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SUMMARY

Mercury amalgam microelectrodes, typically fabricated by electrodeposition of mercury
onto metal (platinum, gold, silver) inlaid disks, possess certain advantageous properties for
scanning electrochemical microscopy (SECM) and electroanalysis. But as applications require
more and more precision, fundamental questions concerning the exact shape and constitution of
the amalgam can become important for interpreting SECM experimental data. The purpose of
this study is to analyze in depth the formation of the amalgam, in order to provide a better
understanding of the key physical processes, and so be able to judge of the accuracy of the
currently used models and refine them when necessary.

The amalgam formation is the result of several processes that occur roughly at two
different scales: the “global” scale, which is microscopic, and the “local” scale, of the order of
few nanometers. On the global scale, the dominant physical process is the mass transport, driven
almost entirely by diffusion, which determines the rate of mercury deposition. Other phenomena
occur at the smaller local scale. Their understanding is essential to predict precisely the volume
and shape of the amalgam at shorter times. Among these local phenomena, nucleation and
droplet interactions appear critical. The former sets the formation rate and the size of the isolated
mercury droplets that are initially formed at the surface of the electrode. An understanding of the
latter is necessary to determine the droplet coalescence process.

Among the specific accomplishments of this Master thesis work, a time scale analysis of
the “global” phenomena has been performed leading to the conclusion that quasi-steady state
diffusion of mercury ions in the bulk mainly defines the electrodeposition rate. Then, a series of

analytical formulations for diffusion-limited electrodeposition current available in the literature



has been quickly analyzed, leading to development of analytical/numerical models. These latter
have been implemented, and results were critically compared with experimental data, leading to
the conclusion that the early electrodeposition was not enough finely modeled. Mercury droplets
nucleation and surface interaction have been identified as relevant processes of this period. They
have next been investigated in detail, leading to the characterization of the nucleation process,
and the derivation of two complimentary approaches on charged droplet stability. “Regime”
maps have been developed, providing first explanations and quantitative information on charged
droplet stability dependence on potential applied, electrolyte and droplet size. Finally, through
analysis of theoretical predictions, a series of electroanalytical experiments have been proposed

for the future validation of the suggested theoretical models.

xi



CHAPTER 1

INTRODUCTION

Mercury amalgam microelectrodes has recently become a subject of renewal attention
due to their use in scanning electrochemical microscopy (SECM) [1, 2]. SECM technique allows
one to characterize chemical and topographical features of the surface of a substrate [3] by
moving a microscopic electrode over the interface. This is only possible with microelectrodes,
whose small size allows them to reach quickly a steady-state behavior [4]. An electrical potential
applied at the SECM working electrode induces an electrochemical redox reaction, that results in
a Faradaic current proportional to the net flux of reduced/oxidized species to the electrode
surface in the case of transport-limited process. The SECM has also been recently used to study
biochemical processes, allowing one to spatially measure surface kinetics and product release [5-
71.

Mercury microelectrodes are fabricated by electrodeposition of mercury onto a metal
inlaid microdisk. The commonly used substrate metals, platinum, gold or silver, are known to
form an amalgam, i.e. an alloy or intermetallic compounds with mercury [8-11]. This kind of
electrode presents one significant advantage for SECM: mercury has a high overpotential for
hydrogen evolution [12], allowing one to study electrochemical processes occurring in the
negative potential range in aqueous solutions, without prompting hydrogen ion reduction. In
other words, although thermodynamics would predict reduction of hydrogen ions and formation

of hydrogen gas at a potential of zero volts (vs. SHE) regardless of electrode material, the



reaction is kinetically limited on mercury, and the reaction rate is negligible for potentials down
to nearly -1 V (vs. SHE) [12].

A critical feature of SECM is the possibility to predict the tip electrode current from the
first principles using theoretical models describing the relevant reaction and transport processes.
But as the applications demand more and more precision, fundamental questions concerning the
exact shape and chemical/phase composition of the amalgam-electrode can become important to
the interpretation of the experimental data. Thus, a deeper understanding of the
chemical/physical processes involved in the amalgam formation is needed, combined with the
development of relevant phenomenological models.

This thesis concerns with the study of electrodepositon of mercury onto a disk
microelectrode, mainly focusing on the structural evolution of the deposited phase during the
process. Metallurgical aspects of amalgam formation add an additional level of complexity and
are beyond the scope of this work. Up to date, most models described in literature consider the
mercury electrodeposition as a simple diffusion-limited process associated with a quasi steady-
state “penned configuration” amalgam growth [8, 13, 14], “penned configuration” denoting a
total coverage of the electrode disk by one mercury volume. In these models, mercury ions are
transported via Fickian diffusion to the surface of the electrode, where they are absorbed and
reduced in an infinitely fast process to produce the liquid mercury phase, increasing its volume
as the time progress. The growth and the morphology evolution of the mercury deposit are
assumed much faster than the mass transfer, so the shape of the liquid mercury phase is assumed
to proceed through equilibrium states. Therefore, the shape of the amalgam is determined by an

energetically favorable state, requiring a minimum interface area. This modeling predicts a



smooth and regular evolution of the plating current, which does not constitute a reliable
description of the experimental plating curves, as illustrated in Figure I-1.

In this study, our objective is to carefully check the validity of these common made
assumptions and simplifications, and then identify, investigate and model the processes so far
neglected but apparently relevant. Development of such an improved understanding and
modeling capability is a first step towards design of an optimal procedure for making SECM

mercury electrodes of a controlled shape.
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Figure 1-1. Sample of plating current curves, from the electrodeposition of mercury on gold disk-
microelectrodes of radius 12.5 pum, under the same experimental conditions. Significant variations
and irregularities are remarkable, but not accounted for by the current models.



CHAPTER 2

FUNDAMENTALS AND TIME SCALE ANALYSIS

2.1 Fundamentals of electrochemical amalgam formation

2.1.1) Description of the experimental procedure

Figure 2-1. Schematic of the system.

Only the half of interest of the system is presented here,
but the electrical circuit is closed by a reference electrode.

The SECM microelectrodes are typically formed by melting a metal wire into a glass
capillary [5, 8], serving as an electrical isolation coating. The capillary tip is then polished to
define a flat electrode, whose diameter is of few micrometers (commonly 5 to 25 pum). The
electrode is then submerged into an aqueous solution containing mercury ions with an excess

electrolyte, and a lightly negative potential (commonly -0.1V vs SCE or Ag/AgCl) is applied, as



shown schematically in Figure 2-1. This prompts the following reduction reaction at the surface

of the electrode, resulting in mercury deposition:
Hg!" +ne =mHg (2.1)
In eq.(2.1), m and n define the two different types of involved mercury ions: Hg,”™ (mercury I) or

Hg”" (mercury II).

2.1.2) Analysis of the amalgam formation process

As a first step, it is instructive to look carefully at the mercury electrodeposition, and to
identify all processes occurring on multitude of time and length scales that may be affect the
amalgam formation. It is important to mention here that in this study, the electrodeposition
process is assumed isothermal, even if this has not been carefully checked.

Further, to define the scale of interactions, we group all processes into the two main
categories: those that occur on a “global” scale given by the size of the electrode, and those that

manifest themselves on much smaller (on the order of few nanometers) “local” scale.

Processes at the “global” scale

Two key processes of interest occur at the “global” scale: the mass transfer of mercury
ions from the solution bulk to the electrode surface, and the amalgam formation, including
droplet growth, morphological adjustment and possibly coalescence phenomena.

Three different phenomena can be responsible for the mass transfer of the mercury ions:
migration, which is the transport of ionic species subjected to an electric field; advection, which

involves all the species and can be either natural, prompted by a flow due to density gradients, or



Figure 2-2. Schematic of the processes occurring at the “global” scale.

forced, due to an imposed flow; and finally Fickian diffusion, which is the particles’ transfer due
to a gradient in their chemical potential, in general, which restricts to a gradient in concentration
under certain assumptions.

The other group of processes taking place at the “global” scale concerns with the
amalgam formation. The first process to consider is the growth of a mercury droplet on the
electrode surface, consequence of the mass flux at its interface induced by the reduction reaction.
During the growth, a shape adjustment occurs through the droplet morphology evolution towards
the most favorable state. Based on thermodynamic considerations, it corresponds to the lowest
energy configuration, which involves a minimum surface area. The last phenomenon playing a
role in the formation of the final mercury deposit is the coalescence of separate mercury droplets
on the electrode surface. Ion transport and reduction reaction lead the amalgam growth, while the

other processes are typically driven by surface energies and contact angle between the different



phases Other phenomena are likely to be involved, including electrostatic interactions, viscosity

of the mobile phase and surface diffusion of adsorbed molecules.

Processes on the “local” scale

Metal

* Alloy
formation

* Electron
transfer

(Liquid phase

* Nucleation

X« Diffusion \ formation)

Figure 2-3. Schematic of the processes occurring on the “local” scale.

The processes occurring on the “local” scale include the electrochemical reactions,
among which our interest is in reduction of the mercury ions, and the interface phenomena, such
as the double layer formation, mercury ion adsorption, the inter-diffusion of mercury and the
metal of the electrode, alloy formation, and nucleation.

The “double layer” concept is a model representing the charge accumulation and
separation which occur at an electrolyte-electrode interface due to the potential applied [12]. The
excess charge on the electrode surface is compensated by an accumulation near the interface of

ions of the opposite charge from the solution. This structure, behaving as a capacitor (except that



its capacitance depends strongly on the potential applied on the electrode), causes a potential
drop across the layers (see Figure 2-4 below), and may slow down the electrode reaction
kinetics. The accumulation of charge on a droplet surface has an influence on its surface tension,
which becomes dependent on the applied potential. This phenomenon also results in electrostatic
interactions between adjacent droplets which are likely to play a significant role in the
coalescence process. The nature of the charge accumulation on the metal (negative or positive)

depends on the potential across the interface and the solution composition [12].

Potential

Metal - F

Figure 2-4. Schematic of the electric “double layer”.

An excess of negative charges are accumulated on the electrode surface. The
first layer is constituted by specifically absorbed positive ions, while the
second, the diffuse layer, contains bigger ions that are not specifically
absorbed, but distributed such that the electrochemical potential is constant
across the layer.



The adsorption is the final step of the mercury ions’ transport, and leads to its arrival in
an energetically stable position on the surface.

The reduction of the mercury ions takes place close to the surface of the electrode, due to
the potential applied (typically -0.1V vs Ag/AgCl [8, 14], giving an overpotential of respectively
-0.7 and -0.75V for the redox couples Hg,”"/ Hg and Hg”"/ Hg). It may occur before or after the
adsorption of the ion [12]. The electrochemical reaction involves the transfer of two electrons
from the electrode surface to the ion, which may be simultaneous or consecutive [12].

Nucleation is the formation of the mercury liquid phase due to supersaturation, and is
more likely to happen on a defect at the electrode surface. Thus, the nucleation rate depends
largely on the sites, their types and densities, as well as the applied overpotential [15].

Finally, the contact of mercury and another metal at the electrode interface will lead to
phase inter-diffusion phenomena and alloy formation [8-11]. Distinct processes to study are
surface (or lateral) diffusion and non-directional diffusion. Also, both diffusion of metal into
mercury and of mercury into metal should be considered, even if the first one is usually much

faster. These phenomena are limited by the solubility of each phase into the other one.

2.2 Time scale analysis on the “global” scale
Our task here is to determine the limiting process, which defines the amalgam formation
rate on the “global” scale. Throughout the time scale study, when numerical values are given,
they are computed with the parameters listed in Table 2-1, corresponding to conditions found in

applications [5, 8, 13].



Table 2-1. Reference parameters used in numerical analysis.

Parameter Symbol Value
Electrode disc radius A 12.5 pm
Applied potential (vs Ag/AgCl) E 0.1V
Bulk concentration of mercury ions & 10 mM
Diffusion coefficient of mercury ions Dy 6x10"° m?/s
Mercury ion type parameter m 2
Mercury ion valence n 2
Temperature T 298 K

Mercury properties

Atomic mass M 200.59x107 kg mol™
Density p 13.6x10° kgm™
Viscosity u 1.6x10° Pas
Surface tension o 465x10° Nm™

2.2.1) Mass transfer
Definition of the problem

The mass transfer of interest here is the process that transports the mercury ions to the
electrode surface from the bulk solution (Figure 2-5). The governing equation is a statement of
mass conservation:

o _y.j (2.2)
ot

where ¢ denotes the concentration of mercury ions, ¢ the time, Ve the divergence operator and J
the flux of mercury ions. Equation (2.2) needs to be solved for ¢ in order to know at any time the

gradient of concentration normal to the electrode surface, which gives the deposition (or plating)

current:

10



i(f) = nFD, jsmv,,(c) -dS (2.3)

where 7 is the valence of the mercury ion involved, F is the Faraday constant, Dy is the diffusion
coefficient, S is the electroactive surface and V() is the surface normal gradient operator.
The initial condition is a steady bulk solution, i.e. uniform bulk concentration of mercury
ions everywhere. The boundary conditions for the mercury ions concentration are:
- a constant bulk concentration infinitely far from the electrode surface, assuming that the
container used for the experiment is very large compared to the size of the electrode;
- the concentration of mercury ions on the electrode surface is generally determined by the

reaction kinetics which depends on the applied electrode potential.

Time scale of electrode Kinetics

The net reaction rate for first order reaction is given by [12]:

Vor =kco—k.cy (2.4)

where O and R, respectively, are the oxidized and reduced forms of the redox couple, and &, and
k. are the forward and reverse rate constants. In our case, O is the mercury ion, Hgm2+, and R is

the neutral mercury molecule, Hg, as described by the reaction equation (2.1). Furthermore, the

reaction occurs at the electrode interface, so the surface concentrations are relevant. In the
following analysis, we will denote v,_, by v, ¢, by ¢, and ¢; by ¢}, , to make a distinction
between the volumetric (¢) and surface (¢”) concentrations. k, and k., are related to the

electrical potential by the Butler-Volmer model [12]:

k, =k exp (—a f(E- E"'))

25
k =k exp((l—a)f(E—E”’)) ()
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where &° is the standard rate constant, « is the transfer coefficient ranging usually from 0.3 to 0.7

F

E: 38.92 V! at 25°C and E and E°, respectively, are the actual and formal

[12], f =

electrical potentials. The rate constant is a measure of the kinetic facility of a redox couple, i.e.
its “speed” to achieve equilibrium. For mercury ion reduction £° is of the order of 107 m/s [12].
The time scale for the reduction reaction, 7.4, is then given by:

T - 5‘xred
red k 0

(2.6)
with dx,.; being a length scale for reduction reaction. The rate limiting step of the reduction, as a
multiple step process, may be adsorption or electron transfer. In the absence of detailed
knowledge of the microkinetic mechanism, we can conservatively estimate a representative
distance for adsorption/desorption to be about 0.5 nm, as this is a typical distance from a surface
to the center of an absorbed, hydrated ion [12]. Then, using eq.(2.6), the time scale for the
reduction of mercury ions is of the order of 107 s. We will see based on the next analysis that the
reaction is extremely fast as compared to the mass transfer process. Thus, we can assume that, on
a “global” scale, the system is always at an electrochemical equilibrium, knows as Nernst
equilibrium in electrochemistry. This is a commonly used approximation [8, 12-14], called
“infinitely fast kinetics”.

