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SUMMARY 

Oscillating fluids impart forces on their containers, and if such 

containers are attached to other moving media, the imparted forces of the 

sloshing fluids will be transmitted to the moving body and will influence 

its motion. It is the interest of this program to make use of such forces 

in damping the amplitudes of the vibratory systems. 

The shape of the container is selected to be spherical, the fluid 

in its first anti-symmetric mode is modeled as a damped pendulum, and the 

main vibratory system is modeled as a mass-spring-dashpot system. The 

coupled free motion of the main system and the auxiliary system (fluid) 

is studied analytically and experimentally. The influence of the varia­

tion in each parameter of the coupled system upon the damping of the main 

system is studied for the linear fluid motion, while for the nonlinear 

fluid oscillations only the effect of large initial displacements is 

investigated. The analysis of linear fluid motion indicates the possi­

bility of designing very efficient fluid slosh dampers at or about the 

critical value of viscous damping when tuned at the critical tuning fre­

quency. Logarithmic decrements of damping are calculated from the analyti­

cal and experimental response of the main system and are compared. 

To check the validity of the pendulum model in the nonlinear range 

of fluid motion, the oscillating fluid under forced vibration was analyzed. 

The pendulum analogy proved to be deficient for the analysis of the non­

linear fluid motion except at a critical fluid height (H/D = 0.34); there­

fore, proper modification was made and close agreements were obtained. 
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The analysis of nonlinear fluid motion indicated marked improvement in 

damping of the main system only for very large amplitudes of motion, 

while for slightly lower displacements no significant improvement was 

noticed, specially for small mass ratios. 

In the course of the theoretical analysis two computer programs 

were written in Fortran and were processed by UNIVAC 1108 digital com­

puters. One program was to solve the fourth order characteristic equation 

of the linearized differential equations and the other program was to use 

Rung-Kutta method and solve the nonlinear differential equations of the 

coupled system. In many cases theoretical and experimental analyses are 

compared and conclusions are drawn. 
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CHAPTER I 

INTRODUCTION 

Large amplitudes of vibration produce high fluctuating stresses in 

structures. Under certain conditions these stresses could cause damage, 

failure or other serious problems to the vibrating member. There are two 

possibilities to avoid such problems: 

1. To redesign the member to withstand such levels of stress 

cycles, 

2c To improve the damping capacity of the system on hand. 

The second method seems to be of more practical importance and 

has been the subject of investigation of many researchers. 

The problem under consideration is that of providing additional 

damping by means of attaching containers partially filled with fluid to 

the vibrating members. The amount of the additional damping depends 

upon the proper selection of the parameters involved. 

Factors such as initial displacement of the vibrating member, its 

natural frequency, amplitude of oscillation of the fluid, its natural 

frequency, fluid height in the container, its viscosity, size and shape 

of the container determine the influential parameters of the systems. 

Some of these parameters are entirely independent of the others while 

others are interrelated. Some of the parameters can be predetermined 

while some others can be left as variables. For example, due to a special 

interest the container shape is selected to be spherical, the vibrating 

member could be a cantilever beam or an equivalent mass-spring-dashpot 
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and the direction of oscillation of fluid is selected to be normal to the 

gravity vector. 

Three types of forces seem to contribute to the motion of the con­

tainer and its attachments, namely, the gravity forces, the dissipative 

forces, and the inertia forces. The dissipative forces are due to struc­

tural damping of the vibrating body, viscosity of fluid and breaking waves 

of the fluid free surface which can result at very large amplitudes and 

large fluid heights or from the introduction of baffles. The inertia 

forces are both frequency and amplitude dependent and may also be influ-

ced by variation in other parameters. The amplitude of oscillating fluid 

is sensitive to the initial displacement and natural frequency of the 

vibrating members as well as the viscosity of the fluid. 

For low amplitudes the fluid motion can be explained by a linear 

theory while the nonlinearity is introduced mainly due to large amplitudes 

r n* and the curvature of the container LU . 

Before attacking the coupled motion of the composite it seems 

essential to study the two subsystems uncoupled. 

Main System 

Many vibrating structures can be modeled as a linear or nonlinear 

mass-spring-dashpot, the theory of which can be found in any standard 

vibration textbook. 

Auxiliary System 

Dynamic analyses of continous viscous fluid systems, if at all 

feasible, often lead to enormous mathematical complexities. These 

Numbers in brackets correspond to the references listed in the biblio­
graphy. 
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difficulties are further enhanced when the container exhibits a non-simple 

geometry. Recent progress in space sciences has led to numerous theoreti­

cal and experimental investigations of fuel sloshing in space vehicle 

tanks. Abramson's report [l] covers topics such as lateral oscillation, 

vertical vibration, pitching, and swirling of fluids in moving containers, 

He has examined damping of fluid oscillation, representation of the fluid 

motion as a mechanical model, impact of fluid on the bulkhead of the con­

tainers, and results of theoretical and experimental investigations as 

well as 447 References have been compared and reported. It is noted that 

considerably more work has been done on lateral sloshing, and that most of 

of this work employs a linear analysis based on small oscillations. The 

study of small amplitude lateral sloshing has also been extended to in­

clude various container geometeries, such as spherical, spheroidal, cy­

lindrical, conical, toroidal and rectangular. 

In a recent mathematical analysis of sloshing in spherical con­

tainers Budiansky [2], through the use of integral equations, success­

fully determined the natural frequencies and different mode shapes of 

vibratory motion of the fluid. In this analysis small amplitude oscil­

lation is assumed and the fluid viscosity is neglected. Macarty and 

Stephens [3] compared their experimental results with the theoretical 

analysis of Budiansky and demonstrated a good agreement between the two, 

Leonard [4] studied the frequencies and mode shapes of fluid motion in 

oblate spheroidal containers and his results for the sphere, which is a 

special case of a spheroid, checked closely with those obtained by other 

investigators. Stofan [5J studied the slosh forces in addition to the 

frequencies and mode shapes. He compared his experimental work with the 
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solutions of Budinasky and demonstrated close agreement. Stephens L 6 J 

studied damping of fluid oscillations in oblate spheroidal tanks with and 

without baffles. He noticed that viscous damping is comparatively larger 

for small and large fluid heights. He also concluded that the measured 

damping for tanks without baffles are not amplitude dependent except for 

relatively low amplitudes. 

Sumner and Stofan [7] considered three sizes of spherical contain­

ers with fluids of different viscosities and observed that for small 

oscillations viscous damping increases with increase in viscosity and 

decreases with increase in tank diameter. The scope of this investigation 

covers only one particular fluid height (half full). To obtain informa­

tion for wider range of fluid heights results of a few additional experi­

ments are reported in Chapter VII. 

For many practical purposes one might be interested in analysis of 

fluid motion as a moving mass in a discrete fashion rather than a contin­

uous media. Mechanical model analogy as a mass-spring-dashpot or a 

pendulum-dashpot can best represent fluid motion for certain practical 

purposes. The results of some investigations on the subject are reported 

by Abramson [l] for different shapes of containers. 

On the basis of linear theory, Sumner [ 8J studied sloshing of 

fluids in oblate spheroidal containers and also investigated a mechanical 

model (pendulum) to represent the first mode of fluid oscillation. He 

later determined the pendulum analogy for the case of a spherical con­

tainer [9J . Results of the latter report L9J are extensively used 

throughout the present investigation. 

Abramson, Chu, and Garza [10] studied fluid sloshing in spherical 



5 

containers and compared their results with the theory of Budiansky and 

other related experimental works. They also compared the force response 

of the forced vibration for baffled containers to that of the mechanical 

model. 

On the subject of nonlinear fluid motion, relatively little work 

is available, most of which is devoted to cylindrical and rectangular 

tanks. No available theoretical work includes the spherical tank geometry. 

The only experimental work [ll] reported in this connection is carried out 

for a constant fluid height (half full tank). According to this report 

the fluid motion exhibits an amplitude-frequency response characteristic 

which is very similar to that of a softening spring. Although the re­

sponse of a nonlinear pendulum model also exhibits softening characteris 

tics, it is doubtful if the degree of softening is the same as those of 

the sloshing fluid. On the other hand, Chen [l2j in his analysis of 

cylindrical containers discovered a critical fluid height above which the 

fluid behaved as hardening and below which as softening. On the basis of 

the above two reasons it appears reasonable to investigate the fluid 

response in spherical containers for different fluid heights and compare 

the results to that of a pendulum model in the nonlinear range. Such an 

investigation is reported in detail in Chapters II and III. As a result 

it was found that the fluid behavior in spherical containers always 

demonstrated softening for all fluid heights. It was also found that 

the degree of softening of a pendulum model differs from the fluid for 

various fluid heights except at a critical fluid height for which a 

pendulum seemed to agree well with the fluid motion in the nonlinear 

range. 
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If the fluid (specially in containers with circular cross section) 

is excited near resonance the oscillating waves depart from the plan of 

excitation and rotate about the gravity vector. 

Berlot [13J compared the result of energy method he used to that 

of the linear mechanical model for planar motion and found that a conical 

pendulum model of the same mass an-d length can duplicate the fluid rota­

tion. He also compared the boundaries of rotary motion of a conical 

pendulum model to those obtained from experiments of fluid sloshing in 

cylindrical containers. 

Miles [l4j has also studied the regions of stabilities of a spheri­

cal pendulum forced at the hinge-point and obtained theoretical expressions 

for the boundary points. In the first two chapters of the present inves­

tigation similar experimental boundaries for spherical containers have 

been obtained and compared with the theoretical analysis of Miles. The 

agreement is far better than Berlot's [13] comparison to cylindrical con­

tainers. 

Stephens [15] seems to be the first to investigate the damping 

effect of moving fluid (cylindrical container) on the attached vibrating 

member. He analyzed both a four degree of freedom system and a two degree 

of freedom system (tank translation and fluid motion) and concluded that 

the damping of the main system (tank and vibrating member) increased with 

increase in fluid damping. 

It was on the basis of this idea that the problem at hand was 

undertaken and both linear and nonlinear fluid motions were considered. 

Chen [12] in his analysis disregards viscous damping of fluid and the 

structural damping of the main vibrating system. He used forced vibration 
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to exhibit the usefulness of oscillating fluid as a vibration absorber, 

In the present analysis the first anti-symmetric mode of fluid 

sloshing is considered and the transient response of the main system 

coupled with the oscillating fluid (pendulum model) under free vibration 

mode is analyzed. The viscous damping of the coupled system is studied 

mathematically and experimentally. The equations of motion are derived 

by the use of Lagrange's energy method and digital computer programs were 

run to solve both the fourth order characteristic equation of linear 

motion and the response of the nonlinear fluid motion. In the nonlinear 

case the Runge-Kutta method of numerical integration is used to predict 

the response of the coupled system. 
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CHAPTER II 

EVALUATION OF A PENDULUM MODEL 

(FORCED VIBRATION) 

The Pendulum Analogy 

Since the dynamics of moving fluid contributes directly to the 

motion of the main system, it is essential to analyze the fluid system 

uncoupled and investigate the characteristics of the influential para­

meters . 

Budiansky [2] treats the moving fluid in a spherical tank as a 

continuous media, he linearizes the equations of motion, assumes special 

coordinates and uses sophisticated integral equations to solve for the 

three lowest frequencies of oscillation. Similar work has been done by 

Moiseev[l6] in which he assumes small oscillation, a general shape for 

the container and by use of Ritz Variational methods determines the fre­

quencies of oscillation. He applies his general theory to containers of 

different geometries. For the spherical containers using an electronic 

computer he calculates the fundamental natural frequencies for different 

fluid heights. No attempt is made to solve the problem of large ampli­

tudes of oscillations for this geometry or to include the effect of vis­

cosity mainly due to the complexity of the boundary curvature which 

further complicates the mathematical analysis. 

Even for small oscillations the solutions are too cumbersome and 

for many practical purposes simpler analysis is appreciated. One method 
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of providing simpler analysis is to model the fluid motion as a mass-

spring-dashpot or a pendulum-dashpot. Much of this type of work is re­

ported by Abramson [ l] . 

The only mechanical model (Pendulum) for fluid oscillation in 

spherical containers is in the form of graphs [9] some of which are repro­

duced and is provided in appendix A for easy reference. The pendulum 

analogy is constructed according to the following assumptions: 

1. Amplitude of oscillation is small. 

2. Viscosity of fluid is negligible. 

3. The pendulum arm is normal to the fluid free surface and the 

fluid free surface remains straight while in motion. 

4. The sum of the moving mass and the stationary mass equals the 

total mass of fluid present in the container. 

The pendulum model of fluid oscillation, which is adequate for the 

first antisymmetric mode in the plane of oscillation, can be further 

generalized by the addition of a dashpot with experimentally determined 

coefficients to account for the viscous friction of the moving fluid. 

The physical system and its equivalent mechanical representation are 

schematically depicted in Figure 1. For the present investigation the 

model parameters such as M , M , L , and L are determined from Sumner's 
p' o' p o 

[ 9] analogy and are used without any modification in the linear analysis 

(Chapter V). Values of C needed to develop this model are calculated 

from the empirical equations reported in Chapter VII. Further investi­

gations necessary to evaluate the validity of this model in the non­

linear range of fluid motion are reported in this chapter as well as in 

Chapter III. 
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Fluid and Container Equivalent Mechanical Model 

Figure 1. Pendulum Analogy 

Stability Boundaries 

When a spherical container, partially filled with a fluid of 

relatively low viscosity, is excited with a frequency close to its funda­

mental natural frequency the oscillation of the fluid departs from the 

plane of excitation and oscillates in a different plane making a small 

angle with the plane of excitation. If the frequency or amplitude of 

oscillation is slightly increased the fluid rotates about a vertical axis 

passing through the center of the sphere. This fluid rotation is con­

sidered unstable [l] and is termed "Swirl." The velocity of rotation in 

the swirl region sometimes increases to a large value and then decreases 

to a stop and increases again in the opposite direction. This process 

repeats itself consecutively. This type of fluid motion has been analyzed 

both experimentally and mathematically mostly for the case of cylindrical 

containers [1,13,17,18]. Miles [14] noticed similar type of behavior in 

the motion of a spherical pendulum excited at the base and mathematically 
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solved for the boundary points. 

Vibration of the main system when coupled with fluid motion can be 

endangered by the unstable rotation of the fluid if the coupled system is 

operated at frequencies and amplitudes corresponding to those of the swirl 

region. 

Therefore it is important to recognize these boundaries in order 

to be able to specify the ranges of operation of fluid slosh dampers for 

safe performance. 

An initial attempt is made to recognize these boundaries experi­

mentally. Furthermore, the validity of the pendulum model is established 

by comparing the experimental results against those calculated from Miles 

[14] analysis. Figure 2 shows these stability boundaries. 

