
Characterizing Middleware Mechanisms for Future

Sensor Networks

A Thesis
Presented to

The Academic Faculty

by

Matthew D. Wolenetz

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

August 2005

Copyright c© 2005 by Matthew D. Wolenetz

Characterizing Middleware Mechanisms for Future

Sensor Networks

Approved by:

Dr. Umakishore Ramachandran,
College of Computing,
Georgia Institute of Technology,
Adviser

Dr. Karsten Schwan,
College of Computing,
Georgia Institute of Technology

Dr. Ramesh Jain,
School of Electrical and
Computer Engineering,
Georgia Institute of Technology

Dr. Gregory Abowd,
College of Computing,
Georgia Institute of Technology

Dr. Mark Smith,
School of Electrical
and Computer Engineering,
Georgia Institute of Technology,
Visiting Professor from
HP Labs, Palo Alto, CA

Date Approved July 17, 2005

ACKNOWLEDGEMENTS

I am deeply appreciative of the committee members who evaluated this disserta-

tion. They provided essential and timely feedback on this thesis as well as other

collaborative efforts. I sincerely thank Karsten, Ramesh, Gregory and Mark for their

cooperation.

During my long career at Georgia Tech, I have encountered a long list of dedicated,

knowledgeable and compassionate faculty and staff. Gus Baird, Jim Greenlee, Mark

Guzdial, Ellen Zegura, H. Venkateswaran and Yannis Smaragdakis deserve special

mention for having motivated me to pursue excellence in research and academics.

Among the many staff members I have relied on, Barbara Binder, Cathy Dunnahoo,

and Dani Denton also deserve special mention for helping me negotiate the graduate

student path. I will always remember fondly the dedication and friendliness of the

support staff, especially Neil Bright, and research scientists Phil Hutto and Matthew

Wolf. I am highly indebted to them for their guidance and friendship. I wish to thank

Brian Cooper for his advice on some of the evaluations in this thesis.

A huge part of my success at Georgia Tech has been the undying support of fellow

students. Rajnish Kumar, Sameer Adhikari, Bikash Agarwalla, Junsuk Shin, Hasnain

Mandviwala, Dave Lillethun, Martin Modahl and Arnab Paul have been both friends

and mentors to me, helping me to ask the right questions. We have shared in the fun

of building cool systems and writing papers. Among the long list of students I am

thankful to have met are Kathy Gray and Namrata Bachwani. I would like to thank

them for being outstanding friends as well as classmates.

I would especially like to express my deepest thanks to my wife, Amanda, for

sacrificing so much and for always being my great motivator. Without her and our

iii

son, I would be quite lost. I would like to thank my extended family in Atlanta for

being such an excellent support system and for continually cheering me onwards.

I am at a loss for the right words to describe my thanks to my advisor, Kishore,

for being an absolute dream of a coach, fellow researcher, mentor, teacher and boss.

Always looking on the positive side, Kishore is the epitome of every character I would

look for in an advisor.

Although it would be fun and suitable to dedicate this thesis to my mother,

whose thesis I typed twenty years ago, and whose support has been phenomenal, I

must dedicate this thesis to my brother, Michael. It was he who introduced me to

programming years ago, and it was he who performed miracles enabling me to attend

Georgia Tech. I am a far happier and fulfilled person for his support, and I can never

thank him enough.

This work has been funded in part by an NSF ITR grant CCR-01-21638, NSF

grant CCR-99-72216, HP/Compaq Cambridge Research Lab, the Yamacraw project

of the State of Georgia, and the Georgia Tech Broadband Institute. The equipment

used in the experimental studies is funded in part by an NSF Research Infrastructure

award EIA-99-72872, and Intel Corp.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION: AN OVERVIEW 1

1.1 Problem Statement . 2

1.2 Design Space . 2

1.2.1 Future SN Capabilities and Applications 2

1.2.2 Application Domain . 4

1.2.3 Network Layers . 6

1.2.4 Devices Considered . 8

1.3 Related Work . 8

1.4 Broader Application . 10

1.5 Open Questions . 10

1.6 Contributions and Research Outline 13

II DFUSE: AN ARCHITECTURE FOR DISTRIBUTED DATA FU-
SION IN SENSOR NETWORKS . 15

2.1 Introduction . 15

2.2 DFuse Architecture . 17

2.2.1 Target Applications and Execution Environment 18

2.2.2 Architecture Components . 19

2.2.3 Launching an Application and Network Deployment 20

2.3 Distributed Data Fusion Support . 21

2.3.1 Structure management . 22

2.3.2 Correlation control . 23

2.3.3 Computation management 23

v

2.3.4 Memory Management . 24

2.3.5 Failure/latency handling . 24

2.3.6 Status and feedback handling 25

2.3.7 Fusion API Summary . 25

2.4 Fusion Point Placement . 27

2.4.1 Placement Requirements in SN 27

2.4.2 The Role Assignment Heuristic 28

2.4.3 Sample Cost Functions . 30

2.4.4 Heuristic Analysis . 32

2.5 Implementation . 35

2.5.1 Data Fusion Module . 36

2.5.2 Placement Module . 38

2.6 Evaluation . 40

2.6.1 Fusion API Measurements 40

2.6.2 Placement Algorithm Measurements 43

2.6.3 Discussion . 47

2.7 Related Work . 47

2.8 DFuse Framework Conclusion . 48

III MSSN: A SIMULATOR FOR EVALUATING DFUSE MIDDLE-
WARE . 50

3.1 Introduction . 50

3.2 Related Work . 52

3.3 Evaluation Methodology . 53

3.3.1 Application Workloads . 54

3.3.2 Power Models . 58

3.4 Architecture of the Simulator . 61

3.5 Modularity of the Simulator . 65

3.6 Summary . 70

vi

IV CASE STUDIES USING MSSN TO EVALUATE SENSOR NET-
WORK MIDDLEWARE . 71

4.1 Basic Middleware Simulation Results for DFuse 72

4.1.1 Summary of Initial MSSN Studies 75

4.2 Scalability of DFuse Placement Heuristic 76

4.2.1 Single Fusion Point Scalability Study 78

4.2.2 General, Large Application Scalability Study 84

4.2.3 Placement Heuristic Scalability Conclusion 93

4.3 Predictive CPU Scaling Heuristic for Future SN 94

4.3.1 Heuristic Design . 96

4.3.2 Heuristic Implementation . 98

4.3.3 Heuristic Evaluation . 102

V CONCLUSION . 111

VI FUTURE WORK . 113

REFERENCES . 116

vii

LIST OF TABLES

1 Number of round trips and message overhead of DFuse. See Figures
10 and 11 for getFCItem and moveFC configuration legends. 42

2 Fusion Function Costs: Communication and persistent state footprints
are from code inspection, and required number of processor cycles
are derived from microbenchmarks. Required cycles are confirmed by
instruction counts from code inspection and reasonable derived CPI
where available. 55

3 Radio power model . 59

4 Events handled by MSSN’s middleware logic 63

5 Algorithm SA−Oracle(type, channels, nodes, costF unction(), Tcold) . 87

6 Scalable Application Model: Fusion Functions (adapted from Table 2) 89

viii

LIST OF FIGURES

1 An example surveillance application that uses in-network distributed
data fusion. Edge labels indicate relative (expected) transmission rates
of data sources and fusion points. 6

2 (A) DFuse architecture - a high-level view per node. (B) Fusion module
components. 20

3 Fusion channel API summary . 26

4 Minimize Transmission Cost - 1 (MT1) 31

5 Minimize Power Variance (MPV) . 31

6 Minimize Ratio of Transmission Cost to Power (MTP) 32

7 Minimize Transmission Cost - 2 (MT2) 32

8 Linear Optimization Example . 33

9 Triangular Optimization Example . 34

10 Fusion Channel APIs’ cost. See Figure 11 for moveFC cost. 41

11 Fusion channel migration (moveFC) cost 43

12 The network traffic timeline for different cost functions. X axis shows
the application runtime and Y axis shows the total amount of data
transmission per unit time. Optimization runs until 2000ms, and then
maintenance phase commences. 44

13 iPAQ Farm Experiment Setup. An arrow represents that two iPAQs
are mutually reachable in one hop. 45

14 Comparison of different cost functions. Application runtime is normal-
ized to the best case (MT2), and total remaining power is presented
as the percentage of the initial power. 45

15 Expanded view of the campus-wide surveillance application model’s
task graph . 56

16 Sample SN topology showing an initial overlay mapping for the campus-
wide surveillance application . 57

17 MSSN Architecture Diagram . 61

18 Baseline results: migration and prefetching disabled 73

19 Results with prefetching enabled . 73

20 Results with prefetching and migration enabled 74

ix

21 Lifetime for Single Fusion Point Application for Varying Network Sizes
and Cost Functions . 80

22 MT2 for single fusion point application on 4x4 and 32x32 grids, show-
ing DFuse and optimal transmission costs over time for 1 trial 82

23 MPV for single fusion point application on 4x4 and 32x32 grids, show-
ing DFuse and optimal transmission costs over time for 3 trials 82

24 MTP for single fusion point application on 4x4 and 32x32 grids, show-
ing DFuse and optimal transmission costs over time for 3 trials 82

25 Proximity to optimal (transmission cost) mapping, shown as a his-
togram of number of hops an instant migration would need to take
from current mapping, evaluated at every placement heuristic execution. 83

26 Scalable Application Model: Sample 3 Fusion Point Application on
16x16 Grid . 90

27 Large Application Scalability Results For MT2 91

28 Large Application Scalability Results For MTP 91

29 Large Application Scalability Results For MPV 91

30 Power models used for CPU scaling studies based on Intel PXA270
and SA-1100 . 99

31 Task graph for our dynamic surveillance application workload 100

32 CPU scaling behavior for 1 trial, showing chosen CPU speed at one
FD/FR fusion point over time . 103

33 Effect of FCTR on network lifetime relative to lifetime at min and max
CPU speeds . 104

34 Effect of FCTR on end-to-end latency over both periodic and full speed
items . 105

35 Effect of FCTR on end-to-end latency over only full speed items . . . 105

36 Effect of FCTR on end-to-end latency over only periodic items 106

37 Effect of FCTR on productivity over both periodic and full speed items 107

38 Effect of FCTR on productivity over only full speed items 107

39 Effect of FCTR on productivity over only periodic items 108

40 Percentage lifetime increase and associated FCTR for corresponding
tolerances to end-to-end latency degradation 109

x

SUMMARY

Due to their promise for supporting applications society cares about and their

unique blend of distributed systems and networking issues, wireless sensor networks

(SN) have become an active research area. Most current SN use an arrangement of

nodes with limited capabilities. Given SN device technology trends, we believe future

SN nodes will have the computational capability of today’s handhelds, and commu-

nication capabilities well beyond today’s “motes”. Applications will demand these

increased capabilities in SN for performing computations in-network on higher bit-

rate streaming data. We focus on interesting fusion applications such as automated

surveillance. These applications combine one or more input streams via synthesis,

or fusion, operations in a hierarchical fashion to produce high-level inference output

streams.

For SN to successfully support fusion applications, they will need to be constructed

to achieve application throughput and latency requirements while minimizing en-

ergy usage to increase application lifetime. This thesis investigates novel middleware

mechanisms for improving application lifetime while achieving required latency and

throughput, in the context of a variety of SN topologies and scales, models of potential

fusion applications, and device radio and CPU capabilities.

We present a novel architecture, DFuse, for supporting data fusion applications

in SN. Using a DFuse implementation and a novel simulator, MSSN, of the DFuse

middleware, we investigate several middleware mechanisms for managing energy in

SN. We demonstrate reasonable overhead for our prototype DFuse implementation on

a small iPAQ SN. We propose and evaluate extensively an elegant distributed, local

role-assignment heuristic that dynamically adapts the mapping of a fusion application

xi

to the SN, guided by a cost function. Using several studies with DFuse and MSSN,

we show that this heuristic scales well and enables significant lifetime extension. We

propose and evaluate with MSSN a predictive CPU scaling mechanism for dynami-

cally optimizing energy usage by processors performing fusion. The scaling heuristic

seeks to make the ratio of processing time to communication time for each synthesis

operation conform to an input parameter. We show how tuning this parameter trades

latency degradation for improved lifetime. These investigations demonstrate MSSN’s

utility for exposing tradeoffs fundamental to successful SN construction.

xii

CHAPTER I

INTRODUCTION: AN OVERVIEW

Due to their unique blend of distributed systems and networking issues, wireless sen-

sor networks (SN) have become an active research area. Most current SN use an

arrangement of nodes with limited capabilities. Given SN device technology trends,

we believe future SN nodes will have the computational capability of today’s hand-

helds, and communication capabilities well beyond today’s “motes”. Applications will

demand these increased capabilities in SN for performing computations in-network

on higher bit-rate streaming data.

We focus on future SN applications, such as automated surveillance, that combine

one or more input streams via synthesis operations in a hierarchical fashion to pro-

duce high-level inference output streams. An example of a synthesis, or data fusion,

operation is annotating input video frames with detected faces. These operations

will execute on processors within the network. Higher level inference streams may

be used to guide actuation decisions such as varying camera frame capture rates or

triggering alarms. Actuations may impact sensed data in the future, forming feed-

back loops. Such an application that performs stream-based in-network hierarchical

computation is a fusion application. Energy will continue to be a primary limiting

factor for future SN, so performing in-network fusion in an energy-conscious manner

is key to application longevity. There exists a need to study tradeoffs in terms of how

much productivity an application can achieve during its lifetime, how application la-

tency and throughput requirements affect both lifetime and productivity, and how

various available middleware and device capabilities for performing low-power com-

munication and processing impact these performance metrics. This chapter briefly

1

introduces this problem and design space, and then outlines the structure of the rest

of the thesis.

1.1 Problem Statement

For future SN to successfully support stream-based fusion applications, they will need

to be constructed to achieve application throughput and latency requirements while

minimizing energy usage to increase application lifetime. This thesis investigates some

novel middleware mechanisms for improving application lifetime while achieving re-

quired latency and throughput, in the context of a variety of SN topologies and scales,

models of potential fusion applications, and device radio and CPU capabilities. Our

methodology promotes simulation-based performance evaluation under hypothetical

configurations. Tradeoffs exposed by this methodology inform construction of SN in

terms of node capabilities and tuning parameters for the studied middleware mecha-

nisms.

1.2 Design Space

There is an ever-evolving continuum of sensing, computing, and communication capa-

bilities from smartdust, to sensors, to mobile devices, to desktops, to clusters. With

this evolution, capabilities are moving from larger footprint to smaller footprint de-

vices. For example, tomorrow’smote will be comparable in resources to today’s mobile

devices; and tomorrow’s mobile devices will be comparable to current desktops.

1.2.1 Future SN Capabilities and Applications

Given the pace of technology, it is conceivable to imagine SN in the near future

wherein each node has the computational capability of today’s handhelds (such as

an iPAQ), and communication capabilities equivalent to Bluetooth, 802.11a/b/g,

802.15.3 (WPAN), or even UWB (up to 1Gbps). Recent advances in low-power mi-

crocontrollers, and increased power-conscious radio technologies lend credence to this

2

belief. For example, next generation iMote prototypes [27] and Telos motes [43]

are available for research now. Although not as computationally powerful as a

modern iPAQs, iMotes provide 12MHz 32-bit ARM7TDMI processors and 64KB

RAM/512KB FLASH, a significant increase in capability compared to Berkeley mote

MICA2 [10] predecessors that only had 8MHz 8-bit ATmega128L microcontrollers

with 640KB FLASH. Furthermore, the wireless bandwidth available with iMotes

is Bluetooth based (over 600Kbps application-level bandwidth), greatly exceeding

Berkeley motes’ 38.4Kbps data rate. Similarly, Telos motes, designed for long life-

time with very low duty cycles, provide increased computation and communication

capabilities over previous generation motes via energy-efficient idle modes and faster,

energy-efficient microcontrollers and radios. We believe this trend will continue as

SN applications demand ever greater capabilities for performing computation on high

bit-rate data within the network. It is conceivable that recent hardware capabilities

enabling CPU frequency and voltage scaling for power saving, e.g. ARM xScale pack-

ages, will be integrated into future SN devices. Already, such technology is integrated

into Stargate devices [11], providing higher capability backbones for mote-based SN.

Coupled with this trend, high-bandwidth sensors such as cameras are becoming ubiq-

uitous, cheaper, and lighter (in this case, possibly due to the large-scale demands of

cell-phone manufacturers for these cameras, currently on the order of over 20 million

annually for Nokia alone [55]).

Thus, we envision future SN to consist of deployments of high bandwidth sen-

sor/actuator sources coupled with powerful wireless ambient processing hardware.

Most current SN assume a homogeneous and dedicated arrangement of nodes with

limited capabilities (such as Berkeley motes [43, 27, 10]). Such networks have been

successfully deployed for many low bit-rate applications, for example seabird habitat

monitoring [34] and grape plant monitoring in vineyards [23]. In contrast, future

SN will enable a whole host of high bit-rate, computationally intensive applications

3

such as distributed surveillance, emergency response, and homeland security. Many

of these fusion applications share a common requirement, namely, hierarchical data

fusion, i.e., applying a synthesis operation on input streams. The main characteris-

tic of such applications is a sense-process-actuate control loop enabled by in-network

processing of streaming data. Latency from sensing to actuation, and throughput

are the two obvious figures of merit for such applications. In addition, an important

figure of merit for such applications is network lifetime.

By definition, SN operate on battery power with minimal supervision. Energy

is the most critical resource in wireless sensor networks, and it is even more critical

when we target high bit-rate fusion applications. Therefore, SN applications have

a limited operational time before the network becomes partitioned due to energy

consumption. There exist tradeoffs in terms of how much productivity an application

can achieve during this lifetime, how application latency and throughput requirements

affect both lifetime and productivity, and how well various available device capabilities

for performing low-power communication and processing can be leveraged to improve

performance. We contend that although communication of one bit may cost 3 orders

of magnitude higher than processing one instruction [56], fusion applications will

routinely require large amounts of processing occurring in-network on sensor nodes.

Therefore, processing cost must be accounted for when managing energy. Similarly,

large memory footprints may incur significant cost.

1.2.2 Application Domain

As a concrete motivating example, consider a campus-wide automated surveillance

application to provide safety for people and resources on campus. The deployed

infrastructure consists of a variety of sensors such as cameras and microphones scat-

tered throughout campus. Nodes of the wireless SN are similarly scattered across

the campus to provide redundant connectivity and in-network processing resources.

4

Actuator nodes may be PDAs carried by security officers, or other SN resources such

as pan-tilt-zoom motors attached to cameras. As data from sensors pass through the

network, nodes perform application-specific fusion functions (such as face detection,

image correlation, and higher level inferencing).

Fusion behavior and consequent resource requirements will be dynamic, based on

responding to changing inputs from the environment. For example, there may be

periods of relatively low processing as the system cheaply scans infrequently captured

images for features of interest, such as the sound of breaking glass or movement

in a restricted area. Once such a feature is detected, the surveillance application

operates in a period of intense activity performing extensive processing, such as face

recognition, on images captured as frequently as possible.

This specific application is an instance of the general control loop described ear-

lier, where both automated and “human-in-the-loop” actuation decisions result from

in-network communication and computation. Energy will continue to be a primary

limiting factor for such a deployment, so performing in-network fusion in an energy-

conscious manner is key to application longevity. Other fusion application examples

include streaming media, image-based tracking, interactive vision, and feature ex-

traction for continuous queries used by applications such as EventWeb [36]. These

applications share a common requirement of applying synthesis operations (fusion

functions) upon multiple input streams in hierarchical manner. Fusion functions can

be used for efficiency (e.g. compressing an input stream), or can be part of the

application behavior (e.g. feature extraction from an image).

Fusion applications are typically described as a task graph, where nodes in the

graph are of three types: data source (data producer node), sink (a node where a user

presents requests), and fusion (a node which applies a fusion function). This graph is

deployed as an overlay network using relay nodes to interconnect indirectly reachable

nodes. Relay nodes act as simple data forwarders. When bound to a network node,

5

x

2x

2x

3x

x

Sink (Display)

Sources

(Camera)

Filter

Collage

Figure 1: An example surveillance application that uses in-network distributed data
fusion. Edge labels indicate relative (expected) transmission rates of data sources
and fusion points.

a task graph data fusion node becomes a Äfusion point.

Figure 1 shows a tiny example task graph of a surveillance application. The

filter function selects images with some interesting properties (e.g. rapidly changing

scene), and sends the compressed image data to the collage function. The collage

function decompresses the images coming from possibly different locations, combines

the images and sends the composite image to the root (sink) for further processing.

We will return to both this tiny task graph and the hypothetical campus surveillance

application in more detail later in this thesis.

To support fusion applications, we need specific systems facilities: support for

applying synthesis operations at fusion points, support for migration of fusion points

from one dying or non-optimal network node to a more suitable node, and support to

handle time-stamped data items produced from the data sources. Other middleware

requirements include memory and buffer management, programming support, etc.

1.2.3 Network Layers

We focus primarily on the performance of high-level middleware mechanisms such as

cost-directed fusion processing in the context of fairly ideal assumptions about the

underlying network layers. We assume that any SN node is initially reachable from

6

any other node, and we assume a routing layer that exposes hop-count information

between any two nodes in the network. As energy is drained on nodes due to com-

putation, communication and idling overheads, nodes may “die”, eventually causing

network partition. Typically, these assumptions can be satisfied by a separate layer

that supports a routing protocol for ad hoc networks, like Dynamic Source Routing

(DSR) [25], and exposes an interface to query the routing information.

Additional overheads in terms of energy and time used for maintaining routing

information and for recovering from lossy radio propagation and unanticipated node

failures are assumed to be ideal (negligible) in the context of our studies. While these

overheads can significantly degrade SN application performance in general, we fo-

cus on evaluation of our novel fusion architecture’s mechanisms through a prototype

implementation and usage of our novel detailed simulator with these ideal routing,

radio propagation and node reliability assumptions. The primary performance man-

agement mechanisms we propose and evaluate (cost-aware fusion point placement and

predictive CPU scaling) are both meant to increase network lifetime. By using these

mechanisms in an informed manner, SN can be constructed to achieve application

latency and throughput requirements.

We anticipate that further work outside the scope of this thesis using a combi-

nation of our implementation or simulator with more realistic network layers would

further confirm the utility of our primary performance management mechanisms for

extending SN lifetime and would provide more accurate details of application latency

and throughput performance. Recent work [13] suggests that more complex interac-

tions and tradeoffs emerge as less-than-ideal network assumptions are employed in SN

studies, motivating usage of actual large scale deployments. Such deployments are

out of scope of this thesis, as the SN scales we consider in some experiments exceed

hundreds of nodes.

7

1.2.4 Devices Considered

Where we include device-level bandwidth and resource consumption in our explo-

ration, we use models based on Orinoco 802.11b and Bluetooth ∼721Kbps radio

specifications. Our simulator evaluation platform is extendable to address other ra-

dio models for use in studies beyond the scope of this thesis. We use these two models

as representative, contrasting future SN radio models (802.11b has high bandwidth

and cost, while Bluetooth has lower bandwidth and cost). As we cannot predict actual

future radio devices exactly, we rely on studying these representative extremes.

Similarly, we have limited the scope of our exploration of CPU capabilities to

a linear model of CPU speed and consequent power consumption, based on pub-

lished experiments of SA-1100 and SA-110 processor power consumption at various

frequencies and voltages. We also employ a power model based on Intel’s PXA270

xScale datasheet [22] as an alternative CPU model in our predictive CPU scaling

mechanism’s evaluation.

To limit the scope of the problem space, we have used a simple power model for

memory in a SN node. Our simulation results indicate that even our pessimistic,

costly memory power model consumes insignificant energy relative to communication

and processing for future SN application workloads, so we do not consider a greater

variety of memory models in our exploration. Specifics of all of these models are

presented later in this thesis.