The Nernst equation, describing the electrochemical equilibrium, can be written for our

case in the following form:

z— - exp( f(E- E”')) 2.7)

Hg
This expression is more general that the Butler-Volmer model, but can be obtained from it

assuming v vanishes in eq.(2.4), and then introducing eq.(2.5) and simplifying. The quantity
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(E—E”), also called the overvoltage or overpotential, is usually around -0.7V during the

mercury plating experiments, as discussed earlier. The concentration of mercury atom at the
interface is difficult to estimate, but the molar density of the mercury liquid phase, given by the
ratio of the liquid mercury density to its atomic mass, p/M, gives an upper bound of the order of
10* mol/m’. Thus, an estimate of the concentration of mercury ions on the electrode surface can
be extracted from eq.(2.7). It gives an order of magnitude for ¢! of 107 mM. This is much
smaller than the bulk concentration of mercury ions (10 mM in our reference case), which
justifies, in the case of an “infinitely fast kinetics” reaction coupled with a large overvoltage, the
assumption that the concentration of mercury ions on the surface of the electrode is vanishingly

small.

Figure 2-5. General schematic of the mass transfer problem.

BC=Boundary Condition, [C=Initial Condition
cand J denote the concentration and flux of the mercury ions, respectively.
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Time scales of ion transport
Three processes have to be considered in the evaluation of time scales for mercury ion

transport in the solution: diffusion, migration and convection. The expression for the ion flux,

J , accounting for the three transport modes, is [12]:

- F
J = —DO(Vc)—;—TDoc(V(é)nLC\? (2.8)
L J \ )
Y Y \_Y_/
Diffusion Migration  Convection

where Dy is the diffusion coefficient, V¢ is the concentration gradient, V ¢ is the potential

gradient, z and ¢ are the charge and concentration of the species respectively, and v is the
velocity of the liquid. The charge is the valence of the ions weighted by the sign of this latter, so
in our case: z = n. In this formulation, the diffusion coefficient is assumed constant. This
assumption will always be made in our analysis for simplicity of argument.

The time scales for the various transport modes are found by considering a scale analysis
representation of the mass conservation equation, eq. (2.2):

fe a7 29)

T Ox

where 7is the general mass transfer time scale and ox is the corresponding length scale.

Convection

It is assumed in our study that there are no convection phenomena, because usually no
forced flow is used in plating experiments, and precautions are taken too avoid prompting
spontaneous flows: the solution is degassed from O, to avoid bubble production, and only a
slightly negative potential is applied to prevent the formation of H,. Thus, no natural convection

should theoretically occur during experiments. In fact, the presence of sudden peaks in
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experimental plating current data (see Figure 1-1) leads us to suspect bubble generation and

some resulting convection; however, we did not pursue the analysis of this phenomenon.

Migration

Migration, caused by a potential gradient, is therefore significant only very close from the
electrode surface, in the double layer. This latter is only few nanometers thick, due to the
presence of a supporting electrolyte that is always added in excess to the solution to avoid
migration. The Debye length, which gives the scale for the double layer thickness, and thus a
length scale for the migration phenomenon, is about 1.3 nm [12] in a common case: (1:1)
electrolyte with a 0.1M concentration at 25°C [5, 8, 13]. Furthermore, the excess amount of
electrolyte coupled with its higher mobility compared to mercury ions makes the supporting ions
carry most of the current. This is expressed by the “transference” number, representing the

fraction of the total current carried by one given species in the solution [12]:

_ |Zi|”ic'

f =G (2.10)

Z‘Zj‘”jcj

with z; the charge of a species, u; its mobility and ¢; its concentration. The mobility of a species is

linked to its diffusion coefficient D; by the Einstein-Smoluchowski equation [12]:

|z,| FD,

u = (2.11)
RT

To access the magnitude of an expected transference number for mercury ions, let us now study

a simple but representative plating experiment solution: 10mM Hg,(NOs3), with 0.1M KNOs

supporting electrolyte [8]. This gives a transference number for the mercury ions of:

4D 2+ c 2+
t = fey ey (2.12)
4D ,.c 1gE +D +D .c

C
Hg3* NO; ~NO; KT K"
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with cHgB:lOmM, Cro- =(2x10+100)=120mM and cK+=100mM. In these conditions, D _,, is

Hg

about 8.3x10® m%s [8], and D,, and D, are of the order of 1.4x10” m%/s [16]. This gives a

transference number at around 0.1, so the mercury species carries only 10% of the current in the
solution.

The migration time scale, 7y , can be derived from eq. (2.9), concentrating on the
contribution of migration to the flux. Assuming the length scale for migration is much smaller

than the length scale for diffusion, ox,,,. < Jx,; , the resulting balance gives the migration time

migr
scale:

2

Ac-8x2,
RT A€ 0 Xny (2.13)

z-mi r
¥ nFD, c¢-A¢

If we assume Ac of the order of ¢, A ¢ of the order of |E|, and take the Debye length, 4,, as the

migration length scale, dx,e- , We obtain an expression for the migration time scale:

2
_RT A (2.14)

Using the parameters of the reference case, the migration time scale is found to be of the order of

107'%,

Diffusion

The diffusion is due to the concentration gradient induced by the reduction of the mercury
ions at the electrode surface. The length scale for this phenomenon is thus given by a
characteristic dimension over which the chemical reaction occurs, which is in our case the

diameter of the inlaid disc.
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The diffusion time scale, 7y; can also be extracted from eq.(2.9), considering now a
balance between the storage (transient) term and the diffusive flux term:

Sxg,
Ty ~ D’ff (2.15)
0

Taking the electrode disk diameter as diffusion length scale, and using the data of the reference

case, the diffusion time scale is found to be of the order of 1 s.

Conclusion

Table 2-2. Time- and length- scales for mass transfer* and redox reaction.

Phenomenon Time scale Length scale
Convection Assumed not present
Migration 1010 1.3 nm
Diffusion ls 25 um
Reaction Kinetics 107 s 0.5 nm

* This values have been established from our reference case.

The magnitudes of the time and length scales for the representative case are summarized
in Table 2-2. Diffusion is the only mass transfer process from the bulk solution to the electrode
surface, since convection is assumed to be absent and migration is only limited to a very thin
layer near the electrode surface. Thus, diffusion is clearly the leading mass transfer process of
the mercury electrodeposition.

Comparing the time scale for diffusion to the time scale for the heterogeneous reaction,

we see that the mercury ion reduction is extremely fast compared to the mass transfer (7 orders
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of magnitude), and the “infinitely fast kinetics” assumption is justified. In conclusion, the
mercury electrodeposition itself is a diffusion limited process.

From the time scale analysis, we also see that migration is an extremely fast process
compared to diffusion (10 orders of magnitude). Consequently, the double layer, formed through
migration, can be considered to be in a quasi-equilibrium state on the time scale of diffusion

mass transfer.

2.2.2) Amalgam formation

With an initial concept of the mass transfer process, we study now the amalgam
formation, which include three phenomena at the “global” scale: the three-dimensional growth of
a mercury droplet on the electrode surface, its morphological evolution to reach a minimum
energy configuration, and the coalescence of adjacent islands. As coalescence is not a simple and

easily described process, no time-scale has been derived here.

The growth of the deposit is the consequence of the reduction reaction which occurs at its
interface with the solution. Indeed, as a metal, mercury is an electrical conducting medium, and
thus a droplet laying on the surface of the electrode constitutes an extension of this latter. As we
seen earlier, the reaction rate is limited by the ion transport, which occurs through diffusion.

Thus, the growth time scale, g0, 1 given by the diffusion process:

Carown = Taifr (2.16)
Now, we need to derive a length scale for the droplet growth. This will be done in a planar case,
but the spherical problem has been found to give a similar result. The linear flux of mercury ions,

per unit area, J”, induced by diffusion at the droplet surface, is obtained by applying eq.(2.8) to

the limited case:
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J"=D, (%j (2.17)

where x is the problem space coordinate, with the corresponding axis pointing from the solution
towards the deposit layer. It is related to the growth rate, vg.owm, Which is the thickness of the
layer deposited per unit time:

_ M (2.18)

Yo,

v growth

where 7 is the valence of the mercury ions involved, M is the corresponding molar mass and p is
the mercury liquid phase density. Now, for the purpose of scale derivation, the growth rate, due
to diffusion, can be expressed as the ratio of the growth length scale, dx,.0.m, Over the diffusion
time scale:

0
xgrowth (219)

Taif

vgrowth -

Moreover, the mercury ions concentration gradient at the interface can be formulated by the
difference in concentration between the solution bulk and the deposit surface over the diffusion
length scale. Since we justified earlier that the electrode concentration can be assumed equal to

zero, this gives:

( oc j ¢’ (2.20)

ox) OX 4117
Introducing eq. (2.17), (2.19) and (2.20) in eq. (2.18) and extracting 0xgowsm , it yields:

b
_nMDc” Tuy
growth —
P Oxyy

Ox (2.21)

Finally, we simplify using the relation between the time and length scale for diffusion derived in

eq.(2.15):
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b
oy = 2 ox,, (2.22)
o O

growth

With the numerical values of our reference case, listed in Table 2-1, we obtain a ratio of the

growth length scale over the diffusion one of the order of 10™.

Looking on the global scale, the driving process for the morphological adjustment of the
deposit is surface relaxation (the evolution of droplet surface to reach the optimum, i.e.
energetically most favorable configuration, shown schematically in Figure 2-6). One can
distinguish two different events, driven by the pressure difference in the mercury liquid phase
between the actual configuration and the optimum one (see Figures 2-6 and 2-7): the move of
the contact line over the metal electrode surface to relax the edge of the droplet (we will call it
spreading surface relaxation); and the other dealing with the surface adjustment aside from the
edge (we will call it free surface relaxation).

The corresponding time scales will be obtained by combining a term of the governing
equation for fluid motion, also known as the Navier-Stokes equation, with the Young-Laplace
equation, which describes the pressure increase across a curved interface. In reality, the move of
the contact line over the electrode surface is a very complex process, depending also on
phenomena at the “local” scale, like surface diffusion, electrostatic and Van der Waals forces.
Here, we restrict the problem to a simple process, slowed by the liquid mercury viscosity, in
order to obtain an estimate for the time scale.

The Navier-Stokes equation is:

Y vV = -ty F By (2.23)

ot p p
{1y {2} {31 4 {5}

20



where v is the fluid velocity, p its pressure, p the density and u the dynamic viscosity. The
different terms correspond to the effect of : {1}- acceleration, {2}- advection of momentum, {3}-
hydrodynamic pressure force, {4}- external body force and {5}- viscous stress.

The Young-Laplace equation to consider is:

Ap = o - Ak, (2.24)
where Ap is the pressure variation over the process, Ak, the corresponding mean curvature
variation of the surface, and ¢ the surface tension of liquid mercury in aqueous solution. As
stated earlier, Ap is in our case the pressure difference in the mercury liquid phase between the
actual configuration and the optimum one. For the purpose of time scale derivation, the
corresponding mean curvature variation can be approximated by the curvature of the optimal

surface.

Figure 2-6. Schematic of the surface spreading relaxation.
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The spreading surface relaxation time scale, zg.;, is obtained in the case of negligible inertia
(assumption discussed in next section), by balancing the terms {3} and {5} of the Navier-Stokes

equation (2.23), and introducing the Young-Laplace equation (2.24). This balance gives:

(2.25)

with Jx the length scale of the phenomenon. Then, Av is approximated by dx/zs,.;, and the Young-
Laplace equation, eq. (2.24) is used to obtain the pressure scale. The resulting estimate of the

spreading surface relaxation time scale is:

o ~ kL (2.26)
O

with u the dynamic viscosity, &, the mean curvature and ¢ the relevant surface tension. In the
amalgam formation study, we are interested in finding upper bounds for the time scales of the
processes, in order to find out if they can approach the mass transfer, i.e. diffusion, limiting time
scale. For the scale analysis, we treat the viscosity x4 and the surface tension ¢ as constants, even
though in reality o is slightly dependent on the potential applied. Consequently, we want to
define a minimum for the mean curvature &,,. This latter is of the order of 1/R, with R the radius
of curvature of the droplet’s surface, so we need to establish a maximum for this value, which
can virtually be infinite (case of a flat layer). If we consider that it is reached by a sphere-cap in
“penned” configuration over the largest microdisk of interest (¢=12.5 pm), with a height of 1 pm
(“global” scale minimum range), it gives a sphere radius of around 80 um (see sphere-cap
geometry in Appendix). Introducing this in eq.(2.26), and using the values of mercury properties

given in the nomenclature, it gives an upper bound for the spreading surface relaxation time scale

of the order of 107 s.

22



Figure 2-7. Scheme of the surface free relaxation.

The free surface relaxation time scale, 7z, is derived, still in the case of negligible
inertia, by balancing the terms {1} and {3} of the Navier-Stokes equation (2.23):

Av __1ap (2.27)

TFrel p 5x
with Jdx the length scale of the phenomenon. Then, Av is approximated by -0x/tz.;, and g 1S

extracted, which yields:

p-x
Ap

(2.28)

TF rel

Finally, we introduce the Young-Laplace equation, eq. (2.24) and we obtain an estimate of the

free surface relaxation time scale:
Tpp = OX -+ |[——— (2.29)

with p the density, k, the mean curvature, ¢ the surface tension and Jx the length scale of the
surface movement. As explained earlier, we want to find an upper bound for this time scale. As

the surface tension ¢ and the density p are constants, we need to establish a maximum for dx and
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a minimum for k,,. This latter has been estimated earlier to 1/80 um'l. The maximum length scale
for the surface movement can be taken as the electrode disc diameter, 2a, for the largest
microdisc of interest (a=12.5 um). This gives, using eq.(2.29) and the values of the mercury
properties given in the nomenclature, an upper bound for the free surface relaxation time scale of

the order of 10s.

Table 2-3. Time and length scales for deposit growth due to diffusion and surface relaxation
processes *.

Phenomenon / Data Time scale Length scale
Diffusion ls 25 um
Deposit growth ls 2.5%107 pm

Radius of curvature 80 pm **
Surface spreading relaxation 107 s **
Surface free relaxation 107 g ** 25 pm **

* This values have been established from our reference case.
** This values are upper bounds.

This analysis shows us that the surface relaxation phenomena are much faster than
droplet growth and limiting mass transfer process, diffusion, by at least six orders of magnitude.
Consequently on the time scale of the ion transport processes, mercury proceeds through a
sequence of thermodynamically optimum shapes, that can be predicted via quasi-equilibrium
calculations. Therefore, we can conclude that looking at the “global” scale, and under our
specific conditions (notably large overpotential, neglecting advection and in presence of an
excess electrolyte), the electrodeposition of mercury on a metal microelectrode is a fully

diffusion-limited process.
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2.2.3) Note on long range forces

We have not evoked the long range forces yet, but naturally one should wonder about the
influence of an external electrostatic field or gravity. The former perturbation, which may have a
significant effect, is cancelled by doing the experiment in a Faraday cage, which insulates the
setup from external electrostatic fields. But gravity is still acting, and one can wonder if it can
lead to droplet detachment or deformation.

