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SUMMARY

This dissertation focuses on three topics. The first is the construction of a new

network model based on the Liner Shipping Connectivity Index (LSCI), which is a measure

reflecting trade intensity between ports. We then use such a model to better understand

the patterns of world trade.

We also propose a new measure, called the Container Port Connectivity Index (CPCI),

to more accurately reflect the relative importance of container ports within the global

network of container shipping. Unlike any of the existing measures, this index is based on

both economics and network topology, where the strength of a port is based on the strength

of its connection to neighbors, and neighbors of those neighbors, and so on — not just

on local information such as the number of TEUs handled or direct links to other ports.

As measured by the CPCI, the most important ports are not necessarily those with the

most links, or those handling the most TEUs, but the ones with good connections to other

well-connected ports. This is a reflection of fact that the CPCI does not depend only on

the number of links but also on link quality and the connectivity of the ports to which they

connect.

This thesis also proposes a framework for evaluating market stability of a logistics hub in

a competitive environment. In particular, we build a model to predict how the community

of liners calling at a hub might develop as the result of actions by competitors. We can

use such a model to study the behavior of shipping lines, as well as the resulting trade-

flow changes, as the system gradually moves toward equilibrium. Our model predicts that

bigger lines are expected to be the first to move transshipment operations to a cheaper port,

thereby inducing the smaller ones to follow. Though our model is only preliminary and not

yet populated with actual data, it seems consistent with the observation of shipping line’s

relocation at the port of Singapore, where Maersk, the biggest operating line, was the first

to move to the port of Tanjung Pelapas, followed subsequently by Evergreen.
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CHAPTER I

INTRODUCTION

1.1 Port Attractiveness and Measures of Port Importance

What makes a container port attractive as a logistics hub? From an operational point of

view, a port derives importance from three main factors. The first is the infrastructure

required to move containers, such as cranes, quays, hinterland transportation, and so on.

Another important factor is location, which includes geography, and, in particular, distance

from other ports. Finally, there is connectivity within the network of container shipping:

to what degree do shipping liners call at the port?

Practically, the annual number of TEUs handled is widely used as a traditional port

importance indicator. However, it is merely a local statistic that reflects handling and not

patterns of trade flow. To include more information about location and connectivity, others

have proposed more systematic measures of port importance that reflect something about

the position of the port in the global network of container shipping. Examples include degree

centrality, closeness centrality, betweenness centrality, or the number of origin-destination

pairs that the port serves — the Network Connectivity Index [85] and the Port Cooperative

Index [54]. Emphasizing on connectivity, nevertheless, all of these measures do not directly

reflect economics — and none exists, to the best of our knowledge.

On the other hand, from the economist’s point of view, the United Nations Conference

on Trade and Development (UNCTAD) has established another measure for comparing

countries’ trade competitiveness with respect to maritime logistics and transportation called

the Liner Shipping Connectivity Index (LSCI), which is an aggregation of the following five

statistics: number of liner services calling, number of liner companies, number of ships,

combined container capacity of the ships (in TEUs), and capacity of the largest ship calling

[71]1. By construction, the LSCI implicitly treats each country as if it were a single location

1Despite the narrowness of focus and somewhat arbitrary method of aggregating component statistics,
the LSCI is based on hard numbers and is felt to accurately reflect trade competitiveness. Indeed, the LSCI
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and the entire rest of the world is its counterpart trading partner. Following the same idea,

we may establish an economics-based measure reflecting trade intensity between ports by

using the same calculation like that of the LSCI, except for ports rather than the countries.

Though the LSCI is meaningful to some extent, it still lacks ability to reflect port importance

from the network’s perspective.

Accordingly, in this dissertation, we propose to establish a new measure, called the Con-

tainer Port Connectivity Index (CPCI), to more accurately reflect the relative importance

of container ports taking both network structure and economic information into account.

In doing so, we first establish a new network model of container shipping called the Global

Container-Shipping Network (GCSN), which is constructed in such a way that there is a

link from port i to j, if there is direct service from port i to j. Furthermore, that link is

assigned a weight that is computed as the LSCI, reflecting direct connectivity and trade

intensity between ports. We then compute the CPCI by applying the Hyperlink-Induced

Topic Search (HITS) algorithm [46] to such a network.

In particular, the CPCI takes the proposed LSCI-like measure as link weights, reflecting

rate of container capacity moving between container ports, and assigns two types of impor-

tance scores to each port, that is, the inbound and outbound scores. Conceptually, a port

with a high inbound score has greater power to aggregate goods, and a port with a high

outbound score has greater power to distribute goods.

This measure has several advantages over the existing ones. Firstly, while the afore-

mentioned measures are based on either network topology or economic information, the

CPCI more directly reflects both. In addition, it provides separate scores for inbound and

outbound, which could consequently be used to analyze and explain the strategic position

that terminal ports serve independently. Finally, the CPCI supports what-if analysis in

such a way that survey-based indices, like the LSCI or the LPI, cannot.

has been observed to be strongly correlated with the Logistics Performance Index (LPI), a comprehensive
survey of perceptions that is reported annually by the World Bank [6].
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1.2 Market Stability of a Logistics Hub in a Competitive Environment

From a port’s perspective, in order to become a logistics hub, a port must possess at least two

important characteristics. The first is the infrastructure that allows customers, or shipping

lines, to operate at lower cost but with higher speed. The latter is its geographical location,

or centrality. A strategically located port with advanced and efficient infrastructure may

attract more liners, container flow, and so achieves the connectivity for freight consolidation

or transshipment — which, in turn, allows its customers to open new markets by calling at

such a port. Yet there are several threats that might affect the stability of such a hub.

It is worth noting that it is the customers of a port, not the port itself, that provide port

connectivity. Losing a customer inevitably reduces connectivity and so the attractiveness

of the port. This may, in turn, trigger a series of defections by others whose transshipment

opportunities have been reduced. A hub, especially the transshipment one, is more vulner-

able to this threat than the others due to its smaller demand and supply, which might not

otherwise justify port calls made by the liners.

One prominent example demonstrating this circumstance is the competition between

the ports of Singapore and Tanjung Pelepas, Malaysia [10]. While Tanjung Pelepas and

Singapore are located on the opposite side of the Johor Strait, next to each other, labor

cost at the port of Tanjung Pelepas is much lower. In order to secure lower operational

costs, in 2000, Maersk Sealand, the largest operating line at the port of Singapore, decided

to move its operating hub from the port of Singapore to the port of Tanjung Pelepas.

Afterward, in 2002, Evergreen, the second biggest line, also moved to the port of Tanjung

Pelepas. Under economic pressure on small lines, some have to establish connection services

to the port of Tanjung Pelepas in order to transship their containers with those who moved,

while the others have decided to follow them to the port of Tanjung Pelepas. By these

succession moves, the port of Singapore has lost millions of container flow to its competitor.

Ironically, the most important customer is also the greatest threat to the hub itself since

it could abandon the current hub and easily move to the competing ones, which increases

economic pressure on the rest to follow.
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Inspired by such an event, we establish an analytical framework to investigate and ex-

plain market stability of a logistics hub in a competition with other ports within its vicinity,

taking both ports’ and shipping lines’ decisions into consideration, where, at the state of

stability, no liner-shipping company is better off moving his business away to competing

ports. Conceptually, in our proposed scheme, port operators decide on the configurations

of their infrastructure and fees charged. And, once observed, liner-shipping companies then

decide on their operational plans that minimize their total operating costs via a model

called the Liner Shipping Cooperative Model.