1.3 Related Work

It is well-recognized that energy is critical in SN, driving a significant amount of recent

research into mechanisms for SN energy optimization. Most current SN research

focuses on contemporary devices and device models for low-bit rate communication

and minimal in-network computation, rather than on mechanisms for supporting high-

bit rate communication with significant in-network computation. Approaches for SN

8

energy optimization range from hardware [43, 27], MAC [58, 51], routing [52, 8], cross-

layer approaches [28], and application-specific optimizations such as energy-efficient

target tracking [17]. Additionally, there have been middleware approaches to bridge

the gap between application and lower layers [19, 31].

Recent research in power-aware routing for mobile ad hoc networks [52, 8] pro-

poses power-aware metrics for determining routes in wireless ad hoc networks. We use

similar metrics to formulate different cost functions for guiding our fusion point place-

ment mechanism. While designing a power-aware routing protocol is not the focus

of this thesis, routing protocol information may be usable in future work for defining

more flexible cost functions or for informing our predictive CPU scaling mechanism.

Similarly, this thesis does not propose a cross-layer algorithm for SN energy opti-

mization, although recent analytical work [28] in this area may assist with character-

izing performance bounds. In this particular approach, the low-level scheduling and

power control problem that optimizes energy usage for application QoS is shown to

be NP-Complete, and the proposed algorithm is centralized, limiting its applicability

in distributed SN environments. However, the observation of the intractability of

optimal scheduling further motivates our proposed distributed heuristics.

Research into application-specific SN energy optimizations propose evaluation

metrics suitable to the applications being studied. An example metric is QoSv [17],

or “quality of surveillance”, determined by how far a target moves before the sensor

network detects it. Our research focuses on mechanisms to support more general

streaming fusion applications, so we choose application figures of merit applicable

and important to these applications, including latency, throughput and lifetime.

Our approach focuses on middleware techniques for SN energy optimization, to

bridge the gap between stream-based application requirements and low-level de-

vice and network layer capabilities. MiLAN [19] has the most similar goals to our

DFuse [31] work presented in Chapter 2, providing a set of middleware mechanisms

9

for adapting the SN to effect application supplied performance policy. Our example

campus surveillance SN fusion application could be accommodated to some degree

by MiLAN. However, that middleware does not provide the combination of general

streaming data abstractions for in-network computation along with approaches for

optimizing the energy usage given application latency and throughput requirements.

Beyond our architecture’s initial prototype implementation and evaluation, we

have built a simulation-based evaluation framework for our middleware. Prowler [50],

TOSSIM [32], and Em∗ [16] simulators and emulator are specialized towards Berkeley

mote sensors and communication channels. Our study focuses first on modeling en-

ergy usage and performance of a variety of middleware mechanisms for a whole range

of futuristic sensor node architectures, requiring a fairly detailed implementation of

the middleware inside the simulator and a decoupling from a specific target device.

1.4 Broader Application

Our work is focused on future SN. However, it may be possible to adapt our mech-

anisms to target lower-bandwidth, lightweight computation capabilities of today’s

motes. Also, our research may well be applicable outside of SN. Contemporary lap-

tops and handhelds are immediate sibling platforms for applications and supporting

middleware mechanisms we study. General application-directed migration of com-

putation may apply in grid computing and distributed media processing, to better

achieve latency and throughput requirements, regardless of energy consumption. Fur-

thermore, focused contributions, such as our predictive CPU scaling heuristic, may

well apply to more general distributed streaming contexts outside of SN.

1.5 Open Questions

As the design space for future SN devices, applications, and middleware for optimizing

energy (lifetime) while meeting application latency and throughput requirements is

10

vast, we are aware of several open research questions outside the scope of our work:

1. We are not concerned with mechanisms for dynamically adapting the band-

width, range and signal strength of SN radios, although this route of research

may provide additional benefits to applications in terms of latency, through-

put and lifetime. It should be possible for later work to reuse our middleware

simulator to characterize the potential benefits of such mechanisms, coupled

with appropriate models of radio, MAC and routing layers. There is currently

much conflicting research on whether multi-hop communication saves energy vs

“shouting louder”, and varying application domains may have different trends

here.

2. Relaxing the ideal MAC and routing layer assumptions in our simulation-based

evaluation of middleware mechanisms is future work outside the scope of this

thesis. One future approach might be to couple our middleware simulator with

an existing wireless network layer simulator. Of the currently available sim-

ulator options, GloMoSim [3] appears to be better than ns2-wireless [9], as

GloMoSim provides practical support for larger scale wireless deployments than

ns2-wireless, critical to successful evaluation of our middleware model. However,

significant “wrapping” of GloMoSim’s network layer API and lengthy instru-

mentation of its physical layer to provide runtime feedback to our simulator’s

power and routing models would be necessary. Furthermore, studies of SN with

heterogeneous radio transmission ranges would be difficult to perform with Glo-

MoSim’s current restriction to a homogeneous SN.

3. We constrain our study to supporting a single fusion application with a static

task graph (in terms of data flow dependencies). In this work, we do not con-

sider relaxations of this assumption including providing support for multiple

applications and for applications whose task graphs are dynamic. While our

11

mechanisms rely on virtualization of local device resources to manage timeshar-

ing required when multiple task graph fusion points are mapped to the same

device, virtualization support for multiple applications is not our focus.

4. We do not propose new routing layers for power-aware, or more correctly,

application-performance aware placement of relay nodes used to connect our

overlay network.

5. We do not consider security or privacy issues in our studies presented here.

6. There is a need for coordinated control in SN. Our application models and

middleware implementations and models do not focus on control. Rather, they

are concerned with keeping up with demand by downstream consumers. For

stream based fusion applications we consider, coordinated data streaming from

multiple sources is a needed contribution.

7. The design space greatly expands when migration of sources and sinks, and

general mobility of SN nodes is introduced. There are opportunities for lever-

aging such mobility for energy savings through radio power scaling and message

ferrying, recharging batteries, and for improving application throughput and la-

tency by dynamically positioning resources more optimally. We do not consider

mobility-based approaches for optimization in this work.

8. We do not consider device failures other than for reasons of lack of energy. One

potential incremental approach for addressing device failure is to create redun-

dant fusion points in the network, creating an energy vs availability tradeoff.

Other approaches in SN domain [5] have considered a similar tradeoff: energy

vs accuracy.

12

1.6 Contributions and Research Outline

To address our problem statement in our design space, this thesis presents the fol-

lowing contributions:

1. DFuse, our novel middleware for performing energy aware stream processing in

SN is presented in Chapter 2, including its architecture, prototype implementa-

tion and evaluation on a 12 node iPAQ SN. We demonstrate reasonable overhead

of our implementation through microbenchmarks. We use our implementation

to evaluate application performance in terms of network lifetime, number of

migrations and residual battery level variance for each of several cost functions

used to guide the DFuse dynamic fusion point migration mechanism. Results

show that cost function directed migration can significantly extend application

lifetime.

2. MSSN, our novel simulator of our DFuse middleware, enabling evaluation of SN

performance in the context of a variety of potential SN devices, topology scales,

middleware capabilities and application workloads is presented in Chapter 3.

This simulator is a major contribution of this thesis, enabling evaluation of

SN exemplified in three case studies also contributed here. MSSN’s non-trivial

design and implementation realizes a scalable, believable middleware simulator

that enables such low level SN node attributes as CPU speed scaling to be

evaluated in the context of application level performance.

3. We use microbenchmarks to quantify fusion function processing and I/O foot-

prints for our campus surveillance application, generating two workload ex-

tremes: CPU-intensive and communication-intensive. In the first case study

in Chapter 4, we use MSSN to quantify these workloads’ performance under

differing middleware and SN device configurations to show how MSSN can be

used to expose performance tradeoffs in future SN.

13

4. For our second MSSN case study in Chapter 4, we present scalability analyses

of the DFuse fusion point placement mechanism. We show that our distributed

role-assignment heuristic performs well with respect to our best feasibly calcu-

lated optimal performance as application and network topology scales increase.

We also demonstrate that MSSN confirms the observed performance of our

actual DFuse implementation’s role-assignment heuristic at small scales.

5. Our final MSSN case study in Chapter 4 presents a design, implementation and

evaluation using MSSN of a novel, tunable CPU-scaling heuristic for further

improving SN performance. Using a simple surveillance application model that

varies data rate and processing intensity over time, we demonstrate how the

CPU-scaling mechanism varies the consequent CPU speed required over time.

We quantify this application’s performance, and demonstrate how tuning the

CPU-scaling heuristic within application tolerances can improve performance.

This thesis concludes with an overview of contributions and lessons learned in

Chapter 5, and directions for future work in Chapter 6.

14

CHAPTER II

DFUSE: AN ARCHITECTURE FOR

DISTRIBUTED DATA FUSION IN SENSOR

NETWORKS

2.1 Introduction

This chapter focuses on finding a middleware solution to challenges involved in sup-

porting fusion applications in future SN. Developing fusion applications is challenging

in general because of the time-sensitive nature of the fusion operation, and the need for

synchronization of the data from multiple streams. Since the applications are inher-

ently distributed, they are typically implemented via distributed threads that perform

fusion in a hierarchical manner. Thus, the application programmer has to deal with

thread management, data synchronization, buffer handling, and exceptions (such as

time-outs while waiting for input data for a fusion function) - all in a distributed fash-

ion. SN add another level of complexity to such application development due to the

scarcity of power in the individual nodes [7]. In-network aggregation [33, 21, 18] and

power-aware routing [52, 8] are techniques to alleviate power scarcity in SN. While

the good news about fusion applications is that they inherently need in-network ag-

gregation, a naive placement of the fusion points in the network will diminish the

usefulness of in-network fusion, and reduce the longevity of the network (and hence

the application). Thus, managing the placement (and dynamic relocation) of the

fusion points in the network with a view to saving power becomes an additional

responsibility of the application programmer. Dynamic relocation may be required

15

either because the remaining power level at the current node is going below a thresh-

old, or to save the power consumed in the network as a whole by reducing the total

data transmission. Supporting the relocation of fusion functions at run-time has all

the traditional challenges of process migration [59].

We have developed DFuse, an extendable architecture for programming fusion

applications. It supports distributed data fusion with automatic management of

fusion point placement and migration to optimize a given cost function (such as

network longevity). Using the DFuse framework, application programmers need only

implement the fusion functions and provide the dataflow graph (the relationships

of fusion functions to one another, as shown earlier in Figure 1). The fusion API

in the DFuse architecture subsumes issues such as data synchronization and buffer

management that are inherent in distributed programming.

The main contributions of our DFuse architecture are summarized below:

1. Fusion API: We design and implement a rich API that affords programming

ease for developing complex sensor fusion applications. The API allows any

synthesis operation on stream data to be specified as a fusion function, ranging

from simple aggregation (such as min, max, sum, or concatenation) to more

complex perception tasks (such as analyzing a sequence of video images). This

is in contrast to current in-network aggregation approaches [33, 21, 18] that

allow only limited types of aggregation operations as fusion functions. The API

includes primitives for on-demand migration of the fusion point.

2. Distributed algorithm for fusion function placement and dynamic relocation:

There is a combinatorially large number of options for placing the fusion func-

tions in the network. Hence, finding an optimal placement, in a distributed man-

ner, that minimizes communication is difficult. We develop a novel heuristic-

based algorithm to find a good (according to some predefined cost function)

mapping of fusion functions to the network nodes.

16

Also, the placement needs to be re-evaluated quite frequently considering the

dynamic nature of SN. The mapping is re-evaluated periodically to address

dynamic changes in nodes’ power levels and network behavior.

3. Quantitative evaluation of our prototype implementation of the DFuse frame-

work: The evaluation includes micro-benchmarks of the primitives provided

by the fusion API as well as measurement of the data transport in a tracker

application. Using an implementation of the fusion API on a wireless iPAQ

farm coupled with an event-driven engine that simulates the SN, we quantify

the ability of the distributed algorithm to increase the longevity of the network

with a given power budget of the nodes.

In Chapter 4, we demonstrate how DFuse can be extended with an additional

predictive CPU scaling mechanism to further adapt the SN for improved performance.

The rest of this chapter is structured as follows. Section 2.2 analyzes fusion appli-

cation requirements and presents the DFuse architecture. In Section 2.3, we describe

how DFuse supports distributed data fusion. Section 2.4 explains a heuristic-based

distributed algorithm for placing fusion points in the network. This is followed by

implementation details of the framework in Section 2.5 and its evaluation in Sec-

tion 2.6. We then compare our framework with other existing and ongoing efforts in

Section 2.7, and conclude our DFuse framework contribution in Section 2.8.

2.2 DFuse Architecture

This section presents the DFuse architecture. First, we explore target applications and

execution environments to identify the architectural requirements. We then describe

the architecture and discuss how it is to be used in developing fusion applications.

17

2.2.1 Target Applications and Execution Environment

DFuse is suitable for applications that apply hierarchical fusion functions (input to

a fusion function may be the output of another fusion function) on time-sequenced

data items. A fusion operation may apply a function to a sequence of stream data

from a single source, from multiple sources, or from a set of sources and other fusion

functions.

DFuse accepts an application as a task graph, where a vertex in the task graph can

be one of data source, data sink, or fusion point. A data source represents any data

producer, such as a sensor or a stand alone application. DFuse assumes that data

sources are known at query time (when the user specifies the application task graph).

A data sink is an end consumer, including a human in the loop, an application, an

actuator, or an output device such as a display. Intermediate fusion points perform

application-specific processing on streaming data. Thus, an application is a directed

graph, with the data flow (i.e. producer-consumer relationships) indicated by the

directionality of the associated edge between any two vertices.

For example, Figure 1 shows a task graph for a tracking application. The filter

fusion function selects images with some interesting properties (e.g. rapidly changing

scene), and sends the compressed image data to the collage function. Thus, the filter

function is an example of a fusion point that does data contraction. The collage func-

tion uncompresses the images coming from possibly different locations. It combines

these images and sends the composite image to the root (sink) for further processing.

Thus, the collage function represents a fusion point that may do data expansion.

DFuse assumes that addresses for data sources and sinks in the input task graph

are known beforehand. For data-centric queries, e.g. “show a collage of images from

the north region”, the source addresses are not known at query time. The addresses

of such data sources can be obtained by employing date-centric techniques, e.g. sink

floods the network with the query, and data sources report their addresses to help

18

sink node build the task graph. The problem of representing a given data-centric

query as a task graph is out of scope of this thesis.

DFuse is intended for deployment in a heterogeneous ad hoc sensor network envi-

ronment. However, DFuse cannot be deployed in current sensor networks given the

limited capabilities available in sensor node prototypes such as Berkeley motes [20].

But, as we add devices with more capabilities to the sensor network, or improve

the sensor nodes themselves, more demanding applications can be mapped onto such

networks and DFuse provides a flexible fusion API for such a deployment. As will

become clear in later sections, DFuse handles the dynamic nature of such networks

by employing a resource-aware heuristic for placing the fusion points in the network.

DFuse assumes that any node in the network is reachable from any other node.

Further, DFuse assumes a routing layer that exposes hop-count information between

any two nodes in the network. Typically, such support can be provided by a separate

layer that supports a routing protocol for ad hoc networks, like Dynamic Source

Routing (DSR) [25], and exposes an interface to query the routing information.

2.2.2 Architecture Components

Figure 2(A) shows a high-level view of the DFuse architecture that consists of two

main runtime components: fusion module and placement module. The fusion module

implements the fusion API used in the development of the application. The fusion

module interacts with the placement module to determine a good mapping of the

fusion functions to the sensor nodes given the dynamic state of the network and the

application behavior. These two components constitute the runtime support available

in each node of the network.

Figure 2(B) shows the internal structure of the fusion module. Details of the

fusion module are discussed in section 2.3. The modules that implement resource

monitoring and routing are external to the DFuse architecture. These modules help

19

in the evaluation of cost functions that is used by the placement module in determining

a good placement of fusion functions.

Fusion API

Work Thread

Module

Prefetch Thread

Module

Buffers and Registers

Buffer

Management

Messaging Layer

(B)

Operating System / Routing Layer

Hardware

Fusion Module

Placement

Module

Resource Monitor, Routing

Layer Interface

Application

Task Graph

Fusion

Function Code

(A)

Figure 2: (A) DFuse architecture - a high-level view per node. (B) Fusion module
components.

2.2.3 Launching an Application and Network Deployment

An application program consists of two entities: a task graph, and the code for the

fusion functions that need to be run on the different nodes of the graph. DFuse

automatically generates the glue code for instantiating the task graph on the physical

nodes of the network. DFuse also shields the application programmer from deciding

the placement of the task graph nodes in the network.

Launching an application is accomplished by presenting the task graph and the

fusion codes to DFuse at some designated node, let us call it the root node. Upon

getting this launch request, the placement module of DFuse at the root node starts a

distributed algorithm for determining the best placement (details to be presented in

Section 2.4) of the fusion functions. The algorithm maps the fusion functions of the

task graph onto the physical network subject to some cost function. In this resulting

overlay network, each node knows the fusion function (if any) it has to run as well

as the sources and sinks that are connected to it. The resulting overlay network is

20

a directed graph with source, fusion, and sink nodes (there could be cycles since the

application may have feedback control). The application starts up with the sink nodes

running their respective codes, resulting in the transitive launching of the codes in

the intermediate fusion nodes and eventually the source nodes. Cycles in the overlay

network are handled by each node remembering if a launch request has already been

sent to the nodes that it is connected to.

The role of each node in the network can change over time due to both the appli-

cation dynamics as well as health of the nodes. The placement module at each node

performs periodic re-evaluation of its health and those of its neighbors to determine

if there is a better choice of placement of the fusion functions. The placement module

requests the fusion module to affect any needed relocation of fusion functions in the

network. Details of the placement module are forthcoming in Section 2.4.

The fusion module at each node of the network retrieves the fusion function(s)

to be launched at this node. It is a space-time trade-off to either retrieve a fusion

function on-demand or store the code corresponding to all fusion functions at every

node of the network. The latter design choice will enable quick launching of a fusion

function at any node while increasing the space need at each node.

2.3 Distributed Data Fusion Support

DFuse utilizes a package of high-level abstractions for supporting fusion operations in

stream-oriented environments. This package, called Fusion Channels, is conceptually

language and platform independent.

Data fusion, broadly defined, is the application of an arbitrary transformation to a

correlated set of inputs, producing a “fused” output item. In streaming environments,

this is a continuous process, producing an output stream of fused items. As mentioned

previously, such transformations can result in the expansion, contraction, or status

quo in the data flow rate after the fusion. Note that a filter function, taking a

21

single input stream and producing a single output stream, is a special case of such a

transformation. We assume that fusion outputs can be shared by multiple consumers,

allowing “fan-out” from a fusion point, but we disallow a fusion point with two or

more distinct output streams. Fusion points with distinct output streams can be

easily modelled as two separate fusion points with the same inputs, each producing

a single output. Note that the input of a fusion point may be the output of another

fusion point, creating fusion pipelines or trees. Fusion computations that implement

control loops with feedback create cyclic fusion graphs.

The Fusion Channels package aims to simplify the application of programmer-

supplied transformations to correlated sets of input items from sequenced input

streams, producing a (possibly shared) output stream of “fused items.” It does this

by providing a high-level API for creating, modifying, and manipulating fusion points

that subsumes certain recurring concerns (failure, latency, buffer management, prefetch-

ing, mobility, sharing, concurrency, etc.) common to fusion environments such as

sensor networks. Only a subset of the capabilities in the Fusion Channels package are

currently used by DFuse.

The fusion API provides capabilities that fall within the following general cate-

gories:

2.3.1 Structure management

This category of capabilities primarily handles “plumbing” issues. The fundamental

abstraction in DFuse that encapsulates the fusion function is called a fusion channel.

A fusion channel is a named, global entity that abstracts a set of inputs and encap-

sulates a programmer-supplied fusion function. Inputs to a fusion channel may come

from the node that hosts the channel or from a remote node. Item fusion is auto-

matic and is performed according to a programmer-specified policy either on request

(demand-driven, lazy, pull model) or when input data is available (data-driven, eager,

22

push model). Items are fused and accessed by timestamp (usually the capture time

of the incoming data items). An application can request an item with a particular

timestamp or by supplying some wildcard specifiers supported by the API (such as

earliest item, latest item). Requests can be blocking or non-blocking. To accommo-

date failure and late arriving data, requests can include a minimum number of inputs

required and a timeout interval. Fusion channels have a fixed capacity specified at

creation time. Finally, inputs to a fusion channel can themselves be fusion channels,

creating fusion networks or pipelines.

2.3.2 Correlation control

This category of capabilities primarily handles specification and collection of “cor-

relation sets” (related input items supplied to the fusion function). Fusion requires

identification of a set of correlated input items. A simple scheme is to collect input

items with identical application-specified sequence numbers or virtual timestamps

(which may or may not map to real-time depending on the application). Fusion func-

tions may declare whether they accept a variable number of inputs and, if so, indicate

bounds on the correlation set size. Correlation may involve collecting several items

from each input (for example, a time-series of data items from a given input). Correla-

tion may specify a given number of inputs or correlate all arriving items within a given

time interval. Most generally, correlation can be characterized by two programmer-

supplied predicates. The first determines if an arriving item should be added to

the correlation set. The second determines if the collection phase should terminate,

passing the current correlation set to the programmer-supplied fusion function.

2.3.3 Computation management

This category of capabilities primarily handles the specification, application, and

migration of fusion functions. The fusion function is a programmer-supplied code

block that takes as input a set of timestamp-correlated items and produces a fused

23

item (with the same timestamp) as output. A fusion function is associated with the

channel when created. It is possible to dynamically change the fusion function after

channel creation, to modify the set of inputs, and to migrate the fusion point. Using

a standard or programmer-supplied protocol, a fusion channel may be migrated on

demand to another node of the network. This feature is essential for supporting

the role assignment functionality of the placement module. Upon request from an

application, the state of the fusion channel is packaged and moved to the desired

destination node by the fusion module. The fusion module handles request forwarding

for channels that have been migrated.

2.3.4 Memory Management

This category of capabilities primarily handles caching, prefetching, and buffer man-

agement. Typically, inputs are collected and fused (on-demand) when a fused item

is requested. For scalable performance, input items are collected (requested) in par-

allel. Requests on fusion pipelines or trees initiate a series of recursive requests. To

enhance performance, programmers may request items to be prefetched and cached in

a prefetch buffer once inputs are available. An aggressive policy prefetches (requests)

inputs on-demand from input fusion channels. Buffer management deals with sharing

generated items with multiple potential consumers and determining when to reclaim

cached items’ space.

2.3.5 Failure/latency handling

This category of capabilities primarily allows the fusion points to perform partial

fusion, i.e. fusion over an incomplete input correlation set. It deals with sensor

failure and communication latency that are common, and often indistinguishable, in

sensor networks. Fusion functions capable of accepting a variable number of input

items may specify a timeout on the interval for correlation set collection. Late arriving

items may be automatically discarded or included in subsequent correlation sets. If

24

the correlation set contains fewer items than needed by the fusion function, an error

event occurs and a programmer-supplied error handler is activated. Error handlers

and fusion functions may produce special error items as output to notify downstream

consumers of errors. Fused items include meta-data indicating the inputs used to

generate an item in the case of partial fusion. Applications may use the structure

management API functions to remove the faulty input if necessary.