Let us first study the possibility of a droplet detachment. The force due to gravity on a
mercury droplet (i.e. the weight) is:

W=pV-g (2.30)
with p the density of mercury, V' the volume of the droplet and g the acceleration due to gravity.
At this point and to be exact, the force due to the pressure exerted by the solution on the droplet
should be taken into account. But it depends largely on the droplet configuration, and is anyway
very small, because of the low water density compared to mercury, and the low depth of the
experiment (only a few centimeters, which gives a pressure of the order of 100 Pa). In order to
establish an upper bound of the weight, let us consider a volume equivalent to the one of a sphere
of radius equal the radius of the largest inlaid disk of interest (¢ = 12.5 um). This gives, with the
values for the constants given in the nomenclature, a weight of the order of 10 N.

The weight of the droplet will be counterbalanced, in the case of interest where the
droplet is pendant, by the cohesion force, which can be derived by differentiating the cohesion

energy with respect to a characteristic length:

c:%(m2 T ) =277, (2.31)

if we consider a circular interface area, with r its radius and y,, the specific interfacial energy

between the mercury and the substrate (here the electrode metal). This latter is of the order of
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0.36 N/m [17]. Now, we need to estimate the interface size. As, a priori, the metals used for the
electrode are more mercurophilic than hydrophilic (because otherwise the mercury would not
stay on the surface), overgrown droplets can only be formed if the inlaid disc is fully covered. So
r is taken as the disk radius of the electrode considered in the weight computation. This gives a
cohesion force of the order of 10 N. This is much greater (4 orders of magnitude) than the
weight, so if we consider only reasonably grown droplets, a detachment is not likely to happen.
A similar study has been done by Cazabat [18].

Let us now study the possibility of a deformation of the droplet due to gravity. The
pressure exerted by gravity on a droplet surface point can be defined by:

Ap, = pgh (2.32)
with p the density of mercury, g the gravity and 4 the height of mercury on top of the surface
point considered. An upper bound of this pressure can be established considering a reasonably
overgrown configuration (4 = 2a) over the largest electrode disc of interest (¢ = 12.5 um). This
gives a pressure exerted by gravity on the droplet’s surface of the order of 1 Pa.

This pressure is counterbalanced by the one exerted by the surface tension. This latter is
given by the Young-Laplace equation (2.24):

Ap, =0 -k, (2.33)
with k,, the mean curvature (2/R for a sphere) and ¢ the relevant surface tension. A minimum for
the former value has been established in the previous chapter to 1/80 um™. This gives a lower
bound for the pressure exerted by the surface tension of the order of 10° Pa. This is still three

orders of magnitude greater that the maximum pressure due to gravity, so this latter is not likely

to deform the droplet.
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To conclude, if we limit the study to reasonably grown droplets (radius not bigger than
the electrode disc diameter), which is the case, gravity can be neglected. The same conclusions

have been reached by Colyer and Oldham et al. [13, 19].
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CHAPTER 3

MODELING OF THE ELECTRODEPOSITION PROCESS

3.1 Basic hypotheses and overall model

Using the time-scale analysis of the processes at the “global” scale, the first model of

mercury electrodeposition is developed, based on the general problem presented in 1.2.a) (see

Figure 3-1). The following assumptions and simplifications have been made:

1-

2-

only the transport of the mercury ions is considered

the electrodeposition is a diffusion limited process, with no other mass transfer
processes involved

all non-diffusion processes are either infinitely slow (frozen/quasi-steady) or
infinitely fast (quasi-equilibrium)

the reduction reaction is infinitely fast and, due to a large overpotential, the
concentration of mercury ions on the electrode surface is zero

the inlaid disk is imbedded into an infinite, non-conducting plane (insulation)

the inlaid disk is entirely covered by a single mercury film from the first time step

the amalgam has a sphere-cap shape

The justification of assumption 1 comes from the fact that migration is neglected which

eliminates the coupling between the mercury ion concentration and the concentrations of the

other species present in the solution. The next three assumptions (2-4) come directly from the

conclusions of Chapter 1. Assumption 4 makes the Dirichlet boundary condition on the electrode

surface homogeneous. Assumption 5 can be met experimentally by making the radius of the
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glass capillary much larger that the one of the inlaid disc (at least ten times) [20]. Assumption 6
is made due to the simplicity it imparts to the problem, and its impact will be discussed later.
We noticed from experiments that this configuration, called the “penned” configuration, is
reached during the plating process after a variable transient time. This delay depends mostly on
the size and metal type of the electrode, and the concentration of mercury ions, given a constant
potential. Finally, assumption 7 stems from an assumption of a uniform surface tension
combined with the assumption of a quasi-equilibrium shape. The lowest energy configuration
(equilibrium) is that of minimum surface area which is the sphere segment or sphere-cap.

The result of the list of assumptions is the following idealized model for the diffusion
limited growth of the amalgam electrode. The governing equation is a statement of mass
conservation during mass transfer of mercury ions, operated by diffusion:

% =D,V’c (3.1)

where c is the concentration of mercury ions and Dy is the diffusion coefficient. The boundary

conditions of the problem are:

¢ — ¢” far from the electrode (3.2)
V ¢ =0 on non-conducting surface (3.3)
and ¢ =0 on electrode surface (3.4)

where ¢” is the bulk concentration and V¢ is the projection of the concentration gradient on the
surface normal vector. The initial condition is:
b
c=c (3.5
The geometry of the electrode surface (i.e. amalgam surface) is obtained through mass balance of

the deposition process. The net instantaneous current at the electrode surface is:
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i(f) = nFD, jsmvn(c) -dS (3.6)

where S is the electrode/solution interface. Equation (3.6) is integrated in time to obtain the net

charge passed due to electrodeposition, O :
0= j i-dt (3.7)

which can be related to the net mercury deposited using:

Vzm-ﬂ-g (3.8)
p nkF

where V' is the mercury amalgam volume, and M and p are, respectively, the atomic mass and the
density of liquid mercury. The volume V together with the electrode disk radius a determine the
mercury deposit interface shape, under the assumptions of a sphere-cap geometry and “penned”
configuration. The equations used to relate the various geometric parameters in Figure 3-1 are

listed in Appendix.

Figure 3-1. Schematic of the analyzed process.
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At this point, it is relevant to mention that eq.(3.6) gives only the current due to the
mercury electrodeposition, and thus neglects the current generated by the charging of the double-
layer (see description in Chapter 2). The sign of this capacitive current is given, on the amalgam
surface, by the difference between the potential applied at the electrode and the electro-capillary
maximum (ecm). The electro-capillary maximum is the potential for which the measured surface
tension of the interface between the body and solution will be greatest, which corresponds to the
situation where no charge is accumulated on the surface. For mercury in an aqueous solution, the
ecm is about —0.480 V vs NCE [17]. This is lower than the range of potentials typically applied
(about -0.1V vs NCE), and thus the charge accumulated on the metal side will be positive,
corresponding to a deficiency of electrons. Consequently, during the double-layer formation, a
transient non-faradaic current flows counter to the faradaic deposition current. As the amalgam
grows, the area of its interface with the solution increases, delaying the end of the double-layer
charging. But based on the time-scales established in Chapter 2, migration, driving the double-
layer formation, is extremely fast compared to the amalgam growth, and thus the charging can be
considered instantaneous. An order of magnitude for the charge involved in the double-layer
formation can be obtained from the charging equation [17]:

Op, =Cp,E (3.9)
where Cp, is the double-layer capacitance, and E the applied potential versus ecm. The double-
layer capacitance can be estimated by C"a’, where C” is the capacitance per unit surface area
(typically of the order of 0.1 F/m® [17]) and a is the radius of the electrode. Under the
experimental conditions of the reference case described in Table 2-1, this gives a charge of the
order of 10” uC, negligible compared to the charge passing through the electrode interface due

to mercury electrodeposition (see data presented next).
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3.2 Experimental data

In order to test the models derived using the above assumptions, results are compared to
two different kinds of data. The first kind consist of long time charge curves, which allow one to
validate the gross accuracy of the electrodeposition model by checking the evolution of the
volume deposited. The volume of mercury deposited is given by the accumulated charge
involved in the plating (eq.(3.8)). The total charge is obtained experimentally by integration of
the plating current over the time elapsed since the beginning of the potential step, i.e., through
application of eq.(3.7). As this data is an integration of a direct measurement, it is less sensitive
to small perturbations. The second kind of data is plating current curves. As the current is
directly measured during the experiment, it is very sensitive to any perturbation, and thus
exhibits a lower repeatability. However, its analysis is essential to discerning details of what is
happening on the electrode at any time, and thus to obtaining a deeper understanding of the
electrodeposition process. For the purpose of checking our models, it allows us to immediately

see the biggest flaws.

Table 3-1. Experimental / simulation parameters of the reference data.

Source Colyer et al. Rudolph
Parameter “Data 1” “Data 2”
Electrode disc radius a 0.5,1,2.5,5,12.5 um 12.5 pm
Electrode metal Pt Pt, Au
Ion’s type parameter m (n=2) 1 2
Diffusion coefficient Dy 8.3x1071% m?/s 6x10"° m?/s
Bulk concentration 5mM 10 mM
Electrolyte concentration 10 mM 0.1 M
Applied potential (vs NHE) 0.097 V 0.141V
Experiment sample interval 60 s 1 to 10 ms
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Data with two different origins were used: experimental and theoretical charge curves for
inlaid platinum (Pt) discs of different radii from Colyer, Luscombe and Oldham [13], which are
denoted “Data 17; and some experimental plating current curves of inlaid platinum (Pt) and gold
(Au) discs of radii 12.5pum, from Douglas Rudolph and co-workers (Professor Mizaikoff’s group,
School of Chemistry and Biochemistry at Georgia Tech), that constitute “Data 2”. The

corresponding experimental / simulation parameters are given in Table 3-1.

3.2.1) Charge curves

Charge (nC)
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Figure 3-2. “Data 1”: Charge curves reproduced from Colyer, Luscombe and Oldham (1989).

“The theoretical (curves) and experimental (asterisks) dependence upon time of the faradaic charge
during the diffusion-controlled electrodeposition of mercury from a 5.0 mM aqueous solution of
mercuric ion onto inlaid platinum discs of the stated radii.” [13]
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The reference charge curves have been obtained from a 1989 paper by Colyer, Luscombe
and Oldham [13]. Their data and simulation results are presented in Figure 3-2. The precise
experimental conditions are detailed in the paper, and the main parameters are listed in Table 3-
1. Each experimental point on the figure is the average from six experiments carried out under
identical conditions, with “background correction”. The theoretical curves have been computed
under the basics assumptions presented earlier, using a model that will be discussed later. These
results will allow us primarily to check the correctness of our model implementation, since, using
the same assumptions, the computed curves should be quite close. One advantage of this set of
data is to provide reliable experimental curves. Another is, by providing corresponding
theoretical curves, to show the current state of the art of mercury electrodeposition modeling.
Furthermore, the results, being for a range of disc radii, provide us with some information not
available using only the results provided by our collaborators at the Georgia Institute of

Technology.

3.2.2) Current curves

The reference current curves are experimental plating data produced on request by
Douglas Rudolph and co-workers (Professor Mizaikoff’s group, School of Chemistry and
Biochemistry at Georgia Tech) [21]. No correction of any kind has been made, and the
experiments have not been optimized. Only the “cleanest” datasets have been retained here, as
the purpose is to test our first models, which assume ideal conditions. Thus, we do not include
here some curves that exhibit extremely noisy or erratic behavior. The experimental conditions
are identical to the ones presented in details in Ref. [5], and the main parameters are listed in

Table 3-1.
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Figure 3-3. “Data 2”: Experimental plating current curves, from the electrodeposition
of mercury on platinum (Pt) and gold (Au) inlaid disks of radius 12.5um (for detailed
plating conditions, see Table 3-1).

Figure 3-3 presents short experiments all carried out under the same conditions, except
for the electrode disc metal, which is either gold (Au) or platinum (Pt). Two things are
particularly striking: the current’s magnitude is rather variable from the very beginning, and the
slopes of the curves are also not all similar. The results are divided into two categories: the ones
with very low slope are designated using light colors, and the ones that demonstrate a significant
increase rate are represented in darker colors. The reasons for the different behaviors, highlighted
in Figure 3-3, is not obvious This set of curves shows the variety as well as the range of the

plating currents at short electrodeposition times.
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3.2.3) Experimental difficulties

The plating experiment is not a fully mastered process. It involves many parameters,
some known, whose roles are understood, some known, but whose influence is not explained,
and probably others that are unknown. Furthermore, some are known but difficult to control.
Among them, the exact size and geometry of the electrode is one of the more problematic.
Indeed, the fabrication process is very sensitive to the specific procedure and experience of a
person, and a small change in the electrode disc geometry can significantly change its behavior.
Furthermore, the inlaid disc surface is affected by each experiment, and thus it is impossible to
carry out two experiments with an identical electrode geometry and surface. Among the more
common problems encountered, there is a recess of the inlaid disk due to the polishing process,
or a deviation from a perfectly circular shape. Others parameters may include the freshness of the
solution, which can change its exact composition, as can variability in the degassing process.

The roughness of the electrode surface may also play a role.

3.3 Model 1: Quasi-steady-state

3.3.1) Justification of the quasi-steady-state approximation

In the literature, several models have been derived based on the problem presented in
section 1.2, but mostly for electrodes of fixed geometry, not complicated by the difficulty of a
moving boundary. For instance, in the case of disc or hemisphere microelectrodes, the current
reaches its steady-state value, or comes very close to it, after a short transient period [4], that
may be neglected or not, depending mainly on the size of the electrode and the deposition time.
The transient current is mainly due to the formation of the diffusion layer, caused by the

consumption of the ionic species at the electrode surface, and the time for the ions in the bulk to
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travel to this latter due to diffusion. In the case of a disc, the time for the current to reach its
steady-state value within ¢ percents, z;(¢) can be estimated by [4]:

4a?

r (¢)=10% ————
ss( ) 7[382D0

(3.10)

with a the radius of the disc and Dy the diffusion coefficient. Equation (3.10) shows that the
duration of the transient period is strongly dependent on the size of the electrode; the dependence
is the same for a hemisphere [4]. Using Dy = 7x10"° m%/s (an average of the experimental data
reported in Table 3-1), we obtain 7(5) = 12s for a=12.5um, 7(5) = 2s for a=5Sum and 7(5) <
0.1s for a=1um. Thus, the transient period may be significant only for the larger electrodes, and
in the case of short experiments (less than about 300s).

These numerical criteria are strictly valid only for a disk electrode, which is a good
approximation of the problem during the “early growth” encompassing spreading and/or merging
of the first mercury deposits (in a form of thin film) over the electrode disc surface until the
“penned configuration” is reached. But we do not know yet what is the duration of this early
growth, we can just assume that it strongly depends on the electrode size. After this period, the
growth in height of the amalgam may delay or even prevent the diffusion layer (and thus the
current) from reaching a steady-state. Precisely, it would be a quasi-steady-state, meaning that at
any time, the situation is very close to the steady state corresponding to the “frozen geometry”.
Preventing the achievement of this state is the fact that the growth of the amalgam is constantly
changing the electrode surface, and thus the area and the location of the interface boundary

condition (see Figure 3-4, and eq. (3.4)).
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Figure 3-4. Schematic of the diffusion layer’s formation problem.

Based on the derivation of time and length scale for the deposit growth as linear diffusion

limited process (Chapter 2, eq.(2.16) and (2.22)), the ratio of the growth rate, v, (in this case
deposit thickness increase rate), over the diffusion layer expansion rate, v, , is given by:

b
v growth nMc

=— (3.11)
Vaig P

For an usual bulk concentration of mercury ions (cbZIOmM), this gives a ratio of the order of
I 0-4. Thus, the deposit interface expansion is much slower than the diffusion layer boundary
propagation, due to the huge disparity (about three orders of magnitude) in mercury atom density
between the liquid phase, dense phase of mercury atoms, and the aqueous solution, dilute phase

which is providing the atoms to the other. So we can reasonably expect that a quasi-steady-state

will be reached quickly.