Miles L14J analyzed a spherical pendulum in general and for the 

class of differential equations corresponding to those of the spherical 

pendulum as given by 

~- |e - -£- e3 + %i _dt2 O " 6L 
d2 _G_" 

Ldt2 +L J 
P 

o/2 = ecu2 cos cut, and (1) 

d 2 . G 1 ~ G 3 j . v l~ d 3 -L G lft3 n 

p p p 
(2) 

he assumed g e n e r a l s o l u t i o n s of t h e form 

1/3 
S = e [ f i ( A ) cos out + f 2 (A) s i n cu t ] , and 

1/3 
a = e [ f 3 ( A ) cosuut + f 4 (A) s i n cut ] , 

(3) 

(4) 



12 

where A = J>e2/3out. (5) 

To determine the stability of the harmonic motion corresponding to a 

singular point, say f. , he considered the perturbation solution 

f i ( A ) = f i 0 ) + ci exp[(*-k)A3> k i l « i . (6) 

Such a solution tends to the singular point if X < k, remains in the 

neighborhood of the singular point if X = k, or departs from this neigh­

borhood if X > k. He designated both the singular point and the corre­

sponding harmonic motion as stable if X ^ k or unstable if X > k. The 

spherical pendulum departs from the plane of excitation at these unstable 

singular points and it is interesting to notice that the corresponding 

fluid motion also departs from the plane of excitation at such singular 

points. Therefore, according to the above definition of stability the 

harmonic planar motion of the fluid can also be considered unstable. 

According to Miles calculation the stability boundaries are : 

1. Lower boundaries which also correspond to the points of vertical 

tangency on an amplitude frequency plot given by 

a = (4n 2
f)

1 / 3, and (7) 

2. The upper boundaries given by 

a = -[(4/3)n2
f]

1/3. (8) 

* 2 

In Miles analysis Qf is left out of the calculation probably because the 
stability boundaries are located close to the resonance where Qf =- 1. 
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After s u i t a b l e s u b s t i t u t i o n s equa t ions 9 and 10 w i l l be ob ta ined . The 

lower boundar ies are given by 

XQ /D = 1 .089(L/D) [ l - Q 2
f ) 3 / 2 / f i 2

f ] , (9) 

and the upper boundar ies a re given by 

XQ /D = 1.515 (L /D) [ ( Q 2
f - l ) 3 / 2 / Q 2

f ] . (10) 

An experimental setup for forced vibration studies, which is des­

cribed in Chapter VII was used to determine the slosh force output for 

various fluid heights. For each fluid height and a fixed excitation 

amplitude the excitation frequency was varied and the forces were recorded 

up to the unstable boundary point at which the fluid became unstable. 

These points (two for each excitation amplitude, one below and one above 

the resonance) were marked, the force output at the intermediate fre­

quencies being unstable could not be measured. A total of seven fluid 

heights and five excitation amplitudes for each fluid height were used. 

The force outputs other than those of the boundaries were not measured 

for the fifth excitation amplitude. The Force-Frequency plots for the 

seven fluid heights are included in appendix B. 

Agreement between experimental data and those obtained from Miles 

[14] analysis, is indeed quite satisfactory. A slight disagreement at 

lower fluid heights and at higher fluid heights is due to viscous damping 

which is neglected in the analytical calculations. The assumption of 

small damping in the neighborhood of the half full container is justi­

fied for water as the fluid medium, while the viscous damping was 

relatively higher at lower and higher fluid heights (Chapter VII). 
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It is worthwhile to indicate that for larger fluid damping, the 

width of the unstable region becomes narrower and may disappear completely 

thus indicating that high damping precludes the fluid from becomming 

dynamically unstable. This fact needs further investigation before a 

more definitive statement can be made in this regard. 

A knowledge of the unstable boundaries allow one or more of the fol­

lowing decisions: 

1. Avoid using the coupled system at the range of excitation ampli­

tudes and frequencies which correspond to points between the boundaries. 

This limitation in turn narrows the range of applicability of such a 

method of damping which is not desirable. 

2. To install splitter plates parallel to the direction of excita­

tion of fluid in the container. This method constrains the fluid motion 

in the plane of excitation but requires additional fabrications which are 

not economical and, at times, not desirable. 

3. Use high viscous fluids to obtain either a narrow range of 

instability or none at all. 

The decision as to the adaptation of a particular method can be made 

following further information on fluid response in the entire range of 

frequency domains. In the present experimentation the method of splitter 

plate with water as the fluid medium is used and the Force-Frequency 

plots of appendix C are obtained. 

Force Output of the Constrained Pendulum 

To use a splitter in the fluid container is equivalent to constrain­

ing the spherical pendulum in one plane of motion. Using this method one 

can supress the fluid rotation and obtain data in the swirl region except 
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at a narrow band of frequency which corresponds to "Jump" which generally 

occurs in certain physical systems [19]. 

Forced vibration measurements as outlined in Chapter VII were made 

similar to those used for determining the swirl boundaries as explained 

earlier. Fluid heights and frequency ranges were the same but only four 

excitation amplitudes were used in the experimentation. To show that an 

empty container as well as a full container behave as rigid bodies the 

extremes were also studied. A complete set of Force-Frequency response 

curves are included in appendix C. 

To investigate the validity of the model, the output force of the 

model can be formulated from Figure 3. Derivation of the pendulum output 

force is summerized in what follows. 

«-M (Supporting Plate) 

•> x = X cos out 
o o 

Figure 3. Force Output of Constrained Pendulum 
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\ ( h o r i z o n t a l f o r c e s ) = 0 

F„ = (M + M + M + M ) x - T s i n 9 - C L 0 c o s 0. (11) 
H t w s o o p p 

\~ 
, (radial Forces Along the Pendulum Cord) = 0 

.2 

T = M L 9 + M Gcos 9 - M k sin 9 (12) 
P P P P ° 

Substituting for T in equation 11 gives 

F = (M +M + M +M +M s i n 6 2 ) x - M L 6 2 s i n 6 - C L 9 cos 6 - M G s i n 6 cos 6 . 
H s w t o p o p p p p p 

(13) 

(moments About the Pivot) = 0 

M L 26 + C L 26 + M GL s i n 6 + M x L cos 9 = 0 . (14) 
P P P P P P p o p 

Solving for -C L 6 from equation 14 and substituting in equation 13, 

after simplification, the expression for force becomes 

•s 
F„ = Mx - M L 9 sin 9 + M L S cos 6 (15) 
H o p p p p 

Dividing equation 14 by M L2 and simplifying, the equation of motion is 
P P 

obtained as 

6" + 2£ u) 9 + ouE sin 9 = eio2cos wt. (16) 
P P P 

Approximating sin 0 with the two first terms of its series expansion, 

Duffing's equation will be obtained, the solution of which has beend 

analyzed by Miles [14], and Stoker [19]. The Duffing equation is 

3 

9" + 2£ u) 9 + u)2 (9 - 9/6) = ecu2 cos cut (17) 
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By proper substitution, equation 15 can be written in a more convenient 

form as 

|F | =WQ 2
{ [(c/p.) cos cut + 9 cos 9 + (A

2-es) sin 9]. (18) 

Equation 18 is an equivalent expression for the slosh force of the fluid 

containing the inertia term of the container and other attachments. 

In the experimental analysis the magnitude of the peak force (maxi­

mum with respect to time) was measured. The peak force mathematically is 

obtained by setting 

^ ^ = 0, for (19) 

F = F J (20) 
H1 H'max . 

For the above cond i t ion to hold , 

[ s i n 3 $ ? + f- [ s i n 2 * ] 2 + £ ! + - £ [ s i n 2 $ ] - ^ = 0, (21) 

where 

B = [(e/nA)cos cp - y - (As+ 7) + l ] , (22) 

C = —• (9 + A s) , (23) 

D =(e /pA)s in cp , and (24) 

$ = uut - cp . (25) 
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It is worthy of mentioning that in the derivation of equation 21 it 

was found necessary to assume sin 8̂*9 - 63/6, cos 9=4 - 9B/2 and terms in 

94 and higher were neglected. 

Equation 21 yields one solution when the oscillation is small and 

gives three solutions when the oscillation is large simply due to the 

fact that for small oscillation the force output is harmonic (Figure 4-a) 

and in large oscillation other harmonics are also present (Figure 4-b). 

time 

\ Max. 1 

Max. 2 

CD 
O 

O 
Pn 

time 

Figure 4-a. Small Oscillation Figure 4-b. Large Oscillation 

Figure 4„ Force Output for mall and Large Oscillations 

The three solutions correspond to points Max. 1, Max. 2 and Min„ Since 

the points Max. 2 were measured from the experimental outputs, the cor­

responding solutions of equation 21 were used in the mathematical analysis, 

According to Miles [14], the solution to Duffing's equation is 

assumed as 

.1/3 
= € | a jcos | tu t - cpj | + e | a 3 |cos J3tut - cp3 j + 0(e ) 5/3, 

(26) 
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where |a| is a dimensionless amplitude. Substituting solution 26 in equa­

tion 17 one obtains 

| |a|3+ v|a| + tf coscp = 0, and (27) 

K.|a| = Qf sincp, (28) 

where K = 26 c" (29) 

Using only the first term of the series solution given by equation 26, 

1/3 
6 = € |a|cos|u)t - cp|, (30) 

and eliminating the phase angle from equations 27 and 28 gives 

{|a|2}3 + 16v{|a|2}2 + 64(v2 + K2tff){|a|
2} - 64Q*f = 0, (31) 

where v = (fij - l)<f2/3, and (32) 

A=e 1 / 3|a|. (33) 

The peak force was calculated in the following procedure: 

1. The frequency ratio fi and excitation amplitude corresponding 

to the maximum experimental force (in a Force-Frequency plot) were 

selected. 

2. From equation 31 the value of |a| was calculated. 

3. For |F| = |F| , from equation 21, $ was evaluated. 
1 ' ' 'max. 

4. Finally, the value of the force was obtained from equation 18„ 
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The calculated force parameters were compared to the experimental points 

as shown in Figure 5. The following conclusions can be drawn from the 

comparison of Figure 5. 

1. The pendulum force output and the corresponding experimental 

force agree well in the linear small oscillation range. 

2. In the nonlinear range, the pendulum exhibits stronger softening 

character than the corresponding mass of fluid below some critical fluid 

height and weaker softening character above this critical fluid height. 

3. The experimental output-force deviates largely from the pendulum 

output-force for H/D = 7/8. 

The variation in the softening character of the fluid could arise 

from the following fact: 

Abramson [1] considers the strong boundary curvature to be a main 

source of nonlinearity of fluid, simply because the expanding volume for 

fluid heights less than a radius tends to suppress the motion of the fluid 

while for fluid heights more than a radius the contracting volume tends 

to produce breaking waves. 

This fact, in the author's opinion, is the main cause of disagree­

ment between the fluid output force and that of the pendulum. As men­

tioned earlier, the pendulum was constructed on the assumption that the 

fluid free surface remain normal to the pendulum arm (fluid free surface 

remain straight) , which evidently is not the case for large amplitudes of 

fluid oscillation. This concept is schematically presented in figure 6. 

If the fluid behaves according to the assumption of pendulum analogy 

[9], it will exert an average force on the container whose horizontal 

component is shown by F . In this case it equals the horizontal 
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1/8 £ H/D £ 1/2 

0 .850 0 . 9 0 0 0 .950 

F r e q u e n c y R a t i o CJO/UJ 

1.000 0 .900 0 .950 1.000 

Frequency Ratio CJU/CJU 

*This parameter corresponds to a maximum value for experimental points 
and is not necessarily maximum theoretically. 

-Comparison is avoided. 

Figure 5. Comparison of Pendulum and Fluid Force Response 
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Assumed Configuration Actual Configuration 

Figure 6. Large Amplitude Fluid Motion 

component of the pendulum. But because of the large relative velocity 

of the fluid particles at the fluid surface, a portion V. of the fluid 

climbs the container wall and at the same time because of the contracting 

volume of container together with the opposition of the fluid particles 

to the curved container wall the sense of the velocity of these particles 

change. This in turn causes the momentum of the portion V. of the fluid 

to change. This affects the total resultant force and distorts its 

orientation as well as it reduces its magnitude. The combination of 

these results in a smaller horizontal component of the average force 

F < F . The component F is sensed by the load cell and recorded, 
H„ H- H_ 

while the component F is calculated from the pendulum. This difference 
Hl 

is evident from the comparison of Figure 5. It should be mentioned that 

an opposite situation exists for lower fluid heights. 

For fluid height H/D = 7/8, even for small oscillations, the fluid 

behaved extremely nonlinearly and in many instances the moving mass of 
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fluid climbed the container boundaries up to the top and then rotated 

around the dome and discharged on the opposite side (Figure 7) and, 

according to the forcing amplitude and frequency sometimes the fluid was 

particulated. The measured force in no way could be related to the pen­

dulum output unless the pendulum is considered to have a variable mass 

and to move with very large angle of swing and pass its second singular 

point [19] and then oscillate about the first singular point again. The 

comparison of pendulum output and actual fluid motion is, therefore, 

avoided in this case. 

Figure 7. Fluid Rotation. 
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CHAPTER III 

MODIFICATION OF THE PENDULUM MODEL 
(FORCED VIBRATION) 

Modified Pendulum 

It seems necessary to modify the pendulum in order to increase its 

applicability over a wider range of oscillation amplitudes or else to use 

the pendulum only for small oscillations. As can be seem from Figure 6, 

it is the difference in the magnitude of the horizontal component of the 

pendulum force and the actual fluid force (FH - F ) that causes the 
ni «B 

disagreement and that this difference can be corrected by altering the 

restoring force of the pendulum by means of attaching a spring (B8 ) in 

parallel to the dashpot. By proper selection of B and n one can overcome 

the disagreement and obtain a modified pendulum which models the actual 

fluid motion for large amplitudes of oscillations. 

For n = 1 the order of magnitude of the added spring will be sig­

nificant even at small oscillations thus influencing the natural frequency 

of the linear pendulum which should be avoided, n being any number other 

than three will complicate the equation of motion, but for n = 3 the 

correction will be in the order of softening of the pendulum and the 

equation of motion will still be in the form of Duffing's equation, the 

solution of which is similar to that of the pendulum. 

B on the other hand can be determined from the experimental 

results presented in Appendix C. 
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Force Output of the Modified Pendulum 

Analyzing the modified pendulum as shown in Figure 8, one can 

write: 

nr: 
M 

'*- s 

X cos out o o 

Figure 8. Modified Pendulum 

I*. orizontal forces) = 0 

F = ( M + M + M + M ) x - T s inB - C L 9 cos9 - R63 cos 6 (34) 
H s t w ° o p p 
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) (radial forces along the pendulum card) = 0 

T = M L 9 2 + M G COS9 - M x s in9 (35) 
P P P P o 

) (moment about the pivot) = 0 

M L29 + C L29 + M GL sin9 + M x L cos9 + p§3L cos9 = 0 (36) 
P P P P P P p o p M p 

After substitution of equation 35 into equation 36, one obtains 

F„ = Mx - M L S 2 sin9 - M G sin9 cos9 - (C L 9 + p93) cos9. (37) 
H o p p p P P 

Substituting for - (C L 9 + |39 ) cos 9 from equation 36 into equation 37 
P P 

yields 

F„ = Mx - M L 92 sin9 + M L 9 cos9 . (38) 
H o p p p p 

This equation is the same as equation 15. 