2.3.6 Status and feedback handling

This category of capabilities primarily allows interaction between fusion functions

and data sources such as sensors that supply status information and support a com-

mand set (for example, activating a sensor or altering its mode of operation - such

devices are often a combination of a sensor and an actuator). We have observed that

application-sensor interactions tend to mirror application-device interactions in op-

erating systems. Sources such as sensors and intermediate fusion points report their

status via a “status register1.” Intermediate fusion points aggregate and report the

status of their inputs along with the status of the fusion point itself via their respective

status registers. Fusion points may poll this register or access its status. Similarly,

sensors that support a command set (to alter sensor parameters or explicitly activate

and deactivate) should be controllable via a “command” register. The specific com-

mand set is, of course, device specific but the general device driver analogy seems

well-suited to control of sensor networks.

2.3.7 Fusion API Summary

We summarize the primary calls in our fusion channel interface in Figure 3. Functions

are presented in a very abstract form to elide language and platform implementation

details.

1A register is a communication abstraction with processor register semantics. Updates overwrite
existing values, and reads always return the current status.

25

• Structure Management

channel = createFC(inputs, fusion_function)

result = destroyFC(channel)

channel_connection = attachFC(channel)

result = detachFC(channel_connection)

item = get/putFCItem(channel_connection, attributes)

result = consumeFCItem(channel, attributes)

inputs = get/setFCInputs(channel, new_inputs)

inputs = addFCInput(channel, input)

inputs = removeFCInput(channel, input_index)

location = getFCLocation(channel)

result = moveFC(channel, new_location)

result = moveFC(channel, new_location, protocol)

• Correlation Control

params = get/setFCCorrelation(channel, correlation_params)

params include:

min, max correlation set size

correlate by timestamp?

correlation ranges for temporal correlation (per input)

discard late items?

correlation predicates:

boolean addItemToCorrelationSet(channel, item, set)

boolean activateFusionFunction(channel, set)

• Computation Management

function = get/setFCFunction(channel, fusion_function)

handler = get/setFCEventHandler(channel, event, handler)

source = get/setFCAsynchInput(channel, source)

• Caching, Prefetching, Buffer management:

size = get/setFCPrefusionBufferSize(channel)

policy = get/setFCFusionPolicy(channel, fusion_policy)

policy = get/setFCPrefusionBufferExpiry(channel, expiry_policy)

• Failure and Latency Handling

timeout = get/setFCCorrelationTimeout(channel, timeout)

policy = get/setFCCorrelationTimeoutPolicy(channel, timeout_policy)

item = get/putFCErrorItem(channel, error_item)

• Status and Feedback Handling

status = get/putFCStatus(channel, status, include_inputs?)

command = get/putFCCommand(channel, command, propagate?)

Figure 3: Fusion channel API summary

26

2.4 Fusion Point Placement

DFuse uses a distributed role assignment algorithm for placing fusion points in the

network. Role assignment is a mapping from a fusion point in an application task

graph to a network node. The distributed role assignment algorithm is triggered at

the root node. The inputs to the algorithm are an application task graph (assuming

the source nodes are known), a cost function, and attributes specific to the cost

function. The output is an overlay network that optimizes the role to be performed

by each node of the network. The “goodness” of the role assignment is with respect

to the input cost function.

A network node can play one of three roles: end point (source or sink), relay, or

fusion point [4]. An end point corresponds to a data source or a sink. The network

nodes that correspond to end points and fusion points may not always be directly

reachable from one another. In this case, data forwarding relay nodes may be used to

route messages among them. The routing layer (Figure 2) is responsible for assigning

a relay role to any network node. The role assignment algorithm assigns only the

fusion point roles.

2.4.1 Placement Requirements in SN

The role assignment algorithm has to be aware of the following aspects of a SN:

2.4.1.1 Node Heterogeneity

A given node may take on multiple roles. Some nodes may be resource rich compared

to others. For example, a particular node may be connected to a permanent power

supply. Clearly, such nodes should be given more priority for taking on transmission-

intensive roles compared to others.

27

2.4.1.2 Power Constraint

A role assignment algorithm should minimize data communication since data trans-

mission and reception expend more power than computation activities in wireless

sensor networks [20]. Intuitively, since the overall communication cost is impacted by

the location of data aggregators, the role assignment algorithm should seek to find a

suitable placement for the fusion points that minimizes data communication.

2.4.1.3 Dynamic Behavior

There are two sources of dynamism in a SN. First, the application may exhibit dy-

namism due to the physical movement of end points or change in the transmission

profile. Second, there could be node failures due to environmental conditions or bat-

tery drain. So far as the placement module is concerned, these two conditions are

equivalent. In either case, the algorithm needs to find a new mapping of the task

graph onto the available network nodes.

2.4.2 The Role Assignment Heuristic

Our heuristic is based on a simple idea: first perform a naive assignment of roles to

the network nodes (initialization phase), and then allow every node to decide locally

if it wants to transfer the role to any of its neighbors (optimization and maintenance

phase). Upon completion of the naive assignment phase, a second phase of role trans-

fer begins. A node hosting any fusion point role, checks if one of its neighbor nodes

can host that role better using a cost function to determine the “goodness” of hosting

a particular role. If a better node is found then a role transfer is initiated. Since all

decisions are taken locally, every node needs to know only as much information as is

required for determining the goodness of hosting a given role for a given application

task graph. For example, if the cost function is based upon the remaining power level

at the host, every node needs to know only its own power level.

28

2.4.2.1 Initialization Phase

The procedure of finding a naive role assignment can start at any node. For simplicity,

let us say it starts at the root node, a node where an end user interacts with the

system. The user presents the application task graph to the root node. The root

node decides if it wants to host the root fusion function of the task graph based

upon its available resources. If the root node does host the root fusion function, it

delegates the task of further building the sub-trees under the root of the task graph

to one of its neighbors. For example, consider the case where the root node decides

to host the root fusion function. In this case, if the root fusion function has two

inputs from two other fusion points, the root node delegates the two subtrees, one

corresponding to each of the input fusion points, to two of its neighbors. For the

delegation of building subtrees, the root node selects two of its “richest” neighbors.

These neighbors are chosen based upon their reported resources. The chosen delegate

nodes build the subtrees following a procedure similar to the one at the root. This

recursive tree building ends when the input to the fusion points are data producer

nodes (i.e. sources). The completion notification of the tree building phase recursively

bubbles up the tree from the sources to the root.

Note that, during this phase, different fusion points are assigned to distinct nodes

whenever possible. If there are not as many neighbors as needed for delegation of the

subtrees, the delegating node assumes multiple roles. Also, even the data producing

nodes are treated similar to the non-producing nodes for the role assignment purpose

in this phase. During later phases, a cost function decides if multiple fusion points

should be assigned to the same sensor node or if data sources should not be allowed

to host a fusion point.

29

2.4.2.2 Optimization Phase

After completion of the naive tree building phase, the root node informs all other

nodes in the network about the start of the optimization phase. During this phase,

every node hosting a fusion point role is responsible for either continuing to play that

role or transferring the role to one of its neighbors. The decision for role transfer

is taken solely by the fusion node based upon local information. A fusion node

periodically informs its neighbors about its role and its health – an indicator of how

good the node is in hosting that role. Upon receiving such a message, a neighboring

node computes its own health for hosting that role. If the receiving node determines

that it can play the role better than the sender, then it informs the sender (fusion

node) of its own health and its intent for hosting that role. If the original sender

receives one or more intention requests from its neighbors, the role is transferred

to the neighbor with the best health. Thus, with every role transfer, the overall

health of the overlay network improves. Application data transfer starts only after

the optimization phase to avoid possible energy wastage in an unoptimized network.

Once the application is running, DFuse uses a third maintenance phase that works

similar to the optimization phase (same role transfer semantics). Details are presented

in Section 2.5.

2.4.3 Sample Cost Functions

Health of a node is quantified by an application-supplied cost function. The choice

of the particular set of parameters to use in a cost function depends on the figure of

merit that is important for the application at hand.

We describe four sample cost functions below. They are motivated by recent works

on power-aware routing in mobile ad hoc networks [52, 8]. The health of a node k to

run fusion role f is expressed as the cost function c(k, f). A fusion node compares its

own health with the reported health of its neighbors, and it does the role transfer if

30

there is an expected health improvement that is beyond a threshold. Note that the

lower the cost function value, the better the node health.

2.4.3.1 Minimize transmission cost - 1 (MT1)

This cost function aims to decrease the amount of data transmission required for

running a fusion function. Input data needs to be transmitted from sources to the

fusion point, and the output data needs to be propagated to the consumer nodes

(possibly across hops). For a fusion function f with m input data sources (fan-in) and

n output data consumers (fan-out), the transmission cost for placing f on node k is

formulated as shown in Figure 4. Here, t(x) represents the transmission rate of the

data source x, and hopCount(i, k) is the distance (in number of hops) between node

i and k.

cMT1(k, f) =
m

∑

i=1

t(sourcei) ∗ hopCount(inputi, k)

+
n

∑

j=1

t(f) ∗ hopCount(k, outputj)

Figure 4: Minimize Transmission Cost - 1 (MT1)

2.4.3.2 Minimize power variance (MPV)

This cost function tries to keep the power of network nodes at similar levels. If

power(k) is the remaining power at node k, the cost of placing any fusion function

on that node is as shown in Figure 5.

cMPV (k) = 1/power(k)

Figure 5: Minimize Power Variance (MPV)

31

2.4.3.3 Minimize ratio of transmission cost to power (MTP)

This cost function aims to decrease both the transmission cost and lower the difference

in the power levels of the nodes. The intuition here is that the cost reflects how long

a node can run the fusion function. The cost of placing a fusion function f on node k

can be formulated as shown in Figure 6.

cMTP (k, f) = cMT1(k, f) ∗ cMPV (k)

Figure 6: Minimize Ratio of Transmission Cost to Power (MTP)

2.4.3.4 Minimize transmission cost - 2 (MT2)

This cost function is similar toMT1, except that now the cost function behaves like a

step function based upon the node’s power level. For a powered node, the cost is same

as cMT1(k, f), but if the node’s power level goes below a threshold, then its cost for

hosting any fusion function becomes infinity. Thus, if a fusion point’s power level goes

down, a role transfer will happen even if the transfer deteriorates the transmission

cost. The cost function can be represented as shown in Figure 7.

cMT2(k, f) = (power(k) > threshold) ?

(cMT1(k, f) : INF INIT Y)

Figure 7: Minimize Transmission Cost - 2 (MT2)

2.4.4 Heuristic Analysis

For the class of applications and environments that the role assignment algorithm

is targeted, the health of the overall mapping can be thought of as the sum of the

health of individual nodes hosting the roles. The heuristic triggers a role transfer only

if there is a relative health improvement. Thus, it is safe to say that the dynamic

adaptations that take place improve the life of the network with respect to the cost

function.

32

The heuristic could occasionally result in the role assignment getting caught in

a suboptimal mapping. However, due to the dynamic nature of SN and the re-

evaluation of the health of the nodes at regular intervals, such occurrences will be

short lived. For example, if ‘minimize transmission cost (MT2)’ is chosen as the cost

function, and if the network is caught in a suboptimal mapping, that would imply

that some node is losing energy faster than an optimal node. Thus, one or more of

the suboptimal nodes will die causing the algorithm to adapt the assignment. Note

that if ‘minimize transmission cost (MT1)’ were chosen in this case, the assignment

would only be adapted if the new assignment has a lower transmission cost, regardless

of node energy possibly being below a threshold endangering network partition and

application lifetime termination. This behavior is observed in real life as well and we

show it in the evaluation section. Later in Chapter 4, we show further evaluation of

how close our role assignment heuristic approaches optimal at large application and

topology scales.

The choice of cost function has a direct effect on the behavior of the heuristic.

We examine the behavior of the heuristic for a cost function that uses two simple

metrics: (a) simple hop-count distance, and (b) fusion data expansion or contraction

information.

Source
 Relay

Fusion

Point
 Sink

1000

1000

1000

1000

1500

Source

Fusion

Point

Relay
 Sink

1000

1000

1500
 1500

(A)
 (B)

Figure 8: Linear Optimization Example

The heuristic leads mainly to two types of role transfers:

33

Two nodes are directly reachable.

fp4

fp2

fp1

1000

1000

1000

Relay

fp3

1500

fp2

fp1

1000

1000

fp3

1500

Two nodes are directly reachable.

fp4

fp2

fp1

1000

1000

1000

Relay

fp3

1500

fp2

fp1

1000

1000

fp3

1500

(A)
 (B)

Figure 9: Triangular Optimization Example

2.4.4.1 Linear Optimization

If all the inputs to a fusion node are coming via a relay node (Figure 8A), and there

is data contraction at the fusion point, then the relay node will become the new

fusion node, and the old fusion node will transfer its responsibility to the new one

(Figure 8B.) In this case, the fusion point is moving away from the sink, and coming

closer to the data source points. Similarly, if the output of the fusion node is going

to a relay node, and there is data expansion, then the relay node will act as the new

fusion node. In this case, the fusion point is coming closer to the sink and moving

away from the data sources.

2.4.4.2 Triangular Optimization

If there are multiple paths for inputs to reach a fusion point (Figure 9A), and if there

is data contraction at the fusion node, then a triangular optimization can be effected

(Figure 9B) to bring the fusion point closer to the data source points. The fusion

point will move along the input path that maximizes the savings. In the event of

data expansion at the fusion point, the next downstream node from the fusion point

in the path towards the sinks will become the new fusion node. The original fusion

point will simply act as a relay node.

34

2.5 Implementation

DFuse is implemented as a multi-threaded runtime system, assuming infrastructure

support for timestamping data produced from different sensors, and a reliable trans-

port layer for moving data through the network. Multi-threading the runtime system

enhances opportunities for parallelism in data collection and fusion function execu-

tion for streaming tasks. The infrastructural assumptions can be satisfied in various

ways. As we mentioned in Section 2.3, the timestamps associated with the data can

be virtual or real. Virtual timestamping has several advantages, the most impor-

tant of which is the fact that the timestamp can serve as a vehicle for propagating

the causality between raw and processed data from a given sensor. Besides, virtual

timestamps allows an application to choose the granularity of real-time interval for

chunking streaming data. Further, the runtime overhead is minimized since there is no

requirement for global clock synchronization, making virtual time synchrony attrac-

tive for SN. For transport, given the multi-hop network topology of SN, a messaging

layer that supports ad hoc routing is desirable.

Assuming above infrastructure support, implementing DFuse consists of the fol-

lowing steps:

1. Implementing a multi-threaded architecture for the fusion module that supports

the basic fusion API calls (Section 2.3), and the other associated optimizations

such as prefetching;

2. Implementing the placement module that supports the role assignment tasks

(Section 2.4); and

3. Interfacing the two modules for both instantiating the application task graph

and invoking changes in the overlay network during execution.

35

The infrastructural requirements are met by a programming system called Stam-

pede [46, 1]. A Stampede program consists of a dynamic collection of threads commu-

nicating timestamped data items through channels . Stampede also provides registers

with full/empty synchronization semantics for inter-thread signaling and event no-

tification. The threads, channels, and registers can be launched anywhere in the

distributed system, and the runtime system takes care of automatically garbage col-

lecting the space associated with obsolete items from the channels. Though Stam-

pede’s messaging layer does not support adaptive multi-hop ad hoc routing, we adopt

a novel way of performing the evaluation with limited routing support (Section 2.6).

For the ease of evaluation, we have decoupled the fusion and placement module im-

plementations. Their interface is a built-in communication channel and a protocol

that facilitates dynamic task graph instantiation and adaptation using the DFuse

API. Transmission rates exhibited by the application are collected by this interface

and communicated to the placement module.

2.5.1 Data Fusion Module

We have implemented the fusion architecture in C as a layer on top of the Stampede

runtime system. All the buffers (input buffers, fusion buffer, and prefetch buffer)

are implemented as Stampede channels. Since Stampede channels hold timestamped

items, it is a straightforward mapping of the fusion attribute to the timestamp as-

sociated with a channel item. The Status and Command registers of the fusion

architecture are implemented using the Stampede register abstraction. In addition to

these Stampede channels and registers that have a direct relationship to the elements

of the fusion architecture, the implementation uses additional Stampede channels and

threads. For instance, there are prefetch threads that gather items from the input

buffers, fuse them, and place them in the prefetch buffer for potential future requests.

This feature allows latency hiding but comes at the cost of potentially wasted network

36

bandwidth and hence energy (if the fused item is never used). Although this feature

can be turned off, we leave it on in our evaluation and ensure that no such wasteful

communication occurs. Similarly, there is a Stampede channel that stores requests

that are currently being processed by the fusion architecture to eliminate duplication

of work.

The createFC call from an application thread results in the creation of all the

above Stampede abstractions in the address space where the creating thread resides.

An application can create any number of fusion channels (modulo system limits) in

any of the nodes of the distributed system. An attachFC call from an application

thread results in the application thread being connected to the specified fusion channel

for getting fused data items. For efficient implementation of the getFCItem call, a

pool of worker threads is created in each node of the distributed system at application

startup. These worker threads are used to satisfy getFCItem requests for fusion

channels created at this node. Since data may have to be fetched from a number of

input buffers to satisfy the getFCItem request, one worker thread is assigned to each

input buffer to increase the parallelism for fetching the data items. Once fetching

is complete, the worker thread rejoins the pool of free threads. The worker thread

to fetch the last of the requisite input items invokes the fusion function and puts

the resulting fused item in the fusion buffer. This implementation is performance-

conscious in two ways: first, there is no duplication of fusion work for the same fused

item from multiple requesters; second, fusion work itself is parallelized at each node

through the worker threads.

The duration to wait on an input buffer for a data item to be available is specified

via a policy flag to the getFCItem. For example, if try for time delta policy is speci-

fied, then the worker thread will wait for time delta on the input buffer. On the other

hand, if block policy is specified, the worker thread will wait on the input buffer until

the data item is available. The implementation also supports partial fusion in case

37

some of the worker threads return with an error code during fetch of an item. Taking

care of failures through partial fusion is a very crucial component of the module since

failures and delays can be common in SN.

As we mentioned earlier, Stampede does automatic reclamation of storage space

of data items in channels. Stampede garbage collection uses a global lower bound

for timestamp values of interest to any of the application threads (which is derived

from a per-thread state variable called thread virtual time). Our fusion architecture

implementation leverages this feature for cleaning up the storage space in its internal

data structures (which are built using Stampede abstractions).

2.5.2 Placement Module

The placement module implementation is an event-based simulation of the distributed

heuristic for assigning roles (Section 2.4) in the network. It takes an application task

graph and the network topology information as inputs, and generates an overlay

network, wherein each node in the overlay is assigned a unique role of performing

a fusion operation. It currently assumes an ideal routing layer (every node knows

a shortest-hop route to every other node) and an ideal MAC layer (no contention).

It should be noted that any behavior different from this ideal one can be encoded,

if necessary, in an appropriate cost function. Similarly, any enhancement in the

infrastructure capabilities such as multicast can also be captured in an appropriate

cost function.

The placement module runs in three phases, each for a pre-defined duration. The

application is instantiated only at the end of the second phase. The three phases are:

1. Initialization phase: This phase starts with registering the “build naive tree”

event at the root node with the application task graph as the input. If the task

graph does not have any rate information (expected data rates of sources and

fusion functions) available, root node invokes the bottom-up naive assignment

38

algorithm, else it decided between bottom-up and top-down assignment based

upon the number of data contracting / expanding fusion functions. The task

graph is simply mapped to the network starting from the root node or the data

sources as described in Section 2.4, disregarding cost function evaluation. At

the end of this phase, there will be a valid, though naive, role assignment. Every

node will know its role, if any, and it will know the addresses of the producer

and consumer nodes corresponding to its role.

2. Optimization phase: In this phase, the heuristic runs with a cost-function based

upon the hop-count information and fusion function characteristic (data expan-

sion or contraction) at the fusion points. The application has not yet been

launched. Therefore the nodes do not have actual data transmission rates to in-

corporate into the cost function. The nodes exchange the hop-count and fusion

characteristics information frequently to speed up the optimization, and lead to

an initial assignment of roles prior to launching the application.

3. Maintenance phase: This phase behaves similarly to the optimization phase,

with the difference that the application is actually running. Therefore, the cost

function will use real transfer rates from the different nodes in possibly changing

the role assignments. In principle, we could have moved directly from the first

phase to this phase. The reason for the second (optimization) phase prior to

application startup is to avoid excessive energy drain with actual application

data transmissions before the network stabilizes to an initial good mapping.

The frequency of role transfer request broadcasts in the third phase is a tunable

parameter.

During the optimization phase, the cost function uses the fusion function charac-

teristics such as data expansion or contraction. If such information is not available

for a role, then data contraction is assumed by the placement module. If there are

39

multiple consumers for data produced at some fusion point, then it is tricky to judge

if there is an effective data expansion or contraction at such nodes. Even if the fusion

characteristic indicates that there is data contraction, if the same data is to be trans-

mitted to more than one consumer, effectively there may be data expansion. Also,

if two or more consumers are within a broadcast region of the fusion point, then a

single transmission may suffice to transport the data to all the consumers, and this

will lessen the effect of the data expansion. However, these effects are accountable in

the cost function.

2.6 Evaluation

We have performed an evaluation of the fusion and placement modules of the DFuse

architecture at two different levels: micro-benchmarks to quantify the overhead of the

primitive operations of the fusion API including channel creation, attachments/detachments,

migration, and I/O; and ability of the placement module to optimize the network

given a cost function. The experimental setup uses a set of wireless iPAQ 3870s

running Linux “familiar” distribution version 0.6.1 together with a prototype im-

plementation of the fusion module discussed in section 2.5.1. We first describe the

micro-benchmarks and then the results with the placement module, both for a small

network of twelve iPAQs.

2.6.1 Fusion API Measurements

Figures 10 and 11 show the cost of the DFuse API. In Figure 10, each API cost has

3 fields - local, ideal, and API overhead. Local cost indicates the latency of operation

execution without any network transmission involved, ideal cost includes messaging

latency only, and API overhead is the subtraction of local and ideal costs from actual

cost on the iPAQ farm. Ideally, the remote call is the sum of messaging latency and

local cost. Fusion channels can be located anywhere in the sensor network. Depending

on the location of the fusion channel’s input(s), fusion channel, and consumer(s), the

40

0 20 40 60 80 100 120

consumeFCItem

getFCItem(1K) - 0 1 2

getFCItem(10) - 0 1 2

getFCItem(1K) - 0 0 1

getFCItem(10) - 0 0 1

getFCItem(1K) - 0 1 0

getFCItem(10) - 0 1 0

getFCItem(1K) - 0 1 1

getFCItem(10) - 0 1 1

putFCItem(1K)

putFCItem(10)

detachFC

attachFC

destroyFC

createFC

Time (ms)

Local
Ideal (Messaging Latency Only)
API Overhead for Remote

Number in () = Item Size

- Configuration of Different
 Input, Fusion Channel, and
 Consumer locations
 (example)
 0 1 1 - InpAS:0, ChanAS:1,
 ConsAS:1

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Number of Items in Fusion Channel (Each item size = 1024 Bytes)

C
o

st
 (

m
s)

API Overhead

Ideal Cost(Messaging Latency Only)

R
2R

R
2L

L2R

L2R - Local to Remote moveFC
R2L - Remote to Local moveFC
R2R - Remote to Remote moveFC

(a) (b)Figure 10: Fusion Channel APIs’ cost. See Figure 11 for moveFC cost.

minimum cost varies because it can involve network communications. getFCItem is

the most complex case, having four different configurations and costs independent

of the item sizes being retrieved. For results shown in Figure 10, we create fusion

channels with capacity of ten items and one primitive Stampede channel as input.

Reported latencies are the average of 1000 iterations.