3.3.2) Modeling of the quasi-steady-state current

Using the assumptions described in section 2-1 and the quasi-steady-state approximation,

the model presented in section 2-1 is modified by replacing eq. (3.1) with:
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Vie=0 (3.12)
in which the transient (storage) term is neglected. An approximate and general expression for

the resulting steady-state current, i, has been derived by Myland and Oldham [14]:
i ~nFD,c"\2r4 (3.13)
where 7 is the valence of the mercury ions present in the solution, ¢” is their bulk concentration

and 4 is the area of the amalgam electrode/solution interface.

Equation (3.13) is accurate to within 10% for all oblate hemispheroidal microelectrodes,
and for prolate hemispheroidal microelectrodes while the height, 4, is less than 6.3 times the base
radius, a [14]. Moreover, for a sphere-cap electrode, this margin of error is always valid,
whatever the size, and it even falls to 2% when 4 > a. Equation (3.13) provides an upper bound
of the current to a fixed sphere-cap, being exact only for a hemisphere, and thus it leads to an

overestimate of the quasi-steady current, especially at the very beginning. Unfortunately, a

correction coefficient, a(h / a), which gives the exact solution for a sphere-cap electrode [14], is

not convenient for use in simulations:

2 J-oo cosh {warctan(h/ a)}
0

hla)=
a( a) 1+(h/a)2 cosh{a)arccot(h/a)}cosh{ﬂa)/Z}

(3.14)

Initially, the idealized electrode geometry is a disk. The exact steady-state solution to the
diffusion problem to an inlaid disk of radius @ (under the assumptions listed in 2.1) is given by
[22]:

i, up =4nFDc’a (3.15)
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Using eq.(3.13) with 4 the area of the disk, A=za’, gives i, = \/EzrnFDocba . The ratio

- s \/5% ~1.11, so eq. (3.13) introduces an initial 11% error, predicting a higher initial

Ly disk

current. Nevertheless, the steady-state approximation being itself an underestimation of the
current in early times, since the transient current due to the formation of the diffusion layer is
neglected, this approximation will be considered reasonable and the initial current will be

computed using equation (3.13) with the area of a disk.

3.3.3) Simulation algorithm

In this section the base routine of the first mode, “Model 1,” is presented. The model
parameters are a, the radius of the electrode disc, m and n, defining the mercury ion in presence
(see eq.(2.1), in fact m defines the mercury ion, as n=2 in both cases considered), Dy, the
diffusion coefficient, ¢, the bulk concentration of mercury ions, Az, the increment time step and
fend, the total plating time. The algorithm is the same as the one used by Colyer et al. [13] to
compute the theoretical charge curves composing “Data 1, except that the correction coefficient
introduced in the last section has been neglected in our model. The amalgam electrode shape

and rate of growth is therefore calculated approximately by using the following procedure.

Starting with initial conditions,
A = area of the disc = 7 @’
V (volume) =0

the following series of steps is performed:

[ — Computation of the current (according to eq.(3.13)):

i=nFD,c"\2rn A4
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I — Computation of the charge entering:
AQ =i-At
III — Computation of the new volume:

vy im M.AQ
p nF

IV — Computation of the new shape:

2

1/3
K:(ﬂ2(3V+\/a67r2+9V2)) and h=-27 K
K T

a*+h?
2h

then R= and A=27-R-h

V — Increment the time and loop to step I, unless ¢ = #.pq.

3.3.4) Results and analysis

Charge and current plating curves were computed from “Model 1” for comparison with
the curves from the corresponding experimental conditions of “Data 1” and “Data 2”. The time
step used for the computations is 6s for the charge curves and 1s for the current curves, with an
initial computation at r=1s. The time step and initial time independence of the results has been
checked.

Figure 3-5 shows us many interesting things. First, the charge curves computed from our
model, “Model 17, are almost identical to those computed by Colyer et al. [13], except for the
case of the largest disc radius, @ = 12.5um, and even in this case, they are quite close. This

suggests that our model is correctly implemented and that the current correction coefficient,

a (h/ a) , 1s relevant only for the largest radius. This observation is bolstered by recalling the fact

that the error introduced by neglect of « (h/ a) is maximum (10%) at the very beginning, when
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Figure 3-5. Theoretical charge curves from “Model 1” (--) and “Data 1” (-), and experimental data
from “Data 1” (x). for different disk radii a.

the amalgam is almost a disc (4/a small), decreases to zero for a hemispherical shape (h/a=1),
and for later growth (h/a>1) is very limited (2%). Looking at the amalgam evolution for the
different radii (Figures 3-6 and 3-7), we see that the ratio of the height of the amalgam over its
base radius //a stays under 1 during a significant time only in the case of the largest disc radius,
a = 12.5um. Thus, we can conclude that under experimental conditions similar to the ones of
“Data 17, and for disc radii equal or less than S5um, the correction coefficient can be neglected if
the precision required is not too high (error up to around 0.5uC acceptable). The curve for
a=12.5um shows us the cumulative effect with time, due to the fact that the charge is obtained by
integration. While the error on the current, due to the negligence of the correcting coefficient, is

maximum at the beginning, its influence on the charge curve is notable only after an
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accumulation with time. Since our current approximation is an upper bound, the charge curve
from “Model 17 is logically higher than the one from the model of Colyer et al..

Also from Figure 3-5 we see that the theoretical charge curves match perfectly the
experimental ones for the smallest disc radii, but that the models are not satisfactory for the two
largest ones (a=12.5 and 5 um), although the discrepancy is not too large. This suggests that the
assumptions made for the derivation of the model are fair, but we are neglecting something that
mainly affects the largest sizes considered. As previously mentioned, an error on a charge curve
is due to the accumulation of an earlier error on the current. Furthermore, the current, which is
the instantaneous slope of charge curve, is dependent on the area of the electrode, which
increases through the accumulation of mercury atoms. Since these latter are products of the
reduction reaction, the amount deposited is proportional to the charge passed through the
interface, and thus the charge curve slope is dependent on the value of the charge. This coupling
renders difficult the comparison of charge curves after long times if a significant error is present
at earlier times. The only obvious conclusion from the theoretical and experimental charge curve
comparison for the two larger disc radii is that a phenomenon, increasing the current compared to
its quasi-steady-state expression in early times, is not taken into account by the models. As a
result of the charge curves for smaller disc radii, we know in addition that this phenomenon
depends on the electrode size, and is almost negligible for disc radii equal or smaller than 2.5um.
Colyer et al. [13] suggest that this phenomenon is the diffusion layer formation process, during
which the current will be higher than the quasi-steady-state prediction. This transient effect is
indeed likely to be the explanation, since it occurs in the early times, lead to an increase of the

current compared to its steady-state value and is strongly dependent on the size of the electrode

[4].
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Figure 3-6. Amalgam shape at different plating times, computed from
“Model 1” and corresponding to the charge curve from “Data 1” for a
disk radius of ¢ = 12.5 pm.

Figures 3-6 and 3-7 displays the amalgam shape evolution and growth corresponding to
the charge curves presented in Figure 3-5. They show that the smaller the initial electrode size,
the faster the amalgam reaches an over-hemispherical configuration. This leads the smaller
electrodes to reach very overgrown configurations, with a ratio of 4/a as high as 28 for the 1pu-
radius electrode after 600s. This raises questions about the influence of gravity on the shape of
these amalgams, but such configurations are not of practical interest since the utility of a small
electrode is its size, so there is no point to cover it with a comparatively much bigger amalgam
droplet: these particular cases have been made only for analysis purposes. Figures 3-6 and 2-7
also allow us to rudimentarily check the validity of the growth rate scale derived in Chapter 2.

The growth for the 12.5um electrode is about 8um in height in 600s, which gives an average rate

44



E) £
S 6 =]
N LS
i 4
2F ps
0 S s
x (um)
a=5pm
14 14+
120 12k
101 10k
~ BF - 8
g H
~ sl bl 6
4k 4k
2 oL
s ol ‘
-8 8 -8 B - - 8
X (um) x (um)
a=1pm a=0.5 um

Figure 3-7. Amalgam shape at different plating times, computed from
“Model 1” and corresponding to the charge curves from “Data 1” for
disk radii of 5, 2.5, 1 and 0.5 pm.

of around 10 m/s. This is of the order of the value found earlier, 2.5x10”° m/s, presented in
Table 3-3, and logically higher, since edges and curvature, both increasing the diffusion to the
deposit, are not accounted for in the linear scale derivation. The corresponding diffusion layer

propagation rate, about 10” m/s based on Table 2-3, is still three orders of magnitude higher than
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the amalgam growth rate. Consequently, the quasi-steady-state approximation seems pretty

reasonable.
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Figure 3-8. Plating current curves for disk radius of 12.5 pm : experimental data
with gold (Au) or platinum (Pt) electrodes from “Data 2”’; and theoretical curve
computed using the same conditions with“Model 1”.

From the analysis of the current curves for a disk radius of 12.5um (Figure 3-8), we first
notice that there is indeed a transient current at the very beginning of the process that we may
have to take into account. Its magnitude is decreasing very fast, and it seems to represent a
notable contribution to the total current only during the first 15s, which may be nevertheless
significant for short plating experiments.

As discussed earlier, the plating current data can be split into two kinds of current

evolution after the transient period: a constant and significant increase, or a comparatively
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negligible current increase. From Figure 3-8, we see that our model predicts the second kind of
evolution. As we do not know the reasons for this behavioral discrepancy, we cannot tell if our
model is fully satisfactory. Nevertheless, it shows that the model accounts for one characteristic
evolution type, validating for this case the assumptions made. In the other case, the slope of the
curves is much higher, reflecting probably a faster growth of the amalgam. Concerning the
magnitude of the current, our model is in the range of the experimental data, although somewhat

low.

3.4 Model 2: Long-time transient

3.4.1) Modeling and analysis of the transient current

From the comparison of the simulation based on the “Model 17, using a steady-state
current expression, with the plating current curves of “Data 2, we noticed that a high but rapidly
decreasing transient current was present at the beginning of the electrodeposition process, but
neglected in our modeling. Thus we need an expression to account for this transient current.

In the literature, the transient current modeling is split into two periods: short-time
transient and long-time transient. The former is limited to the very early times, because it
assumes that the current density is a local property, depending only on the geometry of the
electrode in the immediate vicinity of the point considered, and not on the electrode global shape
[23]. This approximation is useful while the diffusion layer does not extend significantly from
the electrode surface. The range of applicability can be estimated using the diffusion “length”

[23, 24], whose order of magnitude is given by [12]:

) D,t (3.16)

diff "~
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with Dy the diffusion coefficient of the species consumed at the electrode surface and # the time
from the beginning of the potential step. This relation is derived in the case of a planar diffusion.

The short-time transient period corresponds to J,, <a, with a a characteristic dimension of the

. . . . . a
electrode so, using eq.(3.16), this transient period encompasses times such that 7 <z, ~ o In

contrast, the long-time transient period starts when the diffusion layer becomes dependent only

2
on the global geometry of the electrode, i.e. for 7, ~ % <t. The simple approximation of the
0

transition between these two periods is a current research issue [24, 25].

During the very earliest times, the geometries of interest for our case (inlaid disc
progressively coated by mercury) are a disk and sphere-caps with low height. The short-time
transient current response to a large potential step, under the same general assumptions as in the
previous model (essentially: diffusion-limited process, infinitely fast kinetics and amalgam
modeled by a sphere-cap laying on an infinite insulating plane) can be given by the series [23]:

i =nFc’D, A{;+%j+... (3.17)

short—time
Dt

where R is the radius of the sphere-cap, which is a function of the parameters 4 and a (see
Appendix), and ¢ is the time elapsed since the beginning of the potential step. The first term of

this series is the well known “Cottrellian current”:

DO
Tt

i =nFc’4 (3.18)

cottrell

It is evanescent, accounting for the diffusion layer formation. The second term, constant, is the

“prompt current”. This latter is generally induced by “edges or curvatures effect” [23]. For a
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disc, the relation is the same as eq.(3.17) except that the second term in the parentheses is 1/a.
This term being constant, it is interesting to compare it to the steady-state current. In the case of a
sphere-cap, the ratio is found using egs. (3.13), (3.17) and the sphere-cap geometrical relations

given in Appendix:

Ry —
prompt o LR 1 —cos (3.19)

i N\/27Z'A

SSs

where A4 is the area of the sphere-cap, R is the radius and f is the contact angle. This is an
approximation since the expression used for the steady-state term is not exact (see 2.3.b)).
Nevertheless, it shows that the prompt current is always lower than the steady-state current with

this formulation, and the difference is very significant when £ is small. For a disk, the ratio is:

. A
lpr.ompt — A = Z ~ 079 (320)
i, da 4

with a the radius of the disk, so the prompt current is about 20% lower than the steady-state one

with this formulation.

For the long-time transient current formulation, we are interested in the cases of the disk
and oblate sphere-caps inlaid on an insulated plane (since we can assume that by the time the
amalgam reaches a hemispherical configuration, the transient is negligible). For the disk case, an
accurate expression has been derived by Shoup and Szabo [26], from an original asymptotic

expansion by Aoki and Osteryoung [27] (still under the same assumptions listed in 2.1):

= 4nFDyc"a| 4 + A" + Aexp(~4,r )] (3.21)

ilong—time
with A= /4, A,= 1"*/4, A5= 1- A;, A= (4>-21*?)/ A5 and © = Dyt/a*. This formulation is very
accurate, since the maximum error induced for all times is around 0.6% [26]. When 7 >>1 (i.e. ¢

>> 7417), this expression can be developed to an asymptotic solution:
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i, =4nFDc’a| 14— — 4. |=nFDc" | da+— A, 70 +... 3.22
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This expression has been derived differently by Phillips [28], with a supplementary term. It is
interesting to notice that the first term of the relation is the steady-state current, while the second
is the “Cottrellian current” weighted by 8/n” =~ 0.81.

To our knowledge, no fully explicit formulation has been derived for the long-term
transient current to a sphere-cap. An asymptotic expression (¢ >> 7,4) for oblate hemispheroids is

given by Rajendran [25] based on the work from Phillips [28]:

N

= 4nFD,c"a {%10 T L L } (3.23)

NGY

ll(mg—time

/ 2
with /) = Nzor and o= h lo can be approximated by 2 + (1 —zj @ with an error of less
Arccos(w) a V4 Vs

than 1% over [0,1]. The above formulation can be rewritten to make explicit the steady-state

current and the “Cottrellian current”:

. _ b
llong—time - nFDOC

k() N27A + K (0)- A\/E; + }
T

(3.24)

with k(w) =
The function k(w) ranges from 0.9 at v=0 to 1 for w=1. Thus, the first term of the relation (3.24)
stays within 10% of our formulation of the steady-state current to a sphere-cap (3.13); and the

second term within 20% of the “Cottrellian current”.