Our proposed methodology differs from the existing research in three ways. Firstly,

while most of the existing models, such as [25], [26], and [27], may incorporate both explicit

and implicit costs into consideration, an implicit cost, such as waiting or congestion, is

improperly captured by a piecewise-linear function, where the containers are assessed with

different cost rates rather than one, as it should be in the steady state. In our proposed

cooperative model, we have addressed this issue by using an alternative modeling approach

assigning a single cost rate to all containers, called the piecewise-affine cost function [89].

Secondly, to the best of our knowledge, we are the first to tackle this problem by means

of an optimization-based cooperative game theoretic approach. More precisely, instead of

defining relationship between interested quantities, we take advantage of the optimization

model to explain the mechanism among them.

Lastly, the structure of our proposed methodology allows us opportunity not only to

investigate the behavior of shipping lines taking port information into account but also

to provide insights into changes of container-flow patterns as the system gradually moves

toward equilibrium. This information, in turn, allows a logistics hub to comprehend and

quantify the threats posed by its competitors, which might consequently be used to devise

counter strategies or policies to safeguard its business.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapters 2 and 3, we pro-

vide comprehensive reviews of Centrality Measures and Community Structure, which would
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be used as foundation for the construction of the the Global Container-Shipping Network

(GCSN) and the Container Port Connectivity Index (CPCI) in Chapter 4. An interesting

extension of the CPCI is provided in Chapter 5, where the overall port importance score

is decomposed into components to help us better understand why a particular port has

become important — and by which factors.

The discussion of market stability of a logistics hub in a competitive environment is

provided in Chapter 6, while the detailed construction as well as the results of our proposed

framework is provided in Chapter 8. Since our model is constructed based on the concept of

cooperative game theory, where the Shapley value has played a prominent role in defining

the condition sustaining the stable community of customers at ports, readers might find

Chapter 7 to be useful as it provides a detailed discussion of the Shapley value, including

its interpretation and some interesting applications.

Finally, Chapter 9 concludes our works, limitations, and future research directions —

particularly, the effects of the Panama Canal Expansion and the construction of a canal on

Kra Isthmus, the narrowest part of the Malay Peninsula separating the Gulf of Thailand

from the Indian Ocean, on the patterns of freight-flow diversion.
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CHAPTER II

CENTRALITY MEASURES

In social networks, Centrality Measures are frequently used as tools to measure the potential

involvement of nodes in the networks. Although there are a great number of centrality

measures that have been established lately, they all could be arranged and grouped into

three categories, based on their dimensions of measurement, namely, (i) degree centrality,

(ii) closeness centrality, and (iii) betweenness centrality [17, 34, 35]. Some authors, such as

[17] and [45], classified eigenvector centrality as another class of centrality measures. Yet

it could be considered as a variant of degree centrality. Since eigenvector centrality and its

variants, such as the Google’s PageRank algorithm and the Hyperlink-Induced Topic Search

(HITS) algorithm, possess several important properties and play a prominent role in our

proposed ranking scheme, we will treat them separately from degree centrality. Based on the

foundations of these basic measures, many contemporary measures have been constructed,

including multidimension centrality, where the relationship among nodes are allowed to

interact with three or more entities. In order to show the viability of such tools, we also

provide several interesting applications of the centrality measures at the end of this chapter.

2.1 Terminology

Let G = (V,E) be a graph, or network, where V represents a set of nodes of size N , and E

represents a set of links or edges, which sometimes might be referred to as ties or lines in

the literature. In general, we frequently represent a network and its components by either

(i) an adjacency matrix or (ii) an incidence matrix.

• The adjacency matrix is a matrix where both of its rows and columns represent nodes.

The entry of such a matrix is one, if there exists an edge connecting nodes of the

underlying row and column, and zero otherwise.

• The incidence matrix is a matrix where each row and column represent a particular
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node and edge, respectively. In addition, its entry is one for pairs of nodes incident

to an edge, and zero otherwise.

Another set of notations associated with connections between nodes is provided as fol-

lows.

• A walk is a sequence of nodes and adjacent edges.

• A trail is a walk with no repeated edges.

• A path is a trail with no repeated nodes.

2.2 Classical Centrality Measures

In this section, we explore the three classical centrality measures in Social Science, namely,

(i) degree centrality, (ii) closeness centrality, and (iii) betweenness centrality, which are the

foundations of the sophisticated centrality measures discussed in the following sections.

These three measures are different in terms of their control level. More specifically, degree

centrality is considered as a measure of immediate effect, since it counts only the number of

direct links connecting to its immediate neighbors, while betweenness centrality is regarded

as a measure of global control, since the centralities of other nodes depend on the position

of the interested one.

2.2.1 Degree Centrality

Degree centrality, the simplest centrality measure, measures an importance of a node based

on the number of direct links to its immediate neighbors. Mathematically, for any node i,

degree centrality, denoted as C(i), could be calculated by Equation (1).

C(i) =
∑
j∈V

aij , (1)

where

aij =

 1 , if there exists an edge connecting nodes i and j,

0 , otherwise.

When the direction is of interest, in-degree centrality and out-degree centrality could be

defined using in-coming and out-going links instead of the adjacent ones.
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In the literature, the comparison of nodes’ degree centrality across networks could be

done by scaling such a measure into the range between 0 and 1 with the maximum theoretical

value [34]. In such a case, the theoretical maximum degree for any nodes in the network is

N − 1, hence, the scaled version of degree centrality could be defined as Equation (2).

C(i) =

∑
j∈V aij

N − 1
(2)

Since degree centrality of any node is independent of the others, it is usually referred to

as a measure of intermediate effect. Many variants of degree centrality are also studied in

the field of social science, such as (i) edge-weighted degree centrality, where the frequency of

connection between nodes is also included in the calculation, (ii) k-path centrality, where all

paths of length k or less emanating from a node are counted instead of immediate connecting

edges, (iii) geodesic k-path centrality, which is similar to k-path centrality; but, we count

only the shortest paths up to length k, starting from a node of interest, (iv) edge-disjoint k-

path centrality, which counts all paths of lengths up to k between two nodes with no shared

edges, and (v) vertex-disjoint k-path centrality, which is quite similar to edge-disjoint k-path

centrality; but, in this case, repeated nodes are prohibited.

2.2.2 Closeness Centrality

An alternative concept of centrality may be based on total shortest distance from a node to

the rest of the network, which is known as closeness centrality. Mathematically, closeness

centrality, denoted as CC(i), is defined as Equation (3).

CC(i) =
∑
j∈V

d(i, j), (3)

where d(i, j) is the shortest path length from node i to j.

Notice that the measure defined in Equation (3) is indeed a farness measure, i.e. the

larger the value of CC(i), the less centrality a node possesses. In order to make a better

interpretable measure, we may redefine closeness centrality by using Equation (4) instead

of (3) — where the inverse of farness properly defines closeness.

CC(i) =
1∑

j∈V d(i, j)
(4)

8



Similar to that of degree centrality, for comparison purpose, the standardized closeness

centrality could be defined as Equation (5).

CC(i) =
N − 1∑
j∈V d(i, j)

(5)

It is worth mentioning that, when a network is not strongly connected, closeness cen-

trality is not well defined, i.e. there would be some nodes j ∈ V with d(i, j) = ∞. In

order to avoid such a circumstance, one can consider only the reachable nodes from node i,

denoted as Ji, and redefine closeness centrality as Equation (6).