On our iPAQ farm, netperf [38] indicates a minimum UDP roundtrip latency of

4.7ms, and from 2-2.5Mbps maximum unidirectional streaming TCP bandwidth. Ta-

ble 1 depicts how many round trips are required and how many bytes of overhead exist

for DFuse operations on remote nodes. From these measurements, we show messaging

latency values in Figure 10 for ideal case costs on the farm. We calculate these ideal

costs by adding latency per round trip and the cost of the transmission of total bytes,

presuming 2Mbps throughput. Comparing these ideal costs in Figure 10 with the

actual total cost illustrates reasonable overhead for our DFuse API implementation.

The maximum cost of operations on a local node is 5.3ms. For operations on remote

nodes, API overhead is less than 74.5% of the ideal cost. For operations with more

41

Message Message
Round overhead Round overhead

API Trips (bytes) API Trips (bytes)

createFC 3 596 getFCItem(1K) - 0 1 0 6 3112
destroyFC 5 760 getFCItem(10) - 0 0 1 10 1738
attachFC 3 444 getFCItem(1K) - 0 0 1 10 4780
detachFC 3 462 getFCItem(10) - 0 1 2 10 1738

putFCItem(10) 1 202 getFCItem(1K) - 0 1 2 10 4780
putFCItem(1K) 1 1216 consumeFCItem 2 328

getFCItem(10) - 0 1 1 4 662 moveFC(L2R) 20 4600
getFCItem(1K) - 0 1 1 4 1676 moveFC(R2L) 25 5360
getFCItem(10) - 0 1 0 6 1084 moveFC(R2R) 25 5360

Table 1: Number of round trips and message overhead of DFuse. See Figures 10 and
11 for getFCItem and moveFC configuration legends.

than 20ms observed latency, API overhead is less than 53.8% of the ideal cost. This

figure also illustrates that messaging constitutes the majority of observed latency of

API operations on remote nodes. Note that ideal costs do not include additional

computation and synchronization latencies incurred during message handling.

The placement module may cause a fusion point to migrate across nodes in the

sensor fusion network. Migration latency depends upon many factors: the number of

inputs and consumers attached to the fusion point, the relative locations of the node

where moveFC is invoked to the current and resulting fusion channel, and amount of

data to be moved. Our analysis in Figure 11 assumes a single primitive stampede

channel input to the migrating fusion channel, with only a single consumer. This

analysis shares the same ideal cost calculation methodology as for Figure 10. Our

observations show that migration cost increases with number of input items and

that migration from a remote to a remote node is more costly than local to remote or

remote to local migration for a fixed number of items. Reported latencies are averages

over 300 iterations for moveFC.

42

0 20 40 60 80 100 120

consumeFCItem

getFCItem(1K) - 0 1 2

getFCItem(10) - 0 1 2

getFCItem(1K) - 0 0 1

getFCItem(10) - 0 0 1

getFCItem(1K) - 0 1 0

getFCItem(10) - 0 1 0

getFCItem(1K) - 0 1 1

getFCItem(10) - 0 1 1

putFCItem(1K)

putFCItem(10)

detachFC

attachFC

destroyFC

createFC

Time (ms)

Local
Ideal (Messaging Latency Only)
API Overhead for Remote

Number in () = Item Size

- Configuration of Different
 Input, Fusion Channel, and
 Consumer locations
 (example)
 0 1 1 - InpAS:0, ChanAS:1,
 ConsAS:1

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Number of Items in Fusion Channel (Each item size = 1024 Bytes)

C
o

st
 (

m
s)

API Overhead

Ideal Cost(Messaging Latency Only)

R
2R

R
2L

L2R

L2R - Local to Remote moveFC
R2L - Remote to Local moveFC
R2R - Remote to Remote moveFC

(a) (b)
Figure 11: Fusion channel migration (moveFC) cost

2.6.2 Placement Algorithm Measurements

To verify the design of the fusion module and placement algorithm, we have imple-

mented the tracker application (Figure 1) using the fusion API and deployed it on

the iPAQ farm.

Figure 13 shows the topological view of the iPAQ farm used for the tracker appli-

cation deployment. It consists of twelve iPAQ 3870s configured identically to those

in the measurements above. Node 0, where node i is the iPAQ corresponding to ith

node of the grid, acts as the sink node. Nodes 9, 10, and 11 are the iPAQs acting as

the data sources. The location of filter and collage fusion points are guided by the

placement module.

The placement module simulator runs on a separate desktop in synchrony with

the fusion module. At regular intervals, it collects the transmission details (number

of bytes exchanged between different nodes) from the farm. It uses a simple power

model (discussed later) to account for the communication cost and to monitor the

43

(A) MT1: Minimize Transmission Cost - 1

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c
(B

yt
es

/S
ec

o
n

d)

Actual Placement Best Placement

(B) MPV: Minimize Power Variance

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c
(B

yt
es

/S
ec

o
n

d)

(C) MTP: Ratio of Transmission Cost to Available Power

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
o

rk
 T

ra
ffi

c
(B

yt
es

/S
ec

o
n

d)

(D) MT2: Minimize Transmission Cost - 2

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)
N

et
w

o
rk

 T
ra

ffi
c

(B
yt

es
/S

ec
o

n
d)

Actual Placement Best Placement Actual Placement Best Placement

Actual Placement Best Placement

Figure 12: The network traffic timeline for different cost functions. X axis shows the
application runtime and Y axis shows the total amount of data transmission per unit
time. Optimization runs until 2000ms, and then maintenance phase commences.

power level of different nodes. If the placement module decides to transfer a fusion

point to another node, it invokes the moveFC API to effect the role transfer.

For transmission rates, we have tuned the tracker application to generate data at

consistent rates as shown in Figure 1, with x equal to 6KBytes per minute. This is

equivalent to a scenario where cameras scan the environment once every minute, and

produce images ranging in size from 6 to 12KBytes after compression.

The network is organized as the grid shown in Figure 13. For any two nodes, the

routing module returns the path with a minimum number of hops across powered

nodes. To account for power usage at different nodes, the placement module uses

a simple approach. It models the power level at every node, adjusting them based

upon the amount of data a node transmits or receives. The power consumption

corresponds to ORiNOCO 802.11b PC card specification [45]. Our current power

44

0

Sink

1

2
 5

4

3

8

7

6

11

Src

10

Src

9

Src

Figure 13: iPAQ Farm Experiment Setup. An arrow represents that two iPAQs are
mutually reachable in one hop.

0

10

20

30

40

50

60

70

80

90

100

Run Time

(normalized)

Remaining

Capacity (%)

Number of Role

Transfers

(absolute)

MT2

MPV

MTP

(B)
(A)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

42
0

16
20

3E
+

05

8E
+

05

1E
+

06

2E
+

06

2E
+

06

3E
+

06

3E
+

06

3E
+

06

4E
+

06

Time (ms)

P
o

w
er

 V
ar

ia
n

ce

MT2

MPV

MTP

Figure 14: Comparison of different cost functions. Application runtime is normalized
to the best case (MT2), and total remaining power is presented as the percentage of
the initial power.

model only includes network communication costs. After finding an initial mapping

(naive tree), the placement algorithm runs in optimization phase for two seconds.

The length of this period is tunable and it influences the quality of mapping at the

end of the optimization phase. During this phase, fusion nodes wake up every 100ms

to determine if role transfer is indicated by the cost function. After optimization, the

algorithm runs in maintenance phase until the network becomes fragmented (some

consumer cannot reach one of its inputs). During the maintenance phase, role transfer

decisions are evaluated every 50 seconds. The role transfers are invoked only when

the health improves by a threshold of 5%.

Figure 12 shows the network traffic per unit time (sum of the transmission rate of

every network node) for the cost functions discussed in Section 2.4.3. It compares the

network traffic for the actual placement with respect to the best possible placement

45

of the fusion points (best possible placement is found by comparing the transmission

cost for all possible placements). Note that the application runtime can be increased

by simply increasing the initial power level of the network nodes.

In MT1, the algorithm finds a locally best placement by the end of optimization

phase itself. The optimized placement is only 10% worse than the best placement.

The same placement continues to run the application until one of the fusion points

(one with the highest transmission rate) dies, i.e. the remaining capacity becomes

less than 5% of the initial capacity. If we do not allow role migration, the application

will stop at this time. But allowing role migration, as inMT2, enables the migrating

fusion point to keep utilizing the power of the available network nodes in the locally

best possible way. Results show that MT2 provides maximum application runtime

that is more than twice as long as that for MT1. The observed network traffic

is at most 12% worse than the best possible for the first half of the run, and it is

same as the best possible rate for the latter half of the run. MPV performs worst,

while MTP has comparable network lifetime as MT2. Figure 12 also shows that

running the optimization phase before instantiating the application improves the total

transmission rate by 34% compared to the initial naive placement.

Though MPV does not provide comparably good network lifetime (Figure 12B),

it provides the best (least) power variance compared to other cost functions (Fig-

ure 14A). Since MT1 and MT2 drain the power of fusion nodes completely before

role migration, they show worst power variance. Also, the number of role migrations

is minimum compared to other cost functions (Figure 14B). These results show that

the choice of cost function should be dependent upon application context and network

condition. If, for an application, role transfer is complex and expensive, but network

power variance is not an issue, then MT2 should be preferred. However, if network

power variance needs to be minimized and role transfer is inexpensive, MTP should

be preferred. Simulation results for other task graph configurations have been found

46

to provide similar insight into the cost functions’ behavior.

2.6.3 Discussion

By running the application and role assignment modules separately, we have simpli-

fied our evaluation approach. This approach has some disadvantages such as limited

ability to communicate complex resource monitoring results. Transferring every detail

of the running state from the fusion module to the placement module is prohibitive

in our decoupled setup due to the resulting network perturbation. Such perturba-

tion, even when minimal state is being communicated between the modules, prevents

accurate network delay metric usage in a cost function. However, our simplified eval-

uation design has allowed us to rapidly build prototypes of the fusion and placement

modules. We show extensive studies based on our DFuse architecture later in this

thesis, including scalability analyses of the DFuse role assignment heuristic.

2.7 Related Work

Data fusion, or in-network aggregation, is a well-known technique in sensor networks.

Research experiments have shown that it saves considerable amount of power even

for simple fusion functions like finding min, max or average reading of sensors [33,

21]. While these experiments and others have motivated the need for a good role

assignment approach, they do not use a dynamic heuristic for the role assignment

and their static role assignment approach will not be applicable to streaming media

applications.

DFuse employs a script based interface for writing applications over the network

similar to SensorWare [5]. SensorWare is a framework for programming sensor net-

works, but its features are orthogonal to what DFuse provides. Specifically, 1) Sensor-

Ware does not employ any strategy for assigning roles to minimize the transmission

cost, or dynamically adapt the role assignment based on available resources. It leaves

the onus to the applications. 2) Since DFuse focuses on providing support for fusion

47

in the network, the interface to write fusion-based applications using DFuse is quite

simple compared to writing such applications in SensorWare. 3) DFuse provides op-

timizations like prefetching and support for buffer management which are not yet

supported by other frameworks. Other approaches, like TAG [33], look at a sensor

network as a distributed database and provide a query-based interface for program-

ming the network. TAG uses an SQL-like query language and provides in-network

aggregation support for simple classes of fusion functions. But TAG assumes a static

mapping of roles to the network, i.e. a routing tree is built based on the network

topology and the query in hand.

Recent research in power-aware routing for mobile ad hoc networks [52, 8] proposes

power-aware metrics for determining routes in wireless ad hoc networks. We use

similar metrics to formulate different cost functions for our DFuse placement module.

While designing a power-aware routing protocol is not the focus of this thesis, routing

protocol information could be used to define more flexible cost functions.

2.8 DFuse Framework Conclusion

As the form factor of computing and communicating devices shrinks and the capabili-

ties of such devices continue to grow, it has become reasonable to imagine applications

that require rich computing resources becoming viable candidates for future sensor

networks. With this futuristic assumption, we have embarked on designing APIs for

mapping fusion applications such as distributed surveillance on wireless ad hoc sen-

sor networks. We argue that the proposed framework will ease the development of

complex fusion applications for future sensor networks. Our framework uses a novel

distributed role assignment algorithm that increases the application runtime by doing

power-aware, dynamic role assignment. We validate our arguments by designing a

sample application using our framework and evaluating the application on an iPAQ

based sensor network testbed. We use models of our DFuse framework as the basis for

48

studies in the following chapters, and give directions for future framework research in

Chapter 6.

49

CHAPTER III

MSSN: A SIMULATOR FOR EVALUATING

DFUSE MIDDLEWARE

3.1 Introduction

This chapter presents the motivation, design and implementation of our simulator for

evaluating the DFuse middleware in a much larger context of application workloads,

SN devices and scales than afforded by our implementation of DFuse in Chapter 2.

Our simulator enables analysis of application performance under a variety of device

radio, CPU and memory power models.

Recent SN middleware, such as DFuse (Chapter 2, [31]) and SensorWare [5], pro-

vide specific techniques to support our vision of future SN fusion applications, in-

cluding efficient stream transport, data fusion capabilities, and dynamic placement

of processing in the network. Taking from DFuse, we use data fusion to describe

the operation of any general purpose application function that transforms, or fuses,

one or more input streams into one output stream. Examples of fusion functions are

image comparators and MPEG compressors. Fusion functions connect to form the

task graph for a fusion application. The location of each fusion function’s evalua-

tion within the network directly impacts communication costs for fetching inputs and

transmitting outputs. DFuse monitors fetching and transmitting of data to infer com-

munication costs and to model sensor battery levels. Based on application provided

policy, in the form of a cost function, DFuse locally decides whether to migrate a

fusion function to a neighbor node. Example cost functions could target transmission

50

cost minimization or battery level equalization. Fusion function migration is essen-

tially dynamic adaptation of the application task graph’s mapping to the underlying

SN. DFuse can also prefetch and buffer streaming input items on behalf of fusion

functions to reduce latency and enable pipelined parallelism of stream processing.

To study how these adaptive migration and prefetching middleware mechanisms

perform, we need to include more than DFuse’s cost model that is based only on

application-level communication [31]. Node components such as CPU and memory

impact energy consumption and processing latency. More generally, for any future

SN, it is not always clear how to obtain greatest efficiency given the array of SN

node hardware and middleware capabilities. For example, consider decreasing CPU

clock frequency to save processing energy. While possibly increasing network lifetime,

slower processing may increase latency beyond tolerable limits for a compute-intensive

application. On the other hand, if an application is communication-intensive and per-

formance is limited by available network bandwidth at a node, then slower processing

may save energy without compromising performance. Similar, often non-intuitive,

optimizations are possible, motivating detailed studies to guide SN tuning.

Existing SN evaluation frameworks do not provide the combination of flexible

node CPU, memory and radio power and latency models, and an extensible set

of middleware mechanisms for fusion applications including adaptive migration and

prefetching. We develop a SN planning tool, MSSN (Middleware Simulator for Sensor

Networks), enabling evaluation of a variety of fusion application workloads, middle-

ware features, and node architectures. Using observed latency, throughput, number

of processed items, and network lifetime as figures of merit, we evaluate trade-offs

among the above parameters. Building on the campus surveillance application from

Chapter 1 and the DFuse framework from Chapter 2, this chapter presents MSSN.

This event driven simulator enables modeling of futuristic SN with on the order of

1000 nodes, surpassing previous DFuse simulators and implementations [57] capable

51

of modeling the middleware on only tens of nodes with neither CPU nor memory

power models.

The rest of this chapter is structured as follows. Pertinent related work is pre-

sented in Section 3.2. Our simulator’s design and implementation, including initial

application workload, device and middleware models is presented in Section 3.3. Re-

sults of using MSSN to quantify SN performance follow in Chapter 4.

3.2 Related Work

Our vision of future SN applications is reinforced by recent middleware initiatives such

as IrisNet [14], SensorWare [5] and DFuse [31] to support smart sensors, and current

technology trends such as voltage, bandwidth, and frequency scaling [40, 48, 44, 12].

IrisNet builds on the ubiquity of cameras and their role in serving as a source for

abundant information. IrisNet uses a database centric approach to publish generated

data, and uses XML to query the network. Sensors send their data to a resource-

rich proxy that processes the data to find interesting features and update the sensor

database distributed across the network. As the processing nodes are always powered,

IrisNet does not care about optimizing energy consumption.

SensorWare is a framework for programming sensor networks, but its features are

orthogonal to DFuse, core to our MSSN middleware model: 1) SensorWare does not

use an integrated strategy for dynamic processing placement to minimize cost, and

2) DFuse provides a fusion point abstraction with prefetching and streaming buffer

support. SensorWare “scripts” needing these capabilities would have to encode them

in the application.

DFuse middleware supports migration of processing across nodes to save energy

or to balance load using application-specified cost functions. However, previous re-

sults [31] account only for transmission energy and not for energy consumed by pro-

cessing or memory at a node. Also, the DFuse study, while based on an actual SN

52

deployment, is limited to 12 nodes and is bound to their hardware characteristics. Our

simulation-based study supports evaluation of varying middleware and architectural

characteristics for SN larger than 1000 nodes.

A primary goal of MSSN is to incorporate more representative sources of SN en-

ergy usage beyond the radio, such as CPU and memory hardware. Existing wireless

simulators do not incorporate fusion point mechanisms we evaluate (GloMoSim [3],

NESLsim [47]), are not scalable (ns2-wireless [9]), or are specific to contemporary

motes (TOSSIM [32] , Em* [16], and Prowler [50]). MSSN focuses on modeling en-

ergy usage and performance of DFuse-like middleware for a whole range of futuristic

sensor node architectures, requiring a fairly detailed implementation of the middle-

ware inside the simulator and a decoupling from a specific target device. Coupling

MSSN with SN MAC and Routing layer simulators, such as GlomoSim or NESLsim,

would speed relaxation of current immobile sensor node and ideal MAC and routing

layer assumptions used by MSSN, and is one possible avenue for future research (see

Chapter 6).

In pursuit of quality of service support and saving energy, researchers have de-

veloped techniques for adapting the application, middleware [41], OS [39], network

protocols [58], and hardware. There is a need to look into adaptation in a coordinated,

cross-layer manner and our study is an effort in that direction.

3.3 Evaluation Methodology

To quantify SN performance, we build an event driven Middleware Simulator for

Sensor Networks (MSSN) encompassing fusion application workloads, devices, and

middleware. We use this simulator to show trade-offs among tunable middleware

and architecture parameters for each of two large application workloads, and analyze

these results to reveal non-intuitive tuning guidelines to assist SN planning. Previous

DFuse evaluations are specific to a real iPAQ deployment and a simple power model

53

that accounts only for stream communication energy cost, and show that MTP and

MT2 yield longer lifetime than MPV [31]. Furthermore, these previous studies are

limited in both topology and application scale.

To constrain the search space, we 1) use a model of DFuse as our middleware

to perform fusion, migration, and prefetching of items needed for fusion; 2) assume

all SN nodes’ initial battery levels and CPU, radio, and memory power models are

the same for an experiment; 3) use video streams in place of all kinds of streams;

4) assume fixed node locations, but allow fusion points to relocate using the DFuse

migration feature; 5) assume greedy sinks that immediately request their next inputs,

maximizing throughput; and 6) assume fusion functions exhibit static behavior (their

latency and footprints do not vary with time).

3.3.1 Application Workloads

For our large-scale application workloads, we model the motivating campus surveil-

lance application, presented in Chapter 1, as a general fusion application that per-

forms hierarchical in-network processing on streams produced initially by cameras.

We model this application with a representative set of fusion functions shown in Ta-

ble 2. Collage output is a concatenation of two input images, while Select outputs

the brighter of two input images. MotionDetect is based on inter-frame differencing,

and FD/FR is a CPU-intensive face detection and recognition function.

Parameters in Table 2 directly impact energy consumption. Cycle counts cor-

respond to active CPU energy consumption. Input and output footprints determine

streaming communication costs. Persistent fusion function state, such as face detector

models, plus buffered inputs and outputs determines the amount of state communi-

cated during fusion point migration. For FD/FR, we use previously published time

measurements [30] using a 206MHz SA-1100 iPAQ H3600. We report results from our

benchmarks for the remainder, using a similar 206MHz iPAQ 3870 platform running

54

Footprint (KB) Measured Derived
Fusion Communication Persistent Time Instruction

Function Input Output State (ms) Count Cycles CPI

Collage 56*2 112 0 3.9 309K 803.4K 2.59
Select 56*2 56 0 3.5 327K 721K 2.20

EdgeDetect 56 56 0 12.7 1844K 2616.2K 1.42
MotionDetect 56 56 94 4.9 N/A 1009K N/A

FD/FR 30 30 3500 9510 N/A 1959M N/A

Table 2: Fusion Function Costs: Communication and persistent state footprints
are from code inspection, and required number of processor cycles are derived from
microbenchmarks. Required cycles are confirmed by instruction counts from code
inspection and reasonable derived CPI where available.

Linux “familiar” distribution version 0.6.1, verifying measured time using CPI derived

from instruction counts. Instruction counts are determined by inspection of assem-

bly code generated by the gcc 2.95.2 ARM cross-compiler with -c -g -Wa,-a,-ad

options. These functions are small and iterative, so SA-1110 with 16K-Icache and

8K-Dcache should obtain frequent cache hits and low cycles per instruction (CPI) as

shown in Table 2. We model a CPU-intensive workload with a task graph including

FD/FR, and a communication-intensive workload without using FD/FR.

To construct an arguably simple model for a surveillance application task graph,

we compose functions listed in Table 2 together, observing their arity: Collage and

Select each fuse two inputs into one output, while EdgeDetect, MotionDetect and

FD/FR each transform a single input into one output. For these functions, all inputs

and outputs are a frame of video. Figure 15 depicts the general structure we construct:

each input of a two-input fusion function comes from the output of a distinct one-

input fusion function, and the input of a one-input fusion function comes from the

output of a two-input fusion function. Following these simple rules, we construct a

tree-like task graph, where the maximum length path from the root (sink) to any

camera (source) is constant. This construction methodology enables easy scaling of

the number of fusion functions, as the number of fusion operations is a function of the

55

Figure 15: Expanded view of the campus-wide surveillance application model’s task
graph

number of cameras in this model. We randomly choose either Collage or Select when

connecting a two-input function, and likewise randomly choose from EdgeDetect,

MotionDetect, and FD/FR when connecting a one-input function.

For these initial studies with MSSN, we constrain our application’s behavior to

be static in terms of the amount of processing required at each kind of fusion point

for every iteration on streaming data. For example, FD/FR will always take 1959

million cycles of a SN node’s CPU to process one input image of size 56KB. We relax

this static application behavior constraint later in Chapter 4.

Astute readers will observe that function input and output data sizes differ some-

what in Table 2. Microbenchmarking existing functions from a variety of sources

leads to these differences. For the purpose of calculating transmission energy and

latency between functions where the I/O sizes differ, we assume that each item has

the size of the producer’s output. For example, if a Select gets one of its inputs from

56

idle
Collage
EdgeD
Relay
Sink
Source
Multiple
FD/FR
Selection
MotionD

Figure 16: Sample SN topology showing an initial overlay mapping for the campus-
wide surveillance application

a FD/FR, then each of the items communicated to Select from FD/FR is assumed

to be 30KB.

Given the task graph, we then construct the initial overlay network. First, we

randomly scatter SN nodes within a square “campus”. Next, we use an algorithm to

map the task graph’s fusion functions to network nodes. The result of this algorithm

approximates superimposing Figure 15 onto a square campus. As mapped fusion func-

tions (now, fusion points) may require multi-hop connections to reach their neighbors

in the task graph, we connect fusion points using relay nodes as necessary. Relays act

as data forwarders. We place relay nodes along a shortest hop path between fusion

points, forming multi-hop relay chains to connect the overlay.

Figure 16 depicts a sample overlay network topology from our experiments, prior

to any fusion point migrations and node failures. 64 cameras are located to the left

and the sink is located in the middle of the right edge. 800 additional nodes are placed

57

within the campus. Darker lines indicate actively mapped connections between fusion

points, along relay chains where necessary. Some nodes host more than one fusion

point simultaneously.

