the company’s cost of switching suppliers,

the supplier’s level of differentiation of goods, the lack of substitutes available to the

enterprise, and the supplier’s ability to forward integrate.

The threat of new entrants is the possible risk competitors will enter the industry.

Often, incumbent firms will lower the prices of their goods and spend on marketing

or quality to maintain their current customer base, making it hard for the new com-

petitors to gain a foothold in the industry. Companies take advantage of barriers to

entry including economies of scale, network effects, customer switching costs, capital

140

requirements, government policy, and retaliation to reduce the risk of new entrants.

At times, it is impossible for the new entrant to be profitable in the industry until the

new competitor achieves a certain scale. The scale spreads the fixed cost over a larger

number of sales. Network effects occur when the product or service’s desirability is

related to the number of customers using it, further requiring scale. Switching costs

are the costs a customer incurs when they switch suppliers. These expenses can make

it hard for new competitors to steal customers. Capital requirements are the price

to enter the market, such as investing in infrastructure or machinery. Government

regulations or standards create costs for firms. At times, these expenses can be too

high for start-ups or new entrants. Finally, when a new competitor enters an industry,

the incumbents will retaliate since they have the resources to incur losses until the

new firm exits the market.

The threat of substitutes is the risk customers will move to alternative industries

that meet the capabilities of current products. These industries often have an at-

tractive performance vs. cost trade-off. Furthermore, the industry is at risk of losing

customers if the switching cost is low.

Lastly, rivalry among existing competitors is the battle for market share amongst

incumbent firms. When competition is high, firms often find themselves in price-wars,

reducing the profitability of the industry. Firms tend to differentiate themselves by

offering a “superior” product. The competitive forces relate to the size and number

of competitors, industry growth, strategic investments, and exit barriers.

This analysis presents the average forces for the entire industry, and the forces are

usually described as strong, moderate, or weak. All five forces relate to the profita-

bility. An industry with strong forces has a low-profit potential. The manufacturer

must either strengthen its position or leverage its current favorable position. The

analysis allows the management team to devise a business strategy that reflects the

141

firm’s current position and industry dynamics. Furthermore, the engineers and ma-

nagement can use this information to gather a database competitive designs which

provide price-points and performance benchmarks. The next stage in the framework

can use this information to form benchmarks of functional and economic (or price)

requirements.

3.1.3 VRIO Framework

Any business strategy should leverage resources and capabilities unique to the com-

pany that provide the enterprise with a sustainable competitive advantage over its

competitors [125]. These resources and capabilities make up the company’s core com-

petencies and can be tangible or intangible. The VRIO Framework identifies which

are the most advantageous by evaluating their value, rareness, cost to imitate, and

whether the company is organized to capture the resource or capability’s value. Figure

3 displays the VRIO Framework.

Valuable Rare Imitable Organized

Competitive
Disadvantage

Competitive
Parity

Temperary
Competitive
Advantage

Temperary
Competitive
Advantage

Sustainable
Competitive
Advantage

Yes Yes Yes Yes

No No No No

Figure 35: VRIO Framework [125]

The strategy should leverage the resources and capabilities that are valuable, rare,

hard to imitate, and have the organization to capture their value. The ones that are

valuable, rare, and not necessarily hard to imitate can be used to expand upon but not

be the backbone of the strategy. In a product-oriented strategy, the VRIO Framework

can determine if the manufacturer has the resources and capabilities to pursue the

development of the product. If it does not, the manufacturer should reevaluate the

selected industry or look to outsource/enter strategic alliances. The VRIO framework

142

provides a first check to determine whether the manufacturer can produce product’s

or compete in this industry. In the final part of the process, the final selected product

architecture must fit with the current manufacturer’s capabilities. If not, another

product architecture must be selected.

3.1.4 Value Chain Analysis

The manufacturer must have the organization and capabilities to produce the propo-

sed product, and the organization and capabilities of the manufacturing entity should

relate to the developed product’s architecture. Value chain analysis analyzes the dis-

ciplines, raw materials, and departments the business requires to develop the new

product. Figure 36 displays the chain of activities involved in a businesss value chain.

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

In
b

ou
n
d

L
og

is
ti

cs

O
p

er
at

io
n
s

O
u
tb

ou
n
d

L
og

is
ti

cs

M
ar

ke
ti

n
g

an
d

S
al

es

S
er

v
ic

e

M
argin

S
u
p
p

or
ti

n
g

A
ct

iv
it

ie
s

P
ri

m
ar

y
A

ct
iv

it
ie

s

Figure 36: Value Chain Analysis [117]

During the value chain analysis, the company must analyze what value chain acti-

vities are required to develop the new product. Traditionally, a business must contain

all the elements of the value chain identified in Figure 36 [117]. Containing all pro-

cesses is considered vertical integration. However, modern IT technologies challenge

this assumption. Data and communication between business units are transforming

143

entities from a vertical to a horizontal organization [55]. Businesses can outsource

various value chain processes to external entities, including development, production,

and distribution.

There are two primary alternatives to vertical integration. Taper integration uti-

lizes external entities to supply goods, components, or subsystems or distribute the

final product. Outsourcing is when another firm conducts an entire value chain acti-

vity.

When considering to outsources value chain activities, the hiring company needs

to set standards and expectations of the service. Furthermore, the company is losing

control of this activity but can focus more resources on the integrated product, re-

ducing the fixed cost associated with the development of the product but increasing

the complexity of the design and production of the product. Essentially, the product

gets broken down into multiple value chains where transactions and relations occur

between internal divisions or external entities. For each transaction relation, the bar-

gaining power between entities must be analyzed to inform the cost and benefits of

the tapering or outsourcing. If there is a high probability of design changes (relating

to product complexity) and the suppliers power is high, then costs could possibly

explode.

The value chains organization relates to the selection of product architecture.

The configuration defines what components and subsystems are required, and the

interfaces define its nature. For example, manufacturers tend to outsource the design

and production of modular components. The initial value chain analysis is an initial

guess at the required value chain activities. Throughout the development of the

product, it must receive feedback as the configuration is selected. The business must

ensure it can conduct or outsource all activities at a reasonable cost. At the end of the

FA2UST process, the final selected product architecture must fit within the processes

available to the manufacturer. If not, the management must explore outsourcing or

144

tapering options to complete the value chain activities. If no option is viable, the

engineers must select another product architecture.

3.1.5 Selecting Business Strategy

After conducting the external and internal analysis, the manufacturer must choose

a business strategy that reflects its internal strengths and the industry and market

dynamics. There are two generic types of strategies most used in business [125]. All

strategies impact the needs and define the capabilities required of the product. The

first is differentiation, which tries to separate the offered product or business model

from the rest of the competition. This strategy usually demands higher performance,

quality, and technology-level of the product. The second is price-leadership, which

attempts to offer the customers a equally valuable product but at a lower cost when

compared to the competition. These two strategies depend on the focus of the stra-

tegy, which can be either narrow or broad. A narrow focus designs the product around

the needs of a distinct group of customers, while a broad focus designs the product

around the needs of the market as a whole. Any variation of these three strategies

can be implemented. Figure 37 displays the four possible strategic positions. The

position and scope relate to the insights gained from the external analysis but reflect

the strengths identified in the internal analysis.

The manufacturer must decide how to pursue the market. Where the entity choo-

ses to compete relates to the need for the new product and the functional requirements

that define the product. Figure 38 displays the capability market space, which defines

dynamics of the market/industry.

In Figure 38, there are two axes: capability and market size. The capability axis

relates to the type of product the manufacturer is producing relative to the average

of the market. A manufacturer has to deal with the trade-off between price and

performance. Unless there is a paradigm shift in the industry, it is either unrealistic

145

Focused Price
Leadership

Focused
Differentiation

Differentiation
Price

Leadership

Cost Differentiation

Strategic Position

N
ar

ro
w

B
ro

ad

C
om

p
et

at
iv

e
S
co

p
e

Figure 37: Strategic Position and Competitive Scope [125]

or impossible to produce a low-priced, high-performance product. The market size

relates to the number of customers or demand for the new product. Notice, no

numbers are presented in this space since the market space is dependent on the

industry and time. The market space can be applied to any industry and at any

point in time in the industries evolution. Social, economic, legal, ecological, political,

and technological factors all impact the market space.

Cutting from the upper left corner to the lower right corner is the Active Product

Alley. The Active Product Alley is where most companies compete. As the price and

performance increase, fewer customers have access to the capital and resources to buy

the product. Successful product-oriented strategies fall somewhere within this alley.

Figure 38 places three examples from the unmanned aerial vehicle industry in the

space. The first is the Do-It-Yourself (DIY) drone industry. These drones are low-

cost, mostly quad rotor products that can be designed specifically for the purposes

the customer intends. This industry sells its product to anyone including amateurs

in aviation. The second is the military unmanned aerial vehicle industry. Military

UAVs require unmatched operational performance, and only a small number of cus-

tomers desire them. These customers are primarily government militaries, where the

product must fit in the entities overall operations. The third is the civilian operation

146

DIY Drones

Civilian
Operation UAVs

Military UAVs

“A
ctive

Product

A
lley”

Performance
/ Price

Market
Size

Figure 38: The Capability and Market Size Relational Space

147

unmanned aerial vehicle industry. These UAVs do not require the level of perfor-

mance required of military UAVs. However, the industry sells to professional entities

that require a level of performance to use in research or corporate-business related

activities.

The five forces vary as a company’s choice in market changes. As the location

moves down the alley, the bargaining power of suppliers and buyers increases as the

number of suppliers and buyers who supply and prefer high-performance products

decrease. However, the threat of new entrants, threat of substitutes, and competition

decreases since the capital requirements and required specialty increase. The opposite

can be said as the location moves up the alley. The bargaining power of suppliers

and buyers decreases as the number of suppliers and buyers who supply and prefer

low-cost products increases. Furthermore, the threat of new entrants, the threat of

substitutes, and competition increases due to the decrease in required capital and

specialty. The low-cost, large market size is susceptible to disruption since low-cost

competitors can emerge a change the dynamics of the industry.

The Market Space Analysis, allows the manufacturers to modify their Five-Forces

analysis to reflect the market location the firm decides to compete, expanding the

forces’ strengths to very weak, weak, moderately weak, moderate, moderately strong,

strong, and very strong. Furthermore, it provides information on the demand for the

new product, price points, and sets the scope of the strategy. These insights can be

used to develop the business strategy and customer needs.

Once the manufacturer selects its strategy, it should revisit its vision, mission, and

values [125, 35]. The business’s vision outlines the company’s aspirations and goals.

The vision provides its employees with a sense of purpose. The mission is a statement

that describes what the business does. It can define the means it will accomplish its

goals outlined in the vision. Managers can reinforce the mission by investing in long-

term commitments that strengthen the means the company plans to utilize. Finally,

148

the values are a statement that describes the company’s organizational structure,

culture, bedrock principles, and moral compass. It defines the ethical standard the

company wants to achieve, providing guidelines on employee behavior.

Vision statements can be customer-oriented or product-oriented. Customer-oriented

statements tend to make the enterprise more flexible to a changing environment, and

product-oriented statements tend to constrain the approach to the problem [125].

However, if upper management presents the product-oriented vision in a way that

aims to solve the customer’s problems it can be just as flexible. Instead of purely

focusing on how to improve the existing products a hybrid statement will foster inno-

vative thought and new product solutions, resulting in the expansion of the company’s

capabilities and offerings.

Though these concepts are fuzzy and play on the qualitative side of the engineers’

and managers’ analysis, defining business’s culture can focus intentions, increase the

flow of information among business units, and set the tone for the rest of the or-

ganization. The vision, mission, and values take queues from the internal analysis

conducted earlier, ensuring the strategy is consistent with the analysis.

3.1.6 Determining Product Needs

Once the manufacturer sets its business strategy’s position and scope, the manufac-

turer must determine the needs of the customer that drive the design of the product.

Figure 39 displays the places and processes that determine the requirements of a new

product. The needs tend to be the capability, performance, or price point require-

ments.

In Figure 39, the three origins of needs are broken down into three processes. The

needs derived by the customer come from two sources. The first option is when the

client decides a new product can satisfy the desired capability and will fit into their

current operations. The customer determines during this process that their activities

149

Origin of Needs

Customer and
Manufacturer
Collaboration

Customer
Driven

Manufacturer
Derived

Business Strategy

Desired
Capability

Derived
Capability

Active
Feedback

Loop

Customer
Survey

Market
Analysis

Active
R&D

Innovation

Increasing Customer Power

Figure 39: Origins of Needs for a New Product

or operations require no modifications. Instead, a new capability can expand upon

them. The second option is when the customer conducts studies on their operations

and realize it must implement a new operational strategy which requires an entirely

new type of product or capability. These options usually occur when the customer’s

power is high, allowing the customer to set the needs without much feedback from the

manufacturer. The manufacturer must be able to realize when it cannot profitably

satisfy these requirements. The manufacturer has the option to back out of the deal.

At times, the customer and manufacturer will collaborate to derive a mutually

beneficial product. This process is achieved either through an active feedback loop

or a one-way customer survey. The active feedback loop requires the formation of a

committee of representatives from the manufacturer and key clients who discuss the

trade-offs for both parties achieving the set needs. When the product is not very

complex, this approach can be proven very successful. However, with increasing pro-

duct complexity comes the difficulty in predicting the relation among the product’s

150

508 581 653 726 798 871+

0

0.5

1

1.5

2

Maximum Speed (mph)

N
u
m

b
er

of
C

u
st

om
er

s

Figure 40: High Customer Power
Market

508 581 653 726 798 871+

0

10

20

30

40

50

Maximum Speed (mph)

N
u
m

b
er

of
C

u
st

om
er

s

Figure 41: Low Customer Power
Market

needs and the design [138]. The second option is a one-way survey, where the manu-

facturer asks key customers their desires for the product’s capabilities to determine

the distribution of needs [155]. These options usually occur when the client’s power

is about equal to the manufacturers. Therefore, the customer’s and manufacturer’s

input is required to determine the needs of the product. The manufacturer in this

position has more flexibility to determine its profitability.

When the manufacturer’s power is high, or dependence on the customer is low, the

manufacturer can determine or shape the market. The manufacturer can analyze the

market and choose the most profitable route and set the needs of the product without

much customer feedback. The analysis can look at similar products and determine

where a lucrative gap is or where the new product could dominate. Another option

is to shape the market by discovering a new way to implement and integrate new

technologies, requiring innovative thinking and vision for the company. Shaping the

market requires the ability to identify needs of the market that the industry has

not previously identified. The redefinition of the market or industry can place the

manufacturer in an unmatched position [39].

Customer power in this context is extremely dependent on the number of clients.

For example, Figures 40 and 41 show two markets with high and low customer power.

151

In the high-power customer example illustrated in Figure 40, , there are three

customers. Two of the customers want a UAV that can achieve a maximum speed of

653-mph and one wants a UAV that can reach a top speed of 871-mph. In this case,

the manufacturer is at the whims of the customer. It has three options:

1. Produce a vehicle that can achieve a maximum speed of 653-mph

2. Produce a vehicle that can achieve a maximum speed of 871-mph

3. Produce two vehicles where one can achieve a maximum speed of 653-mph and

the other 871-mph

If the manufacturer chooses the first choice, then it will lose the third client, but it

should maintain the scale necessary to be profitable. If the manufacturer chooses the

second option, then it will lose the other two customers since they probably won’t be

willing to pay the premium for the increased capability, losing scale and making the

probability of profitability lower. If the manufacturer chooses the third option, the

manufacturer might implement commonality or reconfigurable characteristics to the

architecture to reduce the fixed cost and maintain scale. However, implementation of

these features could change the flexibility and complexity of the product.

In the low-power customer example shown in Figure 41, there are 136 customers

with a smoother distribution of needs. In this case, the manufacturer has more po-

wer and is not dictated by the client. It still has the same options as the former

example, but the repercussions are different. If the manufacturer chooses the first

choice, then it will lose 44 customers. If the manufacturer chooses the second option,

then it will lose 92 customers, but it will be able to charge a premium for the incre-

ased performance. If the manufacturer picks the third option is can probably afford

two production lines. The manufacturer must expand its margin by implementing

commonality and reconfigurable characteristics. However, there is a risk of increased

complexity or decreased flexibility by combining the production lines. Therefore, no

152

matter what strategy the manufacturer chooses it should analyze the product ar-

chitecture to provide feedback and evidence supporting or challenging the business

strategy as shown later in this chapter.

3.1.7 Checking the Formulated Product-Based, Customer-Oriented
Business Strategy

As the manufacturer develops its product-based, customer-oriented business strategy

it must ask the following questions to ensure the strategy is consistent with its analysis

and assumptions:

• Do the business strategy’s scope and position reflect the external analysis of the

industry?

• Does the manufacturer have or have access to the capabilities to satisfy customer

needs sufficiently?

• Which value chain activities should the business internalize, taper, and out-

source?

• How does the organization of value chain activities impact the profitability of

the product?

• Is pursuit of a business model in this industry a good idea?

Asking these questions checks the process and increases the probability of the

strategy’s success. Furthermore, as the framework moves into the requirements for-

mulation and the architectural flexibility and complexity analysis, the producer should

revisit the strategy and update the assumptions based on the analysis. Updating the

assumptions may lead to a modification or at times abandonment of the strategy.

153

3.1.8 Summary of Analyzing Customer Needs and Formulating a
Business Strategy

The results from this stage of the framework are a formulated business strategy that

utilizes the development of a new product line to meet the customer’s needs. It ana-

lyzes external factors relevant to the industry, the dynamics of the industry, internal

capabilities and process, and creates abstract concepts of what the customer wants.

The information provided by this stage informs the following stages by providing

market data and concepts that influence the derivation of functional and economic

requirements. Furthermore, it provides strengths and weaknesses of the manufactu-

rer in question which allow the manufacturer to consider the risks present in complex

system design. These risks will manifest themselves as requirement flexibility and

design complexity. Once the management and engineers have formulated a business

strategy and identified customer needs, the engineers must refine the requirements

relevant to the new product line’s design, leading to the next stage.

3.2 Identification of Product Architecture Selection
Drivers and their Impact

After determining the customer needs, the manufacturer must derive requirements

that identify the functional requirements and constraints that define the system.

These requirements and limitations come from the analysis from the last stage. The

research conducted by the last stage identifies internal and external factors that influ-

ence the derivation of functional, technical, performance, and economic requirements.

Figure 42 shows the steps a system engineer should take to transform the customer

needs to functional requirements.

During the formation of the manufacturer’s product-based/customer-oriented bu-

siness strategy, the industry analysis provides the expected demand, market perfor-

mance and price benchmarks, and overall business goal of the new product. Also,

154

Market Analysis

• Expected Demand

• Market Benchmarks

– Performance

– Costs/Price

• Business Strategy

External Factors
(From PESTEL)

• Government Agency
Standards

• Economic Regulati-
ons

• Customer/Public
Expectations

• Technology Base

• Environmental Con-
siderations

• Laws

Identification
of Relevant

Required Tasks
What tasks must
the product line

be able to complete?

Systems Engineering
Requirement/Functional Analysis Loop

Set
Benchmarks

Functional
Decomposition

Functional Flow Block Diagram
&

Functional Physical Matrix

Figure 42: Process to Transform Customer Needs to Functional Requirements

155

the PESTEL analysis identifies external factors relevant to the industry. The rese-

arch provides regulations and other requirements the engineers must consider in the

development of the new product line. The customer’s needs identified in the last

stage provide abstract ideas of what tasks the product line must be able to com-

plete. The systems engineers must create concrete definitions of these tasks. The

system engineers and management must combine these three elements into quantifia-

ble requirements with benchmarks set based on market data or expert analysis. The

requirement and functional analysis found in Section 2.1 can provide the methods and

processes that assist the systems engineers in the process. The requirements formed

from the industry and internal analysis can be broken down into internal and external

factors, shown in Figure 43.

From these three tasks, the engineers can set the product’s technical, perfor-

mance, and economic benchmarks. Regulating governmental organizations often pro-

vide standardized missions or tasks, but engineers can adjust these as they see fit.

These benchmarks must be consistent with the business strategy and the standards

defined by external industry actors. Finally, the engineers must functionally break-

down all of the required tasks of the product using a Functional Flow Block Diagram

(Section 2.1.3.1). Breaking down the tasks into individual functions allows the engi-

neers to pair components or subsystems required to complete each function. Using a

Functional-Physical Matrix (Section 2.1.3.2) which uses a list of possible components

that can be integrated into the product line and the individual functions that compose

the required mission or task, the functions can be matched with feasible components

or component pairings. The feasible configurations can be fed into the fourth stage

where the framework determines which feasible product architectures to consider.

Out of the requirements formed in this stage in the framework, the ones that

drive the product architecture selection and a means to capture their impact must

be identified. The following section explores methods to answer Research Question

156

External Factors
• Customer Expectations (Capability,

Economic, Sociocutural, Technologi-
cal, and Ecological)

• Project Specific Constraints:

– Industry Specifications and Base-
lines (Technological)

– Costs (Economic)

• Enterprise Constraints:

– Standards and Guidelines (Legal)

– Policies and Procedures (Political
and Legal)

• External Constraints (Political,
Technological, and Legal)

• Performance Requirements (Capabi-
lity)

• Modes of Operation (Capability)

• Technical Performance Measures
(Capability)

Internal Factors
• Project Specific Constraints:

– Team Assignments and Structure

– Control Mechanisms

• Enterprise Constraints:

– Management Decisions

– General Enterprise Specifications

– Domain Technologies

– Physical/Financial/Human Re-
sources

• Operational Scenarios

• Measures of Effectiveness and Suita-
bility

• System Boundaries

• Interfaces

• Utilization Environments

• Life Cycle Process Concepts

• Functional Requirements

• Physical Characteristics

• Human Factors

Figure 43: Breakdown of Requirements

157

2: What are the typical design drivers that lead system architects towards different

architecture implementation strategies? A couple of industries will be reviewed to

provide a starting point when answering this question. The research will review the

evolution of each industry and by analyzing reasons what forced designs to implement

different product architectures over time.

3.2.1 Investigation of Past Industries

This dissertation selected four industries to analyze as case studies. The four indus-

tries investigated are the automobile, multi-role helicopter, US Navy carrier fighter,

and unmanned aerial vehicle or system. These industries provide examples of a mass

market, a robust performance, a high performance, and an emerging industry respecti-

vely. Each case study looks at key designs throughout its history analyzing their levels

of commonality and reconfigurability, their product architecture’s qualitative label,

and the reasons that drove engineers to implement the product architecture. At the

conclusion of each case study, a list of drivers relevant to the industry.

3.2.1.1 Automobile Industry: A Mass Market Industry

The automobile industry has matured over the last one hundred years. The auto-

mobile has become a commonly utilized system throughout the world. Its purpose

varies with geographic market and owner. Since the auto industry’s market is large,

it provides an excellent case study. Table 35 displays the auto industry’s evolution.

The first combustion engine automobile emerged in 1807. It was an innovative

invention that was powered by hydrogen and oxygen combustion. Modern automo-

biles still possess the primary piston and spark-plug subsystem [33]. It was a “fixed”

product architecture, implementing no commonality and reconfigurability. Since it

was a prototype, the first combustion engine was more of a proof-of-concept that

showed propulsion by this method was possible.

In 1897, Winton became the first major automobile manufacturer in the United

158

Table 35: Automobile Industry Architecture Evolution

Year Model Picture Architecture

1807
First
combustion
automobile

Fixed

1897
Winton Motor
Carriage
Company Car

Fixed

1908 Ford Model T Modular

1933
Pierce-Arrow
Silver Arrow

Fixed

1928
Ford
Model A

Modular

1960s
GM Pontiac Tempest,
Buick Skylark, &
Oldsmobile F-85

Modular

2000 Dower Ridek Modular

States. At this point, automobiles were an emerging industry [17]. Designs were

custom built for the wealthy. As a result, each vehicle was hand made with specific

159

components built for each order. Winton’s cars incorporated some online reconfigura-

bility to allow the operator to control the vehicle in motion. This included a steering

wheel for lateral control, a throttle for engine speed, and transmission for wheel speed

[105]. However, they are still considered a “fixed” product architectures since they

were a single product without any family members to share parts and without any

major reconfigurable components.

In 1908, Henry Ford revolutionized the auto industry with the Model T. Ford

implemented rigorous standardization which allowed Ford to produce many more

vehicles at a lower cost. The low cost opened up the automobile market allowing

people from all economic backgrounds to purchase a car. Ford offered multiple body

styles that where all compatible with the same standard chassis and engine [134]. Its

incorporation of mass production and standardization laid the groundwork for the

evolution of the industry [38]. The automobile industry had appeal to the mass mar-

ket. By implementing standardization in the design, Ford met the price point required

by the larger market. Again, the Model T incorporated online reconfigurability so the

operator could control the vehicle in motion. However, it qualitatively can be consi-

dered a “modular” product architecture since it shared common components across

all versions with offline reconfigurable bodies.

During the roaring 1920s, the market changed. The market evolved to into mul-

tiple market segments. Each segment had individual expectations of capabilities and

performance. Therefore, the first trucks, sedans, and high performance vehicles began

to emerge. The demand for customization, or “modification[s] made to something to

suit a particular individual or task [10],” caused manufacturers to focus on one mar-

ket segment or implement product architectures that could satisfy all segments while

managing costs. Due to the growth and separation of wealth, luxury designs became

increasingly profitable in all industries. The Pierce-Arrow Motor Car Company capi-

talized on this trend by developing custom built vehicles to for the very wealthy [137].

160

Much like the Winton’s cars in the early 1900s, parts were made specifically for each

design. Though very profitable at first, the Pierce-Arrow Motor Car Company was

unable to adapt during the Great Depression in the 1930s and went out of business

[100]. Its custom-made, “fixed” architecture proved inflexible to the change in market

demand and price.

During the Great Depression, Ford again dominated the market into the 1940s.

The Ford Model A used mass production and implemented the module-based design.

The module-based design allowed the product line to share common parts reducing

costs and offline reconfigurable components to provide various type of cars specific

to each market segment custom needs [106]. The combination of common and offline

reconfigurable components made the Model A cheaper and easy to customize, making

cars available to the mass market and upgradeable for those who could afford it [38].

Therefore, the “modular” product architecture allowed Ford to survive the economic

depression while companies like the Pierce-Arrow Motor Car Company to go out

of business. The standardization implemented by Ford in the early 1900s was the

catalyst for the emergence of the “modular” product architecture. It kept costs

low for Ford while still satisfying the diverse needs of the market. Therefore, the

“modular” product architecture was flexible to the economic shocks that occurred

during the Great Depression. Hereby ending manufacturers’ use of “fixed” product

architectures in the industry.

By the 1970s, most automobile manufacturers had adopted mass production and

module-based implementation. However, during this time period Japanese manu-

facturers emerged with superior production practices, and the price of oil saw huge

fluctuations as conflict in the Middle East caused shortages[144]. Furthermore, cu-

stomers had come to expect a new model every year causing obsolescence, or “the

process of becoming no longer in use or the condition of being nearly no longer in

use [9],” to shorten to a few years. Thus, manufacturers saw their profits squeezed as

161

all customers demanded lower acquisition and operating costs associated with each

product while still demanding high levels of customization. Most manufacturers pro-

duced multiple models which shared common chassis to reduce production cost [132].

However, the increased commonality among models caused some of the lower per-

forming vehicles to cannibalize higher performing vehicles, resulting in the reduction

of performance and popularity of the higher performing models [107, 27, 78]. Some

automobile manufactures even incorporated smaller engines usually found in the eco-

nomy (low-priced) cars into the higher performing cars. When customers found out,

these manufacturers lost business. By reducing costs by using common components,

the cars became similar missing the customization demanded by the customers.

Now in the post-2000 era, all manufacturers produce automobiles which contain

some elements modular design where multiple designs share a common chassis and

components can be swapped to modify the performance. The customer demands now

look similar to the 1970s. Though the price of oil has stabilized it has been fairly high

[23]. Therefore, customers still demand lower acquisition and operating costs associ-

ated with each product while still demanding high levels of customization. These de-

mands are proven by the large number of models offered by numerous manufacturers,

and the constant pressure to reduce fuel consumption in the industry [109, 79, 41].

Thus, automobile manufacturers use module-based product architectures to meet all

of these requirements while using technology to reduce fuel consumption. The com-

mon use of modular product architectures in the industry has even seen the industry

come up with interesting concepts. The Modek, an entirely modular design, was in-

vented in 2000 [53]. The proof-of-concept shows the industry continues to increase

the implementation of modular product architectures .

162

Market Size, customization, low-cost, and quick obsolescence influenced the auto-

mobile industry’s implementation of product architectures in their designs. Eventu-

ally, the entire industry adopted the use of module-based or modular product archi-

tectures because they help the products meet all of the requirements demanded by the

customers. When Pierce-Arrow Motor Car Company decided to pursue highly speci-

alized cars for the wealthy in the 1920s, they were unable to adapt during the Great

Depression as demand for luxury decreased. The Pierce-Arrow Motor Car Company

could not cope with changes in the market resulting in the company’s demise. Also,

the industry always produces new models each year, causing previous ones to become

obsolete quickly. Standardization and modular design provide a means for companies

to stay market competitive by developing easily upgradeable sub-components.

From this case study, the list below identifies the predominant architecture se-

lection drivers for the automobile industry.

Automobile Architecture Selection Drivers

1. Production Quantity

2. Diversity of Product Roles (Customization)

3. Acquisition Cost

4. Operation Cost

5. Obsolescence

The automobile industry investigation leads to Observation 1:

163

Observation 1:

Mass market industries that tend to focus on mass production,

customization, and low costs leading designers to favor module-

based product architectures.

3.2.1.2 Multi-Role Helicopter Industry: A Robust Performance Industry

The multi-role helicopter emerged after World War II. The systems were designed

to provide medical evacuation, surveillance, personnel transportation, troop support,

communications, and electronic warfare. This case study analyzes the two most

dominant platform in the industry: the Bell UH-1 and Sikorsky UH-60. Table 36

displays the multi-role helicopter industry evolution.

The Bell UH-1 Iroquois (Huey) was the US Army’s first operational turbine engine

helicopter. Bell developed the vehicle as a “medevac”-transport helicopter for the US

Army in 1955 [135]. The UH-1 product line consisted of two models: the 204 and

205. Throughout the Vietnam War, Bell developed multiple variants of the models to

meet the diverse needs the US Army encountered during the conflict. Bell delivered

the first variant, the UH-1A (Model 204A), in 1959. During its deployment, the US

Army outfitted the variant with machine guns and rocket launcher. After experiencing

combat, the US Army requested Bell create a new variant that had greater passenger

and cargo capacity. Thus, Bell developed the UH-1B (Model 204B) in 1961 which

could accommodate seven passengers; three stretchers, two sitting casualties, and a

medical attendant; or 3,000 pounds of cargo [135]. Soon thereafter, the US Army

requested more variants to meet specific roles in their military strategy. Thus, Bell

developed:

• The UH-1C (Model 204C) as a gunship in 1965

• The UH-1D (Model 205) in 1963 extending the UH-1’s passenger limit to four-

teen

164

Table 36: Multi-Role Helicopter Industry Architecture Evolution

Year Model Picture Architecture

1959
Bell UH-1A
Iroquois (Huey)

Fixed

1961 Bell UH-1B
Product
Family

1963 Bell UH-1D
Product
Family

1979
Sikorsky
UH-60A Black
Hawk

Fixed

1984
Sikorsky
SH-60B
Seahawk

Product
Family

1990
Sikorsky
HH-60J
Jayhawk

Product
Family

1991
Sikorsky
HH-60G Pave
Hawk

Product
Family

165

• The UH-1E (Model 204E) in 1964 as an US Marines assault support helicopter

• The UH-1F (Model 204F) in 1964 as an US Air Force utility helicopter

• The UH-1H (Model 205H) in 1967 as a subsystem and engine upgraded version

of the UH-1D specifically designed to handle bad weather

• The HH-1K (Model 204K) in 1970 as an US Navy search and rescue helicopter

• Bell developed other variants of the UH-1 including the UH-1L, UH-1M, UH-

1N, UH-1P, UH-1V, UH-1X, and UH-1Y which were primarily subsystems and

engine upgrades of the previously developed variants as technologies in these

subcomponents improved

Bell was able to produce the variants on two production lines, one for the Model

204 and another for the Model 205. The production coordination was possible due to

the common air frame components amongst models with various engines and electro-

nics paired with the specific role assigned to the vehicle. Though the UH-1 variants

possessed some online reconfigurability to allow the operators to control the vehicle

during flight, the combined vehicles are considered a “product family” architecture.

These characteristics made the helicopter “affordable” and widely used throughout

the Vietnam conflict [135]. The multiple roles, missions, and subsystem capabilities

drove the evolution of Bell’s UH-1 product family. As the branches of the US military

identified new roles or suppliers produced better subsystems for the helicopter, Bell

met these needs with a new variant of an existing design. Technology evolution is the

incorporation of new concepts and theories into existing systems to obtain a greater,

practical solution [77]. Over the years, specifically the electronics and propulsion

domains saw rapid technological innovation creating greater efficiency and power.

Bell’s utilization of a product family architecture maintained costs by achieving a

large economies of scale and offering a portfolio of diversified capabilities (customized

166

roles). Economies of scale “is the cost advantage that arises with increased output

of a product [136].” It essentially diffuses the fixed costs of production over larger

produced quantities. However, the US Military turned to a new manufacturer to

produce multi-role helicopters following the Vietnam War.

The Sikorsky UH-60A Black Hawk replaced the Bell UH-1 Iroquois (Huey) in

1979. Sikorsky originally designed it to carry eleven combat troops plus three crew

members. Customers can use it for utility, air assault, medivac, command and con-

trol, and reconnaissance missions [96]. Due to the Black Hawk’s success, Sikorsky

developed the SH-60B Seahawk to replace the Kaman SH-2 Seasprite in 1984, a mo-

dified version of the Black Hawk specifically for the US Navy. Sikorsky designed it

for missions including anti-submarine warfare, search and rescue, drug interdiction,

anti-ship warfare, cargo lift, and special operations. [148]. Designers shortened the

Seahawk, placed the rear wheel forward, and transformed the cargo area allowing it

to carry mission dependent subsystems. Later, Sikorsky developed the HH-60J (later

upgraded to the MH-60T in 2007) Jayhawk to replace the HH-3F Pelican in 1990. It

was a modified version of the Seahawk specifically designed for the US Coast Guard.

It incorporated robust and rugged design for maritime environments, and its design

missions focused on enforcing maritime laws and search and rescue [98]. Also, Sikor-

sky designed the HH-60G Pave Hawk in 1991 for electronic warfare equipment as an

upgraded version of the Black Hawk. Designers modified it, allowing the integration

of electronic warfare equipment. All new electronics, avionics, and subsystems gave

the Pave Hawk the capability to conduct special electronic warfare operations as well

as the original Back Hawk missions [95]. Sikorsky implemented a similar production

strategy as Bell, creating many more variants of the UH-60 that either satisfied a

US Military defined role or incorporated more technologically advanced engines or

subsystems. Though the UH-60 variants possessed some online reconfigurability to

allow the operators to control the vehicle during flight, the combined vehicles are

167

considered a “product family” architecture. The product families use of common air

frame components allowed Sikorsky to produce the variants on the same production

line maintaining costs while offering a number of products that satisfy diverse roles.

Throughout the world, multiple countries, militaries, and entities use Bell’s and

Sikorsky’s helicopters. Both companies still produce modified versions of the Iroquois

and Black Hawk. As a result, the Iroquois and Black Hawk product families domi-

nated the multi-role helicopter industry during their height of production because of

the reduced manufacturing costs associated with product-family architectures. This

example shows achieving scale in a highly niche market is essential to profitability

over time and in some cases leads to market dominance or company survival.

From this case study, the list below identifies the predominant architecture se-

lection drivers for the multi-role helicopter industry.

Multi-Role Helicopter Architecture Selection Drivers

1. Number and Diversity of Product Roles

2. Subsystem Capabilities and Technological Evolution

3. Production Quantity

The multi-role helicopter industry investigation leads to Observation 2:

Observation 2:

Industries that demand rugged and multi-mission vehicles where

the missions and subsystem capabilities are diverse, lead designers

to favor product-family architectures.

168

3.2.1.3 US Carrier Fighter Industry: A High Performance Industry

Since the end of World War I, militaries have realized the effectiveness of air superio-

rity over land and sea. As a result, countries have demanded the highest performing

aircraft, known as fighters, to fight battles for air superiority. To project air superi-

ority abroad, the United States launches many of these fighters from naval carriers,

extending the country’s power and reach. These designs require higher performance,

structural strength, and ruggedness. The high performance, small-niche industry

provides an alternative case study. Table 37 displays the US carrier fighter industry

evolution.

The Grumman F-6F Hellcat was a rugged, well rounded, carrier-based fighter

designed to integrate well into carrier operations. Grumman specifically intended

it to counter the Japanese Zero in 1943. The Hellcat was capable of greater speed

and power, compared to the Zero. These capabilities proved superior to the Zero as

long as the Hellcat pilots avoided lower speed dog fights [67]. Grumman developed

the Hellcat during World War II. It was a single product produced on one product

line specifically designed to outperform the Japanese Zero. Though it has online

reconfigurable components to allow the operator to control the vehicle during flight,

it was primarily considered a “fixed” product architecture. However, the Hellcat was

soon replaced by higher technological jet fighters after World War II.

The Vought F-7U Cutlass added speed to the carrier-based aircraft due to its

jet engine, swept wings, and tailless design. It also included hydraulic landing gear

and flight controls. The addition of immature technologies, even though state-of-

the-art, made the vehicle unreliable. The hydraulics leaked and the engine never

produced the thrust expected, but it provided the first step introducing jet fighters

into the US fleet [12]. Vought developed the Cutlass to replace the Hellcat in 1951. It

incorporated modern electronics and subsystems and was the first jet-powered carrier-

based fighter. Though it has online reconfigurable components to allow the operator

169

Table 37: US Carrier Fighter Industry Architecture Evolution

Year Model Picture Architecture

1943
Grumman F-6F
Hellcat

Fixed

1951
Vought F-7U
Cutlass

Fixed

1957
Vought F-8
Crusader

Online
Re-Configurable

1960
McDonnell
Douglas F-4
Phantom II

Fixed

1972
Grumman F-14
Tomcat

Online
Reconfigurable →
Product Family

1978
McDonnell
Douglas F-18
Hornet

Product Family

Future
Lockheed
Martin F-35
Lightning II

Modular, Online
Reconfigurable, &
Product Family

170

to control the vehicle during flight, it was primarily considered a “fixed” product

architecture. However, it was eventually replaced as the Cold War demanded more

capabilities from the fleet and better technologies emerged.

The Vought F-8 Crusader added supersonic capabilities to the carrier-based air-

craft. It had an online reconfigurable wing which could change its pitch to improve

carrier takeoff capabilities [99]. Vought developed the Crusader in 1957 to incorpo-

rate subsystems and weapon systems required by the US Navy as a response to the

growing arms race during the Cold War. The increased payload requirements incre-

ase the total weight of the vehicle. Therefore, Vought added a online reconfigurable

wing that could increase the pitch of the wing during takeoff allowing the vehicle to

have a small takeoff length requirement. The strong interaction between the required

payload weight and short takeoff field length requirements required Vought to imple-

ment online reconfigurability. It also had online reconfigurable components to allow

the operator to control the vehicle during flight, but its online reconfigurable wing

made it considered as a “online reconfigurable” product architecture. However, the

online reconfigurable wing increased the complexity of the fighter during the deve-

lopment, production, and operations of the vehicle, causing the aircraft to be much

more expensive than its predecessors.

The McDonnell Douglas F-4 Phantom II, developed in 1960, provided the US Navy

a long range fighter/bomber. Its multi-mission capability was a response to reduce

the overall acquisition costs for the US Navy. McDonnell Douglas replaced traditional

gunnery (machine guns) with a stockpile of radar guided missiles and state-of-the-art

electronics and subsystems. These changes hoped to provide the US military with a

“fighter of the future” [72]. The new subsystems and weapon systems were lighter

than their predecessors, causing the older fighters to become obsolete. Also, engine

technology improved over time providing the industry with more powerful engines.

Thus, McDonnell Douglas could design a fighter without online reconfigurability.

171

Though it has online reconfigurable components to allow the operator to control

the vehicle during flight, it was primarily considered a “fixed” product architecture.

However, the Cold War created the need to expand the capabilities of the carrier-

based fighters into the supersonic regime.

The Grumman F-14 Tomcat replaced the aging F-4 Phantom II in 1972. It was

the first fighter to acheive supersonic speeds which caused the vehicle to be capable

of overcoming huge amounts of drag. The F-14’s online reconfigurable architecture

allowed it to be carrier-launched and still achieve supersonic speeds. The aircraft was

designed to complete air-to-air, precision air strike, and naval air defense missions. It

included the integration of advanced electronics to support the new weapon systems

and radar interceptor capabilities paired with the specific mission the vehicle would

conduct. The electronics, engines and structures were upgraded twice, producing a

product family with the two F-14B and F-14D variants [13]. Before Grumman deve-

loped the two variants, the Tomcat was considered an “online reconfigurable” product

architecture. As new technologies became available, Grumman updated the electro-

nics, engines, and structures creating the two variants and a “online reconfigurable”

and “product family” architecture emerged. The new variants were more efficient,

powerful, and capable. However, the online reconfigurable wing made the aircraft

heavy and complex. As the technologies incorporated in the electronics, engines, and

structures continued to improve, the Tomcat’s product architecture began to become

obsolete.

The improvement in technologies allowed McDonnell Douglas to develop the F-

18 Hornet as a fighter for the US Navy and Marines in 1978. McDonnell Douglas

designed it to conduct air-to-air and air-to-ground missions. Users could adapt it to

perform photo-reconnaissance and electronic countermeasure missions. The technolo-

gies integrated into the design were carbon-fiber wings and digital fly-by-wire controls.

These technologies drastically reduced the weight, removing the need for the online

172

reconfigurable wing implemented in the F-14. At first, McDonnell Douglas develo-

ped the A and B variants together. Variant A had one seat and variant B had two,

primarily for training purposes. Variants (C, D, E, F and G) of the Hornet were in-

troduced later on in production as upgraded versions. The variants included reducing

the radar signature, improving engines, and increasing maneuverability, range, and

payload capacity [24]. When McDonnell Douglass developed the E and F variants,

the manufacturer increased the size of the vehicle to accommodate larger engines and

more sophisticated avionics. The variants were produced on a common product line

and shared many of the same airframe components, implementing a “product family”

architecture. Implementing the product architecture allowed McDonnell Douglas to

manage costs through economies of scale.