To conclude, whether we consider the short-time or long-time transient period, the
current can always be modeled by the sum of the steady-state current and the “Cottrellian

current”, with an error in most cases lower than 20% compared to the specific formulations.
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Moreover, this margin decreases as the ratio //a rises to h/a=1. We have not studied the prolate
configurations, because the transient current will be negligible compared to the steady-state
component by the time these are reached. One can notice that the short-time transient period is
negligible under the conditions of our experimental data, since the time scale for diffusion, 74y, is
at most s, corresponding to the larger electrode (based on eq.(2.15)).

As discussed in the previous section, the models studied, all developed for non-growing
electrodes, are accurate in our case only if the growth of the amalgam is much slower than the
diffusion layer formation. As a result from the above analysis, we decide to use the “Cottrellian

current” for the transient part, iy gnsiens, Of the current formulation:

itransient ~ nFCbA & (325)
Tt
The complete expression for the current is now:
i~nFc"DN27wA+nFc’ A % (3.26)
V4

N J \ J
Y Y
Steady state Transient

Equation (3.26) defines “Model 2” and is incorporated using the same routine as that used for

“Model 1.”

3.4.2) Results and analysis

In this section, the charge and current plating curves computed from “Model 2” are
compared to the ones from “Model 1”7 and the experimental data, “Data 1” and “Data 2”, under
matching experiment conditions. The time step used for the computations is 6s for the charge
curves and 1s for the current curves, with an initial computation at z=1s. The time step and initial

time independence of the results has been checked.
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Figure 3-9. Theoretical charge curves from “Model 2” (— - — green), “Model 1” (- -)
and “Data 1” (-), and experimental data from “Data 1” (x), for different disc radii a.

From Figure 3-9, we see that the addition of the transient current term does not
significantly affect the charge curves, although a slight increase is noticeable. Indeed, the charge
curve from “Model 2 is above the one from “Model 17, but the difference is very small. This
means that either the transient current approximation is too low, or that the explanation for the

difference between the theoretical and experimental data lies within the quasi-steady-state term.

Figure 3-10 presents the relative increase of the charge deposited due to the addition of
the transient current term, in the theoretical curves presented in Figure 3-9. This has been plotted

by computing the relative discrepancy between the charge curves from “Model 2” and “Model 1”.
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Figure 3-10. Relative increase of the charge deposited due to the transient current
term, i.e. (Qwmodel 2 - Qmode 1)/ Qmoder 15 VS time, for different electrode disk radii a, from
“Model 2” and under the conditions of “Data 2”.

It shows that the effect of the transient current term on the total charge is limited (max 7%
increase), and it seems to converge to values below 1.5% in all cases. The dependence on the
size of the electrode is very clear, the influence of the transient current increasing significantly
with an increase of the inlaid disc radius. Nevertheless, two different “regimes” seems
remarkable, depending on the size of the electrode, with a transition occurring for a disc radius of
about 2.5 um. Above this value, the relative difference decreases with time, while below, it
increases with time. This is due to the fact that in the case of a very fast volume growth, as is the
case here for the smallest electrodes (see Figure 3-7), the transient current is first increasing, due

to the growth of its surface area which superseeds its evanescent decay with time. Furthermore, it
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raises faster than the steady-state term, since it is proportional to the area, while this latter varies

with the square root of the area.
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Figure 3-11. Plating current curves for disk radius of 12.5 pm : experimental data
with gold (Au) or platinum (Pt) electrodes from “Data 2”; and theoretical matching
computed from “Model 1” and “Model 2”.

Analysis of the current plating curves (Figure 3-11) confirms that the transient current
term does not influence significantly the total current magnitude and evolution rate at long times.
Nevertheless, in the case of a low growth rate, its effect is non negligible. The modeling of the
transient current seems consistent in view of the experimental curves, so we may conclude that,
even though it improves the modeling, it is not the main reason for the discrepancy between

theoretical and experimental charge data.
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Concerning the plating current, our complete formulation, “Model 2, can still account
for the evolution of only one of the two types of observed current responses. Furthermore, the
experiments corresponding to the charge curves from “Data 17 with disc radii of 5 and 12.5 pm
(two top curves in Figure 3-9) are more likely to stem from the second kind of evolution, a
significant increase of the current during the early times, as this would explain the discrepancy
between the theoretical models and the experimental data at long times in the charge curves.
Therefore, it is clear that an intermittently appearing but frequent phenomenon, occurring at least
during the early times, significantly increasing the current evolution rate, and strongly dependent

on the electrode size is still not taken into account in our modeling.
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Figure 3-12. Ratio of the transient current, i¢.nsients t0 the quasi-steady-state
current, i*ss, vs time, for different electrode disk radii a, from “Model 2” and
under the conditions of “Data 2”.
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During the derivation of the current expression, we stated several times that the formula
used, corresponding to fixed geometry, were accurate in our case, that of continuous growth of
the electrode through deposition, only if the growth were much slower than the diffusion layer
formation. This can be evaluated by considering the time for the total current to reach its quasi-
steady-state value, or, in another words, for the transient term to fall under a given percentage of
the steady-state one. The incorporation of the transient current in “Model 2 allows us to check
the validity of the hypothesis. Figure 3-12 shows that the transient current is decreasing very fast,
but that the time for it to become negligible is strongly dependent on the size of the electrode.
From other analyses, we established that it does not vary much with the concentration ¢” or the
valence number #n, but is very sensitive to a variation of the diffusion coefficient Dy. A higher D,
and a smaller a significantly decrease the time to reach a quasi-steady-state. The time for the
current to reach its steady state value within 5%, according to our modeling, is less than 1s for
the three smallest electrodes, around 2s for the Sum-radius one and about 12s for the largest one
(12.5um). These times, except for the last one, are negligible in view of the duration of the
plating experiment, and a quasi-steady state will be reached quite quickly in all cases. Thus, we

conclude that the quasi-steady state approximation is sufficiently accurate.

3.5 Conclusion: Refinement of the early-growth process required
From the comparison with the data, we can conclude that, under these experimental
conditions (mainly listed in Table 3-1), our modeling is satisfactory for the disc electrodes of
radius equal or smaller than 2.5um. Nevertheless, we noted a significant discrepancy at long
times in the charge curve between the theoretical and the experimental results. This discrepancy

is likely to be engendered by a difference in the current increase rate at early times, which has
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been noticed in about half of the data. We concluded from this analysis that a non-systematic but
frequent phenomenon, occurring at least during the early plating times, significantly increasing
the current evolution rate, and strongly dependent on the electrode size is not taken into account
in our modeling.

Looking back at the assumptions made, there is one that has not been validated and which
could have a significant effect on the current at the beginning of the process: the entire and
instantaneous coverage of the inlaid disk by a single mercury film. Indeed, pictures from
Mauzeroll, Hueske and Bard [8] (see Figure 4-6) show that, under experimental conditions
almost identical to the ones of “Data 2”, the penned configuration is reached only after several
tens of seconds, and maybe even hundreds. Colyer, Luscombe and Oldham [13] also reported
from optical investigations that during the early growth on a 12.5pum-radius disc-electrode, the
amalgam does not present as a uniform layer but as isolated islands. In the case of separate
droplets, the equilibrium shape assumed in our modeling, corresponding to a lowest surface area
configuration, underestimates the interface area, and hence the plating current. So the assumption
of instantaneous complete coverage is likely to explain the discrepancy between our model and
the experimental data.

The early-growth is essentially composed of three processes, corresponding to successive
but possibly overlapped periods: the nucleation, the growth of separate droplets on the
conducting electrode disc, and their interaction that leads to coalescence. The first and third

phenomena are the subjects of Chapter 4 and Chapter 5, respectively.
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CHAPTER 4

NUCLEATION AND EARLY GROWTH

In this section, we analyze the nucleation and the early growth of a metal liquid phase
through overpotential electrodeposition. Three points are of interest: the nucleation rate, the
nuclei size and the number of nucleation sites. We begin by a theoretical review, based on the
material of interest from the text of Budevski, Staikov and Lorenz [15], followed by a study of
experimental data, and we end with the presentation and application of a nucleation plating

current model.

4.1 Basics

The electrodepososition process includes three steps (see Figure 4-1). The first is the
adsorption of the reduced ions on the surface, which is the process of the ions achieving an
energetically stable position on the interface. These adsorbed atoms are called adatoms. The
following step is the formation of a liquid phase by accumulation of adatoms. Precisely speaking,
only this phenomenon is nucleation, but the term is often used loosely to include the related
processes. In the nucleation process, the adatoms form a critical cluster, achieving a weakly
stable state. The growth of the cluster is necessary for it to become a metal (Me) bulk phase, that
is both homogeneous and stable.

The metal deposition on the surface and its stability, and thus the nucleation, are

obviously strongly dependent on the redox reaction:

Mec=2 MeZ' + ze™ 4.1)

solv
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Here, Me,,,” denotes the solvated metal ion, with z the valence number, and Me the
corresponding metal molecule. The direction of the reaction is determined by the electrical
potential, defined as the difference between the actual potential at the point considered in the

solution, £, and the equilibrium redox potential of the reaction considered £ e b This latter is

given by the Nernst equilibrium:
0 RT  [a,,.
EMe/Me'” = EMe/MeH +;ln( = J (42)

with a .. and a,  being the activities of solvated Me ions and Me bulk phase, respectively.

E .- s the standard potential of the redox couple, established experimentally for standard

conditions (¢, .. =c, =1M, pressure=1 bar, temperature=25°C).

Me

Adsorption — formation of metal adatoms

|

Phase formation — phase transition (nucleation) and cluster growth

|

Growth of the Me bulk phase

Figure 4-1. Electrodeposition process.

When the electrical potential is negative, it is called an overpotential (as opposed to an

underpotential) for deposition (metal ion reduction):

n=E —E <0 (4.3)

Me/ Me*™™*
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The larger the overpotential is, the faster the reduction goes, as the reaction speed, being an
exponential function of the potential, is very sensitive to even a small deviation from the
equilibrium.

Due to the occurrence of destabilizing energy fluctuations on the surface, the nucleation
process requires some minimum overpotential for the critical clusters to become stable and grow.
The likelihood of nucleation is often expressed as a function of the saturation, which is the

difference between the actual electro-chemical potential and its value at the standard electrical

potential:

A'u:'uMem_ “H e, =—zZF(E —E ) (4.4)
where Foe . and Ky e 2TC, respectively, the chemical potential of adatoms at £ # E, .. and
E=E, .. . Consequently, according to the electro-chemical potential expression, the

saturation is a function of the overpotential. Metal deposition, and therefore nucleation, takes
place at overpotentials (n. < 0), and thus at supersaturation: Au > 0. It is important to note that
while supersaturation is a necessary condition for nucleation, another parameter is essential to
the process: the morphology of the surface, which sets the density and types of the nucleation

sites.

4.2 Theory of nucleation
The theoretical work on nucleation has primarily focused on the explanation of three
points of first interest: the different global deposition schemes, the original size of the nuclei, and

the nucleation rate.
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4.2.1) Deposition mechanisms — Growth modes

It is of first interest to understand the different ways the nucleation can progress, and
especially, how will the first nuclei influence subsequent nucleation. Are the adatoms more
likely to fix on an existing cluster, or will they continue to depose on the free surface till the
electrode is totally covered ?

If the role of kinetics and of the metal-substrate (Me-S) alloy formation are neglected,
then two parameters dominate the metal deposition mechanism: the binding energy, w, and the
crystallographic misfit, characterized by the interatomic distances d, . and d,s of the three
dimensional metal and substrate bulk phases. In the case of a liquid metal phase formation, there
is no crystallographic misfit issue, since the atoms are sufficiently free to adapt, but alloys are
more likely to be formed, and some complicating factors such as inhomogeneous local diffusion

and electric fields can be involved.

Generally, if v,, ., >>W,, _,the adsorbed Me molecules will fix preferentially on
the Me phase, giving a three-dimensional growth by metal island formation. This mechanism is
known as the “Volmer-Weber” growth mode. In contrast, if v, ., <<w¥,, ., the binding

with the substrate molecules will be favored, inducing a layer by layer development of the

deposit: this is the “Frank-van der Merwe” growth mode.

4.2.2) Nuclei size
Another point of interest in the study of nucleation is the critical size that a cluster needs
to reach to become stable. This influences, for example, the size required for the nucleation sites,

and hence their density.
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The stability of a nucleus can be studied using the Gibbs energy of cluster formation,
which represents the free energy change due to the metal deposition process. This quantity
should be negative for spontaneous growth, and the lower it is, the more likely and rapid the
process will be. The Gibbs energy of cluster formation is given by:

AG(N)=—Nzen|+ $(N) 4.5)

Both terms are functions of the size of the cluster (number of atoms N). The first one accounts

for the energy gained by bringing N point charges (charge ze) from the reference state (of zero

potential) to a surface with a favorable potential of magnitude |77| . The second term accounts for

the energy necessary to create a surface between the phase of N Me molecules and the

surrounding phases.

3-D nucleation
In the case of three dimensional “Volmer-Weber” nucleation, the second term of the

Gibbs energy of cluster formation, i.e., ¢ in eq. (4.5), is approximately proportional to the area

2
of the cluster surface: ¢ o« N3. Figure 4-2 shows an example of possible behavior of the Gibbs

energy of cluster formation as a function of N.

Figure 4-2. Example of a 3-D nucleation Gibbs energy-like
function, -¢; N +¢,; N 2B (¢;=1 and c,=2).
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As shown by the Figure 4-2, this model predicts the existence of a critical cluster size (here
N.+=3), that must be reached in order for the cluster to become stable. It further predicts a larger
size (here Ng,= 8) to spur growth.

A more rigorous treatment of the surface energy term is obtained by writing AN) = 4 o,
where o is the average specific surface energy. The surface area 4 and cluster volume V" are
related by 4> =BV? where B is a geometric parameter. The cluster volume is related to the
number of Me molecules, V=V,N , where V,, is the volume occupied by one molecule in the
cluster. We can derive the growth cluster size Ng,.,, by substituting the resulting expression for

@AN) into eq.(4.5) for the Gibbs energy AG and equating it to zero:

1

2
zelp|+oB* (V,N,,, )" =0 (4.6)

grow

AG, (N

grow grow

)=-N

grow
which gives:

_ BV o’
= el

(4.7)

while the critical cluster size N, is obtained by equating to zero the derivative of AG with

respect to the cluster size N:

1
3
(%AGJ =—Ze|77|+§GB g (4.8)
et Nc3rit
yielding:
2.3
crit = SBI/’”O- 3 (49)
27(ze|77|)
The corresponding Gibbs free energy for the critical cluster formation, AG,,;, is:
N .
AG.,,, =—’22 e (4.10)
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It is important to note that these expressions, because they use the continuum representation of

surface energy, may lose validity for small V.

2-D nucleation

In the case of two-dimensional “Frank-van der Merwe” nucleation (layer deposition), the
same parameters can be derived, based on #N) = Pe, where P is the perimeter and ¢ is the
average specific edge energy:

rQeo?