CC(i) =
|Ji|/(N − 1)∑
j∈Ji d(i, j)/|Ji|

(6)

Information centrality is one interesting variant of closeness centrality, where the cen-

trality of a node is defined as the difference of node’s closeness when node deactivation is

allowed [51].

2.2.3 Betweenness Centrality

The concept of betweenness centrality is based on the observation that the communication

between any pairs of nodes usually depends on a set of nodes that lies between them. Based

on this idea, a node that lies on many shortest paths might be considered as the most central

one. More formally, betweenness centrality, denoted as CB(i), is defined as Equation (7).

CB(i) =

∑
i 6=j 6=k gjk(i)

gjk
, (7)

where gjk denotes the number of shortest paths connecting nodes j and k, and gjk(i)

denotes the number of shortest paths connecting nodes j and k passing intermediate node i.

In the literature, betweenness centrality is sometimes referred to as a measure of information

control, since the most central node could be viewed as the most important information

gateway [17].

Many interesting variants of betweenness centrality include (i) group betweenness cen-

trality [47], where the influence of a set of nodes are of interest rather than that of an

individual node, (ii) co-betweenness cetrality [47], where the shortest paths counted must

pass a pair of interested nodes, (iii) flow betweenness centrality, whose calculation is based
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on the concept of maximum flow, where all information is treated like fluid continuously

pumped through the network, (iv) random-walk betweenness centrality [64], where infor-

mation is assumed to flow freely from node to node, and (v) communicability betweenness

centrality [22], which is quite similar to random-walk betweenness centrality; but, in this

case, only self-avoiding paths are considered and counted.

Although betweenness centrality provides us better insight into node importance, its

computational time is much greater than those of the previous measures, especially in large

and complex networks.

2.3 Eigenvector Centrality

The main feature that differentiates eigenvector centrality from the others is the way it

defines node centrality. In many classes of networks, centrality might be a function of the

interaction among nodes rather than the intrinsic properties of a node itself. For example,

in social network, if we are chosen by someone popular, our status should be higher than

that if being chosen by the least popular ones. Based on this idea, if we let xi be the

centrality of node i and aij be the weighted contribution that node i gives to node j, we

have xi = a1ix1 + a2ix2 + . . .+ anixn. When we write this relationship in matrix form, we

have,

ATx = x, (8)

where matrix A represents weighted contribution of all adjacent nodes.

Interestingly, solving such a set of linear equations for x is equivalent to finding the

eigenvector associated with the eigenvalue of one. However, this might be infeasible if one

is not a member of the eigenvalues of AT . In order to make such a system of equations

solvable [13], eigenvector centrality, denoted as CE , is defined as Equation (9).

λCE = ATCE , (9)

where λ and CE are the principal eigenvalue and eigenvector corresponding to matrix

AT , respectively.

Note that, when negative relationships exist, our popularity might decrease if we are

associated with someone being disliked by the others. In such a case, eigenvector centrality
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defined in Equation (9) is still applicable, with a slight modification (see [14] for more

details).

Similar to all centrality measures, eigenvector centrality has some properties that might

be considered as its weaknesses. First of all, in directed networks, nodes with zero in-degree

possess zero centrality and any nodes being pointed by them would gain no contribution.

For example, all nodes shown in Figure 1 have zero eigenvector centrality, since nodes 1 and

2 have no in-degree and the rest are pointed from these two nodes.

1

2

43

Figure 1: A network with all zero eigenvector centrality [13].

As a remedy, we might add initial status, denoted as ε, which is independent of interac-

tion among nodes to all nodes [13]. This modified version of eigenvector centrality is called

alpha-centrality, which is defined as Equation (10).

αATx+ ε = λx, (10)

where x is the alpha-centrality and α is the relative importance of peers’ contribution.

It is also known that, in regular graphs, i.e. networks where all nodes have the same

degree, eigenvector centrality yields the same result as degree centrality [11, 23], which, con-

sequently, provides no meaningful information. However, this might be viewed as a property

rather than its drawback in the networks that degree of nodes drives their importance [11].

In the literature, broader class of centrality measures based on the eigen analysis is

called spectral centrality measures [75], which include the Google’s PageRank algorithm and

the Hypertext Induced Topic Search (HITS) algorithm.
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2.4 Google’s PageRank Algorithm

The PageRank algorithm is an algorithm used by Google Search Engine, where a page is

assigned an importance score, or centrality value, based on the number of its backlinks and

their importance. For example, consider an example of a network with four pages shown

in Figure 2, let xk be the importance score of page k, where xi > xj implies that page i

is more important than page j. By using the number of page’s backlinks as a measure of

page importance, pages 3 and 1 will be the most and the least important ones, respectively.

However, from the practical standpoint, the links from important pages should be much

more valuable than those of the trivial ones. Therefore, we may redefine the importance

score of page k using the scaled version as shown in Equation (11).

xk =
∑
j∈Lk

xj
nj
, (11)

where Lk is the set of page k’s backlinks and nj is the number of emanating links from

page j used to scale the importance score of each page j ∈ Lk.

1 2

34

Figure 2: An example network with four pages [19].

If we rewrite Equation (11) in matrix form, we then have a linear system Ax = x, where

the entry aij of matrix A is the weighted contribution that page i obtains from its backlink

page j.

In our example, by scaling the solution of Ax = x with an additional equality
∑

j xj = 1,

the importance score vector of these four pages is [0.129 0.194 0.290 0.387]T . With this

ranking scheme, it has been revealed that, indeed, page 4, not page 3, is the most important

page, while page 1 remains the least important one, which could be explained as follows:

since the importance score of a particular page i is transmitted from several source pages to
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such a page, a link from a page with higher importance score contributes more than those

of the trivial ones. In this case, page 4 could be accessed only by page 3 and page 3 could

be accessed by any pages; thus, the importance of page 4 has been increased by its backlink

page, namely, page 3.

In practice, web surfers might end up with pages with no outgoing links, such as pdf

documents or pages containing only picture files. From network perspective, this type of

page is called the dangling node. For example, in Figure 3, page 3 has no outgoing links;

thus, it is a dangling node where the column associated with page 3 in matrix A has all

zero entries.

1 2

34

Figure 3: Page 3, which is a dangling node, has no outgoing link.

With the existence of dangling nodes, importance scores of all nodes other than the

dangling ones will be zero. In order to address this issue, we may fictitiously create out-

going links from the dangling nodes to all nodes, including themselves, with some specific

probability vector, called the personalization vector V . For example, if V = 1
ne, where e is

a column vector of all unity entries, we assume that once a web surfer reaches a dangling

node, the probability that she will move to any pages is 1
n . In the literature, we refer to

this assumption as the idealized random web surfer assumption [98].

It was shown in [19] that, when the network consists of several unconnected subnetworks,

there was no unique importance score. But this could be fixed by maintaining network

connectedness. In doing so, matrix A is modified to matrix M as shown by Equation (12).

M = mA+ (1−m)S, (12)

where A is a modified matrix A after adding fictitious links to all dangling nodes, S is
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an n× n square matrix, where all elements are 1
n , and m, known as a damping factor (see

[50] for more details), is a real number within the range of 0 to 1. In general, m is set at

0.85. Observe that such a matrix is maximally irreducible and column stochastic, i.e. each

column is added up to one, which guarantees having only one eigenvalue on its spectral circle

[49]. Interestingly, this problem is equivalent to the problem of finding limiting probability

of an ergodic markov chain.

Example 2.4.1 Consider a network of seven pages shown in Figure 4, where matrix A

is shown by Equation (13). Since page 7 is a dangling node, or an absorbing state in the

context of markov chain, [0 0 0 0 0 0 1]T is the solution of the system of equations Ax = x.