With ever-expanding requirements for modern fighters and long-time operation of

the F-18, the US Military decided it was time to upgrade the fleet in 2006. Lockheed

Martin is concurrently developing the Lightning II for the US Navy, Air Force and

Marines. It is a combination of modular, online reconfigurable, and product-family

architectures. They share module-based components. The non-carrier variants pos-

sess the ability to reconfigure its engine orientation for vertical takeoff and landing

(VTOL) or short takeoff and vertical landing (STOVL). The F-35 combines advanced

stealth with fighter speed and agility, handles fully fused sensor information, and is

capable of network-enabled operations and advanced sustainment [83]. The highly

interacting requirements have caused production overruns and missed deadlines [138].

The F-35 provides a concept of interest for this dissertation. The F-35 provides an

example where designers implemented reconfigurable and commonality characteris-

tics into the architecture to increase the performance and decrease the manufacturing

cost. However, the common components reduce more than the reconfigurable increase

the performance, and the reconfigurable components increase more than the common

components reduce the complexity and cost.

173

The US carrier fighter industry shows companies tend to choose architectures that

provide the highest performance sometimes with an increase in cost, and architecture

selection depends heavily on technology. Therefore, it is crucial to understand the

impact of technology on the architecture. Considered technologies are electronics,

structures, propulsion, materials, and manufacturing. Many of the fighters mentio-

ned replaced existing ones. The designer must understand when a vehicle and its

technology might become obsolete and how the architecture will be affected. As a

result, most of these high performing vehicles started as fixed architectures and were

later upgraded, causing product families to emerge.

From this case study, the list below identifies the predominant architecture se-

lection drivers for the US carrier fighter industry.

US Carrier Fighter Architecture Selection Drivers

1. Performance

2. Technology Evolution

3. Obsolescence

4. Requirement Evolution

The US carrier fighter industry investigation lead to Observations 3 and 4:

174

Observation 3:

Industries driven by technologies, obsolescence, and rapidly evol-

ving and high-performance requirements lead designers to favor

fixed product architectures which can be upgraded, forming pro-

duct families.

Observation 4:

High-performance industries lead designers to consider online re-

configurable product architectures.

3.2.1.4 Unmanned Aerial Vehicles or Systems Industry: An Emerging Industry

The unmanned aerial vehicle or system (UAV or UAS) industry is emerging, moti-

vated by the advancements in electronics and computer science. UAVs have existed

since the American Civil War but have not become universal until the last quarter

century. The absence of humans in the cockpit increases its mission capacity and

reduces its cost. UAVs have historically conducted for military operations, but as

regulations shift, civil uses continue to grow. Therefore, the UAV industry provides a

case that has not fully matured. Table 38 displays the UAV industry evolution [56].

During the American Civil War, the northern forces developed the first unman-

ned aerial vehicle to drop bombs with a timing mechanism. Perley’s Aerial Bomber,

developed in 1863, was a balloon that contained a basket full of explosives. The con-

cept was mostly ineffective. As a result, developing UAVs dissipated until technology

improved [112]. The vehicle was an experimental concept with only one made to try

to break the deadlock of the American Civil War. It was nearly impossible to control

and was about as “fixed” of a product architecture as one can find.

Due to improved electronics and aeronautical engineering, Nazi Germany deve-

loped the Fieseler Fi 103 (V-1) in 1944 during World War II. It was a jet-propelled

175

Table 38: Industry Architecture Evolution

Year Model Picture Architecture

1863
Perley’s Aerial
Bomber

Fixed

1944 Fieseler Fi 103 (V-1) Fixed

1955
Teledyne-Ryan
Aeronautical AQM-34
Firebee

Fixed

1982 IAI Scout Fixed → Modular

1995
General Atomics
RQ-1 / MQ-1
Predator

Fixed → Product
Family

1998
Northrup Grumman
RQ-4 Global Hawk

Fixed → Product
Family

2003
AeroVironment
RQ-11B Raven

Modular

Future UCLASS N/A Modular

176

cruise missile that could hit a target from long distances. These vehicles used a pri-

mitive jet engine and analog electronics to navigate the bomb to a general target

area. The cruise missile was not very accurate but provided the ground work for

many of the UAVs built from 1940 to 1980 [101]. Though it has online reconfigurable

components to allow the operator to control the vehicle during flight, it was primarily

considered a “fixed” product architecture. Its low accuracy was due to its infantile

analog controls. Not until digital and improved computational technologies emerged

did unmanned systems become practical.

In 1955, the US Air Force started using the Teledyne-Ryan Aeronautical AQM-34

Firebee as a target and stealth reconnaissance drone. For reconnaissance missions, the

US Air Force used a modified version of the vehicle with stealth material for the skin.

Improved electronics and propulsion made the vehicle much more controllable [140].

Though it has online reconfigurable components to allow the operator to control the

vehicle during flight and its modular subsystem package, it was primarily considered

a “fixed” product architecture, partly because the term modular was not widely used

in the industry. As a result of the Firebee’s success, the uses of UAVs expanded.

In 1979, the Israeli military introduced the IAI Scout designed to provide intel-

ligence and reconnaissance. The development of a small, reliable UAV required all

departments of IAI to work together to develop custom subsystems for the vehicle.

It consisted of composite materials, microwave signal communications, and new sta-

bilized electro-optical sensors. In the 1990s and 2000s, IAI developed variants of

the Scout where modular subsystems could allow the vehicle to jam enemy commu-

nications and conduct electronic warfare [70]. Though it has online reconfigurable

components to allow the operator to control the vehicle during flight and its modular

subsystem package, it was primarily considered a “fixed” product architecture at first.

However, as the mission portfolio for the vehicle expanded, IAI developed modular

subsystem packages which operators could swap out depending on the mission the

177

vehicle was to conduct. Thus, the product architecture evolved into a “modular”

product architecture.

The General Atomics developed the RQ-1/MQ-1 Predator as a new generation of

reconnaissance and surveillance UAV in 1995. It also spurred the modern growth of

the UAV industry and a realization of UAVs’ potential. It satisfied the US require-

ments of a medium-altitude, long-endurance (MALE) UAV. In 2001 the RQ-1 was

armed with AGM-114 Hellfire missiles creating the MQ-1. The MQ-1 can conduct

armed reconnaissance and interdiction missions. The RQ-1 and MQ-1 functioned

similarly to the IAI but were more efficient and less detectable [14]. Though it has

online reconfigurable components to allow the operator to control the vehicle du-

ring flight and its modular subsystem package, it was primarily considered a “fixed”

product architecture at first. Similar to the IAI Scout, as the mission portfolio of

the vehicle expanded, General Atomics developed a second variant that could ope-

rate with weapon systems. Thus, the product architecture evolved into a “product

family” architecture.

The Northrup Grumman RQ-4 Global Hawk is a high-altitude long-endurance

(HALE), reconnaissance, and surveillance UAV. Its primary purpose is to provide

high-resolution images in all weather and over large geographical areas, day or night.

Northrup Grumman built two variants of the Global Hawk in 2010 and 2011: the

MQ-4C Triton for Naval missions and the RQ-4E Euro Hawk for NATO related

missions [97]. Since the program started in 1998, cost overruns grew until 2010,

due to ineffectiveness, unreliability, and changing performance requirements [30]. In

2006, the Global Hawk unit cost was 25% over its baseline estimate, and the US

Congress almost canceled the program [11]. However, by 2013 from higher usage,

costs were reduced 50%, making it a more viable design [128]. The trend in cost

also relates to the maturation of the high tech UAV design process. Though it has

online reconfigurable components to allow the operator to control the vehicle during

178

flight, it was primarily considered a “fixed” product architecture at first. Similar to

the IAI Scout and General Atomics Predator, as the mission portfolio of the vehicle

expanded, General Atomics developed multiple variants that had varying subsystems

and capabilities. Thus, the product architecture evolved into a “product family”

architecture.

The AeroVironment RQ-11B Raven is a lightweight reconnaissance and surveil-

lance UAV with a modular frontal subsystem compartment. It is small enough to be

man-portable allowing users with varying levels of experience to use it throughout

the world. It also is rugged and reliable making it easy to use in tough environments.

The detachable front section provides a compartment for various subsystems [147].

The Raven is one of the first modular designs in the industry, but with DARPA’s

continuing request for new modular architectures, providing the expectation of more

to come [119]. Though it has online reconfigurable components to allow the operator

to control the vehicle during flight and its modular subsystem package, it is primarily

considered a “modular” product architecture due to its modular frontal subsystem

compartment.

The UCLASS is a UAV that is currently under development. It will be able to

launch and operate autonomously from an aircraft carrier and conduct long-endurance

ISR&T (intelligence, surveillance, reconnaissance, and targeting) and precision strike

missions. It will inherit stealth and other technologies from the F-22 and F-35 pro-

grams, allowing it to integrate in the battle space of the future. Finally, acknowledging

DARPA’s request for modular architectures, the UCLASS is being developed to have

interchangeable components [102]. Since the program is still under development, it is

unclear what type of product architecture the competing manufacturers will imple-

ment.

The unmanned aerial vehicle is an emerging industry. It combines elements of

the automobile, multi-role helicopter, and US carrier fighter industries. It not only

179

has the potential appeal towards a mass market, but also it must be reliable no

matter what the task or environment, and some designs require high performance.

As the industry matures, the architecture selection trends will change as seen other

industries. A manufacturer must choose a flexible and competitive architecture that

will be able to sustain itself in the future markets. Therefore, the future architectures

this industry will implement is uncertain.

Due to the immature nature of the UAV industry; this case study cannot identify

any drivers or observation. Therefore, this dissertation attempts to determine the

drivers of architecture selection for the UAV industry.

3.2.1.5 Observations from Previous Industries

Combining all of the drivers identified from the case studies, a list of architecture

selection drivers emerges. The items can be broken down into four categories: design,

market, life cycle duration, and technologies.

180

Architecture Selection Drivers

1. Design Requirements

(a) Performance

• Speed

• Range

(b) Mission Diversity

2. Market

(a) Size

(b) Acquisition and Operating Costs

3. Life Cycle Duration

(a) Requirement Evolution

(b) Obsolescence

4. Technologies

(a) Impact

(b) Evolution

Identification of drivers provides a system architect with what factors impact ar-

chitecture selection. The ones identified above provide a starting point determining

what drives architecture selection. However, the drivers have been identified qualita-

tively but need to be verified quantitatively. The combination of these drivers leads

to Assertion 1:

181

Assertion 1:

The design, market, life cycle, and technological requirements

drive the product architecture selection process.

Understanding how these drivers impact architecture selection is important and

challenging. Even so a designer or manufacturer, without fully understanding the

complicated nature of product architecture selection, tends to make these decisions

heuristically. Furthermore, it is complicated by the use of qualitative terms to describe

the product architecture. As shown in the case studies, many of the products offered in

all of the industries contain some common and reconfigurable elements, yet there are

given vague qualitative labels. Therefore, the product architecture must be converted

from a qualitative label to a numerical representation. This dissertation formulates

a data-driven, quantitative framework to assist the designers in selecting the most

appropriate architecture.

3.2.2 Observing the Design Drivers’ Impact on the Product
Architecture Selection

It is important that the system architect understand the impact and characteristics

of each driver on the architecture selection. Section 3.2.1 identified possible drivers.

Again, Table 39 displays the drivers identified and breaks them down into four cate-

gories: design, market, life cycle duration, and technologies.

Currently, there is no way to understand a drivers’ impact on the product ar-

chitecture selection numerically and visually. Understanding the drivers’ impact will

aid the architect in strategic road mapping and in performing trade-offs between al-

ternative architectures. A test case presented in this section captured the impact of

the identified drivers, using historical data. The test case provides a means to find

answers to Research Question 2.a: Is there some effect from how drivers are structu-

red early in the design process that tends to favor one implementation strategy over

182

Table 39: Product Architecture Selection Drivers Identified in Section 3.2.1

Design Market
Life Cycle
Duration

Technologies

1. Performance

2. Mission
Diversity

1. Size

2. Customization

3. Manufacturing
Costs

1. Requirement
Evolution

2. Obsolescence

1. Impact

2. Evolution

another?

Multiple industries and markets were analyzed to get the full picture of architec-

ture decision making. These industries are mostly mature with various driver values

and choice in architectures. Industries considered were the automobile, truck, race

car, commercial aircraft, bombers, multi-role helicopters, fighters, and unmanned

aerial vehicles industries.

For each industry, the test case placed a relevance or magnitude ranking ranging

from one to five on a factor: five being high, three medium, and one low. Furthermore,

it identified the predominant architecture(s) for each industry. If the industry imple-

mented a type of architecture, an index received a value of one. Table 40 displays the

results.

The automobile industry has a large market size. Its customers demand customi-

zation and quickly want new products making the original products obsolete. Thus,

the industry implements modular design techniques.

The truck industry is like the automobile industry. The only difference is the

demand for greater payload capability.

The F1 race car industry is a niche, high-performance market. The industry

requires the cars the be fast, highly customizable, and able to perform on multiple

183

Table 40: Test Case and Driver Impact Framework

In
d
u
st

ry
D

e
si

g
n

M
a
rk

e
t

M
is

si
on

D
iv

er
si

ty
M

ar
ke

t
S
iz

e
M

an
u
f.

C
os

t
R

an
ge

S
p

ee
d

P
ay

lo
ad

C
u
st

.

A
u
to

m
ob

il
e

2
2

3
1

5
5

1
T

ru
ck

3
1

5
1

5
5

1
R

ac
e

C
ar

1
5

1
4

1
5

1
C

om
m

er
ci

al
A

ir
cr

af
t

5
4

5
2

3
2

5
B

om
b

er
s

5
4

5
1

1
1

5
M

u
lt

i-
ro

le
H

el
ic

op
te

rs
3

3
4

5
3

4
4

F
ig

h
te

rs
1

5
2

3
1

1
5

C
om

m
er

ci
al

H
el

ic
op

te
rs

3
3

3
3

2
3

4

L
if

e
C

y
cl

e
T

e
ch

n
o
lo

g
y

P
ro

d
u

ct
A

rc
h

.
C

h
a
ra

ct
.

R
eq

.
E

vo
lu

ti
on

O
b
so

le
sc

en
ce

Im
p
ac

t
E

vo
lu

ti
on

F
ix

ed
R

ec
on

fi
gu

ra
b
le

C
om

m
on

A
u
to

m
ob

il
e

5
5

2
5

0
1

1
T

ru
ck

3
5

1
5

0
1

1
F

1
R

ac
e

C
ar

4
5

5
5

0
1

0
C

om
m

er
ci

al
A

ir
cr

af
t

2
3

4
1

1
0

1
B

om
b

er
s

1
1

5
3

1
0

0
M

u
lt

i-
ro

le
H

el
ic

op
te

rs
3

3
4

3
1

0
1

F
ig

h
te

rs
2

1
5

2
1

1
0

C
om

m
er

ci
al

H
el

ic
op

te
rs

1
3

4
1

0
0

1

184

tracks. The rapid introduction of new technologies makes the cars obsolete quickly.

Thus, engineers implement modular design techniques.

The commercial aircraft industry essentially produces buses that can fly. There-

fore, the industry is driven by the payload, manufacturing costs, and technological

impact on the design, though the evolution of technologies is slow. Engineers in this

industry implement scale-based designs.

The military bomber industry develops aircraft that must carry large payloads

over a long distance. Stealth technologies are usually implemented to increase the

odds the aircraft can achieve its objective. The manufacturing costs to produce these

specialized aircraft are extremely high. Therefore, engineers design each aircraft for

each specific mission, implementing fixed designs.

The multi-role helicopter industry requires systems that can take off vertically and

carry nominal payloads over nominal distances. The need for robust multi-mission

performance and high customization drive the industry. Therefore, engineers design

product families.

The military fighter industry requires high-performance vehicles to complete com-

bat objectives. These systems must have a high power to thrust ratio to achieve high

speeds. Furthermore, new technologies are continually implemented to increase the

vehicles’ performance. Thus, engineers implement online reconfigurable characteris-

tics to contribute to achieving these high-performance requirements.

Finally, the commercial helicopter industry is like the multi-role helicopter indu-

stry. However, the market does not demand the same customizable and multi-mission

requirements. Therefore, engineers design product families.

Regressions were fit to the data to relate the product architecture indices and

driver values. Due to the limited number of cases and the assumed threshold behavior

of the drivers, a neural network was fit to the data. After fitting neural networks to the

architecture driver data, the test case ran a Monte Carlo which varied all the drivers’

185

Figure 44: Architecture Driver Magnitude in the Space

values from one to five. The data was transformed from its three-dimensional form to

two dimensions. The results are observations and conclusions of the drivers impacts

on the product architecture selection. The transformation is given by Equation 31.

Figure 44 displays the average driver value for each region in the architecture

space, allowing the determination of where certain drivers dominate. In Figure 44,

the circular space represents the various product architectures which include fixed at

the top, reconfigurable on the left, and commonality on the right. As a location in

the space moves towards the edge of the circle, that product architecture becomes

more predominant.

The results from the test case show how the various drivers influence the im-

plemented product architecture. The following observations were drawn from the

results:

186

• As the performance required (range, speed, and payload) of the product in-

creases, the implemented architecture tends to be more fixed.

• A product that must conduct multiple missions tends to favor more reconfi-

gurable product architectures.

• When the market size is greater, engineers have historically implemented com-

monality and reconfigurability characteristics.

• When the market demands highly customizable products, engineers imple-

ment reconfigurable characteristics.

• Historically, as the manufacturing costs increase, engineers tend to develop

a fixed product.

• Industries whose requirements change frequently tend to build one-time fixed

products.

• If implemented technologies’ impact and evolution are more relevant in the

industry, then engineers create fixed/common product architectures.

3.2.3 Observing the Product Architecture Selection’s Sensitivity to
Design Drivers

After determining the impact of the drivers on the product architecture selection,

it is important to understand how changing drivers influence the process, answering

Research Question 2.b: How do we capture the impacts of changing drivers on the

product architecture?. Time-dependent differential equations can be utilized to un-

derstand the impact of changing drivers over time. In these equations, the intrinsic

variable’s (~x) rate of change to a extrinsic variables (~t) can be represented by the

function: ~̇x = f(~x,~t). For this problem, ~x is the product architecture, and ~t is a vec-

tor of drivers. To analyze the path architecture will take based on initial conditions,

a phase portrait is useful.

187

Figure 45: Driver Impact Mappings

Since drivers of an industry change throughout time, it is important to understand

their changes’ influence on the selected product architecture. Partial derivatives of

the neural nets in the previous subsection provide the equations to create the phase

portraits. This dissertation refers to these phase portraits as Driver Impact Mappings

and are discussed in Section 3.6.2. Figure 45 displays the results from the test case.

The phase portraits show how the favorable product architecture reacts to a chan-

ging driver. These flows trace the derivative of the magnitudes found in the last

subsection, usually pushing the product architecture towards one edge of the circle.

3.2.4 Conclusions from Test Case Determining Drivers Influence on
the Product Architecture

The case study shows there are relationships among the drivers and the selected

product architecture. Furthermore, the relations can identify the regions where cer-

tain drivers dominate and how their change influences the decision-making process.

188

System engineers hope to choose a product architecture that is resilient over time,

satisfying the customer and ensuring profits for the manufacturer.

The results from the test case show how an engineer can choose favorable or a

product architecture resilient to changing drivers. The favorable architecture is the

one that satisfies each of the drivers. For a flexible product architecture, the choice

is not as obvious. The flow diagrams show the relationships between intrinsic and

extrinsic variables. Theoretically, when these flows are combined, nodes emerge where

the flow is attracted or repelled, showing the flexible architectures.

3.2.5 Formation of Hypothesis 1

The case studies given in this section suggests certain requirements drive the product

architecture selection more than others. An experiment must be formulated to justify

the selection of these drivers. Furthermore, the experiment should be able to identify

any other factors or requirements that drive the architecture selection.

These considerations and observations from this section help form Hypothesis 1:

Hypothesis 1:

If the product architecture selection drivers identified truly drive

the decision, then they must significantly impact the process’s

results by influencing the levels of commonality and reconfigura-

bility in the product line.

3.3 Establishing a Valuable Product Architecture

System engineers prefer product architectures that facilitate a product’s ability to sa-

tisfy manufacturer goals and customer demands. These are concrete metrics defined

by performance or cost analysis. Furthermore, the product architectures that reduce

complexity and increase the flexibility of the product, relating to cost reduction and

ensure long-term profitability. Flexibility and complexity are abstract concepts that

189

are not as easily defined. Therefore, a trade-off exists between flexibility and desi-

rability (concrete and abstract concepts). This section analyzes how to capture this

trade-off answering the third research question: How do we develop a quantitative

means to determine whether an architecture is “good” or valuable?

The three metrics can be defined as follows:

• Requirement satisfaction or desirability relates to a products ability to achieve

customer demands.

• Flexibility “implies an ability of the design to be changed to track requirement

changes [127, 126],” suggesting if a product is flexible and an operator uses it

for a purpose other than originally designed for, then it will still perform well.

• Complexity is the combination of the number of domains, functions, or discipli-

nes; the level of interdependency among the domains, functions, or disciplines;

the novelty of project; and level constraints stringency [21].

The engineer must identify which of the three concepts are most important or

have the most relevant. Therefore, the engineer must ask the following questions to

determine how important each of the metric. These questions attempt to add the

more qualitative elements of product architecture selection. Each metric is assigned

questions that relate to the “-ility” in a sense that can not be answered through

numerical analysis. Therefore, here are some examples of what qualitative questions

one might ask to assign weightings. All answers can be the following responses: high,

moderate, or low, representing a score from 1 to 3.

• Desirability

1. How much power do the customers have? - This question relates to how

important it is to achieve the maximum desirability. If the customers have

190

more power, the less the manufacturer can deviate from the most desirable

design of the customers.

2. How many requirement thresholds must the product achieve? - This que-

stion relates to how much influence the customers have on the product

and suggests the designer must satisfy several constraints. As a result,

by achieving maximum desirability, the manufacturer is meeting the most

requirements as possible.

• Flexibility

1. How short is a product’s traditional life span in the industry? - Life span

responds to the sensitivity of market to changes in requirements over time.

If the product’s life span is short, then the product is expected to be

replaced quickly, meaning flexibility is not as pressing as say desirability

and complexity.

2. What is the cost to develop and produce a new product? - If the cost is

high to produce a new product, the product must be flexible to changing

requirements. Flexibility will relate to the product’s ability to stay relevant

over time and will not need to be replaced. If the cost is low, the product

can be easily replaced and flexibility is not a major concern.

• Complexity

1. What is the manufacturer’s novelty producing a product? - The produ-

cer’s experience in the industry and producing the product relates the

company’s ability to predict and mitigate mistakes during the design, de-

velopment, and production of the product. Mistakes are a symptom of

complexity and if an experienced team works well together, then there will

be less mistakes, meaning complexity is not a pressing concern.

191

2. How many domains are associating with developing a new product? - The

number of domains or disciplines involved in designing a product relate

to the number of experts and trades between groups. Even if coupling

among disciplines is not apparent, scale increases the chances of mistakes

occurring, increasing the need to consider complexity.

Each metric can get a score ranging from two to six, and the total can vary from

six to eighteen. Taking each score and dividing it by the total provides the relative

importance of each metric. Though engineers should consider all of the metrics when

evaluating the architecture, the engineers should realize which of the three metrics

are more important or relevant.

The use of qualitative weightings can be called into question due to the lack of

numerical support in asserting these questions impact the choice in product archi-

tecture selection. Therefore, a hypothesis can be formed to test the relevance of the

weightings:

Hypothesis 2:

If the qualitative weightings have significant influence on the de-

cision of which product architecture to implement, then the most

favorable product architecture should be vastly different at vari-

ous weightings.

Cases can be conducted where extreme cases of weightings can be compared

against each other. These sensitivities studies will determine the weightings impact

on the product architecture and whether the magnitude of change makes sense.

The framework can apply this method to any “-ity,” such as maintainability and

availability. These “-ities” look at the supply chain dynamics of the product value

chain. Therefore, the questions can relate to distances goods must travel to reach

customers and quality/customer support of the product.

192

3.4 Identification of Methods to Facilitate
Generating Alternative Product Architectures

Section 1.3 defines the three primary product architectures: fixed, reconfigurable, and

product family. Furthermore, it identifies three that are a combination of two main

architectures: online reconfigurable, modular, and scale-based. Though definitions

clarify the problem, they do not provide a good way to quantify the product archi-

tecture space. The following section answers the second Research Question 4: What

methods can be used to aid in the generation of alternative product architectures?

A product architecture is dominated by three characteristics of components: com-

mon, online, and offline reconfigurable. The fixed, reconfigurable, and product family

definitions can be modified to component characteristic dimensions using this repre-

sentation of the space. A fixed product architecture lacks any of these features. Figure

46 shows the transition from qualitative definitions to quantitative axes. The planes

defined by two of the axes are reconfigurable, modular, and customizable products.

However, products are not limited to the planes or axes. A product architecture

can possess all characteristics of varying degree. The purpose of creating the three-

dimensional space provides a means to understand architectural features of a certain

product, allowing the engineers to perform trade-offs between alternatives in archi-

tecture selection problems.

When transforming the space from three to two dimensions, the product architec-

ture space can be represented by Figure 47, providing a simplified means to visualize

the space. Product architectures that primarily share two characteristics are online

reconfigurable, modular, or customizable product architectures, represented by the

planes formed by two axes in Figure 46.

193

Fixed

Reco
nfigurable

ProductFamily

Modular
Plane

Scale-Based
Plane

Online
Reconfigurable

Plane

Offline
Reconfigurable

Onlin
e

Reco
nf-

igurable

Common
Customizable

Plane

Modular
Plane

Reconfigurable
Plane

Figure 46: Transformation of Product Architecture Space

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

Figure 47: Two Dimensional Representation of Quantitative Architecture Space

194

3.4.1 Commonality Index

After defining the axes, the axes must be defined by indexes. The commonality

index (CI) defined in Section 2.3.1 can represent the common axis [142]. The metric

ranges from zero to one. One implies the product line shares all components and

zero suggests there is no commonality in the product line. Equation 25 displays

the index formulation. Where, Jp is the total number of designs that belong to the

product architecture, #CompTot j
is the total number of elements in a single family

member, #CompTotUnique is the total number of unique components in the product

architecture, and j represents a family member index.

CI =

0 if

Jp∑
j=1

(
#CompTotj

)
= max

(
#CompTot j

)
1− #CompUnique−max(#CompTotj)

Jp∑
j=1

(#CompTotj)−max(#CompTotj)
otherwise

(25)

3.4.2 Online Reconfigurability Index

For the reconfigurable axes, a literature review found an index that represents the

architecture’s ability to change or swap components [62, 64]. The possible reconfigu-

rable indices reviewed did not meet the criteria outlined in Section 2.3.1. However,

offline and online reconfigurability indices can still be derived from the research of

previously developed indices. For example, the Percent Commonality Index (%C)

includes the interfaces or connections to calculate commonality. The interfaces are

critical in reconfigurability. Online reconfigurable components require the interface

between the vehicle an the component to be manipulable, adding a degree of freedom

to the product’s controls and dynamics. Therefore, to calculate the online reconfigu-

rability index, the number of degrees of freedom added by a reconfigurable interface

are divided by the total number of interfaces between components in the product line.

195

Fuselage

EngineVert Tail

Rudder

Hor Tail

Elevator

Wing

Flaps Ailerons

Comms. EO Radar1 Radar2

Figure 48: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems (Fuselage Platform)

Equation 26 displays the proposed formulation of the online reconfigurability index.

OnRI =
#InterOn

#InterTot

(26)

3.4.3 Offline Reconfigurability Index

Offline reconfigurable components rely on standardized interfaces that can handle

different but the same type of components. In the automobile industry, a car can use

various wheels because the interface between the car axes and the wheel has been

standardized. For offline reconfigurability, if two components of similar type (two

radars or two subsystem-packages) share the same interface with a parent component,

then the interface is reconfigurable. The designer should organize the components in a

tree diagram that relates physical connections between components and subsystems.

Figure 48 shows a tree diagram of a basic tube-wing configuration. It outlines the

physical connections among components. The configuration consists of a fuselage, a

wing with flaps and ailerons, a horizontal tail with an elevator, a vertical tail with a

rudder, an engine, a communications subsystem, an electro-optical sensor, and two

radars. The radars share the same interface, suggesting both cannot be on the vehicle

at the same time. Therefore, the radars’ interface is reconfigurable.

When determining offline reconfigurability, the designer should choose a compo-

nent that serves as the product’s platform. The platform should reduce the number

of levels in the physical-connection tree diagram, making it closest to all components

196

Wing

AileronsFlaps Fuselage

Comms.EngineVert Tail

Rudder

Hor Tail

Elevator

EO Radar Nav.

Figure 49: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems (Wing Platform)

and subsystems. However, reducing the number of levels is not a rule but rather

a general guideline. Figure 49 shows another example of a tree diagram of a basic

tube-wing configuration. In this example, the wing is made to be the platform, but as

Figure 49 shows, there are four levels compared to Figure 48’s three. The difference

between the two tree diagram shows the fuselage in a tube-wing configuration is the

closest to all other components.

In summary, a offline reconfigurable interface can be defined as a connection that

two components of the same type that share an interface with another single parent

component. Therefore, the offline reconfigurability index should be the number of

physical connections shared by components or subsystems of the same type divided

by the total number of physical connections in the product line. Equation 27 shows

the formulation of the offline reconfigurability index.

OffRI =
#InterCommon

#InterTot

(27)

The creation of the quantitative architecture space leads to the assertion: Com-

peting product architecture alternatives can be represented by common, online, and

offline reconfigurable component characteristics. Therefore commonality and recon-

figurability indexes can be used to generate alternative architectures numerically.

Section 3.4.4 will demonstrate the formulation of these indices with respect to past

197

implemented product architectures in various industries.

3.4.4 Example F-14 Tomcat Product Family Indices Breakdown

The first case is the Grumman F-14 Tomcat. Over time, Grumman developed three

variants of the vehicle. The variants were primarily upgrades as new technologies

matured [115]. The fighter’s first variant (F-14A) first flew in December 1970. The

second variant (F-14A+ or F-14B) was developed in 1987. It replaced the engine

with a higher thrust alternative. Also, the upgrade replaced the radar with a higher

range alternative. The third variant (F-14D) was introduced in 1991. Again, the

upgrade replaced the engines with more powerful and more efficient versions. Also,

the new variant upgraded the electronics and avionics to include digital sensors and

computers. The new engines and electronics allowed for better control, safety, and

responsiveness.

An F-14 consists of fifteen primary components (components primarily used in

the conceptual design phase): a fuselage, a cockpit, a radar, avionics, a main wing,

flaps, ailerons, a horizontal tail, an elevator, a vertical tail, a rudder, two engines,

and landing gear. Figure 50 shows the break down of these major components.

Figure 50: Grumman F-14 Tomcat in Architecture Space

Taking the information the breakdown of components provides, the commonality

and reconfigurability indices (Section 3.4) for the F-14 Tomcat’s product architecture

198

Table 41: Breakdown of Unique Components in the F-14 Product Line

Component
Variant

A B C D E F G

Fuselage 1 1 1 1 2 2 2
Cockpit 1 2 1 2 3 4 3
Radar 1 1 2 2 3 3 4

Avionics 1 1 2 2 3 3 4
Main Wing 1 1 1 1 2 2 2

Flaps 1 1 1 1 2 2 2
Ailerons 1 1 1 1 2 2 2

Horizontal Tail 1 1 1 1 2 2 2
Elevator 1 1 1 1 2 2 2

Vertical Tail 1 1 1 1 2 2 2
Rudder 1 1 1 1 2 2 2
Engines 1 1 2 2 3 3 4

Landing Gear 1 1 1 1 2 2 2

can be defined. First, there are seven variants of the F-14 (A, B, C, D, E, F, and

G). Of these seven variants, the first four shared the same air frame but the radar,

avionics, and engines were upgraded. The last three variants were larger in size

than the first four. Variants B, D, and F all sat two pilots while the rest sat one.

From this breakdown of components, there is sufficient conceptual information to

formulate the commonality index for the F-14 product family. Each family member

had 15 components, creating 105 total components. Table 2 shows the breakdown of

unique components across the product line. The number associated with the variant

and component relates to which variation of a component was used on the variant.

For example fuselage 1 or 2.

Table 41 shows there are two unique fuselages, four unique cockpits, four unique

radars, four unique avionics, two unique main wings, two unique flaps, two unique

ailerons, two unique horizontal tails, two unique elevators, two unique vertical tails,

two unique rudder, four unique engines, and two unique landing gears. The count of

unique components therefore totals thirty-four. Plugging the results into Equation 25

199

gives Equation 28, and the commonality index for the F-14 Tomcat product family

is 0.79.

1−
#CompUnique −max

(
#CompTot j

)
Jp∑
j=1

(
#CompTotj

)
−max

(
#CompTot j

) = 1− 34− 15

105− 15
= 0.79 (28)

After creating the commonality index for the F-14 Tomcat Product Family, the

online and offline reconfigurability indices can be calculated. Taking the breakdown

in components from Figure 50, the components can be arranged in a tree diagram

to outline parents of each component. The best tree diagram minimizes the number

of levels. As a result, Figure 51 emerges, where the red lines highlight the online re-

configurable interfaces and the wrapped lines represent the shared interfaces between

components.

Figure 51 shows there are twelve online reconfigurable interfaces and twenty-four

total interfaces in the product line. Plugging these results into Equation 26 produces

Equation 29, and the online reconfigurability index for the F-14 Tomcat product

family is 0.5.

#InterOn

#InterTot

=
12

24
= 0.5 (29)

Furthermore, Figure 51 shows there are twelve common interfaces and twenty-four

total interfaces per design. Plugging these results into Equation 27 produces Equation

30, and the offline reconfigurability index for the F-14 Tomcat product family is 0.33.

#InterOff

#InterTot

=
8

24
= 0.33 (30)

After calculating the three indices, the F-14 Tomcat can be placed in the product

architecture space introduced in Figure 47. Equation 31 can translate the three

dimensional indices into the two dimensional coordinates required for the space. The

result is Figure 52.

200

F
u
se

la
ge

1

E
n
gi

n
es

2
E

n
gi

n
es

1
V

er
t

T
ai

l
1

R
u
d
d
er

1

H
or

T
ai

l
1

E
le

va
to

r
1

M
ai

n
W

in
g

1

F
la

p
s

1
A

il
er

on
s

1

L
an

d
in

g
G

ea
r

1
A

v
io

n
ic

s
1

A
v
io

n
ic

s
2

C
o
ck

p
it

1
C

o
ck

p
it

2
R

ad
ar

1
R

ad
ar

2

F
u
se

la
ge

2

E
n
gi

n
es

4
E

n
gi

n
es

3
V

er
t

T
ai

l
2

R
u
d
d
er

2

H
or

T
ai

l
2

E
le

va
to

r
2

M
ai

n
W

in
g

2

F
la

p
s

2
A

il
er

on
s

2

L
an

d
in

g
G

ea
r

2
A

v
io

n
ic

s
3

A
v
io

n
ic

s
4

C
o
ck

p
it

3
C

o
ck

p
it

4
R

ad
ar

3
R

ad
ar

4

Figure 51: Tree Diagram Outlining F-14 Tomcat Physical Interfaces between Com-
ponents and Subsystems

201

 X

Y

 =

 0 cos π
6
− cos π

6

1 − sin π
6
− sin π

6

OfflineReconfigurability

Commonality

OnlineReconfigurability

 (31)

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

F-14 Tomcat

Figure 52: Grumman F-14 Tomcat in Architecture Space

3.5 Evaluating Alternative Product Architectures by
Quantifying Desirability, Flexibility, and Complexity

Designers implement product architectures to reduce cost, increase performance, and

satisfy customer and manufacturer desires. However, as observed in Section 1.5.1,

systems engineers implement product architectures to reduce interactions among re-

quirements and coupling among design variables, and as explained in Section 2.3, the

interactions and couplings relate to a system’s design complexity and requirement

flexibility. This section looks to provide some numerical values to the terms that

could be useful in evaluating the alternative product architectures.

202

3.5.1 Formation of Design Problem

When designing a product, system engineers try to maximize an overall evaluation

criterion which are functions of the design space (x̄) and requirements (R̄). However,

the design must satisfy constraints (ḡ,h̄) formed by the customer needs and functional

requirements and are functions of the design space and requirements. By setting up

the design problem, it allows this dissertation to answer research question 5: How

are product architectures evaluated in a way that determines a product architecture’s

ability to satisfy requirements, resilience to changes in the industry associated with

time, and the internal difficulty of developing and producing the new product quantified

(desirability, flexibility, and complexity)?

Traditionally, the desirability of a product is given by an Overall Evaluation Cri-

terion (OEC), as explained in Section 3.5.2. However, the product must consider the

constraints. Therefore, the design problem is given by Equation 32.

minimize
[
OEC = f

(
x̄, R̄

)]
w.r.t.

[
ḡ
(
x̄, R̄

)
≤ 0, h̄

(
x̄, R̄

)
= 0
]

(32)

Usually, to help with the optimization of the product, designers use a pseudo-

objective function as seen in Equation 33, where φg and φh are penalty functions

[60]. The summation of all the functional constraints creates the pseudo-objective

constraint function φ.

minimize

[
Φ
(
x̄, R̄

)
= f

(
x̄, R̄

)
+

N∑
i=1

φgi
(
x̄, R̄

)
+

M∑
j=1

φhj
(
x̄, R̄

)]
(33)

Another representation of the pseudo-objective function is a Taylor series second

order expansion. Using the Taylor series expansion, an application of Newton’s Met-

hod minimizes the pseudo-objective function, as seen in Equation 34 where H is the

Hessian of the pseudo-objective constraint function. Understanding this concept will

become useful in the following sections.

203

 ∆x̄

∆R̄

 = −H−1∇φ
(
x̄, R̄

)
(34)

Equations 32 through 34 define the design problem. However, Equation 34 brings

to light the how the design is sensitive to the change in design variables and require-

ments. The sensitivities relate to the resultant product’s flexibility and complexity.

3.5.2 Creation of Desirability Metric

This dissertation needs to create a metric that captures the architectures ability to

satisfy customer demands to answer Research Question 5.a: How is the desirability

of the product architecture determined? The trends, from the historical data analysis

mentioned in Section 3.2.2, provide a predicted or “preferred” architecture. If the

systems engineers select a product architecture that differs from the “preferred” one,

then the trade-off moving away from the predicted must be captured. Desirability

(D) is a proposed metric that depicts the relation among the predicted and alter-

native architectures. Figure 53 displays desirability in the architecture space, where

A, B, and C are different architectures, â is the predicted or “preferred” architec-

ture, and the arrows represent the difference between the alternative and “preferred”

architectures desirability.

The desirability metric must satisfy the following criteria:

• Show ability of system to meet requirements

• Display preference based on technical or functional performance measures

• Clear and traceable logic for assigning preference

Traditionally, engineers represent desirability by an overall evaluation criterion

(OEC). The OEC defines a metric that combines performance and cost values based

204

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

â

A
B

C

Figure 53: Desirability

on preference. Often, the OEC is normalized to prevent any of the metrics domina-

ting the product architecture selection process. It is traditionally defined utilizing a

Quality Function Deployment (QFD), which combines customer needs and functional

requirements to create a weighted value equation. A desirable product architecture

maximizes this metric with respect to any additional performance or cost constraints.

An OEC captures requirement considerations; how well the system performs the mis-

sion, and its development is coherent and comprehensible. Therefore, desirability is

the value of this OEC.

Section 2.2.1.1 explains the utility of a QFD. There the customer needs and functi-

onal requirements can help the systems engineers formulate preference of various

technical performance metrics. For each product in the product line, the systems

engineers must create an OEC. Each product must be able to conduct specific tasks

and possess specific technical performance metrics.

The system engineers should break down the list of requirements by market and

pair each requirement with a specific product family member. Then, the engineers

205

Customer Needs
& Functional Requirements

Family Member 2Family Member 1 Family Member 3

CBA

D

E

F

I

G

H

CBA

D

E

F

I

G

H

CBA

D

E

F

I

G

H

OEC 1 OEC 2 OEC 3

Figure 54: Overall Evaluation Criteria Creation

can conduct a QFD for each family member, defining each’s OEC. Figure 54 outlines

this process.

Therefore, the overall desirability is the sum of all OECs minus the penalty functi-

ons of all constraints (refer to Equation 33) in the product family divided by the

number of product line members, creating a metric that varies from zero to one. For

more detail on the formulation of desirability refer to Section 4.3.

3.5.3 Creation of Requirement Flexibility Metric

Since requirement flexibility plays a considerable role concerning product architec-

ture selection, quantifiable equations of requirement flexibility (FR) must be created.

Hence, Research Question 5.b will be answered: What is an appropriate definition

and quantification of requirement flexibility in the context of product architectures?

Products are flexible if they can perform more than designed. Furthermore, the

roles the product conduct might change over time. A product can be profitable in the

market as the market’s preferences change. However, once the drivers reach a certain

206

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

A
B

C

Figure 55: Flexibility

threshold, the product is no longer viable. Therefore, the manufacturer would have

to develop a new product. Flexibility is a way to relate the drivers to the change

in the product architecture. In Figure 55, the dashed circles represent the ability

of the product architectures A, B, and C to perform tasks meant for other product

architectures. Therefore, product architecture B is the most flexible out of the three.

A requirement flexibility metric must satisfy the following criteria:

• Capture the sensitivity of the product architecture to the requirements/drivers

Since requirement flexibility is the resilience of a product architecture to changing

capabilities. Therefore, the product’s sensitivity to changing requirements can pro-

duce its quantification. High requirement flexibility relates to high resilience and low

sensitivity.

As set forth at the start of the section, the physics-based and disciplinary-based

equations, showing the sensitivities of the product to changes in its design and allow

for the development of sensitivity-based requirement flexibility. The derivation of

requirement flexibility uses elements of the inverse Hessian and the gradient of the

207

product line’s desirability function (Equation 37 and Equation 36).

H[D
(
x̄, R̄

)
] =

 δ2D(x̄,R̄)
δx̄2

δ2D(x̄,R̄)
δx̄δR̄

δ2D(x̄,R̄)
δR̄δx̄

δ2D(x̄,R̄)
δR̄2

 (35)

∇D
(
x̄, R̄

)
=

 ∇Dx̄

(
x̄, R̄

)
∇DR̄

(
x̄, R̄

)
 (36)

Equation 37 represents the inverse Hessian matrix of the product line’s desirability

as three sub-matrices: a, b, and c. The matrix a is a n×n matrix, b is a n×m matrix,

and c is a m×m matrix, relating to the n design variables and m requirements.

H[D
(
x̄, R̄

)
]−1 =

 a b

bT c

 (37)

Equation 38 displays the formulation of requirement flexibility (FR), combining

the upper right con of the inverse Hessian matrix and the lower half gradient of the

the product line’s desirability function. This shows how a change in the requirements

can impact the change in the design of the system. The more sensitive the design is

to the requirements the less flexible it is.