Ncri = 12 (411)
" (zeln))?

where Q is the area occupied by one atom. The perimeter is incorporated using P’ = 4bA, with b
a coefficient depending on the geometry. This gives:

AG,, =N,z (4.12)

crit

4.2.3) Nucleation rate

The rate of nucleation J is a function of the probability that thermal fluctuations will

result in the formation of a critical cluster. It is given by the Volmer-Weber equation [15]:

J =Kexp(—%j (4.13)

where £ is the Boltzmann constant, and 7 is the absolute temperature. K is a coefficient that
depends only slightly on overpotential, and can generally be treated as constant. But if we go
further into details, it also depends on the attachment probability of one atom to the critical

cluster, wuuneri, the density of nucleation sites, Z,, and the geometrical form of the cluster,

introduced by the Zeldovich factor 7°:
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AGcrit
J=pl'Z,w,, y exp{—k—T] (4.14)

with p a constant. The Zeldovich factor /7 is a dimensionless number that is always less than
unity, and usually is of the order of 102, Through AG.;; and N, , it is a weak function of

overpotential. For liquid droplets, it has the value:

1/2

AG,,

[=|—t_ 4.15
(37szN2 J (19

crit

For homogeneous surfaces, Z, ~1/Q, where Q is the surface occupied by one deposited atom.
Thus Z, is of the order of 10" ¢m™. For inhomogeneous surfaces, Z, is the number of active
nucleation centers, which depends on configuration and overpotential.

Finally the attachment probability, w.. n... depends on overpotential, but also on cluster
form and the mechanism of attachment (direct transfer of ions from the solution and/or
attachment of adatoms). In the first case it is proportional to the cathodic component of the
exchange current density and so to exp[(1-a)zF|n|/RT], and in the second to the adatom
concentration and hence to exp[zF|y|/RT].

Although an understanding of the nucleation model contributes insight into the factors
affecting the nucleation rate, the uncertainties on the parameters’ values are too high to allow
evaluation of the nucleation rate according to this model. Several other approaches have been

developed to estimate the nucleation rate. We present the two most commonly used.
The classical approach

The “classical approach”, considering the new phase as a continuum with bulk properties,

is designed for macro-clusters. Using the models developed earlier for the critical energy of
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cluster formation AG,;, i.e., eqs. (4.9) with (4.10) or eqgs. (4.11) with (4.12), and introducing
them to Volmer-Weber equation, eq. (4.13), the predicted nucleation rate for a given temperature

T is of the form:

J:Bexp(— CHJ (4.16)
n

where B and C are constants, n=2 for a three dimensional nucleation and »n=1 for a two-
dimensional nucleation.
The classical approach, using bulk properties, is found to be useful primarily for small

overpotentials, where the critical cluster size tends to be sufficiently large.

The atomistic model
The “atomistic model” has been derived to remedy to the failure of the classical theory
for small clusters. Here, the excess energy function #N) defined in eq. (4.5) is expressed by the

difference of the binding energies of N bulk atoms N¢.s and the binding energies of the N

atoms as arranged in the cluster Z(Iﬁ; . » so that eq. (4.5) becomes:
EE

AG(N) = —Nze|n|+ (N;/},ﬂ.nk,s ->. 8. j (4.17)

The atomistic model uses the bond energies between the Me atoms themselves and those

between the Me atoms and the substrate, assuming that the atomic interactions are confined to

first nearest neighbors, to estimate Zqﬁx* . Only close-packed clusters are considered. The
~ ,5

atomistic model is adequate for smaller clusters, and thus for higher overpotentials.
From the atomistic model, an expression for the nucleation rate of small clusters has been

derived:
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(4.18)

N .+ * _K
J:KI(Z()’Ncrit)eXp(( anit ﬂk;ze|n| 2]

where " is a factor depending on the mechanism of attachment (usually 1 or 0.5), K, is a term

accounting for the nucleus-substrate interaction and K is a coefficient depending on Z, and N,

4.3 Direct experiments

From a practical point of view, we are primarily interested in determining, for mercury
electrodeposition, whether the nucleation is instantaneous (all the possible sites are nucleated
immediately and then the nuclei grow) or progressive (the sites are progressively nucleated and
thus the first nuclei grow in parallel). The answer depends strongly on the overpotential.

Several techniques have been developed for the investigation of the nucleation rate [15].
Figure 4-4, reproduced from Ref. [15], shows the number of nuclei on a spherical platinum
single crystal-electrode. The data was obtained by Toshev and Markov [29] by forming nuclei
using an overpotential pulse of a given magnitude and duration, and then allowing the nuclei to
grow until visible at a lower overvoltage. The density of nuclei, Z,,., was then determined by
visually counting the developed droplets on a given surface area of the electrode.

Figure 4-4 shows that the steady state nucleation rate (J=dZ,,/d¢) is attained after a short
induction period. This corresponds to transient effects connected with the adjustment of the
surface cluster population to the new overpotential conditions [15]. From an analysis of the
experimental data, using the “classical” and “atomistic” models, Toshev and Markov [29] found
that, in the overpotential interval of 84-106 mV, the nucleation energy AG,,;; varies between 8.4
and 5.3x102° J , while the number of atoms forming the critical nucleus N, varies between 13

and 6.
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Figure 4-4. Experimental plots of the number of nuclei vs time in the
electrodeposition of mercury on platinum at different overvoltages [mV].

“The time coordinate gives the length of the nucleation pulse in ms; its amplitude in
mV is given by the numbers attached to the corresponding curves.” Figure reproduced
from Budevski et al. [15], itself based on the work from Toshev and Markov [29].
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Figure 4-5. Log of the experimental steady-state nucleation rate values calculated
from the data of Figure 4-4, vs the inverse of the overpotential to the square.

The most probable straight line is shown. Figure reproduced from Budevski
et al. [15], itself based on the work from Milchev and Stoyanov [30].

68



The apparent linear relation between the log of the nucleation rate and the inverse of the
square of the overpotential, presented in Figure 4-5, supports the validity of eq. (4.16) for three-
dimensional nucleation, but the small number of atoms found (6 to 13 as stated above) discredits
calculations based on bulk properties as in the classical approach. Nevertheless, if we extrapolate
this relation to our values of interest (i.e., mercury deposition at a 0.7V overpotential):

: ~ ;2 ~ 2, we find In(J ) ~ 22, which gives a nucleation rate J of the order of 10s™ pm?.

[ (07)

This has to be related to the density of nucleation sites, but this latter is difficult to
estimate. The density of defects on a metal ranges from 10™ to 10™ um™ [12], but the density of
nucleation sites is probably higher, since this gives between 0.025 and 2.5 sites on a disc of
radius 5 pm. From the pictures of Mauzeroll, Hueske and Bard [8] (Figure 4-6), showing a
platinum electrode surface at different times of a mercury plating experiment, the density of

nuclei can be estimated to be at least 1 pm™.

t=0s 1= 5s t= 258 t= 300s

Figure 4-6. In situ micrographs of mercury deposition on a platinum 25-pm disc electrode.

Plating at -0.1 V vs Ag/AgCl, from a 10 mM Hg*(NOs), solution with 0.1 M KNO; supporting
electrolyte acidified to 0.5% with HNO;. Figure reproduced from Mauzeroll, Hueske and Bard [8].

Based on these estimates of nucleation rates and nucleation site densities for the
electrodeposition of mercury for amalgam electrode formation, it is reasonable to conclude that

nucleation can be considered as instantaneous when modeling the process.
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4.4 Plating current analysis

Another method developed to investigate the number of active sites and nucleation rate is
the analysis of the plating current during the early transient response. Indeed, several models
have been derived as attempts to express the plating current during a multiple nucleation and
growth induced by a diffusion-controlled electrodeposition, and the issue is still being actively
investigated [31]. The formulations, so far based mostly on theoretical considerations, are not yet
satisfactory for the purpose of predicting the current density curve, and their goal is primarily to
obtain a better understanding of the nucleation and early growth process. Nevertheless, the
modeling is sufficient to give a general current density curve shape for the distinct cases of
instantaneous and progressive nucleation, allowing one to characterize the regime by analyzing
the plating current density curve in early times. Moreover, the study of the current maximum
predicted in both cases allows one to estimate the number of nucleation sites and the nucleation
rate (in the progressive case). Such an approach has been developed by Scharifker and Hills [32],
and then attempted by many authors [31]. Several models are available, but they are mostly
similar in the treatment of instantaneous nucleation, and the one of Scharifker and Hills, owing
to its simplicity, is perhaps the most practical.

We do not present their derivation in detail in this thesis. Briefly, they consider
hemispherical diffusion to a hemispherical nucleus, and re-express it as a 1-D diffusion to an
equivalent area of plane surface, in order to reduce the problem dimensionality. The effect of the
overlap of “diffusion zones” to individual nuclei is then treated statistically using Avrami’s
theorem [31],[33]. The resulting transient average current density, /’sy, in the model of

Scharifker and Hills, is [32]:
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[D
I'y, =zFc’ ﬂ—ft[l—exp(—n-k-No D, 1) ] (4.19)

with, for instantaneous nucleation:

"M
yo,

k=_8r-

(4.20)

Here, Ny is the density of nucleation sites, z the valence of the mercury ions, F is the Faraday
constant, D cb, and M are the diffusion coefficient of the mercury ions in the solution, their bulk
concentration, and molar mass, respectively, p is the density of liquid mercury, and ¢ is the time
elapsed since the beginning of the potential step. Equation (4.20) gives the Cottrell current when
Ny goes to infinity (total coverage of the disk electrode by the nuclei), and predicts a lower
current density for finite Vy The physical basis for the reduced current density is the formation of
a “diffusion zone” or area of lower concentration around an existing nucleus that prevents the
formation of another one in the vicinity.

In this model, the maximum current density /'simax, and its corresponding time #max are

functions of the nucleation sites density Ny [32]:
I = 0.6382 - zFD " \JKN, (4.21)

1.2564

max ~ (4.22)
7-k-N,D,

Therefore, by determining the maximum current or its corresponding time, one can obtain the

nucleation site density Ny from experimental measurements.
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Figure 4-7. Example of transient currents computed with the Scharifker and
Hills model, for different number of nucleation sites (NNS).

The parameters used are: a=12.5 pum, =10 mM, Dy=6x10"" m%s, z=2,
corresponding to the experimental conditions of “Data 2 (see section 2.2).

Figure 4-7 has been plotted using eqs. (4.19) and (4.20). The total transient current is estimated
using:
I'=ra*- 1y, (4.23)

and the nucleation site density is estimated using:

N, = (4.24)

where NNS is the total number of nucleation sites. Equation (4.23) is an approximation of the
total current, exact only in the limit of a uniformly accessible electrode (for which the current
density is uniform on the disk electrode surface.) This approximation is reasonable for the disk

interior, but less accurate at the edges where the current density is much higher. Nevertheless, the
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effect of the number of nucleation sites on the predicted transient current response is interesting.
From Figure 4-7, we see that the more nucleation sites there are for a given surface, the sooner
and the higher the current maximum is. Such a maximum cannot be observed in our plating
current data, “Data 2, which means, if the theory is right, that the current maximum occurs prior
to the first measurement, which is at /=1ms. If we assume that the current maximum occurs at 1
ms, then, using eq.(4.22) and the parameters of Figure 4-7, we estimate a nuclei density N, of the
order of 10 um™. This is in good agreement with the nucleation sites density estimated in the
previous section, but it implies a nucleation rate much faster than the one obtained earlier by
extrapolation. Due to the inherent uncertainty of extrapolation, this observation does not
invalidates the results. The estimates of nuclei density gives, from eqs.(4.21) and (4.23), a lower
bound for the maximum current of about 3x10” A, which is fully compatible with the plating

current data “Data 2” (see section 2.2), and thus supports the theory.

4.5 Conclusion

From the investigation of the nucleation process, we estimated that, for experimental
conditions similar to the ones of our reference data, which are obtained with relatively high
overpotential and mercury ion concentrations, the nucleation can be characterized as
“instantaneous”, and the density of nucleation sites is of the order of 10 pm™. Nevertheless,
plating experiments at higher sampling rate are necessary to check the validity of the theory, and
in this case to better estimate the number of nucleation sites. Another way to verify the model
would be to dramatically decrease the concentration of mercury in the solution in order to

effectively slower nucleation and growth and thus delay the current maximum.
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Even if the investigations carried out in this chapter seem to all lead to similar
conclusions and estimates, we have to mention possible alternative explanations and processes.
Indeed, the high nuclei density exhibited in Figure 4-6, which constitutes our most explicit data,
could be due to the presence of impurities on the electrode surface, and thus be not representative
of the nucleation process on a clean electrode. Also, underpotential deposition experiments on
gold and platinum [34, 35] show that the formation of a uniform amalgam layer may be
energetically favoured, but the process time-scale would need to be investigated in order to know
if this is relevant in our case of large overpotential deposition. A way to experimentally
determine the impact of electrode surface contamination would be to proceed to multiple
successive depositions, with removal of the deposit after each plating experiment. Mercury being
a good solvent, the electrode would thus be cleaned by the successive electrodepositions, and
comparison of the early depositions between the experiments would allow to verify the presence
and influence of impurities on the electrode surface, and to analyse the deposition process on a
clean electrode. Nevertheless, one would have to be careful since alloy formation could possibly

alter the electrode surface at each experiment.
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CHAPTER 5

DROPLETS INTERACTION: STUDY OF COALESCENCE

In this Chapter, the interaction between discrete droplets of the amalgam deposited on the
electrode surface is investigated. The purpose is to determine whether some of the variability of
plating current (especially on larger electrodes) can be explained by the likelihood of the
occurrence of droplet coalescence. The hypothesis is that sometimes, the deposition may not
result in a growing film or uniform penned sphere-cap, formed by the coalescence of the
numerous nuclei, but instead result in the growth of separate islands of mercury that merge only
after a certain time. An illustration of this phenomenon is provided in Figure 4-6. In order to be
considered successful, our model must at least qualitatively predict the behavior observed in
Figure 4-6: separate growth of adjacent droplets, which seem to remain stable until they reach a
given size range, where they spontaneously coalesce.

In section 4-2 we investigate the ability to use a thermodynamic approach to predict
coalescence. The approach is based on the classical DLVO theory [36, 37] [38] [39]. Finding
that this approach cannot account for experimentally observed behavior, we turn in section 4-3 to
an approach based on mechanical equilibrium using the concept of disjoining pressures [36].
Although our approach leaves considerable room for later refinement, it demonstrates success in

predicting the behavior observed in real systems.
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5.1 DLVO Theory of colloid stability

One of the most renowned [36, 37] models of charged surface interaction in an
electrolyte is the DLVO (Derjaguin-Landau [38], Verwey-Overbeek [39]) theory of colloid
stability. According to this model, the interaction between two identically charged surfaces in an
electrolyte can be described quantitatively by an “energy of interaction”, which is the sum of the
energies due to Van der Waals attraction and electrostatic repulsion. Both of these contributions
become appreciable when the surfaces are very close (within several nanometers).

The electrostatic repulsion is due to the interaction of the “double layers” induced by the
similarly charged surfaces in the participating medium (see description of the phenomenon in
Chapter 2). Thus, it depends mainly on the applied potential, the electrolyte type and ionic
concentration, and the distance separating the two surfaces (see Figure 5-1). On the other hand,
the Van der Waals attraction is an intermolecular phenomenon due to the correlation of electron
fluctuations, or in other words due to induced dipolar interactions. Because it is more significant
between dense aggregates of identical phase, the DLVO theory is able to neglect some aspects of
the Van der Waals interaction between the droplets and the solution. Consequently, the main
parameters of this phenomenon are the geometries of the neighboring surfaces, the separating
distance, and the system considered (material of the droplets and separating medium). The
electrostatic and Van der Waals forces are termed “long-range” interactions because they act
over distances which are large on a molecular scale.

