
HUMAN-CENTERED AI
THROUGH SCALABLE VISUAL DATA ANALYTICS

A Dissertation
Presented to

The Academic Faculty

By

Minsuk Brian Kahng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

Georgia Institute of Technology

December 2019

Copyright c©Minsuk Brian Kahng 2019

HUMAN-CENTERED AI
THROUGH SCALABLE VISUAL DATA ANALYTICS

Approved by:

Dr. Duen Horng (Polo) Chau, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Shamkant B. Navathe
School of Computer Science
Georgia Institute of Technology

Dr. Alex Endert
School of Interactive Computing
Georgia Institute of Technology

Dr. Martin Wattenberg
Google Brain
Google

Dr. Fernanda B. Viégas
Google Brain
Google

Date Approved: October 8, 2019

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my amazing advisor Polo Chau. I truly enjoyed

being his student. Polo has been a tremendous role model on how to be a great advisor and

mentor. His cheerful attitude and encouragement has helped me stay positive, believe in

myself, and successfully complete my PhD. I am forever grateful to him for his continued

support, invaluable advice, willingness to help, and time devoted to me

I would also like to thank my thesis committee members. I thank Sham Navathe for

his mentorship and support since the beginning of my PhD studies, Alex Endert for his in-

spiring and thought-provoking comments, Martin Wattenberg for his constructive feedback

which I always find insightful, and Fernanda Viégas for her positive energy which makes

me smile and feel confident.

I am very fortunate to receive advice and guidance from mentors and collaborators

across diverse research areas. In particular, I thank John Stasko who fueled my interest in

information visualization. I am indebted to collaborators from whom I have learned much,

including Rahul Basole, Jilles Vreeken, and Jamie Morgenstern. I would also like to extend

my gratitude to Rich Vuduc and Ed Chi for their advice on job hunting.

I had wonderful experience during my internships at the Google Big Picture team and

Facebook Applied Machine Learning group. I especially thank Nikhil Thorat, Hal Abelson,

Pierre Andrews, Aditya Kalro, Thomas Dudziak, and Hussein Mehanna.

I also have to thank all the fantastic members of Polo Club. Thanks to my academic

siblings who spent the early years of Polo Club together: Acar Tamersoy, Robert Pienta,

Shang-Tse Chen, Fred Hohman, and Nilaksh Das. I am indebted to many incredible un-

dergraduate and master’s students who I have worked with: Zhiyuan (Jerry) Lin, Dezhi

iii

(Andy) Fang, Ángel (Alex) Cabrera, Will Epperson, Elias Khalil, Ganesh Parameswaran,

Mayank Gupta, and Peter Polack.

Many thanks go to my friends and colleagues at Georgia Tech. I thank Georgia Tech

VIS group members: Chad Stolper, Jaegul Choo, Arjun Srinivasan, Hyunwoo Park, and

Bahador Saket. I am also grateful for my friends from Korea who helped me start my PhD

life in a new place and had Korean lunch together at Klaus: Joonseok Lee, Seungyeon Kim,

Changhyun Lee, Hyojong Kim, Hannah Kim, Jong Seok Park, and Yeongjin Jang.

I would also like to thank Carolyn Young, Arlene Washington-Capers, and Kristen

Perez for their administrative support.

Finally, I dedicate this dissertation to my family. Thank you to my mom and dad for

their unconditional love and support. And most of all, thank you to my wonderful wife

Youjin Kong for her support and encouragement. I am so grateful to have you by my side.

I love you!

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . x

List of Figures . xi

Summary . xv

Chapter 1. Introduction . 1

1.1 Thesis Goal & Main Ideas . 2

1.2 Thesis Overview . 3

1.2.1 Part I. Unified Scalable Interpretation 3

1.2.2 Part II. Data-driven Model Auditing 5

1.2.3 Part III. Learning Complex Models by Experimentation 7

1.3 Thesis Statement . 8

1.4 Research Contributions . 9

1.5 Impact . 10

Chapter 2. Related Work . 12

2.1 Machine Learning Interpretation through Visualization 12

2.2 Visualization of Deep Learning Models 14

2.3 Interactive Analysis in Machine Learning Workflow 16

v

Part I. Unified Scalable Interpretation 18

Chapter 3. ActiVis: Visual Exploration of Industry-Scale Deep Learning Models 20

3.1 Introduction . 20

3.2 Analytics Needs for Industry-Scale Problems 25

3.2.1 Background: Machine Learning Practice at Facebook 26

3.2.2 Design Challenges . 28

3.3 ActiVis: Visual Exploration of Neural Networks 30

3.3.1 Design Goals . 30

3.3.2 Exploring Neuron Activations by Instance Subsets 31

3.3.3 Interface: Tight Integration of Model, Instances, and Activation . . 35

3.3.4 Deploying ActiVis: Scaling to Industry-scale Datasets and Models . 38

3.4 Informed Design through Iterations . 42

3.5 Case Studies and Usage Scenarios . 44

3.5.1 Case Studies: Exploring Text Classification Models with ActiVis . . 44

3.5.2 Usage Scenario: Exploring Ranking Models 47

3.6 Discussion and Future Work . 48

3.7 Conclusion . 49

Part II. Data-driven Model Auditing 51

Chapter 4. MLCube: Interactive Model Comparison with Data Cube Analysis 53

4.1 Introduction . 53

4.2 Background: A Typical Machine Learning Pipeline 57

4.3 MLCube: Data Cubes for Machine Learning 58

4.4 Visual Exploration of MLCube . 60

4.4.1 User Interface . 61

4.4.2 Interactive Operations . 61

4.4.3 System Implementation . 62

vi

4.5 Usage Scenario . 62

4.6 Future Work . 65

Chapter 5. FairVis: Discovering Intersectional Bias in Machine Learning . . . 66

5.1 Introduction . 66

5.2 Background in Machine Learning Fairness 71

5.3 Design Challenges and Goals . 73

5.3.1 Design Challenges . 73

5.3.2 Design Goals . 74

5.4 FairVis: Discovering Intersectional Bias 76

5.4.1 Feature Distribution View & Subgroup Creation 76

5.4.2 Subgroup Overview . 78

5.4.3 Suggested Subgroups . 80

5.4.4 Similar Subgroups . 84

5.4.5 Detailed Subgroup Analysis and Comparison 87

5.5 Use Cases . 89

5.5.1 Auditing for Known Biases in Recidivism Prediction 89

5.5.2 Discovering Biases in Income Prediction 93

5.6 Limitations and Future Work . 95

Part III. Learning Complex Models by Experimentation 97

Chapter 6. GAN Lab: Learning Deep Generative Models by Interactive Ex-
perimentation . 99

6.1 Introduction . 99

6.2 Background: Generative Adversarial Networks 104

6.3 Design Challenges for Complex Deep Learning Models 105

6.4 Design Goals . 107

6.5 Visualization Interface of GAN Lab . 109

vii

6.5.1 Model Overview Graph: Visualizing Model Structure and Data Flow109

6.5.2 Layered Distributions: Visual Analysis of Interplay between Dis-
criminator and Generator . 113

6.5.3 Metrics: Monitoring Performances 116

6.6 Interactive Experimentation . 116

6.6.1 Direct Manipulation of Hyperparameters 116

6.6.2 Step-by-Step Model Training at Multiple Levels 118

6.6.3 Browser-based Implementation for Deployment 120

6.7 Informed Design through Iterations . 121

6.8 Usage Scenarios . 123

6.8.1 Beginners Learning Concepts and Training Procedure 123

6.8.2 Practitioners Experimenting with Hyperparameters 125

6.9 Observational Study . 127

6.9.1 Study Design . 127

6.9.2 Questionnaire Results . 129

6.9.3 Key Findings . 130

6.9.4 Discussion: Measuring Understanding Level 131

6.10 Log Analysis of Deployed Tool . 132

6.10.1 Data Collection . 133

6.10.2 Exploring Data and Identifying Actions 134

6.10.3 Results . 136

6.11 Limitations and Future Work . 137

Chapter 7. ETable: Interactive Browsing and Querying of Relational Databases 139

7.1 Introduction . 139

7.2 Related Work . 143

7.3 Introducing ETable . 146

7.4 Typed Graph Model . 148

7.5 ETable Presentation Data Model . 151

7.5.1 Enriched Table . 151

7.5.2 ETable Specification . 152

viii

7.5.3 Incremental Query Building with Primitive Operators 153

7.5.4 Query Execution . 156

7.6 Interface and System Design . 160

7.6.1 User-Level Actions . 161

7.6.2 Architecture . 162

7.7 Evaluation: User Study . 163

7.7.1 Experimental Design . 163

7.7.2 Results . 165

7.8 Expressiveness . 168

7.9 Conclusions . 170

Chapter 8. Conclusions . 171

8.1 Contributions . 171

8.2 Future Research Directions . 172

8.3 Concluding Remarks . 174

References . 192

ix

LIST OF TABLES

1.1 Three main research questions of thesis. 3

1.2 Publications from each part of the thesis. 4

6.1 Subjective ratings about GAN Lab using 7-point Likert scales (7: Strongly
Agreed. 1: Strongly Disagreed). 128

6.2 Numbers of users who performed each of the 9 common actions identified
from their click logs (among 330 users who clicked HTML elements at
least 30 times) . 136

7.1 Categories of node and edge types based on how they are translated from
relational schema . 151

7.2 List of tasks. Task 1 & 2 retrieve attribute values, task 3 & 4 filter entities,
task 5 & 6 perform aggregations. 165

7.3 Subjective ratings about ETable using 7-point Likert scales (7: Strongly
Agreed. 1: Strongly Disagreed). 167

x

LIST OF FIGURES

1.1 ActiVis’s multiple coordinated views help engineers explore complex deep
neural network models at both instance- and subset-level. 4

1.2 MLCube enables users to compare multiple models by slicing and dicing
data instances based on their features. 5

1.3 FairVis helps users discover bias in machine learning models by visualiz-
ing how different subgroups compare to one another according to various
performance metrics. 6

1.4 With GAN Lab, users can interactively create generative models and visu-
ally inspect how they generate data distributions. 7

1.5 With ETable, users can easily browse multi-faceted data and interactively
specify complex queries in relational databases. 8

3.1 ActiVis integrates several coordinated views to support exploration of com-
plex deep neural network models, at both instance- and subset-level. 21

3.2 ActiVis integrates multiple coordinated views. 32

3.3 Sorting neurons by their average activation values for the location class
helps users more easily spot instances whose activation patterns are posi-
tively correlated with that of the class. 33

3.4 Hovering over an instance subset highlights its instances in the t-SNE pro-
jected view. 34

3.5 Users can simultaneously visualize and compare multiple layers’ activations. 37

3.6 Version 1 of ActiVis, showing an instance’s neuron activation strengths,
encoded using color intensity. 42

xi

3.7 Version 2 of ActiVis, which unified instance- and subset-level activation
visualization. 43

4.1 A screenshot of MLCube Explorer, our interactive visualization tool for
analyzing and comparing machine learning results. 55

4.2 Typical machine learning pipeline from raw datasets to metric scores for
evaluation. 58

4.3 MLCube enables subset-level analysis of machine learning results by com-
puting aggregate statistics (e.g., accuracy) for a subset of instances. 59

4.4 Our user finds that a subset of instances performs distinctly worse than the
other groups. 63

4.5 Example of analyzing performance improvement. 64

5.1 FairVis integrates multiple coordinated views for discovering intersectional
bias. 67

5.2 This illustrative example highlights how inequities in populations can be
masked by aggregate metrics. 70

5.3 The Feature Distribution View allows users to explore both the distributions
of each feature in the entire dataset and also create user-specified groups out
of features or specific values. 77

5.4 In the Subgroup Overview, users can see how different subgroups compare
to one another according to various performance metrics. 78

5.5 Here we can see the Suggested and Similar Subgroup View for both sug-
gested and similar subgroups. Users can hover over any card to see detailed
feature and performance information in the Detailed Comparison View . . 83

5.6 In the Detailed Comparison View, users can compare the performance and
makeup of the pinned and hovered subgroups, providing insight into the
causes of performance differences. 88

5.7 When groups are pinned and hovered, users can compare their feature dis-
tributions in the Feature Distribution View 89

5.8 A user investigates an interesting subgroup discovered in the Suggested and
Similar Subgroup View . 92

xii

6.1 With GAN Lab, users can interactively train Generative Adversarial Net-
works (GANs), and visually examine the model training process. 100

6.2 A graphical schematic representation of a GAN’s architecture commonly
used. 101

6.3 In GAN Lab, the generator’s non-trivial data transformation is visualized
as a manifold, which turns input noise into fake samples. 104

6.4 The GAN Lab interface integrates multiple views. 106

6.5 Visualization of generator’s transformation. When users mouse over the
generator node, an animation of the square grid transitioning into a warped
version is played. 112

6.6 The discriminator’s performance can be interpreted through the layered dis-
tributions view, a composite visualization composed of three layers selected
by the user. 112

6.7 Evaluating how well the distribution of fake samples matches that of real
samples by turning on real samples’ density contour and fake samples in
the layered distributions view. 114

6.8 Example of understanding the interplay between discriminator and genera-
tor using the layered distributions view. 115

6.9 Users can create real samples by drawing their distribution. 118

6.10 Training typically involves of thousands of epochs (iterations). Each epoch
includes training both discriminator and generator. GAN Lab supports step-
by-step model training at different abstraction levels. 119

6.11 The slow-motion mode slowly executes the model training process in a
component level, in a step-by-step fashion. 120

6.12 Early design of GAN Lab did not include a model overview graph that helps
users develop mental models for GANs. 122

6.13 Experimenting with manual step execution, to understand the interplay be-
tween discriminator and generator. 124

6.14 Mode collapse, a common problem in GANs. 126

6.15 Screenshot of a visualization tool of usage log, which we developed for
exploring and identifying common actions. 134

xiii

7.1 ETable integrates multiple relations into a single enriched table that helps
users browse databases and interactively specify operators for building com-
plex queries. 140

7.2 Users can iteratively specify user-level actions by interacting with ETable. . 147

7.3 The relational schema of the academic dataset used in this work, 7 relations
in total. 148

7.4 TGDB schema graph constructed from the relational schema in Figure 7.3.
Each rectangle represents a node type, and each edge is an edge type. . . . 149

7.5 A part of the TGDB instance graph constructed from the academic dataset
used in this paper, following the schema in Figure 7.4. 150

7.6 An example query pattern in a diagrammatic notation. 153

7.7 An example of incrementally building a complex query. 155

7.8 ETable query execution process consists of two steps: (1) the instance
matching and (2) the format transformation step. 156

7.9 The ETable interface consists of (1) the default table list for initiating a
query, (2) the main view presenting query results, (3) the schema view
showing a query pattern, and (4) the history view listing operators speci-
fied by users. 160

7.10 Average task completion time for each task. 166

xiv

SUMMARY

While artificial intelligence (AI) has led to major breakthroughs in many domains, un-

derstanding machine learning models remains a fundamental challenge. How can we make

AI more accessible and interpretable, or more broadly, human-centered, so that people can

easily understand and effectively use these complex models?

My dissertation addresses these fundamental and practical challenges in AI through a

human-centered approach, by creating novel data visualization tools that are scalable, in-

teractive, and easy to learn and to use. With such tools, users can better understand models

by visually exploring how large input datasets affect models and their results. Specifically,

my dissertation focuses on three interrelated parts:

(1) Unified scalable interpretation: developing scalable visual analytics tools that help

engineers interpret industry-scale deep learning models at both instance- and subset-level

(e.g., ActiVis deployed by Facebook);

(2) Data-driven model auditing: designing visual data exploration tools that support

discovery of insights through exploration of data groups over different analytics stages,

such as model comparison (e.g., MLCube) and fairness auditing (e.g., FairVis); and

(3) Learning complex models by experimentation: building interactive tools that

broaden people’s access to learning complex deep learning models (e.g., GAN Lab) and

browsing raw datasets (e.g., ETable).

My research has made significant impact to society and industry. The ActiVis system

for interpreting deep learning models has been deployed on Facebook’s machine learning

platform. The GAN Lab tool for learning GANs has been open-sourced in collaboration

with Google, with its demo used by more than 70,000 people from over 160 countries.

xv

CHAPTER 1

INTRODUCTION

ScalableVisual
DataAnalytics

UNDE
RSTANDING

EXPLANATIONEXPLANATION

HUMANHUMAN AIAI

Machine learning (ML), or more broadly, arti-

ficial intelligence (AI), has led to major break-

throughs in various domains. Recent success of

deep learning has further accelerated this trend.

Practitioners and researchers, including those

without strong machine learning background,

have been increasingly embracing these tech-

nologies. Companies and governments around

the world are adopting machine learning for more of their products and services, such

as image recognition, machine translation, conversational agents, recommender systems,

medical diagnosis, and many more. These AI-powered systems are now transforming many

aspects of our daily lives.

While powerful machine learning models have significantly improved the accuracy of

many different tasks, people often have a difficult time understanding these models and

interpreting the results produced from the models. Deep learning models are particularly

difficult to understand, as complex mathematical functions and millions of parameters are

used to train models. Because of that, people often use the models as “black boxes” without

a deep understanding of why and how they work, which could be detrimental. For example,

when the models do not perform satisfactorily, users would not understand the causes or

know how to fix them. Even when the models work well, users may not trust them.

1

How can we make artificial intelligence more accessible and interpretable, or more

broadly, human-centered, so that people can understand their inner-workings more easily,

build them more effectively, and use them more confidently? This dissertation presents

new paradigms, methods, and systems that address this challenging problem.

1.1 Thesis Goal & Main Ideas

My dissertation addresses the fundamental and practical challenges in our understanding

of machine learning models through a human-centered approach. Through my research

in visualization and data analytics over the last decade, I realized that the key to solving

this problem is bringing the human into the analytics process. By developing new ways for

human to engage in the sensemaking process of machine learning models, we can promote

people’s understanding of complex ML systems. The goal of the dissertation is to build

an interface from human to complex, large-scale machine learning systems, where the

interface is scalable, interactive, and usable. With such interfaces, models that perform

well will be understood and trusted, and those that do not can be interpreted and improved.

My key idea to tackling this problem is creating novel interactive data visualization

tools that connect users with the machine learning models. The fields of information vi-

sualization and visual analytics have long been developing powerful interactive tools to

help people explore and analyze data by amplifying human cognition. My idea is to build

on this rich body of knowledge to design and develop novel interactive, visual tools that

allow people to easily explore machine learning models to make sense of their underlying

mechanisms, and effectively analyze their results for input datasets. Through these tools,

I create new ways for AI to explain its reasoning, and for human to actively engage in the

sensemaking process of machine learning models.

This research requires new visualization design principles, new data exploration mod-

els, and new scalable systems. This thesis presents solutions to these pressing needs.

2

1.2 Thesis Overview

Building interactive data visualization tools for the understanding of machine learning

models involves many challenges. My dissertation is organized into three parts, each ad-

dressing one main research question and presenting example tools and methods that illus-

trate my answers, which are summarized in Table 1.1. The publications from this research

are listed in Table 1.2. Next, I describe the main ideas behind the solutions.

Table 1.1: Three main research questions of thesis.

Research Question Answer Example

How to interpret large-scale models? I. Unified Scalable Interpretation Ch. 3
How to discover insights in workflow? II. Data-driven Model Auditing Ch. 4, 5
How to broaden access to complex models? III. Learning by Experimentation Ch. 6, 7

1.2.1 Part I. Unified Scalable Interpretation

Despite the recent interest in visualization for interpreting deep learning models, the large-

scale datasets and the wide variety of models used in industry pose unique design chal-

lenges. While a common approach to interpreting machine learning models, called instance-

level analysis, helps users explore a model’s response for an individual instance, it does not

easily scale. How can we enable users to visually explore industry-scale modern deep

models that use large and heterogeneous datasets?

ActiVis: Visual Exploration of Industry-Scale Deep Learning Models (Chapter 3).

We designed and developed ActiVis [86], a visual analytics system for interpreting large-

scale deep learning models and results, through participatory design sessions with re-

searchers and engineers across multiple teams at Facebook. With ActiVis (Figure 1.1), users

can start their exploration with an overview of model architecture, and subsequently dive

into localized inspection of activations. To support effective inspection of activations for

large data, ActiVis’s visualization unifies two commonly-used analytics patterns, instance-

3

Figure 1.1: ActiVis’s multiple coordinated views help engineers explore complex deep neu-
ral network models at both instance- and subset-level.

level and subset-level analysis, accelerating comparison of multiple instances and groups

of instances for large datasets, while most existing systems only support instance-level

analysis. ActiVis has been deployed on Facebook’s FBLearner Flow system used by most

machine learning engineers at Facebook.

Table 1.2: Publications from each part of the thesis.

Part I. Unified Scalable Interpretation
Chapter 3. ActiVis: Visual Exploration of Industry-Scale Deep Learning Models

M. Kahng, P. Andrews, A. Kalro, and D. H. Chau.
IEEE Transactions on Visualization and Computer Graphics, 24(1) (VAST 2017)

Part II. Data-driven Model Auditing
Chapter 4. MLCube: Interactive Model Comparison with Data Cube Analysis

M. Kahng, D. Fang, and D. H. Chau.
Workshop on Human-in-the-Loop Data Analytics (HILDA@SIGMOD 2016)

Chapter 5. FairVis: Discovering Intersectional Bias in Machine Learning
Á. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and D. H. Chau.
IEEE Conference on Visual Analytics Science and Technology (VAST 2019)

Part III. Learning Complex Models by Experimentation
Chapter 6. GAN Lab: Learning Deep Generative Models by Interactive Experimentation

M. Kahng, N. Thorat, D. H. Chau, F. Viégas, and M. Wattenberg.
IEEE Transactions on Visualization and Computer Graphics, 25(1) (VAST 2018)

Chapter 7. ETable: Interactive Browsing and Querying of Relational Databases
M. Kahng, S. Navathe, J. Stasko, and D. H. Chau.
Proceedings of the VLDB Endowment (VLDB 2016)

4

Figure 1.2: MLCube enables users to compare multiple models by slicing and dicing data
instances based on their features.

1.2.2 Part II. Data-driven Model Auditing

While tools like ActiVis promote people’s understanding of a model by visualizing how it

responds to data instances and subsets, the interpretation of a model itself is only one part

of many different tasks in applied machine learning. Building machine learning models in-

volves several analytics stages (e.g., feature extraction, model selection) and often requires

analysis of how input datasets affect results over a long machine learning pipeline. How can

we assist researchers and practitioners who work on various stages of a machine learning

workflow, to identify potentially problematic data groups, so that they can discover insights

and potentially fix the problems?

MLCube: Interactive Model Comparison with Data Cube Analysis (Chapter 4).

One of the practical challenges in applied machine learning is to compare and select the

best models among many candidates. We observed that users are often interested in how

certain groups of data instances respond to different models. It motivated us to develop

MLCube [88], a visual exploration tool for analyzing and comparing machine learning

results by slicing and dicing them based on data features or attributes (Figure 1.2). Users

can visually explore aggregate statistics and evaluation metrics over a large number of

5

The Metric Selector lets users choose
from 10 common fairness metrics.

For each metric, the average
across all instances is shown.

Hovered groups appear in blue
Pinned groups appear in red.

Figure 1.3: FairVis helps users discover bias in machine learning models by visualizing
how different subgroups compare to one another according to various performance metrics.

subsets and interactively drill down into models using data cube operations. This can help

users identify problematic data groups, spot interesting patterns, and inform their model

selection process.

FairVis: Discovering Intersectional Bias in Machine Learning (Chapter 5). Another

important practical challenge recently identified by researchers is how to ensure machine

learning models produce fair results for various population. Researchers have discovered

that a machine learning model may produce much worse accuracy for certain groups of

people (e.g., people of color) than for the overall population. This can result in many prob-

lems, as AI-powered systems continue to make important decisions across social domains.

Thus, it is important to help data scientists better audit the fairness of their machine learning

models. We developed FairVis [30], a novel visual analytics tool for users to discover in-

tersectional bias in models. FairVis’s coordinated views allow users to explore a high-level

overview of subgroup performances and subsequently drill down into detailed investigation

of specific subgroups (Figure 1.3).

6

Figure 1.4: With GAN Lab, users can interactively create generative models and visually
inspect how they generate data distributions.

1.2.3 Part III. Learning Complex Models by Experimentation

Recent success in deep learning has generated immense interest among practitioners and

students, inspiring many to learn about this new technology. While visual and interac-

tive approaches have been successfully developed to help these people learn AI and deep

learning, most existing tools focus on simpler models. Modern deep learning models are

becoming very complex and difficult for people to learn, introducing non-trivial challenges

in designing visualization tools for them. How can we broaden people’s access to learning

such complex models and making sense of complex structure of input datasets?

GAN Lab: Learning Deep Generative Models by Interactive Experimentation (Chap-

ter 6). In collaboration with Google Brain’s People+AI Research (PAIR) group, we built

GAN Lab [90], a visual, interactive tool for learning Generative Adversarial Networks

(GANs), one of the most popular, but hard-to-understand deep learning models. GAN Lab

enables users to interactively create GANs and experiment with different combinations of

hyperparameters, to learn how the models learn to generate data distributions (Figure 1.4).

GAN Lab overcomes a major practical challenge in training deep learning models by using

TensorFlow.js, an in-browser deep learning library, for users to use GAN Lab only with

7

Figure 1.5: With ETable, users can easily browse multi-faceted data and interactively spec-
ify complex queries in relational databases.

their browsers without specialized backend. This implementation approach significantly

broadens people’s education access to interactive tools for modern deep learning technolo-

gies.

ETable: Interactive Browsing and Querying of Relational Databases (Chapter 7).

One of the important first steps in building machine learning models is making sense of

input datasets. To help data analysts rapidly develop deep understanding of unfamiliar

datasets stored in relational databases, the most popular type of databases, we developed

ETable [89] for interactively browsing and navigating the complex relational structures

of databases. ETable’s novel way of interactively constructing an extended table, based

on denormalization, enables users to easily explore and query relational database tables

(Figure 1.5). Our user studies indicate that users can construct complex queries much

faster with ETable than a commercial, widely-used database administration tool.

1.3 Thesis Statement

Interactive visualization tools designed to provide a high-level overview of machine learn-

ing models and methods for drilling down into detailed explorations of how input datasets

affect the models’ results can help users (1) interpret large-scale models through data in-

stances and subsets, (2) discover insights for selecting better-performing and unbiased mod-

els, and (3) learn the inner-workings of complex models by actively experimenting with

them.

8

1.4 Research Contributions

My thesis makes research contributions through multiple major fronts.

• New design principles: My dissertation contributes novel design principles for de-

veloping interactive visualization tools for complex machine learning models. To

help users make sense of the overall structure of models and perform detailed analy-

sis, we designed our tools that provide users with both a high-level visual overview

of the models and interactive methods to drill down into details of the models or

datasets. In ActiVis, users can start their exploration with a graph-structured overview,

and then dive into details of neurons’ activation (Chapter 3). Also, GAN Lab’s co-

ordinated views help users perform experimentations while visualizing a model’s

architecture (Chapter 6).

• Novel data exploration models: We contribute new ways to analyze how datasets

affect machine learning results. The MLCube framework enables users to flexibly

specify data subset by considering every part of a machine learning pipeline (Chap-

ter 4). Through the powerful data cube framework, users can also interactively drill

down into specific subsets, to perform more in-depth exploration. The ActiVis system

further unifies the subset-level analysis with the instance-level analysis, which al-

lows to scale to large-scale datasets (Chapter 3). ETable also contributes new models

for exploring data (Chapter 7).

• New scalable, deployed systems: We present new scalable systems for interpreting

large-scale machine learning systems. ActiVis’s multiple scalable techniques enabled

it to scale to industry-scale datasets and models and deploy to Facebook’s internal

machine learning platform (Chapter 3). MLCube’s scalable system design also led to

a deployment by Facebook and influenced Google’s open-source library (Chapter 4).

• New broadly accessible approaches: Our browser-based visualization tools signif-

9

icantly broaden public’s access to modern AI technologies. GAN Lab overcomes

a major practical challenge in deploying interactive tools for deep learning, by en-

abling users to learn about models by playfully training and experimenting with them

on web browser (Chapter 6). FairVis also allows users to audit fairness of machine

learning models on their browser (Chapter 5). Both tools have been open-sourced.

1.5 Impact

My research has made significant impact to society and industry.

• Our ActiVis system (Chapter 3) for interpreting deep learning models has been de-

ployed on FBLearner, Facebook’s internal machine learning platform that is used

by more than 25% of Facebook’s engineering team [55]. The paper for ActiVis [86]

has been selected as one of the top four papers among 99 papers presented at the

IEEE VIS 2017 conference, to be invited to present at the ACM SIGGRAPH 2018

conference. ActiVis is also patent-pending.

• Our MLCube framework (Chapter 4) for analyzing models by data slices has also

been deployed on Facebook’s internal machine learning platform. MLCube’s core

idea has influenced the development of a Google’s open-source system integrated

into TensorFlow, the most popular deep learning library.

• Our GAN Lab tool (Chapter 6) for learning Generative Adversarial Networks has

been open-sourced in collaboration with Google Brain’s People+AI Research (PAIR)

group, and recognized by many researchers and practitioners. The news about our

release has been spreaded by 800 individuals (i.e., “retweet” in Twitter)1, and the

system website has been used by 70,000 people from over 160 countries over the

world within the first year after release.

1https://twitter.com/minsukkahng/status/1037016214575505409

10

https://twitter.com/minsukkahng/status/1037016214575505409

• My research has been recognized by both a Google PhD Fellowship and an NSF

Graduate Research Fellowship. The former is one of the most prestigious industry-

supported fellowship in computer science, and the latter is also a prestigious fel-

lowship that supports outstanding graduate students, awarded by National Science

Foundation.

11

CHAPTER 2

RELATED WORK

This chapter reviews related work. I first review work on using interactive visualization

for interpreting machine learning results. Then I describe related work on visualization

for the understanding of deep learning models. Lastly, I review interactive interpretation

approaches that consider machine learning workflows.

2.1 Machine Learning Interpretation through Visualization

Machine learning interpretation. As the complexity of machine learning algorithms

increases, many researchers have recognized the importance of model interpretability or

explainability [149, 115, 52, 76]. While overall model accuracy has been primarily used

to select models, machine learning engineers or researchers often want to understand why

and when a model would perform better than others. This is important because without the

understanding of models, they cannot trust the model and would not know how to further

improve it.

Interactive visualization of results for a single instance. To help users better in-

terpret machine learning models and their results, many interactive tools have been de-

veloped [123, 103, 113, 62, 170, 173, 43, 76]. In designing tools for explaining how

machine learning models work, revealing relationships between data and models is one of

the the most important design goals [142, 141]. A widely-used approach is helping users

track how a model respond to an individual example (i.e., training or test instance), which

12

we call instance-level analysis. Kulesza et al. [102] presented an interactive system that

explains how models made predictions for each instance. Amershi et al. [9] developed

ModelTracker, a visualization tool that shows the distribution of instance scores for binary

classification tasks and allows users to examine each instance individually. Squares [148]

is an extension of ModelTracker for multi-classification tasks. Facets [181] is another inter-

active tool that visualizes instances, enabling users to browse a large number of instances

by organizing them with their features or attributes.

Scaling to large datasets. While the instance-level exploration is helpful for tracking

how models respond to individual examples, it does not easily scale to large datasets used

in practice because a small number of sample examples has to be selected. To tackle this

challenge, feature- or subset-level analysis has been used to explain the relationships be-

tween data and models, as machine learning features make it possible for instances to be

grouped and sliced in multiple ways. Researchers have utilized features to visually describe

how the models captured the structure of datasets [102, 100, 98, 27]. Kulesza et al. [102]

used the importance weight of each feature in the Naive Bayes algorithm, and Krause et

al. [100] used partial dependence to show the relationships between features and results.

Subset-level analysis. To enable users to analyze results not only by predefined fea-

tures, researchers have developed tools that enable users to specify instance subsets. Spec-

ifying groups can often be a first step for analyzing machine learning results [101], as

it provides users with an effective way for analyzing complex multidimensional data. In

particular, people in the medical domain often perform similar processes, called cohort

construction, and Krause et al. [101] developed an interactive tool that helps this process.

McMahan et al. [126] presented a tool that allows users to visually compare the perfor-

mance differences between models by subsets. Researchers have also used automated

methods to find such subsets [97, 46, 129, 107]. Krause et al. [97] developed methods that

find a set of binary features that can change prediction results if removed. Chung et al. [46]

developed efficient methods to search for slices, combined with statistical tests to ensure

13

that the sizes of the slices are large enough. Our ActiVis (in Chapter 3) and MLCube (in

Chapter 4) systems have been built on this line of research on subset-level analysis. ActiVis

combines the subset-level analysis with the instance-level analysis and MLCube enables

users to flexibly specify subsets and interactively explore a large number of subsets.

2.2 Visualization of Deep Learning Models

Visualization for conceptual understanding of deep learning. To help people, in-

cluding those without computer science background, learn about deep learning, researchers

and practitioners have written articles with visualizations and developed interactive tools

accessible on the Web. One well-known example is Olah’s series of essays,1 explaining

mathematical concepts behind deep learning using visualizations (e.g., on how neural net-

works transform and manipulate manifolds [137]). Another popular example is Karpathy’s

collection of web-based demos.2 His demo for a convolutional neural network model [93]

dynamically visualizes intermediate results, such as neuron activation. Olah’s articles and

Karpathy’s demos have inspired many researchers to develop interactive visualizations for

people to easily understand deep learning techniques [162, 72]. One example is Deep Visu-

alization Toolbox [189] which visualizes activation information of convolutional neural net-

works for images instantly provided from webcam. Users can interactively see how results

change depending on the input. Another notable example is TensorFlow Playground [162],

an interactive visualization tool for non-experts to train simple neural network models and

visualize internal components, such as neurons and weights. A new online interactive jour-

nal, Distill, has also been created, dedicated to interactive explanation of machine learn-

ing [138] which has featured many articles with interactive visualization [178, 64, 31, 139].

However, most existing visualizations for the conceptual understanding of deep learning

1Colah’s blog, http://colah.github.io
2ConvNetJS Browser Demos, https://cs.stanford.edu/people/karpathy/convnetjs/

14

http://colah.github.io
https://cs.stanford.edu/people/karpathy/convnetjs/

models focus on simpler models, and we present GAN Lab (in Chapter 6) designed for

more complex models.

Visual analytics for deep learning models. With the growth of deep learning mod-

els, many visual analytics tools for deep learning have been developed, as we surveyed

in [76]. One of the most widely-used tools, TensorFlow Graph Visualizer [183], visual-

izes model structures, to help researchers and engineers build mental models about them.

Another popular way to interpreting deep learning models is visualizing high-dimensional

representations of models, often called embedding, by projecting them into two dimen-

sions [163, 147, 143] based on projecting algorithms like t-Distributed Stochastic Neighbor

Embedding (t-SNE) [124]. Embedding Projector [163] is a popular tool that supports the

visualization of embedding. Many other tools focus to visually summarize model results

for interpreting how specific models respond to their datasets. For example, CNNVis [118]

is designed for inspecting results from convolutional neural networks (CNNs). This work

models neurons as a directed graph and utilized several techniques, such as hierarchical

clustering for grouping neurons and bi-directional edge bundling for summarizing edges

among neurons. Several tools have been proposed for recurrent neural networks (RNNs)

based models which are widely used for text data, which include LSTMVis [168], RN-

NVis [128], and Seq2Seq-Vis [167]. Tools for unsupervised generative models also exist.

For instance, DGMTracker [117] allows experts to diagnose and monitor the training pro-

cess of generative models through visualization of time-series data on data-flow graphs,

and GANViz [177] helps experts evaluate and interpret trained results through multiple

views, including one showing the distributions of real and fake image samples, for a se-

lected epoch.

15

2.3 Interactive Analysis in Machine Learning Workflow

Importance of considering workflow. Machine learning systems used in practice of-

ten involve many different analytic stages (e.g., data preprocessing, feature selection, and

model debugging) [157, 144]. Therefore, in developing interactive tools for supporting

machine learning practitioners, it is important to design tools that consider their machine

learning workflow. Patel et al. [141] presented a development environment for developers

to implement classification models and argued that interactive tools that support the entire

machine learning process can accelerate the understanding of models. Sculley et al. [157]

also argued that the bottleneck of practical machine learning systems is often caused by

the lack of data dependency over the machine learning pipelines. The database community

acknowledges the importance of managing data flow. With this expertise, many researchers

have studied on helping machine learning engineers perform feature engineering [10, 192],

and researchers have also studied on model selection or interpretation [104, 38]. Chen

et al. [38] developed a prediction cube framework to examine the effect of features using

data cube analysis. Our MLCube framework (in Chapter 4) advances prior work by allow-

ing users to specify subsets over any intermediate data produced throughout the machine

learning pipeline from input datasets to output metrics.