FR = exp
(
−‖ [b]∇DR̄

(
x̄, R̄

)
‖
)

(38)

The metric is designed to vary from zero to one. Since there can be many de-

signs associated with a single product architecture, a design space exploration can be

conducted creating a distribution of requirement flexibility values. Systems engineers

can compare the distributions of various product architectures to analyze the product

architecture space.

3.5.4 Creation of Complexity Metric

The next step is to understand the complexity of the design problem. This disserta-

tion observed seven specifically selected products that present different cases in the

208

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

A
B

C

Figure 56: Complexity

architecture space in Section 3.4.4. From the analysis, systems engineers implement

product architectures to reduce the couplings or interactions among the requirements,

components, or disciplines, increasing the product’s flexibility and complexity. The

couplings and interactions relate to the number errors made during design and deve-

lopment. The number of error directly relates to number of design changes and the

cost of product development and production. Since the previous subsection already

defined flexibility, this subsection answers research question 5.c: What is an appropri-

ate definition and quantification of complexity in the context of product architectures?

Figure 56 displays complexity in the architecture space. The points A, B, and C

are different architectures and complexity is represented by the curved arrows, the

thicker the arrows, the more difficult the design problem associated with a product

architecture.

The complexity metric must be able to satisfy the following criteria:

• Include Number of domains, functions, or disciplines

• Account for the level of interdependency among the domains, functions, or

209

Table 42: Components Broken Down by Discipline

Discipline Component

Propulsion Engine and/or Propeller
Aerodynamics Wing, Empennage, Fuselage, and Engine Interaction
Structures Wing and Fuselage
Controls Wing, Empennage, and Engine
Manufacturing Structures and Controls Results
Economics Manufacturing Results

disciplines

• Consider the novelty of project

• Include the level of constraints’ stringency

Traditionally in complex system design, an N2 structure identifies the number of

domains, components, and disciplines and their interactions and couplings. The N2

structure identifies half of complexity’s factors. For example, an N2 diagram can show

the number of components, their disciplines, and relations. Table 42 and Figure 18

show the disciplines and their associated components. Therefore, multi-disciplinary

analysis can reveal the interdependencies or connections between the components and

disciplines.

In the past, the Contact and Channel Model (C&CM) explained in Section 2.2

gave the connections weights. However, there are analytical and physics-based met-

hods to represent the relationships. For this dissertation, the relations are considered

constraints, objective functions, or relations. Some examples include Mattingly equa-

tions, cost approximations, and Breguet range/endurance equations. Derivatives of

these mathematical functions provide the sensitivities.

From a review of literature and analysis of the problem, there are many ways to

calculate complexity. The five methods identified in Section 2.3.2 provide various

ways to calculate complexity. Out of the five, the complexity metric should capture

210

the difficulty of the design problem not necessarily the difficulty of achieving the

requirements. Thus, the best analytical method to analyze complexity is by size.

Complexity as size (Csize) analyzes the number of independent (idv) and dependent

design variables (ddv), design requirements (dr), and measures of “goodness” (mg).

Furthermore, it adds the number of modules (M0) and connections among them (C0)

to show the additional magnitude of the problem. Equation 39 shows its formulation.

Csize =
(
M0 + C0

)
ln |idv + ddv + dr + mg | (39)

The representation of complexity as size provides an abstract method for determi-

ning the difficulty of the problem. However, the metric does not include the novelty

of the project and the level of constraints’ stringency. Therefore, this dissertation

uses a new metric that uses the information provided by conducting multidisciplinary

analysis.

Complexity (C) is the ability of a design to be modified, which relates to the pro-

duct architecture’s impact on the constraints, objective functions, or relations. These

relations are design (performance) and process (manufacturing and costs) formulati-

ons and are usually nonlinear, meaning the first and even second derivatives are not

constant. However, this dissertation does not focus on a specific design but rather the

architecture’s relation with the development and production domains. Therefore, C

is a combined measure of architecture’s impact on the sensitivity of design variables

to each other.

From the beginning of this section, the physics-based and disciplinary-based equa-

tions, showing the sensitivities of the product to changes in its design, allow the de-

velopment of sensitivity-based complexity. Equation 40 displays the formulation of

complexity (C), combining the upper left corner of the Hessian matrix and the top

half of the gradient of the product line’s desirability function.

211

C = 1− exp (−‖A∇Dx̄‖) (40)

The metric is designed to vary from zero to one. Since there can be many de-

signs associated with a single product architecture, a design space exploration can be

conducted creating a distribution of complexity values.

3.5.5 Formation of Hypothesis 3

From the review of past product architecture selections, systems engineers implement

various characteristics to achieve multiple goals. The following are some reasons why

designers implement product architectural characteristics:

• Designers use fixed components to design elements specifically for one role,

thus increasing the performance of a single product in the product line.

• Designers use offline reconfigurable components to change the role of the

system, thus increasing the requirement flexibility of the product without dras-

tically increasing the cost.

• Designers use online reconfigurable components to enhance the perfor-

mance of the system in various conditions, thus increasing the flexibility of the

product sometimes at expense of the cost of the system.

• Designers use common components to reduce costs by sharing manufacturing

processes, thus reducing the design complexity of the product.

Designers implement product architectural characteristics making these assump-

tions without fully understanding the consequences. The number of family members

in the product line, types of requirements, or other factors can add unforeseen com-

plexity to the product. This dissertation hopes to explore why, when, and how to

implement product architectures. Therefore, it must test the validity of the assump-

tions listed above, leading to Hypothesis 3 and its sub-hypotheses:

212

Hypothesis 3

If implementation of product architecture characteristics (com-

monality and reconfigurability) have unforeseen or hard to pre-

dict consequences, then systems engineer require a new product

architecture selection method or framework.

By testing these predisposed assumptions, they can be proven to be true, or new

relations can be drawn to help designers understand the implications of implementing

various product architectures. Section 3.7 describes how the approach to testing these

hypotheses.

3.6 Formulation of Method to Identify Architectures of
Interest

The new framework must identify regions of interest to facilitate an informed archi-

tecture selection. The process must be able to down-select architectures that are

equally preferred or incomparable. Visualization of this process provides the archi-

tect with a greater understanding of the results. Therefore, a need exists to develop

a visualization analysis to support quantitative decision making. This section ans-

wers Research Question 6: What techniques can facilitate the process of analyzing and

down-selecting regions of interest in the product architecture space?

3.6.1 Definition of Pareto Identification

Pareto identification, often implemented in multi-objective/criteria design, identi-

fies non-dominated systems as possible alternatives in the design process. Multi-

objective/criteria problems tend to be complicated, and designers perform trade-offs

between criteria. Pareto identification provides all possible solutions depending on

the criteria’s weightings. Non-dominated designs are solutions that are “better than

all designs to which they can be compared, but that are incomparable to each other

[60].”

213

D

1− C F

Figure 57: Theorized Product Architecture Pareto Frontier

For this dissertation, the evaluation metrics of product architectures are desirabi-

lity, flexibility, and complexity. Therefore, the Pareto Frontier maximizes desirability

and flexibility while minimizing complexity. As a result, Pareto frontier should look

something similar to Figure 57.

3.6.2 Utilization of Impact Mappings to Form Flexible Pareto Frontier

Another way to determine architecture of interest is to find product architectures that

are preferred over time, meaning they are resilient to changing drivers. The proposed

method is to utilize phase portraits. “Phase portraits provide functions with an

individual face and deepen our intuitive understanding of basic and advanced concepts

in complex analysis [153].” A phase portrait shows how a state will change, based

on initial conditions, if extrinsic variables change. Designers can use phase portraits

to show nodal points where time independent preferred product architectures exist.

Phase portraits of product architecture desirability, flexibility, and complexity can

be combined to create Driver Impact Mappings. The nodal points that occur show

stable points where the product architecture will see an equal trade between all of

the evaluation metrics when a driver changes.

Section 3.2.3 introduced Driver Impact Mappings. For example, a common con-

straint in aircraft design is the Mattingly equation, which ensures the design has

214

enough thrust/power to achieve a mission segment. Equation 41 shows how the dri-

vers (R̄), design variables (x̄), and product architecture (ā) impact the constraint.

By taking the first and second derivatives of the Mattingly equation with respect

to the design variables and requirements, quickly it becomes apparent how changing

drivers impact desirability, flexibility, and complexity. Therefore, by impacting the

evaluation metrics, it will impact the preferred product architecture.

T

W
=
K1

(
x̄, R̄, ā

)
W
S

+K2

(
x̄, R̄, ā

)
+K3

(
x̄, R̄, ā

)W
S

(41)

Theoretically, superimposing the phase portraits of desirability, flexibility, and

complexity concerning the drivers produces nodes where stable choices of product

architectures exist. These solutions are assumed to be Pareto efficient, creating the

product architecture Pareto frontier. The impact of drivers create different flows and

behave differently. Therefore, the drivers behavior must be categorized, which occurs

in the next subsection.

3.6.3 Categorization and Properties of Architecture Drivers

During this dissertation insights and contributions can be made providing value. One

of them is categorizing the drivers’ influence on the architecture space, including the

drivers’ preference and impact on architectures.

Two possible categories theorized are radial and tangential drivers. Radial drivers

are ones whose partial derivatives are parallel to the index vectors, meaning as the

driver changes, the architecture prefers to be dominated by that product characte-

ristic. Tangential drivers are ones whose partial derivatives are tangent to the index

vectors, meaning as the driver changes the architecture prefers to move towards anot-

her dominant product characteristic. Figure 58 displays the two driver categories:

radial and tangential, respectively.

Categorization of drivers provides the architects with insights on strategic road

215

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

M
od

u
lar

D
esign

R
ec

on
fi
gu

ra
b
le

D
es

ig
n

Customizable Design

Offline
Reconfigurability

CommonalityOnline
Reconfigurability

Figure 58: Theorized Driver Impact Categories: Radial and Tangential

216

mapping if requirements change, implying designers can predict the preferred product

architecture’s evolution.

3.7 Experimental Plan

The framework formulated in this dissertation must be able to achieve all the tasks

laid out in Chapter 3, specifically Section 2.4. The framework must:

• Derive need of the product from the customer or business strategy

• Implement a method to clearly define the product’s functional requirements

from the needs

• Provide an understanding of how and which functional requirements drive the

architecture

• Provide the systems engineers with insights on what types of product architec-

tures are favored

• Provide a way to characterize and explore the space of alternative product

architectures

Also, it must be able to compare many competing architectures, considering chan-

ges in design drivers (market, technology, and performance requirements), and aiding

system architects in performing trade-offs between competing architecture designs.

Section 3.4 defines the architecture space which represents the space as indexes

of component characteristics: common, online, and offline reconfigurable. The conti-

nuous space shows there are many architecture alternatives and attempts to simplify

a complex qualitative problem. The conversion to a continuous domain gives the ar-

chitect an approximation of what component characteristics the product architecture

should possess and allows system engineers to compare many alternatives.

217

Section 3.2.1 identified drivers that influence architecture selection. Understan-

ding the requirements and elements that impact the decision give architects greater

knowledge of the process or problem’s properties. Some industries’ requirements or

drivers vary over time, so product architectures evolved to meet these changes. The

ability to analyze stochastic drivers is inherent to the architecture selection problem.

Therefore, the systems engineers must possess the tools to pick a product architec-

ture that best satisfies the requirements (desirability - Section 3.5.2) and is flexible

(Section 3.5.3). The proposed framework must account for these properties.

Given that an inherent feature of a product architecture is the interactions and

couplings among various disciplines, components, and subsystems, a data-driven met-

hodology is needed to assess the impact of those interactions and couplings rigorously.

The proposed way of understanding these features is through complexity, defined in

Section 3.5.4.

Finally, the proposed framework must contain a means to identify product ar-

chitectures or regions of interest in the product architecture space that the systems

engineers should further explore (Section 3.6).

Combining the elements defined in Chapters 2 and 3 enables the formulation of a

framework to facilitate the process of product architecture selection.

After answering the research questions, introduced in Section 2.5, the process

begins to emerge. Figure 59 shows the finalized experimental plan.

The case study for this dissertation is a manufacturing firm’s entry into the UAV

industry. The firm must be able to understand what product architecture it should

implement to enter and be successful in the market. The firm will go through the

framework outlined in this chapter. Demonstrating the framework can validate the

research. For example, experiments must be conducted to test past product architec-

ture implementation assumptions (Section 3.7.1), test the sensitivity of the selected

product architecture to the qualitative weightings (Section 3.7.2), and to confirm the

218

Establish
the Need

- Identify a case
study
- Define market
conditions and
customer needs

Define the
Problem

- Form functio-
nal requirements
- Result: Iden-
tify product ar-
chitecture se-
lection drivers

Establish
Value

- Define OEC
using QFD for
desirability me-
tric

Generate
Alternatives

Analysis of
Alternatives

Make a
Decision

- Utilize Pareto
frontier and
Driver Impact
Mappings

Experiment 1
(Hypothesis 3)

Experiment 2
(Hypothesis 2)

Experiment 3
(Hypothesis 1)

UAV Case Study

Automobile Case Study
(Validation of Framework)

Figure 59: Experimental Plan

219

proposed product architectural drivers (Section 3.7.3). The first experiment tests

the predisposed assumptions, listed in Section 3.5.5, verifying a need for numerical

analysis of product architecture selection. The second experiment tests the validity

of using the qualitative weighting system, outlined in Section 3.3. The final and

third experiment verifies the drivers identified in Section 3.2, adding relevant and

removing irrelevant ones. The drivers are essential to understanding the dynamics

of the product architecture space. Finally, this dissertation applies the framework to

a historical automobile industry case to prove the framework’s utility. It will com-

pare the decisions made in the industry against the recommendations provided by

the framework.

3.7.1 Experiment 1: Testing Predisposed Assumptions in Product
Architecture Selection

From the literature review there are assumptions systems engineers make that jus-

tify their reasoning to implement various product architecture characteristics. As a

reminder, the most common are:

• Designers use fixed components to design elements specifically for one role,

thus increasing the performance of a single product in the product line.

• Designers use offline reconfigurable components to change the role of the

system, thus increasing the requirement flexibility of the product without dras-

tically increasing the cost.

• Designers use online reconfigurable components to enhance the perfor-

mance of the system in various conditions, thus increasing the flexibility of the

product sometimes at expense of the cost of the system.

• Designers use common components to reduce costs by sharing manufacturing

processes, thus reducing the design complexity of the product.

220

Repeating Hypothesis 3: If implementation of product architecture characteristics

(commonality and reconfigurability) have unforeseen or hard to predict consequences,

then systems engineer require a new product architecture selection method or frame-

work, the goal of Experiment 2 is to test the validity of these assumptions. Most

engineers implement product architectures without fully understanding the unfores-

een consequences of their choice. Experiment 2 hopes to illuminate the process by

analyzing the relationship between the product architecture and the evaluation me-

trics. In effect, Experiment 2 hopes to answer the following question:

• What are the reasons designers should implement product architectures, and

what are the consequences of implementing their characteristics?

The required steps for this experiment and its sub-experiments are:

1. Determine the customer needs

2. Set the number of products (UAVs)

3. Derive the functional requirements for each product line member

4. Formulate the OEC for each product line member

5. Vary the product architecture by varying the levels of commonality, online, and

offline reconfigurability

6. Conduct a design space exploration of the design variables to capture as much

of the space as possible

7. Observe the trends in the product architecture characteristics and the evaluation

metrics’ distributions

8. Compare results with the assumptions

221

Experiment 1 should observe the impact of varying levels of commonality and

reconfigurability on the performance, cost, requirement flexibility, and design com-

plexity of the product line. By observing these characteristics of the product line,

the experiment can determine if the four assumptions traditionally made during the

implementation of product architectures hold true. Furthermore, if any unforeseen

or hard-to-predict then the need for a new framework to facilitate the product archi-

tecture selection process is justified. Specifically, the experiment should determine

if the percentage of the unique components is correlated with desirability, if both

reconfigurable indexes are correlated with flexibility, and if the commonality index

is negatively correlated with complexity. If all conditions are true and hold in all

possibilities of the design, then hypothesis 3 will be proven as untrue and traditional

methods can be used when selecting a product architecture.

If hypothesis 3 is proven to be true, the rest of the experiments can proceed. Expe-

riment 1 will identify new trends and insights on the behavior of the problem. These

results are essential to the dissertation and explain why these assumptions are not

always valid. Furthermore, the results from Experiment 1 can support the following

experiments. Therefore, if Experiment 1 formulates the OEC for each product, then

the data produced in Experiment 1 is valid in Experiment 2 and 3.

3.7.2 Experiment 2: Testing the Validity of using Qualitative Weightings
for various Metrics used to Evaluate the Product Architectures

This dissertation must test the validity of using the qualitative weighting technique

presented in Section 3.3. Section 3.3 looked at the qualitative characteristics that

surround requirement flexibility and design complexity. These characteristics or con-

cepts can be hard to quantify and require some knowledge of the business case and

internal processes and capabilities. Due to this stage’s lack of numerical analysis, a

way to test the validity of the stage is required.

Repeating Hypothesis 2: If the qualitative weightings have significant influence

222

on the decision of which product architecture to implement, then the most favorable

product architecture should be vastly different at various weightings. The goal of

this experiment is to test the impact of each of the weights on the selected product

architecture. Furthermore, it should determine if the magnitude of the impact is

proportional to the implied qualitative weight proposed in Section 3.3. In effect,

Experiment 2 hopes to answer the following question:

• Is the proposed weighting system an appropriate approach in determining which

product architecture should be the most favorable?

The required steps for this experiment are:

1. Determine the customer needs

2. Set the number of products (UAVs)

3. Derive the functional requirements for each product line member

4. Formulate the OEC for each product line member

5. Vary the levels of the weights providing extreme cases

6. Observe the impact of varying the weightings on the final selected product

architecture

7. Compare the magnitude of change of commonality and reconfigurability of each

case

8. Determine if the magnitude of change corresponds to the qualitative insight

that provides the weightings

Experiment 2 will be conducted as a sensitivity study of the weightings’ impact

on the finally selected product architecture. Extreme cases where only one or two

223

metrics are important will be compared against each other and the original weig-

htings determined by the case study found in Chapter 5. If the change in weightings

correspond well to the results found in Experiment 1 and their corresponding final

selected product architecture, then Hypothesis 2 will be proven true.

3.7.3 Experiment 3: Validation of Product Architecture Drivers

This dissertation must validate the drivers of product architecture selection. Section

3.2 investigated past industries to determine what factors influenced the product ar-

chitectures adopted by each industry. Table 39 lists the resulting factors. Though the

list provides a diverse set of requirements, this dissertation must test the assumption

that these drivers are sufficient.

Repeating Hypothesis 1: If the product architecture selection drivers identified

truly drive the decision, then they must significantly impact the process’s results by

influencing the levels of commonality and reconfigurability in the product line. The

goal of this experiment is to determine which and how the identified drivers impact

the product architecture selection process. Furthermore, the experiment should de-

termine which drivers, previously identified in Section 3.2, are irrelevant and what

other requirements might be possible drivers. In effect, Experiment 3 hopes to answer

the following question:

• What are the requirements that drive the product architecture selection process?

The required steps for this experiment are:

1. Determine the customer needs

2. Set the number of products (UAVs)

3. Derive the functional requirements for each product line member

4. Formulate the OEC for each product line member

224

5. Conduct a design space exploration of the design variables, product architecture

characteristics, and requirements to capture as much of the space as possible

6. Determine which of the identified drivers have statistically significant impact

on a product architecture’s desirability, flexibility, or complexity

7. Determine what alternative requirements have statistically significant impact

on a product architecture’s desirability, flexibility, or complexity

This dissertation will conduct a screening test/ANOVA to determine which drivers

impact the product architecture selection process. An ANOVA is a statistical method

that determines whether the variance in an input variable drives the variance seen

in the output metrics. If all of the drivers influence either the desirability, flexibility,

or complexity of the product architecture, then Hypothesis 1 holds true. If not, the

conclusions must drop the drivers that are irrelevant. If any of the other requirements

impact the evaluation metrics, the conclusions must deem them as drivers.

3.7.4 Validation of Framework

Finally, the proposed method must be verified and validated throughout its formu-

lation. Figure 60 displays the verification and validation of the proposed method

through the experiments.

The framework follows the generic engineering decision support process. The

process establishes the needs of the customer and manufacturer, defines the problem,

establishes a value for a product architecture, generates alternatives, evaluates the

alternatives, and provides a final decision. However, there is still some questions

or uncertainty about the framework. The two experiments will verify the steps in

the process, and the automobile case study will provide the overall validation of the

framework.

The automobile industry will provide a historical case studies where data is easily

attainable to the public and product architectures are easily discernible. The case

225

Establish
Needs

Define
Problem
Determine

Drivers

Establish
Value

Generate
Alternative

Prod-Arch

Space

Evaluate
Alternative

Des. Flex.

Comp.

Make
Decision

Creation of
Evaluation

Metrics

Verify
Impact of

Prod. Arch.
Experiment 1

Does value
meet Cust.
Demand?

Experiment 2

Verify
Drivers of
Process

Experiment 3

Validation
of Framework

UAV Case Study

UAV Case Study

UAV Case Study

Automobile Case Study

Figure 60: Verification and Validation Plan for Proposed Method

226

study will test the validity of the framework by comparing the historical decisions

made throughout the process against the results derived from the framework.

3.8 Formulation of Framework Conclusion

Though this dissertation analyzes cases from other industries during the background

research, it is not its focus. This dissertation utilized these cases to draw observations

necessary for the creation of the new framework. The observations and insights gained

from the other industry are relevant to the unmanned aerial vehicle industry because

the UAV industry implements a broad range of product architectures. Therefore, a

wide variety of industries must be observed to understand the problem architecture

selection problem.

The next chapter outlines the modules and simulation models required to conduct

the experiments. Then, the following chapter tests the framework using a case study

of a UAV manufacturer. The case study will provide the data required to run the

experiments and verify the framework. The following chapter validates the framework

by using an automobile case study taking key points in the industry to use the fra-

mework. The results from the framework should match the decisions that promoted

companies’ success. The validation case study will show the proposed framework’s

utility.

227

CHAPTER IV

DEVELOPMENT OF THE ANALYTICAL MODULES

REQUIRED BY FA2UST MODULE

The framework and experiments outlined in the last chapter require modules integra-

ted together to allow for product architecture analysis. The modules required were

incorporated into a module named after FA2UST. The module consists of an outer

layer that defines and provides rules for the product architecture and an inner layer

that primarily consists of the sizing and synthesis models used in traditional design

practices. Before going into detail of the layers, it is important to provide some defini-

tions of the objects and their roles within the FA2UST module. The FA2UST module

was built in Java which is an object-based scripting language and operators can tie

any type of product to the outer layer. Therefore, abstract objects were created to

give the operator this flexibility. Figure 61 shows these objects and their relationships

as they pertain to product architecture analysis.

Figure 61 shows there are seven objects that make up the abstract elements of

FA2UST. Each has specific roles, behaviors, and structure allowing for an abstract

construction of a product. Some definitions are provided to give clarification to each

object:

• Values

– Variables

∗ are the minimum number of values that can describe the properties of

an entity.

∗ are assigned to one or multiple common entities.

228

Physical Entity 1

• Variables

• Characteristics

• Dependent Characteristics

Geometric Entity 2

• Variables

• Characteristics

• Dependent
Characteristics

Geometric Entity 1

• Variables

• Characteristics

• Dependent
Characteristics

Physical Entity 2

• Variables

• Characteristics

• Dependent Characteristics

Geometric Entity 3

• Variables

• Characteristics

• Dependent
Characteristics

Physical Entity 3

• Variables

• Characteristics

• Dependent
Characteristics

Dependent,

Online Recon.,

or Common

Interface

Physical Entity 2

• Variables

• Characteristics

• Dependent Characteristics

Geometric Entity 3

• Variables

• Characteristics

• Dependent
Characteristics

Physical Entity 3

• Variables

• Characteristics

• Dependent
Characteristics

Commonality

Interface

Product 1

• Dependent Characteristics

• Performance Characteristics

• Configuration

Product 2

• Dependent Characteristics

• Performance Characteristics

• Configuration

Product Line

• Dependent Characteristics

• Desirability

• Requirement Flexibility

• Design Complexity

Capability 1

Requirement 1

• Variables

• Characteristics

Ordinal
Requirement 1

• Variables

• Characteristics

Capability 2

Requirement 2

• Variables

• Characteristics

Ordinal
Requirement 2

• Variables

• Characteristics

Medium

• Variables

• Characteristics

Capability Interface
Capability

Interface

Medium

Interface

Medium

Interface

Figure 61: Definitions of Entities and Objects used within FA2UST

229

– Characteristics

∗ are functions of an entity’s own variables without any external depen-

dence.

– Dependent Characteristics

∗ are functions of an entity’s own and external entity’s variables.

∗ are dependent of another or multiple entities’ variables.

– Performance Characteristics

∗ are functions of how a product, its subcomponents and its subsystems

interact with the environment.

• Entities

– Physical Entity

∗ is a physical object, usually a component or subsystem, which is a part

of the composition a product or parent component.

∗ must have some geometric entity (explained later) to outline its shape.

∗ can be composed of other subcomponents or subsystems (other phy-

sical entities) to provide its full description and capabilities.

∗ consists of variables; characteristics; dependent characteristics; and its

internal geometric and physical entities variables, characteristics, and

dependent characteristics.

– Geometric Entity

∗ is a shape that describes the shape of a physical entity.

∗ consists of variables and characteristics.

• Configuration

– outlines the arrangement of physical entities within a product.

230

• Product

– is a composition of physical entities and the interfaces between them crea-

ting a system that has its own emergent characteristics that emerge when

operating in a medium.

– has one or multiple capabilities paired with it in order to size and determine

the performance characteristics.

– the performance characteristics are determined from the product’s inte-

raction with the environment (medium) during operations.

• Requirements

– Lone Requirement

∗ is an independent requirement demanding certain capabilities of a pro-

duct.

– Ordinal Requirement

∗ is a requirement or mission segment that has some order in the overall

operations of the product.

∗ is dependent of other ordinal requirements.

• Capabilities

– are compositions of lone and ordinal requirements that a product can

achieve.

• Medium

– is an environmental object which the product or products interact with.

– is used to determine a product’s or products’ performance during operati-

ons.

231

– consists of variables, characteristics, and performance characteristics.

• Interfaces

– Dependent Interfaces

∗ is a connection between two physical entities that defines the depen-

dent characteristics of itself, its geometric entities, or its physical entity

– Commonality Interface

∗ is a connection between two physical entities that makes the two com-

mon meaning the variables, geometric entities, and physical entities

are always the same.

– Online Reconfigurable Interface

∗ adds a degree of freedom to the control of the aircraft allowing the two

components to change its orientation between each other.

∗ multiple online reconfigurable interfaces can be applied to the same

two components.

– Common Interface

∗ shows that there may be different operational modes where one com-

ponent is preferred over another of the same type (two types of wings).

∗ ensures the dimensions, information (data or energy) flow, and con-

nection point of the interface is common, standardizing the interface.

– Capability Interface

∗ pairs a product with a capability.

– Medium Interface

∗ determines the environment during a requirement or operations of a

product.

232

Now that the abstract objects have been defined, the outer layer of the FA2UST

Module can be explained. The outer layer ensures commonality, online reconfigura-

bility, and offline reconfigurability during the sizing and synthesis of the product line.

Also, it allows the calculation of a product architecture’s desirability, requirement

flexibility, and design complexity. With this information, the operator of the module

will have enough information to conduct the experiments described in the previous

chapter and conduct product architecture analysis.

4.1 FA2UST Module Outer Layer Inputs

The FA2UST Module’s outer layer consists of two elements: managing the inputs from

the module’s operator and calculating the product architecture evaluation metrics.

The first part reads the user’s inputs to the module and sets forms of commonality,

online reconfigurability, and offline reconfigurability. Also, it sets the designs and

their composition of components and subsystems based on variable inputs defining

the design of each product in the product line.

When the FA2UST Module loads the input file, it generates vectors that define

the number of products within the product line, the design missions associated with

each product, any additional requirements associated with each product, cost analysis

parameters, and a series of components and their values for their variables.

During the initialization, the module reads in a list of each type of component.

For example, the list will include engine 1, engine 2, and so on. As it creates this

list, links specific design variables to each. For example, engine 1 has 100 horsepower.

The module does this for all components provided by the input file. Then it creates

a list of products that make up the product line. Each product has an index list

associated with each type of component which allows the module to figure out which

components are included in the product’s configuration. Once the list has been ge-

nerated, the module will either receive the orientation of components from the input

233

file or use a default orientation. The orientation provides the structure (parent and

child component) of the product, as Figures 65 through 68 show. Also, the input

file provides some switches that can turn on and off some online reconfigurable inter-

faces. The module compiles vectors of these switches with the lengths equaling the

number of products in the product line. A swith is represented with a 1 for on and

a 0 for off. For example in the UAV analysis, these include flaps (¯Flaps), variable

sweep main wing (¯V arSweep), variable pitch main wing (¯V arP itch), variable pitch

propeller (¯V arProp), and thrust vectoring (¯V ecThrust). With all of this informa-

tion, the module can generate the commonality, online reconfigurability, and offline

reconfigurability of the product line.

4.1.1 Inputing the Commonality of a Product Architecture

The index lists from all components can be combined into a two dimensional array

of indices ([Comp]), where the row vectors represent a component type and column

vectors represent a product. It is important to note some of the elements of the two

dimensional array might be empty, implying the product does not have this type of

component. The number of indices in a column represent the number of components

in that product, and the number of indices in the entire array represent the total

number of components in the product line. When the redundant indices are removed

from each row, the array becomes a list of unique components within the product

line. These values provide enough information to calculate the commonality index

found in Equation 25.

4.1.2 Inputing the Online Reconfigurability of a Product Architecture

The orientation of components provides the total number of interfaces in a product.

Combining the total for each product provides the total number of interfaces in the

product line. The vector sum of all the online reconfigurable switches provide the

number of online reconfigurable interfaces in the product line. These values provide

234

enough information to calculate the online reconfigurability index found in Equation

26.

4.1.3 Inputing the Offline Reconfigurability of a Product Architecture

The orientation of components defines the parent child relationship between all com-

ponents. If a parent has two children of the same component type then the two child-

ren share a common interface. Using this relationship, the module iterates through

each interface within the product line and counts the number of common interfaces.

The total number of interfaces and the number of common interfaces provide enough

information to calculate the offline reconfigurability index found in Equation 27.

4.2 FA2UST Module Inner Layer

The inner layer of the FA2UST Module depends heavily on the type of product the

engineers are analyzing. Models can be built up and added to show individual com-

ponent characteristics and performance. However, it is also important that models

are incorporated to show the interactions and emergent behavior that occurs when

the components are combined. This section will look at the two products analyzed:

UAVs and automobiles.

4.2.1 UAV Sizing and Synthesis Models

Models from existing aircraft sizing and synthesis modules and data from existing

UAVs were combined to create a component based UAV sizing and synthesis mo-

dule. The module has the ability to size and optimize certain characteristics of the

aircraft relative to requirements or constraints placed on the design. It consists of

geometric entities, physical entities, a medium entities, configuration rules, and inte-

grated system architecture behaviors specific to UAV design. Using this information,

the module can predict the development and production cost of a UAV product fa-

mily. The information provided by the module is important in analyzing the product

235

architecture of the product line in the outer later of the FA2UST Module.

4.2.1.1 UAV Geometric Entities

The FA2UST Module uses three main geometric entities to describe the shape of

the components used in UAV design. These geometric entities include the planform,

airfoil, and cylinder.

Planform: The aerodynamic surfaces, explained later in this section, require a

planform to describe their flat, two-dimensional shape.

Planform Variables: The FA2UST Module explains a planform with four va-

riables: area (S), aspect ratio (AR), taper ratio (λ), and quarter chord sweep (Λ1/4).

From these four variables the rest of the characteristics of the planform can be ex-

plained.

Planform Characteristics: The planform characteristics important in the ae-

rodynamic analysis of a UAV are leading edge sweep (ΛLE), span (b), root chord (cr),

tip chord (ct), and average chord length (c̄). Equations 42 through 46 show how the

four variables can define of the characteristics.

ΛLE = tan−1

[
tan
(
Λ1/4

)
+

1− λ
AR× (1 + λ)

]
(42)

b =
√
S × AR (43)

cr =
2× S

b× (1 + λ)
(44)

ct = cr × λ; (45)

236

Area (S)

Span (b)

Tip
Chord
(ct)

Root Chord (cr)

Leading Edge Sweep (ΛLE)

Quarter Chord Sweep (Λ1/4)

Figure 62: Example Planform Shape for Aerodynamic Surfaces

c̄ =
2× cr × (1 + λ+ λ2)

3 (1 + λ)
(46)

All of the variables can be combined together to define the shape of the planform

as shown in Figure 62.

Airfoil: The aerodynamic surfaces, explained later in this section, require a plan-

form to describe their flat, two-dimensional shape and an airfoil profile to provide the

three-dimensional shape. The airfoils included in the FA2UST Module are displayed

in Table 43. The airfoil defines some key aerodynamic parameters that help define the

overall performance of the aerodynamic surface. These include maximum thickness to

chord ratio (t/c), location of the maximum thickness (x/c), the two-dimensional lift

coefficient of the airfoil at zero angle of attack (Clα=0), the two-dimensional lift coeffi-

cient derivative with respect to angle of attack (Clα), the maximum two-dimensional

lift coefficient (Clmax), the minimum two-dimensional drag coefficient (Cdmin), the two-

dimensional lift coefficient’s value at minimum drag (ClatCdmin), the two-dimensional

moment coefficient at zero angle of attack (Cmα=0), and the two-dimensional moment

coefficient derivative with respect to angle of attack (Cmα). All of these parameters

are important in determining the three dimensional forces on the aircraft.

237

Table 43: Options of Available Airfoils in the FA2UST Module

Airfoil t/c x/c Clα=0
Clα Clmax Cdmin ClatCdmin Cm0 Cmα

NACA-X-4-0009 0.09 0.309 0 5.73 1.3 0.0055 0 0 0
NACA-X-4-0012 0.12 0.3 0 5.73 1.4 0.023 0 0 -0.353
NACA-X-4-2415 0.15 0.295 0.2 6.02 1.6 0.065 0.3 -0.2 -0.358
NACA-X-4415 0.15 0.309 0.4 5.73 1.65 0.065 0.4 -0.38 -0.573
NACA-X-5-23015 0.15 0.3 0.1 6.30 1.7 0.062 0.2 -0.02 -0.220
NACA-X-6-64-415 0.15 0.3 0.35 6.21 1.6 0.042 0.6 -0.21 -0.143

Diameter
Length

Figure 63: Example Cylindrical Geometric Entity

Cylinder: Many of the components in the FA2UST Module use a cylindrical geo-

metric entity to represent their shape. The cylinder is a simplistic representation but

provides enough information to inform the conceptual design of the system. A cylin-

der only requires two variables to define its shape: diameter and length. Figure 63

outlines a general cylindrical shape. As explained later in this chapter, components

such as the subsystems, engine, and fuselage will be explained geometrically by this

elementary shape.

4.2.1.2 UAV Physical Entities: Components and Subsystems Breakdown

The FA2UST Module incorporated many types of components and subsystems into its

capabilities. The models consist of previously established historical or experimental-

based regressions that help explain the characteristics or or performance of a compo-

nent.

Subsystems and Payload: Specifically, the FA2UST Module considers five types

of subsystems: radar, EO-IR sensors, global positioning systems (GPS), inertial na-

vigation systems (INS), and communications. Data was collected on the subsystems

238

Pixel Range
Resolution

Figure 64: Range-Resolution Model Incorporated into Radar and EO-IR Sensor
Subsystems

existing UAVs used, allowing the subsystems to be sized based on mission requi-

rements and capabilities. The database created regressions which made this sizing

possible. The subsystems had many different variables that effect the sizing. These

new regressions reflect a better understanding of how the subsystem is designed and

integrated into the vehicle.

Radar: The radar subsystem sizing consists of variables and characteristics. The

operator of the module has the option to make some of the characteristics dependent

on some of the mission segments.

Radar Variables: The driving capability or variables for the radar was the range

(miles) per resolution (feet). These variables are based on how a radar functions.

When a radar scans the surroundings, the radar takes images and transforms the

images into a two or three dimensional image the operator or computer can process.

The image is presented as a composition of pixels which represent a portion of the

greater surroundings. Figure 64 shows how the surroundings are projected onto a

pixel. The radar has a cone of vision that relates to one pixel the ratio of range

versus resolution, defining the capability of the subsystem. A database of existing

radar used on existing UAV platforms was compiled. From the data, regressions for

radar characteristics were derived from the variables.

Radar Characteristics: The range (miles) and resolution (feet) variables define

the characteristics of a radar subsystem. The characteristics are the radar’s weight,

239

energy consumption, diameter, and length. These characteristics help define the

geometric entity of the radar which is a cylinder. Equations 47, 48, 49, and 50

displays the radar’s weight, energy consumption, diameter, and length respectively.

The weight is in pounds, power is in Watts, diameter in feet, and length in feet.

WRadar = 16.8× Range

Resolution

0.877

: R2 = 0.913 (47)

PRadar = 254 + 56.3× Range

Resolution

+0.755×
(

Range

Resolution
− 19.1

)2

R2 = 0.968 (48)

DiameterRadar = 0.743× Range

Resolution

0.220

: R2 = 0.922 (49)

LengthRadar = 0.428 + 0.0793× Range

Resolution

+1.18× 10−3 ×
(

Range

Resolution
− 19.1

)2

R2 = 0.999 (50)

When it comes to unadjusted function points for a radar, it is assumed the radar

is connected to the processor which requires a high-complexity external input and

output. It will be transferring images back to the processor which will process them

and send commands back to the radar. Since it will wait for some commands from the

processor, it will require an external inquiry which outlines what functions the radar

wants to perform. Also the interfaces between the processor and the radar require

two external interfaces that determine how the two subsystems will communicate

with each other. Finally, the radar will require at least one logical file to interpret

240

Table 44: Calculating the Total Number of Unadjusted Function Points for a Radar
[84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 0 x 4 = 0 1 x 6 = 6 6
External Outputs 0 x 4 = 0 0 x 5 = 0 1 x 7 = 7 7
External Inquiries 0 x 3 = 0 0 x 4 = 0 1 x 6 = 6 6
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 x 15 = 15 15
External Interface Files 0 x 5 = 0 0 x 7 = 0 2 x 10 = 20 20

Total Number of Unadjusted Function Points = 54

commands and process its own processes. As a result from using Table 44, a radar is

approximated to have 54 unadjusted function points.

Radar Optional Dependent Characteristics: The radar must be able to

have a certain resolution over a range. Therefore, the FA2UST Module has the

ability to connect the variables with a dependent interface to a mission segment. The

operator of the FA2UST Module can define a ratio for which a cruise segment’s range

is proportional to the range versus resolution: Range
Resolution

= K ×RangeCruise.

EO-IR Sensor: The EO-IR sensor subsystem sizing consists of variables and

characteristics. The operator of the module has the option to make some of the

characteristics dependent on some of the mission segments.

EO-IR Sensor Variables: The variables for an EO-IR sensor are the same as

a radar: Range (miles) per resolution (feet). These variables are based on how an

EO-IR sensor functions. When an EO-IR sensor scans the surroundings, the radar

takes images and transforms the images into a two or three dimensional image the

operator or computer can process. The image is presented as a composition of pixels

which represent a portion of the greater surroundings. Figure 64 shows how the

surroundings are projected onto a pixel. The EO-IR sensor has a cone of vision that

relates to one pixel the ratio of range versus resolution, defining the capability of the

241

subsystem. A database of existing EO-IR sensors used on existing UAV platforms was

compiled. From the data, regressions for EO-IR sensor characteristics were derived

from the variables.

EO-IR Sensor Characteristics: The range (miles) and resolution (feet) varia-

bles define the characteristics of an EO-IR sensor subsystem. The characteristics are

the EO-IR sensor’s weight, energy consumption, diameter, and length. These cha-

racteristics help define the geometric entity of the EO-IR sensor which is a cylinder.

Equations 51, 52, 53, and 54 displays the EO-IR sensor’s weight, energy consump-

tion, diameter, and height respectively. The weight is in pounds, power is in Watts,

diameter in feet, and height in feet.

WEO/IR = 5.39 + 23.0× Range

Resolution
: R2 = 0.986 (51)

PEO/IR = 13.2×W 0.678
EO/IR : R2 = 0.879 (52)

DiameterEO/IR = 30.6×W 0.341
EO/IR : R2 = 0.975 (53)

Height = 0.415×W 0.325
EO/IR ×Range/Resolution0.0403 : R2 = 0.918 (54)

When it comes to unadjusted function points for an EO-IR sensor, it is assumed

the EO-IR sensor is connected to the processor which requires a high-complexity

external input and output. It will be transferring images back to the processor which

will process them and send commands back to the EO-IR sensor. Since it will wait

for some commands from the processor, it will require an external inquiry which

outlines what functions the EO-IR sensor wants to perform. Also the interfaces

between the processor and the EO-IR sensor require two external interfaces that

determine how the two subsystems will communicate with each other. Finally, the

242

Table 45: Calculating the Total Number of Unadjusted Function Points for a EO-IR
Sensor [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 0 x 4 = 0 1 x 6 = 6 6
External Outputs 0 x 4 = 0 0 x 5 = 0 1 x 7 = 7 7
External Inquiries 0 x 3 = 0 0 x 4 = 0 1 x 6 = 6 6
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 x 15 = 15 15
External Interface Files 0 x 5 = 0 0 x 7 = 0 2 x 10 = 20 20

Total Number of Unadjusted Function Points = 54

EO-IR sensor will require at least one logical file to interpret commands and process

its own processes. As a result from using Table 45, an EO-IR sensor is approximated

to have 54 unadjusted function points.

EO-IR Sensor Optional Dependent Characteristics: The EO-IR sensor

must be able to have a certain resolution over a range. Therefore, the FA2UST

Module has the ability to connect the variables with a dependent interface to a mission

segment. The operator of the FA2UST Module can define a ratio for which a cruise

or loiter segment’s altitude is proportional to the range versus resolution: Range
Resolution

=

K × AltitudeCruise−Loiter.

Navigation - GPS and INS: A UAV has the option of using both a GPS and

INS, just a GPS, or just an INS for navigation and control during operations. A GPS

and INS subsystems sizing consists of variables and characteristics. The operator of

the module has the option to make some of the characteristics dependent on some of

the mission segments.

GPS Variables: The variables for a GPS are the error in altitude (ErrAlt: ft)

and error in horizontal position (ErrPos: ft). These variables are based on how

a GPS functions. A GPS determines the distance from orbiting satellites and with

the knowledge of the satellites’ positions, the GPS can hone in on the position of

243

the UAV. However, there is sometimes error in the calculation. Through the data

collection the two variables drive the characteristics of the GPS.