1 2

3

4

5 6

7

Figure 4: A network of seven pages used for the calculation of Google’s PageRank algorithm
[50].

A =



0 0 0 0 1
2 0 0

1 0 1
2

1
4

1
2 0 0

0 0 0 1
4 0 0 0

0 1
3

1
2 0 0 0 0

0 1
3 0 0 0 0 0

0 1
3 0 1

4 0 0 0

0 0 0 1
4 0 1 0



(13)

By adding fictitious links connecting page 7 to all pages, including page 7 itself, the

modified matrix A could be constructed and shown by Equation (14), where the resulting

importance score vector of all pages is [0.085 0.239 0.066 0.143 0.11 0.146 0.212]T . Based

on this modification, pages 2 and 3 are the most and the least important ones, respectively.
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A =



0 0 0 0 1
2 0 1

7

1 0 1
2

1
4

1
2 0 1

7

0 0 0 1
4 0 0 1

7

0 1
3

1
2 0 0 0 1

7

0 1
3 0 0 0 0 1

7

0 1
3 0 1

4 0 0 1
7

0 0 0 1
4 0 1 1

7



(14)

If we replace matrix A with matrix M using expression (12) with an equiprobable per-

sonalization vector, i.e. V = 1
7e, and set m as 0.85, the resulting importance score vector of

all pages would be [0.135 0.170 0.130 0.143 0.133 0.139 0.151]T . Still, pages 2 and 3 remain

the most and the least important ones in the network.

It is worth noting that, based on random surfer assumption, the personalization vector

is equiprobable and it might not properly reflect the interest of web surfers’ inquiry. For

better quality of search engine, the Biased PageRank algorithm has been developed by using

the customized personalization vector for each web surfer instead [50].

2.5 The HITS Algorithm

While the Hyperlink-Induced Topic Search (HITS) algorithm [46] and the Google’s PageR-

ank algorithm fall into the same class of centrality measure, where node importance is

derived from the principal eigenvector, the HITS algorithm provides two different scores

based on two different functions of the web pages, namely, the authority and the hub scores,

as output.

In this context, a good authority page is a page with many in-coming links, while a good

hub page is a page with many out-going links (see Figure 5). The main idea of the HITS

algorithm is that any authority pages being pointed from important hub pages should be

considered as important authority pages, and vice versa.

Mathematically, we can say that the hub score of a page is a function of authority pages,

and, similarly, the authority score of a page is a function of hub pages. If we let xi and yi
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Figure 5: An illustration of hub and authority pages.

be the authority and the hub scores of page i, we have the following.

λxi =
∑

j:eji∈E
yj , (15)

λyi =
∑

j:eij∈E
xj , (16)

where E is the set of links and λ is the weighted constant of such functions. If we replace

(i) all yi in Equation (15) with that of Equation (16), (ii) all xi in Equation (16) with that

of Equation (15), and rewrite them in matrix form, we can calculate these two scores by

Equations (17) and (18).

λx = AT y ⇒ λ2x = ATAx, (17)

λy = Ax⇒ λ2y = AAT y, (18)

where A is an adjacency matrix. In the literature, ATA and AAT are referred to as the

authority and the hub matrices. Since ATA and AAT are both symmetric, all eigenvalues

are positive. Both the authority and the hub scores are properly defined by the principal

eigenvectors corresponding to each matrix.

2.6 Multidimension Centrality Measure

Interestingly, most of the centrality measures discussed so far emphasize only the rela-

tionship between two entities; however, in practice, additional entities might be required

to completely explain the interaction among them. For example, in a buyer-seller-broker

transaction, we need three interactions to be recognized all at once, see Figure 61.

1Other than objects, additional dimensions may include (i) time, (ii) location, and (iii) group [12].
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Broker

SellerBuyer

Figure 6: A network representing a buyer-seller-broker transaction.

We may represent multidimensional relationship among entities by hyperedge and hy-

pergraph, where a hyperedge is an edge connecting more than two nodes at a time and a

graph containing hyperedges is called a hypergraph. For example, the network shown in

Figure 7 is a hypergraph containing three buyer-seller-broker transactions.

Seller1

Broker1Buyer1

Broker2

Seller2

Buyer2

Buyer3

Figure 7: A hypergraph containing three buyer-seller-broker transactions [12].

In this setting, a hypergraph can be described by means of an incidence matrix, where

rows and columns of such a matrix represent hyperedges and nodes, respectively. For

example, the incidence matrix of the network shown in Figure 7 could be written as follows.

A =


1 0 0 1 0 1 0

0 1 0 0 1 1 0

0 0 1 0 1 0 1


Based on the construction of the hypergraph, each node might be involved in more than

one transaction, whose importance differs by its involving members. In this circumstance,

node importance does not depend only on the entities it is connected with but also on the

transactions it involves. Based on this fact and the concept of eigenvector centrality, we may
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apply Expressions (17) and (18) on matrix A to obtain two different importance measures;

one for node, denoted as x, and another for hyperedge, denoted as y.

With this approach, it has been revealed that the most centrality nodes of the network

shown in Figure 7 are Seller2 and Broker1, as expected, since they are involved in two out of

three transactions, and the most important transaction is the one involving Buyer2, Seller2,

and Broker1.

It is worth noting that the measurement hyperedges, i.e. fictitious hyperedges measuring

group centrality, must be treated differently — using small values to represent those edges

in the matrix — when they are added to the incidence matrix since they might reduce the

importance of data hyperedges [12].

2.7 Other Contemporary Centrality Measures

Notice that most of the standard centrality measures, like degree, closeness, and betweenness

centralities, implicitly make several assumptions about (i) the trajectory of information

flow and (ii) the method of information spread [15]. Regarding the trajectory assumption,

closeness and betweenness centralities, for example, count only the shortest paths since we

assume that the information always flows through such paths. However, in many cases, such

an assumption does not hold. For example, consider the spread of news, where the senders

have no information about the shortest paths; thus, using them as centrality measures is

definitely inappropriate. Regarding method of spread, interested information might be an

indivisible object flowing only on one path, such as the pathway of novel in the community,

or it might be simultaneously spread out from a node like an infection. Thus, one measure

might be preferable to the others, and its appropriateness mostly depends on the critical

characteristic of information flowing throughout the network.

By properly altering these assumptions and adding practical constraints based on net-

work perspectives, many contemporary centrality measures have been established. The

examples include as (i) subgraph centrality [24], which is defined as the sum of weighted

closed walk of any length k, (ii) entropy-based centrality [90], which is developed based on

path-transfer processes, like a chain letter network, where any node has an ability either
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to stop or transmit information flow to the others, and (iii) alternative path centrality [81],

where the contribution of a node in backup paths is also part of its centrality.

Interestingly, while these centrality measures emphasize connectivity, additional infor-

mation inherited on both nodes and edges is treated equally important, or even worse as

it might be neglected. For example, in social networks, all connections are assumed to

be equal in terms of influence, which might not be true in practice. Similarly, in logistics

networks, where each node and edge has different capacity, throwing away such information

and focusing only on connectivity may not reflect centrality of a node properly.

In the literature, there are only few measures incorporating network components’ infor-

mation into consideration. For example, (i) generalized classical centralities [72], where the

authors have extended the use of weighted edges into the calculation of degree, closeness,

and betweenness centralities, (ii) weighted graph centrality [63], where weighted edges are

used for the calculation of eigenvector centrality, and (iii) path value and path length mea-

sures [101], where path value is defined as a measure of bottleneck link of a path connecting

two nodes, and path length is defined as the summation of weighted links comprising a path

between two nodes.