Analysis for identifying problems and improving models. Building machine learn-

ing models is an iterative process [142, 187, 54, 8]. Engineers often keep trying to refine,

improve, or debug their existing models to make it perform better. However, model debug-

ging is a big challenge in machine learning, especially for deep learning models. While

machine learning researchers focus on refining or modifying hyperparameters of models,

one of the practically effective approaches is identifying problems in datasets [144], and

many visual or interactive analytics systems have been proposed to address this problem.

This includes identifying misclassified instances [129], errors in labels [39], and fairness-

related issues (e.g. FairVis in Chapter 5). Interactive tools that support the identification of

16

problems can also lead to improving performance [180, 167, 129, 136, 185, 179]. For ex-

ample, the What-If tool [180], which enables users to generate and test hypothesis, can be

used to look for counterfactual explanations [106] for specific instances and also to modify

a classifier’s threshold to change which fairness principles are being satisfied.

17

PART I

UNIFIED SCALABLE INTERPRETATION

18

Overview

Deep learning models often work with very large datasets, introducing many non-trivial

design challenges in developing interactive visualization tools for interpreting such models.

While a common approach to interpreting machine learning models, called instance-level

analysis, helps users explore a model’s response for an individual instance, it does not

easily scale to large datasets. The first part of my dissertation describes my new approach

to interpreting deep learning models that use large data by unifying the instance-level and

subset-level analyses. In particular, this part describes the following work:

• ActiVis (Chapter 3) designed for interpreting industry-scale deep neural network

models and deployed by Facebook.

19

CHAPTER 3

ACTIVIS: VISUAL EXPLORATION OF
INDUSTRY-SCALE DEEP LEARNING MODELS

Despite the recent interest in developing visual tools to help users interpret deep learn-

ing models, the complexity and wide variety of models deployed in industry, and the large-

scale datasets that they used, pose unique design challenges that are inadequately addressed

by existing work. This chapter describes ActiVis, a visual analytics system for interpreting

large-scale deep learning models and results, developed through participatory design ses-

sions with over 15 researchers and engineers at Facebook. By tightly integrating multiple

coordinated views, such as a computation graph overview of the model architecture, and a

neuron activation view for pattern discovery and comparison, users can explore complex

deep neural network models at both the instance- and subset-level. ActiVis has been de-

ployed on Facebook’s machine learning platform. We present case studies with Facebook

researchers and engineers, and usage scenarios of how ActiVis may work with different

models.

3.1 Introduction

Deep learning has led to major breakthroughs in various domains, such as computer vision,

natural language processing, and healthcare. Many technology companies, like Facebook,

This chapter is adapted from work appeared at IEEE VAST 2017 [86].

20

Figure 3.1: ActiVis integrates several coordinated views to support exploration of complex
deep neural network models, at both instance- and subset-level. 1. Our user Susan starts
exploring the model architecture, through its computation graph overview (at A). Selecting
a data node (in yellow) displays its neuron activations (at B). 2. The neuron activation
matrix view shows the activations for instances and instance subsets; the projected view
displays the 2-D projection of instance activations. 3. From the instance selection panel (at
C), she explores individual instances and their classification results. 4. Adding instances
to the matrix view enables comparison of activation patterns across instances, subsets, and
classes, revealing causes for misclassification.

have been increasingly adopting deep learning models for their products [3, 2, 47]. While

powerful deep neural network models have significantly improved prediction accuracy, un-

derstanding these models remains a challenge. Deep learning models are more difficult to

interpret than most existing machine learning models, because they capture nonlinear hid-

den structures of data using a huge number of parameters. Therefore, in practice, people

often use them as “black boxes”, which could be detrimental because when the models do

not perform satisfactorily, users would not understand the causes or know how to fix them

[102, 149].

Despite the recent increasing interest in developing visual tools to help users interpret

deep learning models [118, 189, 45, 163], the complexity and wide variety of models

deployed in industry, and the large-scale datasets that they use, pose unique challenges that

21

are inadequately addressed by existing work. For example, deep learning tasks in industry

often involve different types of data, including text and numerical data; however most

existing visualization research targets image datasets [189]. Furthermore, in designing

interpretation tools for real-world use and deployment at technology companies, it is a

high priority that the tools be flexible and generalizable to the wide variety of models and

datasets that the companies use for their many products and services. These observations

motivate us to design and develop a visualization tool for interpreting industry-scale deep

neural network models, one that can work with a wide range of models, and can be readily

deployed on Facebook’s machine learning platform.

Through participatory design with researchers, data scientists, and engineers at Face-

book, we have identified common analysis strategies that they use to interpret machine

learning models. Specifically, we learned that both instance- and subset-based exploration

approaches are common and effective. Instance-based exploration (e.g., how individual

instances contribute to a model’s accuracy) have demonstrated success in a number of ma-

chine learning tasks [102, 9, 141]. As individual instances are familiar to users, exploring

by instances accelerates model understanding. Another effective strategy is to leverage in-

put features or instance subsets specified by users [100, 102]. Slicing results by features

helps reveal relationships between data attributes and machine learning algorithms’ outputs

[126, 88, 141]. Subset-based exploration is especially beneficial when dealing with huge

datasets in industry, which may consist of millions or billions of data points. Interpreting

model results at a higher, more abstract level helps drive down computation time, and help

user develop general sense about the models.

Our tool, called ActiVis, aims to support both interpretation strategies for visualiza-

tion and comparison of multiple instances and subsets. ActiVis is an interactive visual-

ization system for deep neural network models that (1) unifies instance- and subset-level

inspections, (2) tightly integrates overview of complex models and localized inspection,

and (3) scales to a variety of industry-scale datasets and models. ActiVis visualizes how

22

neurons are activated by user-specified instances or instance subsets, to help users under-

stand how a model derives its predictions. Users can freely define subsets with raw data

attributes, transformed features, and output results, enabling model inspection from multi-

ple angles. While many existing deep learning visualization tools support instance-based

exploration [72, 189, 45, 163], ActiVis is the first tool that simultaneously supports instance-

and subset-based exploration of the deep neural network models. In addition, to help users

get a high-level overview of the model, ActiVis provides a graph-based representation of

the model architecture, from which the user can drill down to perform localized inspection

of activations at each model layer (node).

Illustrative scenario. To illustrate how ActiVis works in practice, consider our user

Susan who is training a word-level convolutional neural network (CNN) model [95] to

classify question sentences into one of six categories (e.g., whether a question asks about

numeric values, as in “what is the diameter of a golf ball?”). Her dataset is part of the

TREC question answering data collections1 [112].

Susan is new to using this CNN model, so she decides to start by using its default

training parameters. After training completes, she launches ActiVis, which runs in a web

browser. ActiVis provides an overview of the model by displaying its architecture as a

computation graph (Figure 3.1A, top), summarizing the model structure. By exploring the

graph, Susan learns about the kind of operations (e.g., convolution) that are performed, and

how they are combined in the model.

Based on her experience working with other deep learning models, she knows that

a model’s performance is strongly correlated with its last hidden layer, thus it would be

informative to analyze that layer. In ActiVis, a layer is represented as a rounded rectangular

node (highlighted in yellow, in Figure 3.1A, bottom).

Susan clicks the node for the last hidden layer, and ActiVis displays the layer’s neuron

activation in a panel (Figure 3.1B): the neuron activation matrix view on the left shows

1http://cogcomp.cs.illinois.edu/Data/QA/QC/

23

http://cogcomp.cs.illinois.edu/Data/QA/QC/

how neurons (shown as columns) respond to instances from different classes (rows); and

the projected view on the right shows the 2-D projection of instance activations.

In the matrix view, stronger neuron activations are shown in darker gray. Susan sees that

the activation patterns for the six classes (rows) are quite visually distinctive, which may

indicate satisfactory classification. However, in the projected view, instances from different

classes are not clearly separated, which suggests some degree of misclassification.

To examine the misclassified instances and to investigate why they are mislabeled, Su-

san brings up the instance selection panel (Figure 3.1C). The classification results for the

NUMber class alarm Susan, as many instances in that class are misclassified (shown in

right column). She examines their associated question text by mouse-overing them, which

shows the text in popup tooltips. She wants to compare the activation patterns of the cor-

rectly classified instances with those of the misclassified. So she adds two correct instances

(#38, #47) and two misclassified instances (#120, #126) to the neuron activation matrix

view — indeed, their activation patterns are very different (Figure 3.1.4).

Taking a closer look at the instance selection panel, Susan sees that many instances have

blue borders, meaning they are misclassified as DESCription. Inspecting the instances’

text reveals that they often begin with “What is”, which is typical for questions asking for

descriptions, though they are also common for other question types, as in “What is the

diameter of a golf ball?” which is a numeric question (Figure 3.1.3).

To understand the extent to which instances starting with “What is” are generally mis-

classified by the model, Susan creates an instance subset for them, and ActiVis adds this

subset as a new row in the neuron activation matrix view. Susan cannot discern any vi-

sual patterns from the subset’s seemingly scattered, random neuron activations, suggesting

that the model may not yet have learned effective ways to distinguish between the different

intents of “What is” questions. Based on this finding, she proceeds to train more models

with different parameters (e.g., consider longer n-grams) to better classify these questions.

ActiVis integrates multiple coordinated views to enable Susan to work with complex

24

models, and to flexibly explore them at instance- and subset-level, helping her discover and

narrow in to specific issues.

Deployment. ActiVis has been deployed on the machine learning platform at Facebook.

A developer can visualize a deep learning model using ActiVis by adding only a few lines

of code, which instructs the model’s training process to generate data needed for ActiVis.

ActiVis users at Facebook (e.g., data scientists) can then train models and use ActiVis via

FBLearner Flow [55, 12], Facebook’s internal machine learning web interface, without

writing any additional code.

ActiVis’s main contributions include:

• A novel visual representation that unifies instance- and subset-level inspections of

neuron activations, which facilitates comparison of activation patterns for multi-

ple instances and instance subsets. Users can flexibly specify subsets using input

features, labels, or any intermediate outcomes in a machine learning pipeline (Sec-

tion 3.3.2).

• An interface that tightly integrates an overview of graph-structured complex models

and local inspection of neuron activations, allowing users to explore the model at

different levels of abstraction (Section 3.3.3).

• A deployed system scaling to large datasets and models (Section 3.3.4).

• Case studies with Facebook engineers and data scientists that highlight how ActiVis

helps them with their work, and usage scenarios that describe how ActiVis may work

with different models (Section 3.5).

3.2 Analytics Needs for Industry-Scale Problems

The ActiVis project started in April 2016. Since its inception, we have conducted partic-

ipatory design sessions with over 15 Facebook engineers, researchers, and data scientists

25

across multiple teams to learn about their visual analytics needs. Together, we collabora-

tively design and develop ActiVis and iteratively improve it.

In Section 3.2.1, we describe the workflow of how machine learning models are typi-

cally trained and used at Facebook, and how results are interpreted. This discussion pro-

vides the background information and context for which visualization tools may help im-

prove deep learning model interpretation.

In Section 3.2.2, we summarize our main findings from our participatory design ses-

sions to highlight six key design challenges that stem from Facebook’s needs to work

with large-scale datasets, complex deep learning model architectures, and diverse analytics

needs. These challenges have been inadequately addressed by current deep learning visu-

alization tools, and they motivate and shape our design goals for ActiVis, which we will

describe in Section 3.3.1.

3.2.1 Background: Machine Learning Practice at Facebook

Facebook uses machine learning for some of their products. Researchers, engineers, and

data scientists from different teams at Facebook perform a wide range of machine learning

tasks.

We first describe how Facebook’s machine learning platform helps users train models

and interpret their results. Then, we present findings from our discussion with machine

learning users and their common analytics patterns in interpreting machine learning mod-

els. These findings guide our discovery of design challenges that ActiVis aims to address.

FBLearner Flow: Facebook’s Machine Learning Platform

To help engineers, including non-experts of machine learning, to more easily reuse algo-

rithms in different products and manage experiments with ease, Facebook built a unified

machine learning platform called FBLearner Flow [55, 12]. It supports many machine

learning workflows. Users can easily train models and see their results using the FBLearner

26

Flow interface without writing any code. For example, users can train a model by picking a

relevant workflow from a collection of existing workflows and specifying several input pa-

rameters for the selected workflow (e.g., location of training dataset, learning parameters).

The FBLearner Flow interface is particularly helpful for users who want to use existing

machine learning models for their datasets without knowing their internal details.

Once the training process is done, the interface provides high-level information to aid

result analysis (e.g., precision, accuracy). To help users interpret the results from addi-

tional multiple aspects, several other statistics are available in the interface (e.g., partial

dependence plots). Users can inspect models’ internal details via interactive visualization

(e.g., for decision trees) [12]. As deep neural network models gain popularity, developing

visualization for their interpretation is a natural step for FBLearner Flow.

Analytics Patterns for Interpretation

To better understand how machine learning users at Facebook interpret model results, and

how we may design ActiVis to better support their analysis, we conducted participatory

design sessions with over 15 engineers and data scientists who regularly work with machine

learning and deep neural network models. At the high level, we learned that instance-

and subset-based strategies are both common and effective, echoing findings from existing

research.

Instance-based analysis. One natural way for users at Facebook to understand com-

plex models is by tracking how an individual example (i.e., training or test instance) be-

haves inside the models; users often have their own collection of example instances, for

which they know their characteristics and ground truth labels. Instance-level exploration is

especially useful when an instance is easy to interpret. For example, an instance consist-

ing of text only is much easier to understand than an instance consisting of thousands of

numerical features extracted from an end user’s data.

Subset-based analysis. Instance-based analysis, however, is insufficient for all cases.

27

Inspecting instances individually can be tedious, and sometimes hinder insight discovery,

such as when instances are associated with many hard-to-interpret numerical features. We

learned that some Facebook researchers find subset-based analysis to be more helpful for

their work. For example, suppose an instance represents an article that consists of many

numerical features extracted from its attributes (e.g., length, popularity). Some users would

like to understand how the models behave at higher-level categorization (e.g., by topic,

publication date). In addition, some users have curated instance subsets. Understanding

model behavior through such familiar subsets promotes their understanding.

3.2.2 Design Challenges

Besides reaffirming the importance of two analysis strategies discussed above, and the

need to support them simultaneously in ActiVis, we have identified additional design chal-

lenges through the participatory design sessions. We summarize them into six key design

challenges. Thus far, they have not been adequately addressed by existing deep learning vi-

sualization tools. And they shape the main design goals of ActiVis, which we will describe

in Section 3.3.1.

We have labeled the six challenges C1 – C6 and have grouped them into three cate-

gories with the labels data, model, and analytics, which indicate the causes for which the

challenges arise.

C1. Diverse input sources and formats [DATA]

While deep learning has become popular because of its superior performance for

image data, it has also been applied to many different data formats, including text

and numerical features [95, 85, 3, 47]. Furthermore, a single model may jointly use

multiple types of data at a time. For example, to classify a Facebook post, a model

may jointly leverage its textual content, attached photos, and user information, each

of which may be associated with many data attributes [3]. Working with such variety

of data sources and formats opens up many opportunities for model interpretation; for

28

example, we may be able to more easily categorize instances using their associated

numerical features that can be more readily understood, instead of going the harder

route of using image-based features.

C2. High data volume [DATA]

Facebook, like many other companies, has a large amount of data. The size of train-

ing data often reaches billions of rows and thousands of features. This sheer size of

data render many existing visualization tools unusable as they are often designed to

visualize the whole dataset.

C3. Complex model architecture [MODEL]

Many existing visualization tools for deep learning models often assume simple lin-

ear architectures where data linearly flow from the input layer to the output layer

(e.g., a series of convolution and max-pooling layer in AlexNet) [189, 118, 45]. How-

ever, most practical model architectures deployed in industry are very complex [47];

they are often deep and wide, consisting of many layers, neurons, and operations.

C4. A great variety of models [MODEL]

Researchers and engineers at Facebook develop and evaluate models for products

every day. It is important for visualization tools to be generalizable so they can

work with many different kinds of models. A visualization system would likely

be impractical to use or to deploy if a small change to a model requires significant

changes made to existing code or special case handling.

C5. Diverse subset definitions [ANALYTICS]

When performing subset-based analysis, users may want to define subsets in many

different ways. Since there are a large number of input formats and input features,

there are numerous ways to specify subsets. Instead of providing a fixed set of ways

to define subsets, it is desirable to make this process flexible so that users can flexibly

define subsets that are relevant to their tasks and goals.

29

C6. Simultaneous need for performing instance- and subset-level analysis [ANALYTICS]

Instance- and subset-based are complementary analytics strategies, and it is impor-

tant to support both at the same time. Instance-based analysis helps users track how

an individual instance behaves in the models, but it is tedious to inspect many in-

stances one by one. By specifying subsets and enabling their comparison with indi-

vidual instances, users can learn how the models respond to many different slices of

the data.

3.3 ActiVis: Visual Exploration of Neural Networks

Through the design challenges we identified (in Section 3.2.2) in our participatory design

sessions with researchers, engineers, and data scientists at Facebook, we design and de-

velop ActiVis, a novel interactive visual tool for exploring a wide range of industry-scale

deep neural network models. In this section, we first present three main design goals dis-

tilled from our conversations with Facebook participants (Section 3.3.1). Then, for each

design goal, we elaborate on how ActiVis achieves it through its system design and visual

exploration features (Sects. 3.3.2-3.3.4). We label the three design goals G1 – G3.

3.3.1 Design Goals

G1. Unifying instance- and subset-based analysis to facilitate comparison of multi-

ple instance activations. From our participatory design sessions, we learned that

both instance- and subset-based analysis are useful and complementary. We aim to

support subset-level exploration by enabling users to flexibly define instance sub-

sets for different data types (C1, C5), e.g., a set of documents that contain a specific

word. Subset-based analysis also allows users to explore datasets at higher-level ab-

straction, scaling to billion-scale data or larger (C2). Furthermore, we would like

to unify instance- and subset-level inspections to facilitate comparison of multiple

30

instances and groups of instances in a single view (C6).

G2. Tight integration of overview of model architecture and localized inspection of

activations. Industry-scale deep neural network models are often very complex,

consisting of many operations (C3). Visualizing every detail and activation value

for all intermediate layers can overwhelm users. Therefore, we aim to present the

architecture of the models as a starting point of exploration, and let users switch to

the detailed inspection of activations.

G3. Scaling to industry-scale datasets and models through flexible system design.

For ActiVis to work with many different large-scale models and datasets used in prac-

tice, it is important for the system to be flexible and scalable. We aim to support as

many different kinds of data types and classification models as what FBLearner cur-

rently does (e.g., image, text, numerical) (C1, C4). We would like to achieve this by

developing a flexible, modularized system that allows developers to use ActiVis for

their models with simple API functions, while addressing visual and computational

scalability challenges through a multipronged approach (C2, C3).

3.3.2 Exploring Neuron Activations by Instance Subsets

Drawing inspiration from existing visualizations [189, 72, 118], ActiVis supports the visual-

ization for individual instances. However, it is difficult for users to spot interesting patterns

and insights if he can only visualize one instance at a time. For example, consider a hidden

layer consisting of 100 neurons. The neuron activations for an instance is a 100-dimension

vector consisting of 100 numerical values, where each element in the vector does not have

any specific meaning. Instead, if multiple vectors of activation values are presented to-

gether, the user may more readily derive meaning by comparing them. For example, users

may find that some dimensions may respond more strongly to certain instances, or some

dimensions are negatively correlated with certain classes.

31

Figure 3.2: ActiVis integrates multiple coordinated views. A. The computation graph
summarizes the model architecture. B. The neuron activation panel’s matrix view displays
activations for instances, subsets, and classes (at B1), and its projected view shows a 2-D t-
SNE projection of the instance activations (at B2). C. The instance selection panel displays
instances and their classification results; correctly classified instances shown on the left,
misclassified on the right. Clicking an instance adds it to the neuron activation matrix view.
The dataset used is from the public TREC question answering data collections [112]. The
trained model is a word-level convolutional model based on [95].

A challenge in supporting the comparison of multiple instances stems from the sheer

size of data instances; it is impossible to present activations for all instances. To tackle

this challenge, we enable users to define instance subsets. Then we compute the average

activations for instances within the subsets. The vector of average activations for a subset

can then be placed next to the vectors of other instances or subsets for comparison.

The neuron activation matrix, shown at Figure 3.2B.1, illustrates this concept of com-

paring multiple instances and instance subsets, using the TREC question classification

dataset2 [112]. The dataset consists of 5,500 question sentences and each sentence is la-

2http://cogcomp.cs.illinois.edu/Data/QA/QC/

32

http://cogcomp.cs.illinois.edu/Data/QA/QC/

Figure 3.3: Sorting neurons (columns) by their average activation values for the LOC (lo-
cation) class helps users more easily spot instances whose activation patterns are positively
correlated with that of the class, e.g., instances #94 and #30 (see green arrows).

beled by one of six categories (e.g., is a question asking about location?). Figure 3.2B

shows the activations for the last hidden layer of the word-level CNN model [95, 26]. Each

row represents either an instance or a subset of instances. For example, the first row repre-

sents a subset of instances whose true class is ‘DESC’ (descriptions). Each column repre-

sents a neuron. Each cell (circle) is a neuron activation value for a subset. A darker circle

indicates stronger activation. This matrix view exposes the hidden relationships between

neurons and data. For instance, a user may find out a certain neuron is highly activated by

instances whose true class is ‘LOC’.

Flexible subset definition. In ActiVis, users can flexibly define instance subsets. A

subset can be specified using multiple properties of the instances, in many different ways.

Example properties include raw data attributes, labels, features, textual content, output

scores, and predicted label. Our datasets consist of instances with many features and a

combination of different types of data. Flexible subset definition enables users to analyze

models from different angles. For example, for instances representing text documents,

the user may create a subset for documents that contains a specific phrase. For instances

33

Figure 3.4: Hovering over an instance subset (e.g., for the NUMber class) highlights its
instances (purple dots) in the t-SNE projected view.

containing numerical features, users can specify conditions, using operations similar to

relational selections in databases (e.g., age > 20, topic = ’sports’). By default,

a subset is created for each class (e.g., a subset for the ‘DESC’ class).

Sorting to reveal patterns. The difficulty in recognizing patterns increases with the

number of neurons. ActiVis allows users to sort neurons (i.e., columns) by their activation

values. For example, in Figure 3.3, the neurons are sorted based on the average activa-

tion values for the class ‘LOC’. Sorting facilitates activation comparison and helps reveal

patterns, such as spotting instances that are positively correlated with their true class in

terms of the activation pattern (e.g., instances #94 and #30 correlate with the ‘LOC’ class

in Figure 3.3).

2-D projection of activations. To help users visually examine instance subsets, ActiVis

provides a 2-D projected view of instance activations. Projection of high-dimensional data

into 2-D space has been considered an effective exploration approach [147, 163, 45, 43].

ActiVis performs t-distributed stochastic neighbor embedding (t-SNE) [124] of instance

activations. Figure 3.2B.2 shows an example where each dot in the view represents an

instance (colored by its true class), and instances with similar activation values are placed

34

closer together by t-SNE.

The projected view complements with the neuron activation matrix view (Figure 3.2B.1).

Hovering over a subset’s row in the matrix would highlight the subset’s instances in the

projected view (as shown in Figure 3.4), allowing the user to see how instances within the

subsets are distributed. In the projected view, hovering over an instance would display its

activations; clicking that instance will add it to the matrix view as a new row.

3.3.3 Interface: Tight Integration of Model, Instances, and Activation

The above visual representation of activations is the core of our visual analytics system.

To help users interactively specify where to start their exploration of a large model, we

designed and developed an integrated system interface. As depicted in Figure 3.2, the

interface consists of multiple panels. We describe each of them below.

A: Overview of Model Architecture

Deep learning models often consist of many operations, which makes it difficult for users

to fully understand their structure. We aim to provide an overview of the model architecture

to users, so they can first make sense of the models, before moving on to parts of the models

that they are interested in.

Deep neural network models are often represented as computation graphs (DAGs) (as

in many deep learning frameworks like Caffe23, TensorFlow [2], and Theano4). The frame-

works provide a set of operators (e.g., convolution, matrix multiplication, concatenation) to

build machine learning programs, and model developers (who create new machine learning

workflows for FBLearner Flow) write the programs using these building blocks. Presenting

this graph to users would help them first understand the structure of the models and find

3Caffe2, https://caffe2.ai/
4Theano, http://deeplearning.net/software/theano/

35

https://caffe2.ai/
http://deeplearning.net/software/theano/

interesting layers to explore the detailed activations.

There are several possible ways in visualizing computation graphs. One approach is to

represent operators as nodes and variables as edges. This approach has gained popularity,

thanks to its adoption by TensorFlow. Another way is to consider both an operator and a

variable as a single node. Then the graph becomes a bipartite graph: the direct neighbors

of an operator node are always variable nodes; the neighbors of a variable node are always

operator nodes. Both approaches have their pros and cons. While the first approach can

have a compact representation by reducing the number of nodes, the second one, a classical

way to represent programs and diagrams, makes it easier to track data. For ActiVis, it would

be better to make variable nodes easy to locate as we present activations for a selected

variable. Therefore, we decided to represent the graph using the second approach.

The visualization of the computation graph is shown on the top panel (Figure 3.2A).

The direction of data flow is from left (input) to right (output). Each node represents either

an operator (dark rectangle) or tensor (circle). To explore this medium-sized graph (often

>100 nodes), users can zoom and pan the graph using a mouse. When users hover over a

node, its full name is shown, and when they click it, its corresponding activation is shown

in the neuron activation panel.

B: Activation for Selected Node

When users select a node of interest from the computation graph, the corresponding neuron

activation panel (Figure 3.2B) will be added to the bottom of the computation graph panel.

The neuron activation panel has three subpanels: (0) the names of the selected node and

its neighbors, (1) the neuron activation matrix view, and (2) the projected view. The left

subpanel shows the name of the selected variable node and its neighbors. Users can hover

over a node to highlight where it is located in the computation graph on the top. The neuron

matrix view (Figure 3.2B.1) and projected view (Figure 3.2B.2) show instance activations

for the selected node. Note that we described these views in Section 3.3.2.

36

Figure 3.5: Users can simultaneously visualize and compare multiple layers’ activations.
Shown here, from top to bottom, are: the second-to-last hidden layer, the last hidden layer,
and the output layer. Their projected views show that as instances flow through the net-
work from input (top) to output (bottom), their activation patterns gradually become more
discernible and clustered (in projected view).

Users can select multiple nodes and visually compare their activation patterns. Fig-

ure 3.5 illustrates that users can visually explore how models learned the hidden structure

of data through multiple layers. The figure shows three layers, from top to bottom: the

second-to-last hidden layer which concatenates multiple maxpool layers [95], the last hid-

den layer, and the output layer. As shown in the figure, the layer’s projected views show

that as data flow through the network, from input (top) to output (bottom), neuron activation

patterns gradually become more discernible and clustered.

37

C: Instance Selection

The instance selection panel helps users get an overview of instances with their prediction

results and determine which ones should be added to the neuron activation view for further

exploration and comparison.

The panel is located at the right side on the interface. It visually summarizes prediction

results. Each square represents an instance. Instances are vertically grouped based on

their true label. Within a true label (row group), the left column shows correctly classified

instances, sorted by their prediction scores in descending order (from top to bottom, and left

to right within each row). The right column shows misclassified instances. An instance’s

fill color represents its true label, its border color the predicted label. When the user hovers

over an instance, a tooltip will display basic information about the instance (e.g., textual

content, prediction scores).

The panel also helps users determine which instances can be added to the activation

view for further exploration. By hovering over one of the instance boxes, users can see the

instance’s activations. A new row is added to the activation view presenting the activation

values for the selected instance. When users’ mouse leaves the box, the added row disap-

pears. To make a row persistent, users can simply click the box. In a similar fashion, users

can add many rows by clicking the instance boxes. Then, they can compare activations for

multiple instances and also compare those for instances with those for groups of instances.

3.3.4 Deploying ActiVis: Scaling to Industry-scale Datasets and Models

We have deployed ActiVis on Facebook’s machine learning platform. Developers who want

to use ActiVis for their model can easily do so by adding only a few lines of code, which

instructs their models’ training process to generate information needed for ActiVis’s visu-

alization. Once model training has completed, the FBLearner Flow interface provides the

user with a link to ActiVis to visualize and explore the model. The link opens in a new web

38

browser window.

ActiVis is designed to work with classification tasks that use deep neural network mod-

els. As complex models and large datasets are commonly used at Facebook, it is important

that ActiVis be scalable and flexible, so that engineers can easily adopt ActiVis for their mod-

els. This section describes our approaches to building and deploying ActiVis on FBLearner,

Facebook’s machine learning platform.

Generalizing to Different Models and Data Types

One of our main goals is to support as many different kinds of data types and models as

what FBLearner currently does (e.g., images, text, numerical). The key challenge is to

enable existing deployed models to generate data needed for ActiVis with as little modifica-

tion as possible. Without careful thinking, we would have to add a large amount of model-

specific code, to enable ActiVis to work with different models. To tackle this challenge,

we modularize the data generation process and define API functions for model developers

so that they can simply call them in their code, to activate ActiVis for their models. In

practice, for a developer to use ActiVis for a model, only three function calls are needed

to be added (i.e., calling the preprocess, process, and postprocess methods). For example,

developers can specify a list of variable nodes that users can explore, as an argument of

the preprocess function (described in detail in Section 3.3.4). Furthermore, developers can

leverage user-defined functions to specify how subsets are defined in ActiVis, a capability

particularly helpful for the more abstract, unstructured data types, such as image and audio.

For example, developers may leverage the output of an object recognition algorithm that

detects objects (e.g., cats, dogs) to define image subsets (e.g., subset of images that contain

dogs).

39

Scaling to Large Data and Models

ActiVis addresses visual and computational scalability challenges through multiple comple-

mentary approaches. Some of them were introduced in earlier sections (e.g., Section 3.3.2),

such as ActiVis’s overarching subset-based analysis, and the simultaneous use of neuron

matrix (for individual neuron inspection) and projected view (in case of many neurons).

We elaborate on some of our other key ideas below.

Selective precomputation for variable nodes of interest. Industry-scale models often

consist of a large number operations (i.e., variable nodes), up to hundreds. Although any

variable node can be visualized in the activation visualization, if we compute activations for

all of them, it will require significant computation time and space for storing the data. We

learned from our discussion with experts and design sessions with potential users that it is

typical for only a few variable nodes in a model to be of particular interest (e.g., last hidden

layer in CNN). Therefore, instead of generating activations for all variable nodes, we let

model developers specify their own default set of variable nodes. The model developers

can simply specify them as an argument of the preprocess method. To explore variable

nodes not included in the default set, a user can add them by specifying the variable nodes

in the FBLearner Flow interface. Such nodes will then be available in the computation

graph (highlighted in yellow).

User-guided sampling and visual instance selection. For billion-scale datasets, it

is undesirable to display all data points in the instance selection panel. Furthermore, we

learned from our design sessions that researchers and engineers are primarily interested in

a small number of representative examples, such as “test cases” that they have curated (e.g.,

instances that should be labeled as Class ‘LOC’ by all well-performing models). To meet

such needs, by default, we present a sample of instances in the interface (around 1,000),

which meet the practical needs of most Facebook engineers. In addition, users may also

guide the sampling to include arbitrary examples that they specify (e.g., their test cases).

40

Computing neuron activation matrix for large datasets. The main computational

challenge of ActiVis is in computing the neuron activation matrix over large datasets. Here,

we describe our scalable approach whose time complexity is linear in the number of data

instances. We first create a matrix S (#instances × #subsets) that describes all instance-

to-subset mappings. Once a model predicts labels for instances, it produces an activation

matrix A (#instances × #neurons) for each variable node. By multiplying these two ma-

trices (i.e., STA), followed by normalization, we obtain a matrix containing all subsets’

average neuron activation values, which are visualized in the neuron matrix view. As the

number of instances dominates, the above computation’s time complexity is linear in the

number of instances. In practice, this computation roughly takes the same amount of time

as testing a model. We have tested ActiVis with many datasets (e.g., one with 5 million

training instances). ActiVis can now scale to any data sizes that FBLearner supports (e.g.,

billion-scale or larger).

Implementation Details

The visualization and interactions are implemented mainly with React.js.5 We additionally

use a few D3.js V4 components.6 The computation graph is visualized using Dagre,7 a

JavaScript library for rendering directed graphs. All the backend code is implemented in

Python (including scikit-learn8 for t-SNE) and the activation data generated from backend

are passed to the interface using the JSON format.

5React.js, https://facebook.github.io/react/
6D3.js, https://d3js.org/
7Dagre, https://github.com/cpettitt/dagre
8scikit-learn, http://scikit-learn.org/

41

https://facebook.github.io/react/
https://d3js.org/
https://github.com/cpettitt/dagre
http://scikit-learn.org/

Figure 3.6: Version 1 of ActiVis, showing an instance’s neuron activation strengths, en-
coded using color intensity. A main drawback of this design was that users could only
see the activations for a single instance at a time. Activation comparison across multiple
instances was not possible.

3.4 Informed Design through Iterations

The current design of ActiVis is the result of twelve months of investigation and develop-

ment effort through many iterations.

Unifying instances and subsets to facilitate comparison of multiple instances. The

first version of ActiVis, depicted in Figure 3.6, visualizes activations for all layers (each

column group represents a single layer). A main drawback of this design is that users

can only see the activations for a single instance at a time; they cannot compare multiple

instances’ activations. While, for the subsets, we use an approach similar to ActiVis’s design

(each dot represents the average values for the subset), we encode activations for a given

instance using background color (here, in green). This means that the visualization cannot

support activation comparison across multiple instances. This finding prompted us to unify

the treatment for instances and subsets to enable comparison across them. Figure 3.7 shows

our next design iteration that implements this idea.

Separating program and data to handle complex models. Although the updated ver-

sion (Figure 3.7) shows activations for multiple instances, which helps users explore more

information at once, it becomes visually too overwhelming when visualizing large, com-

42

Figure 3.7: Version 2 of ActiVis, which unified instance- and subset-level activation visual-
ization. This design was too visually overwhelming and did not scale to complex models,
as it allocated a matrix block for each operator; a complex model could have close to a
hundred operators.

plex models. Some engineers expressed concern that this design might not generalize well

to different models. Also, engineers are often interested in only a few variable nodes, rather

than looking at many variable nodes. Therefore, we decided to separate the visualization

of the model architecture and the activations for a specific variable node.

Presenting 2-D projection of instances. One researcher suggested that ActiVis should

provide more detail for each neuron, in addition to average activations. Our first solution

was to present statistics (e.g., variance) and distributions for each neuron. However, some

researchers cautioned that this approach could be misleading, because these summaries

might not fully capture high-dimensional activation patterns. This prompted us to add

the projected view (t-SNE), which enabled users to better explore the high-dimensional

patterns (see Figure 3.4).

43

3.5 Case Studies and Usage Scenarios

To better understand how ActiVis may help Facebook machine learning users with their in-

terpretation of deep neural network models, we recruited three Facebook engineers and data

scientists to use the latest version of ActiVis to explore text classification models relevant to

their work. We summarize key observations from these studies to highlight ActiVis’s bene-

fits (Section 3.5.1). Then, based on observations and feedback from these users and others

who participated in our earlier participatory design sessions, we present example usage

scenarios for ranking models to illustrate how ActiVis would generalize (Section 3.5.2).

3.5.1 Case Studies: Exploring Text Classification Models with ActiVis

Participants and Study Protocol

We recruited three Facebook engineers and data scientists to use our tools (their names

substituted for privacy):

Bob is a software engineer who has expertise in natural language processing. He

is experimenting with applying text classification models to some Facebook experi-

ences, such as for detecting intents from a text snippet, like understanding when the

user may want to go somewhere [3]. For example, suppose a user writes “I need a

ride”, Bob may want the models to discover if the user needs transportation to reach

the destination. He is interested in selecting the best models based on experimenting

with many parameters and a few different models, as in [85, 95].

Dave is a relatively new software engineer. Like Bob, he is also working with text

classification models for user intent detection, but unlike Bob, he is more interested

in preparing training datasets from large collections of databases.

Carol is a data scientist who holds a Ph.D. in the area of natural language processing.

44

Unlike Bob and Dave, she is working with many different machine learning tasks,

focusing on textual data.

We had a 60-minute session with each of the three participants. For the first 20 minutes,

we asked them a few questions about their typical workflows, and how they train models

and interpret results. Then we introduced them to ActiVis by describing its components.

The participants used their own datasets and models, available from FBLearner Flow. After

the introduction, the participants used ActiVis while thinking aloud. They also gave us

feedback on how we could further improve ActiVis. We recorded audio during the entire

session and video for the last part.

Key Observations

We summarize our key observations from interacting with the three participants into the

following three themes, each highlighting how our tool helped them with the analysis.

Spot-checking models with user-defined instances and subsets. ActiVis supports

flexible subset definition. This feature was developed based on the common model devel-

opment pattern where practitioners often curate “test cases” that they are familiar with, and

for which they know their associated labels. For example, a text snippet “Let’s take a cab”

should be classified as a positive class of detecting transportation-related intent. Both Bob

and Dave indeed found this feature useful (i.e., they also had their own “test cases”), and

they appreciated the ability to specify and use their own cases. This would help them better

understand whether their models are working well, by comparing the activation patterns of

their own instances with those of other instances in the positive or negative classes. Bob’s

usage of ActiVis and comments echo and support the need for subset-level visualization and

exploration, currently inadequately supported by existing tools.