GPS Characteristics: The error in altitude and error in horizontal position

variables define the characteristics of a GPS subsystem. The characteristics are the

GPS’s weight, energy consumption, diameter, and length. These characteristics help

define the geometric entity of the GPS which is a cylinder. Equations 55, 56, 57, and

58 displays the GPS’s weight, energy consumption, diameter, and length respectively.

The weight is in pounds, power is in Watts, diameter in feet, and length in feet.

WGPS = 0.400× ErrAlt2.01 × ErrPos−0.569 : R2 = 0.953 (55)

PGPS = 3.14×WGPS : R2 = 0.953 (56)

DiameterGPS = 0.292×W 0.268
GPS : R2 = 0.950 (57)

LengthGPS = 0.293×W 0.404
GPS : R2 = 0.932 (58)

When it comes to unadjusted function points for a GPS, it is assumed the GPS is

connected to the processor which requires an average-complexity external input and

output since it is only relaying position. However, it also must connect with at least

three other satellites to hone in on its position. These inputs are only considered

average-complexity external inputs since they are only relaying position. Since it will

wait for some commands from the processor, it will require an external inquiry which

outlines what functions the GPS wants to perform. Also, the GPS will quiery the

three satellites to get positioning information. The interfaces between the processor

and the GPS require two external interfaces that determine how the two subsystems

will communicate with each other and another external interface to determine how

244

Table 46: Calculating the Total Number of Unadjusted Function Points for a GPS
[84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 4 x 4 = 16 0 x 6 = 0 16
External Outputs 0 x 4 = 0 1 x 5 = 5 0 x 7 = 0 5
External Inquiries 0 x 3 = 0 4 x 4 = 16 0 x 6 = 0 16
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 x 15 = 15 15
External Interface Files 0 x 5 = 0 3 x 7 = 21 0 x 10 = 0 21

Total Number of Unadjusted Function Points = 73

the GPS communicates with the satellites. Finally, the GPS will require at least one

logical file to interpret commands and process its own processes. As a result from

using Table 46, a GPS is approximated to have 73 unadjusted function points.

INS Variables: The variables for a INS are the maximum acceleration the subsy-

stem can measure (MaxAcc: ft/s2), maximum angular rotation the subsystem can

measure (MaxGyro: rad/s), and error in the acceleration (ErrAcc: ft/s2). These

variables are based on how an INS functions. An INS uses an accelerometer to me-

asure accelerations in three directions and a gyroscope to measure rotational speeds

on the three axes. It then integrates the readings to provide position and orientation

measures. A better INS can measure higher accelerations, rotational speeds, and is

more sensitive allowing for greater accuracies. From the data collected on existing

INS’s, regressions for the characteristics were derived.

INS Characteristics: The maximum acceleration the subsystem can measure,

maximum angular rotation the subsystem can measure, and error in the acceleration

variables define the characteristics of an INS subsystem. The characteristics are the

INS’s weight, energy consumption, diameter, and length. These characteristics help

define the geometric entity of the INS which is a cylinder. Equations 59, 60, 61, and

62 displays the INS’s weight, energy consumption, diameter, and length respectively.

The weight is in pounds, power is in Watts, diameter in feet, and length in feet.

245

WINS = 1.57− 4886× ErrAcc

MaxAcc
+ 7.60× 10−5 ×MaxGyro : R2 = 0.991 (59)

PINS = 5.12×W 0.625
INS : R2 = 0.996 (60)

DiameterINS = 0.255×W 0.319
INS : R2 = 0.962 (61)

LengthINS = 0.248×W 0.317
INS : R2 = 0.965 (62)

When it comes to unadjusted function points for an INS, it is assumed the INS is

connected to the processor which requires an average-complexity external output since

it must receive commands from the processor. It requires two average-complexity

external outputs since it must send orientation and acceleration information. Since

it will wait for some commands from the processor, it will require an external inquiry

which outlines what functions the INS wants to perform. The interfaces between

the processor and the GPS require two external interfaces that determine how the

two subsystems will communicate with each other. Finally, the INS will require at

least two logical file to interpret commands and process its own processes from the

gyroscope and accelerometer. As a result from using Table 47, a INS is approximated

to have 62 unadjusted function points.

INS Optional Dependent Characteristics: The INS must be able to handle

a certain amount of acceleration. Therefore, the FA2UST Module has the ability to

connect the variables with a dependent interface to a mission segment. The operator

of the FA2UST Module can define a turning or load case to the maximum acceleration

the INS can measure: MaxAcc = LoadMaxSegmenti
.

246

Table 47: Calculating the Total Number of Unadjusted Function Points for a INS
[84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
External Outputs 0 x 4 = 0 2 x 5 = 10 0 x 7 = 0 10
External Inquiries 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 2 x 15 = 30 30
External Interface Files 0 x 5 = 0 2 x 7 = 14 0 x 10 = 0 14

Total Number of Unadjusted Function Points = 62

Communications: All UAVs require a means to communicate back to human

operators or between other systems in the operational space. Thus, they require a

communications subsystem. However, when looking for existing UAV communica-

tion subsystems limited amount of information was provided by the manufacturers.

Therefore, the FA2UST Module requires user input to define the communication’s

characteristics which are weight, energy consumption, diameter, and length. In most

cases, the characteristics are set to nominal values 16.5-lbs, 50-Watts, 0.63-feet, and

0.63 feet respective. The nominal values were based on the average values of a couple

communications subsystems during the data collection.

When it comes to unadjusted function points for an communications subsystem, it

is assumed the communications subsystem is connected to the processor which requi-

res an average-complexity external input and a high-complexity output since it must

receive commands from the processor and send data streams back to the processor.

The communications subsystem requires three high-complexity external inquiries as

it will query the processor, an operations hub, and other systems in the operational

space on what functions the UAV should perform. The communications between the

processor, an operations hub, and other systems will require three external interface

files to determine how information is transfered between entities. Finally, the com-

munications subsystem will require at least one logical file to interpret commands and

247

Table 48: Calculating the Total Number of Unadjusted Function Points for a Com-
munications Subsystem [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
External Outputs 0 x 4 = 0 0 x 5 = 0 1 x 7 = 7 7
External Inquiries 0 x 3 = 0 0 x 4 = 0 3 x 6 = 18 18
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 x 15 = 15 15
External Interface Files 0 x 5 = 0 0 x 7 = 0 3 x 10 = 30 30

Total Number of Unadjusted Function Points = 74

process its own processes. As a result from using Table 48, a INS is approximated to

have 74 unadjusted function points.

Processor and Software: The processor and software subsystem is not con-

sidered for its weight or power consumption do to the limited public information

regarding the computing subsystems when gathering data of the subsystems. Instead

the processor and the software subsystem drive the cost of developing the system.

The cost can be calculated using Equation 20 found in Section 2.3.4. The user has

the option of setting all of the coefficients associated with Equation 20 found in Tables

25 and 26. Any coefficients not set by the user are set to nominal or mid-point values.

The FA2UST Module combines the unadjusted function points for each component

to predict the total software lines of code. Tables 33 and 34 show the calculations for

the determination of unadjusted function points and conversion to software lines of

code respectively.

Additional or Miscellaneous Payload: The user of the FA2UST Module can

add additional or miscellaneous payload weight to the UAV. This option is supposed

to take up any additional weight that is required by the system, such as a weapon

system or mission specific payload. The additional payload does not add to any of

the aerodynamic forces; it just adds additional weight to the payload, increasing the

248

overall gross weight of the system.

Propulsion: While reviewing past UAV design, the products used four types of

propulsion systems: a piston engine, a turboprop engine, a turbofan engine, or a

turbojet engine. The FA2UST Module allows the user to define what type of engine

to use. Once the operator selects the type of engine to incorporate in the product, the

operator must define specific variables to define the component. From the variables,

regressions are used to define the characteristics of the component. Furthermore,

during operations of the product, each type of propulsion system interacts with the

atmosphere differently. Therefore, traditional relationships were used to define the

propulsion performance characteristics of the product.

Piston or Turboprop Engine: The piston or turboprop engine sizing consists

of variables, characteristics, and performance characteristics. The performance cha-

racteristics determine the product’s propulsive performance characteristics allowing

the FA2UST Module to determine the operational performance of the system.

Piston or Turboprop Engine Variables: The primary variable that deter-

mines the rest of the characteristics of a piston or turboprop engine is the break-

horsepower (hp). Everything else can be conceptually explained from this variable.

During the collection of data of existing UAVs and their piston engines, regressions

for the characteristics of a piston engine were determined from the engine’s break-

horsepower. The regressions for the turboprop engine’s characteristics were taken

from Raymer’s work [121].

Online Reconfigurable Variables of Piston or Turboprop Engine: The

operator of the FA2UST Module has the option to turn on one online reconfigurable

interface between the piston turboprop or engine and its propeller. The option is

whether to have a variable speed or variable pitch propeller. The major impact of

this online reconfigurability is the change in propulsive efficiency (η) of the combined

249

engine and propeller subsystem. From the overall averages over various advanced

ratios (J = V
N×D) and David F. Rogers’s work on predicting a propeller’s propulsive

efficiency [124], a propulsive efficiency of 0.80 was assigned to a variable pitch propeller

and a propulsive efficiency of 0.75 was assigned to a variable speed propeller.

Piston and Turboprop Engine Characteristics: The break-horsepower vari-

able defines the characteristics of a piston engine. The characteristics are the piston

engine’s weight, diameter, and length. These characteristics help define the geometric

entity of the piston engine which is a cylinder. Equations 63, 64, and 65 displays the

engine’s weight, diameter, and height for a piston engine respectively. The weight is

in pounds, diameter in feet, and length in feet.

Weng = 14.2× hp0.736 : R2 = 0.945 (63)

Diametereng = 1.72× hp0.0849 : R2 = 0.863 (64)

Lengtheng = 0.377× hp0.393 : R2 = 0.869 (65)

The break-horsepower variable defines the characteristics of a turboprop engine.

The characteristics are the turboprop engine’s weight, diameter, and length. These

characteristics help define the geometric entity of the turboprop engine which is a

cylinder. Equations 66, 67, and 68 displays the engine’s weight, diameter, and height

for a turboprop engine respectively. The weight is in pounds, diameter in feet, and

length in feet [121].

Weng = 2.12× hp0.803 (66)

Diametereng = 0.394× hp0.373 (67)

250

Table 49: Calculating the Total Number of Unadjusted Function Points for a Piston
or Turboprop Engine [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
External Outputs 0 x 4 = 0 1 x 5 = 5 0 x 7 = 0 5
External Inquiries 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 x 15 = 15 15
External Interface Files 0 x 5 = 0 1 x 7 = 7 0 x 10 = 0 7

Total Number of Unadjusted Function Points = 35

Lengtheng = 0.820× hp0.12 (68)

When it comes to unadjusted function points for a piston or turboprop engine, it is

assumed the piston or turboprop engine is connected to the processor which requires

an average-complexity external input and output since it must receive commands

from the processor and send data streams back to the processor. The piston or

turboprop engine requires a average-complexity external inquiry as it will query the

processor on what thrust setting the engine should be at. The communications with

the processor will require an external interface file to determine how information is

transfered between the engine and the processor. Finally, the piston or turboprop

engine will require at least one logical file to interpret commands and process its

own processes. As a result from using Table 49, a piston or turboprop engine is

approximated to have 35 unadjusted function points.

Piston Engine Performance Characteristics: As the UAV uses a piston

engine during its operations, there are two performance characteristics that determine

its fuel consumption and temperature efficiency. The fuel consumption corresponds to

the thrust specific fuel consumption (TSFC: 1/s). Equation 69 shows the derivation

of TSFC and Equation 70 shows the derivation of temperature efficiency (α) for a

piston engine, where V is the airspeed in feet per second and σ is the density ratio

251

with respect to standard sea level altitude. Equation 69 came from exploring past

piston and turboprop engines used on UAVs, and Equation 70 came from Raymer’s

work on aircraft design [121]. These parameters help determine the overall UAV’s

performance during operations.

TSFC = 2.91× 10−7 × V (69)

α = σ − (1− σ)/7.55 (70)

Turboprop Engine Performance Characteristics: As the UAV uses a piston

engine during its operations, there are two performance characteristics that determine

its fuel consumption and temperature efficiency. The fuel consumption corresponds to

the thrust specific fuel consumption (TSFC: 1/s). Equation 69 shows the derivation

of TSFC and Equation 71 shows the derivation of temperature efficiency (α) for

a turboprop engine, where σ is the density ratio with respect to standard sea level

altitude.. Equation 69 came from exploring past piston and turboprop engines used

on UAVs, and Equation 71 came from Raymer’s work on aircraft design [121]. These

parameters help determine the overall UAV’s performance during operations.

α = σ0.7 (71)

Turbofan or Turbojet Engine The turbofan or turbojet engine sizing consists

of variables, characteristics, and performance characteristics. The performance cha-

racteristics determine the product’s propulsive performance characteristics allowing

the FA2UST Module to determine the operational performance of the system.

Turbofan or Turbojet Engine Variables: The primary variable that deter-

mines the rest of the characteristics of a turbofan or turbojet engine are the installed

252

thrust (T : lbs) and bypass ratio (BPR). Everything else can be conceptually explai-

ned from these two variables. The regressions for the turbofan engine’s characteristics

were taken from Raymer’s work [121].

Online Reconfigurable Variables of Turbofan or Turbojet Engine: Both

the turbofan and turbojet have the option of using thrust vectoring. The FA2UST

Module uses thrust vectoring in tandem with simulating a mission segment. The

thrust vectoring affects the trim of the aircraft. Therefore, the FA2UST Module

trims the aircraft while trying to optimize the flight path of the UAV depending on

the mission segment. This process will be explained later when showing how all of

the element of the FA2UST Module are tied together.

Turbofan or Turbojet Engine Characteristics: The break-horsepower vari-

able defines the characteristics of a turbofan or turbojet engine. The characteristics

are the turbofan or turbojet engine’s weight, diameter, and length. These characte-

ristics help define the geometric entity of the turbofan or turbojet engine which is a

cylinder. Equations 72, 73, and 74 displays the engine’s weight, diameter, and height

for a turbofan or turbojet engine respectively. For a turbofan or turbojet engine

bypass ratio must be included. The weight is in pounds, diameter in feet, and length

in feet [121].

Weng = 13.6× T 1.1 × exp (−0.045×BPR) (72)

Diametereng = 0.49× T 0.4 (73)

Lengtheng = 0.15× T 0.5 × exp (0.04×BPR) (74)

When it comes to unadjusted function points for a turbofan or turbojet engine, it is

assumed the turbofan or turbojet engine is connected to the processor which requires

253

Table 50: Calculating the Total Number of Unadjusted Function Points for a Turbofan
or Turbojet Engine [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 1 x 4 = 4 0 or 1 x 6 = 0 or 6 4 or 10
External Outputs 0 x 4 = 0 1 x 5 = 5 0 or 1 x 7 = 0 or 7 5 or 12
External Inquiries 0 x 3 = 0 1 x 4 = 4 0 or 1 x 6 = 0 or 6 4 or 10
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1 or 2 x 15 = 15 or 30 15 or 30
External Interface Files 0 x 5 = 0 1 or 2 x 7 = 7 or 14 0 x 10 = 0 7 or 14

Total Number of Unadjusted Function Points = 35 or 76

an average-complexity external input for the thrust setting and a high-complexity

external input if the engine uses thrust vectoring. It must feedback these settings to

the processor as an average-complexity external output for the thrust setting and a

high-complexity external output if the engine uses thrust vectoring. The turbofan

or turbojet engine requires an average-complexity external inquiry as it will query

the processor on what thrust setting the engine should be at and a high-complexity

external inquiry if the engine uses thrust vectoring. The communications with the

processor will require one or two external interface files (depending on whether the

engine uses thrust vectoring) to determine how information is transfered between the

engine and the processor. Finally, the turbofan or turbojet engine will require at least

one or two (depending if the engine uses thrust vectoring) logical files to interpret

commands and process its own processes. As a result from using Table 50, a turbofan

or turbojet engine is approximated to have 35 or 76 unadjusted function points.

Turbofan Engine Performance Characteristics: As the UAV uses a turbofan

engine during its operations, there are two performance characteristics that determine

its fuel consumption and temperature efficiency. The fuel consumption corresponds to

the thrust specific fuel consumption (TSFC: 1/s). Equation 75 shows the derivation

of TSFC and Equation 76 shows the derivation of temperature efficiency (α) for a

turbofan engine. Equation 75 and Equation 76 came from Raymer’s work on aircraft

design [121]. These parameters help determine the overall UAV’s performance during

254

operations.

TSFC = 1.11× 10−4 × (1 + 0.4×M) (75)

α = 0.369× σ0.7 ×M−0.305 (76)

Turbojet Engine Performance Characteristics: As the UAV uses a turbojet

engine during its operations, there are two performance characteristics that determine

its fuel consumption and temperature efficiency. The fuel consumption corresponds to

the thrust specific fuel consumption (TSFC: 1/s). Equation 77 shows the derivation

of TSFC and Equation 78 shows the derivation of temperature efficiency (α) for a

turbojet engine. Equation 77 and Equation 78 came from Raymer’s work on aircraft

design [121]. These parameters help determine the overall UAV’s performance during

operations.

TSFC =

 2.77× 10−4 + 1.11× 10−4 ×M M < 1.1

4× 10−4 otherwise
(77)

α =

 σ0.7 M < 1.1

σ × [1 + 1.18× (M − 1)] otherwise
(78)

Aerodynamic Surfaces: There ar three aerodynamic surfaces used in the FA2UST

Module. They are a main wing, horizontal tail, and vertical tail. Each surface has

its own pair of control surface that help in the control of the vehicle during flight. A

main wing has ailerons and the option for flaps, the horizontal tail has elevators, and

the vertical tail has a rudder. All of the aerodynamic surfaces consist of a planform

and airfoil geometric entities.

255

Aerodynamic Surface Variables: The FA2UST Module explains an aerody-

namic surface with five variables: area (S), aspect ratio (AR), taper ratio (λ), quarter

chord sweep (Λ1/4), and the type of airfoil used. From these four variables the rest

of the characteristics and performance characteristics of the aerodynamic surface can

be explained.

Aerodynamic Surface Online Reconfigurable Variables: The main wing

in an UAV has four possible online reconfigurable interfaces: ailerons, flaps, variable

sweep, and variable pitch. Ailerons are a mandatory feature of the main wing as

they help maintain roll and yaw control during fight. Flaps are optional to help the

wing gain higher lift coefficients during takeoff and landing. The impact of the flaps

are primarily shown as drag and maximum lift contribution during those mission

segments. Variable sweep allows the vehicle to reach higher speeds but still have high

aerodynamic efficiency at low speed. When variable sweep is activated it impacts the

leading edge sweep, quarter chord sweep, and the effective aspect ratio of the wing,

as Equations 79 through 81 show. Finally, variable pitch helps the vehicle reach more

optimal trim orientations during flight. If variable sweep or pitch are activated for

the main wing, then the FA2UST Module treats them as controls and optimizes them

alongside other trim settings during the mission simulation.

ΛLE = ΛLEplanform + ΛOnlineRecon (79)

Λ1/4 = Λ1/4planform + ΛOnlineRecon (80)

AR =
[b× cos (ΛOnlineRecon)]2

S
(81)

The horizontal tail uses elevators. They are mandatory to help the UAV control

its pitch during flight. The FA2UST Module assumes the impact of them is minimal

256

when compared to the rest of the aerodynamic forces. The vertical tail uses a rud-

der. It is mandatory to help the UAV control its pitch and roll during flight. The

FA2UST Module assumes the impact of it is minimal when compared to the rest of

the aerodynamic forces.

Aerodynamic Surface Characteristics: The FA2UST Module uses form fac-

tors to predict the drag of the aircraft when no lift is being generated. For each

aerodynamic surface, its form factor is calculated using Equation 82, where t/c is its

airfoil’s maximum thickness to chord ratio, x/c is its airfoil’s location of maximum

thickness to chord ratio, Λ1/4 is its quarter chord sweep, and S is its area. This can

be used in the aerodynamic surface’s contribution to zero-lift drag.

FFSW =

(
1 + 0.6× t/c

x/c
+ 100× t/c4

)
×
[
1.34× cos

(
Λ1/4

)0.28
]
× 2.02× S

SMainWing

(82)

When it comes to unadjusted function points for an aerodynamic surface, it is

assumed the aerodynamic surface is connected to the processor which requires an

average-complexity external input and output since it must receive control commands

for its ailerons, elevator, or rudder from the processor and send feedback to the

processor. The aerodynamic surface requires an average-complexity external inquiry

as it will query the processor on what setting the control surface should be at. The

communications with the processor will require an external interface file to determine

how information is transfered between the aerodynamic surface and the processor.

Finally, the aerodynamic surface will require at least one logical file to interpret

commands and process its own processes.

However, when it comes to the main wing the variable pitch or sweep online

reconfigurable interface require an extra inquiry, logical file, and iterface file. As

a result from using Table 51, an aerodynamic surface is approximated to have 35

257

Table 51: Calculating the Total Number of Unadjusted Function Points for a Main
Wing [84]

Type of Component Complexity of Components
Low Average High Total

External Inputs 0 x 3 = 0 1 x 4 = 4 0 x 6 = 0 4
External Outputs 0 x 4 = 0 1 x 5 = 5 0 x 7 = 0 5
External Inquiries 0 x 3 = 0 1 x 4 = 4 0, 1, or 2 x 6 = 0, 6, or 12 4, 10, or 16
Internal Logical Files 0 x 7 = 0 0 x 10 = 0 1, 2, or 3 x 15 = 15, 30, or 45 15, 30, or 45
External Interface Files 0 x 5 = 0 1 x 7 = 7 0, 1, or 2 x 10 = 0, 10, or 20 7, 17, or 27

Total Number of Unadjusted Function Points = 35, 66, or 91

unadjusted function points.

Aerodynamic Surface Performance Characteristics: The primary perfor-

mance characteristics of an aerodynamic surface are its contributions to drag and lift.

The form factor analysis to predict the aerodynamic surface’s contribution to zero

lift drag requires the ability to determine if the flow over its surface is laminar or

turbulent. Therefore, the Reynold’s number laminar-turbulent limit is calculated in

Equation 83. This is compared against the actual Reynold’s number the surface is

experiencing (Equation 84) to calculate its coefficient of friction (Equation 85).

ReCW = 38.21×
(
c̄× 105

0.17

)1.053

(83)

ReW =
ρ× V × c̄

µ
(84)

CfW =

0.455

log10(ReW)2.58×(1+0.144×M2)0.65 ReW > ReCW

1.328√
ReW

otherwise
(85)

The FA2UST Module considered drag divergence at transonic speeds. Therefore,

it includes an approximation of the divergence though Equation 86. The coefficient

KDD considers the impact the sweep, aspect ratio, and taper of the surface have on

258

the divergence. The module then multiplies this factor to all contributions of drag to

get an accurate approximation of drag in the transonic regime.

KDD =

∣∣∣∣∣∣ 1√
1− 1.4× M×i

λ×AR − [M × cos (ΛLE)]2

∣∣∣∣∣∣ (86)

The final calculation to predict the aerodynamic surface’s contribution to zero

lift drag is found in Equation 87. It multiplies the coefficient of friction with the

form factor, drag divergence coefficient, and a contribution of the Mach number. All

aerodynamic surfaces contribute this to the drag.

CD0W
= CfW × FFSW ×KDD ×M0.18 (87)

The Main Wing’s Induced Drag Contributions: The FA2UST Module only

considers the main wing’s induced drag. The module first calculates the Oswald

Efficiency Factor using Equations 88 through 91.

e1 = 1 + 0.12×M2 (88)

e2 =
0.142 + 0.005×

[
1 + 1.5× (λ− 0.6)2]× AR× (10× t/c)0.33

cos2
(
Λ1/4

) (89)

e3 =
0.4

(4 + AR)0.8 (90)

e =
1

e1 × (1 + e2 + e3)
(91)

Once the Oswald Efficiency Factor is calculated the linear and quadratic terms of

the main wing’s induced drag can be calculated. The linear and quadratic coefficients

are found in Equations 92 and 93. The zero lift drag and induced drag are later

combined in Equation 116.

259

k1 =
1

π × AR× e
(92)

k2 = −2× k1 × Clmin (93)

The flaps impact the maximum lift and drag produced by the wing. Equation 94

shows the formulation of CLmax when flaps are and are not engaged. The additional

zero-lift drag incurred by the wing is assumed to be 0.01 [121].

CLmax =

 1.9× cos
(
Λ1/4MainWing

)
Flaps

1.6× cos
(
Λ1/4MainWing

)
otherwise

(94)

Fuselage: The FA2UST Module usually considers the fuselage as the platform of

the UAV since it has the most immediate connections with the other components in

the system. The FA2UST Module represents the fuselage conceptually as a cylindrical

geometric entity.

Fuselage Variables: Due to the fuselage’s cylindrical shape the fuselage can

be summarized by two variables: its length (Length: feet) and diameter (Diameter:

feet). The two variables define its cylindrical geometric entity and can help define its

performance characteristics.

Fuselage Characteristics: The FA2UST Module uses form factors to predict

the drag of the aircraft when no lift is being generated. For a fuselage, its form

factor is calculated using Equation 95. This can be used in the aerodynamic surface’s

contribution to zero-lift drag.

FFSF =

[
1 + 60

(
Diameter

Length

)3

+
1

400

Length

Diameter

]
× π ×Diameter × Length

SMainWing

(95)

260

Fuselage Dependent Characteristics: The FA2UST Module automatically

sets the fuselage’s diameter to the maximum value of all the subsystems’ and engine’s

diameter. This ensures all of the components that are placed inside the fuselage have

enough space. Therefore, the diameter of the fuselage can be represented by Equation

96.

Diameter = max [DiameterComponenti] (96)

The operator of the FA2UST Module has two options when it comes to setting

the fuselage’s length. Either the operator can manually set the length to a specific

value, or the module can use the historical regression, found in Equation 97, to define

the length of the fuselage.

Length = 1.39× b0.757
MainWing (97)

Fuselage Performance Characteristics: The primary performance charac-

teristics of an fuselage are its contributions to drag. The form factor analysis to

predict the fuselage’s contribution to zero lift drag requires the ability to determine

if the flow over its surface is laminar or turbulent. Therefore, the Reynold’s number

laminar-turbulent limit is calculated in Equation 98. This is compared against the

actual Reynold’s number the fuselage is experiencing (Equation 99) to calculate its

coefficient of friction (Equation 85).

ReCF = 38.21×
(
Length× 105

0.17

)1.053

(98)

ReF =
ρ× V × Length

µ
(99)

261

CfF =

0.455

[log10(ReF)]2.58×[1+0.144×M2]0.65 ReF > ReCF

1.328√
ReF

otherwise
(100)

The final calculation to predict the fuselage’s contribution to zero lift drag is found

in Equation 101. It multiplies the coefficient of friction with the form factor, drag

divergence coefficient, and a contribution of the Mach number.

CD0F
= CfF × FFSF ×KDD ×M0.18 (101)

4.2.1.3 Medium: Atmospheric Properties

During operations, a UAV must interact with the atmosphere. The atmosphere acts

as a control volume that flows around the aircraft. Therefore in the performance

analysis, there are certain properties or characteristics that are essential.

Atmospheric Medium Variables: The variables that explain the properties of

the atmospheric medium are altitude (h: feet) and speed (V : ft/s). Using the varia-

bles, properties such as air temperature, pressure, density, viscosity, dynamic pressure,

speed of sound, Mach number, and acceleration from gravity [65].

Atmospheric Medium Characteristics or Properties: The air temperature

(Temperature: R) uses temperature altitude (θ) and standard sea-level air tempera-

ture (518.4◦ R) in its calculation. The temperature altitude is a function of altitude.

The function depends on what layer of the atmosphere the UAV is operating. Equa-

tion 102 and Equation 103 show the formulation of temperature altitude and air

temperature respectively.

262

θ =

1− h
145442

h < 36089

0.752 h ≥ 36089&h < 65617

0.682 + h
945374

h ≥ 65617&h < 104987

0.483 + h
337634

h ≥ 104987&h < 154199

0.939 h ≥ 154199&h < 167323

1.43− h
337634

h ≥ 167323

(102)

Temperature = 518.4× θ (103)

The air pressure (Pressure: lbs/ft2) uses pressure altitude (δ) and standard sea-

level air pressure (2116.8 lbs/ft2) in its calculation. The pressure altitude is a function

of altitude. The function depends on what layer of the atmosphere the UAV is

operating. Equation 104 and Equation 105 show the formulation of pressure altitude

and air pressure respectively.

δ =

(
1− h

145442

)5.26
h < 36089

0.223× exp
(

36089−h
20806

)
h ≥ 36089&h < 65617(

0.989 + h
652600

)−34.2
h ≥ 65617&h < 104987(

0.898 + h
181373

)−12.2
h ≥ 104987&h < 154199

0.00109× exp
(
h−154200
−25992

)
h ≥ 154199&h < 167323(

0.838− h
577922

)12.2
h ≥ 167323

(104)

Pressure = 2116.8× δ (105)

The air density (ρ: slug/ft3) uses density altitude (σ) and standard sea-level

air density (0.00238 slug/ft3) in its calculation. The density altitude is a function

of altitude. The function depends on what layer of the atmosphere the UAV is

operating. Equation 104 and Equation 105 show the formulation of density altitude

and air density respectively.

263

σ =

(
1− h

145442

)4.255876
h < 36089

0.297076× exp
(

36089−altF t
20806

)
h ≥ 36089&h < 65617(

0.978261 + h
659515

)−35.16319
h ≥ 65617&h < 104987(

0.857003 + h
190115

)−13.20114
h ≥ 104987&h < 154199

0.00116533× exp
(
altF t−154200
−25992

)
h ≥ 154199&h < 167323(

0.79899− h
606330

)11.20114
h ≥ 167323

(106)

ρ = 0.00238× σ (107)

The air viscosity (µ: lb-sec/ft2) uses air temperature (Temperature) and standard

sea-level air viscosity (3.62 × 10−7 lb-sec/ft2) in its calculation. Equation 108 shows

the formulation of air viscosity.

µ = 3.62× 10−7 ×
(
Temperature

518.7

)1.5

× 717.42

Temperature+ 198.72
(108)

The air dynamic pressure (DynamicPressure: lbs/ft2) uses air density (ρ) and

the speed (V : ft/s) in its calculation. The dynamic pressure is often used to calculate

the forces on the UAV during its operations. Equation 109 show the formulation of

air dynamic pressure.

DynamicPressure =
ρ× V 2

2
(109)

The speed of sound at a given altitude (SoS: ft/s) uses air temperature (Temperature:

R) in its calculation. After calculating the speed of sound, the Mach number (M) of

the aircraft can be calculated using the aircraft’s speed (V : ft/s). Equation 110 and

Equation 111 show the formulation of speed of sound at a given altitude and Mach

number respectively.

264

SoS =
√

2404× Temperature (110)

M =
V

SoS
(111)

The final property of the medium is the acceleration due to gravity (g: ft/s2). It

is a function of the altitude (h: feet), the radius of the earth (20900000 feet), and the

sea-level standard acceleration due to gravity (32.2 ft/s2). Equation 112 shows the

derivation of the acceleration due to gravity.

g = 32.2×
(

20900000

20900000 + h

)2

(112)

4.2.1.4 UAV Configurations

The FA2UST Module uses configurations to determine the physical connections and

arrangements of the components in a UAV system. As a result, the module incorpo-

rates four types of configurations into the analysis. These configurations are:

• A traditional tube-body, wing, horizontal tail, and vertical tail (Figure 65)

• A tube-body, wing, and horizontal tail (Figure 66)

• A tube-body, wing, and vertical tail (Figure 67)

• A flying wing (Figure 68)

All of the configurations have optional combinations of subsystems that can be

incorporated into a design, depending on the desired capabilities of the system.

Figures 65 through 68 show the arrangement and physical connections between

the components in each configuration. The arrangement of the components help with

the product architecture index calculations and trim optimization during the mission

simulations.

265

Fuselage

Vert Tail Engine

Rudder

Hor Tail

Elevator

Wing

Flaps
(Opt.)

Ailerons

Subsys.

Figure 65: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems for a Traditional Tube-Body, Wing, Horizontal Tail, and Vertical Tail
Configuration

Fuselage

EngineHor Tail

Elevator

Wing

Flaps
(Opt.)

Ailerons

Subsys.

Figure 66: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems for a Traditional Tube-Body, Wing, and Horizontal Tail Configuration

Fuselage

Vert Tail Engine

Rudder

Wing

Flaps
(Opt.)

Ailerons

Subsys.

Figure 67: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems for a Tube-Body, Wing, and Vertical Tail Configuration

Fuselage

EngineWing

Flaps
(Opt.)

Ailerons

Subsys.

Figure 68: UAV Tree Diagram Outlining Physical Connections of Components and
Subsystems for a Flying Wing Configuration

266

4.2.1.5 Product or Design: An Integrated UAV System Architecture

An integrated product or design is the composition of physical entities and the confi-

guration rules that outline their arrangement. Once the FA2UST Module establishes

the product, there are a couple key characteristics that must be defined in the UAV

product or design.

UAV Product Characteristics: The characteristics that define the integrated

product and design are the empty weight, payload weight, fuel weight, and the takeoff

gross weight. The fuel weight is determined during the sizing process within the

FA2UST Module. The takeoff gross weight is the sum of the empty weight, payload

weight, and fuel weight, as Equation 113 shows.

WTO = WEmpty +WPayload +WFuel (113)

The empty weight can be defined by a couple of the variables and characteristics of

the components within the product. Equation 114 shows the formulation of the empty

weight (WEmpty: lbs) of a UAV, where V arSweep is the variable that determines if

the UAV has an online reconfigurable wing, Flaps is the variable that determines if

the UAV has flaps, SMainWing is the main wing’s area (ft2), ARMainWing is the main

wing’s aspect ratio, hp is the engine’s horsepower, T is the engine’s thrust (lbs), and

LengthUAV is the UAV’s length (ft). The UAV’s length is the fuselage’s length for all

configurations that have a fuselage, otherwise it is the distance from the main wing’s

front of the root chord to the back of the tip chord.

WEmpty = 2.20×

exp {0.873 + 0.712× ln [(1 + 0.17× V arSweep)× Engine =

(1 + 0.11× Flaps)×
√
SMainWing×ARMainWing

3.28

]
+ R2 = 0.988 Piston||

0.473× ln (hp) + 0.617× ln
(
LengthUAV

3.28

)}
Turboprop

exp {4.58 + 0.434× ln [(1 + 0.17× V arSweep)×

(1 + 0.11× Flaps)×
√
SMainWing×ARMainWing

3.28

]
+ R2 = 0.991 otherwise

0.0446× ln
(
LengthUAV

3.28

)
+ 0.710× ln

(
T

224.8

)}
(114)

267

The payload weight consists of the weight of all subsystems included in the UAV

product plus the additional payload defined by the module’s operator. Equation 115

shows the formulation of the payload weight (WPayload: lbs) for a UAV product.

WPayload = WAdditionalPayload +
N∑
i=1

WSubsystemi (115)

As stated earlier, the sizing process in the module determines the fuel weight by

simulating a mission. An initial guess for the takeoff gross weight is provided to the

process which iterates until the takeoff gross weight and the fuel weight converges.

An initial guess of 1.5× (WEmpty +WPayload) is given to the process.

A key element of the process is determining the drag the UAV experiences during

each mission segment. First the process optimizes the trim orientation that provides

the best conditions for flight relative to each mission segment. During this process,

the necessary lift coefficient (CL) is calculated which is fed to the drag coefficient

calculation shown in Equation 116. The trim setting influences the zero-lift drag

coefficients, the linear, and quadratic terms of the induced drag.

CD =
N∑
i=1

(
CD0i

)
+ k2 × CL + k1 × C2

L (116)

4.2.1.6 FA2UST Module UAV Requirements

The FA2UST Module uses requirements to add constraints, determine performance, or

determine the cost of a UAV product. These requirements include mission segments,

subsystem cooling analysis, volume sizing, and cost modeling. The mission segments

are considered ordinal requirements and require some pre-determination by the mo-

dule’s operator on the order of which the mission simulation should go through each.

The subsystem cooling analysis adds a constraint to ensure the UAV has enough fuel

to keep the subsystems within the UAV from overheating. The volume sizing adds a

constraint to determine whether the vehicle has enough room to hold all subsystems.

268

Finally, the cost modeling predicts the development and production costs required

for an entire UAV product line.

Ordinal Requirements: Mission Analysis and Mission Segments: The mis-

sion segments within the FA2UST Module are used to size the vehicle. Each has its

own set of variables that define it. The sizing process determines the weight of the

fuel by determining the weight fraction (β) from each mission segment. The weight

fraction is the ratio of vehicle’s weight at the conclusion of the mission segment to the

vehicle’s weight at the start of the mission segment (
Wf

Wi
). Equation 117 shows how

each segment calculates its contribution to the overall mission’s weight fraction, where

TSFC is the engine’s thrust specific fuel consumption (1/s), TR is the segment’s re-

quired thrust, dt is the time span of the segment, and WTO is the takeoff gross weight

of the UAV. Each segment’s span can be broken up into smaller segments, generating

greater accuracy. Hence the use of dt rather than overall time.

Wf

Wi

= exp

(
−TSFC × TR × dt

βWTO

)
(117)

Some of the engines produce power rather that thrust. Equation 118 shows how

the power for a piston or turboprop engine is converted into thrust, where T is thrust

(lbs), ηProp is the propulsive efficiency of the propeller, P is power (lbs-ft/s), and V

is the UAV’s velocity (ft/s).

T =
ηProp × P

V
(118)

Multiplying all of the mission segments’ weight fractions together provides the

overall weight fraction for the mission. The weight fraction then can be used to

determine the takeoff gross weight of the vehicle and its fuel weight, as shown in

Equation 119. It is assumed three percent of the fuel is lost in the vehicle so the

takeoff gross weight is 103% of the empty weight and payload weight divided by the

269

weight fraction.

WTO = 1.03× WEmpty +WPayload

β
(119)

The mission segments can also add constraints to the design. Most often, the

UAV must be able to generate enough lift and have enough thrust to overcome the

drag of the segment. The coefficient of lift required during the mission segment

is subtracted by the maximum lift coefficient available of the wing. Equation 120

shows the formulation of this constraint. It is important to notice all constraints are

normalized to prevent bias toward any one.

gCL =
CL

CLmax
− 1 ≤ 0 (120)

Another common constraint for a mission segment is the assurance the UAV has

enough thrust to overcome the drag and excess power required of the segment. The

module assumes the aircraft is flying at steady level fight and can use Mattingly’s

equation to calculate the thrust required of the segment. The traditional Mattingly

equation was modified to include the use of thrust vectoring. However, the thrust

required (TR: lbs) must be solved for iteratively it the engine has thrust vectoring.

Equation 121 shows the Mattingly Equation used in the FA2UST Module, where TR

is the thrust required (lbs), δThrustV ector is the trim setting for thrust vectoring (rad),

β is the weight fraction during the segment, α is the engine’s thermal efficiency, k1 is

the main wing’s coefficient of its quadratic contribution to the induced drag, n is the

load factor the aircraft is experiencing, WTO is the UAV’s takeoff gross weight (lbs), k2

is the main wing’s coefficient of its linear contribution to the induced drag, CD0 is the

UAV’s zero-lift drag coefficient, Q is the dynamic pressure the UAV is experiencing

(lbs/ft2), SMainWing is the main wing’s area (ft2), V is the UAV’s velocity (ft/s), h

is the UAV’s altitude (ft), and g is the acceleration due to gravity the aircraft is

experiencing.

270

TR =

1

cos(δThrustV ector)
β
α

{
k1 [nβWTO − TR sin (δThrustV ector)]

2 +

k2 [nβWTO − TR sin (δThrustV ector)] +

CD0QSMainWing + WTO

V
d
dt

(
h+ V 2

2g

)} (121)

The segment will often optimize the trim settings with respect to optimal flight

conditions for that segment when the vehicle has online reconfigurable components.

Once the trim setting is set, Equation 122 shows the formulation of the thrust required

constraint, where TR is the thrust required (lbs) and TA is the thrust available from

the engine (lbs). It is important to notice all constraints are normalized to prevent

bias toward any one.

gTR =
TR
TA
− 1 ≤ 0 (122)

Each segment can have its own way of contributing to the weight sizing. Therefore,

some of the constraints it adds to the design are not the traditional lift and thrust

required constraints.

Warm-Up Segment: The warm-up segment uses one variable to define itself:

time. The segment adds no constraints to the design, but does contribute to the

weight sizing of the vehicle. During this segment, the engine is operating at maximum

power or thrust for the time specified to calculate the weight fraction using Equation

117.

Takeoff Segment: The takeoff segment uses one variable to define itself: the

desired runway length. It simulates the acceleration during takeoff and determines

if the aircraft can achieve takeoff speed within the given runway length (sdesTO).

Equation 123 shows the formulation of required runway length (sreqTO), where kTO is

the takeoff speed to stall speed ratio (1.2).

271

sreqTO =
kTO × (βWTO)2

ρ× g × CLmax × TA × SMainWing

(123)

Equation 124 shows the formulation of the takeoff constraint. It is important to

notice all constraints are normalized to prevent bias toward any one.

gTO =
sreqTO
sdesTO

− 1 ≤ 0 (124)

The module uses a simplified approach to calculating the weight fraction of the

takeoff segment. It makes the assumption of using 7
10

’s the takeoff speed in Equation

117 to calculate the segment’s weight fraction. Since the takeoff segment occurs on

the ground, no lift or thrust constraints are added.

Climb Segment: The climb segment is the more basic of the two options for

simulating a UAV’s climb. It uses three variables to define itself: the speed, the

starting altitude, and ending altitude of the UAV. It makes the aircraft maintain a

constant speed during the climb, though the rate of climb may change. The segment

enforces this rule by operating at the engine’s maximum power or thrust. Then, it

trims the aircraft by varying the angle of climb and the online reconfigurable elements

of the UAV so the aircraft can acheive its maximum rate of climb. Therefore, the

optimization problem for the climb segment can be found in Equation 125. Equation

121 is used to trim the aircraft and calculate the thrust required (TR).

max

(
dh

dt

)
w.r.t.→ TR = TA (125)

If the maximum rate of climb of the UAV becomes less than zero before the

UAV reaches its final altitude, the module adds a constraint to the design. The

constraint uses the altitude of the UAV when the maximum rate of climb becomes

zero (hR/C=0) and compares it to the desired ending altitude (hend). Equation 126

272

shows the formulation of this constraint. It is important to notice all constraints are

normalized to prevent bias toward any one.

gR/C =
hR/C=0

hend
− 1 ≤ 0 (126)

Finally, the segment uses Equation 117 to calculate its contribution to the mis-

sion’s overall weight fraction and Equation 120 determines the lift constraint for the

segment.