Simplifying the equation of motion and approximating sin9 with the 

first two terms of its series expansion yields Duffing's equation as 

+ 2Q a) 9 + a) (9 - Tie3) = eyj2 cos out, (39) 

where 

71 = \ - p/Wp. (40) 

Since the expression for the force remains the same. Equations 18, 19, 

20, 21, 22, 23 and 24 are still valid. The equation of motion (equation 
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39) is different and more general than equation 16. Assuming solution 26 

and substituting in equation 39 one obtains 

111 |a|3 + v|a| + fi| coscp = 0, and (41) 

K J a | = 0f sincp. (42) 

Eliminating cp from equations 41 and 42 results a cubic equation as 

(|a|2}3 + f^{|a|2f + ^ ( v 2 + K20|) {|a|} - ̂  = 0 (43) 

Again with the same procedure as in Chapter II, the forces for different 

values of g/W (picked at random) were calculated and compared with the 

experiment and the value of g/W for the best fit was selected as plotted 

in Figure 9 and presented in Table 1. At the same time the comparison 

of the modified pendulum with the use of selected p/W are made in Figure 

10. 

All the comparisons between the theory and experiment were based 

on a single frequency ratio which corresponds to the peak experimental 

force on a force-frequency plot. To have a better knowledge on the 

agreement of the model and actual fluid motion over a wide range of fre­

quency ratios the modified pendulum for the half full tank was analyzed 

and the force parameter for each excitation amplitude corresponding to 

Abramson's [ll] experiment were calculated as the frequency was varied, 

the results are compared and presented in Figure 11. To check the 

results of the present experimentation, for the same range of parameters, 

experiments (as reported in Chapter VII) were run and the force outputs 
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Table 1. Coefficients of the Cubic Spring 

H/D p/W T] 

0.125 

0.250 +1/18 1/9 

0.375 -1/42 8/42 

0.500 -1/7 13/42 

0.625 -1/4 5/12 

0.750 -1/6 1/3 

0.875 -1/12 1/4 
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1/2 < H/D £ 7/8 

H/D Exp. Modified 
Pendulum 
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Figure 10. Force Response of the Modified Pendulum 
Compared to the Experiments 
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X Q / D = 2 .175 x l O ~ 3 X0 /D = 7 . 4 0 3 x 10" 

This 
Experiment 

Increasing 
Frequency 
Decreasing 
Frequency 

Reference 11(Faired Curved) 

• + • 

Modified Pendulum 
H/D = 0.5, Water, D = 6.875 ins, 

-1 1 1 1 1 1— 
2.6 2.8 3.0 3.2 3.4 3.6 

.2, 

2.4 
Frequency Parameter UD D/G 

Figure 11. Force Response of the Modified Pendulum, 
Present Experiment and Abramson's [ll] Experiments 
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were parameterized and plotted on the same figure. 

Figure 11 shows good agreement between Abramson's [ll] experiment, 

the present experiment and the modified pendulum. 

Before coming to the conclusion of having the best model, it seemed 

worthwhile to check once again the stability boundaries for the modified 

pendulum, mainly because the coefficient of the added spring is negative 

for a wide range of fluid heights and this negative restoring force is a 

source of instability. 

Stability Boundaries 

Using Miles [14] perturbation method, the unstable boundaries for 

the modified pendulum are obtained as follows: 

1. Lower boundaries are 

a'bf) . <44) 

2. Upper boundaries are 

at^/3 
a = -Kn) <45> 

After substituting equations 44 and 45 into equation 41 and simplifying, 

the lower boundaries become 

0.4444(L /D) (1 - Q|) 3 / 2-

V D " r- ? F 11 L Q2 
(46) 

f 

and the upper boundaries become 
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0.61972(1. /D) r(Qf - 1) 3 / 2-, 

V> — ^ - Hf—J < 4 7 > 
Once again the results of computations from equations 46 and 47 are com­

pared to the experimental points as shown in Figure 12. 

Since the values of 3/W were small, the unstable region did not 

grow considerably except for very large fluid heights at which the inclu­

sion of damping which is relatively large at these heights will narrow 

the unstable region and will result in better agreement. At very low 

fluid heights the positive values of |3/W even though small helped the 

situation and narrowed the unstable region as compared to a planar 

pendulum. 

From the previous analysis it is obvious that the modified pendulum 

duplicates the fluid dynamics for a wide range of fluid heights, but in 

order to use sloshing fluid as a means of vibration damping certain facts 

need to be discussed further. 

Sumner's [9] analysis of a linear pendulum model indicates that 

the magnitude of the stationary mass M increases with fluid height, this 

increase is more rapid for fluid heights above half full and at the same 

time in this range the magnitude of the sloshing mass M is decreasing 

rapidly. To use fluid heights higher than H/D = 1/2 seems like adding 

extra weight to the main system which is unacceptable from a design point 

of view. Therefore the author suggests the use of such a mechanism of 

damping for the range of fluid heights less or equal to one half. On the 

other hand, too small a fluid height still has small sloshing mass 

although the stationary mass is minimum. Therefore the effect of a small 
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sloshing mass on the main system would not be noticeable unless the main 

system has a mass comparative to the sloshing mass, in such a case the 

use of small fluid heights is suggested mainly because the fluid exhibits 

very large camping for small heights (Chapter VII)• 

Figure 9 indicates a critical fluid height (H/D = 0.340) at which 

the pendulum without any modification duplicates the actual fluid response 

in linear as well as in nonlinear ranges. The use of this critical 

height is suggested and if, for any purpose, some other fluid height in 

this neighborhood is used the modified pendulum should be employed for 

nonlinear analysis. 
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CHAPTER IV 

APPLICATION AS VIBRATION DAMPER 
(FREE VIBRATION) 

General Equations of Motion 

Several methods of damping are used to reduce the amplitude of 

vibration of elastic members as well as the rigid members. The most 

effective method used for elastic members is the method of viscoelastic 

coating which has received considerable attention in recent years. On 

the other hand for rigid vibrating members a commonly used method is 

called vibration absorption which is simply a method of attaching an 

auxiliary mass-spring-dashpot to the main system and designing the 

parameters such that the two systems are tuned at resonance. The free 

and forced vibration of such methods have been studied and the range of 

applicability and their efficiencies have been reported by many researchers. 

The method of vibration absorption is a very standard method, the analysis 

of which can be found in any vibration book. Most of the investigators 

consider the undamped vibration absorber under forced vibration condition 

which is very effective at a particular frequency but has the disadvan­

tages of producing two other resonance conditions in the vicinity of the 

tuning frequency. Very little has been done in the case of free vibra­

tion of such methods especially when the dashpot is present. 

The method under discussion is quite similar to a damped vibration 

absorber which will be studied under free vibration condition and the 

efficiency of damping will be predicted from the transient response of 
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the coupled system. It is simply a method of attaching partially filled 

fluid containers to the main vibrating members for the purpose of ampli­

tude reduction. 

As the modified pendulum was proved to be efficient both for 

linear as well as for nonlinear fluid motions, it will be used in the 

derivation of equations of motion. 

Referring to Figure 13 one can write the energy expressions as 

follows: 

The kinetic energy of the coupled system is: 

T = i(M + M + M + M ) ( L y ) 2 + - r M V t (48) 
e 2 s t w o / s ' s 2 p t 

where 

Vl = (L y ) 2 + (L 9) 2 + 2L L y 9 cos 9. (49) 
t S S p p S 'S 

Substituting equation 49 into equation 48 yields 

T = ̂ M(L y ) 2 + ̂ M [(L 9) 2 + 2L L y 9 cos 9] . (50) 
e 2 s ' s 2 p p ps's 

The potential energy of the coupled system is: 

V = -K (L v ) 2 + MGL (1 - cos v ) + M GL (1 - cos 9) + L 3 
2 m s's s 's p p p . 

The dissipative energy of the coupled system is: 

A3dA (51) 
o 

D = h (L Y) 2 + he (L §) 2 (52) 
e 2 m s 's 2 p p 

Using Lagrange's Energy Equation 



39 

UtHUttilU MltttlUtUL 

f-J^T*l 

K 
m 

7 L 

< s 
M. 

V 
£p= 
M 

w 

3 
H 

^ 4. 
t_ M 

-> x 
m 

Actual System 

.UlltlUMtU 

+ M 
w 

Models Coupled 

Figure 13. Two Degree Freedom System Coupled 



40 

^©-©•©•^-'i 
1 'i I I 

where q, = y and q = 8 . 

For free vibration Q. = 0 . 

Using Lagrange's equation for the y coordinate 
's 

ML v + M L L 9 cos 9 - M L L 82 s i n 9 + K L2v + MGL s in v + C L2v = 0 s s p p s p p s m s s s s m s s 

(54) 

Using Lagrange ' s equat ion for the 9 coord ina te 

M L29 + M L L V cos 9 + M GL s in 9 + C L29 + L p93 = 0 (55) 
P P p p s ' s p p p p p 

Since the lengths of supporting strings are much larger than the amplitude 

of oscillation of the main mass one can assume 

K sin X, = L«-Yfl = * (56) 

Substituting the approximation 56 in equations 54 and 55 and simplifying, 

the two equations of motion will be obtained as 

s + (^Vecose + (f> + (5» + f ) x - ( l > p 8 » .ine-o (57) 

and 

e + ( X ) i i c o s e + ( i > + (f)slne + (^)(A)e3 = „. ( M ) 
p P P P P 

Parametric Presentation 

The equations of motion in the form of equations 46 and 47 can be 

solved for variation in each parameter related to certain properties of 
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each system such as M ,L , M, C , etc., but this process will be tedious 
P P P 

and at the same time, the analysis will be too specific. On the other 

hand, if the equations of motion are converted into dimensionless parameters 

the analysis will take a more general form and will be of more practical 

value. For example, instead of finding the effect of variation of M and 

M on the system response separately it will be instructive to investigate 

the effect of variation of M /M as a dimensionless parameter. 

In this investigation it is preferable to work with dimensionless 

parameters and to convert the equations of motion (equations 57 and 58) 

into another set of equations containing parameters entirely dimensionless. 
Letting 

X = X / X Q , (59) 

e = e, (60) 

and 

T = (JO t, (61) 
m 

the original coordinates will be converted into the new set of dimension­

less coordinates as follows 

x = XX (62) 
o 

dx dx dT v v ' ,cr,\ 

x = — = — — = X <JO X (63) 
dt dT dt o m 

x = X u^x", (64) 
o m ' ' 

where 
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.,/ dX j „// d X 
A = -:— and A = . _~> , 

dT dT2 (65) 

also 

(66) 

e = de - d e d T m 
dt dT dt m 

6 = (JU D , 
m ' 

e \ and (67) 

(68) 

where 

6 = -r- and 8 = -r-r • dT dT2 
(69) 

Substituting equations 62, 63, 64, 66, 67 and 68 into equations 57 and 

58 and dividing the first by X ID2 and the second by (ju2 the equations of 

motion will read: 

X* + 
M /M 

__e 
X /L o p 

cos 9 + 
C n / M \ 

1/U) J 
m 

(K /M)+(G/L ) 
m s_ 
(JU2 

m 

X -
M /M 
_£ 
X /L o p 

'82 sin 9 =0 

(70) 

^(rK-^vM 
c 

uo 
m 

G/L 
±)&' + ( ^)siaG + 

r (G/L )(pAO 

ou2 
m 00 

m 

^ = 0 (71) 

Making the following substitutions: 

X /L = € o p 

M /M = u, 
P 

C /M = 2C oa m nn m 

(72) 

(73) 

(74) 

Note: Dots on the variables indicate derivative with respect to real time 
and primes indicate the derivative with respect to dimensionless time. 
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C /M = 2C ou (75) 
P P bP P 

G/L = UJ2 (76) 
P P 

_m + _ G \ = ^ ( 7 7 ) 

M L / m K J 

s 

ou /ou = n (78) 
p m 

the equations of motion 70 and 71 will read 

X*+ (M,/€)9/'cos 9 + 2C X' + X- (n/e) e2 sine = 0 (79) 
m 

e" + ex" cosQ + 2Q ne' + r? sine + ̂ ge 3 = o (80) 

where 

§ = P/Wp (81) 

Equations 79 and 80 are the general equations of motion in parametric 

form. 
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CHAPTER V 

LINEAR FLUID (PENDULUM) MOTION 

Equations of Motion 

Most engineering equipment is built on the basis of linear theory 

mainly because of the mathematical simplicity, practical limitations and 

ease of manufacturing. It seems advisable that the linear analysis of 

fluid slosh dampers be discussed in more detail. 

The purpose of this investigation is to demonstrate the efficiency 

of such a device as a damper and to study the influence of design para­

meters on the response of the main system under free vibration. The 

measure of damping is selected to be the logarithmic decrement of the 

decaying response of the main system under the assumption of small oscil­

lations. 

The search is aimed towards finding any combination of design para­

meters which provide the largest logarithmic decrement. The equations 

of motion are analyzed in parametric form providing a wide range of selec 

tion of sphere size, fluid height, fluid viscosity and other physical 

properties of the auxiliary system (damper) to meet the design criteria^ 

The analysis covers a survey of all possible combination of para­

meters which provide best damping and then for the combination of these 

parameters, experiments are run to check the validity of theoretical 

analysis. 

Considering the general equations of motion 79 and 80 one can assume 
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small oscillations and write 

sin6 =* 9, cos6 =* 1, e3 =~ small, 6 2 sinB =- small 

Substituting in equations 79 and 80 

X" +((J,/e)6" + 2Q X' + X = 0 

e" + ex" + ic Qe7 + ̂ 6 = 0 

(82) 

(83) 

Assuming solutions of the form 

X = AeST and 6 = BeST (84) 

and substituting in equations 82 and 83 

[(s2 + 2£ms + 1)A + ((^/e)s
2)B]eST = 0 (85) 

ST [(es2)A + (s2 + 2Q Qs + fi^BJe" = 0 (86) 

ST / 
Since e f- 0 for all time, for a nontrivial solution the determinant 

of coefficients must vanish. 

(s2 + 2£ s + 1) (ti/e)s£ 
"m 

es2 (s2 + 2Q fis + fi2) 

= 0 (87) 

The value of the determinant yields the characteristic equation as 

(1 - n-)s4 + 2( r C2+C ) s 3 + (Q2 +4C C ^ + l ) s 2 + 2(C Q2 + f CDs+ft2 =0 (88) 
t~/ ••bp ^m Ttitop tom b p 
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The solutions of equation 88 are generally pairs of complex conjugates, 

at least for the range of parameters investigated, and can be written as 

S 1 J 2 = -fll ± ibj (89) 

S3>4 = "
as ± ibs (9°) 

Substituting these solutions in equation 84 and realizing that in linear 

equations superposition holds one can write 

X = A xe
S l T + AeeS2T + k3e

Ss7 + A±eS^ (91) 

- Bie
SiT + B2e

SsT + B3e
S3T + B4e

S*T (92) 

and 

X = e"aiT[C cos bfr + D sin bxT] + e"
asT[E cos b2T + F sin bsT] (93) 

6 = e"aiT[H cos blr+ I sin bxT] + e
 asT[j cos b2T + K sin b2T] (94) 

Considering the response of the main system only one can rewrite equa­

tion 93 in a different form as 

X = C/e"aiTsin(b1T + % ) + E'e~
a2Tsin(b2T + cp 2) . (95) 

It can be seen from equation 95 that the response of the main system is 

the sum of two decaying harmonic functions and therefore can be analyzed 

as such. For each component of the response there exists a logarithmic 

decrement such that 

61= 2Tf(^-) (96) 
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and 

62 = 2TT (f
2-) (97) 

It is worthy of mentioning that in the linear analysis the characteristic 

equation (equation 88) is independent of the initial conditions and that 

the damping is also independent of initial conditions, this is not true 

in the nonlinear case which will be discussed later. 