2.8 Applications of Centrality Measures

In this section, we will provide a detailed discussion of several interesting applications of

centrality measures in a more realistic setting. We begin with the establishment of two

indices for measuring port connectivity in maritime logistics networks, called the Network

Connectivity Index (NCI) [85] and the Port Cooperation Index (PCI) [54]. The next is the

implicit use of eigenvector centrality in college football ranking [74]. And finally, we present

a contemporary concept of defining key players in social networks [16].

2.8.1 The Network Connectivity Index

In a maritime logistics network, a shipping line must decide where to host its operation,

which is usually known as hub selection problem in the literature. This decision depends

on several factors which dynamically change with regard to both ports’ and other lines’

decisions.
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In the literature, this problem is typically solved by means of empirical methods, such

as the Analytical Hierarchy Process (AHP) or the Multinomial Logit Model (MNL). Since

these traditional methods depend mostly on surveys, subjectivity may not be avoided. In

order to reduce subjectivity, [85] proposed a new measure of port attractiveness reflecting

port connectivity based on the total number of origin-destination (O-D) pairs that such a

port served, called the Network Connectivity Index (NCI).

In that setting, given a network of ports G, we have the following.

• Ai is a set of O-D pairs served by an individual port i and n(Ai) is the total number

of such pairs which could be calculated by Equation (19).

n(Ai) = 2ninij + 2nijnij , (19)

where ni is the number of exclusive ports that could be reached by port i including

port i itself, accounting for the transshipment at port i, and nij is the number of

common ports that could be reached by both ports i and j.

• Ai ∩Aj is a set of O-D pairs served by both ports i and j and n(Ai ∩Aj) is the total

number of such pairs which could be calculated by Equation (20).

n(Ai ∩Aj) = 2nijnij (20)

• Ai ∪ Aj is a set of O-D pairs served by either port i or port j and n(Ai ∪ Aj) is the

total number of such pairs which could be calculated by Equation (21).

n(Ai ∪Aj) = 2nij(ni + nj + nij) (21)

• Ai ⊗ Aj is a set of O-D pairs jointly served by both ports i and j and n(Ai ⊗ Aj) is

the total number of such pairs which could be calculated by Equation (22).

n(Ai ⊗Aj) = 2ninj (22)

Since Ai∪Aj and Ai⊗Aj are mutually independent, we have n((Ai∪Aj)∪ (Ai⊗Aj)) =

2(ni + nij)(nj + nij) and, by definition, the network connectivity index of node i, denoted

20



as NCi, could be expressed by Equation (23).

NCi =
∑
j

2(ni + nij)(nj + nij) (23)

Example 2.8.1 Consider the network shown in Figure 8, where ports i and j have served

five and four destination ports, respectively. Among these ports, ports 4 and 5 are considered

as common ports served by both ports i and j.

1

2

3

4

5

6

7

i j

Figure 8: An example of network for the calculation of the NCI [85].

Based on the aforementioned notations, we have ni = 5 + 1− 2 = 4, nj = 4 + 1− 2 = 3,

and nij = 2. From Equation (23), total number of O-D pairs between ports i and j is

2× (4 + 2)(3 + 2) = 60.

In addition, for comparison purpose, one can scale such an index by the theoretical

maximum number of O-D pairs, which leads to Expression (24).

NCi =

∑
j 2(ni + nij)(nj + nij)∑

i

∑
j 2(ni + nij)(nj + nij)

(24)

Observe that the NCI is indeed a variant of betweenness centrality, where the shortest

path assumption is relaxed.

2.8.2 The Port Cooperation Index

To emphasize the sustainability of ports in a competitive environment, [54] developed an-

other index for measuring degree of cooperation between a pair of ports, called the Port

Cooperation Index (PCI). The PCI is derived from the observation that total number of
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O-D pairs served between any pairs of ports are either cooperative or competitive routes.

In the first case, a cooperative route is an O-D pair requiring connection from both ports;

and, in the latter case, a competitive route is an O-D pair that could be reached by either

port.

For clarity, consider two networks shown in Figure 9. While ports i and j have a perfectly

cooperative structure in the network on the left, they are perfectly competitive in the one

on the right.

1

2

i j

3

4

5 i 2 j

1

3

Figure 9: Networks with perfect cooperative and competitive structures [54].

If we let Ai denote a set of O-D pairs served by an individual port i with either coop-

eration or competition with port j and n(Ai) is the total number of such pairs, we could

calculate n(Ai) by Equation (25).

n(Ai) = ninj + nij(ni + nj + nij), (25)

where ni and nij are defined the same way as those of the NCI.

Notice that the first term of Expression (25) could be viewed as cooperative routes,

and the latter one may be regarded as the competitive routes. The degree of cooperation

between any pairs of ports could be defined as the ratio between total number of O-D pairs

that both ports have jointly served and total number of O-D pairs served either by port i or

j. Mathematically, the Port Cooperation Index (PCOI) of a pair of ports i and j is defined

as Equation (26).

PCOI(ij) =
ninj

(ni + nij)(nj + nij)
(26)

Similarly, degree of competition between a pair of ports i and j, called the Port Compet-

itive Index (PCI), is the ratio between total number of O-D pairs independently achieved
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without deploying direct connection between them and total number of O-D pairs served

either by port i or port j.

PCI(ij) =
nij(ni + nj + nij)

(ni + nij)(nj + nij)
(27)

2.8.3 College Football Ranking

In [74], a variant of eigenvector centrality was introduced and used to primarily reduce the

subjectivity of the existing college football ranking scheme — which was mostly based on

polls and the opinions of experts. Based on the fact that (i) the number of matches played

are much fewer than the number of existing teams (indeed, the games are mostly played in

conference system where a conference consists of a number of teams in the same region) and

(ii) the strength of schedule, i.e. some teams might have to play with some tough teams

compulsorily since they are in the same conference, should be considered in the ranking

scheme, ranking them all in one list would require a more formal unbiased scheme which

could be established through the concept of direct and indirect wins.

In this context, indirect win is defined based on logical implication. For example, if

team A has beaten team B, and team B has beaten team C, this intuitively implies that

team A has indirectly beaten team C with the length of two (see Figure 10). As this length

keeps increasing, indirect wins might not properly reflect the true strength of a team. And,

therefore, indirect win should be weighted with some values, where the longer the length,

the less the weight is assigned.

A B

C

Figure 10: An example of indirect win of length two, which is shown by bold arrow [74].

Based on the aforementioned, given an adjacency matrix A, where aij denotes the num-

ber of times team i has beaten team j, direct and indirect wins of length two of team i
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could be calculated by Equations (28) and (29), respectively.

direct wins of team i =
∑
j∈V

aij (28)

indirect wins of team i with length of two =
∑
j,k∈V

aijajk (29)

By applying weighting factor α to all lengths of indirect win, team i’s win score, denoted

as wi, could be calculated by Equation (30).

wi =
∑
j

aij + α
∑
k,j

aijajk + α2
∑
l,k,j

aijajkakl + ...

=
∑
j

(1 + α
∑
k

ajk + α2
∑
lk

ajkakl + ...)aij

=
∑
j

(1 + αwj)aij

= kouti + α
∑
j

aijwj , (30)

where kouti is the out degree of team i. Similarly, team i’s loss score could be defined as

Equation (31).

li = kini + α
∑
j

ajiwj , (31)

where kini is the in degree of team i.