Maximum Rate of Climb Segment: The maximum rate of climb segment is

the more complicated of the two options for simulating a UAV’s climb. It uses two

variables to define itself: the starting altitude and ending altitude of the UAV. The

segment enforces this rule by operating at the engine’s maximum power or thrust.

Then, it trims the aircraft by varying the aircraft’s speed, angle of climb, and the

online reconfigurable elements of the UAV so the aircraft can acheive its maximum

rate of climb. Though similar to the climb segment it adds the aircraft’s speed into

the optimization problem. Therefore, the optimization problem for the maximum

rate of climb segment can be found in Equation 125. Equation 121 is used to trim

the aircraft and calculate the thrust required (TR). If the maximum rate of climb of

the UAV becomes less than zero before the UAV reaches its final altitude, the module

adds a constraint to the design. The constraint uses the altitude of the UAV when the

maximum rate of climb becomes zero (hR/C=0) and compares it to the desired ending

altitude (hend). Equation 126 shows the formulation of this constraint. Finally, the

segment uses Equation 117 to calculate its contribution to the mission’s overall weight

fraction and Equation 120 determines the lift constraint for the segment.

Cruise Segment: The cruise segment is one of the more basic segment’s in

the module. It uses four variables to define itself: the range, the speed, the starting

altitude, and ending altitude of the UAV. It makes the aircraft maintain constant

273

rate of climb and speed. It trims the aircraft by varying the online reconfigurable

elements of the UAV so the aircraft can acheive its maximum range per fuel burned.

Therefore, the optimization problem for the cruise segment can be found in Equation

127. Equation 121 is used to trim the aircraft and calculate the thrust required (TR).

max

(
V

ṁ

)
(127)

Finally, the segment uses Equation 117 to calculate its contribution to the mis-

sion’s overall weight fraction, Equation 120 determines the lift constraint for the

segment, and Equation 122 determines the thrust constraint for the segment.

Best Mach Number Cruise Segment The best Mach number cruise segment

uses two variables to define itself: the range, the speed and the altitude of the UAV. It

assumes the aircraft will maintain a certain altitude. It trims the aircraft by varying

the speed and the online reconfigurable elements of the UAV so the aircraft can

acheive its maximum range per fuel burned. Therefore, the optimization problem for

the maximum rate of best Mach number cruise segment can be found in Equation

127. Equation 121 is used to trim the aircraft and calculate the thrust required (TR).

Finally, the segment uses Equation 117 to calculate its contribution to the mission’s

overall weight fraction, Equation 120 determines the lift constraint for the segment,

and Equation 122 determines the thrust constraint for the segment.

Best Mach Number and Altitude Cruise Segment The best Mach number

and altitude cruise segment uses one variable to define itself: the range. It trims the

aircraft by varying the speed, the altitude, the online reconfigurable elements of the

UAV so the aircraft can acheive its maximum range per fuel burned. By varying the

altitude throughout the segment, this impacts the rate of climb which is considered

during the segment. Therefore, the optimization problem for the maximum rate

of best Mach number cruise and altitude segment can be found in Equation 127.

274

Equation 121 is used to trim the aircraft and calculate the thrust required (TR).

Finally, the segment uses Equation 117 to calculate its contribution to the mission’s

overall weight fraction, Equation 120 determines the lift constraint for the segment,

and Equation 122 determines the thrust constraint for the segment.

Acceleration Segment The acceleration segment uses four variables to define

itself: the altitude, the start speed, the end speed, and the time to complete the

acceleration. It trims the aircraft by varying the online reconfigurable elements of the

UAV so the aircraft can acheive its maximum endurance during this segment, because

the acceleration, speeds, and altitude are set. Therefore, the segment tries to make

the segment as efficient as possible by varying the online reconfigurable elements of

the UAV. Therefore, the optimization problem for the acceleration segment can be

found in Equation 128. Equation 121 is used to trim the aircraft and calculate the

thrust required (TR).

max

(
1

ṁ

)
(128)

Finally, the segment uses Equation 117 to calculate its contribution to the mis-

sion’s overall weight fraction, Equation 120 determines the lift constraint for the

segment, and Equation 122 determines the thrust constraint for the segment.

Maximum Rate of Acceleration Segment The maximum rate of accelera-

tion segment uses three variables to define itself: the altitude, the start speed, and

the end speed. The segment sets the engine’s power or thrust to its maximum setting,

and it trims the aircraft by varying the rate of acceleration and the online reconfigura-

ble elements of the UAV so the aircraft can acheive its maximum rate of acceleration

during this segment. Therefore, the optimization problem for the maximum rate of

acceleration segment can be found in Equation 129. Equation 121 is used to trim the

aircraft and calculate the thrust required (TR).

275

max

(
dV

dt

)
w.r.t.→ TR = TA (129)

If the maximum rate of acceleration of the UAV becomes less than zero before

the UAV reaches its final speed, the module adds a constraint to the design. The

constraint uses the speed of the UAV when the maximum rate of acceleration becomes

zero (VR/A=0) and compares it to the desired ending speed (Vend). Equation 130

shows the formulation of this constraint. It is important to notice all constraints are

normalized to prevent bias toward any one.

gR/A =
VR/A=0

Vend
− 1 ≤ 0 (130)

Finally, the segment uses Equation 117 to calculate its contribution to the mis-

sion’s overall weight fraction, and Equation 120 determines the lift constraint for the

segment.

Loiter or Best Endurance Segment The loiter or best endurance segment

uses two variables to define itself: the time elapsed during the segment and the altitude

of the UAV. It makes the aircraft maintain constant altitude while trimming the

aircraft by varying its speed and its online reconfigurable elements so the aircraft can

acheive its maximum endurance. Therefore, the optimization problem for the loiter or

best endurance segment can be found in Equation 128. Equation 121 is used to trim

the aircraft and calculate the thrust required (TR). Finally, the segment uses Equation

117 to calculate its contribution to the mission’s overall weight fraction, Equation 120

determines the lift constraint for the segment, and Equation 122 determines the thrust

constraint for the segment.

Maximum Speed Capability Segment The maximum speed capability seg-

ment does not contribute to the vehicle’s weight sizing. Instead it provides additional

276

constraints that determines whether the vehicle can actually meet a speed at a spe-

cific point in the mission. The segment is defined by two variables: the desired speed

and the altitude of the UAV. It trims the aircraft by varying the online reconfigurable

elements of the UAV so the aircraft can acheive its maximum endurance during this

segment, because the speed and altitude are already set and the segment should be

made as efficient as possible. Equation 121 is used to trim the aircraft and calculate

the thrust required (TR). From the trim setting, Equation 120 determines the lift

constraint for the segment, and Equation 122 determines the thrust constraint for

the segment.

Landing Segment The landing segment does not contribute to the vehicle’s

weight sizing. Instead it provides an additional constraints that determines whether

the vehicle can land within a given runway length. The segment is defined by one

variable: the desired runway length (sdesland). Equation 131 shows the formulation of

required runway length (sreqland), where kL is the landing speed to stall speed ratio

(1.15), troll is the time of the initial roll (3 sec), and µbrake is the additional friction

from braking.

sreqland = kL × troll ×

√
2× β ×WTO

ρ× SMainWing × CLmax

+
k2L × β ×WTO

g × ρ× CLmax × µbrake × SMainWing
(131)

Finally, Equation 132 shows the formulation of the landing constraint. It is im-

portant to notice all constraints are normalized to prevent bias toward any one.

gland =
sreqland
sdesland

− 1 ≤ 0 (132)

Reserve Segment The reserve segment uses one variable to define itself: the

time elapsed during the segment. It makes the aircraft maintain constant altitude

at standard sea level while trimming the aircraft by varying its speed and its online

277

reconfigurable elements so the aircraft can acheive its maximum endurance. There-

fore, the optimization problem for the reserve segment can be found in Equation 128.

Finally, the segment uses Equation 117 to calculate its contribution to the mission’s

overall weight fraction, Equation 120 determines the lift constraint for the segment,

and Equation 122 determines the thrust constraint for the segment.

Subsystem Cooling The operator of the FA2UST Module has the option to add

a cooling constraint to the design of UAVs. Since the subsystems often run the risk

of overheating, a fuel cooling model was added. It makes the assumption that fuel is

pumped around the subsystems to extract the heat. It makes the assumption that 15%

of the power consumed by a subsystem is transformed into heat [49]. This heat then

increases the overall temperature of the fuel. The fuel must stay below its evaporation

point (797.67◦R) during operations. Using this information, the temperature of the

fuel is simulated during the mission analysis using Equation 133 [49].

T (t) = Tt=0 −
Q̇h

ṁ× cpfuel
ln

(
1− ṁ× t

mt=0

)
(133)

Equation 134 shows the final formulation of the cooling constraint after the mission

simulation has been completed.

gcool =
Tf
Tevap

− 1 ≤ 0 (134)

Volume Sizing Volume sizing is important in designing an aircraft that heavily

relies on subsystems [146], and ensures the vehicle can fit all of its subcomponents in

the vehicle. The FA2UST Module conducts volume sizing with respect to subsystem

location constraints and assumptions were implemented to the overall design of the

UAV.

The radar must be in the nose of the aircraft. This constraint fixed the radar com-

partment’s location. Radar tends to be a rectangular box where all of the processors

278

are kept and a circular antenna facing forward. Therefore for basic sizing principles,

the radar can be considered to be a cylinder with diameter of the antenna and length

equal to the length of the box. The radar must be in the nose of the aircraft in order

to expose its antenna forward and the synthetic aperture radar (SAR) down facing

targets on the ground.

An EO is a cylinder with a sphere camera housing that can rotate to get images

in 3 directions. To fit the EO in the aircraft it must have room to fit the cylinder

into the belly of the aircraft which is where the subsystem can be connected to the

aircraft. The EO must be located near the front of the aircraft and protruding from

the bottom of the aircraft so the sensor to view important targets on the ground. It

must be far from the engine since vibrations could impair the pictures taken by the

EO. Therefore, the EO was place just behind the radar and sticking out the bottom

of the aircraft.

There are two types of GPS or INS. The GPS tends to be a bit larger but both

tend to be constructed as cylinders housing their sensors and hardware. The GPS

needs to be at the top of the fuselage so that it can communicate with the satellites

orbiting in space. The INS does not have this restriction, but both must be far from

the engine in order to reduce thermal and vibration noise which can corrupt the

signals of both sensors. Therefore, the navigation compartment was placed above the

EO and behind the radar. It was assumed to be shaped as cylinder.

Communications are essential to UAV operations and need to have sufficient range

in order to communicate with the controller a far distance away. As seen in the

database section, weight and size is directly related to the range of the subsystem.

This means the communications tend to be a large subsystem with respect to the

rest of the subsystems. Therefore the communications compartment is assumed to be

entire section of the fuselage. This is a cylindrical compartment where the mechanics

can reach the subsystem and swap systems. The communications, like the GPS and

279

Figure 69: Final UAV Layout (m)

INS, must be far from the engine in order to reduce thermal and vibration noise.

The fuel of an aircraft tends to be stored in the fuselage and the wing; however

to reduce complexity, the fuel is assumed to be at the center of gravity of the aircraft

ignoring the fact that different missions require different amounts of fuel. This will

eliminate center of gravity movement throughout the flight of the aircraft.

Finally, engine is cylindrical in shape. The location of the engine is assumed to be

at the rear of the aircraft. This is due to electronic subsystems constraining factors.

This assumption can be verified since most UAVs have electronic sensors at the front

and engine at the rear.

With these constraints and assumptions the layout of internal components of the

UAV have been created. The fuselage can then be fit around the subsystems, engine,

and fuel. An example layout of the UAV is seen in Figure 69. The blue is the

aircraft. The green cylinder is the radar, the black is the EO, the cyan cylinder is the

communications, the red cylinder at the front is the navigation, and the red cylinder

at the back is the engine. Though it is not iterative it is a systematic approach that

provides a logical way to organize the subsystems.

The user of the FA2UST Module has the option to turn this analysis on. It

provides the sizing and synthesis analysis a constraint determining whether or not

there is enough capacity for the fuel required of all design missions assigned to a UAV

280

product. Equation 135 shows the formulation of the constraint itself. It is important

to notice all constraints are normalized to prevent bias toward any one.

gV olume =
LengthRadar +DiameterEO + LengthComms + LengthEngine + WF

46.5πDiameter2
Fuse

LengthFuse
− 1 ≤ 0 (135)

UAV Cost Modeling The FA2UST Module uses a modified Gudmundsson air-

craft cost model to predict the development and production costs of a UAV [63].

In his model, he predicts the engineering cost (CENG), tooling cost (CTOOL), manu-

facturing cost (CMFG), development support cost (CDS), flight test operations cost

(CFT), quality control cost (CQC), cost of materials (CMAT), power plant cost (CPP),

and propeller cost (CCSTPROP) to predict the development (CDEV) and production

costs (CPROD). In the FA2UST Module, these costs are predicted for each product in

the product line and the cost of software development cost is added to Gudmunds-

son’s representation of the development cost. Then, the costs are broken down based

on components in each product, allowing for component specific learning curves to

be applied and the elimination of redundant costs from the use of common compo-

nents. Then, taking the maximum development and production costs associated with

each component the costs are reformed to predict the total cost of development and

production (CTOTAL).

A couple of existing UAVs were used to calibrate the model, modifying the coef-

ficients to meet the costs of developing and producing the UAVs. Throughout the

explanation of the cost model the modified coefficients are highlighted in red.

The model starts with the number demanded of each product within the product

line (N̄D) which the user of the module defines as an input vector. The FA2UST

Module assumes three vehicles of each product will be produced during the research,

development, test, and evaluation (RDT&E) phase of the design process, so NRDTE =

3. Therefore the total number vehicles associated with each product is: N̄Prod =

281

NRDTE + N̄D.

As explained in Section 4.1, each type of component has a vector associated with

it determining which engine is associated with each product (¯Comp). Using a logical

expression to determine which products have component i, the resultant vector is

dotted with N̄Prod to determine the number of each component to be produced.

NCompm,n = N̄Prod ·
(

¯Compm = n
)

(136)

Using the number of each component is to be produced, a quantity discount factor

(QDF) - otherwise known as a learning curve - can be enforced in the production

of each component. Equation 137 shows Gudmundsson’s formulation of a QDF . In

the FA2UST Module, the experience factor or learning rate (FEXP) is assumed to

be 95%.

QDFCompm,n = F
1.44×ln(NCompm,n)
EXP (137)

Gudmundsson uses a couple primary factors in his model. Some of the factors’

value changes depending on the type of cost being calculated. However, one factor

that does not change is the composite (fCOMP) factors. In the FA2UST Module’s

modified version of Gudmundsson model the assumption is made that a UAV will

primarily be made out of composite materials, meaning fCOMP = 1.

Some of Gudmundsson’s cost regressions require the maximum speed of the pro-

duct (VHj : kts). The FA2UST Module usually uses the speed from the maximum

speed capability segment. However, if there is no maximum speed capability segment

in the product’s design mission then the module takes the maximum speed from the

design mission’s simulation as VHj .

Gudmundsson’s regressions were based on the value of a 2012 US dollars, so

inflation must be included in the analysis given by the consumer price index relative

to 2012 (CPI2012).

282

Development Support Cost: Gudmundsson’s regression for the predicted de-

velopment support cost is a function of the product’s empty weight, maximum speed,

number of vehicles developed during RDT&E, a composite factor, and a complex flap

factor. Equation 138 shows the formulation of the composite factor specific to the

development support cost.

FCOMPDS = 1 + 0.5fcomp (138)

Equation 139 shows the formulation of the complex flap factor specific to the

development support cost. In the FA2UST Module a one percent increase is added to

the factor when the UAV has flaps, variable sweep, variable pitch, or thrust vectoring.

FCF,jDS = 1 + 0.01 (Flapsj + V arSweepj + V arP itchj + V ecThrustj) (139)

Finally, Equation 140 shows the formulation of the development support cost for

a single product in the UAV product line.

CDSj = 0.0824
(
0.65WEmptyj

)0.873
V 1.89
Hj

N0.346
RDTEFCF,jDSFCOMPDSCPI2012 (140)

Flight Test Operations Cost: Gudmundsson’s regression for the predicted

flight test operations cost is a function of the product’s empty weight, maximum

speed, and the number of vehicles developed during RDT&E. Equation 141 shows

the formulation of the flight test operations cost for a single product in the UAV

product line.

CFTj = 0.0144
(
0.65WEmptyj

)1.16
V 1.3718
Hj

N1.281
RDTECPI2012 (141)

Software Development Cost: The calculation of the software development

cost uses Equation 20 in Section 2.3.4. The coefficient A is user defined, and values

283

for it can be found in Table 25. The scaling exponents (SFj) and cost drivers (EMi)

are user defined, and values for them can be found in Table 26. If the user does not

define either A, any of the scaling exponents, or any of the cost drivers the module sets

them to nominal values. The calculation of lines-of-code sums up all the unadjusted

function points associated with the control of each component and multiples it by

128 - representing the converstion of UFPs to lines of code (Table 34). Finally, the

result of Equation 20 is the total effort required by the development (people-months).

Therefore, the effort is multiplies by $6,667 (2017-US)/month [7] to get the total

software development cost.

Development Cost: The total development cost is the sum of the development

support, flight test operations, and software development costs. Equation 142 shows

the formulation of the development cost for a single product in a UAV product line.

CDEVj = CDSj + CFTj + CSOFTj (142)

Manufacturing Cost: Gudmundsson’s regression for the predicted manufactu-

ring cost is a function of the product’s empty weight, maximum speed, total number

of vehicles produced, a composite factor, and a complex flap factor. Equation 143

shows the formulation of the composite factor specific to the manufacturing cost.

FCOMPMFG
= 1 + 0.25fcomp (143)

Equation 144 shows the formulation of the complex flap factor specific to the

manufacturing cost. In the FA2UST Module a one percent increase is added to the

factor when the UAV has flaps, variable sweep, variable pitch, or thrust vectoring.

FCF,jMFG
= 1 + 0.01 (Flapsj + V arSweepj + V arP itchj + V ecThrustj) (144)

284

Gudmundsson’s regression for the predicted manufacturing cost predicts the num-

ber of man hours associated with manufacturing. Equation 145 shows the formulation

of the manufacturing hours for a single product in the UAV product line.

HMFGj = 11.2
(
0.65WEmptyj

)0.74
V 0.543
Hj

N0.524
Prodj

FCF,jMFG
FCOMPMFG

(145)

Finally, Equation 146 shows the formulation of the manufacturing cost for a single

product in the UAV product line.

CMFGj = 2.21HMFGj × 53CPI2012 (146)

Tooling Cost: Gudmundsson’s regression for the predicted tooling cost is a

function of the product’s empty weight, maximum speed, total number of vehicles

produced, the production rate (Qm: N/month), and a complex flap factor. Equation

147 shows the formulation of the production rate. The FA2UST Module assumes the

total vehicles to be produced will occur over a five year span.

Qm = NProd/60; (147)

Equation 148 shows the formulation of the complex flap factor specific to the

tooling cost. In the FA2UST Module a two percent increase is added to the factor

when the UAV has flaps, variable sweep, variable pitch, or thrust vectoring.

FCF,jTOOL = 1 + 0.02 (Flapsj + V arSweepj + V arP itchj + V ecThrustj) (148)

Gudmundsson’s regression for the predicted tooling cost predicts the number of

man hours associated with tooling. Equation 149 shows the formulation of the tooling

hours for a single product in the UAV product line.

285

HTOOLj = 0.975
(
0.65WEmptyj

)0.764
V 0.899
Hj

N0.178
Prodj

Q0.066
m FCF,jTOOLFCOMP (149)

Finally, Equation 150 shows the formulation of the tooling cost for a single product

in the UAV product line.

CTOOLj = 2.21HTOOLj × 65CPI2012 (150)

Quality Control Cost: Gudmundsson’s regression for the predicted quality

control cost is a function of the manufacturing cost and a complex flap factor. Equa-

tion 151 shows the formulation of the composite factor specific to the quality control

cost.

FCOMPQC = 1 + 0.5fCOMP (151)

Finally, Equation 152 shows the formulation of the quality control cost for a single

product in the UAV product line.

CQCj = 0.191CMFGjFCOMPQC (152)

Engineering Cost: Gudmundsson’s regression for the predicted engineering

cost is a function of the product’s empty weight, maximum speed, total number of

vehicles produced, a composite factor, and a complex flap factor. Equation 153 shows

the formulation of the composite factor specific to the engineering cost.

FCOMPENG = 1 + fCOMP (153)

Equation 154 shows the formulation of the complex flap factor specific to the

manufacturing cost. In the FA2UST Module a three percent increase is added to the

factor when the UAV has flaps, variable sweep, variable pitch, or thrust vectoring.

286

FCF,jENG = 1 + 0.03 (Flapsj + V arSweepj + V arP itchj + V ecThrustj) (154)

Gudmundsson’s regression for the predicted engineering cost predicts the number

of man hours associated with engineering. Equation 155 shows the formulation of the

engineering hours for a single product in the UAV product line.

HENGj = 0.0495
(
0.65WEmptyj

)0.791
VHj .

1.526N0.183
Prodj

FCOMPENGFCF,jENG (155)

Finally, Equation 146 shows the formulation of the engineering cost for a single

product in the UAV product line.

CENGj = 2.21HENGj × 92CPI2012 (156)

Cost of Materials: Gudmundsson’s regression for the predicted cost of mate-

rials is a function of the product’s empty weight, maximum speed, total number of

vehicles produced, and a complex flap factor. Equation 157 shows the formulation of

the complex flap factor specific to the cost of materials. In the FA2UST Module a

two percent increase is added to the factor when the UAV has flaps, variable sweep,

variable pitch, or thrust vectoring.

FCF,jMAT
= 1 + 0.02 (Flapsj + V arSweepj + V arP itchj + V ecThrustj) (157)

Finally, Equation 158 shows the formulation of the cost of materials for a single

product in the UAV product line.

CMATj = 28.2
(
0.65WEmptyj

)0.689
V 0.624
Hj

N0.792
Prodj

FCFMAT
(158)

287

Power Plant Cost: Gudmundsson’s regression for the predicted power plant

cost is a function of the engine’s horsepower or thrust (lbs). It also depends on the

type of engine installed on the aircraft. Equation 158 shows the formulation of the

power plant cost for a single product in the UAV product line.

CPP =

174hp× CPI2012 Piston

377.4hp× CPI2012 Turboprop

1035.9T 0.8356CPI2012 Turbofan

868.1T 0.8356CPI2012 Turbojet

(159)

Propeller Cost: Gudmundsson’s regression for the predicted propeller cost is

a function of the engine’s horsepower. It also depends on the type of engine installed

on the aircraft. Equation 160 shows the formulation of the propeller cost for a single

product in the UAV product line.

CCSTPROPj =

 10[0.7746+1.1432 log10(hp)]CPI1989 Piston||Turboprop

0 otherwise
(160)

Production Cost: The total production cost of a UAV is the sum of the manu-

facturing, engineering, tooling, quality control, materials, power plant, and propeller

costs. The FA2UST Module increases the cost by 25% to account for liability insu-

rance and integration complexity. Therefore, Equation 161 shows the formulation of

the production cost for a single product in the UAV product line.

CPRODj = 1.25
(
CMFGj + CENGj + CTOOLj + CQCj + CMATj + CPPj + CCSTPROPj

)
(161)

Component Breakdown of Costs: The component breakdown of costs requi-

res percentages of the development and production costs associated with each com-

ponent. Using various sources of information from general aviation cost breakdowns,

288

time spent on the development and production of each UAV component, and overall

UAV cost studies the percentages for each were created [104, 87, 149]. Equations 162

and 163 show the component contribution to the development and production costs

respectively.

K̄CompDEV =

15% MainWing

24% Engine

12% Fuselage

10% HorizontalTail

8% V erticalTail

12% EO − IR

12% Radar

7% other

(162)

K̄CompPROD =

18% MainWing

19% Engine

17% Fuselage

12% HorizontalTail

10% V erticalTail

7% EO − IR

7% Radar

10% other

(163)

The two vectors can be multiplied by the transpose of their respective development

or production cost vector to create a matrix of components and their associated costs

for each product across the product line. For each component (m) the maximum

cost of each type of that component (n) represents the respective development or

production cost associated with that specific component. Equations 164 and 165

show this process.

289

CCompm,n−DEV = max
[
KCompm,PROD × C̄DEV

]
→ Compm = n (164)

CCompm,n−PROD = max
[
KCompm,PROD × C̄PROD

]
→ Compm = n (165)

Creating the Final Development and Production Costs of the UAV Pro-

duct Line: The individual component’s development costs are summed together to

create the total development cost of the product line. If there are common compo-

nents their development cost should not be counted twice, as to avoid redundancy

since it will be assumed each product is only developed once. Equation 166 shows

the formulation of the overall development cost for the product line.

CPLDEV =
M∑
m=1

N∑
n=1

CCompm,n−DEV (166)

The individual component’s production costs are first multiplied by their re-

spective QDFs. Then, the production cost of each individual component with a

product is summed to create the production cost of the product. Finally, all of the

product’s production costs are summed to create the overall production cost of the

product line. Equation 167 shows this formulation.

CPLPROD =
J∑
j=1

M∑
m=1

[
CCompm,n−PROD ×QDFCompm,n → n ∈ Productj

]
(167)

4.2.2 Automobile Sizing and Synthesis Models

The FA2UST Module uses the Future Automotive Systems Technology Simulator

(FASTSim) module for its automobile sizing and synthesis analysis. It was develo-

ped by the US Department of Energy’s (DOE) National Renewable Energy Labo-

ratory (NREL) to “evaluate the impact of technology improvements on efficiency,

290

performance, cost, and battery life in conventional vehicles, hybrid electric vehicles

(HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)

[26].” Though, its purpose is to evaluate hybrid and electrical vehicles it still can

determine the performance of traditional automobiles.

With its extensive database of historical vehicles, baselines can provide some of

the more lesser design variables. It has sizing and performance models built in it

as well. The capabilities provide the platform necessary to conduct all the analysis

required.

Since FASTSim is an internalized tool for automobile sizing and performance

analysis, FASTSim integrates into the FA2UST Module by setting the inputs and

analyzing the outputs.

4.2.2.1 Automobile Components Considered in FASTSim

All civilian cars tend to have the same configuration, which includes a frame, engine,

fuel tank, four wheels, steering system, transmission, and cargo. FASTSim’s capa-

bilities allow the user to analyze the frame, engine, fuel tank, wheels, and cargo. It

does not provide the ability to analyze the steering apparatus, and has limited ability

to analyze the transmission of the vehicle.

Automobile Frame: The FA2UST Module represents the automobile frame through

four variables: its frontal area (S: ft2), weight (WFrame: lbs), drag coefficient (CD),

and the wheel base (bwheel: ft). The module represents the frame this way because

all of the variables represent the dimensions of the frame (the height can be approx-

imated to be the frontal area divided by the wheel base - S
bwheel

), the weight of the

frame, and the aerodynamic technologies incorporated into the design.

Automobile Engine: The FA2UST Module includes analysis of the automobile

engine through the two variables: engine power (hp) and specific power (cP : hp/lb).

291

Specific power is the inverse of specific fuel consumption. These two variables outline

the strength and efficiency of the engine, which are key aspects of automobile design.

Automobile Fuel Tank: The FA2UST Module includes analysis of the automobile

fuel tank through the two variables: fuel storage energy (FSE: lb-ft) and fuel storage

energy per weight of tank (FScE : lb-ft/lb). These two variables explain the energy

storage capacity of the fuel tank and its weight efficiency to hold that amount of fuel.

Automobile Wheels: The FA2UST Module includes analysis of the automobile

wheels through the two variables: radius (R: ft) and rolling friction coefficient (µroll).

These two variables explain the wheel’s size and efficiency.

Automobile Cargo: The FA2UST Module includes analysis of the automobile

cargo through the one variable: additional cargo weight (WC : lbs). The cargo is just

the weight the vehicle must be able to carry during all of the drive cycles. It will

impact the efficiency, weight, and overall cost of the vehicle.

4.2.2.2 The Drive Cycle Requirements used by FASTSim to Size an Automobile
Product

The main requirements that drive the design of an automobile are drive cycles. They

outline a profile of speeds and grades of a vehicle over some timespan. FASTSim uses

drive cycles to determine the overall efficiency, performance of the vehicle, size, and

costs of the vehicle.

Figure 70 shows four traditional drive cycles used to size and analyze an automo-

bile design. The first test looks at varying operating speeds at no grade. The speeds

incrementally increase from 45, 55, 60, and 65 mph. These are standard civilian ope-

rating speeds in the US and close to those in Europe. The second test accelerates

the vehicle as quickly as possible and holds a speed of 90 mph. This test pushes the

engine and drive-train to its limits. The last two tests vary grades and speeds to

292

represent driving on a highway and in an urban center. Developed by the EPA, they

determine the fuel efficiency and whether the vehicle can handle any extreme loads

put on it by the user.

0 5 10 15 20 25

0

20

40

60

80

Time (min)

S
p

ee
d

(m
p

h
)

Constant Speeds

Accelerations

Highway

Urban

Figure 70: Drive Cycles Used to Size and Test the Automobiles

4.2.2.3 FASTSim Outputs Analyzed by the FA2UST Module

At the conclusion of automobile sizing, FASTSim outputs a wealth of information

about the vehicle. The outputs can be grouped into the vehicle’s fuel economy,

performance, cost, and size. Specific terms were integrated into the FA2UST Module

that pertains to the analysis of product architectures.

293

Fuel Economy Outputs: The fuel economy outputs include the laboratory and

adjusted fuel economy for city (MPGCityL or MPGCityA), highway(MPGHWL
or

MPGHWA
), and combined driving conditions (MPGCombL or MPGCombA) (mpg).

These metrics give an overall picture of the cars efficiency in a laboratory setting or

in real life conditions.

Performance Outputs: The two performance outputs considered are the vehicle’s

time to accelerate from zero to sixty miles per hour (t0−60: sec) and range (R: miles).

These two metrics provide insights on the power and endurance of the vehicle.

Cost Outputs: The cost output considered is the manufacturer’s suggested retail

price (MSRP : $). This price is the acquisition cost for the consumer and has a

considerable impact on the vehicle’s sales.

Size Outputs: The primary size output is the simulated total weight of the vehicle

(WTotal: lbs). It is the sum all of the components and fuel weights, and is a good

metric to summarize the overall vehicle.

4.3 FA2UST Module Outer Layer Outputs

The second part of the FA2UST Module’s outer layer calculates the evaluation me-

trics of the product architecture which allow the user to determine the favorability

of the product architecture. Specifically, the FA2UST Module looks at desirability,

requirement flexibility (the product architecture’s exposure to the risk of changing

requirements), and design complexity (the product architecture’s internal coupling

and interdependence among components or subsystems).

4.3.1 Calculating a Product Architecture’s Desirability

The design problem for a system is brought up in Section 3.5.1 where it is presented

in Equation 32, where x̄ is the vector of n design variables and R̄ is a vector of

294

m requirements. Equation 32 is then converted to a function in Equation 33. The

components of Equation 33 include f
(
x̄, R̄

)
which is the often the inverse or negative

overall evaluation criteria (OEC). The OEC is a combination output metrics from the

FA2UST Module’s internal analysis. It is defined in the third stage of the FA2UST

framework (Section 3.3).

Another component of Equation 33 is φgi
(
x̄, R̄

)
which are penalty functions of

inequality constraints from the FA2UST Module’s internal analysis. Though there are

many ways to create penalty functions from inequality constraints [60], the FA2UST

Module uses a linear extended interior penalty function. Equation 168 shows how the

FA2UST Module transforms the inequality constraints into penalty functions.

φgi
(
x̄, R̄

)
=

−1

gi(x̄,R̄)
gi
(
x̄, R̄

)
≤ ε

−2ε−gi(x̄,R̄)
ε2

gi
(
x̄, R̄

)
> ε

(168)

Another component of Equation 33 is φhj
(
x̄, R̄

)
which are penalty functions of

equality constraints from the FA2UST Module’s internal analysis. The FA2UST Mo-

dule uses a quadratic penalty function. Equation 169 shows how the FA2UST Module

transforms the equality constraints into penalty functions.

φhj
(
x̄, R̄

)
= hj

(
x̄, R̄

)2
(169)

Finally, the desirability (D) of a product can be expressed as the combination of

these components in Equation 170. The sum of the product’s desirability provide the

product line’s desirability.

D
(
x̄, R̄

)
= OEC

(
x̄, R̄

)
−

[
N∑
i=1

φgi
(
x̄, R̄

)
+

M∑
j=1

hj
(
x̄, R̄

)2

]
(170)

295

4.3.2 Calculating a Product Architecture’s Requirement Flexibility

Section 3.5.3 shows a high level or abstract formulation of the requirement flexibility.

The FA2UST Module calculates the gradient and Hessian matrix of the desirability

function using a finite difference method. Equation 171 shows how each element of

the gradient is calculated, where e is the finite difference and given as one percent

of either xi or Rj. However, if ‖e‖ is less than 0.001 then it is set to 0.001. To

simplify the equation the design variable and requirement vectors are combined into

one variable vector v̄ where vk is one of the elements in the vector. The elements not

defined are kept at their original values.

δD

δvk
=
D (vk = vk + e)−D (vk = vk − e)

e
(171)

Equation 172 shows how each element of the Hessian matrix is calculated, where

e is the finite difference and given as one percent of either xi or Rj. However, if ‖e‖

is less than 0.001 then it is set to 0.001. To simplify the equation the design variable

and requirement vectors are combined into one variable vector v̄ where vk is one of

the elements in the vector and vl is another. The elements not defined are kept at

their original values.

δ2D
δv2
k

= D(vk=vk+e)−2D(vk=vk)+D(vk=vk−e)
e2

δ2D
δvkδvl

=
D(vk=vk+e,vl=vl+e)−D(vk=vk−e,vl=vl+e)

e
−D(vk=vk+e,vl=vl−e)−D(vk=vk−e,vl=vl−e)

e

e

= D(vk=vk+e,vl=vl+e)−D(vk=vk−e,vl=vl+e)−D(vk=vk+e,vl=vl−e)+D(vk=vk−e,vl=vl−e)
e2

(172)

After the gradient and Hessian calculations are complete, the requirement flexibi-

lity of the product line is calculated using Equation 38.

296

4.3.3 Calculating a Product Architecture’s Design Complexity

The calculation of the product line’s design complexity uses the information gathered

from the calculation of the Hessian and gradient of the desirability of the product line

(shown through Equations 171 and 172). After the Hessian and gradient calculations

are complete, the design complexity of the product line is calculated using Equation

40.

4.4 Development of FA2UST Module Summary

All of the models explained in this chapter create the FA2UST Module. To show

how they fit together, Figure 71 and Figure 72 shows the integration for the UAV

and automobile analysis respectively. In the UAV analysis, the input section of the

FA2UST Module outer layer reads the input file creating the list of requirements,

components and their design variables, generates the product architecture indices,

and provides physical, system, product architecture rules for the internal analysis.

This information is sent to the inner layer where the products within the product

line are initialized. The components characteristics are defined. Then, the module

delegates the physical and system architecture rules to each product. From this

information the empty and payload weight of each product can be calculated.

After initializing the products, the UAV’s are sent to the sizing and synthesis

analysis where their weight is determined and cooling constraint can be calculated.

During the sizing and synthesis, the module simulates a mission stepping through

each mission segment. For each segment, the trim of the aircraft is optimized to max-

imize the objective function specific to each segment. Once the takeoff gross weight

converges, the performance and size metrics of the UAV are sent to any additional

constraints that need to be added to each product. Finally, the cost analysis of the

product line is conducted.

The module then extracts specific output metrics and constraints that are required

297

Inputs:

• Requirements

• Input Design Variables

• Product Architecture

Outputs:

• Desirability

• Requirement Flexibility

• Design Complexity

• Inner Layer Output Metrics

Initial Input Values &
Product Architecture

Indices

Outer Layer

Component
Build

Delegation of
System Architecture Rules

Empty Weight & Payload
Calculations

Mission
Analysis

Trim
Optimization

Mission Segment

Obj. Function

Optimal Trim

Setting

Sizing & Synthesis

Additional
Constraints

Cost
Analysis

Inner Layer

Initial

Input Values

Output

Metrics
Hessian & Gradient

Calculation Inputs

Figure 71: Integration of UAV Inner Layer Models with the Outer Layer of the
FA2UST Module

to calculate the desirability of the product line. Then, the outer layer starts feeding

inputs back to the inner layer so the Hessian and gradient of the product line’s

desirability can be calculated. Finally, the Hessian and gradient are used to calculate

the requirement flexibility and design complexity of the product line.

In the UAV analysis, the input section of the FA2UST Module outer layer reads

the input file creating the list of requirements, components and their design variables,

generates the product architecture indices, and provides physical, system, product

architecture rules for the internal analysis.

298

Inputs:

• Requirements

• Input Design Variables

• Product Architecture

Outputs:

• Desirability

• Requirement Flexibility

• Design Complexity

• Inner Layer Output Metrics

Initial Input Values &
Product Architecture

Indices

Outer Layer

FASTSim

Inner Layer

Initial Input Values Hessian & Gradient

Calculation Inputs

Output

Metrics

Figure 72: Integration of FASTSim Inner Layer with the Outer Layer of the FA2UST
Module

This information is sent to the inner layer where FASTSim takes the components

variables for each product. Then, FASTSim sizes, determines the performance, and

determines the costs for each product individually.

The module then extracts specific output metrics and constraints that are required

to calculate the desirability of the product line. Then, the outer layer starts feeding

inputs back to the inner layer so the Hessian and gradient of the product line’s

desirability can be calculated. Finally, the Hessian and gradient are used to calculate

the requirement flexibility and design complexity of the product line.

The integration of the FA2UST Module creates the desired capabilities to test the

hypothesis formulated in Chapter 3. The next chapter tests these hypothesis using a

case study of the development of a new UAV product line.

299

CHAPTER V

UNMANNED AERIAL VEHICLE CASE STUDY

The first case study analyzes the unmanned aerial vehicle (UAV) industry because

it is developing and manufacturers within the industry implement numerous product

architectures to satisfy diverse requirements and customer needs. However, most

industries choice in product architecture converges over time. The materializing pro-

duct architecture ends up dominating the industry and becomes the standard until a

paradigm shift occurs from new technologies or market behavior. Since this industry

is in its infancy, a dominant product architecture will emerge in the next few years.

Therefore, this case study looks at a medium-sized, conventional UAV manufacturer.

The manufacturer is to resemble many of the players in the UAV industry whose

goal is to capture as much of the potential market available when the FAA relaxes

regulations, as is expected, as well as win some military contracts. As a result, their

choice in product architecture will determine the success of this venture.

5.1 Establishing the Need for a New UAV Product

The first step in developing a new product is determining the needs of the new

product. Following the process detailed in Figure 34, the manufacturer can determine

the customer needs, the resources or capabilities required to meet them, and product

specific needs. The first step in the process is to analyze the industry and the internal

dynamics of the firm. Together, they can help determine the producers place in

the industry. From this analysis, the firm can choose a business strategy can be,

down-selecting needs specific to the new product, and determine the product-based,

customer-oriented strategy.

300

5.1.1 UAV Industry External Analysis

The external analysis focuses on the dynamics that occur outside of the manufacturer

in question. The two recommended frameworks to facilitate this analysis are the

PESTEL and Five Forces. However, depending on the industry and global breadth of

operations other frameworks can be introduced. However, for this case with a small

manufacturing firm operating in the United States the PESTEL and Five Forces

frameworks are sufficient.

5.1.1.1 PESTEL Analysis of UAV Industry

The PESTEL Framework allows engineers and management to break down the exter-

nal factors that influence the industry. The factors specific to the unmanned aerial

vehicle industry are as follows:

• Political: The unmanned aerial vehicle industry is highly sensitive to govern-

ment policies and regulations. Though the United States and European regula-

tors express their interest in opening up the private industry, both governments

are slow to pursue deregulation [74, 154, 52, 2, 37]. The markets that are open

tend to be maritime or remote area surveillance. In the future, these regula-

tions will be relaxed allowing for more uses and profitability in the industry.

Furthermore, militaries are finding UAVs especially useful for dull or dangerous

missions [51].

• Economic: Producing UAVs require a significant amount of capital to produce

the products. Risky ventures such as these require the economy to be healthy

and growing. Since the world economy is considered healthy, multiple firms

invested recently in the industry. Companies such as Boeing, Lockheed Martin,

and General Dynamics have made considerate investments in the industry fol-

lowing an explosion in venture capital to numerous UAV start-ups [28]. These

factors mean it is an excellent time to be in the industry.

301

• Sociocultural: The public’s opinions of UAVs depend on country and region.

Therefore, the public opinion is split regarding the UAV industry. While the

vehicles can reduce costs of some mundane operations, they threaten privacy

and cause the public to worry about government oversight [75]. However, moods

towards the industry seem to be lightening as the regulators have promised to

prevent violations of privacy. Implementation of these policies may help pave

the way for the public’s eventual acceptance of new technology.

• Technological: The industry emerged from the growth of digital electronics and

silicon revolution. In the past, analog systems were too heavy to make unman-

ned aerial vehicles practical. The digitization of electronics drastically reduced

the weight of the subsystems required in a UAV and expanded the capabilities of

the systems. The technologies that have facilitated the industry’s development

are still improving. The subsystems’ weight is decreasing, and computational

power is increasing simultaneously, thus improving the performance and capa-

bility of UAVs.

• Ecological: The primary ecological factor influencing the aerospace industry as a

whole is fuel consumption. However, UAVs require much less fuel to conduct the

same missions than their manned counterparts. Therefore, fuel consumption is

not as concerning in the UAV industry compared to the civil transport industry.

• Legal: UAVs have removed the human element from the vehicle reducing the

liability of the vehicle. However, if the vehicle fails in operations it immediately

becomes a projectile, threatening people and infrastructure on the ground or in

the air. Vehicle failure and the resultant damage could cause hefty litigation.

Therefore, the operating the vehicle should be conducted by licensed pilots and

quality must be extremely high to offset the risk of failure.

302

The analysis from the PESTEL Framework describes an industry with great po-

tential. The industry’s growth is heavily dependent on political regulations relaxing,

but the industry and outside investment think the trends will continue in the UAV

industry’s favor.

5.1.1.2 Five Forces of UAV Industry

Following the analysis of the UAV industry’s external considerations, it is essential

to analyze the profitability of the industry. The Five Forces model analyzes the

manufacturer’s relative power within the industry. The manufacturer’s power relates

to its ability to negotiate favorable deals and increase profit margins. Furthermore, it

can help determine possible business strategies the firm can implement in the industry.