The governing parameters of the system are \x, £ >£ and Q and will be 

analyzed later. 

Digital Computer Program and Analysis 

Because of the nature of the complex roots of equation 88, the pro­

cess of root finding will become tedious unless a digital computer is 

employed. 

A program in Fortran language with the use of a polynomial root 

finding subroutine was written. A copy of the computer printout of the 

main program and a copy of output roots are included in Appendix D. 

Using equations 96, 97 and the corresponding roots the values of 

logarithmic decrements were calculated. 

To avoid unnecessary investigations the design parameters were tested 

in the following regions: 

1. The values of the frequency ratio fi used, range from 0.2 to 1<,3, 

which cover a reasonable range of frequency on either side of the reso­

nance (fi = 1) . 

2. Too small a value for mass ratio ((j,) is not desirable because 

The subroutine is called R00TCP and is obtained from a UNIVAC-1108, 
MATH-PACK. 
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the mass ratio is directly related to the size ratio of the two uncoupled 

systems, and that for very small p, the size of the auxiliary system has 

to be very small compared to the main system, then it is evident that the 

relative effectiveness of the auxiliary system will be reduced. On the 

other hand, too large a mass ratio indicates that the auxiliary system 

should be much larger and too massive compared to the main system which 

is not desirable either. Another reason for rejection of large mass 

ratio from design point of view is due to weight penalty which should be 

kept minimum. Therefore, the range of values covered is from p, = 0.1 to 

(i = 0.5. 

3. Too small a value for viscous damping C results in a weak cou­

pling condition in which the capacity of dissipation is slight. For this 

condition, if the mass ratio is considerable the damper is more effective 

as a vibration absorber. It is in this configuration that Chen [12] used 

sloshing water as vibration absorber. It should be also noted that if 

the parameters are not controlled properly for the case of large mass 

ratio, this condition of fluid sloshing could be very dangerous. This 

cirtical situation is investigated in more detail in connection with fuel 

sloshing in tanks of space vehicles [1]. Too large a value of viscous 

damping is not desirable either, because the fluid (pendulum) will be 

over damped and will act as a rigid member. Reasonable values of this 

parameter are considered in the analysis and will be reported later. 

4. The parameter Q related to the structural damping of the main 
m 

system is uncontrollable and is inherent in the system. Since the pur­

pose of this investigation is to provide damping for an undamped main 

system, the values of C must be very small or else additional damping 



49 

would not be needed. Therefore, for the general theoretical investiga­

tions C is assumed zero and later the effect of small £ is also investi-

m m 

gated. 

The logarithmic decrements of the two components of motion are cal­

culated from the computer outputs and are plotted in Figures 14 through 

21. From a general outlook of the variation of the logarithmic decrements 

with respect to the frequency ratio one can divide the frequency domain 

in three regions. 

1. For very small frequency ratios (Q < Ci ) one of the components 

of motion (Eqn. 95) vanishes rapidly and the main system will be described 

by the remaining component. The component that vanishes rapidly corre­

sponds to the upper curves of Figures 14 through 21 and the dominant 

component of motion corresponds to the lower curves of Figures 14 through 

21. 

In this region for the case of linear motion and small amplitudes 

of oscillations relatively small dissipation (viscous friction) exists. 

The overall damping, therefore, remains relatively small. 

2. For large frequency ratios (Q > Q ) similar situation exists. 

In this region the main system behaves like the lower curves of Figures 

14 through 21 and the other component of motion (equation 95) exhibiting 

large damping (upper curves of Figures 14 through 21) diminishes faster0 

In either case significant amplitudes of fluid motion can not be obtained 

unless the amplitude of initial displacement is increased, only then due 

to large amplitude of motion the friction forces increase and therefore 

the overall damping is expected to be improved. The subject of large 

amplitudes of fluid motion will be discussed in the next chapter because 
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of its nonlinear character. 

3. For frequency ratios Q = Q as indicated by the intersection of 

each pair of curves in Figures 14 through 21, both components have the 

same logarithmic decrements and the coupled system exhibits maximum damp­

ing. The relative "tuning" frequency ratios of the damper with respect 

to the main system (Q) corresponding to these points of maximum damping 

are termed critical tuning frequency ratio (fi ) throughout the remaining 

of this program. 

It should be noticed that at these frequencies the damper will be 

quite similar to a tuned-damped vibration absorber. Several other inter­

esting phenomena will be discovered if certain plots are extracted from 

Figures 14 through 21. The plots may indicate the influence of the para­

meters upon each other as well as on the overall damping of the main 

system., 

One of such phenomena is the influence of mass ratio upon the criti­

cal tuning frequency ratio (Q ) of the two systems. Figure 22 indicates 

an almost linear decrease in critical tuning frequency ratio with increase 

in the mass ratio. This fact is obvious because for a pendulum with fixed 

mass and length if the mass of the main system is decreased, the mass 

ratio will increase (since [i = M /M) and at the same time for decreasing 

mass of the main system, its frequency will increase (w — / — ) and 

therefore the critical tuning frequency ratio will decrease as a result 

of increase in the mass ratio0 

Two other important facts can be observed from Figure 23 which is 

also extracted from Figures 14 through 21. 

1. The overall damping will not be improved considerably by 
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increasing the mass ratio. On the other hand, large mass ratios are not 

desirable from design point of view, therefore by selecting relatively 

small mass ratios the designer can tune some other sensitive parameters 

and still obtain considerable damping. For most of the remaining analy­

sis a value of \i, = 0.1 which is frequently used in design of vibration 

absorbers is selected. The value of jj, = 0.1 being so small will not con­

tribute much to the weight penalty. 

2. The overall damping is very sensitive to the fluid (pendulum) 

damping, for increasing Q appreciable improvement in damping of the main 

system can be made. Of course this is true up to a critical value of C 
P 

after which the damping of the main system will decrease. 

From the previous analysis it was found that the damping of the main 

system is sensitive to both the frequency ratio and to the viscous damping 

factor. In order to observe the sensitivity of the overall damping to 

these two parameters explicit curves are plotted in Figures 24, 25, and 

26. The three frequency ratios selected are one at critical tuning and 

one on either side of the critical tuning. 

Figures 24, 25, and 26 exhibit some very important features of the 

damper. 

1. On either side of the critical tuning frequency ratio one com­

ponent of the motion decays rapidly and the main system behaves like the 

component with smaller logarithmic decrement, while at the cirtical tuning 

frequency ratio the two components have equal importance and have the 

same logarithmic decrement up to the critical value of viscous damping 

after which one component decays much faster and the main system again 

behaves like the component with small logarithmic decrement. 
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2. At the critical tuning frequency, the logarithmic decrements 

increase linearly with the increase in viscous damping up to a critical 

value of £ and then decreases. For frequency ratios on either side of 

the critical tuning the linearity is only up to about half the critical 

value of C and then the increase takes a slightly nonlinear form up to 

the critical value of viscous damping. 

3. The critical value of viscous damping differs for different 

frequency ratios and possibly for different mass ratios. 

Unfortunately due to the complex interrelation of parameters to the 

logarithmic decrement as can be seen from the characteristic equation, 

explicit values or expressions for the critical viscous damping factor 

C could not be obtained, but the values for specific mass ratio and 
pc 

frequency ratio can be obtained from plots like those of Figures 24, 25, 

and 26. As mentioned earlier it is interesting to study the effect of 

small structural damping on the general outlook of the previous investi­

gations. For this purpose Figures 27 and 28 are plotted which exhibit 

two important features. 

1. Figure 27 indicates that the critical tuning frequency ratios 

(Q ) decrease if the structural damping is in the order of magnitude of 

the viscous damping and that for £ » C the decrease is considerably 
p m 

small. 

2. Figure 28 indicates that the effect of small structural damping 

upon the logarithmic decrements of motion is simply additive regardless 

of the magnitude of the viscous damping. 
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T a b l e 2 . Des ign S p e c i f i c a t i o n s and Damping of t h e Coupled Sys tem 
f o r |x = 0 . 1 , r = 0 , Q = 0 . 7 * 

6 ( e x p e r i m e n t a l ) 

w a t e r K , , = 0 . 6 5 2 # / i n 0 .0149 

507„ G l y c e r i n 

747» Glycerin K ,. = 0„779 #/in 0.0800 

857„ Glycerin K .. = 0.796 #/in 0.1297 

K // 
m/4 

— 0 . 6 5 2 # / i n 

W 
w = 0 . 9 0 5 # 

m/4 = 0 . 7 3 9 # / i n 

W 
w 

= 1.109 # 

K // m/4 
= 0„779 # / i n 

W 
w 

= 1.216 # 

K // m/4 
= 0 .796 # / i n 

W 
w = 1.258 # 

K // m/4 = 0 .812 # / i n 

W 
w 

= 1.296 # 

K / / m/4 
= 0 . 8 2 0 # / i n 

W 
w = 1.300 # 

K / / m/4 
= 0 .822 # / i n 

W w = 1.310 # 

K // m/4 
= 0 .824 # / i n 

W 
w 

= 1.319 # 

0.0301 

92% Glycerin K_//t = 0.812 #/in 0.2000 

957» Glycerin K ,, = 0.820 #/in 0.2236 

97% Glycerin K . = 0.822 #/in 0.2680 

997„ Glycerin K ,, = 0.824 #/in 0.3100 

'<D = 3.862 inches, H/D = 0.340, W = 0.122 #, Wg = 0.616 # 
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Figure 25. Influence of Viscous Damping on the Damping 
of the Main System Q = 0.95 
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Table 3. Design Specifications and Damping of the Coupled System 
for p, = 0.1, (̂  = 0, Q = 0.95* 

6 (experimental) 

water K ,; = 0.350 #/in 0.0379 

507= Glycerin K ,. =0.395 #/in 0.0658 

74% Glycerin K ,. = 0.420 #/in 0.1915 

85% Glycerin K ,, = 0.429 #/in 0.3595 

K // 
m/4 

— 0.350 # / i n 

W w 
= 0.905 # 

K / / m/4 
= 0.395 # / i n 

W 
w = 1.109 # 

K / / m/4 = 0.420 # / i n 

W 
w = 1.216 # 

K // m/4 
= 0.429 # / i n 

W w 
= 1.258 # 

K // m/4 = 0.438 # / i n 

W w = 1.296 # 

K / / m/4 
= 0.440 # / i n 

W 
w = 1.300 # 

K // m/4 
= 0.442 # / i n 

W w 
= 1.310 # 

K // m/4 = 0.553 # / i n 

W w = 1.319 # 

92% Glycerin K ,, = 0.438 #/in 0.5605 

957= Glycerin K .. = 0.440 #/in 0.6500 

977= Glycerin K ,. = 0.442 #/in 0.8800 

997= Glycerin K ,, = 0.553 #/in 0.7044 

*D = 3.862 inches, H/D = 0.340, W„ = 0.122 #, W = 0.616 # 
t s 
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Table 4. Design Specifications and Damping of the Coupled System 
for n = 0.1, C = 0, n = 1.2* 

6 (experimental) 

water K ,, = 0.217 #/in 0.0129 

50% Glycerin K .. = 0.245 #/in 0.0278 

74% Glycerin K .. = 0.259 #/in 0.0770 

85% Glycerin K .. = 0.265 #/in 0.1258 

K / / 
m/4 

— 0 . 2 1 7 # / I n 

W 
w = 0 . 9 0 5 # 

K // m/4 
= 0 . 2 4 5 # / i n 

W 
w = 1.109 # 

m/4 
= 0 .259 # / i n 

W 
w 

= 1.216 # 

K // m/4 
= 0 . 2 6 5 # / i n 

W 
w 

= 1.258 # 

K // m/4 = 0 . 2 7 0 # / i n 

W 
w 

= 1.296 # 

K / / m/4 
= 0o271 # / i n 

W 
w 

= 1.300 # 

K / / m/4 
= 0 . 2 7 2 # / i n 

W 
w = 1.310 # 

K / / m/4 
= 0 . 2 7 3 # / i n 

W 
w 

= 1.319 # 

92% Glycerin K .. =0.270 #/in 0.1913 

957„ Glycerin K ,. = 0,271 #/in 0.2077 

97% Glycerin K ., = 0.272 #/in 0.2391 

99% Glycerin K ,. =0.273 #/in 0.2537 

*D = 3o862 inches, H/D = 0.340, W = 0„122 #, W =0.616 # 
t s 



69 

0.70-

C = 0 .005 bm 

M, = 0 .100 

0.80- C„ = 

0 . 0 2 

0 . 0 6 

0 .10 

c 
cu 
6 
cu 
o 
cu 

Q 

o 
6 

0 .60" 

0 .50 -

£ 0 .40-

u 
to 
bO 

o 
(J 

0 .30 -

0 .20-

0.10-

0.00. — i — 
0.3 

— i — 

0.5 
i 

0.7 
— i — 

0.9 1.1 1.3 

F requency R a t i o Q = cu AD 
^ •> p m 

Figure 27. Effect of Small Structural Damping on 
Resonance Frequency 



70 

C =0.000 C =0.005 am m 

0.45-

0.08 0.10 
Viscous Damping Factor Q 

Figure 28. Effect of Small Structural Damping on 
Logarithmic Decrement 



71 

Comparison to Experiments and Analysis of "Beat" 

It is understood from the previous analysis that the frequency ratio 

and the viscous damping of fluid (pendulum) are the two most sensitive 

parameters contributing to the overall damping of the main system. Since 

Figures 24 to 26, which are drawn for three arbitrarily selected frequency 

ratios from the three regions of the frequency domain, demonstrate the 

improvement in damping of the main system the best, experiments were run 

(Design Specifications are listed in Tables 2, 3, and 4) and the logari­

thmic decrements of the main system were calculated from the measured 

responseo The experimental logarithmic decrements are identified by small 

circles in Figures 24 to 26 and the agreement with the theoretical curves 

is excellent. 

From an observation of experimental response of the main system 

another important feature of the coupled system was discovered. This 

feature is the existance of "Beat" at frequency ratios near the critical 

tuning. Theory also indicates that for a system having two frequencies 

of different harmonics, one should expect "Beat" to occur when the dif­

ference of the frequencies is small. Since the solution of the coupled 

system (equation 95) contains two frequencies b1cu and bacu and for the 

frequency ratios close to the critical tuning (bx - b8) is usually small, 

the theoretical response should also exhibit "Beat." Since it did not 

seem necessary to plot the response from equation 95 for the linear case, 

the agreement of the theory will be shown in the next chapter by solving 

the exact differential equations of motion in the nonlinear form. 