Graph overview as a crucial entry point to model exploration. From our early

participatory design sessions, we learned that ActiVis’s graph overview was important for

practitioners who work with complex models whose tasks only require them to focus on

45

specific components of the models. Bob, who works with many different variations of text

classification models, has known that the model he works with mainly uses convolution

operations and was curious to see how the convolution works in detail. When he launched

ActiVis, he first examined the model architecture around the convolution operators using

the computation graph panel. He appreciated that he could see how model training param-

eters are used in the model, which helped him develop better understanding of the internal

working mechanism of the models. For example, he found how and where padding are

used in the models by exploring the graph [26]. After he got a better sense about how the

model function around the convolution operators, he examined the activation patterns of the

convolution output layer. This example shows that the graph overview is important for un-

derstanding complex architectures and locating parts that are relevant to the user’s tasks. In

other words, the graph serves as an important entry point of Bob’s analysis. Existing tools

assuming user familiarity with models may not hold in real-world large-scale deployment

scenarios.

Visual exploration of activation patterns for evaluating model performances and

for debugging hints. One of the main components of ActiVis is the visual representation

of activations that helps users easily recognize patterns and anomalies. As Carol interacted

with the visualization, she gleaned a number of new insights, and a few hints for how to

debug deep learning models in general. She interactively selected many different instances

and added them to the neuron activation matrix to see how they activated neurons. She

found out that the activation patterns for some instances are unexpectedly similar, even

though the textual content of the instances seem very different. Also, she spotted that

some neurons were not activated at all. She hypothesized that the model could be further

improved by changing some of the training parameters, so she decided to modify them

to improve the model. While the neuron activation panel helps Carol find models that

can be further improved, Bob found some interesting patterns from the activation patterns

for the convolution output layer. He quickly found out that some particular words are

46

highly activated while some other words, which he thought can be highly activated, do

not respond much. This helped him identify words that are potentially more effective for

classification. The examples above demonstrate the power of visual exploration. ActiVis

helps users recognize patterns by interacting with instances and instance subsets they are

familiar with.

3.5.2 Usage Scenario: Exploring Ranking Models

As there are many potential uses for ActiVis at Facebook, we also discussed with a number

of researchers and engineers at different teams to understand how they may adopt ActiVis.

Below, we present a usage scenario of ActiVis for exploring ranking models, based on our

discussion. We note the scenario strongly resembles others that we have discussed so far;

this is encouraging because enabling ActiVis to generalize across teams and models is one

of our main goals.

Alice is a research scientist working with ranking models, one of the important machine

learning tasks in industry. The ranking models can be used to recommend relevant content

to users by analyzing a large number of numerical features extracted from databases [18,

74]. Alice is experimenting with deep neural network models to evaluate how these models

work for a number of ranking tasks. She often performs subset-based analysis when ex-

amining model performance, such as defining subsets based on categories of page content.

Subset-based analysis is essential for Alice, because she works with very large amount of

training data (billions of data points, thousands of features). ActiVis’s instance-based ex-

ploration feature is not yet helpful for Alice, since she is still familiarizing herself with the

data and has not identified instances that she would like to use for spot-checking the model.

In ActiVis, Alice is free to use either or both of instance- and subset-based exploration. For

new, unfamiliar datasets, Alice finds it much easier to start her analysis from the high level,

then drill down into subsets, using attributes or features.

Alice has trained a fully-connected deep neural network model with some default pa-

47

rameters. When she launches ActiVis, she first examines the output layer to see how the

activation patterns for the positive and negative classes may be different. To her surprise,

they look similar. Furthermore, by inspecting the neuron activation matrix view, she real-

izes that many neurons are not activated at all — their activation values are close to 0. This

signals that the model may be using more neurons than necessary. So, she decided to train

additional models with different parameter combinations (e.g., reduce neurons) to relieve

the above issue.

The performances of some models indeed improve. Happy with this improvement,

Alice moves on to perform deeper analysis of the trained models. She first creates a number

of instance subsets by using features. She utilizes 50 top features known to be important

for ranking. For categorical features, she defines a subset for each category value. For

numerical features, she quantizes them into a small number of subsets based on the feature

value distribution. ActiVis’s neuron activation matrix view visualizes how the subsets that

Alice has defined are activating the neurons. Maximizing the matrix view to take up the

entire screen (and minimizing the computation graph view), Alice visually explores the

activation matrix and identifies a number of informative, distinguishing activation patterns.

For example, one neuron is highly activated for a single subset, and much less so for other

subsets, suggesting that neuron’s potential predictive power. With ActiVis, Alice can train

models that perform well and understand how the models capture the structure of datasets

by examining the relationships between features and neurons.

3.6 Discussion and Future Work

Visualizing gradients. Examining gradients is one of the effective ways to explore

deep learning models [93, 45]. It is straightforward to extend ActiVis to visualize gradients

by replacing activations with gradients. While activation represents forward data flow from

input to output layers, gradient represents backward flow. Gradients would help developers

48

to locate neurons or datasets where the models do not perform well.

Real-time subset definition. For ActiVis to work with a new subset, it needs to load

the dataset into RAM to check which instances satisfy the subset’s conditions. Currently,

it is not of high priority for the above process to be performed in real time, because users

often have pre-determined subsets to explore. We plan to integrate dynamic filtering and

searching capabilities, to speed up both subset definition and instance selection.

Automatic discovery of interesting subsets. With ActiVis, users can flexibly specify

subsets in infinitely many ways. One of the engineers commented that ActiVis could help

suggest interesting subsets for exploration, based on heuristics or measures. For example,

for text datasets, such a subset could include phrases whose activation patterns are very

similar or different to those for a given instance or class.

Supporting input-dependent models. An interesting research direction is to extend

ActiVis to support models that contain variable nodes whose number of neurons changes

depending on the input (e.g., the number of words in a document), and to study the rela-

tionships between neurons and subsets for such cases.

Understanding how ActiVis informs model training. We plan to conduct a longitudi-

nal study to better understand ActiVis’s impact on Facebook’s machine learning workflows,

such as how ActiVis may inform the model training process. For example, a sparse neuron

matrix may indicate that a model is using more neurons than needed, which could inform

engineers on their decisions for hyperparameter tuning.

3.7 Conclusion

We presented ActiVis, a visual analytics system for deep neural network models. We con-

ducted participatory design session with over 15 researchers and engineers across many

teams at Facebook to identify key design challenges, and based on them, we distilled three

main design goals: (1) unifying instance- and subset-level exploration; (2) tight integration

49

of model architecture and localized activation inspection; and (3) scaling to industry-scale

data and models. ActiVis has been deployed on Facebook’s machine learning platform. We

presented case studies with Facebook engineers and data scientists, and usage scenarios of

how ActiVis may be used with different applications.

50

PART II

DATA-DRIVEN MODEL AUDITING

51

Overview

While tools like ActiVis promote people’s understanding of a model by visualizing how

it responds to data instances and subsets, the interpretation of a model is only one part

of many different tasks in applied machine learning. Building machine learning models

involves many different analytics tasks (e.g., feature extraction, model selection) and often

requires analysis of how input datasets affect results over a long machine learning pipeline.

Thus, it is important to assist researchers and practitioners who work on various stages of a

machine learning workflow, to identify important, and potentially problematic data groups,

so that they can discover insights and potentially fix the problems. In particular, this part

describes two work in this line of research:

• MLCube (Chapter 4) on supporting model comparison using user-specified data sub-

sets and data cube analysis;

• FairVis (Chapter 5) on discovering intersectional bias in machine learning models

with the help of automated techniques.

52

CHAPTER 4

MLCUBE: INTERACTIVE MODEL COMPARISON WITH
DATA CUBE ANALYSIS

In Part I, we presented how the subset-level analysis can be used for interpreting ma-

chine learning models, however, one challenge is a subset can be specified in many dif-

ferent ways. This chapter presents MLCube, a data cube inspired framework that enables

users to define instance subsets using feature conditions and computes aggregate statistics

and evaluation metrics over the subsets. We also design MLCube Explorer, an interac-

tive visualization tool for comparing models’ performances over the subsets. Users can

interactively specify operations, such as drilling down to specific instance subsets, to per-

form more in-depth exploration. Through a usage scenario, we demonstrate how MLCube

Explorer works with a public advertisement click log data set, to help a user build new

advertisement click prediction models that advance over an existing model.

4.1 Introduction

As machine learning systems become more widely adopted, they are becoming increasingly

complex. Applying machine learning techniques on large-scale, real-world problems often

entails many steps, including feature extraction, feature transformations, model selection,

and model evaluation [21, 157]. Each component itself may introduce its own complexity.

This chapter is adapted from work appeared at HILDA 2016 [88].

53

For example, it is non-trivial to extract meaningful feature sets from a large number of

attributes [10]. In practice, as machine learning systems increase in size and complexity,

they are often viewed as “black boxes,” as there are no effective ways for understanding

the internal mechanisms of these complex systems or interpreting their model results [100,

149].

The importance of helping users interpret machine learning models has received in-

creasing attention. Recent work [102, 9, 100, 149] highlighted that while overall model

accuracy can be used to select models, users often want to understand why and when a

model would perform better than others, so that they can trust the model and know how

to improve the model. Current interpretation approaches often focus on explaining sin-

gle models (e.g., computing feature importance from a boosted tree), but they cannot be

directly applied on other models (e.g., neural networks) since the internal working mech-

anisms of different models can vary widely [100, 149]. Current visualization approaches

primarily support instance-based explanation (e.g., how individual instances contribute to

a model’s accuracy) [9, 141]; more work is needed to find out if they may scale up to larger

data sets or more complex systems.

Introducing MLCube Explorer. We present an interactive visualization tool for com-

paring machine learning models’ performances and exploring model results using data cube

analysis. Our goal is to help users interactively explore and determine the right abstraction

level of analysis — as comparing two models by their overall accuracies is often too coarse

and not conducive to discovering contributing causes; and inspecting individual instances

within a large data set is too fine-grained and may not scale — our work helps user reach

the “happy medium.”

Specifically, our proposed MLCube framework enables users to define instance subsets

using relational selections over features, and compute aggregate statistics and evaluation

metrics over the subsets. Through our MLCube Explorer (Figure 4.1), users can visually

explore these subsets and interactively specify operators to further analyze the results. For

54

user
_age

_gro
up

0 1 2 3 4 5 6

user
_gen

der

nu
ll

m
al
e

fe
m
al
e

posit
ion

1 2 3

ad_c
tr

[.0
, .
1)

[.1
, .
2)

[.2
, .
3)

[.3
, .
4)

[.4
, .
5)

[.5
, .
6)

[.6
, .
7)

[.7
, .
8)

title_
lengt

h

[0
, 3

)
[3
, 6

)
[6
, 9

)
[9
, 1

2)
[1
2,
 1
5)

[1
5,
 1
8)

[1
8,
 2
1)

[2
1,
 2
4)

qu
er
y_
id
 =
 4

qu
er
y_
le
ng
th
 <
=
2

Total

user_age_group 0
1
2
3
4
5
6

user_gender null
male

female

position 1
2
3

ad_ctr [.0, .1)
[.1, .2)
[.2, .3)
[.3, .4)
[.4, .5)
[.5, .6)
[.6, .7)
[.7, .8)

title_length [0, 3)
[3, 6)
[6, 9)
[9, 12)
[12, 15)
[15, 18)
[18, 21)
[21, 24)

query_id = 4

query_length <= 2

SUBSET CONDITION COUNT +/­ RATIO SCORE DIST. ACCURACY

0 177k 0 1 0 1 0 10.77

Model A: Boosted Tree with 16 features
Model B: Logistic Regression with 25 featuresSort subsets by: Feature value (default) Accuracy Difference (count)A more accurate

B more accurate

More instances

Fewer instances

+ Add Subset
Add

title_length in [21.0, 24.0)

Accuracy for Model A: 0.667
Accuracy for Model B: 0.889

Subset Summary View Correlation Matrix View

Figure 4.1: A screenshot of MLCube Explorer, our interactive visualization tool for ana-
lyzing and comparing machine learning results. Each row represents a subset. The subset
summary view (middle) visually shows several statistics for each subset (e.g., count, pro-
portion of positive instances, distribution of prediction scores, and model’s accuracy). The
correlation matrix view (right) visualizes accuracy differences between two models for
a subset combination (e.g., user age group=1 AND position=3). A cell with a
larger circle means there are more instances in that subset combination. Yellow means
Model A outperforming Model B; green means Model B outperforming Model A. The
darker the color, the greater the performance difference. Users can interact with the inter-
face in several ways, including drill-down, sorting subsets, and adding new subsets.

example, they can drill down into subsets to explore relationships among features and ex-

amine how they affect model results. Users can freely define subsets with both raw data

attributes and transformed features.

Drilling down model results. MLCube introduces a new way for users to select in-

stance subsets using both data attributes (e.g., the titles of text documents) and features,

55

which are often derived from attributes (e.g., number of terms in the titles). Prior research

has shown that leveraging features in explanations is a key to interpreting machine learn-

ing results [102, 27, 100]. The feature-based analysis can generalize to any models that

share the same feature sets, unlike model-specific explanations [173]. Our approach ad-

vances over prior work [38], by allowing users to interactively select subsets based on their

knowledge of any feature transformations that have been carried out, and also keep track of

the intermediate stages in the workflow. This functionality is important because raw data

attributes are often transformed into features through feature engineering (e.g., as in calcu-

lating the number of terms from the titles) [10]. Slicing results by features may impede user

understanding, since revealing relationships between the data attributes and the behavior of

machine learning algorithms could accelerate understanding of model behavior [126, 141].

Interactive visualization. To help users quickly get an overview of the data and model

results and spot interesting patterns and anomalies, MLCube Explorer allows users to visu-

ally explore aggregate statistics over subsets of data instances and interactively drill down

into models. This enables users to find interesting patterns between features and model

results, leading to discovering insights that help them understand the mechanisms of the

models and further improve their performance.

Our contributions are:

• MLCube, a data cube inspired framework that enables users to explore aggregate

statistics and evaluation metrics over the user-defined subsets (Section 4.3);

• MLCube Explorer, a visualization tool for interactively exploring MLCube for ana-

lyzing and comparing models’ performances (Section 4.4).

We demonstrate how MLCube Explorer works with a public advertisement click log data

set through a usage scenario of building advertisement click prediction models (Section 4.5).

56

4.2 Background: A Typical Machine Learning Pipeline

In this section, we describe a typical workflow of building machine learning models for

data sets (see Figure 4.2), to motivate and provide the context for MLCube’s contributions.

For example, as MLCube is defined over data, features, and model results, we will first ex-

plain the terminology and symbols for describing them. Building machine learning models

in practice often involves several steps, including data pre-processing, feature extraction,

feature transformations, model building, and model evaluations [21, 157]. To illustrate

with a concrete example, we use the task from the 2012 KDD Cup competition (Track 2),1

whose goal is to build advertisement click prediction models.

A raw data table R is a relation having a set of attributes A and consisting of a set of

instances. Each instance ri ∈ R consists of a set of attribute values ri[Aj]. An attribute

value could be either single-valued or multi-valued, where its data type could be integer,

float, or text. For the case of advertisement prediction, each instance represents an event in

which an advertisement is shown to a user under a certain setting. Its attributes include user

ID, age, gender, ad ID, the title of an ad, query ID, query text, position of ad on a webpage,

binary value of whether the user clicked the ad (1 if clicked; 0 otherwise), etc. Using the

database terminology, the raw data table R can be thought of as a joined relation of a log

table (i.e., fact table) with several entity tables (e.g., Users, Ads) [105].

The next step is the feature extraction or feature transformation procedure that con-

structs a set of features from a raw data table R. This step consists of a set of feature

functions F , taking a raw data table R as an input and producing a feature vector table

X (and labels y) that will be used as an input for a learning model [11]. Each feature

function Fj ∈ F produces a j-th feature value xij for a given instance ri. In other words,

each instance ri will be transformed into a feature vector xi = (xi1, ..., xij, ...) and a label

yi ∈ {0, 1}. Some feature functions may simply select an attribute (e.g., user’s age), while

1http://www.kddcup2012.org/c/kddcup2012-track2

57

http://www.kddcup2012.org/c/kddcup2012-track2

Model 0.75

Raw data table Output
scores

Feature vector table (w/ labels) Evaluation
metric

Figure 4.2: Typical machine learning pipeline from raw datasets to metric scores for eval-
uation.

others may perform computation. For example, an average function may compute the av-

erage click-through rate for each ad ID; a tf-idf function may calculate tf-idf text similarity

between a query and the title of an advertisement [184].

Given a feature vector table and labels, engineers would then run different machine

learning algorithms on them. Once a prediction model h(X,y) is constructed (e.g., logis-

tic regression), it will be used to classify test instances xi. For each instance, the model pro-

duces a prediction score si and determines its corresponding predicted label ŷi ∈ {0, 1}.

The performance of the models is evaluated using a evaluation measure l (e.g., accuracy,

AUC score), which takes as input a list of (label y, score s or predicted label ŷ) pairs, and

outputs a single value (i.e., the measure).

4.3 MLCube: Data Cubes for Machine Learning

We present MLCube, a data cube inspired framework for analyzing machine learning model

results. Our approach enables users to flexibly analyze and understand model results at

the subset level, through interactively exploring and generating a wide range of instance

subsets (see Figure 4.3). A subset is defined as a relational selection over a feature vector

table X or the raw data table R (e.g.,user gender = ‘female’). MLCube computes

aggregate statistics (e.g., accuracy) for all user-defined subsets.

58

Subset 1

Subset 2

Subset 3

0.71

0.64

0.85

Raw data attributes

Output scores

Features
Accuracy
for subsetLabels

Figure 4.3: MLCube enables subset-level analysis of machine learning results by comput-
ing aggregate statistics (e.g., accuracy) for a subset of instances.

While online analytical processing (OLAP) is traditionally defined over a fact table

consisting of a set of dimension attributes and a measure attribute, MLCube is defined

over R ./ X ./ y ./ s ./ ŷ. The primary keys (PKs) of all five relations are in-

stances’ unique ID, and all join conditions apply only on the PKs. As all intermedi-

ate data are included, a subset can be defined not only over features, but over data at-

tributes (e.g., ad title contains ‘car’), or over a combination of multiple com-

ponents (e.g., ad title contains ‘car’ AND tfidf sim query title >=

0.7 AND label = 1).

For the measure attributes of the cube (i.e., values to be aggregated), we find the fol-

lowing measures particularly useful for analyzing model results:

• Accuracy (or any evaluation measure, such as AUC) for a model: Computing

accuracy by subsets allows engineers to understand which data regions work better

or worse for a selected model. If accuracy for a certain subset is relatively low,

engineers may want to inspect the corresponding instances.

• Accuracy difference between two models: Comparing a new model to a control

model in a subset-level is particularly useful for model selection, as it could describe

which parts of data helps improve or degrade the model performance.

59

• Number of instances (model-independent): Instance counts help engineers under-

stand the data distributions and find important subsets (e.g., they may ignore subsets

with very small number of instances).

• Proportion of positive instances (model-independent): Helps with feature engineer-

ing by showing which features are more discriminative.

In addition to the above measures, there could be many useful measures we can define.

For example, computing score distributions of positive (or negative) instances helps people

understand the result of a model.

While subsets can be defined as any relational selection with SQL-like expression, a set

of dimension attributes (i.e., categorical) is often selected in practice because of scalability

issues, since infinite number of subsets could be generated. By default, MLCube selects

all categorical attributes (i.e., cardinality less than certain threshold) and create discrete

bins for selected numerical (continuous) attributes and features. To speed up statistics

computation over subsets, the MLCube is then partially materialized for these subsets. In

our implementation, we use an algorithm described in [132] (Algorithm 1) with Apache

Spark2 [190] and constrain the maximum number of dimensions to 4.

4.4 Visual Exploration of MLCube

This section presents MLCube Explorer, an interactive visualization tool for exploring ma-

chine learning results using MLCube. Interactive visualizations has been proven to be very

effective for finding interesting patterns and spotting anomalies from large, multidimen-

sional data by effectively representing data and allowing users to interact with them [164,

165, 9, 120]. We introduce the interface of our visualization tool and describe operations

for users to interact with the interface.

2Apache Spark, http://spark.apache.org/

60

http://spark.apache.org/

4.4.1 User Interface

Figure 4.1 shows a screenshot of MLCube Explorer, visualizing the performances of (one

or) two user-selected models by subsets. Each row represents a subset. By default, we show

all subsets consisting of one selection predicate chosen from feature vectors. The column

of each subset row is divided into two areas: (1) the subset summary view which shows

summary statistics for each subset and (2) the correlation matrix view which visualizes

its pairwise correlations to other subsets. As for the subset summary view, we visualize the

number of instances, the proportion of positive instances, the prediction score distributions

of positive/negative instances for each model, and the accuracy value for each model. As

for the correlation matrix view, each cell visualizes the accuracy difference between two

models for a subset combination (e.g., user age group=1 AND position=3). A

cell with a larger circle means there are more instances in that subset combination. Yellow

means Model A outperforming Model B; green means Model B outperforming Model A.

The darker the color, the greater the performance difference.

4.4.2 Interactive Operations

Users can interact with the interface to further explore MLCube using the following opera-

tions.

1. Drill-down/Roll-up into a subset: By clicking a subset (e.g., user age group

= 0), its predicate will be applied to all other subsets, updating all values and visual

elements in all rows and cells.

2. Adding user-defined subsets: Define a new subset based on a user-defined relational

selection predicate. The new subset will be added as a new row.

3. Using different measures: Different measures may be used in the correlation matrix

view (e.g., AUC score difference, proportion of positive instances).

61

4. Sorting subsets: Subset rows can be sorted using any measure attributes (e.g., count)

to help reveal interesting patterns and spot anomalies.

4.4.3 System Implementation

We implemented (1) a simple declarative machine learning framework following the pipeline

in Section 4.2, (2) MLCube which works on top of the framework (Section 4.3), and (3)

MLCube Explorer (Section 4.4). The framework is implemented based on the pipeline

introduced in Section 4.2 using Python, scikit-learn, and PostgreSQL. Within the frame-

work, we implemented several learning features presented in the report by the winner of

the KDD Cup [184] and implemented several models, including logistic regression, deci-

sion tree, and boosted tree, also based on the report. As we mentioned earlier, MLCube

is partially materialized with a algorithm described in [132]. MLCube Explorer is written

in HTML, JavaScript, and D3.js. It can run on any modern web browser. When a user

specifies two created models to compare, the server returns the corresponding MLCube in

JSON format and the client code generates the visualization.

4.5 Usage Scenario

This section presents a usage scenario for MLCube Explorer to demonstrate how it may

help our user Jane, a machine learning engineer working at a search engine company, to

build new advertisement click prediction models that advance over an existing model.

Jane uses a public data set from the 2012 KDD Cup competition.3 It is an advertisement

click log from the Tencent search engine, soso.com. Each data instance describes informa-

tion about a user, an ad, a query, and whether the user clicked the ad. Jane implements

some of the learning features presented in the winning team’s report [184] and created a

3http://www.kddcup2012.org/c/kddcup2012-track2

62

http://www.kddcup2012.org/c/kddcup2012-track2

Figure 4.4: Our user Jane finds that a subset of instances “user age group = 0” per-
forms distinctly worse than the other age groups, indicated by the left-most solid bar in the
accuracy column.

few models, including logistic regression, decision tree, and boosted tree.

Recognizing data encoding issue. Jane begins her exploration by visualizing the ex-

isting model to understand its performance. She quickly finds that a subset of instances

“user age group = 0” performs distinctly worse than the other age groups, indicated

by the left-most solid bar in the accuracy column in Figure 6.13. To understand why, she

examines how the age groups were defined. She realizes that the feature function that

generates this feature has encoded null data as 0 and considered this feature as numerical

variables. She thinks that this might cause the degraded performance. To fix this issue, she

redefines this feature as a categorical variable, instead of a numerical variable, which could

improve the performance of the model by separating the null instances from others.

Analyzing the performance improvement. After getting the hints for improving the

model performance, she now would like to try different learning algorithms and compare

their performance with that of the baseline model. To create a visualization, she sets the

baseline boosted tree model as model A (shown in dark yellow in Figure 4.5) and picks

a logistic regression model with additional features as model B (shown in green). The

visualization shows that, overall, model B outperforms model A. In particular, Jane sees

model B has significantly improved over model A for the subset “user age group =

63

Figure 4.5: Example of analyzing performance improvement. Jane sees model B has sig-
nificantly improved over model A for the subset “user age group = 0”. She drills
down into that subset by clicking it and observes interesting patterns between accuracy and
the tfidf sim query title feature.

0” (Figure 4.5a). To further analyze this subset, she drills down into it by clicking it, and

she observes a few important patterns for the tfidf sim query title feature4 (see

Figure 4.5b): (1) the majority of model B’s improvement over model A comes from subsets

with lower similarity scores (the wide gaps between yellow and green bars) — this means

model B is quite accurate even when the advertisement titles are not that similar to the

user’s search query; (2) the accuracy difference between model A and B decreases as the

4This feature measures similarity between a query and the title of an ad by representing each text field as
a TF-IDF term vector and computing cosine similarity between two vectors [184].

64

similarity increases. In addition to the “user age group = 0” subset, she finds out that

model B outperforms model A for several other subsets. Thanks to these discoveries, she

decides to look into the model further by creating more variations with different parameters

and features.

4.6 Future Work

This work opens up many interesting future research challenges. First, efficient material-

ization techniques can be integrated (e.g., by using monotonicity property, parallel compu-

tation) to speed up the exploration of data cube [132]. As the cube is accessed by interactive

tools, it would also be possible to interactively materialize cubes while users navigate cubes

by predicting the next possible user steps as in [91, 120]. In addition, efficient techniques

for ranking interesting subsets (e.g., subsets with the largest accuracy differences between

models) can help users explore a very large number of subsets [49, 154, 84]. Finally, con-

ducting user studies can help evaluate how our tool can help machine learning engineers

ease their workflow of developing effective machine learning models with a deeper under-

standing of the relationships between data and models.

65

CHAPTER 5

FAIRVIS: DISCOVERING INTERSECTIONAL BIAS IN
MACHINE LEARNING

One of the greatest use cases of interactive methods for exploring many instance subsets

over a machine learning pipeline (like MLCube in the previous chapter) is fairness audit-

ing. Despite the benefits machine learning systems may bring, models can reflect, inject,

or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain

demographic subgroups. Discovering which biases a machine learning model has intro-

duced is a great challenge, due to the numerous definitions of fairness and the large number

of potentially impacted subgroups. This chapter presents FairVis, a mixed-initiative visual

analytics system that integrates a novel subgroup discovery technique for users to audit the

fairness of machine learning models. Through FairVis, users can apply domain knowledge

to generate and investigate known subgroups, and explore suggested and similar subgroups.

FairVis demonstrates how interactive visualization may help data scientists and the general

public understand and create more equitable algorithmic systems.

5.1 Introduction

In recent years, significant strides have been made in machine learning, enabling auto-

mated, data-driven systems to tackle ever more challenging and complex tasks. Many of

This chapter is adapted from work appeared at IEEE VAST 2019 [30].

66

African-American Male subgroup

Detailed comparison
of the groups Caucasian Male
and African-American Male

Figure 5.1: FairVis integrates multiple coordinated views for discovering intersectional
bias. Above, our user investigates the intersectional subgroups of sex and race. A. The
Feature Distribution View allows users to visualize each feature’s distribution and gener-
ate subgroups. B. The Subgroup Overview lets users select various fairness metrics to see
the global average per metric and compare subgroups to one another, e.g., pinned Cau-
casian Males versus hovered African-American Males. The plots for Recall and False
Positive Rate show that for African-American Males, the model has relatively high recall
but also the highest false positive rate out of all subgroups of sex and race. C. The De-
tailed Comparison View lets users compare the details of two groups and investigate their
class balances. Since the difference in False Positive Rates between Caucasian Males and
African-American Males is far larger than their difference in base rates, a user suspects
this part of the model merits further inquiry. D. The Suggested and Similar Subgroup View
shows suggested subgroups ranked by the worst performance in a given metric.

the new domains in which these novel techniques are being applied are human-focused and

consequential, including hiring, predictive policing, predicting criminal recidivism, and

pedestrian detection. The latter two cases are examples where differing levels of predictive

accuracy have been observed for different demographic groups [182, 44].

When deploying machine learning to these societally impactful domains, it is vital to

understand how models are performing on all different types of people and populations.

Machine learning algorithms are usually trained to maximize the overall accuracy and per-

formance of their model, but often do not take into account disparities in performance

67

between populations. The trained models thus provide no guarantees as to how well they

will perform on different subgroups of a dataset.

The potential disparity in performance between populations may have many sources;

a machine learning model can naturally encode implicit and explicit societal biases [22],

which is often referred to as algorithmic bias. Performance disparity can arise for a variety

of reasons: the training data may not be representative, either in terms of its representation

of different demographic groups or within a particular demographic group; the training

data labels may have errors which reflect societal biases, or be an imperfect proxy for the

ultimate learning task; unequal rates of labels across demographic groups; the model class

may be overly simple to capture more nuanced relationships between features for certain

groups; and more [44]. A stark example of algorithmic bias in deployed systems was

discovered by Buolamwini and Gebru’s Gender Shades study [28], who showed that many

commercially available gender classification systems from facial image data had accuracy

gaps of over 30% between darker skinned women and lighter skinned men. While the

overall models’ accuracies hovered around 90%, darker skinned women were classified

with accuracy as low as 65% while the models’ accuracies on lighter skinned men were

nearly 100%.

In order to discover and address potential issues before machine learning systems are

deployed, it is vital to audit machine learning models for algorithmic bias. Unfortunately,

discovering biases can be a daunting task, often due to the inherent intersectionality of

bias as shown by Buolamwini and Gebru [28]. Intersectional bias is bias that is present

when looking at populations that are defined by multiple features, for example “Black

Females” instead of just people who are “Black” or “Female”. The difficulty in finding

intersectional bias is pronounced in the Gender Shades study introduced above — while

there were performance differences when looking at sex and skin color individually, the

significant gaps in performance were only found when looking at the intersection of the

two features. An example of how aggregated measures can hide intersectional bias can be

68

seen in Figure 5.2.

In addition to the intersectional nature of bias, addressing bias is challenging due to

the numerous proposed definitions of unfairness. The metrics for measuring a model’s

fairness include measuring a model’s group-specific false positive rates, calibration, and

more. While a user may decide on one or more metrics to focus on, achieving true algorith-

mic fairness can be an insurmountable challenge. In Section 5.2, we describe how recent

research has shown that it is often impossible to fulfill multiple definitions of fairness at

once.

While it can be straightforward to audit for intersectional bias when looking at a small

number of features and a single fairness definition, it becomes much more challenging with

a large number of potential groups and multiple metrics. When investigating intersectional

bias of more than a few features, the number of populations grows combinatorially and

quickly becomes unmanageable. Data scientists often have to balance the tradeoffs between

various fairness metrics when making changes to their models.

To help data scientists better audit their models for intersectional bias, we introduce

FairVis, a novel visual analytics system dedicated to helping audit the fairness of machine

learning models. FairVis’s major contributions include:

• Visual analytics system for discovering intersectional bias. FairVis is a mixed-

initiative system that allows users to explore both suggested and user-specified sub-

groups that incorporate a user’s existing domain knowledge. Users can visualize how

these groups rank on various common fairness and performance metrics and contex-

tualize subgroup performance in terms of other groups and overall performance. Ad-

ditionally, users can compare the feature distributions of groups to make hypotheses

about why their performance differs. Lastly, users can explore similar subgroups to

compare metrics and feature values.

• Novel subgroup generation technique. In order to aid users in exploring a com-

binatorially large number of subgroups, we introduce a new subgroup generation

69

Orange
69.2%

Triangle

Blue
70.6%

72.2%

66.6%

Circle

Feature A

Feature B

50% 83.3%

40%85.7%

Figure 5.2: This illustrative example highlights how inequities in populations can be
masked by aggregate metrics. While the classifier in this example has an accuracy of be-
tween 66.6% and 72.2% when looking at groups defined by a single feature, the accuracy
drops to as low as 40% when looking at the intersectional subgroups.

technique to recommend intersectional groups on which a model may be underper-

forming. We first run clustering on the training dataset to find statistically similar

subgroups of instances. Next, we use an entropy technique to find important features

and calculate fairness metrics for the clusters. Lastly, we present users with the gen-

erated subgroups sorted by important and anomalously low fairness metrics. These

automated suggestions can aid users in discovering subgroups on which a model is

underperforming.

• Method for similar subgroup discovery. Once a subgroup for which a model has

poor performance has been identified, it can be useful to look at similar subgroups to

compare their values and performance. We use similarity in the form of statistical di-

vergence between feature distributions to find subgroups that are statistically similar.

Users can then compare similar groups to discover which value differences impact

performance or to form more general subgroups of fewer features.

70

5.2 Background in Machine Learning Fairness

Significant discoveries and advances have been made in algorithmic bias detection, mitiga-

tion, and machine learning fairness in recent years. Most of the work stems from theoretical

computer scientists and sociologists focusing on the mathematical foundations and societal

impacts of machine learning.

A major difficulty in machine learning fairness is that it is mathematically impossible to

fulfill all definitions of fairness simultaneously when populations have different base rates.

This incompatibility between fairness metrics was formalized by the impossibility theorem

for fair machine learning. Two papers [96, 61] simultaneously proved that if groups have

different base rates in their labels, it is statistically impossible to ensure fairness across

three base fairness metrics — balance for the positive class, balance for the negative class,

and calibration of the model. Data scientists must therefore decide which fairness metrics

to prioritize in a model and how to make trade-offs between metric performance.

The implications of this discovery were made apparent in the recidivism prediction

tool COMPAS, a system that is used to predict the risk of letting someone go on bail. A

ProPublica article [14] showed that COMPAS is more likely to rank a Black defendant

as higher risk than a White defendant given that they have equal base rates. A follow-up

study showed that while COMPAS is not balanced for the positive class prediction, it is

well calibrated, meaning that the model provides similarly accurate scores for both groups

relative to their base rates [50]. Due to inherent base rate differences, it is not possible for

COMPAS to meet the all three fairness definitions at once. We explore this dataset more in

Section 5.5.1.

There have been various solutions proposed for addressing algorithmic bias in machine

learning across the entire model training pipeline. These range from techniques for ob-

fuscating sensitive variables in training data [186], to new regularization parameters for

training [24] and post-processing outcomes by adding noise to predictions [71]. While

71

these can help balance certain inequities, the impossibility theorem dictates that hard de-

cisions will still have to be made about which fairness metrics are the most important for

each problem. Ideally, over time these will become standard processes for ensuring model

fairness, and tools like FairVis can be used to ensure their effectiveness and investigate

tradeoffs between metrics.

Furthermore, important innovations have come from the machine learning community

in relation to intersectional bias. Kearns et al. [94] proposes a framework for auditing a

(possibly very large) number of subgroups for unfair treatment. Their work has the same

high-level concerns that motivate this project: that there may be a very large number of

intersectional groups over which one wants to satisfy some notion of fairness. However,

for their work, they assume the collection of these groups is predefined for the task at

hand, and construct an algorithm for creating a distribution over classifiers which (approx-

imately) minimizes a particular fairness metric over all the subgroups simultaneously. Our

work differs from theirs in several key ways. First, we aim to operate in a space where

a predefined notion of groups is not necessarily available, and so cooperation between an

automated system and a domain expert might be necessary to uncover subgroups whose

treatment by a particular model is problematic. Second, our goal is to help a user explore

their model and dataset for a deeper understanding of why the model might be treating par-

ticular groups very differently, a far different task compared to aiming to satisfy a particular

fairness metric without delving into the data-dependent sources of this different treatment.

This deeper model understanding will facilitate task-specific interventions and promote a

deeper understanding of a learning task, a dataset’s suitability to this task, and whether a

model (class) matches the dataset and task.

72

5.3 Design Challenges and Goals

Our goal is to build an interactive visual interface to help users explore the fairness of their

machine learning models and discover potential biases. Many of the challenges present

in auditing for bias derive from the combinatorial number of subgroups generated when

looking at various features. Additionally, any visual system must convey multiple fairness

metrics for a subgroup. A successful visual system should allow users to narrow the large

search space of possible subgroups. We formalize these important factors in the design of

FairVis with the following key design challenges:

5.3.1 Design Challenges

C1. Auditing the performance of known subgroups. For many datasets and problem

definitions, users already know of certain populations for which they want to ensure

fair outcomes [174]. It is often cumbersome and slow to manually generate and

calculate various performance metrics for subgroups. A system should enable users

to generate any type of subgroup they want to investigate, and efficiently generate

and calculate metrics for it [77].