The DLVO theory does not take into account all interaction forces. Notably, it neglects
the solvation, structural, and hydration forces, which may become dominant at very short
distances (below 1 to 3 nm) [36]. The separation distance is a critical parameter also because it

has to be large enough for the continuum approximation to hold. For an aqueous electrolyte with
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a concentration of monovalent ions of 0.1M at 298K, the Debye length, which gives the order of
magnitude of the electrostatic interaction distance, is about 1.3 nm [8],[12], which is at the lower
bound of acceptable values [36]. Nevertheless, the DLVO theory seems able to quantitatively
account for the stability of identically charged, similar in size and geometry mercury droplets in
close contact in an electrolyte [40, 41]. By “close contact”, we mean configuration where the two
surfaces are separated by a distance of the scale of the long-range forces. Experiments have been
carried out only for droplets of sizes of the order of the millimeter, but the theory predicts that
the stability does not depend on this length scale, as we will see further. Another critical
assumption is the absence of surfactants and of specific adsorption of anions, which could
dramatically change the stability parameters. Finally, the model relies on perfect geometries. In
our particular case, the failure of the model to account for the close presence of the conducting

electrode surface is particularly noteworthy.
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Figure 5-1. Schematic for DLVO theory.
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5.2 Energy of interaction
The formulations of the interaction energies in the literature are quite similar, but some
differences may be found in the electrostatic energy expression. We adopt Israelachvili’s
presentation of the DLVO model [36]. Two ideal geometries of interest are studied in the
literature: the sphere, which can be used to describe the interaction of droplets growing without
any constraints, and the infinite plane, which may describe the situation where two droplets are

mutually locally deformed due to their growth while in close contact (see Figure 5-2).

Figure 5-2. Illustration showing the evolution of the “contact” interface between
two droplets. Initially, the droplets interact as spheres (top). If the droplets are
confined, the interface could approach a planar configuration (bottom).

The electrode surface is shown here for illustration but not accounted for by the current theory.

From Figure 5-2, we notice that the available DLVO formulations, essentially based on
interactions between spherical or plane surfaces, can not account for situation where the

deposited droplets are subhemispherical (contact angle smaller than 7/2).

For two bodies of the same material, whose areas of interaction can be approximated as

two infinite planes, the Van der Waals attractive energy, per unit surface area, is given by [36]:
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where d is the distance separating the two planes, and 4y is the Hamaker constant, which
depends upon the material of the bodies and the separating medium. To be strictly accurate, the

Hamaker constant is not a constant but a function of interaction distance d, but the nature of the

dependence is not well known [42]. The Hamaker constant for bodies of mercury separated by

water is about 2x107" J [40, 42].
Determination of the electrostatic repulsive energy is more difficult, and an understanding
of the results necessitates discussion of some critical assumptions. For two identically charged

planes , a general formulation for the “electrostatic pressure”, P,, , is given by [36]:
P =KT[ p,,,(d)= p,, ()] (5.2)

where p,,,(d) and p,, () are the total ionic concentration at the midplane (symmetry plane

between the two droplets), for a finite separation distance d and an infinite one, respectively, k is
the Boltzmann constant and 7 the temperature. P, is a uniform pressure across the gap, and it is
simply the excess osmotic pressure of the ions in the midplane over the bulk pressure. For a

symmetric electrolyte at equilibrium, according to the Boltzmann distribution [36]:

P10 (d) = plexp| 2 e
’ " e’§T y (5.3)
— d — b ex el m
pel,m ( ) pel p kT j

where the superscripts “+” and “-” indicate the positive and negative ions, p’ is the ionic
concentration of electrolyte ions in the bulk solution, ¢ is the midplane potential, e is the

electron charge and n,; is the valence of the electrolyte. The potential requires a reference, which

for this formulation is the electro-capillary maximum (ecm). The electro-capillary maximum is
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the potential for which the measured surface tension of the interface between the body and
solution will be greatest. This also corresponds to the potential which will not alter the ion

concentrations from their bulk value. For mercury in an aqueous solution, the ecm is about

—0.480 V vs NCE [17]. The bulk ion concentration p” is related to the electrolyte bulk molar
concentration, ¢’ , through:

P =CalN, (54)
where N, is the Avogadro number.

Recognizing that, at an infinite separation distance, the concentrations at the midplane are

simply the bulk concentrations:
Py () = Poy () = P, (5.5)

€q.(5.2) can be rewritten, for a 1:1 electrolyte, as:

P =kTp}, {exp (%j +exp (—("e’e) O j - 2}

=2kTp!, {cosh (wj —~ 1}
kT

Assuming that ¢ is small (within 50 mV vs ecm), which is a reasonable assumption when the

(5.6)

midplane is at least one Debye length away from the droplet surfaces (i.e. d > 24p) and the

applied potential is low (within 0.1V vs ecm), then eq. (5.6) can be approximated by:

2 2 b
Pr ~ (nele) kfm pel (57)

Considering eqs.(5.3) or (5.7), determination of P, is seen to require finding the midplane

potential @ . Under the earlier assumptions of small potentials and large separation, the weak

overlap approximation can be used to estimate ¢, [36]. In the weak overlap approximation, ¢,
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is simply approximated as the sum of the potentials from each surface at a distance d/2, as

derived for the case of one surface alone. The result is [36]:

¢mz8kﬂexp( dj (5.8)

n,e - 24,

where /p is the Debye length, and y is a non-dimensional coefficient accounting for the influence

of the applied wall potential (vs ecm), E,,, [36]:
exp(n,ek,,,, /(2kT))—-1
y= ( 157 ) (5.9)
exp(n,ek,,., (2kT))+1

From eq.(5.9) we find that y =0 when Ej,~0, and y =1 when E,  =c. The Debye length

se kT
A, = /0— (5.10)
P p:](nele)z

where &g is the dielectric permittivity of dilute aqueous solution, &g, = 6.95x107" C*/N/m’.

can be expressed by [36]:

Introducing eq.(5.8) into eq.(5.7), we obtain an expression for the electrostatic pressure:

P.=64kT p’ y* exp(—%j (5.11)

‘D
The electrostatic repulsive energy, per unit surface area, is derived by integration with respect to
d, between an infinite separating distance, where the interaction energy vanishes, and a finite

separation distance d [36]:

W' =64kTp’ yA, exp(—%j (5.12)

D

The corresponding relations, for the interaction energies in the case where the interface is

constituted by two symmetrical sphere surfaces, are derived from the planar formulations using
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the Derjaguin approximation [36]. The Derjaguin approximation gives, in the case where the
interaction range and the separation distance are much less than the radii of the spheres, i.e. when
the interaction is limited to the portion of the spheres surfaces that are in close proximity, a

relation between the force law Flpjer(d) between two spheres and the energy per unit area

"

W iane(d) of two flat surfaces:

RIRZ
R +R

1 2

Eipere(d) = 27?( j W pune(d) (5.13)

where R; and R; are the respective radii of the two spheres. The range of the interaction being of
a few nanometers, as discussed earlier, this relation holds when the droplets are not smaller than
about 0.1 um. The force is then integrated with respect to d to give the interaction energy in the
sphere case.

The Van der Waals attractive energy between two spheres of equal radius, calculated
using the Derjaguin approximation, eq.(5.13), is:

W, =-— A, R (5.14)
12d

where R is the radius. The electrostatic repulsive energy for identically charged spheres is:

W,.=64rxRkT p’ y*A)exp {—%] (5.15)

D
Consideration of eqgs.(5.14) and (5.15) shows that, for equally charged spheres of equal radius R,

both interaction energies are proportional to R.

The total interaction energy W, or energy per unit area W”, is obtained by summing the
respective contribution of the Van der Waals and electrostatic energies. Plots of the total

interaction energy as a function of distance d are presented in Figures 5-3 and 5-4. In these and

82



all other calculations in this Chapter, the parameters given in Table 5-1 are used, unless
specifically stated otherwise. The values in Table 5-1 correspond to those of the reference case
presented in Chapter 2, except for the applied potential. The potential used is closer to the ecm,
due to the assumptions of small potential in the DLVO theory derivation. Some extension of the
results to more practical potential is possible by observing that a larger potential will always

inhibit coalescence.

Table 5-1. Reference parameters used in numerical analysis.

Parameter Symbol Value
Hamaker constant Ay 2x107 ]
Applied potential vs ecm (=E/scgt0.48V) Eeem 0.1V
Bulk concentration of electrolyte e 0.1M
Valence of electrolyte ions n 1
Temperature T 298 K
Permittivity of water €& 6.95x10'° C¥/N/m?

Figures 5-3 and 5-4 indicate that in our case, an energy barrier, i.e. a positive interaction
energy peak, is present. This means that based on thermodynamic considerations from the
DLVO theory, and if no other energy is involved, two neighboring droplets will repel one
another. According to the plots, they will achieve a stable spacing with a separation distance of
about 4 Debye lengths (5nm). The maximum interaction energy occurs, as expected, at a
separation distance of about one Debye length for the planes, and a bit less for the spheres. If this
energy barrier is overcome, the coalescence will then be spontaneous due to the dramatic drop in
interaction energy through negative values, which represents a strong attraction. The equations

describing the interaction energy have shown that two parameters, having opposite influences,

83



W' (J/m?
0.0015 |

0.001 1

0.0005 |

—0.0005 |

—-0.001 ¢

—-0.0015 |

—-0.002 *

Figure 5-3. Interaction energy per unit area, W, as a function of non-dimensional separation
distance, D = d /ip, for two identically charged thick planes of mercury separated by water.

The numerical values used are listed in Table 5-1.
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Figure 5-4. Interaction energy, W, as a function of non-dimensional separation distance,
D =d /4, , for identically charged mercury spheres of radii 1pm separated by water.

The numerical values used are listed in Table 5-1.
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determine the energy barrier: the Hamaker constant and the potential. An increase of the former
lowers the energy barrier, as does a decrease of the latter. In our example case, the barrier
vanishes for a ten times higher Ay or a potential within 0.1V of the ecm, resulting in a prediction
of spontaneous coalescence. The electrolyte concentration has little effect on the energy barrier

value, but it significantly changes the corresponding distance.

5.2.1) Stability regime maps

The Hamaker constant is a fixed parameter for a given system, as it is determined by the
droplet material and the solution. Therefore, it is interesting to know, depending on the
concentration of the electrolyte, what is the critical potential, i.e. the electrical potential E,,; so
that the interaction energy maximum vanishes. For a higher E, there is an energy barrier, so a

repulsion, whereas none will occur for a lower E, leading to a spontaneous coalescence. Thus, a
plot of E..; versus ¢’ constitutes a regime map, giving the stability of the droplets in close
contact based on the experimental parameters [40, 41]. This relationship is obtained by finding

the combination of £ and ¢”, for which the interaction energy maximum has a value of zero:

W(Ecrit’cfl) = 0
ow b
—(E _.,c))=0
ad ( crit el)

(5.16)

Equation (5.16) gives that the separation distance for the interaction energy maximum, d.;, for

the case of critical potential separation distance, is the Debye length, 4, , for two spheres and

twice the Debye length, 24, , for interacting the planes. Further, eq.(5.16) is used to obtain the

critical potential, £, , as a function of the electrolyte concentration, c:l , plotted in Figure 5-5. It

is interesting that for the case of spheres of equal radii, R, the curve is independent of R.
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Figure 5-5. Regime map giving the stability of two identically charged
mercury droplets in water, in the sphere and plane case, depending on

the applied potential E and the bulk electrolyte concentration cf, .

For the sphere case, the curve does not depend upon the droplet
radii, R. The numerical values used are listed in Table 5-1.

Figure 5-5 shows the existence of a critical concentration, above which coalescence is
spontaneous for any value of the potential. The basis of these results on an assumption of low
potential, described earlier, could draw this conclusion into question; however, similar curves
have been established by experiments [40, 41]. The explanation for this phenomenon is that high
concentration solutions have thin double layers, and thus the electrostatic repulsion range is
small. Because the Van der Waals attraction soars as the separation distance vanishes, it
dominates over the electrostatic repulsion at the extremely small distances, leading to
spontaneous coalescence. Figure 5-5 also shows that a sufficiently small voltage allows an

immediate merging, for any value of the electrolyte concentration. The reference case

(parameters in Table 5-1), lies in the bottom-left part of the map (£=0.1V vs ecm and ¢’ =0.1M),

86



near the edge of the region for which repulsion is predicted. Also, according to the map, the same
if we consider the typical plating potential value (£ = 0.1V vs Ag/AgCl = 0.38 vs ecm) plating
conditions fall in the top left corner, far into the repulsion zone. By a parametric analysis, the
stability map was found to be sensitive to the valency of the electrolyte and the Hamaker
constant, but not to such an extent as to change the stability prediction for the latter case.

The DLVO analysis predicts repulsion for experimental regimes of interest, and shows no
dependence of this on the droplet size. We conclude that DLVO theory can account for the non-
coalescence of mercury droplets under usual experimental conditions, and this conclusion has
been reached by similar analyses and experiments [40, 41]. We must next find an explanation for
the eventual merging of the droplets, that can be seen on Figure 4-6, and an analyzis of the

influence of the conducting surface of the electrode is still necessary.

5.2.2) Potential of coalescence

The DLVO model seems to provide a good understanding of why the droplets do not
coalesce directly, but we need then to find the mechanism that will finally overcome the
repulsion and lead to coalescence. A natural idea is to compare the energy barrier from the
DLVO model with a “potential of coalescence”, defined as the energy that would be released by
the merging of two droplets, due to the reduction in surface energy. The case considered here
treats two droplets of equal size laying on a non-participating surface, assuming a constant
contact angle a.

The potential of coalescence, U,,q, is defined by subtracting the total interfacial energy of

the two configurations depicted in Figure 5-6:

Ucoa/ = 7drop/sol(A - A') + 7drop/met(As - As ') (517)
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where Yiropsor and Yiropmer are, respectively, the interfacial energies per unit area between the
droplet material and the solution, and between the droplet material and the electrode metal; 4, 4,
and Ay, A,’, are the corresponding interface areas of the system before and after coalescence,
respectively. The interfacial energy between mercury and an aqueous solution is around 0.36
J/m® [17]. The interfacial energy between mercury and a metal is not well known, but it can be

estimated of the order of 2 J/m? (average value for a metal-liquid contact [36]).

V |4
N0 a -
| | |

Figure 5-6. Schematic showing the change in total surface area of the
system induced by the merging of two droplets of equal size, at constant
contact angle a, used in defining the “potential of coalescence”.

The electrode surface is accounted for the geometry of the
droplet, but neglected in droplets interactions considerations.