The phenomena of "Beat" occurs in physical systems having a weak 

degree of coupling. In such a case the energy will be transferred from 
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one system to the other and back to the original system. For the case 

of negligible damping this transfer of energy will occur indefinitely, 

but for systems with damping the envelope of beat decays with time. This 

is exactly what was observed from the experimental records of the response, 

and it was also found that with the increase in fluid (pendulum) damping 

the envelope of beat decayed faster and faster. The beat envelope com­

pletely disappeared at the critical damping indicated in Figure 25. The 

reason for decay and disappearance of beat is the dissipation of energy 

in the fluid such that the fluid receives certain amount of energy from 

the main system and dissipates part of this energy in the first cycle 

(depending on the capacity of dissipation). The fluid then gives lesser 

energy to the main system during the next cycle and during the successive 

cycles lesser and lesser energy will be transferred between the main and 

the auxiliary system until all the energy is dissipated. It is then, 

that the main system comes to a complete stop. In case of high damping 

(£ ^ Q ) most of the energy is dissipated during the first few cycles 

and the beat phenomena will not exist. 

It is already proved that the maximum damping of the main system 

occurs at Q - Q , but unfortunately this is the region where beat is the 

most serious and for many applications it may not be desirable to have 

beat in the response of the main system. In such cases the designer 

should either use values of viscous damping equal or greater than the 

critical value or tune the main system at some other frequency ratio and 

accept lesser overall damping. It is also possible to increase the mass 

ratio to obtain higher damping but one should accept the weight penalty 

in this case. 



73 

Because of the existence of beat the frequencies and amplitudes of 

the components of motion (equation 95) combine in some fashion to produce 

the final response of the main system. It was easy to analyze each com­

ponent and obtain the logarithmic decrements of motion separately. This 

method of isolation of components worked well for Q < fi and Q > Q merely 
P P 

because one of the components decays rapidly and the remaining component 

explains the response and the damping of the main system. 

For the case of Q = Q the response and damping of the main system 

cannot be explained by either of the components of the motion alone. 

Both components have equal importance and according to equation 95 which 

is very complicated to solve, one cannot obtain a single easy to handle 

criteria for determination of the overall damping of the main system, 

unless further approximations are sought. 

The following is a simple approximate solution derived to replace 

equation 95 because of its simplicity. 

Considering equation 95 and realizing that at Q = Q the values of 

ax and a2 as well as bx and b2 are close to each other, one can assume 

a ^ a - a* ! Sg <98> 

Rewriting equation 95 

aa + a2 
T 

X = e [C sin(bxT + eft) + E sin(bsT + cpa)] (99) 

At resonance both components of motion have equal importance, therefore 

one can assume 
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C' =- E' (100) 

After substitution of equation 100, equation 99 becomes 

-P 
= V.'o \ 

ai + a 2 \ T 

2 X = E'e N ' [sin(blT + % ) + sin(b2T + cpg)]- (101) 

Noticing that at the critical tuning frequency which corresponds to the 

resonance frequency in the case of forced vibration the phase angle is 

TT cfr̂ cpg— —, one can rewrite equation 101 as 

fa\ + aB\T 

= E' e 2 '[cos bx« X = E' e [cos b l T + cos b3T]. (102) 

Using the initial conditions 

T = 0, and 

X = 1, yields 

E'= 1/2. 

Substituting for the sum of cosines and the value of E', equation 102 

becomes 

/aj-j-agN 

A 2 )\oa(^*h)T co.(h - bE 
X = e v ' ' cos\* '2'*)T C O S ^ - " BJT (103) 

Indeed equat ion 103 i s the equat ion of bea t with exponen t i a l ly decaying 

/ b i - b j A 
enve lope . The beat frequency i s I—-—Jcu and the frequency of the main 

/ b j + b 2 \ 
system i s bn ou ^bocu ^ l — - — ) u ) . Equation 103 def ines approximately the 1 m m \ 2 / m 

response of the main system for C ^ C • For C > C again one of the 
T> pc p pc 
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components of equation 95 vanishes rapidly (ax » a2) and the motion will 

simply be explained by the remaining component as 

X = e cos(b2T + cp) (104) 

From equation 103 a single logarithmic decrement can be calculated to 

define the damping of the main system. For example, according to Figure 

29 and equation 103 one can realize that 

X 
6 
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• u 
03 
> l 
W 
a 

•H 
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rC 
•u 

CD 
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C! 
O 
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Figure 29. Beat Phenomena 

ai + aa 

X = X = X 
p max. 

= e (105) 
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when 

cos 
/ \ + b a \ = L ^ a n d ( 1 Q 6 ) 

cos ( ^ ^ ) T P = 1 , d 0 7 ) 

or when 

( b i + V \ T = 2TT , and (108) 

^ > ) T p = nTT . (109) 

From equations 108 and 109 

/W + baN 
\bx - b j 

n = fbx + bs^ ^ a n d ( 1 1 0 ) 

T - • ^ 

P Vbx - b 2 ; . ( i n ) 

The logarithmic decrement of the envelope is 

•(=4-Xo \ 2 / ° 
6 = In — - = In — — — — - — , and (112) 
env. Xp /a1+ aa\ .(i+i). 

P 

for 

T = 0 
o 

6 = (£k_±_f2.)T . (113) 
env. \ 2 /Tp 
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Substituting equation 111 into equation 113 results 

* - M^4^) . (114) env. \b1 - bs 

One can use a new criteria such as equation 114 and determine the damping 

of the main system from theory (ax, a2, bĵ  and b2) and also from experi-

ment as In — but it is desirable if a logarithmic decrement based on 
XP 

the decay of each oscillation of the main system is developed. To develop 

such an expression consider Figure 30 and realize that beat does not 

occur, but the decaying envelope \~^—o" 8 ) T am* the magnitude of re­

sponse at Tp remains the same and at the same time the frequency of oscil­

lation is (—*— Jao . Let the ideal response under this envelope be as 
\ 2 / m 

- (al + H\ 
X = e V 2 J cos(bl + b 3 ) T , and ( 1 1 5 ) 

let the number of cycles of motion up to P be m, then the logarithmic 

decrement at p will be 

fa1 + a2y 

x e V-T—J ° 
6 = In -2- = In —, • (116) 
Pm XP (*i + MT 

e k 2 ; T
P 

For 

TQ = O 

6 = (a* + **\ . (117) 

pm V 2 / p v ' 
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Figure 30. Ideal Response (if the beat does not exist). 

Substituting for T from equation 111 results 
P 

6 = 6 pm env. 
/a. + a^ (118) 

Equation 116 can also be written as 

V =ln r= ln ^~ • ̂  "Xs 
X1 X2 X3 

Xm-g m Xm-j 
X T T I - 1 X m-i Ap 

(119) 

Assuming the dissipation over each cycle to be constant and m to be the 

number of cycle up to p 

XQ _ X^ _ X^ _ 
Xi Xg X3 

._ _ ^m-i 
vm 

(120) 
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Substituting equation 121 in equation 120 yields 

/X- \ m X-t 
6 = lnl-i—) = m In -^— (121) 
pm \x i + 1 y x i + 1 

Letting the logarithmic decrement based on any successive cycles be 6 

and substituting in equation 121 one gets 

6 " m" &pm *
 ( 1 2 2 ) 

Substituting equation 118 in equation 122 the desired logarithmic decre­

ment will be obtained 

- f ( f ^ ' l • (123) 

The number of cycles up to point p being 

'b, + bB 
m 2 \b1 bJ ' 

(124) 

when substituted into equation 123 yields 

6 - 2« (?H^> • (125) 

Logarithmic decrements from equation 125 were calculated for the values 

of al, as, bx and b2 obtained from the solutions of the characteristic 

equation and the magnitudes were found to be identical to the curves of 

Figure 25 up to Q = Q <. Identical values were calculated from the 

measured response by taking the logarithmic decrements of successive 

amplitudes assuming the peaks to lie on the exponential curve. In some 

cases logarithmic decrements of the envelope (6 = 6 ) were also 
env. pm 
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calculated and by use of equation (122) were converted to 6. 

Although some of the assumptions and approximations made were crude, 

the expressions developed give fairly reasonable and simple analysis of 

the coupled system. Of course for exact analysis one has either to solve 

equation 95 or to solve the exact differential equations in the nonlinear 

form as has been done in the next chapter. 
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CHAPTER VI 

NONLINEAR FLUID (PENDULUM) MOTION 

Equations of Motion 

The subject of nonlinear fluid motion under forced vibration was 

discussed in the first two chapters and the significance of a nonlinear 

theory seemed essential for the analysis of large amplitudes of motion. 

Many interesting phenomena, such as the softening characteristic of 

fluid, rotational motion, jump, and the accuracy of the pendulum model 

were studied. In free vibration when the motion of fluid is coupled to 

the main system, there exists a mutual influence of one upon the other. 

The parameters of the coupled system determine the relative influence 

mentioned above. For example the fluid develops large amplitudes close 

to the critical tuning frequency (Q ̂  Q ) for relatively lower initial 

amplitudes of the main system,while for the same fluid amplitudes away 

from Q very large initial displacement of the main system is needed. 

Suppose one concentrates at frequency ratios Q , still the amplitude of 

fluid motion depends on the amount of viscous damping present. For the 

same initial displacement and frequency ratio, the developed amplitude 

is lesser in a highly viscous fluid in comparison to a low viscosity 

fluid, especially if the viscosity is such that Q ^ Q , very large 

initial displacements are required to produce large amplitude (nonlinear) 

fluid motion. It should be emphasized that even if large amplitude 

fluid motion is developed in case of large Q the amplitude in the next 



82 

cycle will be significantly reduced due to large damping. Therefore for 

large damping of the fluid (pendulum) the linear theory holds for consider­

ably large initial displacements of the main system. For the case of low 

damping the developed nonlinear fluid motion will last only a few cycles 

depending on the amount of damping present. 

For small mass ratios even the nonlinear fluid motion will not 

effect the motion of the main system significantly, while for large mass 

ratios the motion of the fluid dominating the motion of the coupled system 

could produce nonlinear response of the main system. 

The analysis of Chapter V suggests the use of small mass ratios and 

large viscous damping at critical tuning frequencies for the optimum design 

of slosh dampers (the use of such suggested values in designing slosh 

dampers is shown and a sample calculation is given in Appendix E). Under 

such circumstances the fluid amplitudes remain small and the use of non­

linear theory does not seem necessary, but to show some of the above 

mentioned features of coupled motion, the nonlinear differential equations 

79 and 80 are solved numerically and compared with experiments for certain 

special cases. 

Because of the nonlinear terms in equations 79 and 80, a closed 

form solution does not exist and one solves the equations of motion by a 

numerical method. The Runge-Kutta method of numerical integration seems 

the best and the most standard method for the class of differential 

equations 

x" = f(x/,x,e/,e,T) (126) 
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e" = g(e',e,x',x,T) (127) 

Equations 79 and 80 are not quite in this form but by slight manipulations 

they could be transformed in this form. 

Multiplying equation 79 by f cos 6 and subtracting equation 80 from 

it, one obtains 

-2cmex / cos e - excos e + u. e2 s ine cos Q + icJi e + n2 s ine+n 2 §e 3 

9"=—!™. IE 1 _ (128) 
p. cos2 e - 1 

Also by multiplying equation 80 by(u7e)cos 8 and subtracting equation 79 

from it, one obtains 

-()̂ /e)[e 2 sin 6 + 2£_pe ' cos 9+Q 2 sinG cos 9+ Q2f;e3] + 2£mX'+ X 
X"= ~ . (129) 

licos 9-1 

Equations 128 and 129 being of the form of equations 126 and 127, can be 

solved by the Runge-Kutta method. 

In connection with the solution of equations 128 and 129 the 

following initial conditions are to be used. 

T = 0, 

X = 1.0, 

x' = o.o, 

= 0.0, and 

e' = o.o. (130) 
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Digital Computer Program and Analysis 

Unless the equations of motion (equations 128 and 129) are solved 

for the linear or small oscillation case, the criteria of logarithmic 

decrement is meaningless, therefore it is intended to solve equations 

128 and 129 for the response, over several cycles of motion and plot the 

response for each combination of parameters. The experimental response 

can be then compared to the theoretical response and the agreement or 

disagreement can be checked as well. 

Equations 128 and 129 can also be written as a set of four first 

order differential equations. 

Assigning the following variables for the four variables of 

equations 128 and 129, one can write 

Yd) = T 

Y(2) = X 

Y(3) = X' 

Y(4) = 9 

Y(5) = 6' (131) 

and from equa t ions 128, 124 and 131 

X ' = d j p . = Y(3) (132) 

u d Y ( 3 > 
X" = - £ j r - = f (Y(2) ,Y(3) ,Y(4) ,Y(5) ) (133) 

, dY(4) 

- ~£T = Y(5) (134) 
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dy(5) 
)" = - ^ = g(Y(2),Y(3),Y(4),Y(5)) (135) 

Equations 132 through 135 are the four first order equations that could 

be solved together with the initial conditions 130 that could also be 

written in terms of the new variables as 

Yd) = 0.0 

Y(2) = 1.0 

Y(3) = 0.0 

Y(4) = 0.0 

Y(5) = 0.0 (136) 

Equations 132 and 134 are abvious, but equations 133 and 135 are the same 

as equations 128 and 129 written in terms of the new variables. 

A program written in Fortran and called RKDE in the UNIVAC 1108 

MATH-PACK is employed to solve the four first order differential equations 

132, 133, 134, and 135 together with the four initial conditions 136. 

A copy of the program and a sample of the output solutions are 

provided in Appendix F. 

Theoretical and Experimental Analysis 

In the course of analysis it was discovered that extremely large 

initial displacements (in comparison to the excitation amplitude of the 

forced vibration) are needed to produce any nonlinear fluid motion, 

especially if the viscous damping is high. 

Experiments were run on three different fluids of increasing 
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viscosities namely water, 8570 and 957» aqueous solutions of glycerin. The 

container diameter was selected to be 3.862" and the fluid height of 0,340 

was used. The remaining parameters were selected such to obtain u. = 0.1 

and ft = 0.95. For the three fluids, different initial displacements (e) 

were used and for the two largest initial displacements (e = 0.128 and 

€ = 0.192), the experimental curves were plotted as shown in Figures 31, 

32 and 33. For the same parameters computer solutions of the nonlinear 

equations were also obtained and plotted on the same figures. Figures 

31 through 33 show good agreement between the theoretical and experimental 

response, but as noticed from the experiments and from the theory, neither 

the amplitudes of the fluid built up considerably nor a significant 

improvement in damping was noticed. If the same auxiliary system is 

uncoupled and studied under forced vibration, the fluid amplitudes will 

grow very large, even for an excitation amplitude much lesser than the 

initial displacements used. But because of the coupling in contrast to 

the constant input energy of the forced vibration, the amplitudes remained 

small. This suggests that the frequency-amplitude relations obtained for 

forced vibration do not hold for the case of coupled free vibration. There­

fore the values of e used are large in comparison to the corresponding 

forced vibration case, but for the coupled free vibration they are not 

large enough to produce strong nonlinear fluid response. 