C2. Contextualizing subgroup performance in relation to multiple metrics and other

groups. To measure the severity of bias against a certain subgroup, it is important to

know how the subgroup is performing in relation to the overall model. Any visual

encoding of subgroup performance should convey how groups perform for different

performance metrics [71] and in relation to other subgroups. Our interface should

also allow users to drill down into subgroup details while maintaining the high-level

view.

C3. Discovering significant subgroups in a large search space. When investigating

intersectional bias, there could be hundreds or thousands of subgroups a user may

73

need to look at [94]. It is often not feasible to analyze every group, so deciding how to

prioritize subgroups is an important and difficult task. Methods for discovering and

suggesting potential groups can aid users in searching this large space and finding

potential issues more efficiently.

C4. Finding similar subgroups to investigate feature importance and more general

groups. When a biased subgroup has been identified, it can be informative to look at

the performance of similar subgroups to draw conclusions about feature importance

or to create more general groups [57, 191]. This is a difficult task since an immense

number of potential subgroups have to be searched to find similar subgroups, and it

is not clear how similarity between subgroups should be defined or calculated.

C5. Emphasizing the inherent trade-offs between fairness metrics. Classifiers are

often not able to fulfill all measures of fairness if the base rates between populations

are different, as proven by the impossibility of fairness theorem (Section 5.2). This

means users often have to keep in mind the tradeoffs between fairness metrics when

deciding what modifications to make to their models. It is essential to show the

various fairness metrics when displaying subgroup performance and emphasize their

tradeoffs.

C6. Suggesting potential causes of biased behavior. How to address bias in machine

learning models is a difficult and open question, but there are indicators that can help

users start to improve their models. Emphasizing information like ground-truth label

balance, subgroup entropy, and data distribution can point users in the right direction

for addressing biases [71, 99].

5.3.2 Design Goals

Using the design challenges we identified for machine learning bias discovery, we iter-

ated and developed design goals for FairVis. The following goals address the challenges

74

presented in Section 5.3.1, and align with the primary interface components of our system:

G1. Fast generation of user-specified subgroups. Since users often have domain knowl-

edge about important subgroups they want to ensure fairness for (C1), quickly gen-

erating these groups to enable investigation is vital. Users should be able to select

either entire features (e.g. “race”) or specific values (e.g. “white” or “black”) to gen-

erate groups of any feature combination (C3). Users should then be able to explore

the performance of these groups in detail.

G2. Combined overview relationships with detailed information of subgroup per-

formance. To understand the magnitude and type of bias a model has encoded for a

subgroup, it is important to show the performance of the group in relation to the over-

all and other subgroups’ performance (C2). At the same time, the interface should

also display detailed information about the performance of the selected subgroup

(C6). We aim to achieve this by using multiple, coordinated views that can handle

different fairness metrics (C5).

G3. Suggested under-performing subgroups for user investigation. When more than

a couple of features are used to define subgroups, the number of generated groups

grows combinatorially (C3). We aim to develop both an algorithmic technique for

automatically discovering potentially under-performing subgroups and an intuitive

visual encoding for suggesting discovered groups to the user. By suggesting these

groups automatically, we can make the subgroup discovery process quicker and po-

tentially discover groups the user had not originally thought about (C2).

G4. Efficient calculation of similar subgroups. For any given subgroup, there is a com-

binatorially large space of groups that need to be searched to find similar groups

(C3). Since it is often useful to look at similar subgroups to analyze the importance

of certain features or to generate more general groups, we aim to develop a technique

that efficiently discover these similar groups (C4, C6).

75

G5. Effective visual interfaces for subgroup comparison. Users may want to analyze

two subgroups side by side to compare their values or performance (C2). We aim

to provide an intuitive interface for highlighting the differences between two groups.

Users can compare these groups to help pinpoint which features or values are causing

the difference in fairness metrics (C6).

5.4 FairVis: Discovering Intersectional Bias

From the design goals in Section 5.3.2, we have developed FairVis, a visual analytics sys-

tem for discovering intersectional bias in machine learning models. To meet the listed de-

sign goals, we developed two novel techniques to generate underperforming subgroups and

find similar subgroups. We combine these techniques in a web-based system that tightly

integrates multiple, coordinated views to help users discover fairness issues in known and

unknown subgroups.

Our interface consists of four primary views, the Feature Distribution View (Section 5.4.1),

Subgroup Overview (Section 5.4.2), Suggested and Similar Subgroup View (Section 5.4.3,

Section 5.4.4), and Detailed Comparison View (Section 5.4.5). The Feature Distribution

View gives users an overview of the dataset distribution and allows them to generate groups

to visualize in the Subgroup Overview Users can then add additional subgroups provided

by the Suggested and Similar Subgroup View and compare and further analyze them in

the Detailed Comparison View Each section of our interface aligns with one of the stated

design goals, addressing each desired feature.

5.4.1 Feature Distribution View & Subgroup Creation

The left sidebar, or Feature Distribution View, acts as both a high-level overview of a

dataset’s distribution and the interface for generating user-specified subgroups. As a start-

ing place for FairVis, the Feature Distribution View helps users develop an idea of their

76

Histograms show distribution
for each feature. Blue boxes
show instances with this value.

Clicking on a feature allows
users to create groups out of
checked values.

Figure 5.3: The Feature Distribution View allows users to explore both the distributions of
each feature in the entire dataset and also create user-specified groups out of features or
specific values. When a user hovers over a bar such as “Male”, it shows the number of
instances for that value. Red bars show the distribution of the pinned group (in this case
“White Males”) from the Subgroup Overview .

dataset’s makeup and begin auditing subgroups right away.

Feature distribution. A large part of understanding model performance is understand-

ing how the data used to train a model is distributed (C6). We enable users to investigate

feature distributions by providing large, interactive histograms for each feature for the en-

tire dataset, as seen in Figure 5.3. These histograms treat all features as categorical and

when a user hovers over a bar, a tooltip shows the value of this category and how many

instances there are with that value in the entire dataset. Furthermore, clicking on one of the

rows reveals a collapsible view of all the possible values for the feature. Users are also able

to hover over the expanded values to see their location in the histogram.

Subgroup generation. The Feature Distribution View also allows users to generate

user-specified subgroups. Model developers are often aware of certain intersectional sub-

groups for which they want to ensure fairness (C1). We define a subgroup as a subset

77

The Metric Selector lets users choose
from 10 common fairness metrics.

For each metric, the average
across all instances is shown.

Hovered groups appear in blue
Pinned groups appear in red.

Figure 5.4: In the Subgroup Overview, users can see how different subgroups compare to
one another according to various performance metrics. As more metrics are selected at the
top, additional strip plots are added to the interface. Here, a user has pinned the Female
subgroup and hovers over the Male subgroup.

of a dataset in which all instances share certain values, e.g., the subgroup of blue circles

in Figure 5.2.

Our interface allows users to generate both specific subgroups and all subgroups of

multiple features by selecting a combination of features and values. For instance in Fig-

ure 5.3, if a user checks the feature “race” and “sex”, then mutually exclusive subgroups

will be generated out of all the instances in the dataset divided on their values for “race”

and “sex”. However, if a user wants to investigate a particular subgroup, they can select a

specific value for “race” and “sex” to add a subgroup of all instances with those specific

values. Users can pick any number and combination of features and values by which to de-

fine their subgroups, and thus are at liberty to define how general or specific the subgroups

they want to explore are.

5.4.2 Subgroup Overview

Once a user has generated subgroups, they should be able to understand which subgroups

the model is underperforming on across various metrics and further investigate interesting

78

subgroups (C2). The Subgroup Overview provides a high-level view of this information as

multiple interactive and dynamic strip plots (C2).

When a user clicks the “Generate Subgroups” button (Figure 5.3), FairVis splits the

data into the specified subgroups and calculates various performance metrics for them.

These groups are then represented in the multiple strip plots as lines corresponding to their

performance for the respective metric.

Visualizing multiple fairness metrics. Due to the inherent tradeoffs between differ-

ent fairness requirements as shown by the impossibility theorem, users must choose which

metrics they want to prioritize and investigate (C5). To facilitate this interaction, we allow

users to select which metrics are displayed in the Subgroup Overview by adding and re-

moving performance metrics through the bar seen at the top of Figure 5.4. Selecting a new

metric adds an additional strip plot for that metric with all the current subgroups. We also

show the corresponding dataset average per metric in each strip plot to provide context as

to how each subgroup is doing in relation to the overall dataset.

In total, users can select from the following metrics: Accuracy, Recall, Specificity,

Precision, Negative Predictive Value, False Negative Rate, False Positive Rate, False Dis-

covery Rate, False Omission Rate, and F1 score. These metrics were selected as they are

typically the most common metrics used for evaluating the equity and performance of clas-

sification models. The performance metrics are derived from the same base outcome rates

of true positives, true negatives, false positives, and false negatives. If users find that they

need different metrics for performance, they can add a new definition using the base rates

which are available in the system.

When a user hovers over a subgroup in a strip plot, the corresponding group is high-

lighted on every plot currently displayed. This allows users to see how an individual group

performs on several different metrics at once [C2, C5]. To further investigate a subgroup,

the user can click on a bar to pin the group and use the Detailed Comparison View to further

investigate the group.

79

Choice of visual encoding. We chose a strip plot to visualize performance metrics

since it allows users to focus on the relative magnitude of subgroup performance in relation

to other subgroups and the overall dataset performance. By juxtaposing plots, users are

able to see how different metrics are spread out [63]. One of the shortcomings of strip

plots is that they can become crowded and hard to use with a large number of subgroups.

We address this issue by allowing users to filter the strip plot by subgroup size. While

subgroups come in all sizes, groups that are only a few instances are usually not statistically

significant enough to draw conclusions from. The size filtering mechanism can help users

narrow their search space (C3) and improve the functionality of the strip plot.

While designing our system we considered different visual encodings for displaying

subgroups, especially a scatterplot matrix. We decided to use a strip plot over a scatterplot

matrix for several reasons. First, since each of the performance metrics is derived from the

same base rates, many of the relationships between metrics are arithmetic and not indicative

of interesting patterns. We investigated outliers and found that they did not systematically

represent any interesting subgroups. Additionally, scatterplot matrices redundantly encode

information, as every metric is displayed multiple times. Our strip plot implementation

only includes each metric once while still allowing users to see how the group performs in

regards to other metrics. Multiple strip plots allow us to display the most important infor-

mation in a clean and understandable manner; namely, how a given subgroup is performing

for selected metrics and in relation to the overall dataset and other subgroups.

5.4.3 Suggested Subgroups

While many users may know of certain groups in their dataset they need to ensure fairness

for, it is possible that the model developer has little domain knowledge and does not know

where to start. Since there are a combinatorially large number of subgroups in a dataset, it

is daunting and often times not feasible to manually inspect groups for every combination

of features.

80

To help the user find potentially biased subgroups, we generate subgroups algorithmi-

cally and present them to the user for investigation. The Suggested and Similar Subgroup

View at the bottom of the interface displays these subgroups and allows the user to sort

them by any fairness metric to discover underperforming subgroups (C3).

Generating and Describing Suggested Subgroups

To create the suggested subgroups, we use a clustering-based generation technique. By

clustering instances, we can generate groups with significant statistical similarity that can

be described by a few dominant features. We can subsequently calculate their performance

metrics and display them to the user.

We first cluster all the data instances by their feature values in one-hot encoded form.

We use the well-known k-means clustering algorithm as our clustering algorithm [73] with

k-means++ as the seeding [16]. Users are able to choose the hyperparameter k to balance

the number and size of generated subgroups — a smaller k produces larger, less defined

groups while a larger k has the opposite effect. Users run the clustering as a pre-processing

script before uploading their data to FairVis.

We also experimented with more sophisticated clustering algorithms like the density-

based algorithms such as DBSCAN [58] and OPTICS [15], which can generate arbitrarily

shaped and sized clusters. While the statistical quality of the density-based clusters can be

higher, we found that the flexibility provided by allowing users to modify k is more helpful

for discovering important and useful subgroups. Additionally, we found that since we were

clustering on many one hot encoded categorical features, DBSCAN’s notion of density was

not as useful and k-means produced higher quality clusters. Given prior successful appli-

cation of k-means to a variety of problems and tasks with both categorical and numerical

features, we decided to first adapt k-means for FairVis.

Once the clusters have been generated, the makeup of the group must be described to

the user. A cluster’s instances are made up of a variety of values for each feature, but

81

some features may be more dominated by one value than others. We define a dominated

feature as a feature that consists of mostly one value, the dominant value in a subgroup.

For example, if a cluster is 99% male for the feature sex, sex is a dominated feature with a

dominant value of male.

The most dominant features can be used to describe the makeup of a subgroup to the

users. We rank how dominant features of a group are by calculating the entropy of each

feature distribution over its values. Entropy is used since it describes how uniform a feature

is. The closer a feature’s entropy is to 0, the more concentrated the feature is in one value,

making it more dominant in that subgroup.

We formalize the technique for finding dominant features as follows. Suppose we have

a set of features, F = {f1, f2, ..., fi, ...}, with each feature, fi, having a set of possible

values, Vi = {vi1, vi2, ...}. We calculate the feature entropy for the k-th subgroup and i-th

feature, Sk,i, as follows:

Sk,i = −
∑
v∈Vi

Nk,v

Nk

log
Nk,v

Nk

, (5.1)

where Nk is the number of instances in the k-th subgroup, and Nk,v is the number of

instances in the k-th subgroup with value v. For example, if all the instances of subgroup k

have value v3,1 (e.g., India), for the feature f3 (e.g., native country), the feature entropy is

0 and f3 is a dominant feature for the subgroup.

Displaying Suggested Subgroups

We display the generated subgroups in the Suggested and Similar Subgroup View at the

bottom of the interface, as seen in Figure 5.5. Since the generated subgroups are not strictly

defined by a few features, it is important to show the feature distributions for each feature in

a group. Each suggested subgroup has a list of its features and dominant value, along with

a histogram of the value distribution for each feature. The features are sorted according to

their dominance, with the dominant value being displayed under the feature name. This

82

Suggested Subgroups are shown sorted by the selected metric.Suggested Subgroups are shown sorted by the selected metric.

Feature distributions with lowest entropy are presented at the top
of each card along with that feature's dominant value.
Feature distributions with lowest entropy are presented at the top
of each card along with that feature's dominant value.

The primary feature difference between groups is
presented for each similar subgroup.
The primary feature difference between groups is
presented for each similar subgroup.

By toggling to the Similar Subgroups tab, users can
see groups similar to the pinned group.
By toggling to the Similar Subgroups tab, users can
see groups similar to the pinned group.

Figure 5.5: Here we can see the Suggested and Similar Subgroup View for both suggested
and similar subgroups. Users can hover over any card to see detailed feature and perfor-
mance information in the Detailed Comparison View

interface allows users to see what values make up a subgroup and develop an idea of which

subgroups may be underperforming.

To explore the groups, users can filter and sort the groups to refine their search space

(C3). Since users may find certain metrics more important than others for certain problems,

they can choose which metrics to sort the suggested groups by in ascending order (C5).

For example, if for a given problem recall is an important metric, users can find generated

subgroups with the lowest recall.

Furthermore, users can use the same size slider used to filter the Subgroup Overview by

size to filter the generated subgroups. Similar to the reasoning for filtering by size in

the strip plot, very small groups may not be large enough to draw statistically significant

conclusions from. Filtering the groups can remove noise and help users further refine their

search space of problematic groups.

Users can hover over a suggested subgroup card to show its detailed performance met-

rics in the Detailed Comparison View and add the group to the Subgroup Overview If a

user wants to investigate the group further, they can click on the card, pinning the group

and allowing them to compare it to other groups or export it for sharing.

83

5.4.4 Similar Subgroups

Once a user has discovered an interesting subgroup, it can be helpful to look at similar

subgroups to either investigate the impact of certain features or to find more general groups

with performance issues (C4). Finding similar groups is difficult since it is not a well

defined task and can require searching a combinatorially large space.

To formalize similarity and refine the subgroup search space, we apply ideas from

statistics and machine learning explainability to this task. When comparing suggested sub-

groups, we use similarity in the form of statistical divergence to compare how closely

related groups are. For user-specified subgroups, we apply the concept of counterfactual

explanations by finding groups with minimal value differences that have significantly dif-

ferent performance.

Finding Similar Subgroups

Similarity between subgroups can be thought of as the statistical distance between the fea-

ture distributions of groups; the more values two subgroups share, the more similar we

consider them. Statistical distance can be measured in a variety of ways, but we found

Jensen-Shannon (JS) divergence to be a good measure for our use case. As a derived form

of Kullback-Leibler divergence, JS divergence is a similar measure with the benefits of be-

ing bi-directional and always having a finite value. Since we often have zero-probability

values, JS divergence makes calculating statistical similarity more straightforward and stan-

dardized.

We calculate similarity between groups by summing the JS divergence between all

features for a pair of subgroups. This sum gives us a measure of how similar two subgroups

are on aggregate. Formally, we calculate the total distance D between subgroups k and k′

84

as follows, where Gk,f represents the value distribution of feature f in subgroup k:

D(k, k′) =
∑
f∈F

JS(Gk,f ||Gk′,f). (5.2)

This definition of subgroup similarity applies most directly to the suggested subgroups

that have some distribution over values for each feature. When comparing two suggested

subgroups against each other, we can use the formal definition of JS divergence and sum the

average distance of their feature distributions. For comparing user-specified and suggested

subgroups against each other we can use a similar technique with a small optimization —

since user-specified subgroups will have 0 probability for all values but the selected values

in each feature, it is only necessary to calculate the JS divergence for the values present in

the user-specified group.

User-specified subgroup comparison. The final potential case for comparison is be-

tween two user-specified subgroups. The use of JS divergence as a measure of similarity

begins to break down and lose its utility for this use case. The divergence will only ever be

one when groups have the same value for a feature or zero when they do not. This metric in

practice just counts the number of features with the same value between two groups. While

this measure provides some information about subgroup similarity, it is not as informative

or accurate as it is when comparing distributions over features in the other two cases.

To provide a more useful comparison of groups, we use the idea of counterfactual ex-

planations [176] which are usually presented in the following form: What are the minimum

number of features we have to change to switch the classification of an instance?

Since we are looking at subgroups of multiple instances instead of individual examples,

we use a modified notion of counterfactuals for comparing user-specified subgroups: If we

only switch one or two feature values for a subgroup, which similar groups have the most

surprising changes in performance? This question can help users answer similar questions

as they would for the groups found using JS divergence.

85

Displaying Similar Subgroups

Once similar subgroups have been found for a selected subgroup, we reuse the Suggested

and Similar Subgroup View from Section 5.4.3 to display the groups to the user. Each sub-

group is represented by a card containing a group number and the size of the subgroup.

Since selecting a subgroup displays its information in the Detailed Comparison View only

the information most pertinent to deciding which subgroup to investigate should be dis-

played.

Continuing with the philosophy of treating similar groups as counterfactuals, we dis-

play the primary feature difference between two groups in the case of user-specified sub-

groups, and the most divergent feature for suggested subgroups. By displaying the feature

difference, we emphasize the importance of that feature in the performance difference be-

tween the groups.

The same two primary interactions are available for exploring similar groups: sorting

and filtering (C3). Users can sort the groups by any fairness metric and filter the groups by

size. As with the strip plot and suggested views, this mechanism helps users find statisti-

cally significant subgroups that the model is underperforming for in metrics the user finds

important.

Similar subgroup importance. Similar subgroups can be informative in two primary

manners: finding features which are important for performance and discovering more gen-

eral subgroups. Given that we are looking at two similar subgroups, they likely only differ

in one or two features. If the performance between these two groups is vastly different, it is

indicative that the features which are different may contribute significantly to performance

(C6). On the other hand, if the two groups have very similar performance, it may mean

that a broader subgroup not split using the differing features is also underperforming and

should be analyzed.

86

5.4.5 Detailed Subgroup Analysis and Comparison

The final step in discovering and formalizing group inequity is to examine the details of a

subgroup’s features and performance. We enable this interaction with the Detailed Com-

parison View on the right hand side of the system.

A user is able to see the details for two groups in the Detailed Comparison View the

pinned and hovered group. A group can be pinned when a user clicks on it in the Subgroup

Overview or Suggested and Similar Subgroup View and is designated by a light red across

the UI. The hovered group is designated by a light blue across the UI. These two distinct

colors allow users to see a selected group’s information across various different views.

There are three primary components in the Detailed Comparison View as seen in Fig-

ure 5.6. The topmost component is a bar chart displaying how a group performs for selected

performance metrics. While users can see the values of the fairness metrics in the strip plot,

the bar chart allows users to see the specific values and enables comparison between groups

with a grouped bar chart (C5). The grouped bar chart also enables direct comparison be-

tween the pinned and hovered subgroups without the distraction of other groups.

The second component in the Detailed Comparison View is a bar chart for the ground

truth label balance of both selected subgroups. The label imbalance is important because

it can often explain extreme values for metrics like recall and precision and can suggest

reasons for bias (C6). For example, a subgroup with 95% negative values can get a 95%

accuracy by classifying everything as negative, even though it will have a 0% sensitivity.

The final subgroup comparison interface is a table delineating and comparing the fea-

tures of the pinned and hovered subgroups. For user-specified subgroups, this table shows

the features and values that define the subgroup. For suggested subgroups, this shows

the top 5 dominant feature values for that group, and users can see the full distribution in

the Suggested and Similar Subgroup View view.

Subgroup feature distributions. There is additional information about the pinned and

87

Export interesting subgroups to JSON.

Explore the differences
in selected metrics and
label balance between
the pinned and hovered
groups.

See the difference in
defining features and
size between the
pinned and hovered
groups.

Figure 5.6: In the Detailed Comparison View, users can compare the performance and
makeup of the pinned and hovered subgroups, providing insight into the causes of perfor-
mance differences.

hovered subgroup in the Feature Distribution View When a subgroup is hovered or pinned, a

histogram of each feature’s distribution for that group is overlaid on the overall distribution

(C2). When there is both a pinned and hovered subgroup, the histograms are overlaid with

opacity, allowing users to see how similar the distributions are (Figure 5.7).

The distribution of a subgroup’s features can be an important indicator of why a sub-

group is underperforming and suggest potential resolutions (C6). If a subgroup’s ground

truth labels are well balanced, there should be some diversity in the other features of a

subgroup for the classifier to be able to discriminate between the two labels. For example,

88

Figure 5.7: When groups are pinned and hovered, users can compare their feature distri-
butions in the Feature Distribution View .

if all White males are also high school educated, married, and from the United States, and

they are split between positive and negative classes, it is nearly impossible for a classifier

to accurately predict the class for anyone in that subgroup.

An extra interaction in the Detailed Comparison View is an export button for sharing

a discovered subgroup. Once a user has found subgroups of interest, they can export the

pinned and hovered subgroups to a JSON file with their composition and metrics.

5.5 Use Cases

In this section, we describe how FairVis can be used in practice to audit models after they

have been trained with two example usage scenarios. The first scenario highlights how

FairVis can be used to audit models for biases against known vulnerable groups in the

context of a recidivism prediction system. The second use case shows how users without

previous knowledge or intuitions about potential biases can use the system to find issues,

for this example with an income prediction model. Both of these use cases utilize real

world datasets to demonstrate the applications of our system.

5.5.1 Auditing for Known Biases in Recidivism Prediction

For our first example use case, we will demonstrate how FairVis could be used to discover

biases in a classifier for recidivism prediction used in the context of deciding who should

be given bail. In this use case, we use a classifier based on data gathered by ProPublica

89

about the real-world tool, COMPAS, that assigns risk scores to criminals to determine their

likelihood of re-offending.1 The original dataset ranks risk from 1-10, with risks from 1-4

constituting ”low” risk, those from 5-7 constituting ”medium” risk, and those from 8-10 as

”high” risk. Following the same methodology as in the ProPublica analysis, we formulate

this as a binary classification task by taking risk scores above ”low” (i.e. above 4) as

positive model predictions to re-offend, and those at 4 or below as negative predictions as

any prediction of risk above low indicates COMPAS is predicting recidivism. Ground-truth

labels correspond to whether a defendant released on bail was arrested for another crime

within 2 years of their release. An audit by ProPublica revealed that the COMPAS tool

is biased to give higher risk scores and thus predict a higher rate of recidivism for Black

defendants than other races [14]. Here, we will demonstrate how a data scientist auditing

their model in FairVis could arrive at the same conclusion.

Known subgroup auditing. To begin their audit, a data scientist would load the COM-

PAS dataset along with model predictions and ground truth labels into FairVis. Given

their domain knowledge, the data scientist is aware that, in previous applications involv-

ing recidivism prediction, many tools have displayed imbalanced performance for certain

genders and races.

To test whether differing performance holds for this model and dataset, the data scientist

uses the Feature Distribution View to generate all intersectional subgroups of race and sex.

When the groups are added to the Subgroup Overview (Figure 5.1B), she immediately sees

that the groups are spread out broadly across various metrics, suggesting this model may

have very different predictive performance on different subgroups. For instance, as we can

see in Figure 5.1B (top row), the different intersectional subgroups of sex and race have

accuracies ranging from around 50% to 100%.

While the data scientist is interested in the accuracy of her model, she cares most about

1COMPAS Recidivism Risk Score Data and Analysis, https://www.propublica.org/
datastore/dataset/compas-recidivism-risk-score-data-and-analysis

90

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

whether her model has large intra-group variation in terms of its false positive rate. For

this model, this translates to how many of the people who are not risky are classified as

risky. Additionally, she wants to know if these mistakes are distributed unevenly across the

different demographic groups. A high false positive rate for this model indicates that many

low-risk people (who might be good candidates for release on bail) would be labeled as

high-risk by the model. If this model were used to help determine whether a person was

seriously considered for release, false positives would correspond to low-risk candidates

for release who might be passed over for bail.

To audit the false positive performance metric, the data scientist adds a strip plot for

it using the metric selector shown at the top of Figure 5.1B. She then hovers over the bar

in the false positive rate strip plot (the bottom row in Figure 5.1B) with the highest value,

and sees that this corresponds to the African-American males subgroup with a 43% false

positive rate (colored in blue) compared to the dataset average of around 29%. The data

scientist pins this subgroup by clicking on this group’s strip in the Subgroup Overview to

investigate it further and compare it to other groups.

By hovering over the other subgroups, she can compare the base rate of recidivism

for the pinned group of African-American males relative to other groups. Looking at the

Ground Truth Label Balance in Figure 5.1C, we see that the base rate for African-American

Males (blue) is almost 60% positive (i.e. 60% rate of recidivism in ground truth), whereas

for Caucasian males (red) it is just over 40%.

Thus, if a model makes only one prediction for the entire subgroup of African-American

Males, choosing to label the subgroup as positive (a prediction of high recidivism risk) will

have higher accuracy than for other subgroups. Less extreme versions of this statement

may still hold: to maximize accuracy for this subgroup, a model will use a larger number

of positive labels than negative labels. Since the data scientist has noticed that the African-

American male subgroup has a very high base rate, but also the highest False Positive

Rate out of any of the subgroups in view and still has an accuracy very similar to that

91

Group 5 is pinned from the suggested
subgroups and shown in the Detailed
Comparison View alongside the hovered group.

Group 5 is pinned from the suggested
subgroups and shown in the Detailed
Comparison View alongside the hovered group.

Figure 5.8: A user investigates an interesting subgroup discovered in the Suggested and
Similar Subgroup View

of Caucasian Males, she thinks this part of her model needs to be altered to give more

equitable results.

Here, our example data scientist had suspicions about groups the model might be biased

against and was able to leverage FairVis to empirically confirm these suspicions. From

here, she could use the export function in the system to save these subgroups and devise a

plan for corrective action for this model or dataset.

Investigating Suggested Subgroups. Although our data scientist was able to use her

domain knowledge to inform her subgroup selection at first, she is interested in whether the

model also contains biases against other intersectional subgroups. To aid in the exploration,

this data scientist would turn to the Suggested and Similar Subgroup View panel to find

other potentially problematic groups.

The data scientist first sorts the suggested groups by their false positive rate, since she

is most worried about that metric. While the first few groups with the highest false positive

rate are made up of African-American males, corroborating her earlier findings, one of the

92

following groups provides a different result.

The fifth generated group (Figure 5.8) is relatively large with 249 instances, and has a

high false positive rate of 39%. By inspecting the composition of this group in the Detailed

Comparison Viewnd the subgroup card, she sees that the most defining characteristics of

this group are Caucasian females with a felony charge. The label imbalance for this group

is about 45% positive and 55% negative and therefore not as pronounced as the base rate

imbalance for African-American males (Figure 5.1C). This gives the data scientist two

potential hypotheses about sources of this high false positive rate. Her first hypothesis is

that the rather small group was not large enough to have been given priority in training;

the second is that the class of models considered during training may have been too simple

to express the difference between classes in this subgroup. These observations allow our

data scientist to make more informed decisions in how to best change her model to address

these disparities.

5.5.2 Discovering Biases in Income Prediction

Next, let us consider a model used to offer loan forgiveness to individuals based off their

annual income. Our data scientist in this situation does not have access to people’s annual

income so hopes to use demographic information to predict income. She therefore trains a

model on the UCI Adult Dataset2 to predict whether or not someone makes under $50,000

a year, allowing her to allocate loan forgiveness to lower income candidates with higher

fidelity.

Model training. After testing different types of models and hyperparameters, our data

scientist finds that a two-layer neural network performs best, with an overall accuracy of

85%. While encouraged by the high accuracy of her model, the data scientist is aware of

recent news of algorithmic bias and wants to ensure that her model is treating different

2https://archive.ics.uci.edu/ml/datasets/adult

93

https://archive.ics.uci.edu/ml/datasets/adult

demographic groups with similar predictive performance. She decides to audit her model

using FairVis, and loads her dataset, labels, and model predictions into the system.

Dataset exploration and subgroup creation. When first opening FairVis, the data

scientist uses the Feature Distribution View on the left to look at how balanced her dataset

is. While she is unaware of any biases in her data, she immediately notices from looking

at the feature histograms that the dataset has a disproportionate representation of males,

with males making up more than two-thirds of all instances (see Figure 5.3). To investigate

the impact of this imbalance, she selects the feature for sex to generate male and female

subgroups. When looking at these two subgroups, she sees in the Subgroup Overview that

there is a gap of almost 10% in model accuracies between the male and female subgroups

(top of Figure 5.4). Despite the higher accuracy of the female subgroup, she notices that

the male subgroup has a higher value for precision and recall.

Suggested subgroups. After seeing the fairly large gap in the accuracy of her model

between subgroups defined by just one feature, the data scientist is curious about what

other combinations of features might lead to poor performance in her model. She turns to

the Suggested and Similar Subgroup View to see what she can find. Keeping the default

sorting of groups by lowest accuracy, she notices that suggested Group 1 (shown on the left

side of Figure 5.5) has an accuracy of around 71%, far below the dataset average of 85%.

By inspecting the feature distribution charts in the Suggested and Similar Subgroup View

she sees that this group is primarily defined by Females with a marital status of “Married-

civ-spouse” and relationship status of “Wife” as shown by the value distribution graphs in

Group 1 of Figure 5.5. Since she wants to better understand why her model is performing

poorly for this group, the data scientist tries exploring similar groups.

Similar subgroups. Using her discovery from the Suggested Subgroups tab, our data

scientist wants to see how groups of females compare to one another across the “marital-

status” and “relationship” features. She generates these subgroups in the Feature Distri-

bution View and pins suggested subgroup 1 from earlier to inspect similar groups. Here,

94

she notices that the similar group with the lowest accuracy is the one comprised of females

with a marital status of “married-civ-spouse” but a relationship of “own-child”. This group

is quite small with only 44 instances.

To see how this group fits into the overall dataset, the data scientist looks to the Feature

Distribution View Here, she sees that “married-civ-spouse” is the most common value for

the Marital-Status feature, and “own-child” is the third most common value for the Rela-

tionship feature. These features combine to make a subgroup with relatively few values in

the dataset.

When looking at the Detailed Comparison View for this similar subgroup, the data sci-

entist notices that the base rate for the “Female, own-child, married-civ-spouse” subgroup

is heavily skewed to less than 20% positive ground truth instances (Figure 5.6). The data

scientist therefore hypothesizes that the low accuracy for this group may be due to its small

size and the skewed base rate. The data scientist notes these observations and aims to

gather more data and try using a more expressive model to see if she can address these

discrepancies.

5.6 Limitations and Future Work

Improving and measuring the effectiveness of the subgroup generation technique.

While we found that the generated subgroups often provide useful suggestions, we hope to

test whether these generated groups align well with groups users find important in future

work. Collecting labeled data of datasets with outputs and important underperforming

subgroups would allow us to quantify the effectiveness of our technique. Additionally, we

plan to experiment with more clustering techniques, such as subspace clustering methods

[140] to future versions of FairVis so that users can see how the groups compare. Especially

in high dimensional data, subspace clustering has the potential to reveal interesting groups

with poor performance that are primarily defined by only a few features.

95

Supporting more types of problems and data. FairVis currently only supports binary

classification and tabular data. The current interface can be expanded to support multiclass

classification, but additional visualizations views would need to be added for regression. It

would additionally be nice to support some sort of graphical or textual data. The current

interface works if the outputs of image classification are loaded with demographic data, but

enabling the display of images could aid in auditing groups.

Scaling to millions of instances. The current implementation of FairVis is able to

scale to tens and hundreds of thousands of data points, but does not support even larger

datasets very well. We are looking at improving the efficiency of the subgroup generation

and suggestion technique to enable our system to continue to work in browser while at

scale.

Suggesting and providing automatic resolutions. Various techniques exist to address

bias in machine learning, many of which can be applied as a post-processing step to the

output of a classifier. In addition, there are patterns as to what the potential reasons for bias

are which could be learned by a model or codified into heuristics. We aim to implement

some of the post-processing steps into FairVis and add capability to highlight and suggest

potential issues.

96

PART III

LEARNING COMPLEX MODELS BY
EXPERIMENTATION

97

Overview

Recent success in deep learning has generated immense interest among practitioners and

students, inspiring many to learn about this new technology. While visual and interactive

approaches have been successfully developed to help people more easily learn deep learn-

ing, the complexity of modern deep learning models introduces many non-trivial challenges

in designing visualization tools for them. The last part of my thesis is on designing and de-

veloping interactive educational tools for complex deep learning models with the goal of

broadening people’s access to learning such models and making sense of complex structure

of input datasets. In particular, this part describes two work in this line of research:

• GAN Lab (Chapter 6) on understanding deep generative models through interactive

experimentation;

• ETable (Chapter 7) on browsing and querying complex datasets stored in relational

databases.

98

CHAPTER 6

GAN LAB: LEARNING DEEP GENERATIVE MODELS BY
INTERACTIVE EXPERIMENTATION

While many visual and interactive approaches have been successfully helping people,

including practitioners, students, and novices, more easily learn deep learning, most ex-

isting tools focus on simpler models. This chapter presents GAN Lab, the first interactive

visualization tool designed for non-experts to learn and experiment with Generative Ad-

versarial Networks (GANs), a popular class of complex deep learning models. With GAN

Lab, users can interactively train generative models and visualize the dynamic training pro-

cess’s intermediate results. GAN Lab introduces new interactive experimentation features

for learning complex deep learning models, such as step-by-step training at multiple levels

of abstraction for understanding intricate training dynamics. Implemented using Tensor-

Flow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for

installation or specialized hardware, overcoming a major practical challenge in deploying

interactive tools for deep learning.

6.1 Introduction

Recent success in deep learning has generated a huge amount of interest from practitioners

and students, inspiring many to learn about this technology. Visual, interactive methods

This chapter is adapted from work appeared at IEEE VAST 2018 [90].

99

Figure 6.1: With GAN Lab, users can interactively train Generative Adversarial Networks
(GANs), and visually examine the model training process. In this example, a user has suc-
cessfully used GAN Lab to train a GAN that generates 2D data points whose challenging
distribution resembles a ring. A. The model overview graph summarizes a GAN model’s
structure as a graph, with nodes representing the generator and discriminator submodels,
and the data that flow through the graph (e.g., fake samples produced by the generator).
B. The layered distributions view helps users interpret the interplay between submodels
through user-selected layers, such as the discriminator’s classification heatmap, real sam-
ples, and fake samples produced by the generator.

and tools have successfully been used to describe concepts and underlying mechanisms in

deep learning [137, 93, 162, 189]. For example, Karpathy’s popular interactive demo [93]

enables users to run convolutional neural nets and visualize neuron activations, inspiring

researchers to develop more interactive tools for deep learning. Another notable example is

Google’s TensorFlow Playground [162], an interactive tool that visually represents a neural

network model and allows users to interactively experiment with the model through direct

manipulation; Google now uses it to educate their employees about deep learning [150].