Our previous small application studies in Chapter 2 ignore node CPU and mem-

ory costs and indicate that MT2 and MTP achieve greater lifetime extension than

MPV. For our initial large application tradeoff study using MSSN, we choose the

MPV cost function to direct migration. We expect that lifetime will be extended

with this cost function for large applications similar to our earlier small application

study. Based on trends observed in small application studies, we expect that MT2

and MTP would yield even greater lifetime extensions than MPV for large applica-

tions, but we wish to observe a lower bound on lifetime extension by using MPV.

3.3.2 Power Models

To show trade-offs among tunable parameters of middleware and node architecture

for the large-scale workloads, we use power models based on contemporary devices.

3.3.2.1 Processor Power Model

Voltage scaling is a popular technique for saving energy in today’s CMOS micro-

processors. Energy consumption in CMOS circuits can be accurately represented as

a simple equation [6] that says clock frequency reduction linearly decreases energy

consumption, and voltage reduction results in a quadratic decrease in energy con-

sumption. From the SA-1100 specification, we find that the processor consumes at

most 230 mW at 133 MHz, and at most 330 mW at 206 MHz at 1.5 Volts [24].

Power measurement experiments on SA-1100 microprocessor indicate that power re-

quirement increases monotonically with increase in clock frequency [54, 44]. Earlier

research on SA-110 confirms the linear relationship [37]. We use a linear model for

energy consumption based on these two data points for determining energy usage at

clock speeds from 59-206MHz.

58

Mode Power (mW) Power (mW)
802.11b @ 11Mbps Bluetooth @ ∼721 Kbps

Transmit 1600 102
Receive 950 165
Listen 805 66
Sleep 60 30

Table 3: Radio power model

3.3.2.2 Memory Power Model

Memory is also a major source of energy consumption, especially for memory-intensive

workloads [54]. But, its impact on overall energy consumption is difficult to predict

because a change in clock frequency changes the available memory bandwidth in a

non-linear fashion, and it also affects the energy consumption for memory access [44].

We use a simplified model for memory access energy breakdown. We assume that

memory works in three modes similar to the operation of Direct Rambus DRAM

(RDRAM): active, idle, and sleep. Power consumption in these modes is as cited by

Fan et al. [12] (300 mW active, 20 mW idle, 3 mW sleep). We assume that while

the CPU is executing a fusion function, the whole memory is being accessed actively.

In a realistic scenario, CPU execution and memory activity will be interleaved, and

memory will keep switching between active and standby modes during CPU execution.

Our assumption accounts for the worst case energy consumption by memory and it

also simplifies simulation.

3.3.2.3 Communication Power Model

Radio is the communication medium in the SN domain we consider, and it is the most

power hungry among the components of the SN node architecture. Hence, saving

communication energy is critical to increasing application lifetimes. Fusion applica-

tions such as campus surveillance will require significant bandwidth relative to the

limited communication capabilities of contemporary motes. We therefore choose to

59

use models of contemporary radios for short-range digital communication with band-

widths over 500Kbps. We choose two common packages with differing bandwidths

and power requirements to observe performance impacts of using a relatively energy-

efficient, slow radio compared to using a more power-hungry, fast radio. We expect

that a similar variety of radio packages will become available in form factors sufficient

for SN nodes in the future.

For our simulations, power consumption for different radio modes is shown in Table

3. We use numbers corresponding to two different bandwidths: one with 802.11b

(Orinoco card) [45], and another for Bluetooth [49]. Though 802.11b can operate at

multiple data rates, corresponding power specifications are unavailable for Orinoco.

We use only one transmission rate for each of the two radios. Bluetooth numbers are

valid only for shorter transmission range (∼66 ft for Class 2 devices) compared to the

range of 802.11b (∼500 ft in open and ∼125ft in closed space). We scale network size

with respect to radio range to have the same initial topology across our experiments.

We observe that energy drain by idle nodes waiting in listen mode for long periods

of time may dominate overall network energy use. One way to reduce this cost is to

impose a duty cycle on the network nodes, enabling them to incur lower sleep radio

costs for much of the time they would have been in listen mode otherwise. This

is a common practice among today’s motes, designed for sleeping over 99% of the

time. We therefore include a variant of the radio power model that assumes an

optimal sleep duty cycle such that a radio never uses listen mode, but uses sleep

mode instead. Having such a duty cycle incurs scheduling overhead. Rather than

imposing an arbitrary overhead onto our general SN model, we choose to explore

the lower bound of radio cost in listen mode by including this optimal sleep mode

as an optional radio power model. Previous research shows that such a lower bound

assumption is reasonable by using an efficient radio to wake the main communication

radio when necessary [2].

60

��������	�
���	�

�

�����	�

����
��	��
��

����

���
�������	�

������

���
����������

���
���

�����
���

����
�������

��	��	
�����

������
�

�

����
���

����

��������������

�������
� �����	

Figure 17: MSSN Architecture Diagram

3.4 Architecture of the Simulator

We present here the event-driven simulator, MSSN, we have built to evaluate future

SN under varying architectural, middleware, and workload characteristics. It con-

sists of approximately 9000 lines of C++ code, and is available for download at

http://www.cc.gatech.edu/∼wolenetz/files/MSSN-snapshot-06-22-2005.tar.gz. The

simulator includes a rich set of configuration options and is extensible to support

additional simulated middleware features.

Figure 17 presents the high-level architecture for MSSN. As is common for dis-

crete event simulators, MSSN is comprised of three categories of components: event

database, event dispatch, and logic specific to the system being modeled. The re-

sponsibilities for each component are as follows:

• The DFuse Parameters component contains logic to retrieve and handle the

configuration of the simulator. Important configuration options include topol-

ogy management (random or grid, and number of nodes), initial task graph

61

deployment corresponding to the desired application workload, and parameter-

ization of node capabilities including device power models and initial energy.

This component also contains logic to model the ideal routing layer, including

the Floyd-Warshall algorithm and service routines used to destroy and rebuild

input and output relay chains connecting the overlay network.

• The Logging and Performance Analysis component contains event handlers

for periodically recording the performance of the simulated SN, including exten-

sive code to handle the simulated annealing oracles discussed later in Chapter 4.

• The Fusion Channel component models instances of DFuse fusion channels,

including the buffering of input items and caching of output items. Fusion

channels invoke application-specific Fusion Functions upon receipt of all of

the next inputs from each upstream producer. Sources and sinks are specialized

fusion channels with different logic to handle input, output and computation

dispatch. The Fusion Channel component includes logic necessary to handle

the DFuse role-assignment heuristic with significant complexity associated with

correctly handling fusion channel migration. Cost functions for the placement

heuristic are in this component. It also includes logic for the predictive CPU

scaling heuristic discussed later in Chapter 4.

• The Node component handles the modeling of node instance’s resources, in-

cluding energy and neighbor connectivity. In cooperation with the Device

Power Models component, nodes are also responsible for scheduling the radio

and processor devices. Scheduling on the processor involves potentially time-

sharing the CPU across multiple fusion channels mapped to the same node.

Radio scheduling is done on a first-come, first-serve basis. When a node wishes

to transmit a message to a neighbor, the transmission window is scheduled to

occur as early as possible without overlapping previously allocated radio time

62

Event Target Component Description

InitEvent DFuse Parameters Triggers simulator startup
ChanStart Fusion Channel Triggers startup of a fusion channel
GetNext Fusion Channel Models receipt of a request from a

downstream consumer for its next input
from this channel

GotNext Fusion Channel Models receipt of a response from an
upstream producer with the next item

FusionComputed Fusion Channel Models the completion of a processing
iteration of the associated fusion
function on the node’s CPU

CheckCosts Fusion Channel Models periodic triggering of the local
placement heuristic for this channel

MigrateChanState Fusion Channel Models the completion of migration of
this fusion channel to a neighbor node

StatGather DFuse Parameters Triggers periodic statistics logging for
performance analysis

Table 4: Events handled by MSSN’s middleware logic

on the transmitting and receiving nodes. Relaxing this pair-wise ideal MAC is

potential future work.

• The Event Database and Event Dispatcher components control the execu-

tion of middleware logic in simulated time. Events are tagged with a dispatch

time, beginning at time zero. Initially, a simulator start event is inserted into

the event database, and the event dispatcher is given control. The dispatcher

retrieves an earliest time event from the database and executes its logic. Event

logic transfers control to one of the components in the modeled SN middleware.

As the event is handled by the simulated middleware, further events may be

inserted into the event database. Eventually, control returns to the dispatcher,

which iterates until either the event database is empty or the simulated mid-

dleware triggers simulator shutdown.

The bulk of the simulator is concerned with accurately modeling the middleware

63

with events ranging from message delivery to migration completion. Table 4 high-

lights the major events handled by middleware logic in MSSN. Significant complexity

is involved in the handling of these events. For example, if a node on one of a fusion

point’s input relay chains is nearing energy exhaustion, the simulator needs to cor-

rectly destroy and rebuild that input relay chain, rebuilding the routing tables during

the process. Items in-transit on the relay chain need to be accounted for, and the

state of both the producer and consumer ends of the relay chain needs to be updated

to account for the change. Migration uses this basic relay chain rebuild mechanism to

implement the remapping of a fusion point to a neighbor node. However, to prevent

the need for the old fusion point host to forward later communications to the new

host, we use “weak” migration, delaying until there are no items in-transit along any

of the migrating point’s input and output relay chains, and then transferring buffers

and runtime state associated with the fusion point to the target node. Prefetching is

implemented by giving each fusion point a buffer to store fused results into, and by

attaching a sink directly to every fusion point. These special sinks incur no energy

or delay costs, but they drive the fusion points to request and fuse as fast as possible

while they have room in their local output buffers.

We use an ideal MAC model that incurs neither energy nor latency overhead

due to packet loss. The simulator serializes, in simulated time, all access to radio

channels between nodes on a pair-wise basis, modeling simple lossless and collision-

free MAC. Future work may relax this ideal assumption, but we are looking for basic

trends here. We assume that the routing layer provides notification of pending node

battery failure piggy-backed on top of regular traffic, enabling route maintenance. We

currently impose no modeled overhead for local calculation of the cost function, as this

occurs relatively infrequently and only incurs minimal communication with immediate

neighbor nodes (we do account for migration costs, though). We do not model the

cost of initial application deployment currently, as this is highly dependent on many

64

factors, primarily sensor node OS and bootstrapping characteristics. We assume a

simplified fusion point model, wherein fusion points only request the immediate next

set of input items, performing “optimistic” prefetching by trying to keep their output

buffer full (limited to a capacity of 5 fused items in these initial experiments).

3.5 Modularity of the Simulator

We have designed MSSN to model fusion applications supported by DFuse, and to

be flexible with respect to different device power models, workloads and integration

of additional local resource schedulers at fusion points. Currently, MSSN models a

SN as a collection of nodes and communication links, much as in Figure 16. It allows

simulation of in-network data fusion on application generated items using applica-

tion specified fusion functions. It also enables fusion point migration across nodes

driven by an application specified cost function (we use MPV in these initial exper-

iments). MSSN supports more than 1000 simulated sensor network nodes, beyond

our capability to actually deploy for real-world experiments. The limiting factor is

recalculation complexity of routing tables using the O(n3) Floyd/Warshall All Pairs

Shortest Path algorithm, which happens every time a node dies due to low energy.

MSSN models shared scheduling of CPU and radio resources by multiple concurrent

resource requests. For example, if a node hosts two fusion points that simultaneously

begin fusion function execution, the simulator serializes their access to the CPU in

simulated time.

Each of the assumptions listed in Section 3.3 to constrain the search space are

embodied in the various MSSN components. An important issue addressed here is

how flexible MSSN’s design is to changes in these assumptions to simulate other

domains (e.g. a set of middleware mechanisms other than DFuse, a different MAC,

different power models, etc.) We address this modularity and flexibility question by

indicating which component(s) of MSSN are responsible for each assumption, and

65

give examples of the expected amount of changes necessary for MSSN to be adapted

for hypothetical assumption changes:

• The model of DFuse is highly integrated into MSSN. For example, DFuse’s Fu-

sion Channel abstraction forms the core of the application workloads simulated

with MSSN. Simulating the DFuse role-assignment heuristic is also part of the

responsibility of the Fusion Channel component of MSSN. This high degree of

integration is reasonable, as we expect fusion applications to require an abstrac-

tion like Fusion Channels to manage computation and communication between

fusion points. The current model of Fusion Channels in MSSN’s implemen-

tation allows for a subset of the DFuse Fusion Channel package presented in

Chapter 2. For instance, partial fusion is not allowed: dispatching of fusion

function execution only occurs once all inputs have been received, regardless of

delay in fetching inputs. Also, each task graph vertex is restricted to fetching,

processing and producing items in timestamp sequence. Deviation from these

implementation assumptions would require significant extra modeling of buffer

management within the Fusion Channel component. As relays are specialized

Fusion Channels, the relay chain teardown and construction service routines in

the DFuse Parameters component would also need adaptation to enable correct

fusion point migration and re-routing of the overlay network if these assump-

tions change.

• MSSN is quite flexible with respect to power models for each of CPU, radio

and memory. So long as the pair-wise ideal MAC, ideal routing, and pes-

simistic memory access models are not changed, adapting MSSN to different

power models corresponding to different radio transmission, reception, listen,

and sleep costs; different CPU active and idle costs; and different global-memory

active access and idle costs is as simple as changing a few short functions within

66

the Power Model component. However, modeling additional modes for each of

these devices may involve significant complexity. Currently, the Node compo-

nent tracks the mode of each node’s CPU, radio and memory devices. Fusion

processing and message transmission events trigger mode switching and latency

and energy cost accounting. Changing the profile of available modes would

require significant modification of accounting logic. MSSN’s implementation

structure distributes this logic, making correctness of modifications a signifi-

cant issue.

• Currently, all nodes begin with homogeneous battery levels and CPU, radio and

memory power models. Battery levels are independently maintained within each

node instance, so changing this resource to be heterogeneous at startup is triv-

ial during node construction. However, power models are currently contained

within a global set of service routines. Enabling heterogeneous power models

across nodes would require refactoring the Node and Power Model components

such that each Node instance is associated with a Power Model instance. Also,

the topology construction routines within the DFuse Parameters component

would need changing to properly construct heterogeneous nodes, directed by

new options from the input configuration file.

• MSSN workloads currently use video streams in place of all kinds of streams.

Actually, modeling of fusion functions within MSSN is quite general to any

kind of streaming data. So long as the workload’s fusion functions conform

to the parameters presented in Table 2, adding new types of fusion functions

is trivial. The workloads used in this thesis are based on microbenchmarks of

video processing functions, but other modalities of streams could be modeled

easily. Making fusion functions perform actual application behavior such as ac-

tually processing images would be trivial. Modifications would involve making

67

the Fusion Function component execute actual application code, assuming the

application code is portable to the simulator’s execution environment. How-

ever, SN device-specific behavior, such as actual image capture at sources and

accounting properly for energy used during fusion processing would take sig-

nificant effort. For example, the simulator’s execution environment may have

optimized floating point capabilities relative to the SN node CPU being mod-

eled. Determining the actual number of CPU cycles necessary on a SN node

CPU for each iteration of a real application’s fusion function run on the opti-

mized CPU during simulator execution may require significant effort.

• MSSN is able to model SN scales up to about 1000 nodes during simulations

with reasonable execution time by having simple MAC, routing and transport

layer models. Observing effort taken by other wireless network simulators such

as GloMoSim [3] and ns2-wireless [9], simulating collision domains efficiently is

required to model topology scales that MSSN targets. Currently, the simple,

ideal pair-wise MAC model used by MSSN enables this scaling. If the MAC

layer were changed to a more general collision domain model, then significant

effort in making the new implementation efficient at runtime would be neces-

sary. Also, if communication failures for reasons other than node power failure

were modeled, then the current ideal routing and reliable transport assumptions

embodied in MSSN would need changing. One possible avenue for alleviating

this effort might be to interface MSSN with an existing wireless simulator to

enable reuse of more general MAC, routing and transport layers. However,

there may be significant effort necessary in implementing this interface, includ-

ing modifying the wireless simulator to trigger “upcalls” to MSSN for energy

accounting. Also, MSSN is run as a single-threaded process, while other sim-

ulators may be distributed across multiple threads and machines, making any

interface significantly more complex.

68

• The location, or rather, the connectivity of nodes modeled with MSSN is as-

sumed to be static, except for node failures due to low battery levels. Introduc-

ing node mobility would require additional events and handlers to adapt node

locations and routing tables. The DFuse Parameters component is responsible

for topology construction and routing table management. The level of effort

required to model mobility is primarily dependent on assumptions about the

routing layer. If the ideal routing layer assumption that every node always

knows its 1-hop neighbors and the correct shortest path to any other node is

used, introducing mobility would be trivial. Changing this assumption would

require significant effort. One solution would be to delegate wireless network

transport, routing and transmission modeling to an external wireless simulator.

• Extending MSSN’s model of the DFuse role-assignment heuristic to evaluate

additional cost functions would be quite trivial, so long as the inputs to the

cost function are simply derived from SN state. For example, making migra-

tion biased towards nodes with faster radios for communication-intensive fusion

points and towards nodes with faster processors for computation-intensive fu-

sion points would be simple to encode in MSSN, assuming heterogeneous SN

node modeling modifications from above.

• Adding new local resource schedulers to MSSN can be done, as we show in our

predictive CPU scaling heuristic case study in Chapter 4. Also, changing the

production rate and varying the the number of cycles each fusion function takes

dynamically during simulation is demonstrated in this case study. However,

changing the actual task graph dynamically would require significant effort.

In this case, the fusion channel input and output buffer management routines

in the Fusion Channel component, and the “weak” migration scheme encoded

in both the Fusion Channel and DFuse Parameters components would require

69

significant modification.

• Extending MSSN to handle additional on-line statistics gathering is definitely

possible. For our DFuse migration scalability case study presented in Chapter 4,

we implement detailed simulated annealing analysis routines that are triggered

periodically by the StatGather event handler in the Logging and Performance

Analysis component. However, care should be taken that these analysis routines

operate feasibly at the intended workload and topology scales. For example,

our BF (brute-force) placement oracle in Chapter 4 should only be used for

application workload models with very few fusion points.

3.6 Summary

The next chapter gives results using MSSN to quantify SN performance for the initial

workload, device and middleware models presented here. Chapter 4 also includes case

studies using MSSN to evaluate DFuse’s scalability and the performance of a novel

dynamic CPU scaling mechanism. These case studies also demonstrate how flexible

MSSN is for evaluating performance of a variety of application workload models on

SN with a variety of node architectures, SN topologies, local resource management

mechanisms (CPU scaling), and on-line performance analysis routines.

70

CHAPTER IV

CASE STUDIES USING MSSN TO EVALUATE

SENSOR NETWORK MIDDLEWARE

With our MSSN simulator of DFuse-like middleware, we have the means to evaluate

the performance of fusion applications in a variety of possible configurations of future

SN hardware, middleware and application workloads. In this chapter, we present

three focused studies that demonstrate the utility of MSSN for answering questions

critical to tuning future SN:

• First, we experiment with the workload, device and middleware models de-

tailed in our presentation of MSSN in Chapter 3. Beyond demonstrating basic

usage of MSSN, we give quantitative results showing trade-offs among tunable

parameters of middleware and node architecture for each of two large scale ap-

plication workloads. Analysis of these results reveals non-intuitive guidelines to

help tune future SN. We quantify figures of merit for a baseline configuration

of middleware with only fusion capability as a function of processor speed and

radio characteristics. We then quantify figures of merit with prefetching and

with both prefetching and adaptive computation migration.

• Next, we perform a scalability analysis of the DFuse fusion point placement

mechanism introduced earlier in Chapter 2. While we have already shown that

this mechanism can deliver significant lifetime extension depending on the cost

function used, we must also determine whether or not it delivers performance

improvements at realistic SN topology and application scales.

• Finally, we propose, design, implement in MSSN and evaluate an additional

71

energy management mechanism that locally, dynamically scales a fusion point’s

CPU speed to conserve energy. As workloads studied with MSSN so far have

exhibited static behavior in terms of capture rate and processing intensity, we

construct a new surveillance application model that captures the dynamic be-

havior of the surveillance application presented earlier in Chapter 1. We an-

alyze how our Predictive CPU Scaling heuristic can be tuned to stay within

application end-to-end latency and productivity performance tolerances while

conserving energy (maintaining good SN lifetime).

4.1 Basic Middleware Simulation Results for DFuse

Using MSSN, we have performed experiments with our large-scale application work-

loads to shed light on the impact on application figures of merit of using combinations

of middleware fusion point migration and optimistic prefetching features with varying

device CPU speeds and radio characteristics: Bluetooth (B/T) vs 802.11b Orinoco

(802), and normal Listen cost vs ideal Sleep listen cost, for both our compute-intensive

(CPU) and communication-intensive (Comm) application models. We quantify per-

formance in terms of latency of response to the sink’s requests, instantaneous through-

put, network lifetime, and number of video frames delivered to the sink per lifetime

(productivity). Figure 18 shows performance of the two workloads for a baseline

SN configuration without prefetching and migration, Figure 19 shows performance of

the two workloads with prefetching of fusion function inputs enabled, and Figure 20

shows performance of the two workloads in the presence of migration using MPV

along with prefetching. Analysis reveals:

1. In the presence of optimistic prefetching, increasing the radio bandwidth may

not improve latency nor throughput for compute-intensive workloads (Figure 19,

B/T-*-CPU vs 802-*-CPU). Also, productivity may actually decrease if the

change induces extra cost for idle nodes. For example, delivered items per

72

50 100 150 200

50

100

150

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

B/T−Listen−CPU
B/T−Sleep−CPU
802−Listen−CPU
802−Sleep−CPU
B/T−Listen−Comm.
B/T−Sleep−Comm.
802−Listen−Comm.
802−Sleep−Comm.

50 100 150 200

10
−2

10
−1

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r

of
 It

em
s/

se
co

nd
s)

50 100 150 200

0.5

1

1.5

2

x 10
4

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)

D
el

iv
er

ed
 It

em
s/

Li
fe

T
im

e

Figure 18: Baseline results: migration and prefetching disabled

50 100 150 200

20

40

60

80

100

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

802−Listen−CPU
802−Sleep−CPU
B/T−Listen−CPU
B/T−Sleep−CPU
B/T−Listen−Comm.
B/T−Sleep−Comm.
802−Listen−Comm.
802−Sleep−Comm.

50 100 150 200
10

−2

10
−1

10
0

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r

of
 It

em
s/

se
co

nd
s)

50 100 150 200
2000

4000

6000

8000

10000

12000

14000

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)

D
el

iv
er

ed
 It

em
s/

Li
fe

T
im

e

Figure 19: Results with prefetching enabled

73

50 100 150 200

50

100

150

200

250

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

B/T−Listen−CPU
B/T−Sleep−CPU
802−Listen−CPU
802−Sleep−CPU
B/T−Sleep−Comm.
B/T−Listen−Comm.
802−Sleep−Comm.
802−Listen−Comm.

50 100 150 200

10
−2

10
−1

10
0

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r

of
 It

em
s/

se
co

nd
s)

50 100 150 200

0.5

1

1.5

2

2.5

3

3.5

x 10
4

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)
D

el
iv

er
ed

 It
em

s/
Li

fe
T

im
e

Figure 20: Results with prefetching and migration enabled

lifetime decreases when not using the ideal Sleep model and changing to a more

expensive radio model in terms of listen cost (Figure 19, B/T-Listen-CPU vs

802-Listen-CPU).

2. Cost function directed migration can significantly extend application lifetime in

sensor networks with topologies and task graphs two orders of magnitude larger

than previous studies: comparing Figure 20 to both Figures 18 and 19, lifetime

is increased in all cases studied.