Still the effect of larger initial displacements on damping re­

mained to be studied. To obtain high values of e without using large 

initial displacements (not exceeding the linear range of the displace­

ment transducer) a smaller container of 2.288 inches in diameter was 

employed. Since the nonlinearity is more pronounced for higher values 
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of fluid height and lower values of fluid viscosity, a half full container 

with water as the fluid medium was used. For the range of parameters in­

dicated in Figures 34 and 35, experiments were run for frequencies higher 

and lower than the critical tuning frequency (Q = Q ). 

Figures 34 and 35 indicate improvement in damping due to increase 

in the initial displacement. The decrease in beat as can be seen in 

Figure 34-b and 34-c in comparison to Figure 34-a, indicates that at the 

corresponding initial displacements the critical tuning frequency is 

moving further away from the tuned frequency Q = 0.907. At the same 

time the increase in beat as shown in Figures 35-b and 35-c in comparison 

to Figure 35-a indicates that the critical tuning frequency is approaching 

the tuned frequency Q = 1.140. 

In Figure 34-b the fluid was observed to exhibit nonplanar motion 

with large amplitudes while in Figure 34-c even swirl was observed, and 

due to the transfer of energy in the coupled system the duration of swirl 

was very short. Unfortunately for such cases the theory of a plane pen­

dulum (modified and unmodified) will fail to predict the response and for 

a better analysis the employment of spherical pendulum is suggested. On 

the other hand, in Figure 35-b only large amplitude planar motion of 

fluid was observed that could be analyzed by the nonlinear theory of 

plane pendulum, but for the initial displacement of Figure 35-c the fluid 

exhibited nonplanar motion. 

It is worthy of mentioning that the criteria of concentration of 

beat at the critical tuning frequency was already discovered in the text 

of the linear analysis and it is assumed that similar phenomena exists 

for the nonlinear analysis. 
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Since Figure 35-b qualified for a nonlinear treatment by being 

close to the critical tuning frequency and still remaining in the plane 

of oscillation, the nonlinear differential equations were solved both 

for plain pendulum and for the modified pendulum and the theoretical 

and experimental responses are compared in Figure 36. The agreement of 

the modified pendulum with the coefficient of added cubic spring equal 

to -0.14 read from Figure 9 is much closer to the experimental output in 

comparison to the plain pendulum. This proves once again that the modi­

fication made in Chapter II is justified. Since the present nonlinear 

analyses cover only a few specific cases, it is not advisable to draw 

any general conclusion in regard to a limiting value of e above which 

the planar fluid motion ceases and the plane pendulum is not applicable. 

But the existence of a critical value of e as such can be certified for 

any particular set of parameters. For the design parameters of Figure 

34 this value is slightly smaller than 0.390 and for the design parameters 

of Figure 35 it is slightly larger. Since no significant damping due to 

increase in e was noticed up to this critical value of e, further inves­

tigation did not seem as fruitfull as in the case of linear analysis. 
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CHAPTER VII 

EXPERIMENTATION 

Forced Vibration 
(Single Degree of Freedom) 

The main objective in the case of forced vibration was to measure 

the hydrodynamic force (slosh force) that the moving fluid exerts on the 

container. The simplest method to achieve this objective was to use a 

load cell similar to the experimental setup of Sumner [9]. Since the 

main interest was to understand only the horizontal component of the 

total force, only one load cell seemed sufficient. Three other subsystems 

were to be built to complete the entire setup as shown in Figure 37. 

1. To avoid any axial load normal to the sensitive axis of the 

load cell and to carry the dead weight of the fluid, the fluid container, 

and its support, they were suspended by means of four steel wires of con­

siderable lengths. The wire lengths were selected so as to minimize the 

interference with the frequency of oscillation. At the same time, to 

avoid any reaction in the horizontal component of the force, the long 

wires were suspended vertically from a rigid frame. The frame was built 

of wood with the joints rigidly screwed and for further rigidity gussetts 

were used at the corners. 

2. To provide a forcing function a 25 pound dynamic shaker was 

rigidly fastened to the frame and connected to a power amplifier and a 

low frequency oscillator. 
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3. To measure the excitation amplitude and keep it constant for 

any phase of the operation a displacement transducer was built. The dis­

placement transducer consisted of a photo cell (solar battery) and 

mounting, a light source with fixed and uniform intensity together with 

a power supply providing constant voltage for the light source and a \\ 

volts dry cell battery in connection with a potentiometer to provide the 

proper biasing for the photo cell. 

The fluid containers were transparent plastic spheres (DQ = 7.00") 

both with the without splitters which were fastened rigidly to the sup­

porting plate. Since the containers were to be removed frequently for 

changing the fluid height, L-shaped aluminum plates were rigidly connected 

to the support plate and the clearance was small enough to ensure perfect 

contact and grip with the container. The L-shaped plates were mounted 

in the direction of maximum moment of inertia of the area to insure the 

rigidity and prevent bending under the dynamic loads. 

The parts and instruments used are listed in Table 5. For detailed 

explanation of the instrumental setup as shown in Figure 37, it seems 

sufficient to concentrate on the two transducers only. 

Load Cell 

The load cell used was a semiconductor strain gage type, in which 

the gages were electrically connected to form a wheatstone bridge. The 

circuit is shown in Figure 38 and its calibration is given in Figure 39. 

The calibration curve was obtained by fixing one end of the transducer 

to a clamp and hanging weights from the other end, and recording the out­

put voltage from the osciliscope. 



Table 5. Instrumentation 

Low Frequency Oscillator 

Power Amplifier 

Dynamic Shaker (Exciter) 

Dual Beam Oscilloscope 

Power Supply (Regulated) 

DC Power Supply 

Load Cell 

Selenium Photo Cell (Solar Battery) 

Potentiometer 40K, 10 Turns 

Potentiometer 0.5 Meg, 1 Turn 

Potentiometer 150 Ohms, 1 Turn 

Light Bulb 12 Volts and 6 Volts 

DC Battery 1% Volts (Two) 

Spherical Plastic Containers 

Support Plates 11 in.2 and 12 in.2 

Music Wire Size 009 

X-Y Plotter with Time Base 

AC Motor 1/3 HP, 1725 R.P.M. 

Speed Control 

and Equipment List 

Hewlet Packard 202 C 

MB Electronics 2125 MB 

MB Electronics PM-25 

Tektronix Type 502A 

Heathkit Model IP-27 

Hewlett Packard 6204 B 

Bytrex Division and Co. JP-10 

Tandy Corp. 276-115 

Helipot 5v, 7223-151-1 

AB Type J, 47266 A 

Clarostat Mgf. AN3155-50-150 

Car Tail Light 

Everdady No. 735 Neda 90v 

Toys 

Cut to Size (Aluminum) 

Allegheny Ludlum Steel Corp. 

Moseley Model 2-D 

Bodine Electric Co. No. 280TA043 

Minarik Electric Co. Model SH-53 
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Displacement Transducer 

Although many precision instruments were available for measuring 

displacement, most of them had a minimum frequency limit which was higher 

than the range of frequencies to be measured. Therefore the photo cell 

transducer which is linear [20] at low frequencies was employed in the 

measurement of the displacement. 

The selenium photo cells are sensitive to incident light and have 

the property of converting the light energy into a potential difference 

across its terminals. The amount of the potential difference being 

proportional to the area illuminated and the intensity of the incident 

light. To further increase the output potential difference and the 

linearity of the output signal a biasing circuit as suggested by Alvord 

[21] seemed essential. 

The displacement transducer circuit and arrangement are shown in 

Figure 40. The light source used, was a car tail light bulb fixed in a 

reflector and covered with several layers of wax paper to assure the 

uniform distribution of light. The bulb was energized by 12 volt DC pro­

vided by a regulated power supply. 

The following steps were taken in the biasing and calibration of 

the transducer: 

1. The entire area of the photo cell was illuminated. 

2. The gain resistance R was reduced until the output voltage was 

read zero on the oscilloscope. 

3. The gain resistance was still reduced slightly to improve the 

linearity [21]. 

4. The transducer was calibrated by means of displacing the 
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Figure 38. Load Cell Bridge Circuit and External Connections 
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shutter plate statically and measuring the output voltage on the oscillo­

scope. 

The calibration curve is plotted in Figure 41 and the linear range of 

operation is marked. 

Since the displacement to be measured is generally of an oscilla­

tory nature and one has to measure positive and negative displacements, 

the output signal was zeroed at the center of the linear range as shown 

in Figure 41. To zero the output signal at the cneter of the linear range 

a constant voltage (780 mv) was subtracted from the signal at the oscillo­

scope terminal. The constant voltage was provided by a 1.5 volts dry cell 

battery which was connected to a potentiometer as shown in Figure 40. 

With the arrangement shown in Figure 37 three different measure­

ments were made under forced vibration. 

1. Stability Boundaries 

A spherical container of seven inches in diameter without splitter 

plate was mounted and for each fluid height (seven fluid heights were 

tested) five excitation amplitudes were tried. For each excitation ampli­

tude selected, the excitation frequency was increased through small inter­

vals and the force output of the load cell was recorded. Approaching the 

resonance frequency, for each excitation amplitude a frequency parameter 

was reached at which the fluid oscillation departed from the plane of 

excitation and with further increase in frequency the swirl or rotation 

of fluid was observed. The locus of these points determined the lower 

stability boundaries and are shown in Appendix B. To determine the upper 

boundaries, the fluid was excited with the same excitation amplitude but 

with an excitation frequency larger than the resonance and as the 
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frequency was decreased through intervals the force outputs were recorded. 

Approaching the resonance frequency the force, frequency and amplitude of 

excitation corresponding to the stability boundary were recorded as shown 

in Appendix B. Similar procedure was used for each of the remaining fluid 

heights and excitation amplitudes. 

2. Natural Frequencies 

Because of fluid rotation at resonance frequency it was not 

possible to measure a steady force amplitude. A splitter plate was 

installed in the fluid container parallel to the direction of excitation 

in order to suppress the rotational motion, then for very small excita­

tion amplitudes the maximum force in the frequency domain near resonance 

was measured. For slight increase in excitation amplitude another value 

of the maximum force was measured. If the straight line passing through 

the two maxima was vertically upward the corresponding frequency was con­

sidered to be at resonance and the oscillation was linear. The experi­

mental natural frequencies as compared to the natural frequencies of the 

mathematical pendulum and those of Stofan's [5] are plotted in Figure 42 

and the agreement is very good. 

3. Force Measurement Near Resonance 

By installing the vertical splitter it was possible to measure 

force values at all frequencies except at a narrow band at which the 

jump phenomena appears. At this narrow band of frequency the force jumps 

from a low magnitude to a high magnitude for increasing frequency and 

jumps from a high value to a low value for decreasing frequency. The 

force outputs for variation in excitation amplitude and frequency are 

plotted for each fluid heights in Appendix C. 
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Free Vibration 
(Two Degree Freedom) 

The main objective in the analysis of free vibration was to measure 

the response (displacement) of the main system after it is released from 

a preassigned initial value. The instrumentation, being similar to 

Figure 37, is shown in Figure 43. 

The displacement transducer is identical to the one used for 

forced vibration except for the selinium photo cell which was replaced 

by a larger one to provide wider linear range. The calibration curve 

for this transducer is shown in Figure 44. 

The initial displacements were set by means of a string which was 

pulled until the desired initial displacement was read on the oscillo­

scope screen, then after holding the string for a short while (for the 

small oscillation of the fluid to vanish) the string was released and 

the oscillation was recorded by an X-Y plotter having a built in time 

base. The time scale generally used was calibrated and the calibrated 

scale found to be 1.142 sec/in. It would be interesting to study some 

recorded responses of the main system for several important cases studied 

in Chapter V. 

1. Figure 45 substantiates the statement that one component of 

motion vahish rapidly on either side of the critical tuning frequency and 

that both components have equal importance at the critical tuning fre­

quency (Q = CL) . 

2. Figure 46 illustrates the disappearance of beat with increasing 

the viscous damping at critical tuning frequency. 

3. Figure 47 demonstrates the improvement in damping when the 



response of the main system is compared before and after the application 

of the slosh damper. 

In the measurement of response curves, small initial displacements were 

used to insure the linearity of the output. 

Viscous Damping and Viscosities 

Viscous Damping 

Empirical equations for viscous damping in spherical containers 

are presented by Sumner [7] and Mikishev [22] which disagree consider­

ably. The comparison is made by Abramson [l] and the reason for the 

disagreement is explained to be in the nonlinear relation which exists 

between the force and amplitude of oscillation. 

To understand which one of the equations apply to the analysis of 

this program, it seemed necessary to run a few experiments and obtain 

the logarithmic decrements to be compared with the two equations. The 

experimental setup is shown in Figure 48 and the test procedure is as 

follows: 

Containers of seven inches in diameter with and without splitter 

were used, and for an excitation amplitude of XQ/D = 0.0109 the fluid 

was set in motion to produce large amplitudes (the excitation frequency 

was set close to resonance by adjusting the motor speed control device). 

As soon as the fluid developed large amplitudes, the motor was quickly 

stopped and the force output was recorded on the plotter. This process 

was repeated for different fluid heights for the two spheres and the 

logarithmic decrements were calculated from the force response as 

6 = In =-2- (1 
Fn+1 
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The average values of the logarithmic decrements are plotted in 

Figure 49 together with the solutions of the two empirical equations of 

Sumner [7] and Mikishev [22]. 

The magnitudes of viscous damping seems to agree closely with the 

empirical equation of Sumner [7], while the variation with respect to 

fluid height have a similar form to that of Mikishev [22]. It should be 

mentioned that Sumner's [7] analysis covers only one particular fluid 

height (H/D = 1/2). The difference in magnitude is almost twice as much 

between Mikishev's equation and the present experiment as well as with 

Sumner's equation. 

Instead of reruning similar experimental programs as those run by 

Sumner and Mikishev it seemed reasonable to correct Mikishev's equation 

which is already in a general form to fit the present experimental results 

as well as to agree with Sumner for the particular fluid height of one 

half. Mikishev's equation when multiplied by 2.15 seems to agree much 

closer at fluid heights in the neighborhood of one half and be fairly 

acceptable at the other fluid heights. 

It is obvious from Figure 50 that even the adjusted empirical 

equation of Mikishev [22] is not the best representative of actual damping 

in the fluid. In view of the disagreements in the literature this subject 

deserves further investigation that could be made the subject of another 

program. For analysis completed in Chapters V and VII which was performed 

at fluid heights in the neighborhood of one half the damping values ob­

tained from the adjusted empirical equation seem reasonably accurate. 