The Five Forces for the UAV industry are as follows:

• Bargaining Power of Buyers: (High) Many of the firms that already exist in

the UAV industry have not been able to differentiate themselves, and since there

are so many, consumers can quickly switch amongst firms. The low switching

costs allow consumers to demand more out of the products reducing margins

for the producers.

• Bargaining Power of Suppliers: (Medium) Firms that supply the UAV in-

dustry primarily consist of raw material, electronics, or specialized subsystems

including engines and sensors. The raw materials and commercially available

electronics are commodities and do not have much bargaining power in ge-

neral. However, the engines, military-grade electronics, and specialty sensors

have much more power depending on the market segment the manufacturer is

competing in.

• The Threat of New Entrants: (Medium) New entrants entered the industry

consistently since 2004, spurred by innovative concepts and Wall Street’s con-

tinued investment in technology start-ups. However, the established companies

303

present in the industry stemmed the flow by consolidating the highly profitable

military contracts. As a result, those that still enter the industry focus on the

civil market space.

• The Threat of Substitute Products or Services: (Low) The UAV industry is

a substitute for many of the manned alternatives present in the unmanned

industry. Therefore, no real substituting threat emerged to the industry.

• Rivalry among Existing Competitors: (High) Competition in the industry is

extremely high. Multiple small firms are trying to grab their stake in the indu-

stry, and the aerospace giants have made their investments in the industry as

well. Since the industry is emerging, the uncertainty in the markets is complex

or chaotic. Thus, the established firms are trying to shape the industry by

lobbying politicians or acquiring the competition. The smaller firms must react

to the established firms positions and must fight over less profitable market

segments.

The result of the analysis shows the two possible markets are hard to compete in

for a smaller manufacturer. The large aerospace engineering firms dominate the higher

margin military-contract market segment. The lower margin or undeveloped public

market segment has a large number of competitors with relatively low power. The

dynamics of the market leave the firm with two options: disrupt the military-grade

market with lower-priced alternatives, or differentiate itself in the public marketplace.

Both options are not extremely attractive. Disruptive strategies offer low-cost or re-

volutionary new products that rapidly take market share. These strategies require

the volumes necessary to acheive economies of scale. So in this case military con-

tracts do not demand the required volume to implement this strategy successfully.

Furthermore, the only way to differentiate in the civil space is in quality of the pro-

duct. Regulations determine the quality requirements which depend on vehicle size

304

and operations. Therefore, an internal analysis of the case study manufacturer must

be conducted to see which option is more favorable.

5.1.2 UAV Manufacturer Internal Analysis

The internal analysis focuses on the resources, capabilities, and structure inherent of

the firm in question. The VRIO framework and value chain analysis allow the firm

to develop strategies around the strengths of the company. Furthermore, it identifies

weaknesses that the business must bolster. There are other frameworks available, but

the two methods are sufficient in determining high-level characteristics relevant to

product development of the firm.

5.1.2.1 VRIO Analysis of UAV Manufacturer

This case’s hypothetical manufacturer is mid-sized. Formed in the mid to late 2000s

by a group of engineers who splintered off from a larger company or came together to

form a new venture. This company does not have the large “bureaucratic-like” matrix

structure like the larger aerospace firms, but due to its size does not have the same

access to large sums of capital or developed specialized departments. The company

instead has a competent group of systems, controls, and design engineers as well as

competent technicians for UAV production. Its primary resources and capabilities are

its systems engineering knowledge-base, UAV expertise, a tight-knit team, production

knowledge-base, and access to venture capital.

The VRIO analysis looks at a company’s resources and capabilities to determine

which provides the firm with a distinct advantage compared to their competitors.

The capabilities and resources that are valuable, rare, hard to imitate, and if the

company is organized to capture their value should be leveraged in the new strategy.

Table 52 displays the results from the VRIO analysis.

From the analysis, it is apparent that none of the resources and capabilities will

305

Table 52: UAV Industry VRIO Analysis

Resources Valuable Rare Un-Imitable Organized

Systems Knowledge-Base X X X
UAV Expertise X X
Tight-nit Team X X X
Production Knowledge-Base X X
Venture Capital X X

guarantee a long-term advantage; instead, they can create short-term success depen-

ding on the strategy the company implements. Specifically, the firm should leverage

its systems engineering knowledge-base and tight-knit chemistry within the team,

suggesting they could take on more complicated designs if necessary.

5.1.2.2 Value Chain Analysis of UAV Manufacturer

After, determining critical resources and capabilities available to the firm, value chain

analysis looks at the internal structure of the organization. It is assumed the firm

can handle the supporting activities, which include the organization’s infrastructure,

human resources, and resource procurement. For primary activities, the firm can

manage the inbound and outbound logistics, marketing, sales, and service. Since

the firm is small, there are some considerations concerning technology development

and operations or production. The disciplines required for UAV production and the

difficulty for the firm to develop subsystems and technologies in each domain are:

• Aerodynamics: (Moderate-Easy) The firm in question has expertise in UAV

design. Therefore, the engineers in the company are quite competent in the

field of aerodynamics and the subsystems required for flight.

• Propulsion: (Hard) The firm’s engineers do not have expertise in the field,

the field requires an enormous amount of investment to develop, and there are

already some external firms that develop aerospace power plants.

306

• Structures: (Moderate) Designers can only conduct structural analysis once

they choose the design’s configuration. Thus, it is a part of the integration of

the subsystems and components. The engineers have a history of systems and

UAV design. Therefore, the firm can handle the structural analysis required.

• Electronic Payloads: (Hard) A UAV requires various electronic subsystems to

complete the desired capabilities. The development of each demands extensive

amounts of capital and expertise. Thus, there are plenty of firms that already

specialization in these subsystems.

• Controls: (Moderate) Controls of UAVs is not a simple task, but the domain is

an intricate part of systems design and integration. Control system development

requires the at least the completion of a conceptual design. Therefore, control

system design is a part the overall systems design.

• Production: (Easy) The firm’s employees have expertise in this field and the

company already invested in the facilities required for UAV production.

Engine and electronics development require an enormous amount of R&D costs

and technical expertise. Furthermore, there are many entities in the industry that

already focus on these subsystems’ development and production. Thus, the firm

should consider other approaches rather than vertically integrating these entities in

the value chain.

The first option is to taper activities in the value chain. Tapering involves orches-

trating external firms to manufacture subsystems or subcomponents. The second is

to outsource activities by purchasing goods required by the product. Tapering implies

cooperation between the firm and the external entities, while outsourcing primarily

acquires products previously developed by the external entities.

The factor that drives this decision is suppliers power. In this case, the electro-

nic and power plant companies have moderate bargaining power, depending on the

307

performance demanded of the subsystem. Therefore, it depends on what types of

products the firm in question decides to produce.

The electronic subsystems and engine-design companies either produce generic

subsystems that are supposed to meet specific markets requirements, or specialty,

high-performing subsystems developed through cooperation between the vehicle de-

signer and subsystem manufacturer.

If the firm decides to produce high-performance products, then taper integration

is required. However, if the firm decides to produce lower performing products, then

the firm should outsource. Either way, the firm must rely on external firms to produce

and invest in technology specific to the subsystems required for the new product. The

firm should focus on the design and integration of the systems extracting more value

from the combined capabilities of the products.

5.1.3 Selecting UAV Industry Business Strategy

After analyzing the industry and the internal capabilities of the firm in question,

the firm must formulate a business strategy. The firm in question is entering a

highly competitive market with multiple market segments. Figure 38 shows the three

primary segments: hobby, civil surveillance, and military-grade UAVs.

The hobby segment is a low margin market with many producers. The barriers to

entering this segment are so low that people often build UAVs, hence “do-it-yourself

(DIY).” The civilian market is slowly growing and will explode once regulations loo-

sen. In this market, there are numerous competitors, and margins are slim. Finally,

the military grade segment is the most established market. A few of the more signi-

ficant UAV manufacturers dominate this market, making it hard for smaller firms to

gain government contracts.

Therefore, Figure 73 shows the proposed target segments for this case study.

The firm should focus on the civilian and military-grade segments. The strategy

308

PerformanceLow-Price

Market
Size

R
egion

Considered

“A
ctive

Product

A
lley”

Figure 73: The Capability and Market Size Relational Space for the UAV Industry

309

should be a hybrid of differentiation and price leadership in the civil and military-

grade market segments. The firm can produce a higher quality product in the private

space, increasing margins and a low-cost alternative in the military-grade market,

gaining market share. The firm can achieve this strategy by producing products

for both segments on the same production line. Concurrent productions will take

advantage of combining volumes from both segments and enforcing the higher quality

standards to both. Furthermore, since it will be difficult to break into the military

grade market, the firm can establish itself in the civilian market which will lead to

government contracts and confidence. Thus, the military-grade market will open for

the firm.

The hybrid strategy creates two strategic position and competitive scope pairings

(Figure 37). The position and scope pairing for the civilian segment is differentiation

and for the military-grade segment is focused-price leadership.

5.1.4 Extracting Customer Needs for New UAV

Following the formation of the firm’s business strategy, the firm must establish the

needs for the product. The external analysis already discovered three needs, based

on the dynamics of the industry. The value chain analysis identified the need to

incorporate modular techniques with regards to the engines and electronic subsystems

since the firm should plan to outsource their production. The business strategy

requires the firm to produce the products on the same production line. Concurrent

production implies common components or processes which will achieve the volume

required to meet the desired price points.

Now, the firm must derive the customer-specific needs. Figure 39 displays the

options available for the firm. Concerning the formulated business strategy, the ci-

vilian and military-grade segments require different approaches. The customers in

310

the private space have moderate-to-low negotiating power. Thus, the firm can con-

duct customer surveys or market analysis. The customers the firm would likely be

targeting are large corporations that need specific assets monitored. For example, it

could be an oil company monitoring pipelines or off-shore oil rigs. Another example

would be large farming corporations who need to monitor their crops or livestock

over large swaths of land. The customers in the military-grade segment have a lot

power. Therefore, the company would have to meet the desired capability specified

by the government organization, for example, a request for proposal often outlines

the desired capability. Furthermore, the product must meet stringent military-grade

standards.

The combination of concurrent production and diverse mission requirements sug-

gests the implementation of online reconfigurable components to maximize perfor-

mance concerning the concurrent production constraints. The final needs of the

product line are as follows:

1. Price: The purposes of UAVs are to be a lower-priced alternative to man-

ned aerial vehicles that can achieve the same or more significant capabilities.

Therefore, operating and acquisition costs must be less than their manned coun-

terparts.

2. Sufficient Performance: The vehicles must be as capable as their manned

counterparts.

3. Reliability: The vehicles must be highly reliable during operations to prevent

failure and loss of vehicle, primarily when operating in the private space.

4. Modular and Outsourced Components: The product line should incorpo-

rate modular techniques with regards to the engines and electronic subsystems

since the firm should plan to outsource their production.

311

5. Production Line: The need for concurrent production implies common com-

ponents or processes which will achieve the volume required for meeting the

desired price points.

6. Civilian Market Segment:

(a) Performance: The UAV must be able to fly over moderate distances and

have moderate endurance. Due to the lack of speed requirements, the

vehicle must have good endurance characteristics.

(b) Price: The price point can be a higher than average in this segment since

a differentiation should draw a higher price than the rest of the field.

7. Military-Grade Market Segment: The military-grade segment contains two

types of UAV capabilities: surveillance and high-speed. Derivation of the mis-

sion profiles can originate from military standards [43].

(a) Surveillance Performance: The UAV must be able to fly over long distan-

ces, resulting in high endurance. Due to the lack of speed requirements,

the vehicle must have good endurance characteristics.

(b) Surveillance Price: The strategy indicates the production of low-cost so-

lutions. Therefore, the price needs to be less than the price offered by its

competitors.

(c) High-Speed Performance: The UAV must be able to reach transonic speeds.

The vehicle must also be able to fly over mid to long distances.

(d) High-Speed Price: The strategy indicates the production of low-cost solu-

tions. Therefore, the price needs to be less than the price offered by its

competitors.

8. Online Reconfigurability: Online reconfigurable characteristics should be

312

considered to offset the degradation of performance as a result of concurrent

production and commonality.

The needs identified using this approach form general descriptions of the tasks,

missions, and capabilities required by the vehicle.

5.1.5 Final UAV-Based, Customer-Oriented Business Strategy

The firm should focus on satisfying the requirement of delivering a payload over a

given distance. The manufacturer can achieve this capability over various distances

and speeds requiring a UAV product line to satisfy the desired tasks. The firm should

pursue the market targeting two market segments: civilian and military-grade. The

pursuit of two different market segments suggests the production of a few vehicle

variants on the same production line. Concurrent production and modular standards

should save on cost without diminishing performance extensively. Furthermore, the

designer can offset the possible degradation of performance by implementing online

reconfigurable characteristics. The uncertainty of the product architecture drives the

need to explore the space and analyze the trade-offs between various vehicles. The

next step for the firm would be to create concrete definitions of the tasks, missions,

and capabilities required of the systems.

5.2 Defining the UAV Design Problem

After establishing the needs for the new product line and the formulation of a customer-

oriented, product-based business strategy, designers must go through the process of

transforming the abstract needs to detailed functional requirements. Many of the

facilitators found in Section ?? can help, alongside the requirements analysis process

found in Section 2.1.2 to create these requirements. For UAVs, the analysis forms

design missions which outline the series of events the vehicle must be able to produce.

Furthermore, their technical requirements can provide benchmarks of expected costs,

313

speeds, reliability, technology level, or other metrics. In this case study, the primary

concerns are performance and cost.

The first step in this process is defining the technical parameters that engineers can

directly trace from the product’s needs. By looking at historical data benchmarks

can be set for the UAVs’ cost, speed, endurance, and range. Figure 74 shows the

distribution of historical UAVs with missions similar to that of a civil surveillance

mission. Since the product should be a little better than the market, a benchmark

price of $50K (2017-US) was selected, reflecting the 75% of the distribution. An

endurance of 4 to 10 hours was selected, reflecting the 50% to 75% of the distribution.

A range of 100 to 200 miles was selected reflecting the 75% of the distribution to the

mean. A payload weight of 100 lbs was set as a benchmark. Finally, a fuel weight of

100 lbs was set as a benchmark representing a value slightly higher than the median

of the distribution.

Figure 75 shows the distribution of historical UAVs with missions similar to that

of a military-grade surveillance mission. Since the product should be a lower-cost

solution when compared to the market, a benchmark price of $5Million (2017-US)

was selected, reflecting the 25% of the distribution. An endurance of 4 to 10 hours

was selected, reflecting the 50% to 75% of the distribution. A range of 150 to 450

miles was selected reflecting the 75% of the distribution to the mean. A payload

weight of 200 lbs was set as a benchmark representing a value slightly higher than the

median of the distribution. Finally, a fuel weight of 200 lbs was set as a benchmark

representing a value slightly higher than the median of the distribution.

Figure 76 shows the distribution of historical UAVs with missions similar to that of

a military-grade high speed mission. Since the product should be a lower-cost solution

when compared to the market and with a limited amount of publicly available data on

this type of mission, a benchmark price of $5Million (2017-US) was selected, reflecting

the 50% of the distribution. A maximum Mach number of 1.2 was selected since it

314

Figure 74: Civil Surveillance Mission Historical Vehicles

315

Figure 75: Military-Grade Surveillance Mission Historical Vehicles

316

was the highest speed of any UAV in the database. An endurance of 4 to 8 hours was

selected, reflecting the 25% to 50% of the distribution. A range of 150 to 350 miles

was selected reflecting the lower 25% of the distribution. A payload weight of 100 lbs

was set as a benchmark representing the lower 25% of the distribution. Finally, a fuel

weight of 300 lbs was set as a benchmark reflecting the lower 25% of the distribution.

In this case, the cost, speed, endurance, and range associated with each mission

are displayed in Table 53.

Table 53: Technical Requirements of UAV Case Study

Mission
Acquisition
Price

Max Speed
(Mach)

Endurance
(hrs)

Range (mi)

Civil
Surveillance

$50K N/A 4 - 10 100 - 200

Military-Grade
Surveillance

$5-mil N/A 4 - 10 150 - 450

Military-Grade
High-Speed

$5-mil 1.2 4 - 8 150 - 350

The next step is form design missions that define the actual serial steps a UAV

must be able to complete. The design missions provide inputs to the simplified models

(Section 2.1.4.3) which size the vehicle and estimate performance.

5.2.1 Decomposition of Tasks Required of UAV

Standardized mission profiles provide the benchmarks for the design missions. Since

the UAV industry’s origin comes from military practices, the military profiles provide

the benchmarks. MIL-STD-3013 provides example missions varying from support,

fighter, attack, bomber, and reconnaissance aircraft missions [43]. For this case, the

strategy requires three missions with varying degrees of endurance, range, and speed

requirements.

317

Figure 76: Military-Grade High-Speed Mission Historical Vehicles

318

5.2.1.1 UAV Civilian Surveillance Mission

The civilian reconnaissance mission would be most similar to a combat air patrol. The

vehicle cruises at flight conditions specific to maximum range out to a location, then

loiters as it surveys an area. After hitting a fuel limit or finishing the required tasks,

it would cruise back to the mission’s origins. Thus, Table 54 outlines the mission

details.

Table 54: UAV Industry Civil Surveillance Design Mission [43]

Segment Fuel Time Distance Speed Altitude

Warm-Up,
Takeoff,
Accelerate to
Climb Speed
OR Catapult

20min at Ground Idle + 30 SEC at Takeoff / Maximum /
IRT (A/B if required) + Fuel to accelerate from obs.
clearance to climb speed at IRT. No distance credit OR
Catapult

Climb

Minimum
Time
Climb
Schedule

Takeoff to
Max Range

Cruise
100 - 200
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Loiter
Alt.

Loiter
4 - 10 hrs.

No Credit
Max
Endurance

Max
Endurance

Climb

Minimum
Time
Climb
Schedule

Loiter Alt.
to Max
Range

Cruise
100 - 200
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Landing

Reserves
20min +
5% of
initial fuel

No Credit
Maximum
Endurance

Sea Level

The civil surveillance mission consists of nine phases. The takeoff phase can be

either from a runway or use of a catapult. The other primary mission segments are a

319

1.0

Takeoff
Catapult

2.0

Climb
Max. Rate
of Climb

3.0

Cruise
Max. Range

4.0

Descend to
Operations

5.0

Check
Fuel

6.0

Scan
Target

7.0

Climb Max.
Rate of
Climb

IF
EMPTY

8.0

Cruise
Max. Range

9.0

Land

Top Level

(5.0) Ref.
Check
Fuel

Loiter Best
Endurance

6.1 6.2

Conduct
EO Scan of

Target

6.3

Record
Data

6.4

Transmit
Data

6.5

Wait for
Next Target

(7.0) Ref.
Climb

Second Level

Figure 77: Function Flow Block Diagram of UAV Civil Surveillance Mission

climb, cruise, and loiter segments whose flight conditions should be set to maximize

the rate of climb, range, and endurance. The mission outline then can be broken

down into a functional flow block diagram. This step details the functions the system

must conduct. Figure 77 displays the functional flow block diagram for the civil

surveillance mission.

Figure 77 breaks down the civil surveillance mission. It focuses explicitly on the

“Scan Target” phase which includes loitering and using an EO sensor to image the

target. The “Scan Target” phase repeats until the fuel hits a limit or the vehicle has

completed its mission.

Following the functional flow block diagram, a functional-physical matrix can as-

sist in determining configuration options. There are certain phases in the mission that

require specific components. Therefore, the design must include those subsystems.

Furthermore, a phase might have multiple component combinations. Therefore, these

should remain as options during the design process. Figure 78 shows the functional-

physical breakdown of the civil surveillance mission.

320

Function

Preflight Check

Mission:

Load

Warm-Up/Taxi

Takeoff/Catapult

Cruise

Scan Target

Communicate

Surveillance

F
u
n
ct

io
n
al

A
rc

h
it

ec
tu

re

Physical Architecture

UAV

Frame Wing Eng. Comms. EO Radar Nav. Rotor

X X X XX X XX

X

X X

X X XX X

X X XX X

X X X X XX X

X

X X

Figure 78: UAV Civil Surveillance Mission Functional/Physical Matrix

From the functional-physical matrix in Figure 78, the mission requires an EO sen-

sor, but not necessarily radar. Furthermore, it could use a wing or a rotor to provide

lift, due to its low required speeds, range, and altitude. However, there is no require-

ment for vertical takeoff and landing making a rotor irrelevant. Furthermore, the low

speeds, range, and altitudes required of the system suggest turbofan or turboprop

engines are impractical. Designers use jet engines to create the thrust characteristics

to achieve high speeds or altitudes. Therefore, the system favors the use of a piston

or turboprop engine.

5.2.1.2 UAV Military-Grade Surveillance Mission

The military-grade surveillance mission’s structure is the same as the civil version.

The vehicle is required to cruise at maximum range flight conditions to a location

where it would monitor an area. After completing the assigned task or reaching a

fuel limit, the aircraft would cruise back to the mission’s origin. However, it requires

321

longer ranges and loiters, expecting higher performance from the product. Table 55

displays the outline of the military-grade surveillance mission.

Table 55: UAV Industry Military-Grade Surveillance Design Mission [43]

Segment Fuel Time Distance Speed Altitude

Warm-Up,
Takeoff,
Accelerate to
Climb Speed
OR Catapult

20min at Ground Idle + 30 SEC at Takeoff / Maximum /
IRT (A/B if required) + Fuel to accelerate from obs.
clearance to climb speed at IRT. No distance credit OR
Catapult

Climb

Minimum
Time
Climb
Schedule

Takeoff to
Max Range

Cruise
150 - 450
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Loiter
Alt.

Loiter
4 - 10 hrs.

No Credit
Max
Endurance

Max
Endurance

Climb

Minimum
Time
Climb
Schedule

Loiter Alt.
to Max
Range

Cruise
150 - 450
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Landing

Reserves
20min +
5% of
initial fuel

No Credit
Maximum
Endurance

Sea Level

Consistent with the civil surveillance mission, the military-grade surveillance mis-

sion consists of nine phases. However, the takeoff phase uses a runway. The rest

of the mission is self-explanatory. The other primary mission segments are a climb,

cruise, and loiter segments whose flight conditions should be set to maximize the rate

of climb, range, and endurance. The mission outline then can be broken down into

a functional flow block diagram. This step details the functions the system must

322

1.0

Takeoff
Runway

2.0

Climb
Max. Rate
of Climb

3.0

Cruise
Max. Range

4.0

Descend to
Operations

5.0

Check
Fuel

6.0

Scan
Target

7.0

Scan
For Enemies

8.0

Climb Max.
Rate of
Climb

IF
EMPTY

9.0

Cruise
Max. Range

10.0

Land

Top Level

(5.0) Ref.
Check
Fuel

Loiter Best
Endurance

6.1 6.2

Conduct
EO Scan of

Target

6.3

Record
Data

6.4

Transmit
Data

6.5

Wait for
Next Target

(7.0) Ref.
Climb

Second Level

Figure 79: Function Flow Block Diagram of UAV Military-Grade Surveillance Mission

conduct. Figure 79 displays the functional flow block diagram for the military-grade

surveillance mission.

The functional flow block diagram, in Figure 79, breaks down the mission segments

into functions. Specifically, this FFBD focuses on the “Scan Target” phase. The

vehicle must use an EO sensor to capture images of the target and radar to detect

any threats in the area. Military missions require more capabilities to ensure the

mission’s success.

Following the functional flow block diagram, a functional-physical matrix can as-

sist in determining configuration options. There are certain phases in the mission that

require specific components. Therefore, the design must include those subsystems.

Furthermore, a phase might have multiple component combinations. These combi-

nations remain as options during the design process. Figure 80 shows the functional-

physical breakdown of the military-grade surveillance mission.

From the functional-physical matrix in Figure 80, the mission requires an EO

sensor and radar. Furthermore, it could use a wing or a rotor to provide lift, due to

its nominal required speeds, range, and altitude. However, there is no requirement for

323

Function

Preflight Check

Mission:

Load

Warm-Up/Taxi

Takeoff/Catapult

Cruise

Scan Target

Scan for Enemies

Communicate

Surveillance

F
u
n
ct

io
n
al

A
rc

h
it

ec
tu

re

Physical Architecture

UAV

Frame Wing Eng. Comms. EO Radar Nav. Rotor

X X X XX X XX

X

X X

X X XX X

X X XX XX

X X X X XX XX

X X X X XX XX

X

X X X

Figure 80: UAV Military-Grade Surveillance Mission Functional/Physical Matrix

vertical takeoff and landing making a rotor irrelevant. Rotors tend to be inefficient,

and for a more extended range and endurance mission, configurations with rotors

become impractical. Furthermore, the nominal altitudes and ranges allow designers

to consider using piston, turboprop, turbofan, and turboprop engines depending on

cost and performance preferences.

324

1.0

Takeoff
Runway

2.0

Climb
Max. Rate
of Climb

3.0

Cruise
Max. Range

4.0

Descend to
Operations

5.0

Check
Fuel

6.0

Scan
for Enemies

7.0

Combat

8.0

Climb Max.
Rate of
Climb

IF
EMPTY

9.0

Cruise
Max. Range

10.0

Land

Top Level

(6.0) Ref.
Scan for
Enemies

Dash at
Max Speed

7.1 7.2

Release
Weapon
Payload

7.3

Make 9-g
Turn

7.4

Dash out
of Combat

7.5

Wait for
Next Target

(8.0) Ref.
Climb

Second Level

Figure 81: Function Flow Block Diagram of UAV Military-Grade High-Speed Mission

5.2.1.3 UAV Military-Grade High-Speed Mission

The military-grade, high-speed mission’s structure is similar to the surveillance mis-

sion. The mission exchanges some of the loiter time for a maximum speed dash into

a combat zone followed a high-g turn and a maximum speed dash out of the combat

zone. Before and after the combat phase, the aircraft is expected to conduct maxi-

mum range cruises, and maximum endurance loiters. The loiter segment is there to

allow the vehicle to scan for targets or receive orders from command before dashing

into the combat zone. Table 56 outlines the military-grade, high-speed mission.

This mission consists of twelve segments. Similar to the surveillance missions,

the structure consists of a cruise to a combat zone, and a quick loiter time. There

are three segments associated with combat that push the performance of the system,

demanding high speeds and loads on the vehicle. These requirements often have a

considerable impact on the design of the vehicle. The mission outline then can be

broken down into a functional flow block diagram. This step details the functions the

system must conduct. Figure 81 displays the functional flow block diagram for the

military-grade, high-speed mission.

325

Table 56: UAV Industry Military-Grade High-Speed Design Mission [43]

Segment Fuel Time Distance Speed Altitude

Warm-Up,
Takeoff,
Accelerate to
Climb Speed
OR Catapult

20min at Ground Idle + 30 SEC at Takeoff / Maximum /
IRT (A/B if required) + Fuel to accelerate from obs.
clearance to climb speed at IRT. No distance credit OR
Catapult

Climb

Minimum
Time
Climb
Schedule

Takeoff to
Max Range

Cruise
150 - 350
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Loiter
Alt.

Loiter 1 - 8 hr. No Credit
Max
Endurance

Max
Endurance

Dash No Credit 5 - 30 mi. Max Speed Loiter Alt.

Turn Nine ‘g’ 180 deg. turn at Max Speed and Loiter Alt.

Dash No Credit 5 - 30 mi. Max Speed Loiter Alt.

Climb

Minimum
Time
Climb
Schedule

Loiter Alt.
to Max
Range

Cruise
150 - 350
mi.

Max Range Max Range

Descent None None No Credit
End Cruise
to Landing

Reserves
20min +
5% of
initial fuel

No Credit
Maximum
Endurance

Sea Level

The functional flow block diagram, in Figure 81, breaks down the mission segments

into functions. Specifically, this FFBD focuses on the “Combat” phase. The vehicle

must use an EO and radar concurrently to identify potential threats and targets.

Furthermore, the mission requires a sufficient amount of excess power to achieve the

speeds to make it less vulnerable to enemy activity.

326

Function

Preflight Check

Mission:

Load

Warm-Up/Taxi

Takeoff/Catapult

Cruise

Scan Target

Scan for Enemies

Combat

Communicate

Surveillance

F
u
n
ct

io
n
al

A
rc

h
it

ec
tu

re

Physical Architecture

UAV

Frame Wing Eng. Comms. EO Radar Nav. Rotor

X X X XX X XX

X

X X

X X XX X

X X XX XX

X X X X XX XX

X X X X XX XX

X X X X XX X

X

X X X

Figure 82: UAV Military-Grade Surveillance Mission Functional/Physical Matrix

Following the functional flow block diagram, a functional-physical matrix can as-

sist in determining configuration options. There are certain phases in the mission

that require specific components. The design must include those subsystems. Furt-

hermore, a phase might have multiple component combinations. These should remain

as options during the design process. Figure 82 shows the functional-physical break-

down of the military-grade, high-speed mission.

From the functional-physical matrix in Figure 82, the mission requires an EO

sensor and radar. A rotor will not be able to achieve the desired speeds for the

mission. A rotor’s performance deteriorates at high speeds, making the use of a rotor

impractical for this type of mission.

The high-speed characteristics of the mission drive the engine to be either a tur-

bofan or turbojet. These types of engines create the necessary thrust to meet the

327

required performance.

5.2.2 Relating Design Missions to UAV Configuration

Combining the results in Figure 78, 80, and 82, designers can select the configurations

of all three designs. The first two missions are very similar. The main differences

between the two are the required range, endurance, altitudes, and payloads. However,

the configurations are primarily the same. The third mission requires substantially

more power compared to the first two. The excess power allows the design to achieve

higher speeds, reducing the vehicle’s vulnerability to enemy activity. Though the

first two designs could use a rotor to provide lift, including a rotor is not practical

on the production line. The rotor would require specific process and integration

activities. Instead, the manufacturer could take advantage of a standard configuration

across all systems to increase the likelihood of common components and interfaces,

further reducing costs. Since the manufacturer is already expecting to outsource

the production of the engines and electronics, the manufacturer is more flexible to

implement different combinations of these subsystems. Thus, the configuration for

all three designs is a tube-body-wing with various engines and subsystems depending

on the mission.

5.2.3 Determination of Drivers Relevant to UAV Design

Of the product architecture selection drivers identified in Section 3.2.1.5, the primary

drivers for the UAV industry are design requirements, market considerations, and

technologies. Specifically, the range/endurance, speed, payload, acquisition cost, and

electronics incorporated all have a significant impact on the design and choice of

architecture. Many of the historical designs have lasted within the industry for over

ten years. Manufacturers implemented any changes through upgrades of the original

designs. Therefore, life cycle considerations are not as necessary. Thus, the following

analysis must consider the identified requirements.

328

5.2.4 Conclusions from Defining the UAV Design Problem

This section developed three design missions that reflected the customers needs iden-

tified in the formulation of the manufacturer’s customer-oriented, product-based stra-

tegy. Furthermore, the analysis set the configuration to be a tube-body-wing with

various engines and electronics incorporated in the design depending on the mission.

The process ensured the requirements were met. It also created constraints on the

designs to meet the desires of the customers in the competitive marketplace. The

next step in this process is to determine what makes a specific product architecture

valuable, providing the ability to compare multiple product architecture alternati-

ves. The comparison will lead to the final decision on which product architecture to

implement.

5.3 Establishing a “Valuable” UAV Product Architecture

The next step requires the determination of weighting between metrics. For this case,

desirability, flexibility, and complexity are the three primary metrics. First, desira-

bility depends on the customers’ desires and needs. Also, flexibility and complexity

require the gradient and Hessian of a pseudo-objective function which is a combina-

tion of the desirability and penalty functions associated with various constraints of

the design. Therefore, the derivation of desirability must come first.

A Quality Function Deployment (QFD) produces an objective function by com-

bining the importance of customer needs, functional requirements and the relations

between them [122]. Correlations where calculated between a series of performance

and cost metrics of existing UAV designs. These correlations will help in the formu-

lation of an OEC for each mission. Table 57 shows the value of these correlations.

The civil and military-grade surveillance missions are structured the same way.

Though, the magnitudes of the needs and functional requirements differ, the relations

stay relatively constant. Therefore the objective functions for both missions can be

329

Table 57: Correlations between UAV Performance and Cost Metrics

Fuel Number Unit Price Range Endurance Max Speed
(lbs) Built 2017 (mi) (hrs) (M)

Payload (lbs) 0.76 -0.25 0.74 0.49 0.40 0.50
Fuel (lbs) -0.53 0.90 0.65 0.63 0.64
Number Built -0.42 -0.16 -0.19 -0.30
Unit Price 2017 0.92 0.78 0.46
Range (mi) 0.65 0.29
Endurance (hrs) 0.17

derived from the same QFD. Table 58 depicts the QFD analysis of the civil and

military-grade surveillance missions.

Table 58: UAV Civil and Military-Grade Surveillance Missions QFD

Importance Payload Weight Fuel Weight Endurance Acq. Cost

Altitude to
Detect Target

1 0.6 0.2 0.1 0.4

Range 2 0.49 0.65 0.65 0.92
Endurance 4 0.40 0.63 1 0.78
Num. Produce 3 -0.25 -0.53 -0.19 -0.42

Target (Civil) 100 lbs. 100 lbs. 10 hrs. $50K
Target (Mil) 200 lbs. 200 lbs. 10 hrs. $5mil

Absolute
Importance

3.93 5.61 5.97 6.62

Relative
Importance

0.18 0.25 0.27 0.30

In the QFD for the surveillance missions, the primary customer demands are the

altitude to run scans of the target area, the range, endurance, and number demanded,

and the functional requirements are the payload weight, fuel weight, endurance, and

the acquisition cost. After providing weightings to each of the customer’s needs and

providing sensitivities among the customer needs and function requirements, absolute

and relative importance of each functional requirement can be calculated. Combined

with targets the objective functions for the two missions can be created.

Civil Surveillance Mission:

330

φ = 0.18
WP

100
+ 0.25

100

WF

+ 0.27
E

10
+ 0.30

50K

CostAcq
(173)

Military-Grade Surveillance Mission:

φ = 0.18
WP

200
+ 0.25

200

WF

+ 0.27
E

10
+ 0.30

5mil

CostAcq
(174)

Next, QFD analysis must provide the objective function for the military-grade,

high-speed mission. Table 59 depicts the QFD analysis of the civil and military-grade

surveillance missions.

Table 59: UAV Military-Grade High-Speed Mission QFD

Import.
Payload
Weight

Fuel
Weight

Range
Max
Speed

Acq.
Cost

Distance to
Detect Target

4 0.6 0.2 0.1 0.5 0.2

Range 2 0.49 0.65 1 0.29 0.92
Endurance 1 0.40 0.63 0.65 0.17 -0.19
Num. Produce 3 -0.25 -0.53 -0.16 -0.30 -0.42

Target 100 lbs. 300 lbs. 350 mi. 1.2 Mach $100mil

Absolute
Importance

4.53 4.30 3.53 2.9 2.6

Relative
Importance

0.23 0.21 0.18 0.18 0.20

In the QFD for the high-speed mission, the primary customer demands are the

distance to detect targets/enemies, the range, endurance, and number demanded.

The functional requirements are the payload weight, fuel weight, range, maximum

speed and the acquisition cost. After providing weightings to each of the customers

needs and providing sensitivities among the customer needs and function requirements

absolute and relative importance of each functional requirement can be calculated.

Combined with targets the objective functions for the two missions can be created.

Military-Grade High-Speed Mission:

331

φ = 0.23
WP

100
+ 0.21

300

WF

+ 0.18
R

750
+ 0.18

VMax

1.2Mach
+ 0.20

100mil

CostAcq
(175)

The next step in the process is determining the weightings for the three primary

product architecture evaluation metrics. As shown in Section 3.3, the designer should

ask the following six questions to provide general weightings. These weightings act

more as guides to depict the general area where to search for product architectures.

• Desirability

1. How much power do the customers have? (High Power - 3) As stated in

Section 5.1.3, the competitive marketplace that exists for the UAV industry

creates a significant amount of power for the customers since they can

switch producers relatively quickly, due to the abundance of choice.

2. How many requirement thresholds must the product achieve? (Moderate

Number - 2) There were no significant considerations added in this case

example, therefore, the number of thresholds, in this case, is moderate.

• Flexibility

1. How long is a product’s traditional life span in the industry? (Long Span

- 3) Many of the current UAVs in the market have existed for up to or

even more than ten years, a relatively long time concerning the acquisition

cost in the aerospace industry.

2. What is the cost to develop and produce a new product? (High Cost -

3) There is a high cost associated with the production of a new design.

Processes and integration techniques cannot transfer over to an entirely

new design. Therefore, ramping up production for a different product line

would be extremely costly for the manufacturer.

332

• Complexity

1. What is the manufacturer’s novelty producing a product? (Low Novelty

- 1) The expectation is that the engineering team has plenty of experience

in this field reduces the novelty of the employees concerning this project.

2. How many domains are associating with developing a new product?

(High Number - 3) The number of domains and disciplines associated

with producing this production line is high since development of a UAV

requires many different disciplines.

The results of this analysis provide the following weightings for the three metrics:

Desirability - 0.33, Flexibility - 0.4, and Complexity - 0.27. These are general directi-

ons and should act as guides. The product architecture space acts entirely different

when compared to typical design problems. In this case, the highest priority should

be given towards desirability followed by flexibility and then complexity.

5.4 Generating Alternative UAV Product Architectures

Producing alternative product architectures is not as easy as selecting index values

of commonality, online reconfigurability, and offline reconfigurability. Instead, this

process requires the possible production combinations. Each design requires a con-

figuration, and each configuration requires an engine, wing, fuselage, horizontal and

vertical tail, and various electronic subsystems. The process enforces commonality by

giving each component a number varying from one to three. If two design’s fuselages

possess the same fuselage number, an equality constraint makes all the dimensions

and characteristics of the two fuselages the same. Online reconfigurability options

include variable wing sweep and pitch; inclusion of flaps, ailerons, rudders, and ele-

vators; and variable propeller speed and pitch. During each design mission segment,

the controls for all variable component are optimized to create the best performance

333

for the vehicle throughout the mission. Offline reconfigurability is assumed to be

two different subcomponents (engines); sharing the same interface with a common

platform (fuselage).

The design variables are varied as well to provide distributions of the various me-

trics relating to the different product architectures. The ranges of the design variable

originate from past UAV designs. Figure 83 shows the distributions of existing UAV’s

relevant variables.

The ranges attempt to capture the overall design space. Table 60 displays the

design variables considered and their minimum and maximum values.

Table 60: UAV Design Variable Ranges

Design Variable Minimum Maximum

Wing Area (ft2) 20 175
Wing AR 5 20
Wing taper 0.5 1
Wing Sweep (deg) 1 30
Fuselage Length (ft) 5 30
Tail Arm (ft) Fuse. Length / 2
Horsepower1 25 525
Thrust (lbs)1 300 11,000
BPR1 2 10
Additional Payload (lbs) 10 100
Number Produced 10 300
1 Depends on Engine Type

Combinations of various inputs create product architectures throughout the space.

Since the experiments focus on the impact of commonality and reconfigurability on

the product architecture’s desirability, flexibility, and complexity, a Monte Carlo of

the space was run to obtain distributions of each metric. The distributions will be

used to determine the relationships amongst a product architecture’s characteristics,

the drivers and the metrics of interest. The next section will detail the tools used to

size the vehicles and calculate the metrics of interest. Furthermore, it will introduce

the results of the experiments showing the relations relevant in product architecture

334

Figure 83: Design Variable Ranges Historical UAVs

335

selection.

5.5 Evaluating Alternative UAV Product Architectures

The evaluation of product architectures requires examination of many designs and

configurations with the same architecture. The product architecture does not define

the system’s performance or cost but does influence it. The product architecture

also has a relationship with the requirements. Switching the product architecture

influences the constraints, relating to the flexibility and complexity of the system. For

example, Figure 84shows how an online reconfigurable wing changes the Mattingly

(thrust required) constraint at different speeds and wing sweeps.

0 10 20 30 40 50

1,000

2,000

3,000

4,000

Wing Area (ft2)

T
h

ru
st

(l
b

s)

Sweep = 0, Mach = 0.45

Sweep = 0, Mach = 0.9

Sweep = 0, Mach = 1.35

Sweep = 20, Mach = 0.45

Sweep = 20, Mach = 0.9

Sweep = 20, Mach = 1.35

Figure 84: An Example of an Online Reconfigurable Wing’s Impact on the Mattingly
Constraint

Figure 84 demonstrates how the product architecture interacts with the design

336

and the functional requirements. Therefore, flexibility and complexity are used to de-

termine the product architectures value by determining the impact of the architecture

on the design space. Therefore, many designs within the space must be evaluated.

The UAV sizing and synthesis tool FA2UST will provide this purpose.

5.5.1 Experiment 1: Testing the Evaluation Metrics Results and
Conclusions

The second experiment analyzes many of the assumptions made about implementing

certain types of product architectures. Of the claims, the predominant assertions are:

1. Designers use fixed components to design elements specifically for one role,

thus increasing the desirability of the product.

2. Designers use offline reconfigurable components to change the role of the

system, thereby increasing the requirement flexibility of the product.

3. Designers use online reconfigurable components to enhance the perfor-

mance of the system in various conditions, thus increasing the requirement

flexibility of the product.

4. Designers use common components to reduce costs by sharing manufacturing

processes, thus reducing the design complexity of the product.

From the generation of alternative product architectures, the desirability, require-

ment flexibility, and design complexity of the alternativeness were calculated. From

the results, trends could be fitted to approximate each of the characteristic’s impact

on each of the metrics. Figures 85, 86, and 87displays these trends.

Figure 85 shows each of the characteristics impacts on desirability. It uses a box

plot to show the quartiles of the distributions of desirability, excluding outliers. The

points represent the medians and the lines represent the first and fourth quartiles.

First, commonality starts to increase the desirability of the product architecture by

337

Figure 85: The Product Architecture’s Impact on Desirability

reducing the cost of the system, but at a certain point, the desirability begins to decre-

ase as commonality starts to hurt the performance of the product line. Second, online

reconfigurability seems to have no improvement on the desirability. This phenomenon

will be addressed later. Third, offline reconfigurability at first decreases desirability,

but as offline reconfigurability increases, the desirability of the product begins to in-

crease as well. At low offline reconfigurability, the additional interface constraints

require over designing the platform to handle all offline reconfigurable components.

As a designer adds more offline reconfigurable components, the ability for a design to

change its components depending on the vehicle’s purpose will both reduce the cost

and increase the performance. The unique subcomponents are designed for a specific

mission while the common platform reduces cost.

Figure 86 determines each of the characteristics impacts on requirement flexibility.