3. Compared to experiments with only prefetching enabled, turning on dynamic

fusion point migration yields only slightly lower latency and throughput in

most cases we study, while extending lifetime and increasing delivered items

per lifetime (Figures 20 and 19). The exception, B/T-*-CPU, is encountered

when frequently migrating larger state across a lower bandwidth connection.

Although application lifetime is still extended, average latency and throughput

74

may suffer, potentially leading to a drop in the total number of delivered items

per lifetime. Suggested potential solutions to this specific problem would incor-

porate the latency cost of migration within the cost function being evaluated

or in the determination of cost function evaluation frequency.

4. Although an optimal radio Sleep duty cycle is expected to improve application

lifetime by not wasting energy in listen mode for idle nodes, it does not result in

a significant change in lifetime in the presence of optimistic prefetching, except

when using expensive Orinoco listen (Figure 19, *-Sleep-* vs *-Listen-*).

5. More intuitively, prefetching results in increased throughput compared to the

baseline, while network lifetime with prefetching is lower than the baseline since

more work is being done per unit time. (Compare Figure 19 to Figure 18.)

4.1.1 Summary of Initial MSSN Studies

Results confirm intuition that latency and throughput are very closely dependent

upon the architectural configuration options. From this result, we can see benefits

of multiple clock frequency and variable bandwidth support. Also, migration has to

be done judiciously with a carefully chosen cost function. Indiscriminate use of mi-

gration may waste energy and reduce throughput. Even directing migration with a

simple cost function, MPV, based only on available energy in a node enables appli-

cation lifetime extension for large scale applications, confirming viability of migration

middleware for SN management. The design space covered here is only part of what

is possible. SN applications may exhibit bursty behavior, motivating further energy

savings by exploring opportunities for coordinated, local CPU frequency scaling in

further studies. MSSN is also an ideal platform for performing scalability analyses of

the DFuse placement heuristic.

75

4.2 Scalability of DFuse Placement Heuristic

We have performed experiments to determine how well each DFuse cost function for

directing fusion point migration scales with respect to network topology and appli-

cation size. Scalability is key to utility in real, large scale SN deployments. We use

MSSN, extended to include optimal cost “oracles” for each cost function, to analyze

this scalability under simplifying API, MAC and routing layer assumptions and ig-

noring CPU and memory energy and delay costs as in our original DFuse evaluation

in Chapter 2. Both the migration and optimistic prefetching features of MSSN are

enabled in these experiments.

We simulate DFuse behavior under three cost functions (MT2, MTP andMPV

from Chapter 2) upon networks as large as 1024 nodes and for different sizes of input

application task graphs. For our scalability studies here, we extend MSSN to include

several oracles, or algorithms that output an “optimal” mapping of the application

to the network and associated cost given the cost function used by the simulated

placement module. By running these oracles multiple times during a simulation,

evaluation of how DFuse’s local placement heuristic performs relative to a globally

good algorithm becomes possible. We disable the simulator’s extra modeling of CPU

and Memory energy usage to focus on the transmission cost characteristics as DFuse is

applied to large scale network topologies and applications. We perform two scalability

analyses: a small application on varying scales of network topology, and varying scale

applications on a large network topology.

Our hypothesis is that observed performance trends in terms of transmission cost

performance relative to optimal will confirm trends observed in our earlier small scale

iPAQ farm experiments. For larger applications, we also expect that the mappings

traversed by the DFuse placement module result in costs close to optimal for each

cost function, and that good scalability will be demonstrated by a fairly constant,

76

low ratio of DFuse cost to optimal cost as the application scale increases. Simula-

tion experiments with larger networks and applications confirm our hypotheses of

placement heuristic scalability, revealing interesting properties of the fusion point

placement algorithm:

• As the network is scaled up to 1024 nodes for a single fusion point application,

all three cost functions behave similarly with respect to each other in terms

of transmission cost relative to the current optimal transmission cost: MT2

performs close to optimal, followed by MTP; MPV performs the worst.

• Scalability results, in terms of application lifetime, confirm that more complex

cost functions that incorporate transmission energy costs (MT2 andMTP) are

able to extend lifetimes better than MPV, and that increasing redundant en-

ergy resources (nodes) in SN can further extend lifetimes when using migration

middleware.

• For large topologies and small applications studied, we find that the energy of

the neighbors of the fusion application’s powered sources and sinks typically

determines the lifetime of the application. In this case, there are so many

redundant in-network nodes that the lifetime is limited by the fixed location of

application endpoints (sources and sinks are assumed to not migrate).

• Examining neighbors further than 1 hop away from a fusion point during a local

placement decision to achieve good transmission cost performance is unneces-

sary for MT2 and MTP, and nonsensical for MPV.

• Most importantly, DFuse’s placement heuristic performs well with respect to

our best feasibly computed globally optimal performance as application scale

increases for each of the cost functions. We show that heuristic performance ac-

tually improves relative to this optimal forMTP as application scale increases.

77

The remainder of this case study is structured as follows. In section 4.2.1, we

present DFuse fusion point migration scalability evaluations for a small application

task graph as the number of nodes in the SN topology increases as a base case. In

section 4.2.2, we present more generally applicable experiments with large applications

and topologies to quantify scalability of the DFuse fusion point migration mechanism

relative to our best feasibly computed “optimal” performance. We conclude with a

brief summary of scalability results in section 4.2.3.

4.2.1 Single Fusion Point Scalability Study

To determine the performance with respect to optimal transmission cost of the place-

ment module as the number of network nodes increases, we use a simple, single fusion

point (image collage) application model with two camera sources and a single sink.

We scale the network topology from a 4x4 to a 32x32 grid, with the initial camera

placements mapped randomly along one edge (to distinct nodes), and the sink placed

in one of the two opposite corners of the grid. Simulation begins in the maintenance

phase, with the collage fusion channel mapped to a random node not chosen for a

camera or sink. We tailor the cameras each to produce 2KB images 5 times per

simulated second, and tune the collage fusion function to simply concatenate the two

input images, yielding 20KB per simulated second throughput to the sink, barring

any migration or communication-induced latencies. These rates are 100 times faster

than used in our iPAQ farm, but still well within 802.11b 11Mbps bandwidth, barring

excessive collisions. For a 4x4 grid (initially fully powered, with a node having a 1

hop distance to nearest neighbors only, including diagonal neighbors), the transmis-

sion cost for any of our random camera placements, once the collage is optimally

placed, is 60KB*hops/second, assuming no collisions or other latencies. Similarly, for

a 32x32 grid, the initial optimal transmission cost at maximum possible throughput

is 620KB*hops/second, for any of our random camera placements.

78

As in our real farm deployment, we enable simulated prefetching of input items

for the collage fusion function, letting the collage immediately request the next inputs

from the cameras before receiving a request for their fused output from the sink, es-

sentially enabling pipelined processing. The sink simply repeatedly requests the next

fused item from the collage. Processing at both the collage and sink are instantaneous

(1 CPU cycle), making camera production the slowest processing step in the pipeline.

Simulated migration of fusion channels is also enabled in all of these experiments,

to enable evaluation of the placement module for this application workload for large

scale sensor network topologies. The placement module reevaluates the placement of

the collage fusion channel every simulated 10 minutes, including an MSSN extension

to perform global analysis to find a minimum transmission cost mapping for com-

parison, given the current application throughput (fairly static) and network state

(degrading as nodes run out of energy). We include calculation of “proximity to opti-

mal transmission cost mapping” in this global analysis to indicate the number of hops

the collage channel would need to migrate to reach the current optimal transmission

cost mapping.

4.2.1.1 Single Fusion Point Scalability Results

We first examine lifetime trends across these cost functions for our single fusion point

application as the number of network nodes is varied. We expect the previously

observed trend that MT2 and MTP outperform MPV to be applicable to larger

SN topologies. We also expect that increasing the number of nodes will yield longer

application lifetimes. Lifetime results for grid topologies ranging from 4x4 nodes

to beyond 8x8 nodes, with 5 random trials per experiment are shown in Figure 21,

revealing:

• In general, as more nodes are in the SN topology, the application lifetime in-

creases, indicating that all of the cost functions studied here are able to leverage

79

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 64 49 36 25 16

N
et

w
or

k
Li

fe
tim

e
(m

in
ut

es
)

µ,
 ±

σ,
 5

 tr
ia

ls

Nodes in Sensor Network

MT2: Minimize Transmission Cost
MTP: Minimize Transmission Cost to Power Ratio

MPV: Minimize Power Variance

Figure 21: Lifetime for Single Fusion Point Application for Varying Network Sizes
and Cost Functions

redundant energy resources to extend lifetime. Application lifetime is upper-

bounded by the energy capacity of nodes critical to any possible overlay map-

ping. In our small application topology, the two sources and one sink do not

migrate, only the collage migrates. Although we assume that sources and sinks

have infinite energy, their neighbors do not. Consequently, for larger grid topolo-

gies, the neighbor nodes of these fixed endpoints will run out of energy first,

causing partition. This explains why the three curves converge to a similar

maximum lifetime of about 1150 minutes for grid topologies larger than 5x5

nodes.

• MT2 achieves significantly longer lifetime than MTP for small topologies.

MTP is a compromise between MT2 and MPV, optimizing more for trans-

mission cost minimization when node energies are similar, but optimizing more

80

for node energy equalization when node energies differ greatly. For small scale

topologies, node energy levels diverge more rapidly, makingMTP behave more

like MPV, resulting in significantly lower lifetime than MT2.

• Observed lifetimes confirm the general trend observed in earlier experiments

with a prototype DFuse deployment on an iPAQ farm (Chapter 2) whereMT2

achieves greater lifetime than MTP, and MPV achieves the least lifetime be-

cause its policy is uncorrelated with minimizing runtime energy costs.

Next, we analyze runtime transmission cost performance of MT2, MPV and

MTP for our single fusion point application. Figures 22, 23 and 24 show, for each

of the MT2, MPV and MTP cost functions, and for each of two topology scales:

4x4 and 32x32 nodes, the application lifetime and runtime transmission cost over

time. These figures show transmission costs produced by the local placement heuristic

relative to the current transmission cost of an optimal, globally decided mapping. For

each cost function and topology scale exceptMT2, we use 3 trials with varying initial

random selections of camera and collage placements. For MT2, performance across

3 trials is very similar for the same topology scale, so we show only one trial for each

topology scale in Figure 22. As a baseline verification, the initial optimal transmission

costs depicted in these figures agree with the predicted 60KB*hops/second for the

4x4 topology and 620KB*hops/second for the 32x32 topology. Furthermore, as nodes

die, even the optimal costs increase as redundant, but more expensive resources are

leveraged by the placement heuristic.

ForMT2 (Figure 22), actual placement corresponds closely to the optimal place-

ments for the 4x4 topology, and rapidly converges to optimal mapping followed by

slow degradation for the 32x32 topology. For MPV (Figure 23), transmission cost

for the majority of network lifetime is approximately 50-100% more than an optimal

mapping. Minimizing power variance leads to frequent migrations and transmission

81

MT2 Simulation on 16 Nodes
1 random trial

50000

60000

70000

80000

90000

100000

110000

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

79
0

85
0

91
0

97
0

10
30

10
90

11
50

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost

Optimal Cost

MT2 Simulation on 1024 Nodes
1 random trial

600000

650000

700000

750000

800000

850000

900000

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

79
0

85
0

91
0

97
0

10
30

10
90

11
50

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost

Optimal Cost

Figure 22: MT2 for single fusion point application on 4x4 and 32x32 grids, showing
DFuse and optimal transmission costs over time for 1 trial

MPV Simulation on 16 Nodes
3 random trials

50000

70000

90000

110000

130000

150000

170000

190000

210000

230000

250000

10 70 130 190 250 310 370 430 490 550 610 670 730 790

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost (Trial 1)

DFuse Cost (Trial 2)

DFuse Cost (Trial 3)

Optimal Cost (Trial 1)

Optimal Cost (Trial 2)

Optimal Cost (Trial 3)

MPV Simulation on 1024 Nodes
3 random trials

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

79
0

85
0

91
0

97
0

10
30

10
90

11
50

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost (Trial 1)

DFuse Cost (Trial 2)

DFuse Cost (Trial 3)

Optimal Cost (Trial 1)

Optimal Cost (Trial 2)

Optimal Cost (Trial 3)

Figure 23: MPV for single fusion point application on 4x4 and 32x32 grids, showing
DFuse and optimal transmission costs over time for 3 trials

MTP Simulation on 16 Nodes
3 random trials

0

50000

100000

150000

200000

250000

10 70 130 190 250 310 370 430 490 550 610 670 730 790 850 910 970

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost (Trial 1)

DFuse Cost (Trial 2)

DFuse Cost (Trial 3)

Optimal Cost (Trial 1)

Optimal Cost (Trial 2)

Optimal Cost (Trial 3)

MTP Simulation on 1024 Nodes
3 random trials

600000

650000

700000

750000

800000

850000

900000

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

79
0

85
0

91
0

97
0

10
30

10
90

11
50

Time (minutes)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

b
yt

es
*h

o
p

s/
se

co
n

d
)

DFuse Cost (Trial 1)

DFuse Cost (Trial 2)

DFuse Cost (Trial 3)

Optimal Cost (Trial 1)

Optimal Cost (Trial 2)

Optimal Cost (Trial 3)

Figure 24: MTP for single fusion point application on 4x4 and 32x32 grids, showing
DFuse and optimal transmission costs over time for 3 trials

82

MT2 Simulations

0
 100
 200
 300
 400

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

H

o

p

s

f

r
o

m

o

p

t
i

m

a

l

(
M

T

2

)

p

l
a

c

e

m

e

n

t
 MPV Simulations

0
 100
 200
 300

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

MTP Simulations

0
 100
 200

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Number of placement decisions resulting in this distance from ‘optimal’

1024 Nodes

16 Nodes

Figure 25: Proximity to optimal (transmission cost) mapping, shown as a histogram
of number of hops an instant migration would need to take from current mapping,
evaluated at every placement heuristic execution.

cost-agnostic behavior, hence the high variance in transmission cost over the life of the

network and across trials. ForMTP (Figure 24), actual placement rapidly converges

to an optimal mapping, followed by moderate degradation and increasing variance as

transmission cost is traded off for greater mapping stability as battery variances in-

crease. The performance rankings of each of these cost functions remains the same as

the network scale increases from the iPAQ-farm results from Chapter 2 to the 16 and

1024 node simulations here: MT2 achieves very close to optimal transmission cost,

even in the 32x32 node simulation, followed by MTP and then MPV. MT2 and

MTP consistently achieve the greatest application lifetime, althoughMPV achieves

the same lifetime in one case: When the simple application is simulated on a large,

32x32 sensor network topology, the lifetime of the network is limited by the energy

in “hot spot” critical nodes adjacent to the sink. Even though costly migrations and

high-transmission cost mappings result from using MPV, there are enough redun-

dant resources in the network to let the application survive until the sink’s neighbors

die. One possible solution to further extending the lifetime of this application would

be to enable node mobility or migration of (at least) the sink and cameras, but such

mobility and endpoint migration is out of scope for this study.

83

Figure 25 gives overall summaries of the proximity of the locally decided collage

placement to the globally optimal transmission cost placement, for each of the 3

cost functions and 2 network scales studied. Zero hops dominate forMT2 because it

performs close to optimal. This figure also indicates that examining neighbors further

away than 1 hop during placement decisions may not be necessary for MT2, as an

optimal mapping is never further than a single hop away from the current mapping

in our experiments. MPV usage results in poor (large) numbers of hops to get to

the best transmission cost mapping because MPV does not attempt to optimize

transmission cost. Although a multihop placement heuristic may assist in minimizing

battery variance for large networks, it makes no practical sense to do this because

the transmission cost will remain unoptimized for MPV while the migration cost

would increase, further reducing lifetime performance for MPV. In essence, battery

variance might be minimized, but no real work beyond migration would be done.

MTP has generally close proximity to the best transmission cost mapping, closer

than MPV but not as close as MT2. As this cost-function partially optimizes for

transmission cost, a multihop placement heuristic may assist in reducing transmission

cost and increasing application lifetime. However, in section 4.2.2 we show thatMT2,

MTP and MPV perform well in terms of cost relative to our best “optimal” cost as

scale increases, countering the need for the development and evaluation of a multihop

placement heuristic.

4.2.2 General, Large Application Scalability Study

For the DFuse placement heuristic to be scalable as application and network size

increases, it must perform well with respect to optimal scheduling. During a DFuse

application’s lifetime, the cost-function directed migration of fusion points through

the network attempts to minimize the cost function locally at each fusion point. The

global sum of the cost function at all fusion points gives a snapshot of the cost of

84

the current mapping for any cost function. By comparing this sum with an optimal

global scheduler’s cost at each snapshot, we evaluate the DFuse placement heuristic.

The difficulty with determining DFuse scalability here is that it is infeasible to

perform “brute force” determination of optimal cost for realistic applications on large

networks. Applications with f fusion points mappable to n sensor nodes have nf possi-

ble mappings, making determination of optimality for realistic applications having on

the order of more than 10 fusion points on more than 10 nodes impractical, especially

as application scale increases. We approach the problem of determining optimality

by using approximation algorithms with feasible complexity.

4.2.2.1 Steiner Tree Bounded Approximation Attempt

One possibility we attempt for obtaining a bounded approximation of optimality is

to employ approximation algorithms to obtain a minimum Steiner tree [15]. The

inputs to these algorithms are a graph with weighted edges G={V,E} and a set of

distinguished vertices S⊂{V}. The algorithms output a connected subgraph of G

in polynomial time with minimum total cost and containing all S vertices. Such

algorithms are practical for obtaining minimum length wires needed to join points in

circuits [60]. One possible simple bounded approximation algorithm we attempt for

use in determining an “optimal” cost is a modified minimum spanning tree (MST)

algorithm. It has been proven that this MST algorithm outputs an approximate

solution for the Steiner problem in graphs with a bound of 2.0 [53].

However, use of this algorithm to provide a bounded approximation of optimal

DFuse cost has significant faults. To use MST, we provide the entire network topol-

ogy as the input graph G, and the set of nodes corresponding to sources and sinks

as the subset of required vertices S. While the resulting graph will have an approxi-

mated minimum sum of all edge weights, MST does not account for the possibility

of multiple flows along the same edge that are definitely possible in DFuse mappings.

85

Therefore, the resulting cost and its optimality bound cannot be trusted. Further-

more, whileMST may have some utility for determining minimum transmission cost

mappings for MT2, it is not directly applicable for use in evaluation of MPV and

MTP. These faults apply generally to any of the Steiner tree approximation in graph

algorithms. We therefore choose other heuristics for determination of “optimal” cost.

4.2.2.2 Simulated Annealing Approximation Approach

We extend MSSN to include three general-purpose oracles to determine “optimal”

cost in the context of MT2, MPV and MTP cost functions. For small applica-

tions, we implement a general brute force oracle, BF, that evaluates all nf possible

mappings. This oracle is similar to the MSSN extension used for the single point scal-

ability study above, except that BF supports any possible application, topology and

cost function. We also employ two different tunings, SA1 and SA2 of a simulated

annealing algorithm in the form of two approximating oracles. Instead of comparing

performance to an optimal minimum transmission cost in all cases, we compare DFuse

performance with the optimal cost with respect to the cost function used by DFuse

in this section. This enables observation of MTP and MPV performance in terms

of the metric they are each attempting to optimize.

Simulated annealing [26, 35] is a framework for calculating an approximation of

a globally optimal solution to a multivariate optimization problem. It is based on a

statistical mechanics analogy to the annealing process that occurs naturally in fluids as

they slowly cool to form low energy state crystalline structures. Simulated annealing

has been shown effective in providing good solutions for a variety of NP-Complete

problems such as the Traveling Salesman Problem and circuit design, placement and

wiring [26].

The simulated annealing process [26] begins with the initialization of the system to

a random state. The process takes as input an objective function, or cost function, to

86

for each c ∈ channels
do c.host← random node ∈ nodes

oldCost← currentCost←
∑

c∈channels costF unction(c)
T ← (−average(∆cost for each neighbor with higher cost)/ln(0.80))
if type = SA1

then iterationsP erT emperature← |channels|2

else iterationsP erT emperature← |channels| ∗ |nodes|//SA2
temperatureCount← 0
repeat
for i← 1 to iterationsP erT emperature

do































candidate← random neighbor of current state
if (∆cost(current to candidate) < 0)

then current state← candidate//Accept
else if random number ∈ [0, 1] < exp(−∆cost/T)
then current state← candidate//Accept
else //Reject

T ← T ∗ 0.95; temperatureCount++; oldCost← currentCost
until (type = SA1 and

(T < Tcold or temperatureCount > |nodes|2 or currentCost = oldCost))
or (type = SA2 and T < Tcold)

Table 5: Algorithm SA−Oracle(type, channels, nodes, costF unction(), Tcold)

evaluate a state. During the process, the systems’ state evolves in response to random

perturbations that are either accepted or rejected. A simplistic approach would be

to accept only cost-decreasing perturbations, however it is likely that the resulting

cost would be only a local minima. Simulated annealing involves the concept of a

temperature T, in the same units as the cost function, that guides the probability of

accepting a cost-increasing perturbation. At initially high temperatures, more of these

increases are accepted, enabling escape from local minima. As the system cools, fewer

increases are accepted and the state eventually freezes. The probability of accepting

a cost-increasing perturbation is given by the Boltzmann factor exp(−(∆cost)/T).

At each temperature level, multiple perturbations are applied to sample the search

space. Then the temperature is decreased according to a specified annealing schedule.

Eventually, the annealing schedule specifies when the process terminates (when the

system is deemed frozen). By choosing a slow, long cooling schedule and a large

87

number of perturbations evaluated at each temperature level, more of the state space

is searched. Rapid cooling increases the possibility of arriving at a poor local minima,

analogous to a metastable non-crystalline structure in natural annealing. Therefore,

tuning the annealing schedule is necessary to achieve good results in practical running

time.

In our SA1 and SA2 oracles, the state of our system is described by the current

mapping of fusion channels onto nodes, where a node may host multiple fusion chan-

nels simultaneously. The oracles take the application-specified DFuse cost function

summed over all f fusion channels as the objective function. We use two basic types

of randomized permutations to reach a neighbor state: picking a new host at random

for a fusion channel chosen at random, or swapping the hosts of two randomly cho-

sen fusion channels. We choose a sufficiently high initial temperature in the units

of the global cost function by solving for T, given an input parameter for the prob-

ability of accepting an average cost increase initially (80%), and by averaging any

cost increases across all neighbors of the initial state. Each successive temperature

is a fraction (95%) of the previous temperature. SA1 and SA2 differ in the number

of perturbations considered at each temperature level, and in the definition of the

frozen state. SA1 is tuned to perform a significantly smaller search than SA2 for

large state spaces. SA1 evaluates f 2 perturbations at each temperature level and

terminates annealing when T < Tcold, the number of temperature reductions has ex-

ceeded n2 or when the cost at the end of a temperature level is the same as at the

beginning. SA2 evaluates f ∗ n perturbations at each temperature level and termi-

nates annealing only when T < Tcold. By empirically observing when SA2 costs do

not change as T decreases for more than 4 successive temperature levels, we define

Tcold for each of the DFuse cost functions. Pseudocode for our SA1 and SA2 oracles

is in Table 5.