The adjusted empirical equations are 
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for 0.05 < H/D £ 0.50 

v x 104 ^ 
6 = 0.08974 l - T T l - j /(H/D) (138) 

P x
 AfGQ3 

and for 

H/D s 0.50 

n* N ^ 

v"(^)T^(H%r] 
To check the agreement at a different container size, experiments were 

run for a container of 3.862 inches in diameter and water was used as 

the fluid medium. The results of present experimentations and those 

calculated from equations 138 and 139 are plotted in Figure 50. 

Fluid Viscosities 

In the course of analysis of linear motion (Chapter V) it was 

desired to analyze the coupled motion for large viscous camping. To 

obtain large viscous damping equations 138 and 139 suggest four possi­

bilities : 

1. To use very small containers. 

2. To use highly viscous fluids. 

3. Very low or very high fluid heights. 

4. Some combination of the above. 

Since the intention was to use fluid heights in the neighborhood 

of half full, the third possibility was ruled out. It seemed easier to 

fix the diameter of the container and use fluids of different viscosities. 

The simplest method to obtain fluids of different viscosities was 
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to use glycerin-water mixtures. If viscosities higher than 100% glycerin 

were needed, different grades of silicon oils were also available. 

The specific gravities and viscosities of aqueous solutions of 

glycerin [23] are plotted in Figures 51 and 52 and several mixtures in 

sufficient quantities were prepared in the range of desired viscosities. 

The viscosities of the mixtures were tested by the use of different grades 

of viscometers and the measured values are marked by small circles on 

Figure 52. The slight disagreement of tested values initiate from two 

facts : 

1. The tests were carried at a higher temperature compared to 

that of Reference [23], 

2. The pure glycerin available was not exactly 100% pure. 

The viscosities measured are converted in the unit ft/sec3 for 

direct use in equations 138 and 139 and are presented in Table 6. The 

viscous damping factors used in the text of this program are calculated 

from equation 140 

C = 6 /2TT (140) 
P P 

where 6 is calculated from equations 138 and 139. The approximation 

140 holds up to a value of Q ="0.3. This approximation is explained 

in any standard vibration book. 
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Table 6. Kinematic Viscosities of Aqueous Glycerin 
and the Corresponding Specific Weights 

Fluid Kinematic Viscosity (ft2/sec) Specific Weight (#/ft3) 

Water 1.059 x 10"5 62.3 

50% Glycerin 5.59 x 10"5 70.4 

74% Glycerin 2.64 x 10"4 74.4 

85% Glycerin 7.63 x 10"4 76.10 

92% Glycerin 1.99 x 10~3 77.40 

95% Glycerin 2.63 xl0~ 3 77.80 

97% Glycerin 4.26 x 10~3 78.20 

99% Glycerin 7.45 x 10~3 78.50 
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CHAPTER VIII 

CONCLUSIONS AND REMARKS 

Since most of the subjects are discussed in detail in the text of 

this program, and many conclusions are drawn when theoretical and experi­

mental results are discussed, it seems sufficient to summarize only the 

important conclusions. 

Forced Vibration 

1. The regions of instability of the fluid sloshing in spherical 

containers have been compared to the regions of instability of an analo­

gous spherical pendulum system. The boundaries of these regions have 

been determined experimentally (Figures 57 through 63) and compared with 

those derived by Miles [14]. The agreement is good and the comparison 

is shown in Figure 2. 

2. In order to obtain force-frequency response of the sloshing 

fluids, it seemed necessary to install a splitter plate parallel to the 

direction of excitation. The force-frequency plots obtained are shown 

in Figures 64 through 72 in Appendix C. The plots indicate strong 

softening characteristics for the nonlinear range of oscillation for all 

the fluid heights tested. 

3. Fluids oscillating in a shperical container under forced vi­

bration exhibit jump phenomena in the nonlinear range of fluid motion 

(Figures 64 through 72). 
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4. The maximum slosh forces obtained from Figures 64 through 72 

were compared to the corresponding forces of a pendulum model. The 

comparison as shown in Figure 5 indicates some disagreements in the non­

linear range of fluid motion for most of the fluid heights tested. 

5. There exists a critical fluid height (H/D = 0.340) at which 

the pendulum duplicates fluid response for the entire range of fluid 

oscillations. 

6. For the nonlinear range of fluid motion the pendulum was 

modified by inclusion of a cubic spring. This nonlinear spring constant 

has been determined for various fluid heights and is shown in Figure 9. 

The maximum force response agreed well after the modification was made 

(Figure 10). 

7. For the modification imposed on the pendulum model, the 

stability boundaries still remained in close agreement (Figure 12). 

Free Vibration 

Linear Analysis 

1. The free vibration of the coupled system has been analyzed 

and the characteristic equation of the coupled linear differential 

equations was derived. The solutions (roots) of the characteristic 

equation were obtained in numerical form and for the range of parameters 

covered, the roots were always complex conjugates with a negative real 

part. 

2. The effect of frequency ratio on logarithmic decrement of 

the main system has been evaluated and is shown in Figures 14 through 21. 

As a result of the analysis, damping of the main system is maximum at 
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certain critical tuning frequencies (CI ) . 

3. The effect of mass ratio on logarithmic decrement of damping 

has been investigated and is shown in Figures 14 through 21. The analy­

sis indicates that there was little increase in the damping of the main 

system due to increase in mass ratio (also Figure 23). 

4. The critical tuning frequency decreases with increase in mass 

ratio (Figure 22). 

5. The effect of fluid viscous damping on the logarithmic decre­

ment of the main system has been evaluated and is shown in Figures 14 

through 21. According to the analysis the damping of the main system 

increases with increase in viscous damping (Figure 23). 

6. At the critical tuning frequency the increase in damping is 

linear up to a critical value of viscous damping (Q ) as shown in 

Figure 25. 

7. At other tuning frequencies (CI > CI and CI < CI ) the linearity 

is only up to about one half of the critical value of viscous damping as 

shown in Figures 24 and 26. 

8. The existence of the critical value of damping has been shown 

experimentally and analytically in Figures 24, 25, and 26. The damping 

of the main system decreases if Q increases beyond this critical value. 

9. Beat phenomena exists in the neighborhood of critical tuning 

frequency and it is intense at the critical tuning frequency . 

10. Beat becomes less intense for frequencies higher and lower 

than the critical tuning frequency. 

11. Beat disappears for viscous damping higher than the critical 

value (£ > Q ). Vtop pc 
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12. It has been found that small structural damping shifts the 

critical tuning frequency if the viscous damping is in the same order of 

magnitude (Figure 27). 

13. It has been found that the effect of small structural damping 

on the damping of the main system is simply additive. 

14. Slosh dampers if designed properly, are excellent devices 

for damping vibrations. For a better design it is suggested that a 

partially filled container with low mass ratio be tuned at the critical 

tuning frequency. The viscous damping should be equal to the critical 

value (r = r_ ). 

15. For the uncoupled fluid sloshing in spherical containers, 

the logarithmic decrement of damping of the force response has been 

studied experimentally. The results are compared to other investigators 

and the comparison is shown in Figure 49. An emperical expression for 

damping as a function of other parameters is given in Chapter VII. 

According to the analysis, the fluid exhibits large damping for fluid 

heights far removed from the half full container. 

Nonlinear Analysis 

16. The derivation of the nonlinear differential equations are 

given. The method of numerical solution of this system of equations is 

shown. The coupled system is analyzed experimentally and analytically 

for ranges of initial displacements, comparisons are made for various 

values of e (displacement ratio). It has been found that the pendulum 

model excellently represents the motion of the sloshing fluid in the 

coupled system for low values of e (Figures 31, 32, and 33). 

17. It has been found that there exists a critical value of e 
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above which the motion of the fluid becomes complex (combination of 

swirl, beat and planar oscillation). 

18. It has been found that for € < € , the constrained pendulum 

model (modified or unmodified) sufficiently represents the transient 

motion of the fluid in the coupled system (Figures 31, 32, 33, and 46). 

19. It has been found that the agreement between the theory and 

experiment greatly improves if the cubic spring constant {3 is included 

in the nonlinear pendulum model for fluid heights other than the critical 

value (H/D = 0.340). This comparison is shown in Figure 36. 

20. It is recommended that for fluids of low viscosity (if used 

as slosh dampers at large displacements) a splitter plate be included in 

the container to suppress the fluid rotation. In such cases a planar 

pendulum model is a better mathematical representation. 

Recommendations 

In the course of analysis of fluid slosh dampers several interest­

ing problems came to the author's attention. 

1. One possible continutation of this program is to analyze slosh 

dampers with a single spherical particle submerged in the fluid [07]. For 

a fixed container size, fluid viscosity and fluid height one can study the 

variation in damping of the main system for various particles. In a sub­

sequent program the number of solid particles can also be varied. 

2. It would be interesting to study a cluster of spheres partially 

filled with fluid, each representing a single degree of freedom and 

replace the single slosh damper with a number of smaller partially filled 

spheres. 
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3. The application of other container geometries in fluid slosh 

damping may have equal importance. The relative improvement, if there is 

any, deserves an investigation. 

4. It was observed that the fluid slosh dampers exhibit marked 

improvement when the fluid develops large amplitudes and possibly when 

the swirling motion dominates. This condition of fluid motion may be 

modeled as a spherical pendulum or an impacting mass with viscous dissi­

pation. 

5. When Q « Q , higher modes of fluid motion will be excited, 

this suggests the applicability of slosh dampers at relatively higher 

frequencies and may have to be remodeled. 

6. The viscous damping as investigated by Sumner [7] and Mikishev 

[22] do not agree and the reason for the discrepancy as well as an accurate 

experimental analysis can be made the subject of a program. 

7. Fluid slosh dampers under forced vibration can be modeled as 

damped vibration absorbers. The steady state oscillation of the main 

system can be studied for possible variation in viscous damping, frequency 

ratio and other parameters. 
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APPENDIX A 

PENDULUM ANALOGY 

The pendulum analogy as obtained from Sumner's [9] analysis is 

presented for easy reference,, The mass and length of the pendulum can be 

determined for any container diameter and fluid height from Figures 53, 

54, and 55. 

If Figure 53 is used the stationary mass M , can be calculated 

from the following relation: 

M + M = M^ o p f 

However, it is more convenient to use Figure 54 to calculate the pendulum 

mass and Figure 56 to calculate the stationary mass. 

Sumner's analysis indicate the hinge point location to be at the 

geometric center of the sphere for all fluid heights. 
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APPENDIX B 

EXPERIMENTAL STABILITY BOUNDARIES 

This appendix contains the force-frequency plots of fluid (water) 

sloshing in spherical tanks (D. = 6.875 inches, without splitter plate) 

under forced vibration. The stability boundaries are marked and the 

unstable region at which fluid first departs from the plane of excitation 

are shaded. 

There are two bands of frequencies in the shaded area which are 

not shown. 

1. Nonplanar fluid oscillation. 

2. Nonplanar fluid rotation (swirl). 

The two bands of frequencies are very close and narrow and it was not the 

interest of this program to distinguish the bounds. 
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APPENDIX C 

EXPERIMENTAL FORCE-FREQUENCY PLOTS 

This appendix contains force-frequency plots of fluid (water) 

sloshing in spherical containers (D. = 6.875 inches, with the use of 

splitter plate parallel to the direction of excitation) under forced 

vibration. 

Conclusions 

lo The case of empty container (Figure 64) and completely filled 

container (Figure 72) indicate rigid body motion. 

2. The general characteristic of fluid motion in the nonlinear 

range is always softening. 

3. The fluid oscillations exhibit jump phenomenon. 
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APPENDIX D 

PROGRAM AND OUTPUT ROOTS OF THE CHARACTERISTIC EQUATION 
OF THE LINEAR SYSTEM 

1. Main Program, 

2. Sample Output Roots. 

Card numbers 24 and 25 were frequently replaced to make calcula­

tion for different combination and variation of parameters possible. 



MAIN PROGRAM 

1* C FLUID SLOSH DAMPING 
2* C ROOTS OF CHARACTERISTIC EQUATION »TWO DEGREE FREEDOM SYSTEM t 
3* C LINEAR FREE MOTION. 
4* REAL MUM 
5* DIMENSION A(5) »X(4) 
6* COMPLEX AfX 
7* READ (5»100) N»EPS»KMAX 
8* READ <5»103) RHOM»RHOP»MUMrOMEGA 
9* WRITE (6»101) 

10* WRITE (6»102) N»EPS#KMAX 
11* 1 WRITE (6»108) RHOMfRHOprMUMrOMEGA 
12* NP1=N+1 
13* A(1)=(0MEGA**2) 
14* A(2)=2*(RHOM*0MEGA**2+RH0P*0MEGA) 
15* A(3)=(OMEGA**2+4*RHOM*RHOP*0MEGA+l.) 
16* A(4)=2*(RH0M+RH0P*0MEGA) 
17* A(5)=(1.-MUM) 
18* WRITE(6»104) (I»A(I)»1=1»NP1) 
19* CALL ROOTCP (ArN»EPSrKMAX»X»J»S2> 
20* WRITE (6.105) 
21* GO TO 3 
22* 2 WRITE (6»106) J 
23* 3 WRITE (6fl07) (I»X(I)»1=1rJ) 
24* RH0P=RH0P+0.05 
25* IF (RHOP .LT. 1.0) GO TO 1 
26* STOP 
27* 100 FORMAT (I4»F10.0t14) 
28* 101 FORMAT (//»20X»20HFLUID SLOSH DAMPING »//> 
29* 102 FORMAT (9H N = I4/7H EPS = 1PE16.7/8H KMAX= 14 ) 
30* 103 FORMAT (4F10.0) 
31* 104 FORMAT (//22H POLYNOM COEFFICIENTS.//1H 2X 2H I»20X 5H A(I)/ 
32* K1H I4»1P2E18.7)) 
33* 105 FORMAT <//42H SUCCESSFUL RETURN ALL ROOTS CONVERGED . ) £ 



34* 106 FORMAT (//77H ERROR RETURN MAXIMUM NUMBER OF ITERATIONS EXCEEDED 
35* 1DURING THE SOLUTION FOR 14,9H TH ROOT.) 
3 6 * 107 FORMAT </ /14H OUTPUT ROOTS.//1H 2X 2H I»20X 5H X < I ) / ( 1 H I4»1P2E18. 
37* 17) ) 
38* 108 FORMAT <//8H RHOM = 1PE16.7/8H RHOP = 1PE16.7/8H MUM = 1PE16.7/ 
3 9 * 18H OMEGA= 1PE16.7 ) 
4 0 * END 

Ln 



SAMPLE OUTPUT 

FLUID SLOSH DAMPING 

N = 
EPS = 
KVIAX = 

9.9999999-04 
50 

RHOM = 
RHOP = 
MUVI = 
OviEGA= 

0 . 0 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 0 - 0 1 
1 . 0 0 0 0 0 0 0 - 0 1 
9 . 5 0 0 0 0 0 0 - 0 1 

POLYNOM COEFFICIENTS. 