In [74], the rank of a team is defined and ordered by the difference between win and loss

scores, denoted as si, where si = wi − li. In matrix form, win and loss scores of all teams

could be rewritten as Equations (32) and (33).

w = kout + αA · w

= (I − αA)−1 · kout (32)

l = kin + αAT · w

= (I − αAT )−1 · kin (33)

It has been shown in [74] that this measure is well defined as long as the value of α is

smaller than the principal eigenvalue of matrix A.
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2.8.4 Key Players in Social Networks

In [16], two new problems associated with key player identification in social networks were

introduced, (i) the Key Player Problem/Negative (KPP-Neg) and (ii) the Key Player Prob-

lem/Positive (KPP-Pos). In the KPP-Neg, key players are the ones whose absence would

reduce the cohesiveness of the network. The examples of the KPP-Neg are as follows.

• In public health, we might want to immunize or quarantine a set of people in order

to prevent the epidemic.

• In military, we might want to arrest a set of terrorists in order to interrupt its network.

In contrast, key players of the KPP-Pos are the ones whose presence would maximize

the connectedness of the network. Some examples of such a problem are provided below.

• In public health, we might need to select a set of people to act as seeds to diffuse the

practices that would promote better health in society.

• In military, we might want to select a set of double agents in order to spread misin-

formation to the terrorist network.

Standard centrality measures might not appropriately identify key players in both prob-

lems since (i) the objectives of the problems are different and (ii) centrality of one node

depends on the centrality of the others. For clarity, in the KPP-Neg, deleting a node with

high centrality might not reduce the cohesiveness comparing to that of the trivial ones

(see Figure 11). Similarly, in the KPP-Pos, adding one more highly central node might

not increase the connectedness of the network since the added node might have the same

neighbors as those of the existing ones (see Figure 12).

In both cases, the redundancy principle might explain the reason of such consequences.

More precisely, the redundancy of the KPP-Neg is associated with the bridges linking the

same third parties, while the redundancy of the KPP-Pos is associated with adjacency and

distance. Realizing both redundancy and the objective of each problem would help us devise

a better measure.
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Figure 11: Although node 1 is the most centrality node, deleting such a node does not
destroy the connectedness of the network [16].

1

2

A

B

Figure 12: The addition of node B in the network does not provide any benefit in terms of
network connectedness [16].

For example, an appropriate measure for the KPP-Neg might be the number of fragments

after node deletion; however, this proposed measure does not account for the size of each

fragment. In order to incorporate fragmental size into consideration, the number of pairs of

nodes that are disconnected from each other might be a better representation reflecting key

players in the KPP-Neg. Based on this observation, we may define a fragmental measure

as Equation (34)

F = 1−
2
∑n−1

i=1

∑n
j=i+1 rij

n(n− 1)
, (34)

where rij equals one if we can reach j from node i, and zero otherwise.

Notice that the computation time of Equation (34) is quite expensive, especially in large

and complex networks, since all pairs of nodes must be evaluated for connectedness. For-

tunately, since a node in one fragment cannot communicate with nodes in other fragments,

we might alternatively compute such a measure by using the size of each fragment, denoted

by sk, where k is the fragment index, instead of the number of pairwise reachable nodes.

F = 1−
∑

k sk(sk − 1)

n(n− 1)
(35)
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In KPP-Pos, the cohesion measure of sets k of nodes, denoted as Ck, could be defined

as Equation (36).

Ck =
∑

i∈k,j∈V−k
aij , (36)

where aij equals one if nodes i and j are adjacent to each other, and zero otherwise.

However, the redundancy with respect to the adjacency has not yet been captured by such

an expression. To include such information, a more complicated cohesion measure might

be defined as Equation (37).

Ck =
∑

j∈V−k

⋃
i∈k

aij , (37)

where
⋃

is a non-specific aggregation function like maximization or minimization. For

example, in terms of maximization aspect, Ck measures the maximum nodes outside k that

the members of k are adjacent to.

2.9 Conclusions

In this chapter, we provide a comprehensive review of centrality measures beginning with

the three classical centrality measures, namely, degree, closeness, and betweenness. While

interesting, these measures rely too much on several strict assumptions about information

flow, making them less appropriate in practice. To make them more informative, many

variants of them are extensively revised by removing those restrictions and/or incorporating

relevant network topology as part of the computation.

We complete the discussion of centrality measures by providing several applications of

such measures in a more realistic setting, including (i) the establishment of port connectivity

indices, (ii) the development of a new ranking scheme for college football teams, and (iii)

the formulation of new measures reflecting centrality of nodes in different settings.

Based on the concept of centrality measures, in Chapter 4, we introduce a new measure

of port importance, named as the Container Port Connectivity Index (CPCI), which is

computed by the HITS algorithm, where the resulting scores are referred to as the inbound

and outbound scores.

We also show that (in Chapter 5) the CPCI could be implemented in a disaggregation

fashion, where the overall port importance score is decomposed into components. With
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this decomposition scheme, we could make a detailed analysis on how a port has become

important — and by which factors.

Besides centrality measures, another fundamental characteristic of networks which is

extensively studied in social science is community structure, where the network is divided

into groups of nodes with dense and strong connections among themselves but sparser and

weaker connections to the others. For smooth transition, we will next discuss community

structure in Chapter 3 before providing intensive results of our study in Chapter 4.
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CHAPTER III

COMMUNITY STRUCTURE

Besides centrality measures, Community Structure might be regarded as another fundamen-

tal characteristic of a network. While there is no well-defined definition for a community,

in our study, we choose a generally accepted term, where a community within a network

is a group of nodes with dense and strong connections among themselves but sparser and

weaker connections to the others. It is well known that community detection problem is

NP-complete [18] and there exist many algorithms to solve such a problem. One prominent

class of algorithms that we will discuss in this Chapter is the Spectrum-Based Algorithms,

which use eigenvectors as guidelines for dividing a network into communities such that the

modularity value is maximized. It is worth noting that this class of algorithms is mainly

used in a non-overlapping setting, where each node is a member of only one community. For

the overlapping case, where a node might be a member of multiple communities, a commu-

nity adjusting algorithm is introduced. Conceptually, a hard partition of non-overlapping

community structure is transformed into a soft partition of the overlapping one guided by a

local measure of improvement, called community strength [96]. We also discuss a systematic

way of comparing community structures over time, based on the similarity value [102].

3.1 Introduction

Community structure has played an important role in network analysis. It helps us un-

derstand interaction among nodes; in many cases, it provides us valuable insights into

intrinsic characteristics of the underlying network, which consequently allows us to explain

the mechanism of the system, as well as expected behavior of its members. For example,

by revealing the communities of customers of an online retailer network, we can enhance

operational efficiency by directing the right services to the right groups of customers.

In the literature, communities might be referred to as clusters and there are numerous

methodologies to identify communities within a network. The traditional ones are Graph
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Partitioning and Hierarchical Clustering Methods. In the first method, a network is parti-

tioned into a specific number of groups such that the total number of edges running between

groups is minimal. Since the optimal number of groups is usually unknown and it differs

from one to another network, finding the best partition may seem computationally pro-

hibitive, especially in large and complex networks. In the latter method, the clusters of

nodes are iteratively constructed based on some predefined criteria, using either agglomer-

ative or divisive algorithms. For example, the Girvan-Newman Algorithm (GN) [37] used

edge betweenness as a criterion for constructing a cluster — where edge betweenness of a

link was defined as the total number of the shortest paths between all pairs of nodes running

through such a link. If there were more than two shortest paths, each path was counted so

that the summation was unity. Since links with high edge betweenness are the ones act-

ing like gateways, where the flow of information between communities must pass through,

deleting such links would reveal community structure of the network. In [37], they shown

that the GN algorithm gave better results compared to those of the standard hierarchical

methods on several benchmarking networks.