The rise of GANs and their compelling uses. Most existing interactive tools, however,

have been designed for simpler models. Meanwhile, modern deep learning models are

becoming more complex. For example, Generated Adversarial Networks (GANs) [67],

100

Random
noise Sample

Sample

Generator

Loss
Prediction

Fake (generated)
RealDiscriminator

Real
datasets

Figure 6.2: A graphical schematic representation of a GAN’s architecture commonly used.

a class of deep learning models known for their remarkable ability to generate synthetic

images that look like natural images, are difficult to train and for people to understand,

even for experts. Since the first GAN publication by Goodfellow et al. [67] in 2014, GANs

have become one of the most popular machine learning research topics [75, 108]. GANs

have achieved state-of-the-art performance in a variety of previously difficult tasks, such

as synthesizing super-resolution images based on low-resolution copies, and performing

image-to-image translation (e.g., converting sketches to realistic images) [66].

Key challenges in designing learning tools for GANs. At the high level, a GAN

internally combines two neural networks, called generator and discriminator, to play a

game where the generator creates “fake” data and the discriminator guesses whether that

data is real or fake (both types of data are mixed together). A perfect GAN is one that

generates fake data that is virtually indistinguishable from real data. A user who wishes to

learn about GANs needs to develop a mental model of not only what the two submodels

do, but also how they affect each other in its training process. The crux in learning about

GANs, therefore, originates from the iterative, dynamic, intricate interplay between these

two submodels. Such complex interaction is challenging for novices to recognize, and

sometimes even for experts to fully understand [152]. Typical architecture diagrams for

GANs (e.g., Figure 6.2, commonly shown in learning materials) do not effectively help

people develop the crucial mental models needed for understanding GANs.

Contributions. In this work, we contribute:

101

• GAN Lab, the first interactive tool designed for non-experts to learn and experi-

ment with GAN models, a popular class of complex deep learning models, that over-

comes multiple unique challenges for developing interactive tools for GANs (Sec-

tion 6.3).

• Novel interactive visualization design of GAN Lab (Figure 6.1), which tightly in-

tegrates a model overview graph that summarizes GAN’s structure (Figure 6.1A) as

a graph, selectively visualizing components that are crucial to the training process;

and a layered distributions view (Figure 6.1B) that helps users interpret the interplay

between submodels through user-selected layers (Section 6.5). GAN Lab’s visualiza-

tion techniques work in tandem to help crystalize complex concepts in GANs. For

example, GAN Lab visualizes the generator’s data transformation, which turns input

noise into fake samples, as a manifold (Figure 6.1, big box with purple border). When

the user hovers over it, GAN Lab animates the input-to-output transformation (Fig-

ure 6.3) to visualize how the input 2D space is folded and twisted by the generator

to create the desired ring-like data distribution, helping users more easily understand

the complex behavior of the generator.

• New interactive experimentation features for learning complex deep learning mod-

els, such as step-by-step training at multiple levels of abstraction for understanding

intricate training dynamics (Section 6.6). The user can also interact with the training

process by directly manipulating GAN’s hyperparameters.

• A browser-based, open-sourced implementation that helps broaden public’s edu-

cation access to modern deep learning technologies (Section 6.6.3). Training deep

learning models conventionally requires significant computing resources. For ex-

ample, deep learning frameworks, like TensorFlow [2], typically run on dedicated

servers. They are not designed to support low-latency computation needed for real-

time interactive tools, or large number of concurrent user sessions through the web.

102

We overcome such practical challenges in deploying interactive visualization for

deep learning by using TensorFlow.js,1 an in-browser GPU-accelerated deep learning

library recently developed by Google; one of the authors of the paper for GAN Lab

is a lead developer of TensorFlow.js. Anyone can access GAN Lab using their web

browsers without the need for installation or specialized backend. GAN Lab runs

locally on the user’s web browser, allowing us to easily scale up deployment for our

tool to the public, significantly broadening people’s access to tools for learning about

GANs. The demo of the tool is available in https://poloclub.github.io/

ganlab/.

• Usage scenarios (Section 6.8), an observational study (Section 6.9), and a log analy-

sis of the deployed tool (Section 6.10) that demonstrate how GAN Lab can help be-

ginners learn key concepts and training workflow in GANs, and assist practitioners

to interactively attain optimal hyperparameters for reaching challenging equilibrium

between submodels).

VIS’s central role in AI. We believe in-browser interactive tools developed by our VIS

community, like GAN Lab, will play critical roles in promoting people’s understanding of

deep learning, and raising their awareness of this exciting new technology. To the best of

our knowledge, our work is the first tool designed for non-experts to learn and experiment

with complex GAN models, different from recent work in visualization for deep learn-

ing [118, 168, 117, 86, 143, 183] which primarily targets machine learning experts. Our

work joins a growing body of research that aims to use interactive visualization to explain

complex inner workings of modern machine learning techniques. Distill, a new interactive

form of journal, is dedicated to achieving this exact goal [138]. We hope our work will help

inspire even more research and development of visualization tools that help people better

understanding artificial intelligence technologies.

1TensorFlow.js, https://js.tensorflow.org

103

https://poloclub.github.io/ganlab/
https://poloclub.github.io/ganlab/
https://js.tensorflow.org

Figure 6.3: In GAN Lab, the generator’s non-trivial data transformation is visualized as a
manifold, which turns input noise (leftmost) into fake samples (rightmost). GAN Lab ani-
mates the input-to-output transformation to help users more easily understand this complex
behavior.

6.2 Background: Generative Adversarial Networks

This section presents a brief introduction of Generated Adversarial Networks, which will

help ground our discussion in this chapter.

Generative Adversarial Networks (GANs) [67] are a new class of unsupervised gen-

erative deep learning models that model data distributions. It can be used for generat-

ing multi-dimensional data distributions (e.g., an image is a multi-dimensional data point,

where each pixel is a dimension). The model takes real samples and random vectors (i.e.,

random noise) as inputs and transforms the random vectors into fake samples that mimic

the real samples. Ideally, the distribution of the fake samples will be indistinguishable from

the real samples. The architecture of GANs is composed of two neural networks, called

generator and discriminator, and is often represented as an abstracted data-flow graph as

in Figure 6.2. The generator, G, takes a random noise vector, z, as input and transforms it

into a fake sample, G(z) (i.e., a multi-dimensional vector); the discriminator, D, which is

a binary classifier, takes either a real or fake sample, and determines whether it is real or

fake (D(x) represents the probability that x is real rather than fake).

A GAN model is iteratively trained through a game between the discriminator and

generator. In GAN, two cost functions exist: the one for the discriminator measures the

104

probability of assigning the correct labels to both real and fake samples (i.e., the sum of

D(x) and 1 − D(G(z))); the other for the generator measures that for fake samples only

(i.e., 1−D(G(z))). The goal of the discriminator is to maximize its cost, but the goal of the

generator is to minimize its cost, which introduces conflicts (i.e., zero-sum). Therefore, it

has to play a mini-max game to find the optimum. Goodfellow et al. [67] used an interesting

analogy to explain how it works, where we can view the generator as a counterfeiter who

makes fake dollar bills, and the discriminator as the police. If the police can spot the

fake bills, that means the counterfeiter is not “good enough,” so the counterfeiter carefully

revises the bills to make them more realistic. As the discriminator (police) differentiates

between real and fake samples, the generator (counterfeiter) can glean useful information

from the discriminator to revise its generation process so that it will generate more realistic

samples in the next iteration. And to continue to receive such helpful information, the

generator keeps providing its updated samples to the discriminator. This iterative interplay

between the two players leads to generating realistic samples.

6.3 Design Challenges for Complex Deep Learning Models

Our goal is to build an interactive, visual experimentation tool for users to better understand

GANs, a complex deep learning model. To design GAN Lab, we identified four key design

challenges unique to GANs.

C1. [MODEL] Complex model structures with submodels. The structures of modern

deep learning models (including GANs) are complex; they often incorporate multiple

base neural networks or deep learning models as submodels. For example, a GAN

combines two neural nets: generator and discriminator; an image captioning model

often consists of both CNNs and RNNs for translation between images and text [175].

Effective visualization of such models calls for new strategies different from those

designed for conventional models. For example, it is crucial to find the appropriate

105

Figure 6.4: The GAN Lab interface integrates multiple views: A. The model overview graph
summarizes a GAN model’s structure as a graph, with nodes representing the submodels,
and the data that flow through the graph; B. The layered distributions view overlays mag-
nified versions of the graph’s component visualizations, to help users more easily compare
and understand their relationships; C. The metrics view presents line charts that track met-
ric values over the training process. Users start the model training by clicking the play
button on menu bar. The three views are dynamically updated, as training progresses. In
this example, real samples are drawn from two Gaussian distributions, and the generator,
consisting of a single hidden layer with 14 neurons, has created samples whose distribution
is quite similar to that of the real samples.

levels of visual abstraction for the models, as visualizing all low-level details will

overwhelm users. Special visual design may be needed to help users interpret the

intricate interplay between submodels (e.g., discriminator and generator).

C2. [DATA] High-dimensional datasets. As deep learning models often work with

large, high-dimensional datasets, visualizing their distributions would quickly create

many traditional challenges well-studied in information visualization research [119].

While we may use techniques like dimensionality reduction to partially address such

issues, this could introduce additional complexities to the systems, potentially dis-

tracting users from their main goal of understanding how deep learning models work.

C3. [TRAINING PROCESS] Many training iterations until convergence. Deep learning

models are trained through many iterations (i.e., at least thousands), introducing non-

106

trivial challenges for developing interactive tools. As it takes time to converge, the

tools need to keep providing users with information during training (e.g., progress),

and users may also want to provide feedback to models (e.g., by changing hyperpa-

rameters). In addition, while one popular feature used in many experimentation tools

is a step-by-step execution of systems [69, 153], the definition of steps becomes dif-

ferent in training of complex models, because the training process consists of many

iterations and each iteration also consists of the training of multiple submodels.

C4. [DEPLOYMENT] Conventional deep learning frameworks ill-fitted for multi-user,

web-based deployment. Training deep learning models conventionally requires sig-

nificant computing resources. Most deep learning frameworks written in Python or

C++, like TensorFlow [2], typically run on dedicated servers that utilize powerful

hardware with GPU, to speed up the training process. However, even with a power-

ful backend, they cannot easily support a large number of concurrent user sessions

through the web, because each session requires significant computation resources.

When combined, even a small number of concurrent sessions can bog down a power-

ful server. Off-loading computation to the end user is a possible solution, but conven-

tional deep learning frameworks are not designed to support low-latency computation

needed for real-time interactive tools.

6.4 Design Goals

Based on the identified design challenges in the previous section, we distill the following

main design goals for GAN Lab, a novel interactive visualization tool for learning and

experimenting with GANs.

G1. Visual abstraction of models and data flow. To give an overview of the structure

of complex models, we aim to create a visual representation of a model by selec-

tively choosing and grouping low-level operations (and intermediate data) into high-

107

level components (C1). It helps users visually track how input data are transformed

throughout the models. For users to clearly examine the internal model training pro-

cess and data flow, we would use low-dimensional datasets (C2). (Section 6.5.1)

G2. Visual analysis of interplay between discriminator and generator. As GANs in-

ternally use two different neural nets, it is important for users to understand how they

work together, to get a holistic picture of the overall training process (C1). In re-

sponse, we would like to enable users to examine and compare the visualizations of

the model components to understand they affect each other to accomplish the gener-

ation tasks. (Section 6.5.2)

G3. Dynamic experimentations through direct manipulation of hyperparameters.

We aim to let users dynamically play and experiment with models. To help users

quickly understand the roles of many hyperparameters and control them (C3), we

would like to design interactive interfaces which users can easily locate and manipu-

late the options. The users’ actions are directly applied to the model training process.

(Section 6.6.1)

G4. Supporting step-by-step execution for learning the training process in detail.

Since the training process of deep learning models consists of many iterations and

each iteration also consists of several steps, the step-by-step execution of models

can greatly help novices to understand the training process (C3). To address this

needs, we aim to design multiple ways to execute models in a step-by-step fash-

ion by decomposing the training process into steps at multiple levels of abstraction.

(Section 6.6.2)

G5. Deployment using cross-platform lightweight web technologies. To develop a

tool that is accessible from multiple users without a need to use specialized power-

ful backend (C4), we would like to use web browsers both for training models and

visualizing results. (Section 6.6.3)

108

6.5 Visualization Interface of GAN Lab

This section describes GAN Lab’s interface and visualization design. Figure 6.4 shows

GAN Lab’s interface, consisting of multiple views. Using the control panel on top, users

can run models and control the speed of training, which we describe in detail in the next

section (Section 6.6). This section primarily describes the other three views that visualize

models and trained results: (A) model overview graph view on the left (Section 6.5.1);

(B) layered distributions view in the middle (Section 6.5.2); (C) metrics view on the

right (Section 6.5.3). In the figure, 2D real samples are drawn from two Gaussian distribu-

tions. The user’s goal is to train the model so that it will generate a similar distribution, by

transforming 2D Gaussian noise using a neural net with a single hidden layer.

Color scheme. In our visualization, we color real data green and fake data purple. We

do not use a more traditional green-red color scheme, as we do not want to associate fake

data with a negative value. For visualizing the discriminator, we use blue, a color unrelated

to the color scheme chosen for coloring data. For visualizing the generator, we again use

the color purple because the generated points are the fake points the model sees.

6.5.1 Model Overview Graph: Visualizing Model Structure and Data Flow

The model overview graph view (Figure 6.4 at A) visually represents a GAN model as a

graph, by selectively grouping low-level operations into high-level components and pre-

senting data flow among them.

Abstraction of Model Architecture as Overview Graph

The model overview graph visually summarizes the architecture of a GAN model. Instead

of presenting all low-level operations and intermediate data (i.e., output tensors), it selec-

tively represents high-level components and important intermediate data as nodes. Specif-

icallly, nodes of the graph include two main submodels (i.e., generator and discriminator)

109

and several intermediate data (e.g., fake samples). Each submodel, which is a neural net-

work, is represented as a large box, and six data nodes are visualized as small boxes. This

decision is based on our observation of how people draw the architecture of GANs [48]

(like Figure 6.2). Users are often familiar with the structure of the basic neural networks

and more interested in the overall picture and interplay between the two submodels. we

place input data nodes on the left side of the submodels and output nodes on the right (for

forward data flow). Then we draw edges where forward data paths are drawn from left

to right and backward data paths, representing backpropagation, are drawn as two large

backward loops (one for the discriminator and the other for the generator).

Visualization of Nodes in Overview Graph

We visualize the current states of models within the nodes in the graph for users to under-

stand and monitor the training process.

Using 2D datasets to promote comprehension. One challenge in visualizing this

information arises from the difficulty of visualizing a large number of high-dimensional

data points. To tackle this issue, we decided that we limit our GAN models to generate two-

dimensional data samples, while GANs often work with high-dimensional image data. This

decision is mainly for helping users easily interpret visualization and focus to understand

the internal mechanisms of the models. As many researchers identified, when designing

interactive tools, it is even more desirable to focus on simpler cases [156]. Visualization of

two-dimensional space is easier for people to understand how data are transformed by the

models than that of higher- or one-dimensional spaces: 3D or larger requires dimensionality

reduction techniques that add more complexity to users and hinders their understanding.

Below we describe how we visualize each node. We show a miniaturized copy of each

node’s visualization from Figure 6.4 for easier referencing.

110

Real samples are what a GAN would like to model. Each sample, a two-

dimensional vector, is represented as a green dot, where its x and y position

represents the values of its two-dimensional data point. In this example, two

Gaussian distributions exist: on the upper-left, and on the right.

Random noise, an input to the generator, is a set of random samples. In GAN

Lab, noise can be either 1D or 2D. If it is a 1D value, data points are positioned

in a line; if a 2D vector (which is default), positioned in a square box, as shown

in the small figure on the right.

Fake samples are output produced the generator by transforming the random

noise. Like real samples, fake samples are also drawn as dots, but in purple. For

a well-trained GAN, the generated distribution should look indistinguishable

from the real samples’ distribution.

Generator, a neural net model, is a transformation function, G : R2 → R2,

that maps a 2D data point (i.e., random noise, z) to another 2D data point

(i.e., fake sample, G(z)). We visualize the transformed results as a 2D

manifold [137], as in the figure on the right. To draw this manifold, we first

create a square grid (e.g., 20x20) for the random noise (see Figure 6.5, leftmost) where

each cell represents a certain noise range (e.g., {z = (z1, z2) | 0.85 ≤ z1 < 0.90 ∧ 0.10 ≤

z2 < 0.15)}). We color each cell in purple, encode its probability density with opac-

ity (i.e., more opaque means more samples in the cell). The generator G transforms the

random noise into fake samples by placing them in new locations. To determine the trans-

formation for the grid cells, we feed each cell’s four corners into the generator, which re-

turns their transformed positions forming a quadrangle (e.g., G(0.85, 0.10) = (0.21, 0.75),

G(0.85, 0.15) = (0.24, 0.71), ...). Thus, the whole grid, now consisting of irregular quad-

rangles, would look like a warped version of the original regular grid. The density of each

(warped) cell has changed. We calculate its new density by dividing the original density

value (in the input noise space) by the area of the quadrangle. Thus, a higher opacity means

111

Figure 6.5: Visualization of generator’s transformation. When users mouse over the gener-
ator node, an animation of the square grid transitioning into a warped version is played.

more samples in smaller space. Ideally, a very fine-grained manifold will look almost the

same as the visualization of the fake samples. Our visualization technique aligns with the

continuous scatterplots idea [17] that generalizes scatterplots to continuous data by com-

puting the density of data samples in the scatterplot space. To help users better understand

the transformation, we show an animation of the square grid transitioning into the warped

version (see Figure 6.5), when users mouse over the generator node in the overview graph.

Figure 6.6: The discriminator’s performance can be interpreted through the layered dis-
tributions view, a composite visualization composed of three layers selected by the user:
Real samples, Fake samples, and Discriminator’s classification. Here, the discriminator is
performing well, since most real samples lies on its classification surface’s green region
(and fake samples on purple region).

112

Discriminator is another neural net model, which is a binary classifier, that

takes a sample as input and determines whether it is real or fake by produc-

ing its prediction score (values from 0 to 1). We visualize the discriminator

using a 2D heatmap, as in TensorFlow Playground [162]. The background

colors of a grid cell encode the prediction values (darker green for higher values represent-

ing that samples in that region are likely real; darker purple for lower values indicating that

samples are likely fake). As a GAN approaches the optimum, the colors become more gray

(as in the above figure), indicating the discriminator cannot distinguish fake examples from

the real ones.

Predictions are outputs from the discriminator. We place real or fake samples

at their original positions, but their fill colors now represent prediction scores

determined by the discriminator. Darker green indicates it is likely a real sam-

ple; darker purple likely a fake sample. In this example, most samples are predicted as

fake, except for the ones on the upper left.

Gradients for generator are computed for each fake sample by backpropagat-

ing the generator’s loss through the graph. This snapshot of gradients indicates

that how each sample should move to, in order to decrease the loss value. As

a gradient represents a vector, we visualize it as a line starting from the position of each

sample, where length indicates strength.

6.5.2 Layered Distributions: Visual Analysis of Interplay between Discriminator

and Generator

In complex models like GANs, it is a key to understanding relationships among several

elements of the models. For example, users may want to check how the distribution of fake

samples are similar to those of real samples. Although users can perform a side-by-side

comparison of the two different nodes on the model overview graph, this task would be

113

Figure 6.7: Evaluating how well the distribution of fake samples matches that of real sam-
ples by turning on real samples’ density contour and fake samples in the layered distribu-
tions view.

greatly improved when they are overlapped in the same coordinates.

To help visually analyzing relationships among multiple components, we create a lay-

ered distributions view (Figure 6.4 at B) that presents a large canvas showing the visual

representations of the nodes in the model overview graph as multiple layers. The layers

can be turned on or off using toggle switches. We do not intend to visualize all layers, as it

is overwhelming to users and it is much more effective to include only the useful informa-

tion for particular tasks. The view currently supports six layers. All layers, except the one

for the real samples’ density contour, are magnified versions of the visual representations

of the graph nodes we described in the previous subsection (Section 6.5.1). The layers are:

• Real samples (green dots)

• Real samples’ density contour (see Figure 6.7)

• Generator transformation manifold

• Fake samples (purple dots)

• Discriminator’s classification heatmap

• Generator’s gradients (pink lines)

114

Figure 6.8: Example of understanding the interplay between discriminator and generator
using the layered distributions view. Fake samples’ movement directions are indicated by
the generator’s gradients (pink lines), based on those samples’ current locations and the
discriminator’s current classification surface (visualized by background colors).

Useful combinations of layers. By selecting which visualizations to be included in

the canvas, users can visually analyze the state of the models and the interplay between

discriminator and generator, from multiple angles. We describe three example combina-

tions that support multiple analysis tasks. First, Figure 6.6 illustrates that the discriminator

may be visually interpreted by comparing the samples’ positions with grid’s background

colors. Here, the discriminator is performing well, as most real and fake samples lie on its

classification’s green and purple regions, respectively. The second example in Figure 6.7 il-

lustrates how users may visually evaluate how well the distribution of fake samples matches

that of the real samples. It helps users to determine whether the two distributions are simi-

lar or not, which is the main goal of GANs. The last example in Figure 6.8 shows how the

view can help users understand the interplay between discriminator and generator. Fake

samples’ gradient directions point to the classification’s green regions, meaning that the

generator leverages information from the discriminator to make fake samples less distin-

guishable from the real ones.

115

6.5.3 Metrics: Monitoring Performances

The metrics view (Figure 6.4 at C) shows a number of line charts that track several metric

values changing as the training promises. GAN Lab currently provides two classes of met-

rics. The first kind is the loss values of the discriminator and generator, which are helpful

for evaluating submodels and comparing their strengths. The second kind of metrics is for

evaluating how similar the distributions of real and fake samples are. GAN Lab provides

Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence values [114, 171] by discretiz-

ing the 2D continuous space (via the grid). Formally, the KL divergence value is defined as

KL(Preal||Pfake) = −
∑

i Preal(i) log Pfake(i)
Preal(i)

, where Preal(i) is the probability density of the

real samples in the i-th cell, calculated by dividing the number of real samples in the i-th

cell by the total number of real samples; Pfake(i) is similarly defined for the fake examples.

We decided to use these measures, among others, because they are some of the most com-

monly used approaches for comparing distributions and they do not incur heavy in-browser

computation overhead.

6.6 Interactive Experimentation

This section describes how users can interactively experiment with GAN models using

GAN Lab.

Basic workflow. Clicking the play button, located on the top of the interface, starts

running the training of a GAN model and dynamically updates the visualizations of in-

termediate results every n epochs (a.k.a., iterations). This helps users keep track of the

model’s training and examine how they evolve. Users can pause the training by clicking

the pause button (the play button changes to pause button during training).

6.6.1 Direct Manipulation of Hyperparameters

116

GAN Lab is designed for users to directly manipulate model’s training as

easy as possible. When users click the editing icon on the right side of

the label for the model overview graph view, several up/down buttons or dropdown menus,

which controls the model’s hyperparameters, are shown (see Figure 6.4). Each item is lo-

cated near its relevant submodel or data node for users to easily locate it. Users can directly

change the values using the buttons or dropdown menus, and the user’s actions (e.g., in-

creasing learning rate) are immediately applied to the model training process, except for

some of the submodel-specific options (e.g., number of hidden layers), and the effects of

this change will be visualized, as the training further progresses. This would greatly help

users understand how these hyperparameters affect the model training process. The current

available hyperparameters in GAN Lab include:

• Number of layers for generator and discriminator

• Number of neurons in each layer for generator and discriminator

• Optimizer type (e.g., Stochastic Gradient Descent, Adam) for updating the generator

and discriminator

• Learning rates for updating the generator and discriminator

• Loss function (e.g., log loss [67], least square loss (LS-GAN [125]))

• Number of training runs for discriminator (and generator) for every epoch2

• Noise dimension (e.g., 1D, 2D) and distribution type (e.g., uniform, Gaussian)

GAN Lab also allows users to pick a distribution of real samples using the drop-down

menu that currently implements five examples (e.g., ring). Users can also specify a new

distribution by drawing one on a canvas with brush, as illustrated in Figure 6.9.

2In training of GANs, for every epoch, the discriminator and generator are trained by turns. Goodfellow
et al. [67] suggested that the discriminator can be updated k more times in practice, and GAN Lab enables to
adjust this k value.

117

Figure 6.9: Users can create real samples by drawing their distribution.

6.6.2 Step-by-Step Model Training at Multiple Levels

GAN Lab supports step-by-step training at multiple levels of abstraction for understanding

intricate training dynamics. The step-by-step execution of systems is one of the useful

ways for learners to understand how they work [159], however, training of GANs consists

of thousands of iterations and each iteration also consists of several steps (as illustrated in

Figure 6.10). To address this problem, we decompose the training process into steps in

multiple levels: epoch-, submodel-, and component-level.

Manual Step Execution in Epoch-Level

Users can train a model for only one epoch, by clicking a button

once. This epoch-level step execution is designed to help users

track the training process to see how models update to find the op-

timum state through iterations. To use this feature, a user first clicks the step icon on top,

which will shows three buttons. The last button (“Both”) represents the training for one

epoch. We describe the other two buttons’ usage next.

118

Figure 6.10: Training typically involves of thousands of epochs (iterations). Each epoch
includes training both discriminator and generator. GAN Lab supports step-by-step model
training at different abstraction levels.

Manual Step Execution in Submodel-Level

A single epoch consists of training of a discriminator and z generator, as illustrated in

Figure 6.10. GAN Lab allows users to update only the discriminator or generator. The ex-

perimentation of training only one of the two submodels is effective for users to understand

how they work differently. For example, clicking the button for the discriminator changes

the background grid while preserving the positions of fake samples. On the other hand,

clicking the discriminator button moves the fake samples while fixing the background grid.

To use this feature, users click the step icon first, then the three buttons will be shown. The

first button is for training the discriminator; the second button is for the generator; and the

last button is for training both submodels.

Slow-Motion Mode in Component-Level

GAN Lab also provides the slow-motion mode, designed to help novices learn

how each component of the model works to make updates within each epoch. It

works differently from the manual step execution described in the two previous paragraphs.

When users turn on this mode by clicking the icon on top during training, it slows down the

speed of training. In addition, two similar lists of five steps are presented: one for updat-

ing the discriminator and the other for the generator, as depicted in Figure 6.11. The five

steps include (1) running the generator; (2) running the discriminator; (3) computing dis-

119

Figure 6.11: The slow-motion mode slowly executes the model training process in a com-
ponent level, in a step-by-step fashion. The steps are grouped into two lists, one for dis-
criminator and the other for generator, each consisting of five steps.

criminator or generator loss; (4) computing gradients; and (5) updating the discriminator or

generator. For every few seconds, it moves to the next step highlighting the corresponding

model components with textual descriptions. For example, each of the five steps for the

discriminator is highlighted one after another. At the same time, the whole training loop

for the discriminator is also highlighted (i.e., edges colored by blue). Once the five steps

are completed, it proceeds to the training of the generator, highlighting the training loop for

the generator (i.e., purple edges) and executing its five steps. By following these training

paths, users can learn how every component is used in training GANs.

6.6.3 Browser-based Implementation for Deployment

GAN Lab is an open-source, web-based visualization tool. Anyone can access it using their

modern web browsers without the need for installation or specialized backend. The demo

is available at https://poloclub.github.io/ganlab/.

The tool is implemented in HTML and TypeScript (a typed version of JavaScript) with a

few open-source JavaScript libraries: TensorFlow.js3 is used for training and running mod-

3TensorFlow.js, https://js.tensorflow.org/

120

https://poloclub.github.io/ganlab/
https://js.tensorflow.org/

els, which we will elaborate in detail in the next paragraph; Polymer4 is used for building

web applications; and D3.js5 is used to visualize the model overview graph and layered

distributions. The source code is available in https://github.com/poloclub/

ganlab/.

Using TensorFlow.js for model building and training. GAN Lab runs locally on user’s

web browsers by using TensorFlow.js (formerly known as deeplearn.js), an in-browser

GPU-accelerated deep learning library, developed by Google. The TensorFlow.js library

uses WebGL to efficiently perform computation on browsers, required for training deep

learning models. Not only does it enable rapid experimentation of the models, but also

allows us to easily scale up deployment for the public. While most other implementations

of GANs that use Python or other server-side languages would backfire when multiple

users train models concurrently, our GAN models are trained in JavaScript, which means

that that the models and their visualizations run locally on web browsers, enabling us to

significantly broaden people’s access to GAN Lab for learning about GANs.

6.7 Informed Design through Iterations

The current design of GAN Lab is the result of 11 months of investigation and development

through many iterations. Below we share two key lessons learned from our experience.

The model overview graph is a crucial and effective feature that helps users develop

mental models for GANs. Our early design (Figure 6.12) did not include the overview

graph. Instead, it displayed a long list of hyperparameters. While that design had all the

necessary features for training GANs interactively, pilot users, including machine learning

experts, commented that the tool was difficult to use and to interpret. The main reason is

that, without an overview, users had to develop mental models for GANs (in their heads)

4Polymer, https://www.polymer-project.org/
5D3.js, https://d3js.org/

121

https://github.com/poloclub/ganlab/
https://github.com/poloclub/ganlab/
https://www.polymer-project.org/
https://d3js.org/

Figure 6.12: Early design of GAN Lab did not include a model overview graph that helps
users develop mental models for GANs.

to keep track of how the larger number of hyperparameters map to the different model

components. This finding prompted us to add the model overview graph, inspired from

common architecture diagrams for GANs, which helps users build mental models for the

training process of GANs [122].

Animating the generator’s transformation (Figure 6.5) was helpful in helping users in-

terpret the manifold visualization. Our early version only showed the transformed manifold

(e.g., Figure 6.5, rightmost). However, many users were puzzled by what they saw because,

the manifold could be so severely distorted that they could not tell what its original shape

was (a uniform 2D grid), thus they could not make the connection to realize that the mani-

fold visualization was indeed representing the generator’s output. We though about adding

text to the interface to explain the manifold, but as GAN Lab is intended to be used as a

standalone tool, we would like to keep the visual design compact, and we wanted to in-

clude textual descriptions only when necessary. Thus, we came up with the idea of visually

explaining the transformation as an animated transition, which was immediately clear to all

users.

122

6.8 Usage Scenarios

This section describes two example usage scenarios for GAN Lab, demonstrating how it

may promote user learning of GANs. The scenarios highlight: (1) how beginners may

learn key concepts for GANs by experimenting with the tool’s visualizations and interac-

tive features (Section 6.8.1); (2) how the tool may help practitioners discover advanced

inner-workings of GANs, and how it can assist them to interactively attain optimal hyper-

parameters for reaching equilibrium between submodels (Section 6.8.2).

6.8.1 Beginners Learning Concepts and Training Procedure

Consider Alice, a data scientist at a technology company, who has basic knowledge about

machine learning. Recently, she has started to learn about deep learning, and a few of the

introductory articles she has been reading mention GANs. Excited about their potential,

she wishes to use GAN Lab to interactively learn GANs.

Becoming familiar with basic workflow. When Alice launches GAN Lab in her web

browser, she sees the model overview graph, which looks like a GAN architecture diagram

that she has seen in her articles. By default, real samples are drawn from a 2D distribution

that resembles a line. She clicks the play button on the tool bar. During the training, the

movement of the fake samples in the layered distribution view attracts her attention. They

keep moving towards the real samples.

Using the slow-motion mode for tracking the training procedure. Alice is aware

that discriminator and generator take turns to train, but she is unsure of what that means.

To see how training progresses, Alice clicks the slow-motion icon to enter the slow-motion

training mode, which slows down the speed of training, and presents two lists of training

steps, one for the discriminator, and another for the generator (see Figure 6.11). She notices

that in for every epoch, the discriminator is trained first, then the generator follows. The two

models’ training sequences seem very similar, but she discovers several key differences.

123

Figure 6.13: Experimenting with manual step execution, to understand the interplay be-
tween discriminator and generator.

For example, she is able to find that while discriminator’s loss is computed by using both

real and fake samples, only fake samples are used when computing the generator’s loss.

Understanding the different roles of discriminator and generator with the manual

step execution. While the slow-motion mode has helped her better understand the steps

of the training process, Alice wonders how the discriminator and generator play a “game”

to generate data distributions. To analyze the different effects for the discriminator and the

generator, she would like to experiment with the two submodels using the manual step-by-

step execution feature. She clicks the button to update the generator. Her initial clicks cause

the fake samples to move towards the real samples, but as she clicks a few more times, the

124

fake samples “overshoot,” no longer matching real samples’ distribution (Figure 6.13, top

row). She now realizes that the fake samples have moved towards regions where the colors

of background grid cells are green, not directly towards the real samples. This leads Alice to

hypothesize that training the discriminator is necessary for the generator to produce better

fake samples. So, she switches to only training the discriminator, which does not reposition

the fake samples, but the grid colors update (Figure 6.13, second row) to correct a decision

boundary that separates the real and fake samples. She believes that this new boundary

helps guide the fake samples towards desirable regions where the real samples are located.

This experiment helps her realize that updating both submodels is important for generation

of better fake samples. Now she clicks the buttons for updating the discriminator and

generator alternatively, which successfully creates a fake distribution that matches the real

distribution. That is, the discriminator cannot distinguish between real and fake samples.

(Figure 6.13, last row).

6.8.2 Practitioners Experimenting with Hyperparameters

One of GAN Lab’s key features is the interactive, dynamic training of GANs. Experimen-

tation using GAN Lab could provide valuable practical experience in training GAN models

even to experts. Consider Bob, a machine learning engineer at a technology company.

Guiding models to find the optimum. Bob launches GAN Lab and starts the train-

ing process. Fake samples quickly move towards real samples. However, as the training

progresses, he notices that the fake samples oscillate around the real samples. Based on

his previous experience, he believes this indicates that the learning rates may be set too

high. He first decreases the value for the discriminator by using the dropdown menu, but

the amount of oscillation becomes more severe. By checking the interface, he quickly re-

alizes that there are two learning rates in GANs, so he reverts its value and decreases the

generator’s learning rate. After a few more iterations, the oscillation subsides and the distri-

bution of the fake samples almost matches that for the real samples. This experimentation

125

Figure 6.14: Mode collapse, a common problem in GANs.

helps him understand the importance in balancing the power between the discriminator and

generator.

Understanding equilibrium between discriminator and generator. Bob wonders

what would happen if he perturbs the equilibrium between the discriminator and genera-

tor. That is, what if either submodel overpowers its complement. Looking into the model

overview graph, he finds that some other hyperparameters also come in matched pairs,

such as the number of training loops, one for the discriminator and the other for the gen-

erator. Originally, both numbers are set to 1 (i.e., the submodels run one training epoch in

alternate sequence). Bob decides to increase discriminator’s loop count 3 (i.e., 3 discrim-

inator epochs, followed by 1 generator epoch, followed, and repeat). To his surprise, this

“unbalanced” epoch setting (3 vs. 1) causes GAN to converge faster. Comparing this “un-

balanced” setting with the original “balanced” (1 vs. 1) setting, Bob starts to understand

that a more powerful discriminator can indeed accelerate training, because a stronger dis-

criminator leads to stronger gradients for the generator, which in turns more quickly move

the fake samples towards the real distribution, thus faster training convergence.

Exploring mode collapse. Bob would like to train a GAN to work with more complex

data distributions. He picks one distribution that consists of three disjoint dense regions.

He increases the number of layers for both the generator and discriminator, then clicks the

play button. After a few seconds, all fake samples seem to have disappeared, as he can

126

only see real samples. He temporarily hides the real samples (by toggling their visibility),

thinking that they may be covering the fake samples. Then, he realizes that all fake samples

have collapsed into a single point (as shown in Figure 6.14). He does not know why this

happens, and wonders if it is due to his hyperparameter choices. So he experiments with

several other sets of hyperparameters, and observes the pattern that this happens more often

when the generators and discriminators are set to use more layers and neurons. He consults

the literature for possible causes, and learns that this is in fact a well-known problem in

GANs, called mode collapse, whose exact cause is still an active research topic [66, 127].

Bob’s observation through GAN Lab motivates him to study new variants of GANs, which

may overcome this problem [66, 127].

6.9 Observational Study

To investigate how GAN Lab’s target users (e.g., students aspired to learn about GANs)

would use the tool and learn about the models, we conducted a small observational study.

This section describes our study design and findings.

6.9.1 Study Design

Participants. Six participants were recruited through our institution’s mailing list for

those who are interested in machine learning. We pre-screened participants to ensure that

they have at least basic knowledge of deep learning and GANs (e.g., taken a deep learning

course or at least heard of GANs). Five participants were Ph.D. students who had taken a

deep learning course, and one was an undergraduate student who had research experience.

They self-reported their level of knowledge on deep learning, with an average score of 3.3

on a scale of 0 to 5 (0 being “no knowledge” and 5 being “expert”); and that on GANs with

5This section is adapted from work appeared at EVIVA-ML Workshop at IEEE VIS 2019 [87].

127

Table 6.1: Subjective ratings about GAN Lab using 7-point Likert scales (7: Strongly
Agreed. 1: Strongly Disagreed).

Question Avg.