88

Footprint (KB)
Fusion Communication Persistent
Function Description Input Output State

Collage Combines two inputs into one output 56*2 112 0
Select Selects one of two inputs 56*2 56 0

EdgeDetect Annotates one input 56 56 0
MotionDetect Compares one input to previous 56 56 94

Table 6: Scalable Application Model: Fusion Functions (adapted from Table 2)

There exists the possibility that some states encountered during simulated an-

nealing may be invalid in the context of DFuse. Specifically, the overlay network

described by the mapping of fusion channels to nodes may be disconnected due to

nodes’ energy depletion. We address two issues with the algorithm presented by

disconnected states: initial temperature determination and cost evaluation. If the

initial random state is disconnected, we keep this initial state but use the current

DFuse mapping’s cost as input to the formula used to calculate the initial tempera-

ture. While the simulator is running and the oracle is executing, DFuse’s mapping

is guaranteed to be connected (and to have a finite cost). To enable the algorithm

to escape local minima by way of temporarily traversing disconnected states, we let

disconnectedstatecost = initialcost ∗ 3. As there is a possibility that a disconnected

state may be output from the algorithm, we flag these in our results.

For this large application scalability study, we construct a scalable application

workload model based on workloads used in previous studies in Chapter 3. The

task graph consists of a tree composed from subgraphs comprised of fusion channels

that combine 2 inputs into 1 output stream and fusion channels that transform 1

input into 1 output stream. We only consider the time and energy used to transmit

inputs, outputs and channel buffer and state migration when determining resource

consumption. Table 6 (adapted from Table 2) shows these data sizes for each function.

For example, the Select function takes two 56KB inputs and outputs 56KB each

89

������

������

���	�

������

���

������

�������

�	
�

��������� ��������	
�

�����

����
�

���	�
����

Figure 26: Scalable Application Model: Sample 3 Fusion Point Application on 16x16
Grid

iteration, and the MotionDetect channel migrates 94KB in addition to any buffer

state. We configure the sensor network to be a 256 node 16x16 grid with rectilinear

and diagonal nearest-neighbor connectivity and initially map the application onto

it in a form much like a tree. The number of fusion points is determined by the

number of camera sources used, thereby easily scaling the application. Figure 26

presents a sample 2 camera, 3 fusion point application’s initial mapping (on a much

smaller grid here). Note that there are many equivalent-length shortest hop count

paths possible between two nodes with our rectilinear and diagonally connected grid

topology, explaining the “crooked” paths in Figure 26. Larger application scales are

formed by combining subgraphs like these together into a larger tree in a fashion

similar to our previous workloads in Chapter 3.

90

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

<45,16><21,8><9,4><3,2>R
at

io
 o

f D
F

us
e

C
os

t t
o

O
ra

cl
e

C
os

t
µ,

 ±
σ,

 1
0

tr
ia

ls

Application Scale <fusion points,cameras>

Cost Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MT2

DFuse/SA1
DFuse/SA2

DFuse/Optimal

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

<45,16><21,8><9,4><3,2>

R
at

io
 o

f D
F

us
e

to
 O

ra
cl

e
M

ap
pi

ng
s

S
ea

rc
he

d
(µ

, ±
σ,

 1
0

tr
ia

ls
)

Application Scale <fusion points,cameras>

Complexity Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MT2

DFuse/SA1
DFuse/SA2

DFuse/Optimal

Figure 27: Large Application Scalability Results For MT2

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

<45,16><21,8><9,4><3,2>R
at

io
 o

f D
F

us
e

C
os

t t
o

O
ra

cl
e

C
os

t
µ,

 ±
σ,

 1
0

tr
ia

ls

Application Scale <fusion points,cameras>

Cost Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MTP

DFuse/SA1
DFuse/SA2

DFuse/Optimal

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

<45,16><21,8><9,4><3,2>

R
at

io
 o

f D
F

us
e

to
 O

ra
cl

e
M

ap
pi

ng
s

S
ea

rc
he

d
(µ

, ±
σ,

 1
0

tr
ia

ls
)

Application Scale <fusion points,cameras>

Complexity Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MTP

DFuse/SA1
DFuse/SA2

DFuse/Optimal

Figure 28: Large Application Scalability Results For MTP

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

<45,16><21,8><9,4><3,2>R
at

io
 o

f D
F

us
e

C
os

t t
o

O
ra

cl
e

C
os

t
µ,

 ±
σ,

 1
0

tr
ia

ls

Application Scale <fusion points,cameras>

Cost Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MPV

DFuse/SA1
DFuse/SA2

DFuse/Optimal

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

<45,16><21,8><9,4><3,2>

R
at

io
 o

f D
F

us
e

to
 O

ra
cl

e
M

ap
pi

ng
s

S
ea

rc
he

d
(µ

, ±
σ,

 1
0

tr
ia

ls
)

Application Scale <fusion points,cameras>

Complexity Ratios at Varying Application Scales
16x16 Nodes, Cost Function=MPV

DFuse/SA1
DFuse/SA2

DFuse/Optimal

Figure 29: Large Application Scalability Results For MPV

91

4.2.2.3 Large Application Scalability Results

Figures 27, 28 and 29 show, for each of the MT2, MTP and MPV cost functions,

and for several larger scale applications, the performance and runtime complexity

of the DFuse local placement heuristic relative to BF, SA1 and SA2 oracles. For

each cost function, oracle and application scale, we perform 10 trials using different

random seeds for the simulated annealing oracles and for the random choice among

similar arity fusion functions when generating the application task graphs. The graphs

indicate the average and +/- one standard deviation across trials. For example,

Figure 28 shows that DFuse achieves an average cost 2.2 times higher than SA2 for

MTP with a 9 camera, 4 fusion point application, but only searches about 1/10,000 of

the mappings that SA2 searches. It is computationally infeasible to run BF for large

application scales, but we include it for the 3 fusion point, 2 camera configuration as

an optimal baseline.

For MT2, Figure 27 shows that DFuse outperforms SA1 at all application scales

studied. This result is likely due to the relatively small portion of the state space that

contains globally minimum transmission cost mappings. SA1 searches f 2 mappings

per temperature, and can terminate temperature reductions much sooner than SA2,

resulting in searching a very small portion of the search space (about 1/100,000 for the

smallest application scale studied). SA2 performs optimally at this small application

scale. For MT2, DFuse performs about the same relative to SA1 and SA2 as scale

increases. While it is impractical to implement a global algorithm such as SA2 in

our sensor networks, we see that it would perform only about twice as good as DFuse

at the cost of much larger runtime complexity.

For MTP, Figure 28 shows that DFuse approaches both SA1 and SA2 and the

standard deviation decreases as scale increases. Inspection of simulation traces also

indicates that DFuse performs about the same amount of searching and SA2 performs

about twice the amount of searching for MTP vs MT2. While it is infeasible to

92

perform a brute force search at larger scales, it is quite interesting to see that DFuse

approaches our best feasibly computed optimal global oracle at larger scales forMTP.

ForMPV, Figure 29 shows that SA1 and SA2 perform similarly as scale increases

(similar means, similar increasing standard deviations). The existence of similar

means between SA1 and SA2 confirms intuition that using MPV results in a large

number of global mappings close to the optimum mapping. For smaller applications,

many of the nodes will remain idle and therefore have equivalent MPV costs. As

application scale increases, standard deviation increases, reflecting the larger number

of battery level equivalence classes across the nodes. These results indicate that

we could expect good MPV performance on average as application scale increases

because SA1 and SA2 perform about 1.1 to 1.3 times as good as DFuse on average

across all scales studied.

4.2.3 Placement Heuristic Scalability Conclusion

Overall, these large scale application scalability experiments show that DFuse per-

forms similarly with respect to our best feasibly computed optimal global oracle as

application scale increases, demonstrating good scalability. ForMTP, DFuse perfor-

mance actually improves as application scale increases. Our small application scalabil-

ity results with MSSN confirm that performance rankings betweenMT2, MPV and

MTP observed in Chapter 2 on our prototype DFuse implementation using an iPAQ

farm remain the same as the number of SN nodes increases. Our small application

results also confirm that more complex cost functions that incorporate transmission

energy costs (MT2 and MTP) are able to extend lifetimes better than MPV, and

that increasing redundant energy resources (nodes) in SN can further extend lifetimes

when using migration.

93

4.3 Predictive CPU Scaling Heuristic for Future

SN

Our evaluations of DFuse include the assumptions that the SN is homogeneous, and

the device capabilities remain constant for an application lifetime. As SN devices

become more computationally capable and SN applications perform greater amounts

of computation to process high bit-rate data, there emerges a significant increase in

energy usage for computation relative to communication. For example, expensive

computations such as face detection and recognition can now be done on sensor

nodes. For such computations, our iPAQ-based microbenchmarks and power models

from Chapter 3 indicate that about 100ms of iPAQ processing is necessary on a

data size of 56KB. Single hop communication to fetch inputs would cost roughly

106 mJ using Orinoco 11Mbps, while performing one execution of the FD/FR fusion

function would cost roughly 31 mJ on a 206MHz SA-1100 package. If the data

streams are compressed, then the proportional amount of energy used for processing

increases. There is a significant opportunity for reducing energy consumption by

reducing processing costs. In this case study, we explore dynamic CPU scaling as a

potential mechanism for improving processing efficiency while maintaining required

application performance.

SN will exhibit dynamism due to network interactions such as dynamic overlay

adaptation by fusion point migration and network layer induced latencies due to lossy

channels. SN applications will also exhibit application-specific dynamism. For exam-

ple, to save energy and increase lifetime, a campus surveillance SN fusion application

may perform minimal, infrequent anomaly “detection” operations, in a slow periodic

mode. Once a situation needing attention is detected, information gathering and

processing activities will increase to full speed mode, to analyze the situation in more

depth and to achieve improved “liveness” of data (equivalent to end-to-end latency

94

from capture at sources to delivery to sinks) until the situation is resolved. We de-

scribe an application model exhibiting dynamic periodic and full speed surveillance

modes for our heuristic evaluation later in Section 4.3.2.2.

Since power consumption of modern processors decreases as processor frequency

and voltage decrease (see MSSN’s power model), fusion point processing should ideally

be done no faster than I/O to keep the steps in pipelined processing equally long.

If the application can tolerate increased end-to-end latency, processing speed can be

dropped further.

Therefore, a middleware like DFuse for supporting dynamic fusion applications

should also include the ability to dynamically scale the CPU speed of individual SN

nodes to save processing energy. We anticipate current technology trends enabling

voltage and frequency scaling [44, 12, 40, 48] to be available in future SN devices.

There are many related approaches in distributed systems research for performing

energy-adaptive communication management. Examples include:

• Energy can be saved in mobile communications by queuing data for future

delivery in an application-driven manner [29].

• Due to significant delays when transitioning between sleep and active modes

in some radio packages such as 802.11b, cooperation between both CPU and

communication schedulers may be necessary to yield energy savings when ra-

dio doze time maximization is critical [42]. While bursty communications can

reduce radio mode transitions and maximize radio doze time for 802.11b, it is

not clear that mode transition delays will be common across all future SN radio

packages.

We are not aware of any CPU scaling technologies incorporated into middleware for

supporting fusion applications in SN.

95

We therefore design, implement in our MSSN simulator, and evaluate a novel dy-

namic, local predictive CPU scaling mechanism for fusion points that uses processing

and I/O behavior history to adapt CPU speed. Given performance results for our

tunable scaling heuristic, we then show how information about SN application perfor-

mance requirements and tolerances to degradation can be used to tune the heuristic.

Future extensions to the heuristic may include the ability to improve doze time under

802.11b by performing bursty packet scheduling.

The remainder of this case study is structured as follows. We present the design

and implementation of our heuristic in section 4.3.1, followed by its implementation,

characterization of a more recent CPU power model than SA-1100, and dynamic

workload modeling in section 4.3.2. This case study concludes with an evaluation of

our scaling heuristic in section 4.3.3.

4.3.1 Heuristic Design

Our predictive CPU scaling heuristic uses recent processing and I/O intensity to

predict future intensity. The primary insight we use in our heuristic is that time

taken to perform an iteration of fusion function processing should be approximately

equal to the time taken to fetch the inputs and cache the fused output. By keeping

these times similar to each other, stages in the distributed fusion application pipeline

should have similar durations, reducing buffering, decreasing end-to-end latency, and

reducing time spent by processors in idle mode (when they could have worked slower

and more cheaply).

Our heuristic runs in a distributed fashion, using only information gathered from

the local fusion point and a single tuning factor supplied by the application. Inputs

include:

• oldIOtime is the summation of I/O time taken to gather inputs and store outputs

into finite local buffers for the previous processing iteration. Any application or

96

network induced latencies (for example, slow sinks or cameras, or lossy propaga-

tion channels) are included in this input. If the finite local “prefused” buffer was

full when the previous iteration completed fusion, then the time spent blocking

on writing to the buffer is included. Basically, this input encompasses all time

spent during the previous processing iteration except for actual fusion process-

ing, with the exception of CPU scheduling latencies that occur when multiple

fusion points mapped to the same node timeshare a SN node’s CPU.

• pendingOutputs is the number of items currently in the local prefused buffer

awaiting retrieval by downstream consumers. This figure is used to put addi-

tional “back-pressure” on a fusion point before the prefused buffer reaches ca-

pacity. Large values for pendingOutputs imply large end-to-end latency, because

large numbers of intermediate items are being buffered in the fusion pipeline.

Also, larger amounts of buffered outputs increases the latency and transmission

cost for fusion point migration. Therefore, our heuristic biases against large val-

ues of pendingOutputs. As pendingOutputs grows, the heuristic slows processing

so that I/O can drain the buffer.

• oldFtime is the summation of actual processing time taken during the previous

iteration, including any CPU scheduling latency due to timesharing the CPU.

• oldSpeed is the frequency setting for the CPU for the previous iteration.

• lastCycles is an input derived from multiplying oldSpeed by oldFtime, and rep-

resents the actual number of processor cycles used to perform the previous

iteration’s fusion.

• FCTR, short for Fusion to Communication Time Ratio, is the QoS tuning factor

provided by the application, discussed below.

All of these input parameters, except FCTR, are the actual values obtained during

97

simulator execution. Supplied by the application, FCTR is the only control parameter

for this heuristic. Our heuristic outputs newSpeed, the setting of the node’s CPU

for the current fusion point processing iteration. The heuristic assumes that the

current iteration’s communication time and number of processor cycles taken during

fusion will be constant at oldIOtime and lastCycles, respectively. FCTR describes the

application’s desired ratio of fusion processing time to I/O processing time (adjusted

by current buffer usage). All of these parameters are used to calculate newSpeed:

F CT R =
desired F time

oldIOT ime ∗ (1 + pendingOutputs)

=

lastCycles

newSpeed

oldIOT ime ∗ (1 + pendingOutputs)

=

oldSpeed∗oldF time

newSpeed

oldIOT ime ∗ (1 + pendingOutputs)

newSpeed =
oldSpeed ∗ oldF time

F CT R ∗ oldIOtime ∗ (1 + pendingOutputs)

To prevent extreme processor speed thrashing, we adjust newSpeed to be the

average of oldSpeed and newSpeed, and then bound newSpeed within the minimum

and maximum SN device CPU speeds. On the first iteration of this heuristic, we

simply gather inputs for the next iteration and set newSpeed to be an application-

defined initial speed. Later iterations dynamically adapt the CPU speed based on

runtime behavior as shown above.

4.3.2 Heuristic Implementation

We implement our predictive CPU scaling heuristic as an extension to MSSN, our

simulator of DFuse middleware presented earlier in Chapter 3. In the following, we

present details of the CPU power models and our model of a dynamic application

workload used in this case study.

98

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700

P
ow

er
 (

m
W

)

CPU Speed (MHz)

PXA270 Datasheet Active
PXA270 Datasheet Idle

SA-1100 Active
SA-1100 Idle

Linear PXA270 Active
Linear PXA270 Idle

Figure 30: Power models used for CPU scaling studies based on Intel PXA270 and
SA-1100

4.3.2.1 Power Models

For CPU scaling to save energy and have a hope for increasing SN lifetime and pro-

ductivity, the processors used in SN devices must be scalable, and they must consume

less energy for the same amount of processing as their speed decreases. We also build

a new power model based on Intel’s more recent PXA270 xScale datasheet [22], and

check if it has a hope for saving energy. Figure 30 shows the active and idle energy

profiles for both our SA-1100 model from Chapter 3 and our new PXA270 model.

We use a linear approximation of the PXA270 datasheet’s values in our model. We

assume that changing the CPU speed of a node is free, and that the available CPU

speeds are continuous between a minimum and maximum speed. Both of these as-

sumptions simplify our evaluation. If changing speeds is costly, this could be encoded

as a threshold and by biasing output newSpeed closer to the oldSpeed. Discrete CPU

speed options could be selected as a further filter on our output newSpeed.

From our PXA270 power model, we observe that ∼ 3.4mJ are used in active mode

99

������������

	
��������

��
���

�����

��

���

������������

�����

��
���

	
��������

Figure 31: Task graph for our dynamic surveillance application workload

at 13MHz to process 1 million cycles. For this same amount of cycles, only ∼ 1.48mJ

are used in active mode at 624MHz to process 1 million cycles. These observations

indicate that for CPU-intensive applications, speed should counter-intuitively be in-

creased to save energy per unit of work. However, if we assume that the units of work

arrive at a fixed rate such that the processor would be kept busy at 13MHz, then

significant idle energy costs (3.3mJ) would be incurred between processing bursts

at 624MHz if the CPU speed were maximized. Therefore, to save energy, PXA270

may need to be slowed for communication-bound applications and sped up for CPU-

intensive applications. When compared with our SA-1100 model, our PXA270 power

model shows the greatest promise in terms of energy-saving and latency-improving

tradeoffs based on dynamic application behavior, so we use PXA270 for the remainder

of our CPU-scaling experiments.

4.3.2.2 Dynamic Application Workload

To study our CPU scaling heuristic under realistic application dynamism, we build

a new dynamic application workload model. Figure 31 shows the task graph we use,

100

consisting of 4 camera sources, 7 fusion points and a sink. We introduce three new

forms of dynamism (beyond fusion point migration) in this workload to approach

behavior close to a realistic surveillance system:

• The application operates in two modes, alternating every 5 minutes of simulated

time. In periodic mode, the cameras produce images every 30 seconds (or even

slower if the remainder of the task graph cannot keep the pace), while in full

speed mode, the cameras produce images as fast as they are consumed by the

rest of the task graph. Inspection of simulation traces for FCTR of 1.0 confirms

that periodic mode yields an actual periodicity of about 29 seconds per frame

and full speed mode yields an actual periodicity of about 17 seconds per frame.

We keep a greedy sink similar to our previous experiments. By alternating

modes, we model surveillance applications being directed by out-of-band feed-

back to change source capture rates in response to presence or lack of events of

interest. The rate of capture will be a large factor in the rate of network energy

consumption, so applications would prefer to operate slower when reasonable.

• To model this two-mode application better, a FD/FR channel performs no pro-

cessing on input items captured when the system is in periodic mode, and just

passes them directly to the collage fusion point. This enables the surveillance

application to cheaply detect the beginning of events of interest and then inten-

sively process data during events of interest.

• We vary the number of cycles a FD/FR fusion function takes when process-

ing events of interest in full speed mode. We vary FD/FR cycles between 50

and 100% of the benchmarked 1959M cycles, changing no more than 10% be-

tween consecutive iterations. This models the variation in processing complex-

ity depending on dynamic properties of the data. The remainder of the fusion

functions have static properties from benchmarks in Chapter 3.

101

We use MTP to guide fusion point placement of this task graph at runtime on a

random topology of 800 in-network nodes connected by our Bluetooth, ideal Listen

cost radio model presented earlier. We choose MTP because we have shown that it

does a good job of extending lifetime and scales well. We hope to show improvement

beyond baseline performance with MTP by using our CPU scaling heuristic.

4.3.3 Heuristic Evaluation

We measure delivered application performance along several dimensions. We compare

application lifetime while using CPU scaling for our dynamic application workload to

application lifetime when the CPU speed is fixed at either the minimum or maximum

speed for the entire simulation. We measure end-to-end latency (from capture by

camera to delivery to sink) averaged over all items, over only periodic mode items,

and over only full speed mode items. Similarly, we measure productivity per lifetime

(items received at sink) overall and separately for each of the two application modes.

Finally, to observe dynamic CPU scaling over a single trial, we record the chosen

newSpeed output of the heuristic for one of the two FD/FR fusion points. We annotate

this speed trace with the application mode the item is being processed in.

We hypothesize that newSpeed will increase during full speed application phases

and decrease when I/O (including fetch time from rate-throttling sources) dominates

during periodic phases. We expect end-to-end latency to increase and lifetime to

increase when using CPU scaling compared to when the CPU speed is fixed at the

maximum. There are too many variables for us to hypothesize productivity perfor-

mance under CPU scaling, but an increase would be good. Finally, we hypothesize

that tuning the heuristic’s FCTR will enable trading off latency degradation for life-

time improvements and vice versa, and that a ratio below 1 will generally exhibit

better latency and lower lifetime, as the heuristic will try to spend less time process-

ing than performing I/O in this case.

102

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
P

U
 S

pe
ed

 (
M

H
z)

Simulated Network Time (s)

FD/FR in Full Speed Mode
FD/FR in Periodic Mode

Figure 32: CPU scaling behavior for 1 trial, showing chosen CPU speed at one
FD/FR fusion point over time

We present a sample speed trace first, followed by observations of how changing

FCTR to tune the heuristic impacts delivered performance. We conclude our CPU

scaling evaluation with a demonstration of how FCTR can be used to tune the SN to

deliver required application performance when there is tolerance for some performance

degradation.

4.3.3.1 Dynamic CPU Scaling Results

Figure 32 is a sample speed trace, showing the output newSpeed of the predictive

CPU scaling heuristic for one of the two FD/FR fusion points. For this single trial,

we use the PXA270 power model and a FCTR of 1.0. Only the first 4500 seconds of

lifetime are shown, enabling visual separation of the periodic and full speed phases.

We observe that full speed mode items drive the CPU speed higher and periodic mode

103

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 8 4 2 11/21/41/8

N
et

w
or

k
Li

fe
tim

e
(s

ec
on

ds
)

µ,
 ±

σ,
 1

0
tr

ia
ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 33: Effect of FCTR on network lifetime relative to lifetime at min and max
CPU speeds

items drive the CPU speed lower, confirming our hypothesis. The noise apparent in

this speed trace is due to pipeline stalls caused by weak migration of fusion points,

oscillations in the “back-pressure” encoded as a multiplier of I/O time in our heuristic,

and by the general dynamism occurring in our FD/FR model and in the network.

Figure 33 shows the average (and +/- 1 standard deviation) lifetime delivered

across 10 trials for each of 7 FCTR. We confirm our hypothesis that using CPU

scaling can significantly improve lifetime compared to using the maximum CPU speed.

As FCTR goes from 1

8
to 1, lifetime increases because the heuristic is more evenly

matching fusion processing time with I/O time by reducing the CPU speed to increase

fusion time. As FCTR exceeds 1, lifetime performance deviates from this trend.

Figures 34, 35 and 36 show the average (and +/- 1 standard deviation) end-to-end

104

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8 4 2 11/21/41/8

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
se

co
nd

s)
ov

er
 a

ll
ite

m
s

(F
ul

l S
pe

ed
 a

nd
 P

er
io

di
c)

µ,
 ±

σ,
 1

0
tr

ia
ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 34: Effect of FCTR on end-to-end latency over both periodic and full speed
items

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8 4 2 11/21/41/8

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
se

co
nd

s)
ov

er
 o

nl
y

F
ul

l S
pe

ed
 m

od
e

ite
m

s
µ,

 ±
σ,

 1
0

tr
ia

ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 35: Effect of FCTR on end-to-end latency over only full speed items

105

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8 4 2 11/21/41/8

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
se

co
nd

s)
ov

er
 o

nl
y

P
er

io
di

c
M

od
e

ite
m

s
µ,

 ±
σ,

 1
0

tr
ia

ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 36: Effect of FCTR on end-to-end latency over only periodic items

latency delivered across the 10 trials for each of 7 FCTR. We confirm our hypoth-

esis that using the maximum possible CPU speed will deliver lowest latency. As

FCTR increases to 1.0, latency slowly increases because the heuristic will tend to

output lower CPU speeds to increase the fusion time to reach a higher fusion time

to communication time ratio. Given the noise from application dynamism that the

heuristic cannot predict, the heuristic may sometimes output a CPU speed that is

too low. These errors have increasing latency penalty as FCTR increases and the

application becomes less communication-bound. When FCTR exceeds 1.0, the ap-

plication becomes increasingly computation-bound and the latency rapidly increases.