Unfortunately, in weighted network, where the weight of an edge is defined as the re-

ciprocal of its length, the GN algorithm performs badly, since it tends to remove edges

that connect nearby nodes together; i.e. the flow is expected to flow via the shortest paths

and nodes that are closely connected usually attract more edge betweenness [63]. In order

to improve the performance of the GN algorithm in weighted network, [63] proposed an

extension of such an algorithm by replacing weighted edges with multi-edges. With this

modification, the shortest paths would remain unchanged, but they would be counted less

and less if they possess higher weight.

Another class of community detection methodologies extensively studied in Social Sci-

ence is the Modularity Maximization Method, where the modularity value is the mathemat-

ical reflection of community’s definition.

Definition 3.1.1 A community within a network is a collection of vertices in which the

connections among themselves are dense, but they are sparser across communities.
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More specifically, the modularity value is defined as the difference between actual and

expected edges within a community. Clearly, the higher the modularity value, the stronger

the community structure is, and, the optimal community structure is the one that maximizes

such a value.

Mathematically, the modularity function for undirected unweighted networks [65] could

be written as Equation (38).

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj), (38)

where

• Aij is the actual number of edges connecting nodes i and j, which is either 1 or 0,

when A is an adjacency matrix,

• ki and kj are degrees of nodes i and j, respectively,

• m is the half of total number of edges within the network, i.e. 2m =
∑

ij Aij ,

• δ(ci, cj) = 1, if nodes i and j are in the same community, and 0 otherwise.

For directed networks [67], the modularity function could be written as Equation (39).

Q =
1

W

∑
ij

(
Aij −

kouti kinj
W

)
δ(ci, cj), (39)

where

• kouti =
∑

j kij and kinj =
∑

i kij are out-degrees of node i and in-degrees of node j,

respectively,

• W = 2m =
∑

i

∑
j Aij .

Lastly, for directed and weighted networks [4], such a function is calculated through

Equation (40).

Q =
1

W

∑
ij

(
wij −

wouti winj
W

)
δ(ci, cj), (40)

where
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• wij denotes the weight of an edge connecting nodes i and j,

• wouti =
∑

j wij and winj =
∑

iwij are output strength of node i and input strength of

node j, respectively,

• W =
∑

i

∑
j wij .

Based on the fact that the modularity maximization problem is NP-complete, even

in undirected unweighted networks [18], numerous heuristics have been proposed in order

to tackle this problem, including Spectrum-Based Methods, where eigenvectors are used as

guidelines for dividing a network into communities.

3.2 Spectrum-Based Methods

In this section, a detailed discussion of two interesting spectral clustering algorithms,

namely, the Leading Eigenvector Method and the Multi-Eigenvector Method, is provided.

In the first method, only the principal eigenvector is used for the partitioning, while, in

the latter method, we use as many eigenvectors as possible, up to the number of positive

eigenvalues plus one, for the clustering.

3.2.1 The Leading Eigenvector Method

The leading eigenvector method is an iterative method, where a network is partitioned into

two subgraphs, or communities, using only the principal eigenvector. For better under-

standing, we will first discuss the development of this method in a simpler case and then

extend its results to the more general cases.

Given an undirected unweighted network of size N and its associated modularity func-

tion defined by Equation (38), we redefine δ(ci, cj) by replacing it with two belonging

indicators, si and sj .

δ(ci, cj) =
1

2
(sisj + 1), (41)

where

sk =

 1 , if k belongs to community 1,

−1 , if k belongs to community 2.
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If both nodes i and j are in the same community, δ(ci, cj) = 1, and δ(ci, cj) = 0

otherwise. Additionally, let s be a column vector consisting of all s′is, then the modularity

function could be rewritten as Equation (42).

Q =
1

4m

∑
ij

(
Aij −

kikj
2m

)
(sisj + 1)

=
1

4m

∑
ij

(
Aij −

kikj
2m

)
(sisj)

=
1

4m
sTBs, (42)

where B is a real symmetric matrix, called the modularity matrix, whose element Bij is

defined as Bij = Aij − kikj
2m . Since the row sum of the modularity matrix is always zero, its

spectral radii must contain zero. If we let s =
∑N

i aiui and ai = uTi s, where ui is the ith

normalized eigenvector of the modularity matrix, we can rewrite Equation (42) as Equation

(43).

Q =
1

4m
(
∑
i

aiui)
TB(

∑
j

ajuj)

=
1

4m
(
∑
i

aiu
T
i )(
∑
j

ajBuj)

=
1

4m
(
∑
i

aiu
T
i )(
∑
j

ajλjuj)

=
1

4m

∑
i

∑
j

aiajλj(u
T
i uj)

=
1

4m

∑
i

λia
2
i , (43)

where λi is the ith eigenvalue of the modularity matrix. Based on Equation (43), if λi is

ordered in a non-increasing order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λN , we can maximize Q by pairing

a2
i in the same order as that of λi.

As we use only the principal eigenvector in this method, the value of Q will depend only

on the value of a2
1. And since ai = uTi s, where si is either 1 or -1, a2

1 is maximized only

when the positive s′is are matched with the positive elements of the principal eigenvector,

and vice versa. More precisely, in order to maximize the modularity value Q, si must be

assigned a value based on the sign of its associated element of the principle eigenvector as

33



shown in Equation (44).

si =

 1 , if u
(1)
i > 0,

−1 , if u
(1)
i ≤ 0,

(44)

where u
(1)
i is the i(th) element of the principal eigenvector.

Algorithm 1 shows the summary of the leading eigenvector method where a network is

partitioned into two subgraphs, or communities, based on the sign of the principal eigen-

vector’s elements.

Algorithm 1 The Leading Eigenvector Method: The partition of a network into 2 com-
munities

1: Input: A network of size N , where N > 1
2: Compute the principal eigenpair (λ1,u1) of the modularity matrix B, where Bij =

Aij − kikj
2m .

3: if λ1 is positive then
4: Assign the value of si based on the sign of its associated element of the principal

eigenvector, that is, si = 1 if such an element is positive, and si = −1 otherwise.
5: if sTBs is positive then
6: return Two communities
7: else
8: return Original network
9: end if

10: else
11: return Original network
12: end if

Observation 3.2.1 Since zero eigenvalue is always a member of the modularity matrix’s

spectrum radii, when Algorithm 1 terminates, either the original network or the two parti-

tioned subgraphs must be returned as output.

For further partitioning, we cannot iteratively apply Algorithm 1 to the resulting sub-

graphs since we will unintentionally neglect the connecting edges between communities.

Instead, we have to modify the algorithm so that connecting edges between subgraphs

are part of the modularity value’s calculation in further divisions. This could be done by

computing the incremental value of Q, denoted as ∆Q, from subgraph partitioning.
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Given a subgraph g, the incremental value of Q is defined as Equation (45).

∆Q =
1

2m

∑
ij∈g

Bij

(
sisj + 1

2

)
−
∑
ij∈g

Bij


=

1

4m

∑
ij∈g

Bij(sisj)−
∑
ij∈g

Bij


=

1

4m

∑
ij∈g

Bij(sisj)−
∑
ij∈g

δij
∑
k∈g

Bik


=

1

4m

∑
ij∈g

[Bij − δijBij ] (sisj)

=
1

4m
sTB(g)s, (45)

where δij = 1 if i = j, and 0 otherwise, and,

B
(g)
ij = Bij − δij

∑
k∈g

Bik. (46)

Algorithm 2 provides the summary of subgraph partitioning. Similar to Algorithm 1,

Algorithm 2 takes any subgraph g as input, and returns two subcommunities that maximally

increase the incremental modularity value, or the original subgraph, if no improvement on

Q has been found.