Easy to learn how to use 6.3
Easy to use 6.3
Helpful to understand what constitutes a GAN model 6.5
Helpful to understand the training process of GANs 6.0
Helpful to understand what the generator is doing 5.5
Helpful to understand what the discriminator is doing 6.2
Helpful to understand how hyperparameters affect results 6.2
Helpful to get new insight about GANs 5.8
I felt confident when using the tool 5.8
It improves the effectiveness of my learning 5.7
I enjoyed using GAN Lab 6.5
I would like to use software like GAN Lab to learn ML 6.5

an average score of 2.5 (on the same scale). No participant has used or heard about GAN

Lab before.

Procedure. The study was conducted through BlueJeans video conferencing. After

the participants signed their consent forms electronically, they were provided a 5-minute

overview of GANs, followed by a 5-minute tutorial of GAN Lab, which described its visu-

alizations and features. After that, the participants freely explored using GAN Lab on their

computer’s web browser. They were asked to think aloud and share their computer screen

with us during the study. They could ask for questions when necessary. After they used the

tool, the participants were asked to fill out questionnaires, consisting of subjective ratings

about GAN Lab (12 questions) and questions for feedback (4 questions). The study took

about 50 minutes, and each participant was compensated with an Amazon $15 gift card for

their time.

128

6.9.2 Questionnaire Results

Subjective ratings. We measured several aspects of GAN Lab using 7-point Likert

scales (7 being Strongly Agreed; 1 being Strongly Disagreed). Table 6.1 shows the average

ratings for the 12 questions we asked. The participants found that GAN Lab was easy to

learn, easy to use, helpful to understand several aspects of GANs, and likeable overall.

Specifically, all six participants found GAN Lab easy to learn to use (i.e., rated 6 or 7),

and all but one participant agreed that GAN Lab was easy to use, they enjoyed using it,

and they would like to use software like to learn machine learning. Five questions starting

with “helpful to understand” are asking whether GAN Lab improves their understanding of

certain aspects of GANs. The question that received the highest average rating was on what

a GAN model is composed of, which indicates that GAN Lab’s visualization was effective.

In addition, the only question that all participants agreed was on the understanding of the

effects of hyperparameters, related to the GAN Lab’s interactive experimentation features.

Even with a variety of features that aim to improve the understanding of the generator,

participants reported that it was relatively harder to understand the generator, in terms of

the average rating (i.e., 5.5), while the value is high enough to say it is positive.

Qualitative feedback. We asked participants for feedback on GAN Lab. Participants

liked a variety of visualizations and features it provided. For example, multiple participants

said they liked GAN Lab’s visualizations that evolve as the training process progresses.

One participant said “I liked the updated visualizations of the manifold, gradients, etc. I

liked these because it provided insight as to how the GAN was evolving in time, which

provides insight into how it works and what the end goal of a GAN is.” Another said

“I did learn more properly how the GANs actually evolve, as I did not fully understand

how they operated before. I don’t think my DL professor explained as nicely as how this

tool demonstrated. ” In addition, multiple Participants particularly liked the feature for

adjusting hyperparameters. We report them and other feedback more in detail in the next

129

subsection.

6.9.3 Key Findings

Rapid hypothesis testing. Among the features of GAN Lab, many participants partic-

ularly liked the one for dynamically adjusting hyperparameters while a model was being

trained. This feature enabled them to form hypotheses based on prior experience in machine

learning and rapidly test them using GAN Lab. For example, one participant increased the

learning rate (using its drop-down menu) to test if it helps speed up the training. Another

participant said “I really liked the features of the hyperparameter tuning [...], and learning

all the different hyperparameters that can affect them are making me think of different ways

to optimize GANs.” This capability for rapid hypothesis testing in GAN Lab is not possible

in conventional deep learning workflows because they often require retraining the model

each time a user adjusts a hyperparameter.

Building intuition through dynamic experiments. The ability to adjust hyperparame-

ters in GAN Lab also helps users build intuition about the behaviors induced by the model’s

training process. One important characteristic of GANs is the dynamic interplay between

the two components: generators and discriminators. A participant said “[the] ability to

change training parameters such as number of updates on the fly was nice. It really helps

you build intuition to see how the discriminator and generator interact.” One usage pat-

tern participants particularly liked was updating either the generator or discriminator while

disabling the update of the other. By default, the training process alternates between the

generator and discriminator (in each iteration), so it can be hard for novices to understand

their individual contribution to the training progress. By disabling one of them, users can

more easily observe how each component works and how the model reaches an equilibrium

that balances the two components.

Validating knowledge from literature. Participants who are familiar with the litera-

ture of deep learning and GANs found GAN Lab useful for validating knowledge they ac-

130

quired from research articles. For example, one participant remembered that GANs would

often encounter the problem called mode collapse, especially when a distribution contained

disjoint modes [127]. This participant was interested in reproducing this phenomenon by

training a model with such a distribution. He also wanted to use a different loss function

that might mitigate this issue, as suggested in the literature. This observation suggests

that interactive tools like GAN Lab may help not only novices learn the basic concepts of

models, but also researchers and practitioners validate knowledge they learned from the

literature, which could help them build trust in the model’s training process.

Beginners need further guidance. We observed that participants less familiar with

GANs needed more guidance to help them fully enjoy the tool. Some were not sure about

what to try. One said “helpful to [provide descriptions] of what GANs training scheme

“works” and what “doesn’t work.”” Although we wanted users to self-discover relation-

ships between hyperparameters and results by actively playing with the tool, it might be

beneficial for us to also provide step-by-step exercises that would guide users’ experimen-

tation, similar to how TensorFlow Playground has been integrated into Google’s machine

learning course material on the web [150]. The course includes a series of exercises which

learners can follow. For example, in the chapter on learning rates, learners are asked to try

different learning rates and compare the results.

6.9.4 Discussion: Measuring Understanding Level

Our observational study is an early step in understanding how people may learn deep learn-

ing through interactive education tools. There remain many challenges in designing con-

trolled experiments to further such evaluation efforts. One important challenge is the choice

of dependent variables that measure a user’s level of the understanding in machine learning

models, similar to the use of task completion time for evaluating information exploration

tools. We briefly discuss this challenge here.

Studies conducted in computer science education research and those for evaluating al-

131

gorithm visualizations (in early 2000s) typically included pre- and post-study tests that

sought to measure participants’ conceptual or procedural knowledge (e.g., what is the algo-

rithm’s time complexity, what would be the next state after ‘17’ is inserted) [79]. However,

test questions suitable for simpler, deterministic algorithms may not generalize to modern

machine learning models that are often complex and probabilistic.

Thus, it would be a valuable effort to develop new ways to evaluate the educational

effectiveness of interactive tools for machine learning. Below we present a few ideas. First,

the computer science education literature has developed several methods, such as analyzing

mental models or measuring self-efficacy [133, 146], and we can draw inspirations from

them. Next, inspired by how visual analytics tools are evaluated [135], studies may be

designed to analyze if participants discovered new insights on machine learning models. In

addition, since the primary goal of ML learners is often in developing models for real data,

it could be helpful to design studies that assess if users are able to implement models with

high accuracy.

Lastly, we wanted to note that the level of understanding is not the only dependent vari-

able in evaluating educational tools. Another important factor to measure is the learners’

engagement level [134]. A high level of engagement (e.g., spending more time and efforts)

often indicates that users enjoy the tool and may likely learn more through the usage. To

investigate if GAN Lab users are actively engaged, in the next section, we describe our

analysis of anonymous usage log (e.g., buttons users clicked) from our deployed website.

6.10 Log Analysis of Deployed Tool

As mentioned earlier, we have deployed GAN Lab on the web at https://poloclub.

github.io/ganlab/. Users can play with GAN Lab using their browsers. This website

also contains a short introduction of GANs and a tutorial for the tool, which can be found

at the bottom of the tool. Since launched in September 2018, it has received significant

132

https://poloclub.github.io/ganlab/
https://poloclub.github.io/ganlab/

attention. Within the first year, more than 70,000 people from over 160 countries tried it

out (according to Google Analytics).

To investigate whether users of the deployed tool are engaged with GAN Lab by using a

variety of features it provides, we conducted a study on an analysis of users’ interaction log.

Analyses of users’ interaction histories have been widely used to evaluate visual analytics

tools [145, 53, 68]. Previous studies demonstrated that careful examinations of a user’s

interaction log can recover the user’s reasoning process [53]. Both automated techniques

and manual reviewing have been used [68]. We use a semi-automated approach that first

manually identifies common actions and automatically extracts the identified actions from

logs.

6.10.1 Data Collection

We have collected anonymous interaction logs from the deployed website. The logs mainly

include users’ clicks on HTML elements. We analyze five weeks of data collected from July

27 to August 30, 2019. We did not collect data from users located in European countries

determined based on their computers’ timezone information because of IRB-related issues,

and we also did not use data for users who opted out by clicking the corresponding link on

the website. The study has been approved by Georgia Tech’s IRB, and consent forms were

waived. The collected data are stored in databases on Google Cloud.

Summary statistics. The collected data contains 39,705 click events by 2,218 users

(17.9 clicks on average). Among 2218 users, 950 users clicked the elements on GAN Lab

at least 10 times, 330 users at least 30 times, and 59 users at least 100 times. To analyze the

behavior of users who had sufficiently interacted with the tool, we decided to analyze the

interaction logs for the 330 users who clicked the elements at least 30 times. An average

click count by these 330 users is 73.9.

133

Figure 6.15: Screenshot of a visualization tool of usage log, which we developed for ex-
ploring and identifying common actions. Each column represents a sequence for a single
user. The vertical axis represents the number of seconds since a user visited GAN Lab the
first time. Clicked HTML elements are shown as a small rectangle on the vertical bar for
each user’s sequence, with a label.

6.10.2 Exploring Data and Identifying Actions

There are 91 different HTML elements clicked by at least one of the all 2,218 users. The

elements range from the play button to several drop-down menus. For example, the most

popular element was the play button located on the top of the interface, which was clicked

at least one time by 327 users among the 330 users.

While performing data analysis at an element-level provides a basic information of us-

age statistics, we are interested in higher-level semantically meaningful behaviors of users.

Thus, we decided to identify a list of common actions, similar to Gotz and Zhou [68]’s

action tier, a richer level of semantics not found in lowest-level user interaction event (e.g.,

mouse click). We first went over a sample of user logs to identify common actions. To do

134

that, we developed a visualization tool that lists event sequences of users (as shown in Fig-

ure 6.15, similar to that used in the literature [53]. After the exploration of the sequences,

we identified the following 9 common actions:

1. Select a different pre-defined data distribution and train a model

2. Draw a distribution and train a model

3. Enable and inspect the generator’s manifold visualization

4. Train a model in a submodel-level (either only a discriminator or generator)

5. Enable and inspect the training process using the slow-motion mode

6. Change the size of submodels (e.g., layers, neurons)

7. Adjust hyperparameter(s) (e.g., learning rates) while a model is being trained

8. Change the number of training iterations for submodels

9. Read instructions located under the tool

For each of the 9 actions identified, we have written a script that finds matching patterns

from the logs. For example, to determine whether a user had adjusted hyperparameters

while a model was being trained, the script first selects users who clicked corresponding

HTML elements (e.g., item in the dropdown menu for learning rates) and checks if the

iteration count had been increased after the click event. We have iteratively refined the

script by incrementally adding constraints, to accurately reflect the identified actions. For

instance, to determine if a user had used the slow-motion mode, we first simply checked

if they clicked the button for the slow-motion mode, however, we soon realized that some

users clicked the same button right after their first click, which means they unlikely used

the feature, so we have revised the script to count users only when they used the feature at

least for 10 seconds.

135

Table 6.2: Numbers of users who performed each of the 9 common actions identified from
their click logs (among 330 users who clicked HTML elements at least 30 times)

Action # of Users

1. Select a different distribution 303
2. Draw a distribution 207
3. Train in a submodel-level 88
4. Use slow-motion 99
5. Change submodel size 126
6. Adjust hyperparameters during training 99
7. Adjust # of training iterations for submodels 56
8. Enable and inspect generator visualization 213
9. Read instructions 135

6.10.3 Results

Table 6.2 shows the number of users (among the 330 users) who performed each of the

9 actions. For example, the second row indicates that 207 users (63% out of 330) drew

at least one data distribution by themselves using the GAN Lab’s feature for drawing new

distributions and trained a GAN model for the distribution. The results demonstrate that

many of users were able to play with GAN Lab by using a variety of features, even though

all these users are anonymous users who visited our website voluntarily. For instance, a

large number of users trained GAN models by selecting multiple different data distributions

available on the interface (i.e., #1, #2). In addition, many users investigated the interplay

between the two submodels, the generator and discriminator, by adjusting a parameter for

one of them (e.g., train either a generator or discriminator in #3). Furthermore, many

visitors directly manipulated a range of hyperparameters (i.e., #5, #6, #7). In sum, we are

excited that users were able to enjoy a variety of features provided by GAN Lab, only with

short tutorials provided in the demo page.

136

6.11 Limitations and Future Work

Transferring user knowledge to higher dimensions. Our main decision to use 2D

datasets is to promote comprehension [156]. Through our tool, with 2D datasets, users can

gain important knowledge about the overall training process of GANs, and specific details,

such as how model components interact over time, how data flow through components, and

how losses are recomputed to iteratively update components. These important concepts and

knowledge are transferable to practical use cases of GANs where higher dimensional data

are used (e.g., images). However, it remains an open research problem whether certain be-

haviors (e.g., mode collapse) that users may observe when experimenting with 2D datasets

would be easily reproducible in higher dimensional datasets, where the larger number of

parameters would lead to more-complex interactions and less-predictable results. We plan

to conduct studies to develop deeper understanding of how and when such correspondence

or mismatch may occur.

Supporting image data. To extend GAN Lab to support image data, some modifica-

tions and optimizations will be needed. Training on image data is often time consuming. To

speed this up, pre-trained models may be provided to users so they can skip the earlier train-

ing steps. As for visual design, projection methods (e.g., t-SNE) may be used to replace

some views in GAN Lab to visualize the distribution of generated image samples [177].

Speed and scalability. GAN Lab leverages TensorFlow.js to accelerate GAN train-

ing for browser-based deployment. For models with many parameters, this can be time

consuming. In the short term, we believe rapid advances in JavaScript and hardware will

shorten this by a good amount. A longer-term challenge to overcome is browsers’ inability

to render visualization and perform computation at the same time (i.e., single-threaded).

Developers need to strike a good balance in planning and interleaving these actions, to

maximize model computation speed and visual responsiveness.

Supporting more GAN variants. While GAN Lab currently implements a few differ-

137

ent loss functions, other GAN variants exist [75]. Through open-sourcing GAN Lab, we

look forward to seeing the community to build on GAN Lab to implement more variants,

enabling users to interactively and visually compare them, easing the challenges in evalu-

ating GANs [66]. Some variants may require minor design changes of the interface (e.g.,

adding new nodes to overview graph).

In-depth evaluation of educational benefits. Longitudinal studies of GAN Lab will

help us better understand how it helps with learning of GANs. It would be particularly

valuable to investigate how different types of users (e.g., students, practitioners, and re-

searchers) would benefit from the tool.

138

CHAPTER 7

ETABLE: INTERACTIVE BROWSING AND QUERYING
OF RELATIONAL DATABASES

One of the first steps in machine learning is making sense of raw datasets. While many

different types of databases and storage systems exist, relational databases are still one of

the popular databases used in the enterprise. Researchers have devoted considerable atten-

tion to helping database users formulate queries, however, many users find it challenging to

specify queries that involve joining tables in relational databases. To help users construct

join queries for exploring relational databases, this chapter presents ETable, a novel presen-

tation data model that provides users with a presentation-level interactive view. This view

compactly presents one-to-many and many-to-many relationships within a single enriched

table by allowing a cell to contain a set of entity references. Users can directly interact

with this enriched table to incrementally construct complex queries and navigate databases

on a conceptual entity-relationship level. In a user study, participants performed a range of

database querying tasks faster with ETable than with a commercial graphical query builder.

7.1 Introduction

A considerable challenge for non-technical users of relational databases is constructing

join queries [81]. The join operation is required for even simple data lookup queries since

This chapter is adapted from work appeared at VLDB 2016 [89].

139

Papers filtered by Paper_keywords.keyword like '%user%' AND Conferences.acronym = 'sigmod'

id  title  year  page_start page_end
Conferences
acronym

Authors
names 

Papers (referencing)
titles 

Papers (referenced)
titles 

Paper_keywords
keywords 

2575 Making
database
systems usable

2007 13 24 SIGMOD

7

H. V. Jaga…, Adriane
Ch…, Aaron Elki…,
Magesh Jay…, Yunyao
Li 12

XRANK: Ran…, NaLIX:
an…, DaNaLIX: a…,
Assisted q…, Towards
a… 25

QueryViz:…,
Exploring…,
Efficient…, Homebrew
d…, The intera…

6

user inter…, human
fact…, general ,
usability , design

2628 Addressing
diverse user
prefer…

2007 641 652 SIGMOD 2Zhiyuan Ch…, Tao
Li

10

Adaptive w…, Enhanced
w…, Context‐se…,
Automatic…, Ordering
t… 13

Making dat…,
Supporting…, Skimmer:
r…, Diversity…,
Efficient… 5

informatio…, user
prefe…, data explo…,
human fact…,
algorithms

2701 Assisted
querying using
instan…

2007 1156 1158 SIGMOD
2

Arnab Nand…, H. V.
Jaga…

8

Predicting…, The
intera…, FreeQ: an…,
Efficient…, Location‐
a… 8

query, keyword,
interface,
autocomple…, user
inter…

1928 SkewTune:
mitigating
skew in m…

2012 25 36 SIGMOD

4

YongChul K…,
Magdalena…, Bill
Howe, Jerome A.… 3

A platform…, A
latency…, Highly‐Ava…

6

Minimal Ma…,
SpongeFile…, Shark:
SQL…, Fast data…,
Effective…

9

skew, parallel d…,
design, query proc…,
performanc…

1953 Towards a
unified
architecture…

2012 325 336 SIGMOD

4

Xixuan Fen…, Arun
Kumar, Benjamin R…,
Christophe… 4

Towards a…, MCDB: a
mo…, MauveDB: s…,
Large‐scal…

6

Sparkler:…, Learning
G…, A performa…,
Knowledge…, Shark:
SQL…

10

theory, user‐defin…,
measuremen…,
incrementa…,
design

2326 Efficiently
incorporating
user…

2009 87 100 SIGMOD

4

Xiaoyong C…, Ba‐Quy
Vuo…, AnHai Doan,
Jeffrey F.…

7

Provenance…, Pay‐as‐
you…, An Interac…, To
search…, Interactiv…

5

Building,…,
Automatica…,
Integratin…,
Provenance…, Deco:
decl…

8

informatio…, user
feedb…, systems ,
informatio…, design

1875 Interactive
data mining
with 3…

2013 1009 1012 SIGMOD

4

Elke Achte…, Hans‐
Peter…, Erich Schu…,
Arthur Zim…

3
Efficient…, Finding
Ge…, Computing…

3

SigniTrend…,
Subsamplin…,
Representa… 4

visualizat…, user
inter…, high‐dimen…,
parallel c…

2688 MashMaker:
mashups for
the mas…

2007 1116 1118 SIGMOD
2

Robert Enn…, Minos N.
G… 3

VizDeck: s…, VizDeck:
a…, Exploring… 3

human fact…, end‐
users , design

2317 Crowds,
clouds, and
algorithms…

2010 1259 1260 SIGMOD

5

Sihem Amer…, AnHai
Doan, Jon M. Kle…,
Nick Kouda…, Michael
J.…

2
Early onli…, Pay‐as‐
you… 2

CrowdDB: a…,
StreamRec:…

16

security,
experiment…,
economics,
user/machi…,
reliabilit…

2219 Load‐balanced
query
disseminat…

2010 471 482 SIGMOD

4

Emiran Cur…, Alin
Deuts…, K. K. Rama…,
Divesh Sri… 3

Speeding u…,
Distribute…, P‐ring:
an…

1Privacy pr…

12

online com…,
publisher…, load
balan…, design, user
censo…

2675 ConEx: a 2007 1076 1078 SIGMOD Chaitanya…, Maksims Toward a P…, 1ParaTimer:… graphical…, design ,

HISTORY

1. Open 'Papers' table

2. Filter 'Papers' table by
(Paper_keywords like '%user%')

3. Sort table by # of Papers
(referenced)

4. Filter 'Papers' table by
(Paper_keywords like '%user%' &
Conferences = 'sigmod')

5. Sort table by # of
Paper_keywords

6. Sort table by # of Papers
(referenced)

ETABLE BUILDER Choose a table

Figure 7.1: ETable integrates multiple relations into a single enriched table that helps users
browse databases and interactively specify operators for building complex queries. This
example presents a list of SIGMOD papers containing the keyword “user” from an aca-
demic paper database collected from DBLP and the ACM Digital Library. Each column
represents either a base attribute of a paper or a set of relevant entities obtained from other
tables (e.g., Conferences, Authors). If a relational database were used to obtain the
same information, 9 tables would need to be joined, and the results produced can be hard
to interpret because of many duplicated cells.

relational databases store information in multiple separate normalized tables. Although

database normalization provides many benefits for managing data (e.g., avoiding update

anomalies), it significantly decreases the usability of database systems by forcing users to

write many join queries to explore databases.

Constructing join queries is difficult for several reasons. The main reason is that users

find it difficult to determine which relations to join among many relations. Understanding

the role of each relation that represents a relationship of interest and finding the right join

attributes are not trivial tasks, even when a schema diagram is given. To tackle this chal-

lenge, users often write complex queries by starting with a simpler query and iteratively

adding operators [130]. Although this iterative strategy is helpful, it is still challenging

because the format of join query results is hard to interpret. For example, consider a query

that joins two relations in many-to-many relationships (e.g., Papers and Authors in

Figure 7.3). A result of this query produces a large number of duplications (e.g., the title of

140

each paper repeated as many times as the number of its authors). People represent the same

information differently when they use a spreadsheet. For instance, they might create a cell

containing multiple values separated by commas. Relational databases cannot represent

data in this way because the relational model (as implemented in most relational DBMSs)

requires that data be at least in the first normal form.

The usability challenge of writing complex queries has been studied by many researchers.

Although visual query builders help people formulate SQL queries [33], they separate

query construction and result presentation parts [81], introducing a usability gap between

users’ actions and their results [160, 130]. To overcome this limitation, researchers ar-

gue that database interfaces need to adopt the direct manipulation principle [160], a well-

known concept in the human-computer interaction (HCI) area [81, 116]. It enables users

to iteratively specify operators by directly interacting with result instances using simple

interactions [116]. Researchers also argue that join query results should be represented in

an easier-to-understand format that improves the interpretation of query results. Jagadish

et al. [82] proposed the notion of the presentation data model, which they defined as a full-

fledged layer above the logical and physical schema. This presentation layer allows users

to better understand the query results without requiring full awareness of the schema. All

this research strongly suggests the need for developing database interfaces that are usable,

interactive, and interpretable.

We present ETable, a novel presentation data model with which users can interactively

browse and navigate databases on an entity-relationship level without writing SQL. ETable

presents a query result as an enriched table in which each cell can contain a set of entity

references. By deliberately relaxing the first normal form, we compactly represent one-

to-many and many-to-many relationships within a single table — a novel capability that

enables users to more easily browse and interpret query results consisting of multiple re-

lations. Figure 7.1 illustrates how ETable effectively presents a list of SIGMOD papers

containing the keyword “user” from an academic paper database collected from DBLP and

141

the ACM Digital Library (see Figure 7.3 for schema). Each row in ETable shows the base

attributes and relevant entities of a paper, such as its authors and cited papers. If a relational

database were used to obtain the same information, 9 tables would need to be joined, and

the results produced would be hard to interpret (e.g., many duplicated cells).

To discover which relevant entities should be shown for each row, ETable uses a novel

graph-based model called the typed graph model (TGM), which frees users from concern-

ing themselves with the complexity of the logical schema; users may instead focus on

exploring and understanding the dataset at the conceptual (or entity-relationship) level.

The typed graph model stores relational data as graphs in which nodes represent entities

(e.g., authors, papers) and edges represent relationships (e.g., those that relate authors to

papers). This transformation enables ETable to retrieve other related entities through sim-

ple graph operations. For example, a given paper’s authors, stored as direct neighbors, can

be retrieved through a quick neighbor-lookup.

As the construction of complex queries and the exploration of data are inherently iter-

ative processes, database exploration tools should provide easy-to-use operations to help

users incrementally revise queries [36, 130, 116]. ETable’s direct manipulation interface

enables users to directly work with and modify an existing enriched table to update its as-

sociated queries. For example, imagine a user, Jane, who would like to further explore the

result in Figure 7.1. To see the detailed information about the authors of a particular paper,

she clicks on its “author count” button (Figure 7.2-b). This simple interaction of tapping

the button is translated into a series of primitive operators behind the scene, such as Se-

lect, as in selecting the row associated with a paper; and Add, as in adding and joining the

Authors table with the Papers table. With a few rounds of similar interactions, Jane

can incrementally build complex queries.

ETable’s novel ideas work together to address an important, often overlooked problem

in databases. The seminal vision paper by Jagadish et al. [81] introduced the notion of

the presentation data model and argued the importance of direct manipulation interface.

142

However, designing an easy-to-use system that meets these requirements is challenging.

ETable is one of the first instantiations of this important idea, filling a critical research

gap, by effectively integrating HCI principles to greatly improve database usability. To

enable the creation of such a usable tool, ETable tightly integrates: (1) a novel hybrid data

model representation, which advances over the relational and nested-relational models, to

naturally represent entities and relationships; and (2) a novel set of interactions that closely

work with the representation to enable users to specify expressive queries through direct

manipulation. With ETable’s user interface, non-experts can easily and naturally explore

databases without writing SQL, while ETable internally performs queries under the hood.

Through ETable, we contribute:

• A novel presentation data model that presents a query result as an enriched table

for users to easily browse and explore relational databases (Section 7.3, 7.5);

• A graph-based model, called typed graph model (TGM) that provides an abstrac-

tion of relational databases, for users to explore data in ETable at a conceptual level

(Section 7.4);

• A set of user-level actions, operations that users can directly apply to an enriched

table to incrementally construct complex queries and navigate databases (Section

7.6.1);

• The usable interface of ETable that outperforms a commercial graphical query builder

in a user study, in both speed and subjective ratings across a range of database query-

ing tasks (Section 7.6, 7.7).

7.2 Related Work

Database Usability and Query Specifications. Since Query-by-Example (QBE) was

developed in 1970s [193], database researchers have studied fairly extensively the usability

143

aspect of database systems [81, 32, 4, 80]. Usability is important, especially because not

all database users have expertise in writing complex queries; many non-technical users find

it challenging to write even very simple join queries [81, 1]. Many existing approaches are

aimed at assisting users with formulating queries. One representative method is the visual

query builder, which enables users to visually manipulate schema elements on a graphi-

cal interface [33]. However, most visual querying systems require that users have precise

knowledge of a schema, which makes it difficult for non-experts to use. This limitation can

be relieved in keyword search systems, studied extensively in the last decade [78, 25, 6, 41],

or natural language interfaces [109]. However, most of existing approaches [83, 59] sepa-

rate queries and results so that users cannot directly refine query results, which decreases

the usability of the systems. Nandi and Jagadish [130] argued that users’ querying process

is often iterative, so database systems should guide users toward interactively formulating

and refining queries.

Direct Manipulation and Iterative Querying. Several database researchers argued

that the usability of database querying systems can improve by adopting the direct ma-

nipulation paradigm [160], a well-established design principle in the HCI and informa-

tion visualization areas. Acknowledging that users’ needs are often ambiguous rather than

precisely specifiable, researchers have developed many tools that enable users to inter-

actively browse and explore databases [80, 29, 161]. Although they are not specifically

designed for relational databases, a number of interactive visualization systems for entity-

relationship data have been developed by information visualization researchers [92, 56, 51,

121]. For example, NetLens [92] visualizes relationships between two selected entity types

in many-to-many relationships, and GraphTrail [56] visually summarizes each entity type

and enables users to switch between entities. Although these visualization systems provide

an overview of datasets, they are not suited for examining database instances along with

attributes. In exploring and analyzing instance-level information, tabular interfaces, includ-

ing spreadsheets, are better suited and often preferred by database users [60, 172, 116, 37,

144

65]. Tyszkiewicz [172] argued that spreadsheets can play a role as a database engine by

using functions and macros. Liu and Jagadish [116] formally defined operators that interac-

tively perform grouping operations within a spreadsheet. However, since the rigid tabular

structure does not effectively present many-to-many relationships, the spreadsheet suffers

from the same problems that relational databases have (i.e., a large number of duplications).

To overcome this limitation, Jagadish et al. [82] proposed using a presentation view layer

on top of underlying databases, which is the notion of the presentation data model, defined

as a full-fledged layer on top of the logical and physical models. The challenge is to design

presentation data models that help people easily understand join query results and interact

with them.

Data Models for Effective Presentation. To develop an intuitive structure for presen-

tation data models, we review a number of data models that conceptualize the mini-world

represented in databases. One such example is the nested relational model, studied in the

1980s, which allows each cell to contain another table that presents one-to-many relation-

ships in a single table [155, 151]. The nested model has been used in several studies for

designing database interfaces. Bakke et al. [19] designed a direct manipulation interface

for nested-relational databases, and DataPlay [5] also used the nested model for presenting

query results. However, the model suffers from scalability issues because the sizes of the

nested tables often become huge when an inner table contains a large number of associated

rows or columns [20]. One way to tackle this problem is to replace the inner table with a set

of pointers. For example, the object-relational model lets attributes be user-defined types

that include pointers [166]. We adapt this idea by introducing an entity reference which

compactly represents related entities. Another class of the data models that effectively con-

ceptualize the real-world is the graph data model [13, 70, 34, 169]. It represents entities as

nodes and relationships as edges based on the entity-relationship model [40, 23]. Catarci et

al., [35] used a graph-style translation layer for their visual querying system. To provide

users with an easy-to-understand view at an entity-relationship level, we also maintain a

145

graph-style model, transformed from relational databases, under the presentation view.

7.3 Introducing ETable

Before we describe the technical details of the proposed data models, we introduce ETable

by describing what users see and how they can interact with it.

Representation. Figure 7.1 illustrates an enriched table that we call Etable. As men-

tioned earlier, it presents a list of SIGMOD papers containing the keyword “user” from our

collected database (see Figure 7.3 for schema). Each row of Etable represents a single en-

tity of the selected entity type (i.e., Papers); its column represents either a base attribute

of the entity (e.g., year) or a set of relevant entities (e.g., authors, keywords). This repre-

sentation is formed by pivoting a query result of a join of multiple tables (e.g., Papers,

Paper keywords, Authors) to a user-selected entity type (e.g., Papers). One ad-

vantage of this representation is that it can simultaneously present all relevant information

about an entity in a single row (e.g., authors, keywords, citations). The relational model

cannot represent all of this information in a single relation without duplications because

every attribute value must be atomic. For instance, when the Papers table is joined with

the Authors table, the paper information is repeated as many times as the number of au-

thors, which prevents users from quickly interpreting the results. We integrate information

spread across multiple tables into a single table by allowing each cell to contain a set of

references to other entities.

Interactions. Users can interact with Etable to explore further information. For in-

stance, to examine further information about the authors of the papers in Figure 7.1, users

can create a new Etable that lists authors in several ways, as depicted in Figure 7.2: (1) If

users are interested in one of the authors (e.g., Arnab Nandi), they can click on his name

to create a new Etable consisting of one row that presents its attributes; (2) if users want to

list the complete set of authors (e.g., all seven authors of the paper titled “Making database

146

Results for each of the three actions:

Click count

a

b

c

Click

Pivot button

b c
Click

reference

a

Figure 7.2: Users can iteratively specify user-level actions by interacting with ETable. In
this example, users can examine further information about paper authors in three ways: (a)
clicking on an author’s name; (b) clicking a paper’s author count; (c) clicking on the pivot
button.

systems usable”), they can click on the author count in the right corner of the cell (i.e., 7);

and (3) if users want to list and sort the entities across the entire rows in a column (e.g.,

147

Paper_Authors

paper_id author_id order

Authors

id name institution_id

Papers

id conference_id title year page_start page_end

Paper_Keywords

paper_id keyword

Paper_References

paper_id ref_paper_id

Foreign key

Primary key

Conferences

id short title

Institutions

id name country

id

Figure 7.3: The relational schema of the academic dataset used in this work, 7 relations in
total.

Who wrote the most papers about “user” in SIGMOD?), they can click on the pivot button

on the column menu, which groups and sorts the authors based on the number of papers

they have written. By gradually applying these operations, users can incrementally make

sense of data and build complex queries.

7.4 Typed Graph Model

In this section, we define a typed graph model (TGM) which enables users to explore rela-

tional databases on a conceptual entity-relationship level without having to know a logical

schema. A relational schema and instances are translated into a database schema graph

and database instance graph as a preprocessing step, and all operations specified by users

on the ETable interface are executed over these graphs, not relational databases.

We represent entities and relationships as a graph with types and attributes. Each entity

forms a node, and relationships among the entities become edges. A typed graph database

(TGDB) consists of a TGDB schema graph, GS , and a TGDB instance graph, GI .

Definition 1. Schema Graph. A TGDB schema graph GS is a tuple (T ,P), where T

148

Institutions Institutions: country

PapersConferences

Authors

Papers: year
Paper_keywords:

keyword

Figure 7.4: TGDB schema graph constructed from the relational schema in Figure 7.3.
Each rectangle represents a node type, and each edge is an edge type.

represents a set of node types (or entity types1), and P ⊆ T × T represents a set of edge

types (or relationship types). Each node type τi ∈ T is a tuple (αi,Ai, βi), where αi

denotes the name of a node type, Ai is a set of single-valued attributes, and βi is a label

attribute chosen from one of the attributes and used to represent node instances of this type.

Each edge type ρ ∈ P also has a name and a set of attributes. We denote the source and

target node types of ρ as source(ρ) and target(ρ), respectively. All the edge types, except

self loops, are bidirectional.

Definition 2. Instance Graph. A TGDB instance graph GI , is a tuple (V,E), where V

represents a set of nodes (or entities) and E represents a set of edges (or relationships)

between two nodes. Every instance graph GI has a corresponding schema graph GS , and

the instance graph has a node type mapping function typeτ : V → T and an edge type

mapping function typeρ : E → P that partition nodes V into V1, ..., VnT and edges E into

E1, ..., EnP . Each node v ∈ V consists of a set of attribute values v[Aij] for the attributes

of the corresponding node type and has a label defined as label(v) = v[βi]. Each edge

e ∈ E consists of a set of attribute values e[Aij] for its type. We denote the source and

target nodes of e as source(e) and target(e), respectively.

1We use the words “node” and “entity” interchangeably. A node is used more formally; an entity is used
more for presentation to users.

149

Papers

Institutions

Paper_Keywords:

keyword

Authors

Papers: year

Institutions: country

Conferences

……

…

…

…

… …

2014

2007

2011

H. V. Jagadish

Arnab Nandi

Jeff Heer S. Korea

KDD

CHI

Univ. of Washington

Univ. of Michigan

Seoul National Univ.

data cleaning

usability

user interface

USA

SIGMOD Making database system...

Schema-free SQL

Wrangler: interactive vis...

India

Figure 7.5: A part of the TGDB instance graph constructed from the academic dataset that
follows the schema in Figure 7.4. Node types shown in blue italic font.

The typed graph model, similar to many graph data models [13, 70, 169], is much

more effective for conveying a conceptual understanding of the mini-world represented in

databases than the relational model. As it abstracts relational databases, users can ignore the

logical and physical representation of data. Users can also easily understand the structure

of data, since nodes always represent entities and edges represent relationships, Unlike

TGM, the relational model is a mixture of entities, relationships, and multivalued attributes.

Although some existing graph models are more expressive for representing a variety of

relationships (e.g., hierarchical parent-child relationships among entities), we simply use

nodes and edges to focus on making the semantics of the underlying relations more explicit

by mapping to entities and relationships that they represent in the real world.

Relational databases can be translated into the TGDB schema and instance graphs in

a near-automatic process. We adapt the reverse engineering literature pertaining to trans-

lating relational databases into several graph-style models [23, 42, 158]. Our procedure

includes an analysis of a relational schema based on primary keys, foreign keys, and cardi-

nalities for classifying tables into several categories, and a series of actions that create the

150

Table 7.1: Categories of node and edge types based on how they are translated from rela-
tional schema

Form Source Determining factor for mapping from
a relational table

Node
types

Entity tables Relation with a single-attribute primary key

Multi-valued attributes
Relation with two attributes; one of them is
a foreign key of an entity relation

Single-valued categorical attributes Attribute of low cardinality

Edge
types

One-to-many relationships Foreign key between two entity relations

Many-to-many relationships
Relation with a composite primary key;
both are foreign keys of entity relations

Multi-valued attributes From an entity table to a multi-valued attr.

Single-valued categorical attributes From an entity table to a categorical attr.

schema graph. Table 7.1 summarizes the categories of node and edge types based on how

they are determined from relational schema. Figures 7.4 and 7.5 illustrate a schema graph

and a part of the instance graph constructed from an academic publication database whose

schema is shown in Figure 7.3.