It uses a box plot to show the quartiles of the distributions of requirement flexibility,

excluding outliers. The points represent the medians and the lines represent the first

and fourth quartiles. First, commonality decreases the requirement flexibility of the

product architecture since the number of constraints on each common component

338

Figure 86: The Product Architecture’s Impact on Flexibility

increase. The increase of constraints gives less design freedom to the designers con-

cerning requirements. Second, online reconfigurability has a minimal impact on the

requirement flexibility of the system. The reasoning will be addressed later. Third,

offline reconfigurability increases the requirement flexibility of the product architec-

ture since components can be swapped depending on its purpose, making it elusive

to changing requirements.

Figure 87 displays each of the characteristics impacts on design complexity. It

uses a box plot to show the quartiles of the distributions of design complexity, exclu-

ding outliers. The points represent the medians and the lines represent the first and

fourth quartiles. First, commonality decreases the design complexity of the product

since it reduces the number of processes required for production. However, there is

an increased risk associated with commonality. The higher number of constraints

added to the common components design can create more coupling between it and

other components. Thus, commonality can increase design complexity. Figure 87

demonstrates this from the tails associated with the error of the fit between com-

monality and design complexity. Second, online reconfigurability has little impact

339

Figure 87: The Product Architecture’s Impact on Complexity

on design complexity. The reasoning will be explained next. At first, offline reconfi-

gurability decreases design complexity. However, as the designer implements offline

reconfigurable components, the design complexity starts to increase. Offline reconfi-

gurability requires interface constraints that create couplings between the platform

and subcomponents, increasing the sensitivities of design variables.

Online reconfigurability, independently, had little impact on the desirability, re-

quirement flexibility, and design complexity of the product line. However, the in-

teractions amongst product architecture characteristics provide additional insight.

Online reconfigurability is heavily dependent on the other product architecture cha-

racteristics. Table 61 shows the impact of the first and second order terms of the

evaluation metrics. The interaction terms relating to online reconfigurability have

more significant impact on the evaluation metrics than the independent terms. The-

refore, online reconfigurability’s impact on the evaluation metrics is dependent on the

other architectural characteristics.

Table 62 shows the online reconfigurability interaction terms alongside their im-

pact.

340

Table 61: First and Second Order Term’s Impact on Evaluation Metrics

Requirement Design
Desirability Flexibility Complexity

Percent Impact

Commonality 26.2 45.9 2.9
Online Recon. 3.3 2.9 0.1
Offline Recon. 6.1 12.0 4.8
Commonality x Commonality 37.3 5.4 0.1
Online x Online Recon. 4.5 3.3 0.5
Offline x Offline Recon. 9.5 2.7 8.9
Commonality x Online Recon. 3.8 13.1 10.0
Commonality x Offline Recon. 0.9 0.8 2.3
Online x Offline Recon. 8.5 13.9 7.9

Table 62: Online Reconfigurability’s Interaction Term’s and their Impact on Evalua-
tion Metrics

Requirement Design
Desirability Flexibility Complexity

Online Recon. x Coeff.
Percent
Impact

Coeff.
Percent
Impact

Coeff.
Percent
Impact

Commonality 3.00 3.8 0.044 13.1 -0.13 10.0
Offline Recon. -3.12 8.5 0.11 13.9 -0.057 7.9

The coefficients suggest a couple of insights. First, online reconfigurability paired

with commonality tends to increase desirability, increase requirement flexibility, and

decrease design complexity. The increase in desirability is likely due to the increase in

performance from online reconfigurability to compensate for the losses in performance

from commonality. The increase in requirement flexibility and the decrease in design

complexity are likely due to online reconfigurability’s ability to adapt to conditions

decreasing the impact of requirements on the product line and decreasing the coupling

between components. Second, online reconfigurability paired with offline reconfigu-

rability tends to decrease desirability, increase requirement flexibility, and decrease

design complexity. The decrease in desirability is likely due to cost factors since both

types of characteristics tend to increase cost. The increase in requirement flexibility

341

and decrease in design complexity are likely due to online reconfigurability’s ability

to adapt to conditions decreasing the impact of requirements on the product line

and decreasing the coupling between components, either compounding or mitigating

impacts from offline reconfigurability.

The results from this experiment isolate the impact of each characteristic on the

evaluation metrics and allow us to address the legacy assumptions:

1. Fixed components increase the desirability of a product. - To a degree. Designers

use fixed components for a specific mission, which makes them optimal for

performance, but producing individual components in a product line drive up

costs which could system’s desirability depending on the customer.

2. Offline reconfigurable components increase the requirement requirement flexibi-

lity of a product. - Yes, this is true. The requirement flexibility of a product

architecture appears to increase as designers implement more offline reconfigu-

rability in the design. This phenomenon is due to the ability to design specific

subcomponents for each mission while still maintaining favorable cost conditi-

ons. However, the implementation of offline reconfigurability has an expected

increase in design complexity.

3. Online reconfigurable components increase the requirement flexibility of a pro-

duct. - No. Online reconfigurability’s impact on the product is too dependent

on requirements and other product architecture characteristics. The lack of a

clear independent trend refutes this claim.

4. Common components reduce the design complexity of a product. - Yes. There

is clear evidence to support this. However, the claim fails to mention the draw-

backs of using commonality, such as deteriorating performance and requirement

flexibility of the product. These drawbacks could offset the gains.

342

Figure 88: The FA2UST Framework Decision Facilitator

The lack of clear consensus with these claims provides evidence why product

architecture analysis is crucial in the systems engineering process. The provided

framework sets up the problem and provides the steps necessary to challenge many

of the usual assumptions made during this process.

5.6 Final Decision of UAV Product Architecture to Imple-
ment

The final step in the framework requires a decision to be made on the composition

of the product architecture’s characteristics. The designer can take the weighting of

each metric of interest to create an overall weighted score, for each alternative. Figure

88 shows all the possible combinations for this case study. Using statistical software

ranges of requirements can be narrowed down to appropriately filter through the data

and select the most appropriate architecture.

343

Figure 89: Final Decision of UAV Product Architecture

For this case study, the requirements were narrowed down based on the functional

requirement and overall evaluation criteria. Figure 89 shows the remaining options

left to the decision maker.

The decision maker should identify regions where there are many choices with

high weighted scores. The ability to identify regions rather than specific designs

increases design freedom and reduces the risk of unforeseen considerations hurting the

development of the product and implementation of the product architecture. Thus,

the recommended product architecture for this case consists of 29% commonality,

64% online reconfigurability, and 36% offline reconfigurability.

The selected product architecture contains three wings, two horizontal tails, three

vertical tails, two fuselages, two engines, two EO-IR sensors, and two radars. Also,

the product architecture uses some variable sweep wings, flaps, variable pitch propel-

lers. Table 63 displays the selected product architecture’s composition of components

for each product in the product line, and Table 64 displays the selected product archi-

tecture’s composition of online reconfigurability for each product in the product line.

Table 63 shows certain aspects about the product architecture. The wing, vertical

tail, and EO-IR sensor can be constructed modularly and the horizontal tail, fuselage,

engine, and EO-IR sensor have some commonality. Also, the wing has variable sweep

344

in products 1 and 2 and uses flaps in product 2. Finally, the turboprop in products

one and two uses a variable pitch propeller.

Table 63: Composition of Components for Final Selected Product Architecture

Product 1 Product 2 Product 3

Wing 1 2 3
Horizontal Tail 1 1 2
Vertical Tail 1 2 3
Fuselage 1 1 2
Engine 1 1 2
Engine Type Turboprop Turboprop Turbojet
EO-IR 1 2 2
Radar None 1 2

Table 64: Composition of Online Reconfigurable Interfaces for Final Selected Product
Architecture

Product 1 Product 2 Product 3

Variable Sweep 1 1 0
Flaps 0 1 0
Variable Pitch Wing 0 0 0
Variable Pitch Propeller 1 1 0
Thrust Vectoring 0 0 0

5.6.1 Experiment 2: Sensitivity Studies on the Evaluation Metric
Weightings Results and Conclusions

The framework proposes using a weighting system that analyzes the more qualita-

tive aspects of the problem. Due to their qualitative nature, sensitivities of each on

the selection process, sensitivity studies were conducted. The product architecture

composition selected in the case study consisted of 29% commonality, 64% online

reconfigurability, and 36% offline reconfigurability. Three cases were run in this ex-

periment to allow for the impact to be observed. The cases were purely looking at

the desirability, requirement flexibility, and design complexity metrics as a means to

make a decision.

345

Figure 90: UAV Product Architecture Selection based on Desirability

The first case looked only at the desirability of the product architecture. Figure

90 displays the result of the case where the most favorable composition regarding this

weighting consists of 50% commonality, 50% online reconfigurability, and 30% offline

reconfigurability. The loss of requirement flexibility and design complexity weightings

makes the most favorable product architecture have more commonality and a little

less reconfigurability. Commonality reduces the predicted cost of the product line,

but the selected product architecture’s lower requirement flexibility and higher design

complexity increase the risk of unforeseen errors during development and production.

With respect to the weightings, the high commonality can make the vehicle diffi-

cult to upgrade and increase the number of constraints on the common components.

These aspects require the design team to work together efficiently. Experience and

the number of departments directly impact work cohesion. Therefore, the selected

product architecture reflects the weightings in Section 3.3.

The first case looked only at the requirement flexibility of the product architecture.

Figure 91 displays the result of the case where the most favorable composition regar-

ding this weighting consists of 21% commonality, 75% online reconfigurability, and

0% offline reconfigurability. The loss of desirability and design complexity weightings

makes the most favorable product architecture have more online reconfigurability

346

Figure 91: UAV Product Architecture Selection based on Requirement Flexibility

and no offline reconfigurability. Online reconfigurability essentially makes the pro-

duct insensitive to changing performance requirements reflecting the drastic increase

of online reconfigurability. With the respect to the weightings, if the product line is

expecting to have a short lifetime, this product architecture will have no easy way

to upgrade components with modular or offline reconfigurable parts. Also, online

reconfigurable interfaces can be incredibly complex. The interfaces require multiple

disciplines, expertise in controls, and a deep understanding of the design problem.

Therefore, the selected product architecture reflects the weightings in Section 3.3.

The first case looked only at the design complexity of the product architecture.

Figure 92 displays the result of the case where the most favorable composition regar-

ding this weighting consists of 50% commonality, 64% online reconfigurability, and

18% offline reconfigurability. The loss of desirability and requirement flexibility weig-

htings makes the most favorable product architecture have more commonality and

a less offline reconfigurability. The increase in commonality decreases the number

of components and the decrease in offline reconfigurability reduces the number of

common interfaces. Both of the aspects reduce the design complexity of the system.

However, with respect to the weightings, the increase in commonality and decrease in

offline reconfigurability reduce the individuality of each product in the product line.

347

Figure 92: UAV Product Architecture Selection based on Design Complexity

This might be a negative trait according to the customer as all products might look

similar and the products might not acheive the requirements as optimally. Also, the

the high commonality can make the vehicle difficult to upgrade making the product

architecture much more sensitive to changing requirements. Therefore, the selected

product architecture reflects the weightings in Section 3.3.

Each case in this experiment shows the impact of the weightings on the selected

product architecture. Furthermore, it shows how the qualitative concepts of the

problem impact the decisions made later on in the framework, proving the qualitative

weightings are relevant concerning product architecture selection.

5.6.2 Experiment 3: Observing the Impact of Requirements on the
Product Architecture Results and Conclusions

The first experiment analyzes the claim that a product architecture can be determi-

ned early in the design process by looking at a few specific requirements. Of those

identified, they can be categorized by performance, production cost, technologies,

and life cycle considerations. The experiment primarily focused on the performance

and cost metrics since they are significantly applicable to the case study. Life cycle

considerations were included in the cost model. Their primary driver is the number

348

of vehicles produced which relate to supporting the vehicles during their lifetime.

Technologies were incorporated into the subsystems sizing. The subsystem sizing re-

quires range and resolution for the radar and the EO sensor. Thus, altitude drives

the weight and power required by the sensors since better range per resolution relates

to more advanced electronic technologies.

During the generation of alternative product architectures, the requirements were

varied as well. From the data, the extremely undesirable cases (ones that did not

converge during sizing or missed the constraints severely) were ignored, and the pro-

duct architecture compositions were plotted against the functional requirements in

Figure 93.

The data suggests the functional requirements can be grouped into three cate-

gories power, energy, and cost. Takeoff distance, speed, and altitude act similarly

and correlate with required excess power. Payload-range is a good representation

of weight and the energy required to complete the mission. Finally, the number

produced directly relates to cost since designing a UAV requires a lot of fixed cost.

Producing more allows the fixed cost to be amortized over more vehicles. Hidden in

these metrics are technologies and life-cycle considerations. The altitude and range

influence the subsystem technologies. The radar and EO sensors’ range versus re-

solution capabilities is dependent on these requirements. The capabilities determine

the weight of the sensors, which drive the payload range required of the design, and

the cost includes life-cycle considerations. Understanding how the technologies and

life-cycle considerations influence the power, energy, and cost requirements can deter-

mine their impact on the product architectures. Combining the requirements reduces

the dimensionality of the problem, simplifying the analysis required.

Figure 93 displays the individual trends between the functional requirements (ne-

gative takeoff distance, average altitude, payload-range, and the number produced)

and the product architecture indices. The functional requirements include the average

349

Figure 93: The Requirements’ Impact on Product Architecture Evaluation Metrics

350

and standard deviation over the product line.Figure 93 suggests the requirements in-

fluence on the product architecture are primarily dependent on the design variables.

However, the at extremes of the requirement ranges, there is some impact on the

product architecture.

First looking at takeoff field length, the shorter the takeoff distance, the more

constraining the requirement becomes. Therefore, the short takeoff distances require

the product to be more specifically designed for each mission, driving more online

reconfigurability and offline reconfigurability. These trends makes sense as the tight

performance constraint drives the vehicles to favor a flaps, variable sweep wings, and

mission-specifically designed components. The standard deviation between takeoff

distances for each product has relatively little impact on the product architecture.

Second, the average altitude requirements primarily impact the commonality of

the product architecture. As more excess power is required by the system a higher

altitude, the commonality’s emergent detriment on performance becomes apparent.

Therefore, as the average altitude requirements increase, the product architecture

incorporates less commonality. The standard deviation of the altitude requirements

also impacts the commonality of the product architecture. As the difference between

altitude requirements increases the differences in performance constraints prefer more

unique components to be incorporated in the design.

Third, the average payload range of the product line impacts the commonality

and offline reconfigurability of the product architecture. At high and low payload

ranges, the product architecture favors high commonality. When the average payload

range is high or low, this suggests all of the product’s payload ranges are high or low.

This trend reflects the payload range standard deviation’s impact on commonality.

At low standard deviations the product architecture favors commonality.

Fifth, the total volume of production impacts the offline reconfigurability and

commonality of the product architecture. As less vehicles are produced, the product

351

architecture favors more of both to counter the inability to spread costs over greater

production volumes. The standard deviation of the volume of production for each

product impacts the offline reconfigurability of the product architecture. At low and

high standard deviations the product architecture prefers higher offline reconfigura-

bility. This trend is hard to decipher, but at high standard deviations the increase

of offline reconfigurability suggests the products are sharing the same platforms or

fuselages to mitigate costs for the lower demand products. Therefore, the use of va-

rious subsystems create more common interfaces and offline reconfigurability. At low

standard deviations, the same but opposite effect could occur. The uniform distri-

bution of demand suggests the products are free to incorporate more individual and

favorable components. Therefore, when the product line uses a common fuselage to

offset the increase in costs then offline reconfigurability be high.

The requirements have some impact on each product architecture characteris-

tic. To get a better understanding how the requirements impact the overall product

architecture space, regressions of the requirements using the product architecture cha-

racteristic were created. The data was filtered down to 56 Pareto dominant designs.

The Pareto frontier was formed from maximizing desirability, maximizing require-

ment flexibility, and minimizing design complexity. The 56 designs were used to fit

third degree polynomial with second degree interactions. These regressions were used

to create the driver impact mappings displayed in Figure 94. In each driver impact

mapping, the top of the circle reflects offline reconfigurability, moving one third the

circumference clockwise from the top reflects commonality, and moving one third the

circumference counterclockwise from the top reflects online reconfigurability.

The driver impact mappings show hot spots where larger requirement metrics

are favored in certain regions of the product architecture space. This shows if a

requirement dominate the design process a which product architecture composition

should be favored.

352

Figure 94: The Final Driver Impact Mappings for the UAV Case Study

Figure 95: The Final Driver Sensitivity Mappings for the UAV Case Study

Figure 95 shows a different way of looking at the problem. Based on where

the product architecture current lies, if a requirement changes, the driver sensitivity

mappings shows how the product architecture should be modified to meet these new

set of requirements.

The results shown in this experiment prove the way the requirements are struc-

tured impact the selection of the product architecture. Also, it shows how time

can modify what would be considered the most favorable product architecture if the

requirement are time sensitive, as they often are.

353

All of the drivers identified in Section 3.2.2 impact the implemented product

architecture to a certain degree. The techniques used for this experiment could be

applied to any product to understand the trends associated with the requirements

and product architecture.

5.6.3 Summary of Experiments 1, 2, & 3

Experiments 1, 2, and 3 look at the product architecture’s impact on system engi-

neering metrics such as desirability, flexibility, and complexity, the sensitivity of the

product architecture selection decision to the weightings, and the individual impact

of requirements on the product architecture. The product architecture characteristics

each exhibit varying degrees of desirability, flexibility, and complexity. Thus, not all

product architectures are equally favorable. The weighting system for the product

architecture evaluation metrics has an impact on the decision. The user of the frame-

work should consider carefully what weightings should be given to each metric. The

requirements in Figure 93 can be broken down into four categories: performance,

cost, technologies, and life-cycle considerations. Each requirement exhibits specific

characteristics and influences implementation of different product architecture cha-

racteristics. However, one of the key insights from this research is the dependence

between the requirements and the product architecture. In certain regions of the pro-

duct architectural space, certain requirements dominate while in other regions other

requirements dominate. Overall, the product architecture selection problem requires

careful analysis to determine the composition of product architecture characteristics

the engineer should implement.

354

CHAPTER VI

CONCLUSIONS

The framework presented in this research approaches product architecture selection

to determine the characteristics implemented in the design that determines how com-

ponents interact. Implementing new product architectures, such as reconfigurability

and product families, adds steps to the systems engineering process. Traditionally,

engineers made assumptions to determine which product architecture to implement.

However, the lack of clarity that exists in determining the product architecture’s im-

pact on vehicle performance and design requires structure approaches to tackle the

problem. The framework implements characteristics of business strategy and systems

engineering to provide a balanced understanding of the problem and how the problem

architecture meets the customer’s desires and fits in a manufacturer’s agenda. The

framework’s structure involves:

1. Determining the customer’s needs

2. Deriving a customer-oriented, product-based strategy to meet these needs

3. Deriving the functional requirements of the product line

4. Establishing what a “good” product line means

5. Generating alternative architecture

6. Evaluating the results

7. Choosing a composition of commonality, online, and offline reconfigurability

The choice in the composition does not tie down the engineers and allows them

to make modifications during the design process as they see fit.

355

First, a UAV case study demonstrated the use of the framework. The UAV indu-

stry is emerging and has diverse requirements, driving its development. These include

tighter fiscal constraints and demand for several mission and performance capabili-

ties. However, the lack of standards in the industry made the case a challenging

exercise to test the principles of the framework. The framework was then applied to

the automobile industry in the late 1970s to provide validation. During this time in

the car industry, Japanese firms had shifted the landscape of the industry and put

the established manufacturers in a frenzy. However, the car companies that could

adjust ended up flourishing in the late 1980s and early 1990s.

6.1 Contributions

The new framework provided many contributions to the systems engineering and

aerospace field. The contributions include:

• FA2UST Framework: A framework that facilitates the cooperation

between the systems engineers and business management. The fra-

mework presents a method of determining a new products needs. The met-

hod combines business management analysis with standard systems engineering

practices. The approach aligns both the business and engineering sides of the

firm ensuring an understood and common goal. Design processes often overlook

the cooperation between both departments. However, it should be an essential

part of the development of the product and has enormous implications on the

product architecture implemented.

• FA2UST Module: A product architecture analysis module that can

be integrated into the design of any type of product. During the deve-

lopment of this framework, a module was developed the allowed for the analysis

of a product architecture. Alongside the module, a UAV sizing tool was created

that utilizes historical data and multi-disciplinary analysis tools to determine a

356

UAV’s performance and cost. The contributions of the framework were added

to allow for product architecture analysis alongside the traditional performance-

cost analysis. This tool is easy to use and conducts the analysis quickly allowing

for the entire product architecture space to be analyzed. The UAV sizing tool

integrates into the module allowing for the product architecture analysis of a

UAV. The module can also analyze other products from other industries as

seen in Appendix A. The flexible use of the module makes it useful in any field

when considering developing a new product line and deciding what levels of

commonality and reconfigurability it should have.

• A numerical representation of the product architecture space. Pro-

duct architecture selection historically has been a qualitative problem where the

systems engineers make certain assumptions that make their selection of pro-

duct architecture seem logical. However, in complex product development, even

the most experienced engineers can fail to develop the correct assumptions. By

converting the problem into a quantitative one, more analysis can be conducted

using conceptual design tools to challenge these assumptions. The quantitative

space uses a product’s components’ characteristics including commonality and

reconfigurability to create ratios and a quantitative space.

• New ways to calculate a design or product architecture’s requirement

flexibility and design complexity. Product architectures impact a product’s

desirability, requirement flexibility, and design complexity. Traditionally, these

terms have often been vague or qualitative. Thus, new numerical representa-

tions of these terms provide a means to compare alternatives quantitatively.

Since engineers implement a product architecture to reduce interactions among

requirements and coupling between components or disciplines, the metrics use

the sensitivities and dynamics of the problem to determine the requirements’

357

interactions and design variables’ coupling.

• A means to down-select and identify product architectures of interest.

After the analysis, the framework provides a method that allows for the down-

selection of product architectures and the final decision. The down-selection

involves filtering designs that meet specific capabilities and combination of de-

sirability, flexibility and complexity metrics.

• Essential insights about the relations between a product architecture

and its desirability, flexibility and complexity. The two experiments

and validation case conducted in the framework’s verification and validation

provided insights that are useful to general product development. The trends

were consistent in both cases suggesting their universal usefulness.

The contributions this framework provides allowed for product architecture ana-

lysis. The analysis identified essential insights that could be used in product archi-

tecture analysis in the future.

6.2 Important Insights from the Research

The new framework provided many contributions to the systems engineering and

aerospace field. The contributions include:

• Requirements that drive product architecture selection. The analysis

of past industries identified four categories of product architecture selection dri-

vers: performance, development and production costs, life-cycle considerations,

and technologies. These categories can be summarized by overarching terms

that can be applied to most products. They include power (rate), energy (ca-

pacity), and cost (economics). These metrics seem to capture trends between

the specific requirements and product architecture universally. Therefore, their

impact should be well understood in a new product’s development.

358

• Commonality’s impact on a product architecture’s:

– Desirability Commonality tends to have a maximum desirability associated

with it. This trend relates to the priorities set on the performance and

cost of the final product line. Initially, commonality shows an increase

in product desirability, but at a certain point, the cost savings do not

outweigh the loss in performance of the product line. Therefore, there is a

specific region where desirability reaches a maximum.

– Requirement Flexibility Commonality tends to decrease the product’s re-

quirement flexibility to changing requirements. This trend is due to the

more significant number of constraints that are applied to a shared com-

ponent, making it more sensitive to changing requirements.

– Design Complexity Commonality tends to decrease the design complexity

of the product. This trend relates to the lower number of production

processes. However, depending on the design problem the higher number

of constraints added to the component’s design can cause greater design

complexity since it will create more coupling connections.

• Online Reconfigurability’s impact on a product architecture’s desira-

bility, requirement flexibility, and design complexity. Online Reconfi-

gurability’s impact on the evaluation metrics is dependent on the design pro-

blem. The data provided by the analysis shows no trends between it and the

desirability, requirement flexibility, and design complexity. However, as the

requirements are filtered down, trends become apparent, demonstrating the

characteristic’s dependence on requirements and the definition of the design

problem.

• Offline Reconfigurability’s impact on a product architecture’s:

359

– Desirability Offline reconfigurability tends to increase the overall desirabi-

lity of a product. This trend is likely due to the combination of common

characteristics and components unique to a task.

– Requirement Flexibility Offline reconfigurability tends to increase the re-

quirement flexibility of a product. The ability to swap components based

on the task required makes the components elusive and less sensitive to

changing requirements.

– Design Complexity Though offline reconfigurability shows gains in desira-

bility and requirement flexibility, there exists a trade-off. Offline reconfi-

gurability increases the design complexity of a product due to the more

components required for design the inclusion of interface constraints that

allow end-users of the product to swap variants of the components quickly.

In the past, this trend was not previously analyzed or fully understood.

This framework brings that trend to light.

The insights provide universal considerations and trends an engineer can use to get

a better understanding of the product architecture selection problem before initiali-

zing the process. The more information available earlier in the process will reduce the

risk of mistake and misinformed decision making. The increase in design knowledge is

a crucial part of product architecture selection since so much of the development and

product development depends on the decisions made during this phase. Thus, the

insights and contributions provided by this research should be a welcoming benefit

for the systems and aerospace engineering fields.

6.3 Final Thoughts

Historically, implementing commonality and reconfigurability has been a vague step in

systems engineering. Specific examples, such as the F-35, Littoral Combat Ship, and

automobile industry, demonstrate cases where engineers made assumptions about the

360

product architecture’s impact on the development of a new product without testing

them. As design considerations and constraints from customers and the industry

continue to increase, it is essential to test these assumptions and analyze the problem

before haphazardly implementing a product architecture characteristic. If anything

should be gained from this dissertation, moderation is key. Either implementing

all three or maximizing one has the unwanted effect of decreasing the requirement

flexibility or increasing the design complexity of a product line. If the design problem

requires all three, the firm should have schemes in place to mitigate the possible

increase in design complexity. However, if the firm conducts analysis presented by

this framework, it will gain an understanding of what to expect and possible ways to

mitigate the risk.

361

APPENDIX A

AUTOMOBILE CASE STUDY

The validation case study analyzes the automobile industry in the late 1970s to early

1980s. There are multiple points in the industry’s history that present interesting dyn-

amics and witnessed changes in the industry-wide, implemented product architecture.

One example is the emergence of Henry Ford and his products that used standardized

parts and standard processes to reduce the cost of an automobile. Another example

would be the recent adoption of electronic and hybrid technologies. However, these

instances follow clear trends in the industry. The case requires an understanding of

the market and engineering practices. At the time, automobile development followed

a trend of increasing commonality, modularity, and standards. Additionally, Toyota

and Honda began to disrupt the industry with lower-cost vehicles with higher reliabi-

lity in comparison to the competition. Automobile production methods were changing

during this period. These changes had a direct impact on the product architectures

implemented.

The automobile manufacturer, in this case, is an American Company who has to

deal with the changing paradigm in the industry. The manufacturer had to formu-

late a new strategy and reflect that strategy in the product offered. The product

architecture that dominated the industry following this period maintained common

processes and standardized parts. However, the increased cost savings from the new

manufacturing techniques allowed the manufacturers to offer products with more uni-

que parts allowing for better performance. The following case study goes through the

process to determine whether the framework can come to the same conclusion as the

resultant product architecture implemented in the 1980s and 1990s.

362

A.1 Establishing the Need for a New Automobile Product

The first step in bringing a new product to life is determining the needs of the new

product. Following the process detailed in Figure 34, the manufacturer can determine

the customer needs, the resources or capabilities required to meet them, and product

specific needs. The first step in the process is to analyze the industry and the internal

dynamics of the firm. Together, they can help determine the producers place in

the industry. From this analysis, the firm can choose a business strategy, down-

select needs specific to the new product, and determine the product-based, customer-

oriented strategy.

A.1.1 Automobile Industry External Analysis

The external analysis focuses on the dynamics that occur outside of the manufacturer

in question. The two recommended frameworks to facilitate this analysis are the

PESTEL and Five Forces. However, depending on the industry and global breadth

of operations other frameworks can be introduced. However, for this case with an

American car manufacturer in the late 1970s the PESTEL and Five Forces frameworks

are sufficient.

A.1.1.1 PESTEL Analysis of Automobile Industry

The PESTEL Framework allows engineers and management to break down the ex-

ternal factors that influence the industry. The factors specific to the late 1970s,

automobile industry, are as follows:

• Political: Automobile manufacturers have a historically close relationship with

their nations’ governments. The industry hires a considerably large workforce

gaining influence over a city or region’s politics (Detroit USA and Stuttgart

Germany). Specifically, the automobile industry relies on government subsidized

infrastructure investments. In the US, the 1916 Federal Aid Road Act, the 1921

363

Federal Highway Act, and the 1956 Federal-Aid Highway Act set in motion the

adoption of cars in the 19th century, American society.

Politics also play a role in setting tariffs and trade agreements, often protecting

their car industry in the process. However, governments’ roles in economics

have caused trouble for the automobile in the past. In the 1970s, oil prices sky-

rocketed as first OPEC implemented an embargo and Iran disintegrated into

revolution. The automobile industry’s sensitivity to the global commodities

market requires governments to play a role in minimizing volatility, which comes

to the automobile industry’s benefit.

With an upcoming election in 1980, both of the prospective presidential candi-

dates shared the same economic policy: reduced regulations cut in government

spending, increase in interest rates, and reduced taxes. Of the four policies,

three supported business growth and investment. The only one that would hurt

the automobile industry would be the cut in government spending. However,

the infrastructure investment required for the automobile industry had already

run its course in the 1950s and 1960s. Therefore, the only threat was minimal.

• Economic: In the late 1970s, the American economy was in bad shape. High

unemployment and high inflation stunted growth and investment in many of the

country’s markets. As a result, the American populous was spending money as

soon as they obtained it, but margins were incredibly low, and volumes of goods

exchanged were decreasing. The misery index reached its all-time high in the

US, and the world economy did not fare much better. Thus, most customers

had a tight budget but were willing to spend money.

• Sociocultural: The public’s view of the automobile industry throughout the 19th

century was vastly positive. The car was a foundation of American culture and

stood as a symbol of individual freedom throughout the world. Collectors and

364

hobbyists sprung up around the industry. Furthermore, there were no signs this

would change in the late 1970s.

• Technological: Due to the oil shocks in the 1970s, automobile manufacturers

started investing in aerodynamic and fuel consumption technologies. In the

past, cars were boxy to make the manufacturing process more modular, redu-

cing the costs. Now, the emergence new aerodynamic frames challenged these

practices and even drove up the price of production.

• Ecological: In the late 1960s, due to the abundant use of automobiles in urban

centers some states, for example, California in 1966, started enforcing emission

regulations. These regulations hoped to reduce the amount of smog and pollu-

tion present throughout the United States’ cities. Eventually, the entire country

adopted these principles in 1968. These regulations would continue to increase

throughout the 1970s as the use of leaded gas was forbidden in 1975.

• Legal: The abundance of cars created an increase in risk for passenger safety.

Though the car manufacturer cannot control how the customer drives the car;

they do have some responsibility for how safe the vehicle is. Therefore, in the

1960 and early 1970s, governments passed regulations that demanded manu-

facturers outfit cars with seat belts and padded dashboards. However, there

were still risks of parts failing during operations which could result in injury or

death. These incidents incur legal risk for the manufacturer. The manufacturer

could mitigate the risk by increasing the quality of parts.

The PESTEL analysis describes an industry that is extremely sensitive and depen-

dent on political policies. It is also dependent on consumer confidence and commodity

prices. The state of the industry in the late 1970s is not great, but it looks as though

things will change. Due to the industry’s dependence on government policy, manu-

facturers can view the possible change of government policy in 1980 as positive.

365

A.1.1.2 Five Forces of Automobile Industry

Following the analysis of the late 1970s, automobile industry’s external considerati-

ons, it is essential to analyze the profitability of the industry. The Five Forces model

analyzes the manufacturer’s relative power within the industry. The manufacturer’s

power relates to its ability to negotiate favorable deals and increase profit margins.

Furthermore, it can help determine possible business strategies the firm can imple-

ment in the industry. The Five Forces for the late 1970s, automobile industry, are as

follows:

• Bargaining Power of Buyers: (Moderate) The customers in the automobile

industry have sufficient power in the industry. Due to a large number of options

present to the customers, the switching cost of changing cars is relatively low.

However, factors such as brand loyalty and the need for a car reduce some of

the customers’ power.

• Bargaining Power of Suppliers: (Low) The suppliers mostly provide either raw

materials or subcomponents with little value as a lone entity. Furthermore,

many of these suppliers are tied to a specific manufacturer. This dependence

strips the suppliers ability to switch manufacturers since such a large percentage

of their business depends on the deal.

• The Threat of New Entrants: (Low) After Japanese companies entered the

industry in the early 1970s, the market is pretty saturated. It also requires

an extreme amount of capital to invest in the assets required of the industry.

Without government subsides the Japanese car companies would have never

emerged.

• The Threat of Substitute Products or Services: (Low-Moderate) The main

substitutes to cars are trains and air travel. In Europe and America, most of

366

the public uses trains and air travel respectively to travel between urban centers.

However, most car owners use the vehicles around the place they live. So, while

the threat is there, it is not as menacing.

• Rivalry among Existing Competitors: (Very-High) The entry of the Japanese

car companies immediately started a price war, causing margins and profits to

decrease steadily. The Japanese manufacturers implement new “lean” techni-

ques which guaranteed lower costs and higher reliability. With slipping margins,

the American and European companies are hastily copying these techniques.

The Five Forces Analysis depicts an industry where the competition and power of

the customers are pushing prices and margins lower. Therefore, a manufacturer has

two options: pursue price-leadership or focus on the brand-loyal or luxury-demanding

customers and differentiate from the rest of the competition. The first option requires

significant investment to catch up to the Japanese efficiency. The second option is

a change for many of the American manufacturers’ past strategies. In the past,

American car manufacturers presented the idea of “a car in every garage (Herbert

Hoover).” With the help of government policy, manufacturers achieved this goal

from the 1930s to the 1970s. The next step in the process is to analyze the internal

dynamics of the manufacturer to determine which strategy is better.

A.1.2 Automobile Industry Internal Analysis

The internal analysis focuses on the resources, capabilities, and structure inherent of

the firm in question. The VRIO framework and value chain analysis allow the firm

to develop strategies around the strengths of the company. Furthermore, it identifies

weaknesses that the business must bolster. There are other frameworks available, but

the two methods are sufficient in determining high-level characteristics relevant to

product development of the firm.

367

A.1.2.1 VRIO Analysis of Automobile Manufacturer

The car manufacturer in this case study is a standard American automobile producer

in the late 1970s. At this point, Japanese efficiency and low prices are disrupting the

industry. The disruption requires the manufacturer to reevaluate its position. The

resources and capabilities available to the firm at this point are the experienced and

loyal employee base, the ability to develop and produce a new model within a year,

a loyal customer base, an established brand name, and political connections.

The VRIO analysis looks at a company’s resources and capabilities to determine

which provides the firm with a distinct advantage compared to their competitors. The

capabilities and resources that are valuable, rare, hard to imitate, and the company

is organized to capture their value should be leveraged in the new strategy. Table 65

displays the results from the VRIO analysis.

Table 65: Late 1970s Automobile Industry VRIO Analysis

Resources Valuable Rare Un-Imitable Organized

Employees X X
Loyal Customer Base X X X X
Brand Name X X X X
Political Connections X X

From the VRIO analysis, the two most valuable resources available to the manu-

facturer are its loyal customers and its brand name. These resources can provide a

distinct advantage over its competitors. Therefore, the manufacturer should leverage

them in a strategy to combat the threats posed to the industry.

A.1.2.2 Value Chain Analysis of Automobile Manufacturer

After, determining critical resources and capabilities available to the firm, value chain

analysis looks at the internal structure of the organization. The firm can handle the

supporting activities which include organizations infrastructure, human resources,

and resource procurement. For primary activities, the firm can manage the inbound

368

and outbound logistics, marking and sales, and service. However, there are some

considerations concerning technology development and operations or production. The

disciplines required for automobile production and the difficulty for the firm to develop

subsystems and technologies in each domain are:

• Aerodynamics: (Easy-Moderate) Since the vehicles operate at lower speeds

only stream-line analysis is required to analyze its effect on the design. The

design’s sensitivity to these considerations is minimal.

• Mechanical Drive-Train: (Moderate) The engine and mechanical drive train

is critical to automobile production and performance. It is never an easy task

to integrate an engine with the rest of the design, but especially difficult when

developing a new engine. Many of the manufacturers set standards and practices

to reduce the difficulty of the problem.

• Structures: (Easy-Moderate) Weight is a crucial metric that often determines

the performance of the vehicle and the structures drive the weight. However,

compared to the aerospace industry the safety factors are much higher allowing

fundamental analysis in the structure sizing.

• Production: (Moderate-Hard) Production of automobiles requires extensive

scheduling and coordination alongside the investment in bulky tooling. A large

number of processes and components involved in the production creates issues

for the manufacturer even if the firm has been in the industry for a while.

Production is the most challenging part of development and productions of a

new automobile. It requires a lot of management and capital to produce all of the

components required. Some of these parts are small and basic but still require specific

processes or tools. As a result, the industry has utilized many external entities that

produce parts based on the request. Thus, the firm should consider other approaches

rather than vertically integrating these entities in the value chain.

369

The first option is to taper activities in the value chain. Tapering involves orches-

trating external firms production of goods required by the product. The second is to

outsource activities by purchasing goods required by the product. Tapering implies

cooperation between the firm and the external entities, while outsourcing primarily

acquires products previously developed by the external entities.

The factor that drives this decision is suppliers’ power. In this case, the suppliers

do not have much bargaining power. Therefore, the firm should taper activities

creating standards and modules that allow external firms to produce lesser parts, and

therefore reducing the difficulty and cost of production.

A.1.3 Selecting Automobile Industry Business Strategy

After analyzing the industry and the internal capabilities of the firm in question, the

firm must formulate a business strategy. The firm in question is entering a highly

competitive market with multiple market segments: economy, mid-sized, and luxury.

The Japanese brands dominated the low-cost segment. Their superior efficiency

and reliability make it hard to compete in this segment without significantly cutting

margins. The mid-sized market consists of customers with established jobs and fami-

lies who need a vehicle to take the family places. In this segment, there are numerous

competitors, but the Japanese have not been able to enter since their focus is on

economy cars. Finally, the luxury or high-performance segment consists of wealthy

customers who look for style, brand recognition, or performance. Only a few of the

US and European manufacturers compete in this market since it requires specific in-

tangible factors. Therefore, Figure 73 shows the proposed target segments for this

case study.

The company should focus on the mid-sized and luxury segments. The company

should try to differentiate itself from the economy segment to drive up margins and

prestige. The strategy creates a strategic differentiation position and competitive

370

PerformanceLow-Price

Market
Size

R
egion

Considered

“A
ctive

Product

A
lley”

Figure 96: The Capability and Market Size Relational Space for the Automobile
Industry

371

scope pairing (Figure 96). The inclusion of the mid-sized segment is to sustain the

volume required for production, amortize the significant fixed costs. The firm can

achieve this strategy by producing products for both segments on the same production

line. Concurrent productions will take advantage of combining volumes from both

segments and enforcing the higher quality standards to both. Furthermore, the ability

to increase margins will allow the firm to invest in learning the practices used by the

Japanese firms. Once on the same playing field, the American firm will be in a better

position to combat the Japanese firms even if it takes more than a few years.

A.1.4 Extracting Customer Needs for New Automobile

Following the formation of the firm’s business strategy, the firm must establish the

needs for the product. The external analysis provided some insights on the safety

and economic requirements of the new product. The value chain analysis identified

the need to incorporate modular techniques with regards to the subcomponents and

parts, since the firm should plan to taper their production. The choice of business

strategy requires the firm to produce the higher performing products on the same

production line. Concurrent production implies common components or processes

which will achieve the volume required to meet the desired price points.

Now, the firm must derive the customer-specific needs. Figure 39 displays the

options available for the firm. Concerning the formulated business strategy, the mid-

sized and luxury segments can utilize the same approach. The customers in both

segments have moderate power. Therefore, the company can use market analysis

and customer surveys to determine all of the needs of the vehicle. The demand

high performance suggests considering online reconfigurable components to maximize

performance for the luxury segment but is not a priority, since it will add additional

weight without gaining much value for the customer. The final needs of the product

line are as follows:

372

1. Modular and Outsourced Components: The product line should incor-

porate modular techniques with regards to the subcomponents since the firm

should plan to taper their production.

2. Production Line: The need for concurrent production implies common com-

ponents or processes which will achieve the volume required for meeting the

desired price points.

3. Mid-Sized Market Segment:

(a) Performance: The vehicle should be able to carry a family of five with

minimal fuel consumption, while still providing the comfort desired by the

customer.

(b) Price: The price point can be a higher than average in this segment since

a differentiation should draw a higher price than the rest of the field.

4. Luxury Market Segment:

(a) Performance: The vehicle should be able to achieve high speeds and supe-

rior performance while still providing the comforts of luxury and prestige.

(b) Price: The price point can be a higher than average in this segment since

a differentiation should draw a higher price than the rest of the field.

The needs identified using this approach form general descriptions of the tasks,

missions, and capabilities required by the vehicle.

A.1.5 Final Automobile-Based, Customer-Oriented Business Strategy

The company should focus on satisfying the requirement of delivering a payload over

a given distance. The manufacturer can achieve this capability over various distances

and speeds requiring an automotive product line to satisfy the desired tasks. The

firm should pursue the market targeting two market segments: mid-sized and luxury.

373

The pursuit of two different market segments suggests the production of a few vehicle

variants on the same production line. Concurrent production and modular standards

should save on cost without diminishing performance extensively. The uncertainty of

the product architecture drives the need to explore the space and analyze the trade-

offs between various vehicles. The next step for the firm would be to create concrete

definitions of the tasks, missions, and capabilities required of the systems.

A.2 Defining the Automobile Design Problem

After establishing the needs for the new product line and the formulation of a customer-

oriented, product-based business strategy, designers must go through the process of

transforming the abstract needs to detailed functional requirements. Many of the

facilitators found in Section ?? can help alongside the requirements analysis process

found in Section 2.1.2 to create these requirements. For automobiles, the analysis

forms range and design speeds which outline the capabilities of the vehicle. Further-

more, their technical requirements can provide benchmarks of expected costs, speeds,

reliability, technology level, or other metrics. In this case study, the primary concerns

are performance and cost.

The first step in this process is defining the technical parameters that engineers can

directly trace from the product’s needs. In this case, the cost, gas mileage, payload

capacity, and range associated with each vehicle are:

Table 66: Technical Requirements of Automobile Case Study

Vehicle
Acq.
Price
(1970US)

Gas
Mileage
(MPG)

Payload
Capacity
(lbs)

Accel. to
60mph
(s)

Range
(mi)

Mid-Sized $8,000 25 500 9 300

Luxury $14,400
25

300 7 250

The next step is to form drive cycles that define the ranges, grades, and speeds

374

which an automobile must be able to complete. The design missions provide in-

puts to the simplified models (Section 2.1.4.3) which size the vehicle and estimate

performance.