The following derivations correspond to the case where droplets are hemispheres
(a=m/2), chosen in order to get simple formulations. The volume of a hemisphere is related to its

curved surface area by:

3
V? = 1/817[ (5.18)
and to its base surface area by:
44>
V= 97; (5.19)

Introducing eq.(5.18) and (5.19) into eq.(5.17) with V=2V yields, after factorization:
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1 1/3
Ucoal = ya’rop/sol (2)1/3 + }/drop/met (ZJ :l (97[1/2)1/3 ’ (2 - 22/3) (520)

Next, expressing the volume of a hemisphere as a function of its radius R and simplifying, we
obtain an expression for the “potential of coalescence” in the hemisphere case, as a function of

droplet radius:
Ucoal = |:2ydrop/sol + ya’rop/metil : ﬂ.Rz ’ (2 - 22/3) (521)
Defined this way, the “potential of coalescence” is directly proportional to R%. To compare the

potential of coalescence to the total interaction energy for two hemispheres, we calculate their

ratio, using eqgs.(5.14), (5.15) and (5.21):

coal [27/51;'017/30[ + }/dmp/mgtjlﬂ(z - 22/3)

w, 20W,+W,) 4 R (5.22)
h atW, H b 242

—— 4+ 64rxkT Ace -
12q " T PaX L Xp{ ﬁpj

Ucoal h U

where h stands for the hemispheres case. Evaluation of eq.(5.22) for d corresponding to the

separation at the energy barrier maximum for the reference case (parameters of Table 5-1), yields

a ratio of the order of (IO”m"l)R. Thus the two energies would balance for hemispheres with

radii of around 0.01 nm, a size smaller than one molecule, so a scale for which the continuum
assumption does not hold. For droplets of size of the order of lum, the “potential of
coalescence” is five orders of magnitude greater than the energy barrier, and our thermodynamic
considerations would then predicts a spontaneous coalescence. This result does not explain the
experimental observations in Figure 4-6, which correspond to our reference case (Table 5-1) with
a higher potential, but does not constitute a clear contradiction, since as stated earlier, a higher

potential is expected to prevent more the coalescence. Nevertheless, we draw the conclusion that
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the “potential of coalescence model” fails to predict the transition from adjacent growth to

coalescence for spherical interactions.

The possibility still exists that this method of analysis could be correct, if the local
interaction energy is better described using the model for infinite planes. Hence, we consider the
configuration illustrated in Figure 5-2, where two droplets are constrained to grow next to each
other, and develop a planar “contact” interface. From Figure 5-3 one can estimate the energy

barrier as:

w_. ~1.5x1074, (5.23)
where A4, is the contact area. The contact area will be at most of the order of RZ, and the resulting
ratio of the potential of coalescence to the energy barrier is: U, /W ~10°. Thus, this model

would also predict an instantaneous coalescence for two hemispheres in our reference case.
Furthermore, it exhibits no size dependence, as expected to account for the fact that most
droplets are in the same size range before coalescing on the observations presented in Figure 4-6.

Consequently, this modification has failed to correct the predictions of the model.

5.3 Disjoining pressure
The energy approach, based on DLVO theory has not given a satisfactory explanation for
the mechanism leading to coalescence. Therefore, we consider another approach based on
mechanical equilibrium. This approach does not contradict the thermodynamic energy approach,
but instead includes the possibility of metastable states. The implication is that systems in
metastable states of mechanical (but not energetic) equilibrium, should eventually proceed to
thermodynamically preferred, stable, equilibrium states. However, it may be that this procession

occurs only on a very large time scale.
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Figure 5-7. Illustration for the determination of mechanical
equilibrium between two droplets in a solution.

The idea is to study the consequence of a mechanical equilibrium at the interface between
two identical droplets (see Figure 5-7). The pressure difference across the droplet/solution

interface, away from the interaction zone, is given by the Young-Laplace equation:

p p=22 (5.24)
R

where P, is the rest pressure in the bulk solution, Ppy is the pressure inside the mercury droplet,
R is the droplet radius and o is the surface tension of mercury in aqueous solution. At mechanical
equilibrium, the pressure is uniform inside the mercury droplets, and also outside in the solution.
Hence:

P =P, (5.25)

where P, is the pressure at the “contact” point, i.e. the point where the droplets’ surfaces are the

closest. Consequently, using eq.(5.24), mechanical equilibrium requires that:

2
Py-P= ?0 (5.26)

The pressure difference across the mercury/solution interface at the contact point is called the

disjoining pressure, I1. Its value can be predicted using DLVO theory:

91



=P, -P. =P -P (5.27)

Hg c r a
where P, is due to the Van der Waals attraction and P, is due to electrostatic repulsion. Using
€qs.(5.26) and (5.27) the statement of mechanical equilibrium becomes:

2?0- =P -P (5.28)
Equation (5.28) can be considered a requirement that, at mechanical equilibrium, the forces
exerted on the solution due to the droplet/solution interface must be the same, both at the contact
point and far from the contact point. Far from the contact point, the forces are accounted for by
the surface tension. Close to the contact point, a more detailed accounting of electrostatic and
Van der Waals interaction is required; it is for this accounting that the concept of disjoining
pressure is incorporated.

The electrostatic repulsion component of the disjoining pressure, P,, has been discussed
in section 4.2, and eq.(5.11) gives an expression for its calculation in the case of the interaction

between identically charged planes. We use a planar model as an approximation of the

interaction zone, and the appropriate expression for P, is repeated here:

P.=64kT p’ y* exp(—%j (5.11)

D
It is worth emphasizing again that eq. (5.11) requires assumptions of sufficient separation and
small potential.
The attractive component of the disjoining pressure, P,, , is calculated as the derivative
with respect to separation distance of the energy of interaction (per unit area) due to Van der
Waals forces, i.e. eq (5.1), which gives:

J—
“ 6rxnd’

(5.29)
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With egs. (5.29) and (5.11), the criterion of mechanical stability , eq. (5.28) becomes a functional
relationship between R and d. The solution to eq.(5.28) is plotted in Figure 5-8 for the values of
the parameters listed in Table 5-1. The area of negative radius has been stripped since it has no
physical meaning. The top-left corner of the diagram corresponds to a situation where
mechanical and energetic considerations (see Figure 5-3) predict coalescence, due to the fact that
the Van der Waals attraction overcome the electrostatic repulsion when the two surfaces get so
close. Thus, droplets can not exist in this configuration according to our model, they would have
coalesced when entering the zone. The “stable” zone corresponds to situations where the
pressure exerted on the droplet surface due to its curvature is higher than the disjoining pressure.
Consequently, the surface can keep its regular shape while the droplet grow and get closer to its
neighbor. On the regime separation line, the pressure on the droplet surface due to surface
tension is balanced locally by the interaction pressure: the droplets can not grow further keeping
their optimum shape. They will then develop an increasing interface (as illustrated in Figure 5-2)
while remaining at the same distance, becoming “unstable” since a physical or electrostatic
fluctuation would be more and more likely to prompt their coalescence. Thus, it is difficult to
predict exactly when the merger will happen, but the model tells us that the probability it does,
proportional to the droplet-droplet interface area, increases with time through the droplets
growth.

As explained above, Figure 5-8 presents a stability regime map for two mercury droplets
in “close contact” in water, depending on their size and the separation distance. It shows that for
relevant separation distances (d between 1 and a few Debye lengths), we find stable sizes in the
expected range (from zero to few um). Logically, as d increases, the interaction between the two

spheres decreases, allowing them to remain stable at larger sizes. This map suggests that droplets
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Figure 5-8. Regime map giving the stability of two identically charged mercury
droplets in “close contact” in water, according to the disjoining pressure approach, as
a function of droplets radius R and non-dimensional separation distance, D = d /Ap.

The numerical values used are listed in Table 5-1.

below a critical size (about 1um) are stable to very close approach, but, as their size increases,
they will transition to the unstable regime and then coalesce. Thus, this model predicts the
behavior observed in Figure 4-6. This approach seems to explain why all the separated droplets
are roughly of the same size, before they finally coalesce. Indeed, the density of nuclei estimated
in Chapter 4 does not allow a droplet to grow significantly before getting in “contact” with a
neighbor. Then, this configuration remains stable until the droplets reached the critical size. The
ability of this model to quantitatively describe our problem still needs to be confirmed. For
example, we expect that larger potentials (vs ecm) will inhibit coalescence, but we should
develop a method to quantify this effect. Importantly, the influence of the conducting surface has

not been studied yet.
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5.4 Conclusion

The analysis of droplet interactions via the DLVO theory has led to a possible
explanation of coalescence, and the ability to quantitatively predict the process. The energetic
approach to the problem provided an understanding of the forces involved and the relevant
parameters, but failed to provide an explanation for the observed apparent initial repulsion of the
surfaces, followed eventually by merging of the droplets. Nevertheless, the derivation of an
interaction regime map, based on the applied potential and the ionic concentration, revealed two
interesting limiting regimes. These regimes should allow experimental verification of the
applicability of the DLVO theory in the particular case of mercury electrodeposition on a metal
electrode. The first regime predicts vanishing of the repulsion force when the applied potential is
brought near the electro-capillary maximum. The second regime predicts the existence of an
ionic concentration, above which the coalescence is also spontaneous, for any potential. These
two regimes should be quite easily accessible by experiment, and one could hope to see the
influence of the spontaneous coalescence in the plating current curves.

An approach using the concept of the disjoining pressure and based on a requirement of
mechanical equilibrium was the last development. This approach produced a regime map for the
stability of two droplets which qualitatively agrees with experimental observations. A critical
size, required to be reached for the coalescence to become probable, was found of the order of
one to a few micrometers. In spite of this initial success, we identified the need for much
development. This includes the development of formulations for potentials not in the vicinity of
the electro-capillary maximum. Furthermore, the influence of the conducting surface as not been

carefully studied yet. Upon initial consideration we believe the effect of the conducting surface
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will be to inhibit coalescence, due to an increase of the osmotic pressure on the surface induced
by the addition of its “double-layer” to those of the droplets.

To be complete, we have to mention here another possible explanation for the droplet
delayed coalescence. A flow between the two droplets, through induced lubrification forces,
could prevent or delay their coalescence [43]. Such a flow could result from two different
phenomena: the relative motion of the two surfaces involved, or a temperature gradient along the
droplets surface. Indeed, this would induce a curvature gradient by thermocapillary effect,
leading to advection over the droplet surface. In the second chapter, when we presented the

electrodeposition process, we assumed that it was isothermal, but this has not been verified.
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CHAPTER 6

CONCLUSION

The electrodeposition of mercury onto a metal electrode is a common experiment in
electrochemistry, used to enhance the electrode capabilities. Recent applications, especially in
scanning electrochemical microscopy (SECM), have developed an interest in the miniaturization
of this kind of electrode. The scale has fallen to the micrometer, and smaller sizes are already
being considered. The electrodeposition of the mercury seemed, from the theoretical point of
view, rather straightforward. But a lack of reproducibility of the plating data and eventually some
direct observations have revealed that, at the microscopic scale, the theory fails to predict, with
reliability and accuracy, the electrode mercury-coating process. This has prompted an interest in
the refinement of the modeling of mercury electrodeposition process. First, global and semi-
empirical models have been developed, which proved to be accurate enough in particular cases,
but a deeper understanding of the actual processes involved is needed, and thus the modeling
refinement effort joins a larger investigation on electrochemical processes at the micrometer and
smaller scales. The study presented here is an attempt to reinvestigate the mercury
electrodeposition theory for microelectrodes without any initial concepts in mind, by verifying
the common assumptions used, analyzing the accuracy of the current model predictions, and
finally studying the state of the investigations on relevant neglected phenomena. In this section,
the particular conditions of the case studied and main limitations are recalled, followed by a
summary of the conclusions reached, and, finally, recommendations for future investigations and

experiments are given.
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The study presented here, even if more general results are derived, is mainly limited to
the case of an electrode formed by a metal inlaid disk, embedded in a comparatively large
insulating solid planar surface. A large overvoltage with respect to the standard potentials of the
mercury redox couples is assumed, as is a relatively high mercury ion bulk concentration.
Furthermore, an excess electrolyte in the solution is considered. No forced flow is applied and
natural convection is neglected, as are mutual diffusion and alloy formation between the
electrode metal and the mercury.

For these conditions, a time-scale analysis is performed. The migration of mercury ions is
found to be negligible, and the reduction reaction is found to achieve a quasi-equilibrium at the
time scale of the mass transport, which is driven by diffusion. The amalgam is also found to
achieve a quasi-equilibrium shape on the diffusional time scale, and thus the amalgam
electrodepositon is considered to be a diffusion controlled process. Furthermore, the growth of
the amalgam is shown to be sufficiently slow that the diffusion problem can be considered a
quasi-steady-state problem.

Based on the time scale analysis, and incorporating a number of models from the
literature, theoretical electrodeposition models are developed and analyzed through numerical
comparison with current and charge experimental plating curves. The modeling of the current by
a steady-state expression increasing through the interface area is found to be satisfactory for
long-term experiments, but significantly improved during the early times by the addition of a
transient term. This formulation seems able to accurately predict the volume deposition for small

microelectrodes (radius a < 2.5 ym), but it fails to reliably describe the current evolution for

larger electrodes.
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After consideration of the electrodeposition models, and due to direct observations
available in the literature, the nucleation of multiple droplets and subsequent growth prior to
coalescence is proposed as the mechanism responsible for the discrepancy between the models
and experiment, and for much of the experimental variability. An investigations of the nucleation
process lead us to conclude that it is spontaneous, and allow us to estimate the density of nuclei
formed. The coalescence is studied based on the DLVO theory of charged surface interaction,
which concentrates on two opposite forces, the Van der Waals attraction and the electrostatic
repulsion. The major success of this formulation, incorporated into a statement of mechanical
equilibrium, is the prediction of the existence of a critical minimum droplet size for coalescence.

Our study has indicated the possibility of many fruitful areas for further investigations.
Our recommendations for future work, based on the most important or interesting remaining
issues are listed below.

1 - Development of a better model describing the multiple nucleation process
quantitatively based on generally available parameters.

2 - Development of a model able to quantitatively predict the electrode current during
the multiple nucleation and growth process.

3 - Further development of the droplet interaction theory. This area is fairly
undeveloped and of general interest. Some first steps would be extension of the current
formulation to the case of larger applied potentials. The next step should be an incorporation of
the effect of the conducting surface, and of the effect of the droplet deformation due to multiple
droplet interactions.

4 - Study of processes and the phenomena governing the motion of the droplet

contact line during droplet growth. These can include mutual diffusion, molecular long-range
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forces and alloy formation. Also needed is an evaluation of the relationship between contact
angles and droplet interactions.

5 - Investigation on natural convection phenomena that could occur during
electrodeposition experiments and their quantitative influence. In particular, the evolution of gas
bubbles is suspected as a potential contributor to experimental variability.

6 - Finally, we outline some experiments that could validate some of our conclusions.

a) Plating experiments with electrode radius a >12.5 ym, with a high sampling rate
(greater than 1 kHz), and with measurement beginning before the potential step, should verify
the presence and magnitude of the current peak predicted by the nucleation current models.
Alternatively, plating experiments with smaller sampling rates could be in conjunction with
lower mercury ion concentrations.

b) Plating experiments with electrode radius a >12.5 um at a potential close to the
electro-capillary maximum, and also with a large electrolyte concentration (1M for example),

should verify the spontaneous coalescence predicted in these cases by the DLVO theory.
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APPENDIX

SPHERE-CAP GEOMETRY

The following geometric relationships are useful when performing calculations involving
segments of spheres (or sphere-caps). The geometric parameters are defined graphically in

Figure A-1 [20].

Figure A-1. Sphere-cap geometry.

e Basic relations: h=R(l—cosf)
a, = Rsin

(R-h) +a, =R’

Surface : S =27Rh
Volume : V= %ﬂhz(SR -h)
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e when the sphere-cap is defined by V and a:

2 1/3
h :_ajj +M with M = (72'2(3V +w/a27r2 +9V2))
Vs

B a,f + h?
2h

R—-h

R and =cos ' (——
B ( 2 )

e when the sphere-cap is defined by V" and /£

- 3V 1/3 B )
R_(ﬂ(l—cosﬂ)2(2+cosﬂ)j ’ h=R(l-cosf)

a, =h(2R—h) and p = cos’! (RTTh)
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