7.5 ETable Presentation Data Model

We present our ETable presentation data model for usable exploration of entities and rela-

tionships in databases.

7.5.1 Enriched Table

A query result in the ETable model is presented as an enriched table, which we also call

ETable. An ETable R has a set of columns A and consists of a set of rows r ∈ R.

The columns are categorized into two types: single-attribute columns and entity-reference

columns. The value of the single-attribute column r[A] is atomic as it is in the relational

151

model. The value of the entity-reference column r[A] contains a single or a set of entity

references. The entity reference refers to another node in the database instance graph. Un-

like a foreign key in the relational model, each entity reference is shown as a clickable

label, similar to a hyperlink on a webpage. Just like how a hyperlink’s hypertext describes

the webpage that the link points to (instead of its URL), for example, ETable represents an

author’s entity reference by the author name (instead of the author ID).

The entity-reference columns present rich information spread across multiple relations

within a single enriched table. While a foreign key attribute in the relational model contains

only a single reference for a many-to-one relationship because of the first normal form,

an entity-reference column can represent one-to-many relationships, many-to-many rela-

tionships, or multivalued attributes in a single column. Furthermore, the entity-reference

column has advantages over the nested relational model which requires much screen space

as it squeezes another table into cells, leading to inefficient browsing. Unlike the nested

model, ETable presents clickable labels that compactly show information and allow users

to further explore relevant information.

7.5.2 ETable Specification

An ETable can be specified by selecting specific elements of the TGDB database schema

and instance graphs introduced in the previous section.

Definition 3. ETable Query Specification. An ETable R is specified by a query pattern

Q, which is a tuple (τa, T, P, C).

1. Primary node type τa: It is one of the node types in the schema graph. Each row of

ETable will represent a single node instance of the primary node type.

2. Participating node types T : It is a set of node types chosen from the node types in

the schema graph (i.e., T = {t1, ..., tnT
},∀ti ∈ T). It must contain the primary node

type τa (i.e., τa ∈ T). It determines the scope of data instances and is similar to a

152

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

Figure 7.6: An example query pattern in a diagrammatic notation. It represents a query
that finds a list of researchers who have published papers at SIGMOD after 2005 and are
currently working at institutions in Korea.

set of relations in SQL FROM clauses. A node type in the schema graph can exist

multiple times in the participating node types, like a relational algebra expression can

contain the same relation multiple times.

3. Participating edge types P : It is a set of edge types selected from the schema graph

(i.e., P = {p1, ..., pnP
},∀pi ∈ P). It connects the participating nodes types, thus all

the source and target nodes of these edges should exist in the participating node types

(i.e., source(pi) ∈ T ∧ target(pi) ∈ T,∀pi ∈ P).

4. Selection conditions for node types C: It is a set of selection conditions C =

(C1, ..., CnT
) applied to each of the participating node types, i.e.,Ci applies to ti ∈ T .

A query pattern can be represented as an acyclic graph where one of the nodes is marked

as a primary node type and any node can have selection conditions. For example, the

query pattern in Figure 7.6 represents a query that produces a list of researchers who have

published papers at SIGMOD after 2005 and are currently working at institutions in Korea.

7.5.3 Incremental Query Building with Primitive Operators

In ETable, a query pattern is constructed and updated by primitive operators. Each op-

erator builds on an existing ETable query to generate a new, updated ETable query. This

subsection describes these operators in detail. Then Section 7.6.1 will describe how users’

actions performed on the ETable user interface will invoke these operators. Formally, given

153

an ETable specification Q(τa, T, P, C), each of the following operator creates a new spec-

ification Q′(τ ′a, T
′, P ′, C ′), except the Initiate operator which creates a new ETable from

scratch.

1. Initiation. A new ETable can be created by selecting one of the node types τk in the

schema graph. Its result lists the corresponding nodes.

Initiate(τk) = Q′

where τ ′a = τk, T
′ = {τk}, P ′ = {}, and C = {}.

2. Selection. ETable rows can be filtered based on their columns, similar to the selection

operator in the relational model. Applying a selection condition Ck to the primary

node type τa filters the rows of the current ETable.

Select(Ck, Q) = Q′

where τ ′a = τa, T
′ = T, P ′ = P, and C ′a = Ck.

3. Adding a node type. Another node type can be added to a query pattern to examine

how it is related to the current primary node type. It corresponds to adding a join

operator in the relational model. Selecting one of the node types that are linked to

the primary node type τa by an edge type ρk (i.e., source(ρk) = τa), adds it to the

participating node types in the current query Q.

Add(ρk, Q) = Q′

where τ ′a = target(ρk), T
′ = T ∪ {target(ρk)},

P ′ = P ∪ {ρk}, and C ′ = C ∪ {}.

4. Shifting focus to another participating node type. The primary node type τa can

be changed to one of the other participating node types τk. It can be thought of as

154

Primitive Operators applied Corresponding User-Level Actions

Clicking

”Conferences” table

in default view lists

all conferences

Clicking paper count at the end of the row

for SIGMOD lists all SIGMOD papers

Clicking pivot button groups authors

and ranks them by paper count;

The result shown at bottom right

(Divesh Srivastava ranked first).

Previous result preserved at top right

to help users interpret transformation.

Opening the filter window and specifying a condition

filters papers down to those published after 2005

Open(“Conferences”)

Filter(“year>2005”)

Pivot(“Authors”)

Seeall(“SIGMOD”, “Papers”)

Initiate(“Conferences”)

Conferences

P1

Select(“acronym = ‘SIGMOD”)

Conferences
acronym = ‘SIGMOD’

P2

Add(“Papers”)

PapersConferences

acronym = ‘SIGMOD’

P3

Select(“year > 2005”)

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P4

Add(“Authors”)

AuthorsPapersConferences

acronym = ‘SIGMOD’ year > 2005

P5

Add(“Institutions”)

Authors InstitutionsPapersConferences

acronym = ‘SIGMOD’ year > 2005

P6

Select(“country like ‘%Korea%’”)

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P7

Shift(“Authors”)

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P8

U1

U2

U3

U4

Figure 7.7: An example of incrementally building a complex query: find a list of re-
searchers who have published papers at SIGMOD after 2005 and are currently working
at institutions in Korea. Left: constructing the query through a series of ETable primitive
operators. Right: corresponding user actions in the interface that invoke the operators (Sec-
tion 7.6.1 describes the user-level actions in detail). User actions for the operators P6-P8,
similar to the others shown in the figure, are omitted for brevity.

representing the current join result from a different angle.

Shift(τk, Q) = Q′

where τ ′a = τk, T
′ = T, P ′ = P, and C ′ = C.

The above primitive operators enable us to build any complex queries by incrementally

specifying the operators one-by-one. Figure 7.7 (left) illustrates the query construction pro-

cess consisting of 8 operators. A new query pattern can be created with Initiate; Selection

155

Conf Paper

1 1

1 4

1 5

1 8

Conf Paper Autho Insti

1 1 1 3

1 4 1 3

1 4 4 3

1 4 11 8

1 5 1 3

1 8 1 3

1 8 4 3

id name Insti Papers Conf

1 Bob 3 1,4,5,8 1

4 Mark 3 4,8 1

11 Chad 8 4 1

Conf

1

Paper Autho

1 1

1 2

4 1

4 4

4 11

5 1

8 1

8 4

Paper

1

3

4

5

7

8

11

..

Autho

1

2

3

4

5

6

7

..

Insti

3

4

8

9

14

20

21

..

Autho Insti

1 3

2 1

3 3

4 3

5 7

6 7

7 2

.. ..

𝜎𝑎𝑐𝑟𝑜𝑛𝑦𝑚=′𝑆𝐼𝐺𝑀𝑂𝐷′(𝑅𝐶𝑜𝑛𝑓) ∗𝐶𝑜𝑛𝑓−𝑃𝑎𝑝𝑒𝑟𝑠 𝜎𝑦𝑒𝑎𝑟>2005(𝑅𝑃𝑎𝑝𝑒𝑟𝑠) ∗𝑃𝑎𝑝𝑒𝑟𝑠−𝐴𝑢𝑡ℎ𝑜𝑟𝑠 𝑅𝐴𝑢𝑡ℎ𝑜𝑟𝑠 ∗𝐴𝑢𝑡ℎ𝑜𝑟𝑠−𝐼𝑛𝑠𝑡 𝜎𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑙𝑖𝑘𝑒 ′%𝐾𝑜𝑟𝑒𝑎%′(𝑅𝐼𝑛𝑠𝑡)

Instance matching Format transformation

Authors

Intermediate graph relation Final result in ETable format

Figure 7.8: ETable query execution process consists of two steps: (1) the instance matching
step which extracts matched instances from the instance graph and (2) the format transfor-
mation step which transforms the instances into the ETable format.

conditions can be added with Select, just like writing expressions in WHERE clauses in

SQL; and node types can be added with Add, just like adding relations to FROM clauses

and setting one of them as a GROUP BY attribute. Also, the primary node type can be

changed with Shift, similar to changing the GROUP BY attribute. A sequence of these

operators specified constitutes a query pattern in the ETable model. These operators can

be invoked by users on the user interface with user-level actions, which we will describe

details in Section 7.6.1. The right side of Figure 7.7 shows how users can specify the same

query through the user interface.

7.5.4 Query Execution

A query pattern is executed to produce a result in the ETable format. The execution pro-

cess is divided into two steps: instance matching and format transformation. The first

step extracts matched node instances from the TGDB instance graph, and the second step

transforms a result from the first step into the ETable format.

Instance Matching

The instance matching process finds a set of matched instances for a given query pattern.

Formally, it returns a graph relation RG, which consists of a set of tuples, each of which

156

contains a list of node instances in the database instance graph. The graph relation is gen-

erated with an instance matching function m(Q), which consists of a series of operations.

The operations constitute primitives which make up a graph relation algebra.

A graph relation RG, similar to a relation in the relational model, consists of a set of

tuples with a set of attributes. The schema of the graph relation is defined as a set of node

types A = (A1, ..., An) where Ai ∈ T . In other words, each attribute Ai corresponds to

a node type. The node type τj determines the domain of the attribute (i.e., domaini =

{v|v ∈ Vj}). A base graph relation is defined as a graph relation with a single attribute. In

other words, each node type τ1, ..., τn produces a base graph relation RG
1 , ..., R

G
n . A non-

base graph relation can be created by applying the following graph relation operators to

the base graph relations.

1. Selection. It filters tuples of a graph relation R using a selection condition Ci appli-

cable to one of the node types Ai.

σCi
(RG) = {r|r ∈ RG ∧ r[Ai] satisfies Ci}.

2. Join. It joins two graph relationsR1 andR2 using edge types ρk. The attributes of the

created graph relation is a concatenation of the attributes of the two graph relations.

RG
1 ∗ρk RG

2 = {(r1, r2)|r1 ∈ RG
1 ∧ r2 ∈ RG

2

∧ source(ρk) ∈ A1 ∧ target(ρk) ∈ A2}.

We use a symbol, ∗, to differentiate it from the relational correspondence, ./, and not

to be confused with natural join.

3. Projection. It removes all attributes of the graph relations except the given attribute.

Duplicated rows are eliminated.

ΠAi
(RG) = {r[Ai]|r ∈ RG}.

These operators enable us to define an instance matching function m(Q). In fact, this

157

function only requires the Selection and Join operators: the Projection operator will be

used later in the format transformation step.

Definition 4. Instance Matching. Given a ETable query patternQ(τa, T, P, C), a matching

function m returns a graph relation RG containing node instances in the instance graph GI .

m(Q) = σC1(R
G
1) ∗p1 σC2(R

G
2) ∗p2 ... ∗pn−1 σCn(RG

n),

where RG
i is a base graph relation obtained from a node type ti ∈ T , i.e., RG

i = {v|v ∈

V ∧ type(v) = ti}, Ci ∈ C is a selection condition for Ri, and pi ∈ P is one of the

edge types that joins graph relations on both sides, i.e., pi = {p|p ∈ P ∧ source(p) ∈

{t1, ...ti} ∧ target(p) ∈ {ti+1, ...tn}}.

Figure 7.8 (left) illustrates the instance matching process. It returns a graph relation,

which is an intermediate format to be transformed into the ETable format.

Format Transformation

A graph relation obtained from the instance matching function is transformed into the

ETable format. We describe how rows and columns of ETable are determined from it.

The rows of ETable consist of nodes of the primary node type, filtered by all selection

conditions in the query pattern. They are extracted from the instance matching result:

R = {v|v ∈ Πτa(m(Q(τa, T, P, C)))}.

Given the result of the instance matching function, all attributes except the attribute repre-

senting the primary node type are discarded, and then, each of distinct node in that column

becomes a row.

ETable has three types of columns to present rich information for each row. In addition

to the attributes of the primary node types, which we call base attributes Ab, we introduce

two other types of columns for presenting a set of entity references: participating node

columns, At, and neighbor node columns, Ah.

158

1. List of base attributesAb: It is a full set of the attributes A of the primary node type

τa. The value of the column Aj ∈ Ab would be a single value:

r[Aj] = v[Aj].

2. List of participating node types At: It is a set of all the node types T in the query

pattern, except the primary node type τa, i.e., At = {τ |τ ∈ T ∧ τ 6= τa}. The value

of the column Aj ∈ At would be a set of entity references:

r[Aj] ={u|u ∈ V ∧ Aj = type(u)

∧ Πtype(u)στa=r(m(Q))}.

3. List of neighbor node types Ah: It is a set of all the neighboring node types of

the primary node type τa in the schema graph regardless of the query pattern, i.e.,

Ah = {(ρ, τ)|τ ∈ T ∧ ρ ∈ P ∧ source(ρ) = τa ∧ target(ρ) = τ}. The value of the

column Aj ∈ Ah would be a set of nodes references:

r[Aj] ={u|u ∈ V ∧ e ∈ E ∧ Aj = (type(e), type(u))

∧ u = target(e) ∧ r = source(e)}.

Figure 7.8 (right) illustrates the results produced from the format transformation process.

The first two columns are base attributes, and the rest of the columns are participating node

columns. We omit neighbor node columns as some of these columns are the same as the

participating node columns.

By transforming the graph relation into the ETable format, we compactly present join

query results without duplications. Each row of ETable is uniquely determined by a node of

a primary node type. The participating node columns show all the other entity types in the

query pattern with respect to the primary node type. This transformation process is similar

to setting one of the relations as a GROUP BY attribute in SQL, but while GROUP BY

aggregates the corresponding instances into a single value (i.e., COUNT, AVG), ETable

159

1
2 3

4

Figure 7.9: The ETable interface consists of (1) the default table list for initiating a query,
(2) the main view presenting query results, (3) the schema view showing a query pattern,
and (4) the history view listing operators specified by users. Users can build queries and
explore databases by directly interacting with the interface.

presents a list of the corresponding instances as entity references. The neighbor node

columns are also useful for describing the rows of the ETable, although information in

these columns is not obtained from the graph relation. These columns enable users to

browse one-to-many or many-to-many relationships. Moreover, they provide users with a

preview of possible new join operations as it presents all the join candidates. For instance,

a ETable in Figure 7.1 consists of many neighbor node columns (e.g., Authors) that helps

users browse rich information about each paper.

7.6 Interface and System Design

ETable’s interface (Figure 7.9) consists of four components: (1) the default table list, (2)

the main view, (3) the schema view, and (4) the history view. The default table list presents

a list of entity types in the schema graph. Users can pick one from the list to initiate a query.

The main view presents an ETable executed based on a query pattern which is graphically

shown over the schema view. Users can directly interact with the main view to update the

160

current query. The list of actions specified by users is presented on the history view, which

allows users to revert to a previous state.

7.6.1 User-Level Actions

Users can update the current query pattern by directly interacting with ETable via user-

level actions. As shown in Figure 7.7, these actions in turn invoke their corresponding

primitive operators (discussed in Section 7.5.3).

1. Open a new table. Users can open a new table by clicking a node type τk on the

default table list. The action invokes the Initiate(τk) operator (Fig 7.7: action U1).

Open(τk) = Initiate(τk).

2. Filter. Users can filter the rows of the current ETable by inducing selection condi-

tions via a popup window at the column header (Fig 7.7: action U3). Besides the

base attributes, users can also filter rows by the labels of the neighbor nodes columns

(e.g., authors’ names), which is translated into subqueries. We currently provide only

a conjunction of predicates, but it is straightforward to provide disjunctions and more

operations. The action invokes the Select operator.

Filter(C,R) = Select(C,R).

3. Pivot. Users can change the primary node type by clicking the pivot button on the

context menu for neighbor or participating node columns. It calls the Add operator

if the column is the neighbor node type (Fig 7.7: action U4); it performs the Shift

operator if it is the participating node type.

Pivot(ρl, R) = Add(ρl, R),

or Pivot(τk, R) = Shift(τk, R).

4. See a particular node. When users are interested in one of the entity references, they

161

can click it to create a new ETable consisting of a single row presenting the clicked

entity. Unlike the above actions, it invokes two primitive operators: it initiates a new

ETable, and then perform the Select operator to show the single node. For the clicked

node vk:

Single(vk, R) =Select(C, type(vk), Initiate(type(vk)),

where C = {u|u = vk}.

5. See all related nodes. When users are interested in a full list of entity references,

they can click a number (i.e., entity reference count) in the right corner of a cell

(Fig 7.7: action U2). It also encapsulates two primitive operators. The operators

invoked are different depending on whether the selected column is neighbor or par-

ticipating node column. For the neighboring node column ρl of vk:

Seeallh(vk, ρl, R) =Add(ρl, Select(C, type(vk), R)),

where C = {u|u = vk},

and for the participating node column tl:

Seeallt(vk, tl, R) =Shift(tl, Select(C, type(vk), R)), R)),

where C = {u|u = vk}}.

ETable supports additional actions that help with database exploration, such as: (1) Sort

rows based on the values in a column; (2) Hide/show columns to reduce visual complexity

in the interface; and (3) Revert to previous queries via the left history panel.

7.6.2 Architecture

ETable system uses a three-tier architecture, consisting of (1) an interactive user interface

front-end that can run in any modern web browsers, written in HTML, JavaScript, and

162

D3.js2; (2) a Python-based application server; and (3) a PostgreSQL database backend.

The PostgreSQL database stores TGDB schema and instance graphs in four relational ta-

bles: nodes, edges, node types, and edge types. A query pattern for ETable is

translated into SQL queries that operate on the PostgreSQL database. To efficiently per-

form queries, we partition a long SQL query into multiple queries consisting of a fewer

number of relations to be joined (i.e., each for a single entity-reference column) and merge

them.

7.7 Evaluation: User Study

To evaluate the usability of ETable, we conducted a user study that tests whether users

can construct queries quickly and accurately. We compared ETable with Navicat Query

Builder.3 Navicat is one of the most popular commercial database administration tools

with a graphical query building feature. Graphical builders such as Navicat Query Builder

have been commonly used as baseline systems in database usability research [116, 131,

19].

7.7.1 Experimental Design

Participants. We recruited 12 participants from our university through advertisements

posted to mailing lists at our institution. All were graduate students who had taken at least

one database course or had industry experience using database systems. The participants

rated their experience in SQL, averaging at a score of 4.67 using a 7-point Likert scale

(ranged from 3 to 6) with 1 being “having no knowledge” and 7 being “expert”, which

means most participants considered themselves non-expert database users. None of them

had used the graphical query builder before. Each participant was compensated with a $15

2D3.js, https://d3js.org/
3http://www.navicat.com/

163

https://d3js.org/
http://www.navicat.com/

gift card.

Dataset. We used an academic publication dataset used throughout this paper, which

we collected from DBLP4 and ACM Digital Library.5 It contains about 38,000 papers from

19 top conferences in the areas of databases (e.g., SIGMOD), data mining (e.g,. KDD), and

human-computer interaction (e.g., CHI), since 2000. A relational schema was designed

using standard design principles, resulting in 7 relations with 7 foreign keys as depicted in

Figure 7.3. As the main focus of this evaluation is on ETable’s usability, this dataset creates

a sufficiently large and complex database for such purpose.

Procedure. Our study followed a within-subjects design with two conditions: the

ETable and Navicat conditions. Every participant first completed six tasks in one con-

dition and then completed another six tasks in the remaining condition. The orders of the

conditions were counterbalanced, resulting in 6 participants in each ordering. We generated

two matched sets of tasks (6 tasks in each set) differing only in their specific values used

for parameters such as the title of the paper. Before the participants were given the tasks

to carry out for each condition, they went through a 10-minute tutorial for the tool they

would use. For each task, the participants could ask clarifying questions before starting,

and they had a maximum of 5 minutes to complete each task. After the study, they com-

pleted a questionnaire for subjective ratings and qualitative feedback. Each study lasted for

about 70 minutes. Participants completed the study using Chrome browser, running on a

Windows desktop machine, with a 24-inch monitor at a 1920x1200 resolution.

Tasks. We carefully generated two matched sets of 6 tasks that cover many database

exploration and querying tasks. Table 7.2 shows one set (the other set is similar). The

tasks fall into three categories: finding attribute values (Tasks 1 & 2); filtering (Tasks 3 &

4); aggregation (Tasks 5 & 6). The tasks were designed based on prior research studies

and their categorization of tasks. Specifically, our categories are based on those used in

4DBLP, http://dblp.uni-trier.de/
5ACM Digital Library, http://dl.acm.org/

164

http://dblp.uni-trier.de/
http://dl.acm.org/

Table 7.2: List of tasks. Task 1 & 2 retrieve attribute values, task 3 & 4 filter entities, task
5 & 6 perform aggregations.

Task Category #Relations

1. Find the year that the paper titled ‘Making database
systems usable’ was published in.

Attribute 1

2. Find all the keywords of the paper titled ‘Collaborative
filtering with temporal dynamics’.

Attribute 2

3. Find all the papers that were written by ‘Samuel Madden’
and published in 2013 or after.

Filter 3

4. Find all the papers written by researchers at ‘Carnegie
Mellon University’ and published at the KDD conference.

Filter 5

5. Which institution in South Korea has the largest number
of researchers?

Aggregate 2

6. Find the top 3 researchers who have published the most
papers in the SIGMOD conference.

Aggregate 4

database and HCI research [7, 110], and our tasks vary in difficulty as in [109].

Measurements. We measured participants’ task completion times. If a participant

failed to complete a task within 5 minutes, the experimenter stopped the participant and

recorded 300 seconds as the task completion time. After completing tasks for both condi-

tions, the participants filled out a post-questionnaire that asked for their subjective ratings

about ETable (10 questions) and their subjective preference between two conditions (7

questions).

7.7.2 Results

Task completion times. The average task times for ETable were faster than those for

Navicat for all six tasks. Figure 7.10 summarizes the task time results. We performed

two-tailed paired t-tests. The differences were statistically significant for Tasks 1, 3, 5,

and 6 (p < 0.005) and marginally significant for Tasks 2 and 4 (p = 0.052, p = 0.053,

respectively). The results of Task 2 may be explained by an outlier participant who did

not understand the requirement that each row of the final results must represent a different

165

34.9 39.5
57.2

150.5

59.0

104.8

53.2 54.4

92.3

218.5
231.6

198.5

0

50

100

150

200

250

300

Task 1* Task 2° Task 3* Task 4° Task 5* Task 6*

T
im

e
 (

s
e

c
)

Average Task Completion Time (sec)

Etable Navicat

Figure 7.10: Average task completion time for each task. The error bars represent 95%
confidence intervals for the mean. Participants performed the tasks faster with ETable than
with Navicat. The ∗ and ◦ symbols indicate 99% and 90% statistical significance in the
two-tailed paired t-tests, respectively.

keyword. Although Task 4 involves the highest number of operations that require partici-

pants to spend significant time in interpreting intermediate results before applying the next

operators, ETable helped participants complete this task over 30% faster than Navicat.

The task completion times for ETable generally have low variance. The larger variance

in Navicat is mainly due to syntax errors that the participants faced. Many participants, who

are non-database experts, could not recall some SQL syntax and had trouble debugging

errors. In particular, they had trouble specifying GROUP BY queries in Navicat. For

example, many participants did not specify a GROUP BY attribute in their SELECT clauses

in their first attempts. We also observed that many Navicat participants were overwhelmed

by the complexity of the syntax of join queries [81] and preferred to specify new SQL

queries from scratch instead of debugging existing ones when their original queries failed.

Unlike graphical query builders such as Navicat, ETable helps nonexperts gradually build

complex queries without having to know the exact query syntax.

Subjective ratings. We asked participants to rate various aspects of ETable using 7-

point Likert scales (7 being “strongly agreed”). Their subjective ratings were generally

very positive (see Table 7.3). In particular, all participants found ETable easy to learn (i.e.,

166

Table 7.3: Subjective ratings about ETable using 7-point Likert scales (7: Strongly Agreed.
1: Strongly Disagreed).

Question Avg.

1. Easy to learn 6.42
2. Easy to use 6.33
3. Helpful to locate and find specific data 6.25
4. Helpful to browse data stored in databases 6.67
5. Helpful to interpret and understand results 5.58
6. Helpful to know what type of information exists 6.00
7. Helpful to perform complex tasks 6.00
8. Felt confident when using ETable 5.92
9. Enjoyed using ETable 6.42
10. Would like to use software like ETable in the future 6.50

rated 6 or 7), and almost all participants (11/12) found ETable easy to use and helpful

for browsing data in databases. They also enjoyed using ETable (10/12) and would like

to use software like ETable in the future (11/12). In response to the “helpful to interpret

and understand results” question, one participant commented that “there are too many

attributes ..., which is not easy to interpret.” To address this, as future work, we plan to

develop techniques to rank and select the most important columns to show whenever a table

has a large number of columns [188].

We also asked participants to compare ETable and Navicat in 7 aspects. All partic-

ipants indicated that ETable was easier to learn and was more helpful in browsing and

exploring data. A majority of participants liked ETable more (11/12) and found it easier to

use (10/12). They would choose to use ETable in the future (10/12) and felt more confident

using it (8/12). Half of the participants answered that ETable is more helpful in finding

specific data than Navicat. This result was expected because ETable’s innovation focuses

more on supporting data exploration.

Qualitative feedback. We asked participants about the features they liked about ETable.

Many participants (9/12) explicitly mentioned the “pivot” feature. They said that the pivot

feature enabled them to easily specify complex join queries. One participant said “I also

167

loved the pivot feature ... having multiple pivots throughout the course of forming a query.

I messed up a query, but could still find the right answer by doing an appropriate pivot.”

In addition, many participants said that ETable provides an intuitive view to users. One

said “It is easy to see data from the perspective of what the users want to see/retrieve ...”

Another said “Visually, I was able to see ... the effects of the SQL operations, which made

it easier to use and verify intermediate results.”

7.8 Expressiveness

This section discusses the expressiveness of the ETable model. We will first express the

overall functionality of the ETable queries as a general SQL query pattern. By doing so,

we will show how typical join queries can be translated into ETable queries, through mul-

tiple steps (similar to [116, 35]), demonstrating ETable’s expressiveness. Any join queries

involving only FK-PK relationships on a relational database schema that meets ETable’s

assumptions. can be translated into an ETable query that operates on TGDB.

The overall functionality of ETable queries can be expressed as the following general

SQL query pattern:

SELECT τa.*, ent-list(t1), ent-list(t2), ...

FROM t1, t2, ...

WHERE source(p1) = target(p1) AND source(p2) =

target(p2) AND ... AND C1 AND C2 AND ...

GROUP BY τa;

where ent-list presents a list of corresponding entity references, similar to the json agg

operator in PostgreSQL.6 Each of the four components in an ETable query (i.e., primary

node type τa, node types T , edge types P , and selection conditions C) maps to a clause in

6http://www.postgresql.org/docs/9.4/static/functions-aggregate.html

168

http://www.postgresql.org/docs/9.4/static/functions-aggregate.html

SQL: primary node type to GROUP BY clause; node types to FROM clause; edge types

to join conditions; selection conditions to WHERE clause.

Following the above mappings, we now follow the approach similar to that in [116, 35]

to show that ETable can expressively handle typical join SQL queries, through a step-by-

step translation. That is, for any SQL join query following the above pattern, there exists

an equivalent ETable query.

1. Transforms a relational algebra join expression (R ./ R ./ ...) to a graph relation

correspondence RG ∗ RG ∗ ... (described in Section 5.4) by analyzing the list of

relations in the FROM clause, and the join conditions in the WHERE clause. (Each

RG is a node type; each ∗ an edge type.)

2. Applies the original selection conditions to the TGDB’s node types;

3. If there is a group by attribute, transform it to the graph’s primary node type; other-

wise, if no group by attribute exists, arbitrarily set a primary node type.

ETable can express typical join queries consisting of the core relational algebra (i.e., re-

lational algebra expression that does not contain set operations), which accounts for a large

number of the database workloads. ETable additionally lets users choose a primary node

type from the list of selected relations, and introduces the entity-reference columns (i.e.,

represented as ent-list in the above SQL pattern) to effectively present join queries.

This paper focuses on the critical usability challenge that arises when joining several tables.

In our future work, we plan to further increase ETable’s expressiveness of the presentation

model to the full set of operators in the relational algebra, through introducing additional

operators to support more complex queries (e.g., set operations, complex aggregations).

169

7.9 Conclusions

We proposed ETable, a new presentation data model for interactively exploring relational

databases. The enriched table representation of ETable generates a holistic, interactive view

of databases that helps users browse relevant information at an entity-relationship level.

By directly interacting with the interface, users can iteratively specify operators, enabling

them to incrementally build complex queries and navigate databases. ETable outperformed

a commercial graphical query builder in a user study, in both speed and subjective ratings

across a range of database querying tasks.

This work takes a first step towards developing a practically usable, interactive interface

for relational databases, and opens up many interesting opportunities. Future research di-

rections include: (1) incorporating more operations to further improve expressive power

(e.g., set operations); (2) accelerating the execution speed of updated queries (e.g., by

reusing intermediate results); (3) leveraging machine learning techniques to rank and select

important columns to display. The above ideas could usher a new generation of interactive

database exploration tools that will benefit all database users.

170

CHAPTER 8

CONCLUSIONS

In summary, my dissertation addresses the fundamental and practical challenges in the un-

derstanding of machine learning models by developing scalable, interactive visual analytics

tools that help users explore and interact with models through data. My work contributes

to novel visualization tools, new data analytics paradigms, user interaction workflows, and

scalable and accessible approaches. I believe my research advances human understanding

of artificial intelligence, accelerate their development, and increase people’s trust in this

new technology.

8.1 Contributions

My thesis makes research contributions through multiple major fronts.

• New design principles: My dissertation contributes novel design principles for de-

veloping interactive visualization tools for complex deep learning models. Our tools

provide users with both a high-level visual overview of the models and interactive

methods to drill down into details of the models or datasets. In ActiVis, users can

start their exploration with a graph-structured overview, and then dive into details

of neurons’ activation (Chapter 3). Also, GAN Lab’s coordinated views help users

perform experimentations while visualizing a model’s architecture (Chapter 6).

• Novel data exploration models: We contribute new ways to analyze how datasets

affect machine learning results. The MLCube framework enables users to flexibly

171

specify data subset by considering every part of a machine learning pipeline and in-

teractively drill down into specific subsets for in-depth exploration (Chapter 4). The

ActiVis system further unifies the subset-level analysis with the instance-level anal-

ysis, which allows to scale to large-scale datasets (Chapter 3). ETable also contributes

new models for exploring data (Chapter 7).

• New scalable, deployed systems: We present new scalable systems for interpreting

large-scale machine learning systems. ActiVis’s multiple scalable techniques enabled

it to scale to industry-scale datasets and models and deploy to Facebook’s internal

machine learning platform (Chapter 3). MLCube’s scalable system design also led to

a deployment by Facebook and influenced Google’s open-source library (Chapter 4).

• New broadly accessible approaches: Our browser-based visualization tools signif-

icantly broaden public’s access to modern AI technologies. GAN Lab overcomes a

major practical challenge in deploying interactive tools for deep learning, by enabling

users to learn about models by playfully training and experimenting with them on

web browser (Chapter 6). FairVis also allows users to audit fairness of machine learn-

ing models on their browser (Chapter 5). Both tools have also been open-sourced.

8.2 Future Research Directions

My long-standing research goal is to bring human-centered approaches to the field of AI

and data science. I have taken the first important steps toward this goal with my thesis

research. For the road ahead, I hope to broaden and deepen this investigation. I plan to

pursue this in the following thrusts.

Model debugging with visual guidance. While visualization tools promote people’s

understanding of machine learning models, they often do not directly support the task of

building well-performing models. This important task for practitioners is difficult even for

172

experts, due to the countless combinations of parameters that need tuning. They often have

to iteratively try different heuristics-based strategies to improve models, which is tedious

and error-prone. I believe new types of visualization tools can help them refine and debug

their models by guiding them to identify problems and discover actionable insights for

debugging. These tools will combine computational and interactive methods: scalable data

mining techniques automate the discovery of problematic cases; interactive tools guide

users to explore debugging strategies and make decisions.

Interactive model building for everyone. A growing number of non-experts who do

not write code not only want to learn artificial intelligence (AI), but also want to build

machine learning models for their products and data. Large technology companies have

started providing these users with web-based services for building machine learning models

without any coding. They include automated approaches to building machine learning

models called AutoML [111] and graphical interfaces for creating machine learning models.

However, it is very challenging to develop interfaces for such systems that are easy for non-

experts to learn and to use. I envision the next generation of interactive systems for these

users to easily interact with machine learning models that use large datasets with the help of

visual explanations to avoid the users to use AI as black-boxes. I believe this new accessible

way of building machine learning models will broaden people’s access to AI technologies

and ensure their appropriate use.

New interaction paradigms between human and AI systems. The advent of deep

learning models is rapidly reshaping many existing data-driven systems that have a long

history of research and development, such as database systems and search engines. For

example, traditionally, web search engines take only short text queries, however, they now

recognize long natural language queries, images, voice, and more. This has led us to re-

think their interaction methods that involve both computational and usability challenges.

For instance, when a system fails to recognize a user’s voice query, we may want to de-

sign interfaces that actively solicit user feedback to iteratively refine the query. Therefore,

173

many opportunities exist in studying new interaction paradigms between these data-driven

intelligent systems and human, and this may require collaboration across multiple areas.

Ensuring AI working for our society. As AI-powered systems continue to make im-

portant decisions across social domains, it is becoming more important to ensure AI works

for everyone and our society. For example, as we discussed in this dissertation, many re-

searchers have recognized that machine learning models can be unfair and have developed

new methods that reveal unfairness and mitigate problems. Besides fairness, there are a

wide range of aspects, such as accountability, transparency, and safety. I hope our research

community works together with people from different backgrounds, to identify potential

problems, study AI’s influences, and ensure it works for people and society.

8.3 Concluding Remarks

My dissertation pushes the frontier of AI through human-centered approaches, contributing

novel paradigms, methods, and tools that advance people’s understanding of AI, accelerate

its development, and increase their access to new technologies. With my experience and

knowledge across interactive visualization, data science, and machine learning, I hope to

accelerate innovation across these disciplines, making positive impacts to people’s every-

day lives and our society.

174

REFERENCES

[1] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey,
S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, et al., “The beckman report on
database research,” ACM SIGMOD Record, vol. 43, no. 3, pp. 61–70, 2014.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467,
2016.

[3] A. Abdulkader, A. Lakshmiratan, and J. Zhang, “Introducing DeepText: Facebook’s
text understanding engine,” 2016. Accessed: June 26, 2017. [Online]. Available:
https://code.facebook.com/posts/181565595577955/introducing-
deeptext-facebook-s-text-understanding-engine/.

[4] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri, B. Croft, D. DeWitt,
M. Franklin, H. G. Molina, D. Gawlick, et al., “The lowell database research self-
assessment,” Communications of the ACM, vol. 48, no. 5, pp. 111–118, 2005.

[5] A. Abouzied, J. Hellerstein, and A. Silberschatz, “DataPlay: Interactive tweaking
and example-driven correction of graphical database queries,” in Proceedings of the
25th Annual ACM Symposium on User Interface Software and Technology (UIST),
ACM, 2012, pp. 207–218.

[6] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A system for keyword-based
search over relational databases,” in Proceedings of the 18th International Confer-
ence on Data Engineering, IEEE, 2002, pp. 5–16.

[7] R. Amar, J. Eagan, and J. Stasko, “Low-level components of analytic activity in
information visualization,” in IEEE Symposium on Information Visualization (IN-
FOVIS), IEEE, 2005, pp. 111–117.

175

https://code.facebook.com/posts/181565595577955/introducing-deeptext-facebook-s-text-understanding-engine/
https://code.facebook.com/posts/181565595577955/introducing-deeptext-facebook-s-text-understanding-engine/

[8] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to the people:
The role of humans in interactive machine learning,” AI Magazine, vol. 35, no. 4,
pp. 105–120, 2014.

[9] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh, “Mod-
elTracker: Redesigning performance analysis tools for machine learning,” in Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI), ACM, 2015, pp. 337–346.