I 
1 
2 
3 
4 
5 

9 . 0 2 4 9 9 9 9 - 0 1 
1 . 9 0 0 0 0 0 0 - 0 1 
1 . 9 0 2 5 0 0 0 + 0 0 
1 . 9 0 0 0 0 0 0 - 0 1 
9 . 0 0 0 0 0 0 1 - 0 1 

A ( I ) 
0 . 0 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 0 

SUCCESSFUL RETURN ALL ROOTS CONVERGED . 

OUTPUT ROOTS. 

I 
1 
2 
3 
4 

- 4 . 4 3 0 2 4 7 5 - 0 2 
- 4 , 4 3 0 2 0 0 1 - 0 2 
- 6 . 1 2 5 3 1 4 3 - 0 2 
- 6 . 1 2 5 3 4 8 9 - 0 2 

X(I) 
- 8 . 5 3 6 7 0 7 5 - 0 1 

8 .5367072-01 
-1 .1698572+00 

1.1698572+00 
Ul 



RHOM = 
RHOP = 
MUM = 
OMEGA= 

0*0000000 
1.5000000-01 
1.0000000-01 
9.5000000-01 

POLYNOM COEFFICIENTS. 

I 
1 
2 
3 

5 

9.02^9999-01 
2.8499999-01 
1.9025000+00 
2.8«*99999-01 
9.0000001-01 

A(I) 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

SUCCESSFUL RETURN ALL ROOTS CONVERGED . 

OUTPUT ROOTS. 

1 
1 
2 
3 
4 

-6.7280338-02 
-6.7280333-02 
-9.1052998-02 
-9.1052992-02 

X(I> 
-8.6168^99-01 
8.6168501-01 
1.1550179+00 

-1.1550179+00 

Other roots 

ui 
Ul 
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APPENDIX E 

SAMPLE DESIGN CALCULATION 

The effectiveness of fluid slosh dampers on the response of the 

vibratory systems was studied in parametric form. For the design of a 

more efficient slosh damper, certain critical values of the parameters 

were obtained. 

The parameters used contain many physical constants of the damper 

and of the main system. Since many combination of physical constants 

yield to a single value of a particular parameter, the designer will find 

a wide range of selection of each individual physical constant. 

In practice one should design fluid slosh dampers for the maximum 

damping of the response of the main system. But in the course of experi­

mental analysis it was found easier to obtain a fluid slosh damper and 

design a vibratory system for which the damper is most suitable. Some­

times the physical constants of both systems (main system and auxiliary 

system) were altered to obtain the desired design parameters. 

Suppose there is a mass-spring-dashpot model of a vibratory system 

that exhibits the following properties: 

Cm = ° 

M = 4 x 10-3 ± ^ £ 
m m 

K = 1.768#/in. 
m 
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The objective is to design a fluid slosh damper which provides 

maximum damping. 

1. As explained earlier smaller mass ratios are prefered because 

of the weight penalty. Therefore, a mass ratio of 0.1 is selected for 

this analysis. 

2. It has been proven that for maximum damping the frequency 

ratio must equal the critical tuning frequency (Q = Q ). Therefore, for 

the mass ratio (|j, = 0.1) selected, the frequency ratio must be Q = Q =0.95. 

This value is obtained from Figure 20. 

3. In the theoretical analysis of the free vibration of the 

coupled system, the critical value of viscous damping for Q = 0.95 and 

(j, = 0.1 is shown to be Q = 0.300. This value is obtained from Figure 

25. 

It should be mentioned that the design parameters obtained lead 

the designer to the construction of an efficient fluid slosh damper, pro­

vided that it should be used in the linear range (c « € )• 

From the information obtained above, one can write 

LL = M /M = 0.1 or M = 0.1M, (141) 
P P 

Q = UD /u) = 0.95 or ou = 0.95ou , and (142) 
p m p m' 

r = C = 0 .30 . (143) 
bp bpc v ' 

The above three equations determine the physical constants of a dampled 

planar pendulum which provides maximum damping for the main system, pro­

vided that M = M . But in design of a spherical container partially 
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filled with fluid the problem becomes more complicated. In such a case, 

the additional stationary mass of the fluid (M ) and the mass of the con­

tainer (M ) will be included in M, and also C will be a function of D, 

t P 

H/D, and u. It should be noticed that because of the new value of M, 

the magnitude of uo will also be altered. 
m 

In such respect the designer has the choice of selecting some 

reasonable values of some of the physical constants and determine the 

rest from the equations obtained above. From the previous experimental 

analysis it was found more convenient to arbitrarily select a partially 

filled container (D and H/D) and determine the viscousity of the fluid 

such as to satisfy equations 141, 142, and 143. 
For this calculation the following arbitrary values are selected: 

D = 3.862 ins., H/D = 0.500 

Letting M = M + M and rewriting equations 141, 142, and 143 in terms 
° m s w ° 

of the physical constants of fluid slosh dampers one obtains 

M = 0.1(M + M + M + M ), (144) 
p m t o p 

G/L = (0.95)2 ( + M ^ M + M ), and (145) 
m t o p 

Cp = Cpc = 0-30 = f(D,H/D,v). (146) 

Substituting equation 144 in equation 145 one can write 

G / Lp = (0-95>2 (liig-)' (147) 

P 
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0.30 = f(D,H/D,v), (148) 

where equation 148 can be obtained from equations 138 and 140 of the text. 

For the H/D and D selected the value of L can be obtained from Figure 55. 

Solving equations 147 and 148 yields 

M = 5.18 x lO"4 ^ N ^ 
p in 

u = 113.8 x 10~4 ft2/sec. 

Knowing M and H/D one can obtain M^ from Figure 54 as M^ = 1.95x10 — : 

4$— sec 
and the value of M can be obtained from Figure 56 as M = 3.9x10 — ^ . 

o ° o m 
The value of an allowable tank mass can be obtained from equation 144 as 

M = 2.72 x l(T*iz^.. 
t in 

The viscosity of the fluid obtained is in the neighborhood of pure 

glycerin at room temperature, and its density can be found from 

M F = f D 3 p . p = 0.112^| 

According to the above calculations all the physical constants of 

the slosh damper and its pendulum model are known. It should be emphasized 

that the designer has the choice of predetermining any other parameters 

than those of the present calculation. The results of similar calculations 

sometimes yield unreasonable values for physical constants, in such 

cases the designer may have to adjust some other constant in order to 

obtain reasonable values. It should be mentioned also that fluid slosh 

dampers are best suited for low frequency systems. 
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APPENDIX F 

PROGRAM AND SAMPLE OUTPUT OF NONLINEAR FLUID MOTION 

1. Main Program. 

2. Subroutine to reset the initial conditions. 

3. RKDE subroutine. 

4. Sample output solution, 

Cards 26 and 27 were frequently replaced by other statements to 

make variation in other parameters possible. 



MAIN PROGRAM 

1 * . 
2* 
3* 
4* 
5* 
6* 
7*... . ..C. .. 
a* c 
9* c 

10* c 
11* c 
12* 
J.2*_ 1000 
14* 
15* 
16* 
17* 
18* 
19* 
20* 
21* 10 
22* 
23* 
24* 
25* 
26* 30 
27* 
2il*^ 
29* 100 
2D* 15Q 
31* 200 
32* 300 

yIMENiLQN .Y(51\th<5),Q{5}.._ 
COMMON EPS» MUM, OMEGA, RHQP» RHO,JI» SEE 
EXTERNAL DY 
REAL MUM 
READ(br100)(Y(I)»I=J»5) 
R^AD(5»150)DELT»N 
Y(l)=QNEGAM*TfY{2>=X/Xa4Y(3l=XD0T/(XQ*0MEGAM),Y(4)=THETA, 
Y(5)=THETAD0T/0MEGAM 
DELT=STEP SIZE. N=TOTAL NUMBER OF STEPS# MUM=MASS RATIO 
EPS=XO/LP» OMEGA=FrRFQUENCY RATIO. RHOP=DAMPING FACTOR OF FLUlP 
RH0M=(JAMPING FACTOR OF MAIN SYSTEM,SEE=CURIC SPRING COEF. 
READ(b,200)EPS» MUM, OvEGA, RHOPr RHOMr SEE 
WEITEt£*3QQ) 
WRITE(6,400)EPS» MUM» OMEGA» RHOP» RHOV, SEE 
CALL RESET(Y) 
WRITE(6,500)Y(1)» Y(2), Y(3)» Y(4), Y(5)" 
WRlTE(6*6Q0)DELTr N 
H=DELT 

...,Z=tL_ __.. . ._ . . 
J=0 
CALL RKDE (DYrYrZ*HtWrQ,5> 
WRITE(6»700)Y 
Z=Z+H 
J=J+1 
I P ( J - N ) 1 0 r l O » 3 o 

.EPS=£PS + 0.06*f . 
IF(EPS , L T . 0 .193) GO TO 1000 

_SJQP ..._ 
F0RMAT(5F10.5) 
F0RMAT(F1Q.5 ' I5) 
F0RMATC6F10.5) ^ 
F0RMATC20Xi31HS0LUTION OF FLUIH SLOSH HAMPERS,//) 2 



0 FORMAT(1OX *4HEPS=»Fl0.5,5X,4HMUM=,F10.5»5X»6HOMEG/\ =»Fl0.F» 
15X»5HRt'0P=»FiQ.5'//'l0Xi5HRMOM=»F10,5»^X»aH<;EE=»F10,5»//) 

0 FORMAT(1 OX»18HINITIAL CONDITIONS*//t8X»9HOMEGAM*T=»F6.3, 
15^5HX/X0=»F6.3»5X»17HXD0T/(X0*0VFGAM)=»Fft,3»5X»6HTHETAr,F6.3»//» 
18X »16HTHETAD0T/0MEGAM=»FfS, 31 //) 

0 FORMAT(18XH5HDEL,T(OMEGAM*T) = 'F10,5»5X»27HTOTAL NUMBER OF INCFEMEN 
lTc)=»I5»//»10X»PHOMEGAM*T»9X»*fHX/XO»9X'16HXDOT/(XO*OMEGAM) ,6X» 
lSHTHETAi6X f15HTHETADOT/OMEGAM) 

0 FORMAT(5(7X»F10.6M 
ENQ 

Subroutine #1 

SUBROUTINE RESET(X) 
DIMENSION X(5) 
X(1 )=0 .Q 
X(2)=1 .0 
X(3)=Q.O 
X U ) = 0 . 0 
X(5)=0 .0 ... 
RfZTURN 
END 



Subroutine #2 

1 * HEAL FUNCTION D Y ( Y , I ) 
._£*_. BEAU..MUM 
3* COMMON EPS* MUM, OMEGA, RHQP» PHO", SEE 
4* DIMENSION Y(l) 
5* GO TO (10»20»3n»40)»I 
6* 10 OY=Y(3) 
7* SO TO 50 
tf*__ 2B_-. QY= L-lMUM/EES) * {Y < 5) *Y t 5 ) * S l N <Y ( 4 ) ) +2*RHOP*0MEGA*Y (5) * 
9* 1C3SIY(4) )+OMEGA*ON'EGA*slM(Y(U) )*C0S(Y(<O )+OVEGA*OMEGA* 

1U* 1SEE *Y U ) * * 3 . ) + 2 , * R H O M * Y { 3 ) + Y ( 2 ) ) / ( M U M * C O S ( Y ( 4 ) ) * C O S ( Y ( 4 ) ) - 1 . ) 
1 1 * GO TO 50 
12* 30 .DY=Y(5J 
13* GJ TO 50 

J J t * HQ aXil=2*RHOi3*£PS*YUl*CoS(Y{4n-EPS*Y(2)*C0S(Y(«t))+FUM* 
15* 1Y(5)*Y(5)*SIN(Y(4> )*C0s(Y(4) )+2,*RH0P*0MEGA*Y(5)+0MEGA*OMEGA* 
16* lSlN(Y(ii) )+0MEeA*QMEGA*SEE*Y(it)**3.1/(MUM*C0S(Y(U) )*C0S(Y(4) )-!,) 
17* 50 RETURN 
18* END 



SAMPLE OUTPUT 

SOLUTION OF FLUID SLOSH HAMPERS 

_L£S= ..1280Q MUM= ,10000 QMEGA= .95000 RHOP= .10950 

RhOM= .00000 SEE= .00000 

INITIAL CONDITIONS 

6MEGAM*T=~ .000 X/XO= 1.000 XDOT/(XO*OMEGAM)= .000 THETAr .000 

THEjADOT/OMEGA^iS .000 

_ Q£kILQMEjaAM*T}- *?0Q00 TOTAL NUMBER OF INCREMENTS= 400 

QMEGAM*T 
.200000 
•HQQOQQ 
.600000 
^aooiiOO-
1.000C0Q 
1.200000 
1.400000 
1.600000 
1.600000 
2.£)onnaQ-
2.200000 
2.400C00 
2.600C00 
2.8000QO 
3.0O0PO0 

x/xo 
.977901 
.912799 
.807992 
.668636 
.501459 
.314411 
.116247 

-.083907 
-.277006 
-.454508 
-.608768 
-.733379 
-.823449 
-.875812 
-.889151 

XDOT/(XO*OMEGAM) 
-.219929 
-.428341 
-.615422 
-•772526 
-.892613 
-.970574 

-1.003457 
-.990547 
-.933325 
•^835331 
-.701941 
-.540096 
-.357969 
-.164570 
.030711 

THETA 
.002781 
.010725 
.n2?927 
.038138 
.054857 
tn7l439 
.086210 
.097588 
.104186 
.104907 
.099015 
,086187 
.066545 
.040655 
.009514 

THETAQOT/OMEGA 
.027403 
.051279 
.069701 
.081160 
.084657 
.079762 
.066633 
.045994 
.019076 

-.012479 
-.046711 
-.081463 
-.114488 
-.143577 
-.166681 



-likQQOQQ _ -..864Q2Z....... .. _. .218619 -,025500 -.182050 
3.400000 -.802773 .390554 -.062699 -.188358 
3.600Q00 -.709369 .539055 -.100183 -.184810 
3.^00000 -.589120 .658162 -.135950 -.171208 
4.000000 -.448356 .743634 -.168020 -.147955 
4.200000 -.294082 .793007 -.194550 -.116016 
4_.<*D0_QQQ -.133619 .805546 -.213940 -.076830 
4.600CO0 .025730 .782126 -.224917 -.032202 
4,aOODOO ,176984 .725111 -.226595 .015803 
5.000000 .313776 .638241 -.218519 .064950 
5.2Q0000 .430616 .526515 -.200692 .112925 
5.400000 .523127 .396035 -.173582 .157404 

.._.. 5*bHQQQQ .588242 .253774 -.138114 .196142 
5.d00000 .624349 .107213 -.095647 .227075 
6.000000 .631344 -.036121 -.047924 .248452 
6.200000 .610589 -.169193 .003006 .258967 
6.399999 .564759 -.285968 .054887 .257886 
6.600000 .497605 -.381792 .105378 .245121 

_ 6..J999S2 . .. .413654 -.453.565 .152191 .221243 
7.000000 .317895 -.499718 .193209 .187414 
7.199999 .215496 -.520029 .226601 .145279 
7.399999 .111552 -.515396 .250898 .096823 
7.599999 .010885 -.487629 .265054 .044241 

Continues 
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