Our predictive CPU scaling heuristic achieves the minimum possible latency when

FCTR is below 1

4
for items processed in periodic mode (Figure 36). These items incur

little processing, making it difficult to become computation-bound when FCTR is

below 1.

Figures 37, 38 and 39 show the average (and +/- 1 standard deviation) produc-

tivity across 10 trials and 7 FCTR. Productivity, in this context, is a measure of the

number of items delivered to the sink during the application’s lifetime. We count the

number of periodic mode items separately from full speed mode items delivered to

106

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8 4 2 11/21/41/8

P
ro

du
ct

iv
ity

 (

Ite
m

s
R

ec
ei

ve
d

by
 S

in
k)

ov
er

 a
ll

ite
m

s
(b

ot
h

F
ul

l S
pe

ed
 a

nd
 P

er
io

di
c)

µ,
 ±

σ,
 1

0
tr

ia
ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 37: Effect of FCTR on productivity over both periodic and full speed items

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8 4 2 11/21/41/8

P
ro

du
ct

iv
ity

 (

Ite
m

s
R

ec
ei

ve
d

by
 S

in
k)

ov
er

 o
nl

y
F

ul
l S

pe
ed

 m
od

e
ite

m
s

µ,
 ±

σ,
 1

0
tr

ia
ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 38: Effect of FCTR on productivity over only full speed items

107

 0

 200

 400

 600

 800

 1000

 1200

 1400

 8 4 2 11/21/41/8

P
ro

du
ct

iv
ity

 (

Ite
m

s
R

ec
ei

ve
d

by
 S

in
k)

ov
er

 o
nl

y
P

er
io

di
c

m
od

e
ite

m
s

µ,
 ±

σ,
 1

0
tr

ia
ls

FCTR

CPU Scaling
CPU 13MHz constant

CPU 624MHz constant

Figure 39: Effect of FCTR on productivity over only periodic items

the sink, and report their counts and their combined sum in these figures. We also

indicate the productivity of the network when the processor speed is consntantly at

the maximum and constantly at the minimum in these figures.

Figures 37 and 38 show that using the maximum CPU speed achieves the highest

productivity. However, when considering only the periodic mode items, Figure 39

indicates that it is possible to achieve greater productivity than when using either a

constant maximum or constant minimum speed. For this application’s periodic mode

and the power models being used, it is more energy efficient to actively compute

at a slow CPU speed than to compute rapidly and then idle for the remainder of

a period. The predictive CPU scaling heuristic is therefore able to decrease energy

consumption and increase productivity of periodic mode workloads. The ability to

increase productivity by performing dynamic CPU scaling is a very positive result.

However, by intuition, productivity increase with CPU scaling is only possible for

workloads that require only low active CPU duty cycles and CPU power models that

allow for energy savings. Energy saving CPU power models must have lower cost

when processing speed and idle time are decreased for performing the same amount

of active processing in the same unit of time. Our PXA270 power model exhibits this

108

 16

 18

 20

 22

 24

 26

 28

 30

 40 60 80 100 120

%
 N

et
w

or
k

Li
fe

tim
e

In
cr

ea
se

fr
om

 L
ife

tim
e

of
 M

in
im

um
 L

at
en

cy

% Latency Increase from Minimum Latency

FCTR=1/8

FCTR=1/4

FCTR=1/2

FCTR=1

Figure 40: Percentage lifetime increase and associated FCTR for corresponding tol-
erances to end-to-end latency degradation

characteristic, and the periodic workload allows for significant processor idle time.

Productivity does not exceed that of processing with maximum CPU speed for the

full speed workload with CPU scaling because the workload is greedy. If the radio

and memory power models cost no energy for idling, then we would expect that CPU

scaling would achieve at least the productivity observed at maximum CPU speed for

PXA270. However, we account for radio and memory idle costs in this study. Due to

newSpeed not always being the maximum CPU speed and due to radio and memory

idling energy overheads that increase as processing slows, productivity for the full

speed workload is lower with CPU scaling than with using the maximum CPU speed.

4.3.3.2 Performance Tradeoff Analysis and Case Study Conclusion

Results from our predictive CPU scaling evaluation indicate that it is impossible to

improve latency beyond that yielded by simply using the maximum possible CPU

speed, for the workload and power models we consider. However, many applications

may not require the best possible latency and may value other performance improve-

ment, such as increased lifetime and/or productivity. For example, given a tolerance

109

in requirement for latency, results show that it is possible to select FCTR values to

feed our predictive CPU scaler that will likely improve lifetime (and improve pro-

ductivity for workloads similar to periodic mode). Figure 40 shows the relationship

between tolerance to latency degradation from minimum end-to-end latency and the

corresponding expectation of lifetime increase. For example, if the application allows

up to 70% worse end-to-end latency than optimal, then a FCTR of 1/2 could be used

for this workload to achieve a 22% longer lifetime than the lifetime afforded by the

minimum latency configuration. Similar tradeoff analyses can be done for other fu-

sion application workloads and SN device models using MSSN, enabling performance

characterization and tuning.

110

CHAPTER V

CONCLUSION

Future SN will be called on to support high bit-rate stream-based fusion applications.

To succeed, SN will need to be constructed to achieve application performance re-

quirements while minimizing energy usage to increase application lifetime. This thesis

investigates several novel middleware mechanisms for improving application lifetime

while achieving required latency and throughput, in the context of a variety of SN

topologies and scales, models of potential fusion applications and device radio and

CPU capabilities.

First, we discussed DFuse, our novel middleware for performing energy aware

stream processing in SN. DFuse includes a detailed API for supporting fusion applica-

tion processing in SN. We showed that the DFuse placement heuristic can significantly

extend application lifetime with a reasonable-overhead prototype implementation on

a 12 node iPAQ SN.

Next, we discussed MSSN, a major contribution of this thesis. The core of this

novel middleware simulator is a set of detailed, extensible models of future SN devices,

middleware and application workloads. MSSN’s non-trivial design and implementa-

tion realizes a scalable, believable middleware simulator that enables such low level

SN node attributes as CPU speed scaling to be evaluated in the context of application

level performance. The remaining contributions of this thesis use MSSN to perform

such evaluations.

In our first case study, we used MSSN to quantify the performance of large scale

fusion applications to show how MSSN can be used to expose performance tradeoffs

in future SN.

111

We then presented a scalability evaluation of the DFuse placement heuristic using

MSSN as our second case study, showing that our distributed role-assignment heuris-

tic performs well with respect to our best feasibly calculated optimal performance as

application and network topology scales increase.

In a final case study, we propose a new CPU scaling middleware mechanism for

future SN to help optimize energy efficiency under dynamic application workloads. We

analyze this predictive CPU scaling heuristic and show how it can be tuned through

MSSN-based analysis to trade off tolerable latency degradation in favor of lifetime

extension and vice versa.

Through our use of MSSN to evaluate potential middleware mechanisms, appli-

cation workloads and SN capabilities, we demonstrate MSSN’s utility for exposing

tradeoffs fundamental to successful SN construction. By adapting and extending

workload, device and middleware mechanism models in MSSN, the simulator can be

used in future work to quantify performance for a larger scope of SN applications.

112

CHAPTER VI

FUTURE WORK

Several enticing directions for further research have become apparent during the

course of the work presented in this thesis. This chapter gives an overview of po-

tential future work.

• This thesis does not concern itself with proposing or evaluating mechanisms

for radio scaling, e.g. dynamically adapting the bandwidth, range and signal

strength of SN radios. This route of research may provide additional benefits to

applications in terms of latency, throughput and lifetime. It should be possible

to extend MSSN to characterize the potential benefits of such mechanisms.

Proper evaluation of radio scaling mechanisms may need significant extensions

to MSSN to include appropriate models of reliable transport, network and MAC

layers to account for dynamically changing collision domains. There is currently

much conflicting research on whether multi-hop communication saves energy vs

“shouting louder”, and varying application domains may have different trends

here.

• We constrain our study to supporting a single fusion application with a static

task graph. While we use dynamic capture rate and processing complexity mod-

els (periodic vs full speed) to help evaluate our predictive CPU scaling mech-

anism, we do not consider several important sources of additional dynamism.

Techniques to extend network lifetime by letting sources and sinks migrate, or

by physically moving SN nodes to obtain a cheaper mapping may provide signif-

icant benefit. Also, leveraging existing SN node mobility patterns may provide

113

better application performance by connecting sparsely populated SN and by

reducing radio power requirements.

• We currently use shortest path “relay chains” in MSSN to connect fusion points.

Investigating power aware routing techniques may provide further insight into

how to best connect the overlay with respect to the current cost function, rather

than blindly minimizing hops along the chains.

• DFuse assumes that the addresses of the data sources are known at query time.

This assumption may be a limiting assumption for many applications where data

sources are unknown at query time. Future work may explore different ways of

extending DFuse to handle such data-centric queries. One possible approach is

to have an interest-dissemination phase before the naive tree building phase of

the role assignment algorithm. During this phase, the interest set of individual

nodes (for specific data) is disseminated as is done in directed diffusion [21].

When the exploratory source packets reach the sink (root node of the application

task graph), the source addresses are extracted and recorded for later use in

other phases of the role assignment algorithm.

• During our evaluation with MSSN of the DFuse placement heuristic’s lifetime

extension performance for large applications in Chapter 3, we examine only

MPV. While we observe significant lifetime extension when migration with

MPV is enabled, future work could test our hypothesis that MT2 and MTP

provide even greater lifetime extension. We observe this trend in small appli-

cation studies and expect it would apply to larger scale SN and applications.

• Amore ambitious direction for future work would be to interface MSSN with our

initial iPAQ DFuse implementation. This combination could enable seamless

reuse of application workload models between simulations in MSSN and actual

SN running DFuse. Similar frameworks in different domains have demonstrated

114

the benefits of seamlessly switching between simulations and actual deploy-

ments. For example, Em∗ [16] lets developers test their “mote”-based appli-

cations in pure simulation, in emulation mode combining simulated processing

with physical wireless channels, and in actual SN. Enabling similar capabili-

ties with MSSN and DFuse would minimally require development of interface

layers between application code and MSSN, and between application code and

DFuse. We expect that such a development effort would pay off by enabling

rapid prototyping of fusion applications within MSSN followed by field testing

with DFuse. Such work is in line with the motivation of this thesis: future fusion

applications are needed now, so we need to create development and evaluation

tools to speed their arrival.

115

REFERENCES

[1] Adhikari, S., Paul, A., and Ramachandran, U., “D-Stampede: distributed
programming system for ubiquitous computing,” in Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems (ICDCS), (Vienna),
July 2002.

[2] Agarwal, Y. andGupta, R. K., “On Demand Paging Using Bluetooth Radios
on 802.11 Based Networks,” Tech. Rep. 03-22, Center for Embedded Computer
Systems, UC Irvine, UC San Diego, July 2003.

[3] Bajaj, L., Takai, M., Ahuja, R., Tang, K., Bagrodia, R., and Gerla,

M., “GloMoSim: a scalable network simulation environment.” UCLA Computer
Science Department Technical Report 990027, May 1999.

[4] Bhardwaj, M. and Chandrakasan, A., “Bounding the lifetime of sensor
networks via optimal role assignments,” in IEEE INFOCOM, 2002.

[5] Boulis, A., Han, C.-C., and Srivastava, M. B., “Design and implementa-
tion of a framework for programmable and efficient sensor networks,” in Proceed-
ings of the First International Conference on Mobile Systems, Applications, and
Services (MobiSys), (San Francisco, CA), May 2003.

[6] Burd, T. D. and Brodersen, R. W., “Processor design for portable systems,”
Journal of VLSI Signal Processing, vol. 13, pp. 203–222, August 1996.

[7] Cayirci, E., Su, W., and Sankarasubramanian, Y., “Wireless sensor net-
works: A survey,” Computer Networks (Elsevier), vol. 38, pp. 393–422, March
2002.

[8] Chang, J.-H. and Tassiulas, L., “Energy conserving routing in wireless ad-
hoc networks,” in IEEE INFOCOM, pp. 22–31, 2000.

[9] CMU Monarch Project, “Wireless and mobility extensions to ns-2.” Avail-
able November 2004 at http://www.monarch.cs.cmu.edu/cmu-ns.html, 1999.

[10] Crossbow Technology Inc., “MICA2 datasheet.” Available November
2004 at http://www.xbow.com/Products/Product pdf files/Wireless pdf/6020-
0042-06 A MICA2.pdf.

[11] Crossbow Technology Inc., “Stargate gateway (SPB400) datasheet.”
Available November 2004 at http://www.xbow.com/Products/Product pdf files/
Wireless pdf/6020-0049-01 C Stargate.pdf.

116

[12] Fan, X., Ellis, C., and Lebeck, A., “Memory controller policies for dram
power management,” in Proceedings of the 2001 international symposium on
Low power electronics and design, (Huntington Beach, California, United States),
pp. 129–134, ACM Press, 2001.

[13] Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin,

D., and Wicker, S., “Complex behavior at scale: An experimental study
of low-power wireless sensor networks.” Technical Report CSD-TR 02-0013,
UCLA, February 2002. Available November 2004 at http://www.cs.umass.edu/
˜dganesan/PAPERS/empirical.pdf.

[14] Gibbons, P. B., Karp, B., Ke, Y., Nath, S., and Seshan, S., “IrisNet:
an architecture for a worldwide sensor web,” IEEE Pervasive Computing, vol. 2,
no. 4, 2003.

[15] Gilbert, E. N. and Pollak, H. O., “Steiner minimal trees,” SIAM Journal
on Applied Mathematics, vol. 16, pp. 1–29, January 1968.

[16] Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N.,
and Estrin, D., “Em*: a software environment for developing and deploying
wireless sensor networks,” in Proceedings of USENIX 04, (Los Angeles, Califor-
nia, USA), 2004.

[17] Gui, C. andMohapatra, P., “Sensor networks: Power conservation and qual-
ity of surveillance in target tracking sensor networks,” in Proceedings of the 10th
annual international conference on Mobile computing and networking, September
2004.

[18] Heidemann, J. S., Silva, F., Intanagonwiwat, C., Govindan, R., Es-

trin, D., and Ganesan, D., “Building efficient wireless sensor networks with
low-level naming,” in Symposium on Operating Systems Principles, pp. 146–159,
2001.

[19] Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., and Perillo,

M. A., “Middleware to support sensor network applications,” IEEE Network
Mag., vol. 18, no. 1, pp. 6–14, 2004.

[20] Hill, J., Szewczyk, R.,Woo, A.,Hollar, S., Culler, D. E., andPister,

K. S. J., “System architecture directions for networked sensors,” in Architectural
Support for Programming Languages and Operating Systems, pp. 93–104, 2000.

[21] Intanagonwiwat, C., Govindan, R., and Estrin, D., “Directed diffusion:
a scalable and robust communication paradigm for sensor networks,” in Mobile
Computing and Networking, pp. 56–67, 2000.

[22] Intel Corp., “Intel PXA270 Processor Electrical, Mechanical, and Ther-
mal Specification.” Available June 2005 at http://www.intel.com/design/pca/
applicationsprocessors/datashts/28000205.pdf.

117

[23] Intel Corp., “New computing frontiers - the wireless vineyard.” Available
November 2004 at http://www.intel.com/labs/features/rs01031.htm.

[24] Intel Corp., “Intel StrongARM SA-1100 Developer’s Manual,” Document no.
278088-04, 1999.

[25] Johnson, D. B. andMaltz, D. A., “Dynamic source routing in ad hoc wireless
networks,” inMobile Computing (Imielinski andKorth, eds.), vol. 353, Kluwer
Academic Publishers, 1996.

[26] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, May 1983.

[27] Kling, R. M., “Intel mote: An enhanced sensor network node,” in Proceedings
of the International Workshop on Advanced Sensors, Structural Health Monitor-
ing, and Smart Structures, 2003.

[28] Kozat, U. C., Koutsopoulos, I., and Tassiulas, L., “A framework for
cross-layer design of energy-efficient communication with qos provisioning in
multi-hop wireless networks,” in Proceedings of IEEE/Infocom, 2004.

[29] Kravets, R. and Krishnan, P., “Application-driven power management for
mobile communication,” Wireless Networks, vol. 6, no. 4, pp. 263–277, 2000.

[30] Kremer, U., Hicks, J., and Rehg, J. M., “A compilation framework for
power and energy management on mobile computers,” in Proceedings of the
International Workshop on Languages and Compilers for Parallel Computing
(LCPC), August 2001.

[31] Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul,

A., and Ramachandran, U., “DFuse: a framework for distributed data fu-
sion,” in Proceedings of the first international conference on embedded networked
sensor systems, (Los Angeles, California, USA), pp. 114–125, ACM Press, 2003.

[32] Levis, P., Lee, N., Welsh, M., and Culler, D., “TOSSIM: accurate and
scalable simulation of entire TinyOS applications,” in Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems (SenSys), 2003.

[33] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W.,
“TAG: a tiny agregation service for ad-hoc sensor networks,” in Operating System
Design and Implementation (OSDI), (Boston, MA, USA), Dec 2002.

[34] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Ander-

son, J., “Wireless sensor networks for habitat monitoring,” in ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications, 2002. Also Intel
Research, IRB-TR-02-006, June 2002.

118

[35] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, M., and
Teller, E., “Equations of state calculations by fast computing machines,”
Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[36] Modahl, M., Bagrak, I.,Wolenetz, M., Jain, R., and Ramachandran,

U., “EventWeb: Distributed media correlation, analysis and distribution frame-
work,” in Proceedings of 10th IEEE Workshop on the Future Trends of Dis-
tributed Computing Systems (FTDCS-04), (Suzhou, China), May 2004.

[37] Montanaro, J., Witek, R. T., Anne, K., Black, A. J., Cooper, E. M.,
Dobberpuhl, D. W., Donahue, P. M., Eno, J., Hoeppner, G. W.,
Kruckemyer, D., Lee, T. H., Lin, P. C. M., Madden, L., Murray,

D., Pearce, M. H., Santhanam, S., Snyder, K. J., Stephany, R., and
Thierauf, S. C., “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,”
Digital Tech. J., vol. 9, no. 1, pp. 49–62, 1997.

[38] Netperf, “The Public Netperf Homepage: http://www.netperf.org/,” 2003.

[39] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E.,
Flinn, J., and Walker, K. R., “Agile application-aware adaptation for mo-
bility,” in Proceedings of the sixteenth ACM symposium on Operating systems
principles, (Saint Malo, France), pp. 276–287, ACM Press, 1997.

[40] Pillai, P. and Shin, K. G., “Real-time dynamic voltage scaling for low-power
embedded operating systems,” in ACM Symposium on Operating Systems Prin-
ciples, pp. 89–102, 2001.

[41] Poellabauer, C., Abbasi, H., and Schwan, K., “Cooperative run-time
management of adaptive applications and distributed resources,” in Proceed-
ings of the tenth ACM international conference on Multimedia, (Juan-les-Pins,
France), pp. 402–411, ACM Press, 2002.

[42] Poellabauer, C. and Schwan, K., “Energy-aware traffic shaping for wire-
less real-time applications,” in Proceedings of the 10th Real-Time and Embedded
Technology and Applications Symposium (RTAS), May 2004.

[43] Polastre, J., Szewczyk, R., Sharp, C., and Culler, D., “The mote revo-
lution: Low power wireless sensor network devices,” in Proceedings of Hot Chips
16: A Symposium on High Performance Chips, 2004. Presentation available
November 2004 at http://webs.cs.berkeley.edu/papers/hotchips-2004-motes.ppt.

[44] Pouwelse, J., Langendoen, K., and Sips, H., “Dynamic voltage scaling on
a low-power microprocessor,” in 7th ACM Int. Conf. on Mobile Computing and
Networking (Mobicom), (Rome, Italy), pp. 251–259, July 2001.

[45] Proxim Corp., “ORiNOCO PC Card Specification.” 2003 available
at http://www.hyperlinktech.com/web/orinoco/orinoco pc card spec.html, simi-
lar spec available November 2004 at http://www.proxim.com/learn/library/
datasheets/11bpccard.pdf.

119

[46] Ramachandran, U., Nikhil, R. S., Harel, N., Rehg, J. M., and Knobe,

K., “Space-time memory: A parallel programming abstraction for interac-
tive multimedia applications,” in Principles Practice of Parallel Programming,
pp. 183–192, 1999.

[47] Saurabh Ganeriwal, Vlassios Tsiatsis, C. S., “NESLsim: a parsec based
simulation platform for sensor networks.” Available June 2005 at http://www.
allowbreak ee.ucla.
allowbreak .edu/ saurabh/NESLsim, 2002.

[48] Semeraro, G., Albonesi, D. H., Dropsho, S. G., Magklis, G.,
Dwarkadas, S., and Scott, M. L., “Dynamic frequency and voltage control
for a multiple clock domain microarchitecture,” in Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, (Istanbul, Turkey),
pp. 356–367, IEEE Computer Society Press, 2002.

[49] Semiconductor, O., “ML7050LA Specification.” Available November 2004 at
http://www.oki.com/semi/english/t-blue.htm, June 2001.

[50] Simon, G., Volgyesi, P., Maroti, M., and Ledeczi, A., “Simulation-
based optimization of communication protocols for large-scale wireless sensor
networks,” in Proceedings of IEEE Aerospace Conference, (Nashville, Tennessee,
USA), March 2003.

[51] Singh, S. and Raghavendra, C. S., “PAMAS: power aware multi-access pro-
tocol with signalling for ad hoc networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 28, pp. 5–26, July 1998.

[52] Singh, S., Woo, M., and Raghavendra, C. S., “Power-aware routing in
mobile ad hoc networks,” in Mobile Computing and Networking, pp. 181–190,
1998.

[53] Takahashi, H. andMatsuyama, A., “An approximate solution for the steiner
problem in graphs,” Math. Japonica, vol. 24, no. 6, pp. 573–577, 1980.

[54] Viredaz, M. A. andWallach, D. A., “Power evaluation of a handheld com-
puter,” IEEE Micro, 2003.

[55] Wang, M., “Nokia sees strong demand for smartphones and camera
phones in 2005.” Available November 2004 at http://www.digitimes.com/news/
a20041104A6035.html.

[56] Warneke, B., Last, M., Liebowitz, B., and Pister, K. S. J., “Smart
dust: Communicating with a cubic-millimeter computer,” Computer, vol. 34,
no. 1, pp. 44–51, 2001.

120

[57] Wolenetz, M., Kumar, R., Shin, J., and Ramachandran, U., “Middle-
ware Guidelines for Future Sensor Networks,” in Proceedings of the First Work-
shop on Broadband Advanced Sensor Networks, (San Jose, California, USA),
October 2004.

[58] Ye, W., Heidemann, J., and Estrin, D., “An Energy-Efficient MAC protocol
for Wireless Sensor Networks,” in Proceedings of INFOCOM 2002, (New York,
New York), June 2002.

[59] Zayas, E., “Attacking the process migration bottleneck,” in Proceedings of the
eleventh ACM Symposium on Operating systems principles, pp. 13–24, ACM
Press, 1987.

[60] Zhou, H., “Efficient steiner tree construction based on spanning graphs,” in
International Symposium on Physical Design, pp. 152–157, 2003.

121