[10] M. R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella, A. Ku-
mar, F. Niu, Y. Park, C. Ré, and C. Zhang, “Brainwash: A data system for feature
engineering.,” in 6th Biennial Conference on Innovative Data Systems Research
(CIDR), 2013.

[11] M. R. Anderson and M. Cafarella, “Input selection for fast feature engineering,” in
Proceedings of the 32nd International Conference on Data Engineering (ICDE),
2016, pp. 577–588.

[12] P. Andrews, A. Kalro, H. Mehanna, and A. Sidorov, “Productionizing machine
learning pipelines at scale,” in ML Systems Workshop at the 33rd International
Conference on Machine Learning (ICML), 2016.

[13] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Computing
Surveys, vol. 40, no. 1, p. 1, 2008.

[14] J. Angwin, J. Larson, L. Kirchner, and S. Mattu, “Machine bias,” ProPublica, 2016.
Accessed: Mar. 31, 2019. [Online]. Available: https://www.propublica.
org/article/machine-bias-risk-assessments-in-criminal-
sentencing.

[15] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering
points to identify the clustering structure,” in Proceedings of the 1999 ACM SIG-
MOD International Conference on Management of Data, ACM, 1999, pp. 49–60.

[16] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,”
in Proceedings of the 8th annual ACM-SIAM symposium on Discrete algorithms
(SODA), Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[17] S. Bachthaler and D. Weiskopf, “Continuous scatterplots,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, no. 6, pp. 1428–1435, 2008.

[18] L. Backstrom, “Serving a billion personalized news feeds,” in The 12th Interna-
tional Workshop on Mining and Learning with Graphs at the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), ACM,
2016.

176

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

[19] E. Bakke and D. Karger, “Expressive query construction through direct manipula-
tion of nested relational results,” in Proceedings of the 2016 International Confer-
ence on Management of Data (SIGMOD), ACM, 2016, pp. 1377–1392.

[20] E. Bakke, D. R. Karger, and R. C. Miller, “Automatic layout of structured hierarchi-
cal reports,” IEEE Transactions on Visualization and Computer Graphics, vol. 19,
no. 12, pp. 2586–2595, 2013.

[21] R. Barga, V. Fontama, and W. H. Tok, Predictive analytics with Microsoft Azure
machine learning (2nd Edition). Apress, 2015.

[22] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” California Law Review,
vol. 104, pp. 671–732, 2016.

[23] C. Batini, S. Ceri, and S. B. Navathe, Conceptual Database Design: An Entity-
Relationship Approach. Benjamin Cummings, 1992.

[24] A. Beutel, J. Chen, T. Doshi, H. Qian, A. Woodruff, C. Luu, P. Kreitmann, J.
Bischof, and E. H. Chi, “Putting fairness principles into practice: Challenges, met-
rics, and improvements,” in AAAI/ACM Conference on Artificial Intelligence, Ethics,
and Society (AIES), 2019.

[25] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, “Keyword
searching and browsing in databases using banks,” in Proceedings of the 18th In-
ternational Conference on Data Engineering, IEEE, 2002, pp. 431–440.

[26] D. Britz, “Implementing a CNN for text classification in TensorFlow,” 2015. Ac-
cessed: June 26, 2017. [Online]. Available: http://www.wildml.com/
2015/12/implementing-a-cnn-for-text-classification-in-
tensorflow.

[27] M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and P. Simard, “Fea-
tureInsight: Visual support for error-driven feature ideation in text classification,”
in IEEE Conference on Visual Analytics Science and Technology (VAST), IEEE,
2015, pp. 105–112.

[28] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities in
commercial gender classification,” in Conference on Fairness, Accountability and
Transparency (FAT*), ACM, 2018, pp. 77–91.

[29] M. Buoncristiano, G. Mecca, E. Quintarelli, M. Roveri, D. Santoro, and L. Tanca,
“Database challenges for exploratory computing,” ACM SIGMOD Record, vol. 44,
no. 2, pp. 17–22, 2015.

177

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow

[30] Á. A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and D. H.
Chau, “FairVis: Visual analytics for discovering intersectional bias in machine
learning,” in Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (VAST), IEEE, 2019.

[31] S. Carter and M. Nielsen, “Using artificial intelligence to augment human intelli-
gence,” Distill, 2017.

[32] T. Catarci, “What happened when database researchers met usability,” Information
Systems, vol. 25, no. 3, pp. 177–212, 2000.

[33] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini, “Visual query systems for
databases: A survey,” Journal of Visual Languages and Computing, vol. 8, no. 2,
pp. 215–260, 1997.

[34] T. Catarci, G. Santucci, and M. Angelaccio, “Fundamental graphical primitives for
visual query languages,” Information Systems, vol. 18, no. 2, pp. 75–98, 1993.

[35] T. Catarci, G. Santucci, and J. Cardiff, “Graphical interaction with heterogeneous
databases,” The VLDB journal, vol. 6, no. 2, pp. 97–120, 1997.

[36] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou, A. Kalinin,
O. Papaemmanouil, and S. B. Zdonik, “Query steering for interactive data explo-
ration,” in Proceedings of the 6th Biennial Conference on Innovative Data Systems
Research (CIDR), 2013.

[37] K. S.-P. Chang and B. A. Myers, “Using and exploring hierarchical data in spread-
sheets,” in Proceedings of the 2016 CHI Conference on Human Factors in Comput-
ing Systems, ACM, 2016, pp. 2497–2507.

[38] B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan, “Prediction cubes,” in Proceed-
ings of the 31st International Conference on Very Large Data Bases (VLDB), 2005,
pp. 982–993.

[39] N.-C. Chen, J. Suh, J. Verwey, G. Ramos, S. Drucker, and P. Simard, “AnchorViz:
Facilitating classifier error discovery through interactive semantic data exploration,”
in Proceedings of the 23rd International Conference on Intelligent User Interfaces
(IUI), ACM, 2018, pp. 269–280.

[40] P. P.-S. Chen, “The entity-relationship model: Toward a unified view of data,” ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9–36, 1976.

[41] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword search on structured and semi-
structured data,” in Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of data, ACM, 2009, pp. 1005–1010.

178

[42] R. H. Chiang, T. M. Barron, and V. C. Storey, “Reverse engineering of relational
databases: Extraction of an eer model from a relational database,” Data & Knowl-
edge Engineering, vol. 12, no. 2, pp. 107–142, 1994.

[43] J. Choo, H. Lee, J. Kihm, and H. Park, “iVisClassifier: An interactive visual ana-
lytics system for classification based on supervised dimension reduction,” in IEEE
Symposium on Visual Analytics Science and Technology (VAST), IEEE, 2010, pp. 27–
34.

[44] A. Chouldechova, “Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments,” Big data, vol. 5, no. 2, pp. 153–163, 2017.

[45] S. Chung, C. Park, S. Suh, K. Kang, J. Choo, and B. C. Kwon, “ReVACNN: Steer-
ing convolutional neural network via real-time visual analytics,” in Future of In-
teractive Learning Machines Workshop at the 30th Annual Conference on Neural
Information Processing Systems (NIPS), 2016.

[46] Y. Chung, T. Kraska, N. Polyzotis, K. H. ; Tae, and S. E. Whang, “Slice finder:
Automated data sclicing for model validation,” Proceedings of the 35th IEEE In-
ternational Conference on Data Engineering (ICDE), pp. 1550–1553, 2019.

[47] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for YouTube rec-
ommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, ACM, 2016, pp. 191–198.

[48] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.
Bharath, “Generative adversarial networks: An overview,” IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 53–65, 2018.

[49] M. Das, S. Amer-Yahia, G. Das, and C. Yu, “Mri: Meaningful interpretations of
collaborative ratings,” Proceedings of the VLDB Endowment, vol. 4, no. 11, 2011.

[50] W. Dieterich, C. Mendoza, and T. Brennan, “COMPAS risk scales: Demonstrating
accuracy equity and predictive parity,” 2016.

[51] M. Dork, N. H. Riche, G. Ramos, and S. Dumais, “Pivotpaths: Strolling through
faceted information spaces,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2709–2718, 2012.

[52] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv preprint arXiv:1702.08608, 2017.

[53] W. Dou, D. H. Jeong, F. Stukes, W. Ribarsky, H. R. Lipford, and R. Chang, “Re-
covering reasoning processes from user interactions,” IEEE Computer Graphics
and Applications, vol. 29, no. 3, pp. 52–61, 2009.

179

[54] J. J. Dudley and P. O. Kristensson, “A review of user interface design for interac-
tive machine learning,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 8, no. 2, p. 8, 2018.

[55] J. Dunn, “Introducing FBLearner Flow: Facebook’s AI backbone,” Facebook Code
Blog, 2016. Accessed: June 26, 2017. [Online]. Available: https://code.
facebook.com/posts/1072626246134461/introducing-fblearner-
flow-facebook-s-ai-backbone/.

[56] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson, “GraphTrail:
Analyzing large multivariate, heterogeneous networks while supporting exploration
history,” in Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI), ACM, 2012, pp. 1663–1672.

[57] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel, “Fairness through
awareness,” in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ACM, 2012, pp. 214–226.

[58] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining (KDD),
AAAI Press, 1996, pp. 226–231.

[59] J. Fan, G. Li, and L. Zhou, “Interactive SQL query suggestion: Making databases
user-friendly,” in Proceedings of the 27th IEEE International Conference on Data
Engineering (ICDE), IEEE, 2011, pp. 351–362.

[60] S. Few, Show me the numbers: Designing tables and graphs to enlighten. Analytics
Press Oakland, CA, 2004.

[61] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, “On the (im) possibility
of fairness,” arXiv preprint arXiv:1609.07236, 2016.

[62] M. Gleicher, “Explainers: Expert explorations with crafted projections,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2042–2051,
2013.

[63] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C. Roberts, “Vi-
sual comparison for information visualization,” Information Visualization, vol. 10,
no. 4, pp. 289–309, 2011.

[64] G. Goh, “Why momentum really works,” Distill, 2017.

[65] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, W.
Shen, and J. Goldberg-Kidon, “Google fusion tables: Web-centered data manage-

180

https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/
https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/
https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/

ment and collaboration,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, ACM, 2010, pp. 1061–1066.

[66] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,” arXiv preprint
arXiv:1701.00160, 2016.

[67] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural
Information Processing Systems (NIPS), 2014, pp. 2672–2680.

[68] D. Gotz and M. X. Zhou, “Characterizing users’ visual analytic activity for insight
provenance,” Information Visualization, vol. 8, no. 1, pp. 42–55, 2009.

[69] P. J. Guo, “Online python tutor: Embeddable web-based program visualization for
cs education,” in Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, ACM, 2013, pp. 579–584.

[70] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. V. Gucht, “A graph-oriented
object database model,” IEEE Transactions on Knowledge and Data Engineering,
vol. 6, no. 4, pp. 572–586, 1994.

[71] M. Hardt, E. Price, N. Srebro, et al., “Equality of opportunity in supervised learn-
ing,” in Proceedings of the 30th Conference on Neural Information Processing Sys-
tems (NIPS), 2016, pp. 3315–3323.

[72] A. W. Harley, “An interactive node-link visualization of convolutional neural net-
works,” in Proceedings of the 11th International Symposium on Visual Computing,
2015, pp. 867–877.

[73] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-
gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[74] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bow-
ers, and J. Q. Candela, “Practical lessons from predicting clicks on ads at Face-
book,” in Proceedings of the 8th International Workshop on Data Mining for On-
line Advertising at the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), ACM, 2014, pp. 1–9.

[75] A. Hindupur, “The GAN Zoo: A list of all named GANs!” 2017. Accessed: Mar.
31, 2018. [Online]. Available: https://deephunt.in/the-gan-zoo-
79597dc8c347.

181

https://deephunt.in/the-gan-zoo-79597dc8c347
https://deephunt.in/the-gan-zoo-79597dc8c347

[76] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual analytics in deep learn-
ing: An interrogative survey for the next frontiers,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 25, no. 8, pp. 2674–2693, 2019.

[77] K. Holstein, J. Wortman Vaughan, H. Daumé III, M. Dudik, and H. Wallach, “Im-
proving fairness in machine learning systems: What do industry practitioners need?”
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, ACM, 2019, 600:1–600:16.

[78] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in relational databases,”
in Proceedings of the 28th International Conference on Very Large Data Bases,
2002, pp. 670–681.

[79] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of algorithm
visualization effectiveness,” Journal of Visual Languages & Computing, vol. 13,
no. 3, pp. 259–290, 2002.

[80] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview of data exploration
techniques,” in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ACM, 2015, pp. 277–281.

[81] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C.
Yu, “Making database systems usable,” in Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, ACM, 2007, pp. 13–24.

[82] H. V. Jagadish, A. Nandi, and L. Qian, “Organic databases,” in Databases in Net-
worked Information Systems, Springer, 2011, pp. 49–63.

[83] M. Jayapandian and H. V. Jagadish, “Automated creation of a forms-based database
query interface,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 695–709,
2008.

[84] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Interactive data exploration
with smart drill-down,” in Proceedings of the 32nd International Conference on
Data Engineering (ICDE), 2016, pp. 906–917.

[85] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” in Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, 2017.

[86] M. Kahng, P. Andrews, A. Kalro, and D. H. Chau, “ActiVis: Visual exploration of
industry-scale deep neural network models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 24, no. 1, pp. 88–97, 2018.

182

[87] M. Kahng and D. H. Chau, “How does visualization help people learn deep learn-
ing? evaluation of GAN Lab,” in Workshop on Evaluation of Interactive Visual
Machine Learning Systems (EVIVA-ML) at IEEE VIS, 2019.

[88] M. Kahng, D. Fang, and D. H. Chau, “Visual exploration of machine learning
results using data cube analysis,” in Proceedings of the Workshop on Human-In-
the-Loop Data Analytics (HILDA) at the 2016 ACM International Conference on
Management of Data (SIGMOD), ACM, 2016, 1:1–1:6.

[89] M. Kahng, S. B. Navathe, J. T. Stasko, and D. H. Chau, “Interactive browsing and
navigation in relational databases,” Proceedings of the VLDB Endowment, vol. 9,
no. 12, pp. 1017–1028, 2016.

[90] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg, “GAN Lab:
Understanding complex deep generative models using interactive visual experi-
mentation,” IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 1, pp. 310–320, 2019.

[91] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi, “Distributed and interactive
cube exploration,” in Proceedings of the 30th International Conference on Data
Engineering (ICDE), IEEE, 2014, pp. 472–483.

[92] H. Kang, C. Plaisant, B. Lee, and B. B. Bederson, “Netlens: Iterative exploration
of content-actor network data,” Information Visualization, vol. 6, no. 1, pp. 18–31,
2007.

[93] A. Karpathy, “ConvNetJS MNIST demo,” 2016. Accessed: Mar. 31, 2018. [On-
line]. Available: https://cs.stanford.edu/people/karpathy/
convnetjs/demo/mnist.html.

[94] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), 2018, pp. 2569–2577.

[95] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), 2014, 1746–1751.

[96] J. M. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the fair
determination of risk scores,” in Proceedings of the 8th Innovations in Theoretical
Computer Science (ITCS), 2017.

[97] J. Krause, A. Dasgupta, J. Swartz, Y. Aphinyanaphongs, and E. Bertini, “A work-
flow for visual diagnostics of binary classifiers using instance-level explanations,”

183

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

in IEEE Conference on Visual Analytics Science and Technology (VAST), IEEE,
2017.

[98] J. Krause, A. Perer, and E. Bertini, “INFUSE: Interactive feature selection for pre-
dictive modeling of high dimensional data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 1614–1623, 2014.

[99] ——, “A user study on the effect of aggregating explanations for interpreting ma-
chine learning models,” in Workshop on Interactive Data Exploration and Analytics
(IDEA) at the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), 2018.

[100] J. Krause, A. Perer, and K. Ng, “Interacting with predictions: Visual inspection of
black-box machine learning models,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, ACM, 2016, pp. 5686–5697.

[101] J. Krause, A. Perer, and H. Stavropoulos, “Supporting iterative cohort construction
with visual temporal queries,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 1, pp. 91–100, 2016.

[102] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, “Principles of explanatory de-
bugging to personalize interactive machine learning,” in Proceedings of the 20th In-
ternational Conference on Intelligent User Interfaces (IUI), ACM, 2015, pp. 126–
137.

[103] T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett, S. Perona, A. Ko, and I. Oberst,
“Why-oriented end-user debugging of naive Bayes text classification,” ACM Trans-
actions on Interactive Intelligent Systems (TiiS), vol. 1, no. 1, 2:1–2:31, 2011.

[104] A. Kumar, R. McCann, J. Naughton, and J. M. Patel, “Model selection management
systems: The next frontier of advanced analytics,” ACM SIGMOD Record, 2015.

[105] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear models over
normalized data,” in Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, ACM, 2015, pp. 1969–1984.

[106] M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual fairness,” in Pro-
ceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS), 2017, pp. 4066–4076.

[107] H. Lakkaraju, E. Kamar, R. Caruana, and E. Horvitz, “Identifying unknown un-
knowns in the open world: Representations and policies for guided exploration,” in
Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI Press,
2017, pp. 2124–2132.

184

[108] Y. LeCun, “Answer to “what are some recent and potentially upcoming break-
throughs in deep learning?”” Quora, 2016. Accessed: Mar. 31, 2018. [Online].
Available: https://www.quora.com/What-are-some-recent-and-
potentially-upcoming-breakthroughs-in-deep-learning.

[109] F. Li and H. V. Jagadish, “Constructing an interactive natural language interface for
relational databases,” Proceedings of the VLDB Endowment, vol. 8, no. 1, pp. 73–
84, 2014.

[110] F. Li, T. Pan, and H. V. Jagadish, “Schema-free SQL,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ACM, 2014,
pp. 1051–1062.

[111] F.-F. Li and J. Li, “Cloud AutoML: Making AI accessible to every business,”
Google Blog, 2018. Accessed: Sept. 21, 2019. [Online]. Available: https://
www.blog.google/topics/google-cloud/cloud-automl-making-
ai-accessible-everybusiness.

[112] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of the 19th In-
ternational Conference on Computational Linguistics, 2002, pp. 1–7.

[113] B. Y. Lim and A. K. Dey, “Toolkit to support intelligibility in context-aware appli-
cations,” in Proceedings of the 12th ACM International Conference on Ubiquitous
Computing (UbiComp), ACM, 2010, pp. 13–22.

[114] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions
on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.

[115] Z. C. Lipton, “The mythos of model interpretability,” in Proceedings of the 2016
ICML Workshop on Human Interpretability in Machine Learning at the 33rd Inter-
national Conference on Machine Learning (ICML), 2016.

[116] B. Liu and H. V. Jagadish, “A spreadsheet algebra for a direct data manipula-
tion query interface,” in Proceedings of the IEEE 25th International Conference
on Data Engineering (ICDE), IEEE, 2009, pp. 417–428.

[117] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training processes of deep
generative models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 77–87, 2018.

[118] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis of deep
convolutional neural networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 91–100, 2017.

185

https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
https://www.blog. google/topics/google-cloud/cloud-automl-making-ai-accessible-everybusiness
https://www.blog. google/topics/google-cloud/cloud-automl-making-ai-accessible-everybusiness
https://www.blog. google/topics/google-cloud/cloud-automl-making-ai-accessible-everybusiness

[119] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci, “Visualizing high-
dimensional data: Advances in the past decade,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 23, no. 3, pp. 1249–1268, 2017.

[120] Z. Liu, B. Jiang, and J. Heer, “Immens: Real-time visual querying of big data,”
Computer Graphics Forum (Proceedings of EuroVis), vol. 32, no. 3, pp. 421–430,
2013.

[121] Z. Liu, S. B. Navathe, and J. T. Stasko, “Network-based visual analysis of tabular
data,” in IEEE Conference on Visual Analytics Science and Technology (VAST),
IEEE, 2011, pp. 41–50.

[122] Z. Liu and J. Stasko, “Mental models, visual reasoning and interaction in informa-
tion visualization: A top-down perspective,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 999–1008, 2010.

[123] Y. Lu, R. Garcia, B. Hansen, M. Gleicher, and R. Maciejewski, “The state-of-the-
art in predictive visual analytics,” Computer Graphics Forum (Proceedings of Eu-
roVis), vol. 36, no. 3, pp. 539–562, 2017.

[124] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[125] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least squares gener-
ative adversarial networks,” in 2017 IEEE International Conference on Computer
Vision (ICCV), IEEE, 2017, pp. 2813–2821.

[126] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T.
Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M.
Hrafnkelsson, T. Boulos, and J. Kubica, “Ad click prediction: A view from the
trenches,” in Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), ACM, 2013, pp. 1222–1230.

[127] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial
networks,” in Proceedings of the 5th International Conference on Learning Repre-
sentations (ICLR), 2017.

[128] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu, “Understanding
hidden memories of recurrent neural networks,” in IEEE Conference on Visual An-
alytics Science and Technology (VAST), 2017.

[129] Y. Ming, H. Qu, and E. Bertini, “RuleMatrix: Visualizing and understanding clas-
sifiers with rules,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 342–352, 2019.

186

[130] A. Nandi and H. V. Jagadish, “Guided interaction: Rethinking the query-result
paradigm,” Proceedings of the VLDB Endowment, vol. 4, no. 12, pp. 1466–1469,
2011.

[131] A. Nandi, L. Jiang, and M. Mandel, “Gestural query specification,” Proceedings of
the VLDB Endowment, vol. 7, no. 4, pp. 289–300, 2013.

[132] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan, “Data cube materialization
and mining over mapreduce,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 24, no. 10, pp. 1747–1759, 2012.

[133] T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Rößling, W. Dann, A. Korhonen,
L. Malmi, J. Rantakokko, R. J. Ross, J. Anderson, R. Fleischer, M. Kuittinen, and
M. McNally, “Evaluating the educational impact of visualization,” ACM SIGCSE
Bulletin, vol. 35, no. 4, pp. 124–136, 2003.

[134] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A.
Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A. Velázquez-Iturbide, “Ex-
ploring the role of visualization and engagement in computer science education,”
ACM SIGCSE Bulletin, vol. 35, no. 2, pp. 131–152, 2003.

[135] C. North, “Toward measuring visualization insight,” IEEE Computer Graphics and
Applications, vol. 26, no. 3, pp. 6–9, 2006.

[136] B. Nushi, E. Kamar, E. Horvitz, and D. Kossmann, “On human intellect and ma-
chine failures: Troubleshooting integrative machine learning systems,” in Proceed-
ings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 1017–1025.

[137] C. Olah, “Neural networks, manifolds, and topology,” 2014. Accessed: Mar. 31,
2018. [Online]. Available: http://colah.github.io/posts/2014-03-
NN-Manifolds-Topology/.

[138] C. Olah and S. Carter, “Research debt,” Distill, 2017.

[139] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mord-
vintsev, “The building blocks of interpretability,” Distill, 2018.

[140] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data:
A review,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90–105, 2004.

[141] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay, “Gestalt:
Integrated support for implementation and analysis in machine learning,” in Pro-
ceedings of the 23nd Annual ACM Symposium on User Interface Software and
Technology (UIST), ACM, 2010, pp. 37–46.

187

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

[142] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating statistical ma-
chine learning as a tool for software development,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI), ACM, 2008, pp. 667–
676.

[143] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and A. Vilanova,
“DeepEyes: Progressive visual analytics for designing deep neural networks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 98–108,
2018.

[144] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle challenges
in production machine learning: A survey,” ACM SIGMOD Record, vol. 47, no. 2,
pp. 17–28, 2018.

[145] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing provenance in visu-
alization and data analysis: An organizational framework of provenance types and
purposes,” IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 31–40, 2015.

[146] V. Ramalingam, D. LaBelle, and S. Wiedenbeck, “Self-efficacy and mental models
in learning to program,” ACM SIGCSE Bulletin, vol. 36, no. 3, 2004.

[147] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea, “Visualizing the hid-
den activity of artificial neural networks,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 101–110, 2017.

[148] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares: Supporting in-
teractive performance analysis for multiclass classifiers,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 23, no. 1, pp. 61–70, 2017.

[149] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?: Explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2016,
pp. 1135–1144.

[150] B. Rosenberg, “Machine learning crash course,” Google Developers Blog, 2018.
Accessed: Mar. 31, 2018. [Online]. Available: https://developers.googleblog.
com/2018/03/machine-learning-crash-course.html, 2018.

[151] M. A. Roth, H. F. Korth, and A. Silberschatz, “Extended algebra and calculus
for nested relational databases,” ACM Transactions on Database Systems, vol. 13,
no. 4, pp. 389–417, 1988.

188

https://developers.googleblog.com/2018/03/machine-learning-crash-course.html
https://developers.googleblog.com/2018/03/machine-learning-crash-course.html

[152] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training GANs,” in Proceedings of the 30th Conference
on Neural Information Processing Systems (NIPS), 2016, pp. 2234–2242.

[153] P. Saraiya, C. A. Shaffer, D. S. McCrickard, and C. North, “Effective features of
algorithm visualizations,” in Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education, ACM, 2004, pp. 382–386.

[154] S. Sarawagi and G. Sathe, “I3: Intelligent, interactive investigation of olap data
cubes,” ACM SIGMOD Record, vol. 29, no. 2, p. 589, 2000.

[155] H.-J. Schek and M. H. Scholl, “The relational model with relation-valued attributes,”
Information systems, vol. 11, no. 2, pp. 137–147, 1986.

[156] D. Schweitzer and W. Brown, “Interactive visualization for the active learning
classroom,” ACM SIGCSE Bulletin, vol. 39, no. 1, pp. 208–212, 2007.

[157] D Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M.
Young, J.-F. Crespo, and D. Dennison, “Hidden technical debt in machine learning
systems,” in Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems (NIPS), 2015, pp. 2494–2502.

[158] J. F. Sequeda, M. Arenas, and D. P. Miranker, “On directly mapping relational
databases to rdf and owl,” in Proceedings of the 21st international conference on
World Wide Web, ACM, 2012, pp. 649–658.

[159] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S. Ponce, and
S. H. Edwards, “Algorithm visualization: The state of the field,” ACM Transactions
on Computing Education, vol. 10, no. 3, p. 9, 2010.

[160] B Shneiderman, “Direct manipulation: A step beyond programming languages,”
IEEE Computer, vol. 16, pp. 57–69, 1983.

[161] M. Singh, M. J. Cafarella, and H. V. Jagadish, “Dbexplorer: Exploratory search
in databases,” in Proceedings of the 19th International Conference on Extending
Database Technology (EDBT), 2016, pp. 89–100.

[162] D. Smilkov, S. Carter, D Sculley, F. B. Viegas, and M. Wattenberg, “Direct-manipulation
visualization of deep networks,” in Workshop on Visualization for Deep Learning
at the 33rd International Conference on Machine Learning (ICML), 2016.

[163] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and M. Wattenberg,
“Embedding Projector: Interactive visualization and interpretation of embeddings,”
in Workshop on Interpretable Machine Learning in Complex Systems at the 30th
Annual Conference on Neural Information Processing Systems (NIPS), 2016.

189

[164] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query, analysis, and
visualization of multidimensional relational databases,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 8, no. 1, pp. 52–65, 2002.

[165] ——, “Multiscale visualization using data cubes,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 9, no. 2, pp. 176–187, 2003.

[166] M. Stonebraker and D. Moore, Object Relational DBMSs: The Next Great Wave.
Morgan Kaufmann Publishers Inc., 1995.

[167] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M. Rush,
“Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence models,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 353–
363, 2019.

[168] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A tool for visual
analysis of hidden state dynamics in recurrent neural networks,” IEEE Transactions
on Visualization and Computer Graphics, vol. 24, no. 1, pp. 667–676, 2018.

[169] Y. Sun and J. Han, “Mining heterogeneous information networks: Principles and
methodologies,” Synthesis Lectures on Data Mining and Knowledge Discovery,
vol. 3, no. 2, pp. 1–159, 2012.

[170] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan, “EnsembleMatrix: Interactive visual-
ization to support machine learning with multiple classifiers,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI), ACM, 2009,
pp. 1283–1292.

[171] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative
models,” in Proceedings of the 4th International Conference on Learning Repre-
sentations (ICLR), 2016.

[172] J. Tyszkiewicz, “Spreadsheet as a relational database engine,” in Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data, ACM,
2010, pp. 195–206.

[173] S. Van Den Elzen and J. J. Van Wijk, “BaobabView: Interactive construction and
analysis of decision trees,” in IEEE Conference on Visual Analytics Science and
Technology (VAST), IEEE, 2011, pp. 151–160.

[174] M. Veale, M. Van Kleek, and R. Binns, “Fairness and accountability design needs
for algorithmic support in high-stakes public sector decision-making,” in Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems, ACM,
2018, 440:1–440:14.

190

[175] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” in Proceedings of the 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), IEEE, 2015, pp. 3156–3164.

[176] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without
opening the black box: Automated decisions and the gdpr,” Harvard Journal of
Law & Technology, vol. 31, no. 2, pp. 841–887, 2017.

[177] J. Wang, L. Gou, H. Yang, and H.-W. Shen, “GANViz: A visual analytics approach
to understand the adversarial game,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 24, no. 6, pp. 1905–1917, 2018.

[178] M. Wattenberg, F. Vigas, and I. Johnson, “How to use t-SNE effectively,” Distill,
2016.

[179] D. S. Weld and G. Bansal, “The challenge of crafting intelligible intelligence,”
Communications of the ACM, vol. 62, no. 6, pp. 70–79, 2019.

[180] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Vigas, and J. Wilson,
“The What-If Tool: Interactive probing of machine learning models,” IEEE Trans-
actions on Visualization and Computer Graphics (Early Access), 2019.

[181] J. Wexler, “Facets: An open source visualization tool for machine learning train-
ing data,” Google AI Blog, 2017. Accessed: Sept. 21, 2019. [Online]. Available:
https://ai.googleblog.com/2017/07/facets-open-source-
visualization-tool.html.

[182] B. Wilson, J. Hoffman, and J. Morgenstern, “Predictive inequity in object detec-
tion,” arXiv preprint arXiv:1902.11097, 2019.

[183] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz, D. Kr-
ishnan, F. B. Viégas, and M. Wattenberg, “Visualizing dataflow graphs of deep
learning models in TensorFlow,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 24, no. 1, pp. 1–12, 2018.

[184] K.-W. Wu, C.-S. Ferng, C.-H. Ho, A.-C. Liang, C.-H. Huang, W.-Y. Shen, J.-Y.
Jiang, M.-H. Yang, T.-W. Lin, C.-P. Lee, P.-H. Kung, C.-E. Wang, T.-W. Ku, C.-
Y. Ho, Y.-S. Tai, I.-K. Chen, W.-L. Huang, C.-P. Chou, T.-J. Lin, H.-J. Yang, Y.-
K. Wang, C.-T. Li, S.-D. Lin, and H.-T. Lin, “A two-stage ensemble of diverse
models for advertisement ranking in kdd cup 2012,” in KDD Cup Workshop at the
18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
2012.

191

https://ai.googleblog.com/2017/07/facets-open-source-visualization-tool.html
https://ai.googleblog.com/2017/07/facets-open-source-visualization-tool.html

[185] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld, “Errudite: Scalable, reproducible,
and testable error analysis,” in Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), 2019, pp. 747–763.

[186] D. Xu, S. Yuan, L. Zhang, and X. Wu, “Fairgan: Fairness-aware generative adver-
sarial networks,” in Proceedings of the 2018 IEEE International Conference on Big
Data, IEEE, 2018, pp. 570–575.

[187] Q. Yang, J. Suh, N.-C. Chen, and G. Ramos, “Grounding interactive machine learn-
ing tool design in how non-experts actually build models,” in Proceedings of the
2018 Designing Interactive Systems Conference, ACM, 2018, pp. 573–584.

[188] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summarizing relational databases,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 634–645, 2009.

[189] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neu-
ral networks through deep visualization,” in Deep Learning Workshop at the 31st
International Conference on Machine Learning (ICML), 2015.

[190] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.
Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache spark: A unified engine
for big data processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65,
2016.

[191] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representa-
tions,” in Proceedings of the 30th International Conference on Machine Learning
(ICML), PMLR, 2013.

[192] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for feature selection
workloads,” in Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, ACM, 2014, pp. 265–276.

[193] M. M. Zloof, “Query-by-example: A data base language,” IBM Systems Journal,
vol. 16, no. 4, pp. 324–343, 1977.

192

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 Introduction
	1.1 Thesis Goal & Main Ideas
	1.2 Thesis Overview
	1.2.1 Part I. Unified Scalable Interpretation
	1.2.2 Part II. Data-driven Model Auditing
	1.2.3 Part III. Learning Complex Models by Experimentation

	1.3 Thesis Statement
	1.4 Research Contributions
	1.5 Impact

	2 Related Work
	2.1 Machine Learning Interpretation through Visualization
	2.2 Visualization of Deep Learning Models
	2.3 Interactive Analysis in Machine Learning Workflow

	I Unified Scalable Interpretation
	3 ActiVis: Visual Exploration of Industry-Scale Deep Learning Models
	3.1 Introduction
	3.2 Analytics Needs for Industry-Scale Problems
	3.2.1 Background: Machine Learning Practice at Facebook
	3.2.2 Design Challenges

	3.3 ActiVis: Visual Exploration of Neural Networks
	3.3.1 Design Goals
	3.3.2 Exploring Neuron Activations by Instance Subsets
	3.3.3 Interface: Tight Integration of Model, Instances, and Activation
	3.3.4 Deploying ActiVis: Scaling to Industry-scale Datasets and Models

	3.4 Informed Design through Iterations
	3.5 Case Studies and Usage Scenarios
	3.5.1 Case Studies: Exploring Text Classification Models with ActiVis
	3.5.2 Usage Scenario: Exploring Ranking Models

	3.6 Discussion and Future Work
	3.7 Conclusion

	II Data-driven Model Auditing
	4 MLCube: Interactive Model Comparison with Data Cube Analysis
	4.1 Introduction
	4.2 Background: A Typical Machine Learning Pipeline
	4.3 MLCube: Data Cubes for Machine Learning
	4.4 Visual Exploration of MLCube
	4.4.1 User Interface
	4.4.2 Interactive Operations
	4.4.3 System Implementation

	4.5 Usage Scenario
	4.6 Future Work

	5 FairVis: Discovering Intersectional Bias in Machine Learning
	5.1 Introduction
	5.2 Background in Machine Learning Fairness
	5.3 Design Challenges and Goals
	5.3.1 Design Challenges
	5.3.2 Design Goals

	5.4 FairVis: Discovering Intersectional Bias
	5.4.1 Feature Distribution View & Subgroup Creation
	5.4.2 Subgroup Overview
	5.4.3 Suggested Subgroups
	5.4.4 Similar Subgroups
	5.4.5 Detailed Subgroup Analysis and Comparison

	5.5 Use Cases
	5.5.1 Auditing for Known Biases in Recidivism Prediction
	5.5.2 Discovering Biases in Income Prediction

	5.6 Limitations and Future Work

	III Learning Complex Models by Experimentation
	6 GAN Lab: Learning Deep Generative Models by Interactive Experimentation
	6.1 Introduction
	6.2 Background: Generative Adversarial Networks
	6.3 Design Challenges for Complex Deep Learning Models
	6.4 Design Goals
	6.5 Visualization Interface of GAN Lab
	6.5.1 Model Overview Graph: Visualizing Model Structure and Data Flow
	6.5.2 Layered Distributions: Visual Analysis of Interplay between Discriminator and Generator
	6.5.3 Metrics: Monitoring Performances

	6.6 Interactive Experimentation
	6.6.1 Direct Manipulation of Hyperparameters
	6.6.2 Step-by-Step Model Training at Multiple Levels
	6.6.3 Browser-based Implementation for Deployment

	6.7 Informed Design through Iterations
	6.8 Usage Scenarios
	6.8.1 Beginners Learning Concepts and Training Procedure
	6.8.2 Practitioners Experimenting with Hyperparameters

	6.9 Observational Study
	6.9.1 Study Design
	6.9.2 Questionnaire Results
	6.9.3 Key Findings
	6.9.4 Discussion: Measuring Understanding Level

	6.10 Log Analysis of Deployed Tool
	6.10.1 Data Collection
	6.10.2 Exploring Data and Identifying Actions
	6.10.3 Results

	6.11 Limitations and Future Work

	7 ETable: Interactive Browsing and Querying of Relational Databases
	7.1 Introduction
	7.2 Related Work
	7.3 Introducing ETable
	7.4 Typed Graph Model
	7.5 ETable Presentation Data Model
	7.5.1 Enriched Table
	7.5.2 ETable Specification
	7.5.3 Incremental Query Building with Primitive Operators
	7.5.4 Query Execution

	7.6 Interface and System Design
	7.6.1 User-Level Actions
	7.6.2 Architecture

	7.7 Evaluation: User Study
	7.7.1 Experimental Design
	7.7.2 Results

	7.8 Expressiveness
	7.9 Conclusions

	8 Conclusions
	8.1 Contributions
	8.2 Future Research Directions
	8.3 Concluding Remarks

	References