A.2.1 Decomposition of Tasks Required of Automobile

An Automobile must be able to perform a standard drive cycle, which consists of

varying and number of speeds and grades. Since both vehicles are for civilian use,

they go through the same tests. Section 4.2.2.2 outlines these drive cycles and Figure

70 shows the various operating speeds for these drive cycles.

The other element of the automobiles’ function is the ability to take cargo from

place to place. Therefore, the development of these vehicles must include additional

payload considerations.

A.2.2 Relating Design Missions to Automobile Configuration

Since the drive cycles are the same, the only functional requirement that will differ be-

tween the two vehicles’ is the payload or cargo capacity. Thus, all civilian cars tend to

have the same configuration, which includes a chassis, engine, fuel tank, four wheels,

steering system, and transmission. The steering component and the transmission con-

trol the vehicle’s two degrees of freedom while the rest of the configuration is there to

carry cargo across a distance. Looking throughout the industry’s history, manufac-

turers have implemented a few other configurations. Two examples are a convertible

roof and three-wheeled vehicles. The first configuration is primarily implemented to

meet customers’ desires for open-air luxury vehicles. Though, the additional bonus

in luxury, the configuration is not applicable in this case since it is hard to measure

the luxury bonus the convertible top provides. The second configuration was a dud

in sales. Customers primarily viewed these cars as cheap or poorly made, since many

of them were not stable and easily tipped over. Thus, these vehicles only found a

home in third-world countries. Thus, this case only considers the configuration with

375

a chassis, engine, fuel tank, four wheels, steering system, and transmission.

A.2.3 Conclusions from Defining the Automobile Design Problem

The straightforward standards set in the automobile industry leave little room for

creativity while approaching the design. Due to the dependence of the vehicle’s per-

formance and controls on the steering and engine, there is limited room for more

online reconfigurability. Furthermore, the standards and customer expectations in

the 1970s, there is little need to incorporate sophisticated or revolutionary or techno-

logies to the design. Therefore, this study will primarily be determining what levels

of commonality and offline reconfigurability the engineers should incorporate in the

product line.

A.3 Establishing a “Valuable” Automobile Product Archi-
tecture

The next step requires the determination of weighting between metrics. For this case,

desirability, flexibility, and complexity are the three-primary metrics. First, desira-

bility depends on the customers’ desires and needs. Also, flexibility and complexity

require the gradient and Hessian of a pseudo-objective function which is a combina-

tion of the desirability and penalty functions associated with various constraints of

the design. Therefore, the derivation of desirability must come first.

A Quality Function Deployment (QFD) produces an objective function by com-

bining the importance of customer needs, functional requirements and the relations

between them [122]. The mid-sized and luxury automobile design missions are struc-

tured the same way. Though, the magnitudes of the needs and functional require-

ments differ, the relations stay relatively constant. Therefore, the objective functions

for both vehicles can be derived from the same QFD. Table 67 depicts the QFD

analysis of the mid-sized and luxury vehicles.

In the QFD for the automobile, the primary customer demands are fuel efficiency,

376

Table 67: Mid-Sized and Luxury Automobile QFD

Import.
Cargo
Weight

Total
Weight

Range
Accel.
to
60mph

MPG. MSRP

Fuel
Efficiency

5 0.6 1 0.1 1 0.8

Range 2 0.5 1 0.6 0.3
Cargo 1 1 1 1 0.3 0.6 0.1
Speed 3 0.1 0.2 1 0.3
Cost 4 0.4 0.1 0.1 1

Mid-Sized
Target

500
lbs.

4000
lbs.

300 mi. 10 sec 25
$8,000
(US
1970)

Luxury
Target

300
lbs.

3500
lbs.

250 mi. 7 sec 25
$14,400
(US
1970)

Absolute
Importance

4.3 9.2 3.9 4.2 6.8 9.6

Relative
Importance

0.11 0.24 0.1 0.11 0.18 0.25

range, cargo weight, speed, and cost, and the functional requirements are the cargo

weight, total gross weight, range, time to acceleration to 60mph, fuel efficiency, and

the acquisition cost. After providing weightings to each of the customers needs and

providing sensitivities among the customer needs and function requirements absolute

and relative importance of each functional requirement can be calculated. Combined

with targets the objective functions for the two vehicles can be created.

Mid-Sized Vehicle:

φ = 0.11
WC

500
+ 0.24

4000

WT

+ 0.10
R

300
+ 0.11

Acc

10
+ 0.18

MPG

25
+ 0.25

8, 000

MSRP
(176)

Luxury Vehicle:

φ = 0.11
WC

300
+ 0.24

3500

WT

+ 0.10
R

250
+ 0.11

Acc

7
+ 0.18

MPG

25
+ 0.25

14, 400

MSRP
(177)

377

The next step in the process is determining the weightings for the three-primary

product architecture evaluation metrics. As shown in Section 3.3, the designer should

ask the following six questions to provide general weightings. These weightings act

more as guides to depict the general area where to search for product architectures.

• Desirability

1. How much power do the customers have? (High Power - 3) As stated

in Section A.1.1.2, the customers have a sufficiently high amount of power

since they can switch brands easily. Furthermore, since the strategy focuses

on the upper-end of the industry, these customers expect their performance

and luxury requirements met.

2. How many requirement thresholds must the product achieve? (Low Num-

ber - 1) Standards for satisfying requirements and regulations have been

set allowing new products to flow smoothly through the firm’s develop-

ment process. As long as these standards do not change the difficulty to

achieve the number of requirements, the priority on minimizing complexity

is minimal.

• Flexibility

1. How long is a product’s traditional life span in the industry? (Very Short

- 1) A typical lifespan for a new product is only a few years. Afterwards,

the product mostly becomes obsolete as new models come off the pro-

duction line.

2. What is the cost to develop and produce a new product? (High Cost - 3)

There is sufficient cost every time an automobile manufacturer develops a

new product, mainly when producing high performance or luxury vehicles.

• Complexity

378

1. What is the manufacturer’s novelty producing a product? (Low Novelty-

1) Since this case focuses on an established American manufacturer, the

novelty of the engineering team is low.

2. How many domains are associating with developing a new product? (Mo-

derate Number - 2) There are only a few disciplines that drive automo-

bile design and development. They primarily are drive-train development

and production.

The results of this analysis provide the following weightings for the three metrics:

Desirability - 0.36, Flexibility - 0.36, and Complexity - 0.28. These are general directi-

ons and should act as guides. The product architecture space acts entirely different

when compared to typical design problems. Thus, it can be concluded in this case the

highest priority should be towards desirability followed by flexibility and complexity.

A.4 Generating Alternative Automobile Product Architec-
tures

Producing alternative product architectures is not as easy as selecting index values

of commonality, online, and offline reconfigurability. Instead, this process requires

the possible production combinations. Each design requires a configuration, and each

configuration requires a chassis, engine, fuel tank, wheels, transmission, and mecha-

nical steering system. The process enforces commonality by giving each component

a number varying from one to two. If the two designs’ chassis possess the same frame

number, an equality constraint makes all the dimensions and characteristics of the two

chassis the same. Online reconfigurable components are the mechanical steering sy-

stem and transmission. During each drive cycle, the controls for the transmission are

optimized to create the best performance for the vehicle throughout the cycle. Offline

reconfigurability is assumed to be two different subcomponents (engines) sharing the

same interface with a common platform (chassis).

379

The design variables are varied as well to provide distributions of the evaluation

metrics relating to the different product architectures. The ranges of the design

variables originate from past automotive designs. The ranges attempt to capture

the overall design space. Table 68 displays the design variables considered and their

minimum and maximum values.

Table 68: Automobile Design Variable Ranges

Design Variable Minimum Maximum

Drag Coef. 0.261 0.319
Wheel Base (ft.) 8.25 10
Fuel Storage Power (hp) 1.34 6.71
Fuel Storage Energy (ft-lb) 412 504
Engine Power (hp) 178 218
SFC (lb/hp-hr) 0.3 0.36
Wheel Radius (ft) 0.96 1.07
Rolling Coef. 0.00765 0.00935
Cargo Weight (lbs) 270 330

Combinations of various inputs create product architectures throughout the design

space. The distributions resulting from varying the design variables will be used

to determine the relationships amongst a product architecture’s characteristics, the

drivers and the metrics of interest. The next section will detail the tools used to size

the vehicles and calculate the metrics of interest.

A.5 Evaluating Alternative Automobile Product Architec-
tures

The evaluation of product architectures requires evaluations of many designs and

configurations with the same architecture. The product architecture does not define

the system’s performance or cost but does influence it. The product architecture

also has a relationship with the requirements. Switching the product architecture

influences how constrained the space is relating to the flexibility and complexity of

the system.

380

Therefore, to capture the effects of the product architecture on the performance

and cost of the product line, the Future Automotive Systems Technology Simulator

(FASTSim) was used. The baselines chosen for this case study were the 2011 Toyota

Avalon for the mid-sized automobile and the 2011 BMW 335d for the luxury auto-

mobile. Engine efficiencies were dropped by 2-5% to make the fuel consumption and

the power train efficiencies more realistic to 1970s values. Otherwise, most of the

variables were varies around the baseline initial values.

The drive cycles used to size the vehicle are the same as those listed in Section

A.2.1. Though FASTSim provides multiple databases of other drive cycles, these are

standard EPA tests and are relevant to 1970s design [26].

A.5.1 Validation of Framework’s Consistency in Evaluating Metrics Sum-
mary

Validation of the framework requires two steps determining whether grouping the

requirements have a similar impact on the product architecture and whether the

product architecture has a similar impact on the evaluation metrics.

Figure 97 displays the functional requirements zero-to-sixty times, payload-range,

gas mileage, and the number produced in a box plot graph where the points are the

medians and the lines are the first and fourth quartiles, excluding outliers. Further-

more, it considers the average and standard deviation of both vehicles.

Compared to Figure 93, the zero-to-sixty requirement for an automobile acts si-

milarly to the takeoff distance, speed, and altitude requirements for a UAV. In the

automobile case, the gas mileage behaves opposite as the payload range because the

gas mileage is a form of efficiency requiring less energy to complete a mission. The-

refore, the payload-range and gas mileage in the automobile case acts similarly to

the payload range in the UAV case. Finally, the number produced in the UAV case

should act opposite as cost in the automobile case. However, this is not necessarily

true because the number produced does not capture the fixed costs associated with

381

Figure 97: Validation of FA2UST Framework Product Architecture Drivers

382

the design. However, the general trends hold true.

The fact that both cases act similarly suggests that combining requirements into

power, energy, and cost considerations is an appropriate way to approach the problem.

Though the trends are not the same, exacerbated by the lack of online-reconfigurable

options in the automobile case, the overall trends seem to hold. Though the product

architecture composition cannot be directly derived from the requirements, at least

the designer can gain some insights on the behavior of the design space.

The results from the automobile case were compared against the results from

the UAV case in Figure 98 to validate the evaluation metrics. Figure 5 shows the

evaluation metrics results in a box plot where the point is the expected value and the

lines are the seventy-fifth percentile to upper, expected range of variance or twenty-

fifth percentile to lower, the expected range of variance. Though the fields differ,

there are definite trends among the design spaces.

Figure 98 compares the automobile case with the design-feasible cases from the

UAV case. For both the automobile and UAV case, increasing commonality shows an

initial increase in desirability, but at a point, the desirability begins to decrease. This

trend is likely due to commonality’s ability to reduce cost, but at a certain point, the

performance begins to deteriorate. There seems to be no trend between desirability

and offline reconfigurability, as costs and benefits appear to balance each other out.

For both cases, commonality tends to decrease the flexibility of the product ar-

chitecture as seen in the medians and spreads of the flexibility in Figure 98. The

trend is likely due to the additional constraints placed on each common component

as commonality increases. The addition of constraints makes the component much

more sensitive to changing requirements. Offline reconfigurability tends to increase

the flexibility of the product. As the plurality of components reduces each compo-

nent’s sensitivity to changing requirements. Though one might say Figure 98 disputes

this, the high flexibility when offline commonality is zero in the automobile case is

383

Figure 98: Validation of FA2UST Framework Evaluation Metrics

384

due to fixed characteristics. The fixed components create a second higher mode which

threw of the distribution of offline reconfigurability at zero. A fixed architecture can

occur at commonality at zero or one, both times, making offline reconfigurability zero.

The automobile case had a higher probability of creating fixed architectures than the

UAV case due to the limited number of components. The rest of the space shows a

slight upward trend.

For both cases, commonality decreases complexity due to complexity in numbers.

The fewer components, the less work in design is required. Since the design of a UAV

is more difficult than an automobile, there is an increased risk of higher complexity

at higher commonality. At a certain point, high commonality puts many constraints

on the shared components, making the component highly sensitive to design changes.

The automobile design problem is less complicated, and the study only considers two

designs, reducing the risk of higher complexity at high commonality.

For both cases, increasing offline reconfigurability increases complexity again for

the opposite reason as increasing commonality. Offline reconfigurability increases the

number of interface constraints, creating a greater need for more design work.

Online reconfigurability could not be compared due to the limited nature in the

1970s-automobile design space. A 1970s automobile does not have much room for

online reconfigurability since hybrid, and reconfigurable air spoilers had not been

created yet. However, the results seem to suggest the overall consistency of the

framework’s ability to evaluate alternative product architectures.

A.6 Final Decision of Automobile Product Architecture to
Implement and Comparison to Historical Case

The weights provided in Section A.3 can now be used to create an overall objective

score. Based on the customer desires and functional requirements stated earlier in

the process, the designer can filter the product architecture space as shown in Figure

99.

385

Figure 99: Validation of Automobile Historical Case

The results show the designer should choose to make the vehicles 60% common

and 30% offline reconfigurable, but it is important to understand how the results

compare against the historical case.

In the late 1970s, Japanese auto-makers disrupted the American automobile in-

dustry. They produced vehicles at a much lower cost and higher reliability than their

competitors. Therefore, they took over the economy market. The American manu-

facturers had two options: find new ways to reduce costs or try to move into the

higher performing market. The companies that chose to reduce cost did so, by con-

tinuing to increase the amount of commonality and offline reconfigurability of their

products. However, this severely deteriorated the vehicle’s performance [144, 27, 78].

The cannibalization of the products created problems for these manufacturers. For

example, Chrysler in the 1980s became obsessed with commonality by continually

implementing the K-car platform in their cars causing a lack of distinct new products

[132]. The companies that moved into the higher performance segment did not make

386

the products more common or offline reconfigurable. Instead, they focused on increa-

sing the reliability and operations surrounding the development and production of the

vehicle, while increasing the product’s performance. This case shows the analysis did

not favor higher commonality and offline reconfigurability options. Instead, nominal

commonality and offline reconfigurability achieved the higher scores.

387

REFERENCES

[1] “Design parameter.” BusinessDictionary.com. WebFinance, Inc. Electronic.
http://www.businessdictionary.com/definition/design-parameters.html., 2015.

[2] “Faa: Unmanned aircraft systems civil operations (non-governmental).” Elec-
tronic. https://www.faa.gov/uas/civil operations/, 17 March 2015.

[3] “Stockholm international peace research institute: Si-
pri military expenditure database.” Electronic.
http://www.sipri.org/research/armaments/milex/milex database, 2015.

[4] “U.s. department of commerce: Bureau of economic analysis - national economic
accounts.” Electronic. http://www.bea.gov/national/, 28 August 2015.

[5] “Exponential growth of system complexity.” AVSI. The Texas A&M Uni-
versity. College Station, TX. Electronic. http://savi.avsi.aero/about-savi/savi-
motivation/exponential-system-complexity/, 2016.

[6] Cambridge Academic Content Dictionary, ch. Definition of Product. Cambridge
University Press, 2017.

[7] “Computer programmer salary.” Electronic.
https://money.usnews.com/careers/best-jobs/computer-programmer/salary.,
2017.

[8] Merriam-Webster Dictionary, ch. Definition of Component. Merriam-Webster,
2017.

[9] Merriam-Webster Dictionary, ch. Obsolescence. Merrian-Webster Incorporated,
2017.

[10] Oxford Dictionary, ch. Customization. Oxford University Press, 2017.

[11] ADS-News, “Cost overruns put global hawk at risk.” Electronic.
https://www.adsgroup.org.uk/articles/10233?i=10233&t=0, 20 April 2006.

[12] Agle, D. C., “The gutless cutlass,” tech. rep., Smithsonian Air & Space Ma-
gazine, August 2012.

[13] Airforce-Technology.com, “F-14 tomcat, united states of america.” Elec-
tronic. http://www.airforce-technology.com/projects/f14/.

[14] Airforce-Technology.com, “Predator rq-1 / mq-1 / mq-9 rea-
per uav, united states of america.” Electronic. http://www.airforce-
technology.com/projects/predator-uav/.

388

[15] Albers, A., Sedchaicharn, K., Sauter, C., and Burger, W., “A method
to define a product architecture early in product development using a contact
and channel model,” in International Conference on Engineering Design: De-
sign Methods and Tools (Norell Bergendahl, M., Grimheden, M., Lei-
fer, L., Skogstad, P., and Lindemann, U., eds.), vol. 5, (Palo Alto, CA,
USA), pp. 241–252, Institute of Product Development, University of Karlsruhe,
27 August 2009.

[16] Allison, J. T., “Complex system optimization: A review of analytical target
cascading, collaborative optimization, and other formulations,” Master’s thesis,
The University of Michigan, 2004.

[17] AmericanAutomobiles.com, “The winton automobile & the winton motor
carriage co..” Electronic. http://www.american-automobiles.com/Winton.html,
2012.

[18] Anderson, J. D. J., Aircraft Performance and Design. Boston, MA: WCB
McGraw-Hill, 1999.

[19] Austin, R., Unmanned Aircraft System: UAVS Design, Development and De-
ployment. The Atrium, Southern Gate, Chichester, West Sussex, UK: John
Wiley & Sons, Ltd., 2010.

[20] Bearden, D., “Perspectives on nasa mission cost and schedule performance
trends,” tech. rep., Aerospace Corp., 2008.

[21] Becz, S., Pinto, A., Zeidner, L. E., Khire, R., Banaszuk, A., and
Reeve, H. M., “Design system for managing complexity in aerospacesystems,”
in 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Con-
ference, (Fort Worth, TX), AIAA, 13-15 September 2010.

[22] Berry, S. and Pakes, A., “The pure characteristics demand model,” Inter-
national Economic Review, vol. 48, pp. 1193–1225, November 2007.

[23] Bloomberg.com, “Markets: Energy.” Electronic.
https://www.bloomberg.com/energy, 2017.

[24] Boeing.com, “F/a-18 hornet fighter: Historical snapshot.” Electronic.
http://www.boeing.com/history/products/fa-18-hornet.page.

[25] Boeing.com, “Boeing 737 max.” Electronic.
http://www.boeing.com/commercial/737max/, 2015.

[26] Brooker, A., Gonder, J., Wang, L., Wood, E., Lopp, S., and Ram-
roth, L., “Fastsim: A model to estimate vehicle efficiency, cost, and per-
formance,” in SAE 2015 World Congress & Exhibition, (Detroit, MI), SAE
International, 21-23 April 2015.

389

[27] Cameron, B. G. and Crawley, E. F., “Crafting platform strategy based
on anticipated benefits and costs,” Advances in Product Family and Product
Platform Design, pp. 49–70, 2014.

[28] Cameron, D., “F.a.a. drone laws start to clash with stricter local rules,” in
The Wall Street Journal, October 5 2017.

[29] Canis, B., “Unmanned aircraft systems (uas): Commercial outlook for a new
industry,” tech. rep., Congressional Research Service, Washington, DC, 9 Sep-
tember 2015.

[30] Capaccio, T., “Pentagon says northrop’s global hawk drone isn’t ’ef-
fective’,” electronic news. http://www.bloomberg.com/news/articles/2011-
06-06/pentagon-says-northrop-s-global-hawk-drone-isn-t-effective-, Bloomberg
Business, New York, NY, 6 June 2011.

[31] Castells, M., The Rise of the Network Society, vol. 1. Chichester, West
Sussex, United Kingdom: John Wiley and Sons, Ltd., 2 ed., 2010.

[32] Chen, W., Allen, J. K., and Mistree, F., “The robust concept exploration
method for enhancing concurrent systems design,” Concurrent Engineering:
Research and Applications, vol. 5, no. 3, pp. 203–217, 1997.

[33] Cleveland, C. J., “The encyclopedia of the earth: De rivaz, franois isaac.”
Electronic. http://www.eoearth.org/view/article/151661/, 24 August 2008.

[34] Collier, D. A., “The measurement and operating benefits of component part
commonality,” Decision Sciences, vol. 12, p. 8596, January 1981.

[35] Collis, D. J. and Rukstad, M. G., “Can you say what your strategy is?,”
Harvard Business Review, April 2008.

[36] Commission, E., “Notice of proposed amendment 2017-05 (a): Introduction
of a regulatory framework for the operation of drones,” tech. rep., European
Aviation Safety Agency, 2017.

[37] Commission, E., “Communication from the commission to the european parli-
ament and the council,” Communication 207, European Commission, Brussels,
Belgium, 8 April 2014.

[38] Corporate.Ford.com, “Our history: Company timeline.” Electronic.
https://corporate.ford.com/company/history.html.

[39] Courtney, H., Kirkland, J., and Viguerie, P., “Strategy under uncer-
tainty,” Harvard Business Review, December 1997.

[40] Crawley, E., de Weck, O., Eppinger, S., Magee, C., Moses, J., Seer-
ing, W., Schindall, J., Wallace, D., and Whitney, D., “The influence of
architecture in engineering systems,” MIT Engineering Systems Division, 29-31
March 2004.

390

[41] DeBord, M., “The us auto industry may surprise everyone in 2017,” tech.
rep., Business Insider, 2017.

[42] Defense Acquisition University Press, Fort Belvoir, VA 22060, System Engi-
neering Fundamentals, January 2001.

[43] Department of Defense, 2530 Loop Road West, Wright-Patterson AFB, OH
45433, Department of Defense Standard Practice: Glossary of Definitions,
Ground Rules, and Mission Profiles to Define Air Vehicle Performance Ca-
pability, a ed., 14 February 2003.

[44] Department of Defense, 6000 Defense Pentagon Washington, D.C., The DoDAF
Architecture Framework Version 2.02, August 2010.

[45] Devnani-Chulani, S., Bradford, C., and Boehm, B., “Calibrating the
cocomo ii post-architecture model,” tech. rep., Computer Science Department,
University of Southern California, Los Angeles, CA 90098, 1998.

[46] Diaz-Calderon, A., Paredis, C. J. J., and Khosla, P. K., “A compo-
sable simulation environment for mechatronic systems,” in 1999 SCS European
Simulation Symposium, (Erlangen, Germany), 26-28 October 1999.

[47] Diaz-Calderon, A., Paredis, C. J. J., and Khosla, P. K., “Organization
and selection of reconfigurable models,” in Winter Simulation Conference 2000,
10-13 December 2000.

[48] Dodge, Y., The Oxford Dictionary of Statistical Terms, ch. Interaction. Ox-
ford University Press, 2003.

[49] Doman, D. B., “Rapid mission planning for aircraft thermal management,”
tech. rep., American Institute of Aeronautics and Astronautics, Kissimmee,
Florida, 2015.

[50] Domercant, J. C., ARC-VM: an architecture real options complexity-based
valuation methodology for military systems-of-systems acquisitions. PhD thesis,
Georgia Institute of Technology, November 14 2011.

[51] Donley, M. B. and Schwartz, N. A., “United states air force: Unmanned
aircraft systems flight plan 2009-2047,” tech. rep., United States Air Force,
Washington, DC, 18 May 2009.

[52] Dorr, Less, J. and Duquette, A., “Press release faa asks for public input
on uas test site selection,” tech. rep., Federal Aviation Administration, 800
Independence Avenue, SW Washington, DC 20591, 7 March 2012.

[53] Dower, G., “Ridek modular electric vehicles.” Electronic.
http://gordondower.com/ridek-modular-electric-vehicles/, 9 May 2000.

391

[54] Dwyer, A. and O’Brimski, F., “Aircraft design for carrier operations,” tech.
rep., NAVAIRSYSCOM: Conceptual Design Division, November 1997.

[55] Evans, P. and Forth, P., “Borges’ map: Navigating a world of digital dis-
ruption,” BCG Perspectives, April 2015.

[56] Fahlstrom, P. G. and Gleason, T. J., Introduction to UAV Systems. The
Atrium, Southern Gate, Chichester, West Sussex, UK: John Wiley & Sons,
Ltd., 4th ed., 2012.

[57] Fischman, L., McRitchie, K., and Galorath, D. D., “Inside seer-sem,”
tech. rep., Galorath Inc., El Segundo, CA, April 2005.

[58] Frank, C. P., A Design Space Exploration Methodology to Support Decisions
under Evolving Uncertainty in Requirements and its Application to Advanced
Vehicles. PhD thesis, Georgia Institute of Technology, August 2016.

[59] Freeman, D. F., A Product Family Design Methodology Employing Pattern
Recognition. PhD thesis, Georgia Institute of Technology, December 2013.

[60] German, B., “Ae 8803 ger: Optimization for the design of engineered systems:
Multidisciplinary design optimization (mdo).” Lecture, 2013.

[61] Gipson, L., “Unmanned aircraft systems integration in the national airspace
system (uas in the nas) project,” tech. rep., National Aeronautics and Space
Administration, 13 July 2016.

[62] Goyal, K. K., Jain, P. K., and Jain, M., “A novel approach to measure
machine reconfigurability in reconfigurable manufacturing system,” in Annals
of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Sympo-
sium (Katalinic, B., ed.), vol. 22, (Vienna, Austria, EU), p. 959, DAAAM
International, DAAAM International, 2011.

[63] Gudmundsson, S., General Aviation Aircraft Design: Applied Methods and
Procedures. 225 Wyman Street, Waltham, MA 02451: Butterworth-Heinemann,
first ed., 2014.

[64] Gumasta, K., Gupta, S. K., Benyoucef, L., and Tiwari, M., “Develo-
ping a reconfigurability index using multi-attribute utility theory,” International
Journal of Production Research, vol. 49, pp. 1669–1683, 15 March 2011.

[65] Hall, N., “The beginner’s guide to aerodynamics,” tech. rep., NASA Glenn
Research Center, 5 May 2015.

[66] Haskins, C., ed., Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities. No. 3, INCOSE, June 2006.

[67] Hickman, K., “World war ii: Grumman f6f hellcat.” Electronic.
http://militaryhistory.about.com/od/worldwariiaircraft/p/f6f-hellcat.htm,
2015.

392

[68] Hölttä, K., Suh, E. S., and de Weck, O., “Tradeoff between modularity
and performance for engineering systems and products,” in 15th International
Conference on Engineering Design, pp. 449–450, ICED, 2005.

[69] IEEE, Systems and Software Engineering - Vocabulary, 2010.

[70] Israeli-Weapons.com, “Scout.” Electronic. http://www.israeli-
weapons.com/weapons/aircraft/uav/scout/Scout.html.

[71] Jiao, J. R., Simpson, T. W., and Siddique, Z., “Product family design
and platform-based product development: a state-of-the-art review,” Journal
of Intelligent Manufacturing, vol. 18, pp. 5–29, February 2007.

[72] Joiner, S., “What couldn’t the f-4 phantom do?: A tribute to mcdonnell’s
masterpiece fighter jet,” tech. rep., Smithsonian Air & Space Magazine, March
2015.

[73] Joshi, D., “Commercial unmanned aerial vehicle (uav) market analysis indu-
stry trends, companies and what you should know,” tech. rep., Business Insider,
New York, NY, 8 Aug. 2017.

[74] Kang, C., “Drone registration rules are announced by f.a.a.,” in N.Y. Times,
December 14 2015.

[75] Kang, C., “F.a.a. drone laws start to clash with stricter local rules,” in N.Y.
Times, December 27 2015.

[76] Kapurch, S. J. and Rainwater, N. E., NASA Systems Engineering Hand-
book. NASA, Washington, D.C. 20546, revision 1 ed., December 2007.

[77] Khana, P. and Khana, A., “The evolution of technology,” in Big Think Edge,
Big Think, Inc., 2016.

[78] Kim, K. and Chhajed, D., “Commonality in product design: Cost saving,
valuation change and cannibalization,” European Journal of Operational Rese-
arch, vol. 125, pp. 602–621, 16 September 2000.

[79] Kingery IV, V. U., “The state of automotive: 2017 outlook,” tech. rep., GE,
2017.

[80] Kota, S., Sethuraman, K., and Miller, R., “A metric for evaluating
design commonality in product familes,” Journal of Mechanical Design, vol. 122,
pp. 403–410, June 1998.

[81] Lee, S., Titchkosky, L., and Bowen, S., “Software cost estimation,” tech.
rep., Department of Computer Science, University of Calgary, 2002.

[82] Levis, A., Handbook of Systems Engineering and Management, ch. System
Architectures, pp. 427–454. New York, NY: John Wiley & Sons, 1999.

393

[83] LockheedMartin.com, “The multi-variant, multirole 5th generation figh-
ter.” Electronic. https://www.f35.com/about.

[84] Longstreet, D., “Fundamentals of function point analysis,” tech. rep., Long-
street Consulting Inc., Blue Springs, MO, 2005.

[85] Luke, E. A., “Defining and measuring scalability,” in Scalable Parallel Libra-
ries Conference, (Mississippi State, MS), IEEE, 6-8 October 1993.

[86] Maler-Speredelozzi, V., Koren, Y., and Hu, S., “Convertibility mea-
sures for manufacturing systems,” CIRP Annals Manufacturing Technology,
vol. 52, no. 1, 2003.

[87] Malone, P., Apgar, H., Stukes, S., and Sterk, S., “Unmanned aerial
vehicles unique cost estimating requirements,” in 2013 IEEE Aerospace Confe-
rence, (Big Sky, MT), IEEE, 2-9 March 2013.

[88] Martin, M. V. and Ishii, K., “Design for variety: Development of complexity
indices and design charts,” in ASME Design Engineering Technical Conferences.

[89] Mavris, D., “Fixed wing aircraft design i: Classical design methods.” School of
Aerospace Engineering, Georgia Institute of Technology. Lecture, August 2011.

[90] Mavris, D., “Unified trade-off environment (ute).” School of Aerospace Engi-
neering, Georgia Institute of Technology. Lecture, 15 January 2013.

[91] Mavris, D. N., Griendling, K., and Dickerson, C. E., “Relational orien-
ted systems engineering and technology tradeoff analysis (rosetta) framework,”
in 6th International Conference on System of Systems Engineering Conference,
(Albuquerque, NM), pp. 49–54, Aerospace Systems Design Laboratory, Georgia
Institute of Technology, IEEE, June 27-30 2011.

[92] McGibbon, T., “Modern empirical cost and modern empirical cost and sche-
dule estimation tools,” tech. rep., ITT Industries - Systems Division, 775 Dae-
dalian Drive Rome, NY 13441, 20 August 1997.

[93] Meola, A., “Drone market shows positive outlook with strong industry growth
and trends,” tech. rep., Business Insider, 2017.

[94] Meyer, M. and Lehnerd, A., The Power of Product Platform - Building
Value and Cost Leadership. New York, NY: Free Press, 1997.

[95] Military.com, “Hh-60g pave hawk.” Electronic.
http://www.military.com/equipment/hh-60g-pave-hawk.

[96] Military.com, “Uh-60a/l black hawk.” Electronic.
http://www.military.com/equipment/uh-60a-l-black-hawk.

394

[97] MilitaryFactory.com, “Northrop grumman rq-4 global hawk
unmanned aerial vehicle (uav) / drone (2001).” Electronic.
http://www.militaryfactory.com/aircraft/detail.asp?aircraft id=40, 29 June
2015.

[98] MilitaryFactory.com, “Sikorsky hh-60 / mh-60t jay hawk medium
range search & rescue / interdiction helicopter (1990).” Electronic.
http://www.militaryfactory.com/aircraft/detail.asp?aircraft id=282, 2 July
2015.

[99] MilitaryFactory.com, “Vought f-8 crusa-
der carrier-borne naval fighter (1957).” Electronic.
http://www.militaryfactory.com/aircraft/detail.asp?aircraft id=181, 18
January 2015.

[100] Morris, P., “Pierce-arrow motor car company history.” Electronic.
http://www.pierce-arrow.org/history/index.php.

[101] MuseumOfFlight.org, “The fieseler fi 103 (v1) german ’buzz bomb’.” Elec-
tronic. http://www.museumofflight.org/exhibits/fieseler-fi-103-v1.

[102] NAVAIR, “Unmanned carrier launched air-
borne surveillance and strike system.” Electronic.
http://www.navair.navy.mil/index.cfm?fuction=home.display&key=A1DA3766-
1A6D-4AEA-B462-F91FE43181AF.

[103] Nayak, R. U., Chen, W., and Simpson, T. W., “A variation-based metho-
dology for product family design,” in ASME 2000 Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, (Bal-
timore, Maryland), ASME, ASME, 13 September 2000.

[104] ODASA-CE Technomics, Unmanned Aerial Vehicle System Acquisition Cost
Estimating Methodology, 37th DoD Cost Analysis Symposium, October 2015.

[105] of American History, N. M., “Winton automobile.” Electronic.
http://amhistory.si.edu/onthemove/collection/object 1277.html, 2017.

[106] of American History Staff, N. M., “Ford model a automobile.” Electro-
nic. http://amhistory.si.edu/onthemove/collection/object 1319.html, 2017.

[107] OPGI, “Decoding general motors body style designations,” in Original Parts
Group Incorporated, Original Parts Group Incorporated, 28 May 2013.

[108] Parker, S. P., McGraw-Hill Dictionary of Scientific & Technical Terms. The
McGraw-Hill Companies, Inc., 6th ed., 2003.

[109] Parkin, R., Wilk, R., Hirsh, E., and Singh, A., “2017 automotive trends,”
tech. rep., PwC, 2017.

395

[110] Pate, D. J., Patterson, M. D., and German, B. J., “Optimizing families
of reconfigurable aircraft for multiple missions,” Journal of Aircraft, vol. 49,
no. 6, pp. 1988–2000, 2012.

[111] Patterson, M. D., Pate, D. J., and German, B. J., “Performance flex-
ibility of reconfigurable families of unmanned vehicles,” Journal of Aircraft,
vol. 49, pp. 1831–1843, December 2012.

[112] PBS-NOVA, “Pre-aviation uavs: Perley’s aerial bomber (usa).” Electronic.
http://www.pbs.org/wgbh/nova/spiesfly/uavs 01.html.

[113] Percy, T. K., “Simplifying complex problems with systems engineering tools:
A lunar architecture analysis case study,” in Space Systems Engineering Con-
ference, vol. 1, Atlanta, GA: Georgia Institute of Technology, 10 November
2005.

[114] Phadke, M., Quality Engineering Using Robust Design. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[115] Pike, J., “F-14 tomcat variants.” Electronic.
https://www.globalsecurity.org/military/systems/aircraft/f-14-variants.htm.,
April 2016.

[116] Pirmoradi, Z., Wang, G. G., and Simpson, T. W., Advances in Product
Family and Product Platform Design: Methods and Applications, ch. Chapter 1:
A Review of Recent Literature in Product Family Design and Platform-Based
Product Development, pp. 1–36. Springer, 2014.

[117] Porter, M. E., Competitive Advantage: Creating and Sustaining Superior
Performance. 1230 Avenue of the Americas, New York, NY: The Free Press -
Simon & Schuster Inc., 1985.

[118] Porter, M. E., “The five competitive forces that shape strategy,” Harvard
Business Review, January 2008.

[119] Prabhakar, A. and Walker, S. H., “Breakthrough technologies for national
security,” tech. rep., DARPA, 675 North Randolph Street Arlington, VA 22203-
2114, March 2015.

[120] Putnam, L. H., “A general empirical solution to the macro software sizing
and estimating problem,” IEEE Transactions on Software Engineering, 1978.

[121] Raymer, D. P., Aircraft Design: A Conceptual Approach. Blacksburg, VA:
AIAA, fourth ed., 2006.

[122] Revelle, J. B., Moran, J. W., and Cox, C. A., The QFD Handbook. 605
Third Ave. New York, New York: John Wiley & Sons, Inc., 1998.

396

[123] Richards, D., McKay, B. D., and Richards, W. A., “Collective choice
and mutual knowledge structures,” Advances in Complex Systems, vol. 1,
pp. 221–236, 1998.

[124] Rogers, D. F., “Propeller efficiency: A rule of thumb,” tech. rep., NAR
Associates, 2010.

[125] Rothaermel, F. T., Strategic Management: Concepts. 2 Penn Plaza New
York, NY: McGraw-Hill Education, 3rd ed., 2017.

[126] Saleh, J. H., Hastings, D. E., and Newman, D. J., “Flexibility in system
design and implications for aerospace systems,” Acta Astronautica, vol. 53,
pp. 927–944, December 2003.

[127] Saleh, J. H., Mark, G., and Jordan, N. C., “Flexibility: a multi-
disciplinary literature review and a research agenda for designing flexible en-
gineering systems,” Journal of Engineering Design, vol. 20, pp. 307–323, June
2009.

[128] Shalal-Esa, A., “Cost of flying northrop’s global hawk down over
50sources,” electronic news. http://www.suasnews.com/2013/09/25052/cost-
of-flying-northrops-global-hawk-down-over-50-sources/, sUAS News, 14 Sep-
tember 2013.

[129] Siddiqi, A. and deWeck, O. L., “Modeling methods and conceptual design
principles for reconfigurable systems,” Journal of Mechanical Design, vol. 130,
no. 20, 2008.

[130] Siddique, Z., Rosen, D., and Wang, N., “On the applicability of product
variety design concepts to automotive platform commonality,” in ASME Design
Engineering Technical Conferences, (Atlanta, GA), ASME, 13-16 September
1998.

[131] Simpson, J. and Weiner, E., eds., Oxford English Dictionary, ch. Logistics.
2001 Evans Road Cary, NC 27513: Oxford University Press, 2nd ed., 2015.

[132] Simpson, T. W., Siddique, Z., and Jiao, J. R., Product Platform and
Product Family Design: Methods and Applications, ch. 1, pp. 1–15. New York,
NY: Springer, 2005.

[133] Sinha, R., Paredis, C. J., and Khosla, P. K., “Interaction modeling in
systems design,” in 2001 ASME Design Engineering Technical Conferences,
(Pittsburgh, PA), ASME, 9-12 September.

[134] Staff, H., “Model t.” Electronic. http://www.history.com/topics/model-t,
2010.

[135] Staff, H., “History of the huey.” Electronic.
http://www.huey.co.uk/history huey.php, 2017.

397

[136] Staff, I., “Economies of scale,” 2017.

[137] Staff, P. A. M., “Pierce arrow history.” Electronic. http://www.pierce-
arrow.com/history, 2013.

[138] Sullivan, M. J., “Defense acquisitions: Assessments of selected weapon pro-
grams,” report to congressional committees, United States Government Ac-
countability Office, March 2014.

[139] Summers, J. D. and Shah, J. J., “Mechanical engineering design complexity
metrics: Size, coupling, and solvability,” Journal of Mechanical Design, vol. 132,
January 14 2010.

[140] Tarantola, A., “The ryan firebee: Grandfather to the modern uav.”
Electronic. http://gizmodo.com/the-ryan-firebee-grandfather-to-the-modern-
uav-1155938222, 27 August 2013.

[141] Thevenot, H. J. and Simpson, T. W., “Commonality indices for product
family design: A detailed comparison,” Jounal of Engineering Design, vol. 17,
pp. 99–119, April 2006.

[142] Thevenot, H. J. and Simpson, T. W., Product Platform and Product Fa-
mily Design: Methods and Applications, ch. Commonality Indices for Assessing
Product Families, pp. 107–129. University Park, PA, 16802: Springer, 1 ed.,
2006.

[143] Thevenot, H. J. and Simpson, T. W., “A comprehensive metric for eva-
luating component commonality in a product family,” Journal of Engineering
Design, vol. 18, pp. 577–598, December 2007.

[144] Ulrich, K., “Fundamentals of product modularity,” Management of Design,
pp. 219–231, 1994.

[145] Ulrich, K., “The role of product architecture in the manufacturing firm,”
Research Policy, vol. 24, no. 3, pp. 419–440, 1995.

[146] Upton, E., An Intellegent, Robust Approach to Volumetric Aircraft Sizing.
PhD thesis, Georgia Institute of Technology, 7 May 2007.

[147] US Air Force, Air Force Special Operations Command, 229 Cody Ave. Suite
103 Hurlburt Field, FL 32544-5312, USAF Raven Fact Sheet, November 2009.

[148] USNavy, “Sh-60 sea hawk helicopter.” Electronic.
http://www.navy.mil/navydata/fact display.asp?cid=1200&tid=500&ct=1, 24
August 2012.

[149] Valerdi, R., “Cost metrics for unmanned aerial vehicles,” tech. rep., AIAA,
Cambridge, MA, September 2005.

398

[150] Wacker, J. G. and M., T., “Component part standardization: An analysis of
commonality sources and indices,” Journal of Operations Management, vol. 6,
pp. 219–244, February 1986.

[151] Walden, D. D., Roedler, G. J., Forsberg, K. J., Hamelin, R. D., and
Shortell, T. M., eds., INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities. Wiley, 4th ed., July 2015.

[152] Wallace, D., “2.009 product engineering
processes: Product architecture.” Electronic.
http://web.mit.edu/2.009/www/lectures/19 ProductArchitecture.pdf, 20
October 2014.

[153] Wegert, E., Visual Complex Functions: An Introduction with Phase Por-
traits. Birkhäuser, 2010.

[154] Wingfield, N., “Regulators propose a drone registration system,” in N.Y.
Times, October 20 2015.

[155] Yu, J. S., Gonzalez-Zugasti, J. P., and Otto, K. N., “Product architec-
ture definition based upon customer demands,” Journal of Mechanical Design,
vol. 121, pp. 329–335, September 1999.

[156] Zeidner, L. E., Rock, B. E., Desai, N. A., Reeve, H. M., and Struass,
M. P., “Application of a technology screening methodology for rotorcraft al-
ternative power systems,” in 48th AIAA Aerospace Sciences Meeting Including
the New Horizons Forum and Aerospace Exposition, (Orlando, FL), AIAA, 4 -
7 January 2010.

[157] Zeidner, L. E., Reeve, H. M., Khire, R., and Becz, S., “Architectural
enumeration & evaluation for identification of low-complexity systems,” in 10th
AIAA Aviation Technology, Integration, and Operations (ATIO) Conference,
(Fort Worth, TX), AIAA, 13 - 15 September 2010.

399