Algorithm 2 The Leading Eigenvector Method: Subgraph Partitioning

1: Input: A subgraph of Ng, where Ng > 1
2: Establish matrix B(g) and compute the principal eigenpair (λ1,u1) of B(g).
3: if λ1 is positive then
4: Assign the value of si based on the sign of its associated element of the principal

eigenvector, that is, si = 1 if such an element is positive, and si = −1 otherwise.
5: if sTB(g)s is positive then
6: return Two subcommunities
7: else
8: return Original subgraph
9: end if

10: else
11: return Original subgraph
12: end if

Observation 3.2.2 Since the row sum of B(g) is zero for all rows, zero eigenvalue is always

a member of its spectrum radii. When Algorithm 2 terminates, either the original subgraph
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or the two partitioned subgraphs are returned, and, in the latter case, the modularity value

is definitely improved.

Observation 3.2.3 Since the number of communities is bounded by the size of the net-

work. Eventually, when Algorithm 2 terminates, community structure of a network would

be revealed, together with its associated modularity value Q.

As a heuristic, the leading eigenvector method might err and misplace nodes in wrong

community, especially in large and complex networks — since the magnitude of the principal

eigenvector is preserved and distributed to all members of the network. In order to alleviate

this effect, a simple fine-tuning process (see Algorithm 3) might be implemented at the end

of each partitioning. The concept of a fine-tuning process is to swap node’s community, one

at a time, until no improvement has been found [66].

Algorithm 3 A Fine-Tuning Process (First Search)

1: Input: A network of size N , where N > 1, and vector s
2: For the first member of the list, swap its community and evaluate new modularity value

(or new incremental modularity value).
3: if the new modularity value (or the new incremental modularity value) increases then
4: Swap node community and back to line 2.
5: else
6: Move to the next member of the list and repeat the evaluation of node swapping

until no improvement has been found.
7: end if
8: return An updated list of community members

When the network is directed, matrix A might be asymmetrical, as well as the mod-

ularity matrix B. In such a case, there is no guarantee that B is diagonalizable; thus,

Algorithms 1 and 2 might fail to reveal community structure of the network. In [67], an

extension of the leading eigenvector method on directed networks was established. Con-

ceptually, the modularity matrix B, as well as B(g), is modified so that it has become

symmetric. Equations (47) and (48) show such modifications for Q and ∆Q.

Q =
1

4W
sT (B + BT )s, (47)
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where W = 2m =
∑

i

∑
j Aij and Bij = Aij −

kouti kinj
W .

∆Q =
1

4W
sT (B(g) + B(g)T )s, (48)

where δij = 1, if i = j, and 0 otherwise, and,

B
(g)
ij = Bij −

1

2
δij
∑
k∈g

(Bik +Bki). (49)

For directed weighted networks, the modularity value and its incremental value from

the partitioning are defined almost the same as Equations (47) and (48), but with W =∑
i

∑
j wij and Aij , k

out
i , kinj replaced by wij , w

out
i , and winj , respectively.

In sum, Algorithm 4 shows the summary of the leading eigenvector method with fine-

tuning process for directed weighted networks.

3.2.2 The Multi-Eigenvector Method

[65] provided an example where the leading eigenvector method might fail to detect the

optimal number of communities due to its nature that repeatedly partitions a network or

subgraph into a fixed number of communities at a time. The author also argued that, by

using only the principal eigenvector, the information inherited by other eigenvectors was

underutilized. In order to overcome these shortcomings, the Multi-Eigenvector Method was

introduced and tested [65].

In that setting, let S be a matrix, whose dimension is N×c, where c is the total number

of communities. In addition, each column of S contains only 0 or 1, where,

Sij =

 1 , if node i belongs to community j,

0 , otherwise.

Since each row sum of S is unity and all columns of S are mutually orthogonal, we must

have Tr(STS) = N . In addition, we can rewrite δ(ci, cj) in terms of Sij as,

δ(ci, cj) =

c∑
k=1

SikSjk. (50)

With Equation (50), we can rewrite Equation (38) as,

Q =
1

2m

N∑
i=1

N∑
j=1

c∑
k=1

BijSikSjk =
1

2m
Tr(STBS). (51)
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Algorithm 4 The Leading Eigenvector Method With Fine-Tuning (First Search)

1: Input: A network of size N , where N > 1
2: Compute the principal eigenpair (λ1,u1) of the modified modularity matrix (B + BT ),

where Bij = wij −
wouti winj

W .
3: if λ1 is positive then
4: Assign the value of si based on the sign of u1.
5: if sT (B + BT )s is positive then
6: return Vector s, which provides a guidance for the fine-tuning process
7:

8: Call a fine-tuning algorithm.
9:

10: return A list of temporary communities and their associated members
11: else
12: return Original network
13: end if
14: end if
15: return Original network
16:

17: while the list of temporary communities is not empty do
18: Input: A subgraph in the temporary community list of size Ng, where Ng > 1.
19: Establish matrix B(g) and compute the principal eigenpair (λ1,u1) of (B(g) +B(g)T ),

20: where B
(g)
ij = Bij − 1

2δij
∑

k∈g(Bik + bki).
21: if λ1 is positive then
22: Assign the value of si based on the sign of u1.
23: if sT (B(g) + B(g)T )s is positive then
24: return Vector s, which provides a guidance for the fine-tuning process
25:

26: Call a fine-tuning algorithm.
27:

28: return A list of two new temporary communities
29: Delete input community from the temporary list.
30: Add two new temporary communities to the temporary list.
31: else
32: Mark input community as permanent and delete input community.
33: end if
34: else
35: Mark input community as permanent and delete input community.
36: end if
37: end while
38:

39: return A list of permanent communities and their associated members, with the final-
ized modularity value
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Since B is a real symmetric matrix, we must have B = UDUT , where U = (U1|U1| . . . |UN )

is the eigenvector matrix of B and D is the diagonal matrix, where Dii = λi. In terms

of calculation, 1
2m is a constant and it has no effect on the partitioning algorithm, we can

remove it and rewrite Equation (51) as Equation (52).

Q =
N∑
j=1

c∑
k=1

λj(ujSk)
2 (52)

Based on Equation (52), if we want to maximize the modularity value, we have to

choose eigenvectors associated with the positive eigenvalues such that the contributions to

the modularity value are positive. If S is not constrained by binary constraint, and there

are c communities in total, there exist c− 1 independent and mutually orthogonal columns,

since one of them is being fixed for the unity row sum constraint. In other words, the

number of communities c is the number of positive eigenvalues plus one.

Observation 3.2.4 Since the elements of S are binary, finding vectors si as many as sug-

gested might not be possible, but we know that the upper bound on the number of communities

is the number of positive eigenvalues plus one.

Even though the multi-eigenvector method exercises multiple eigenvectors to extract

all communities at once, we usually have no a priori knowledge about the value of c. In

addition, it requires longer computational time compared to that of the leading eigenvector

method. Based on these reasons, the leading eigenvector method is usually implemented in

the study of community structure.

Other than those two previously discussed methods, interested readers could find a

detailed discussion of other spectrum-based methods for clustering in [62]; and, lastly, a

comprehensive review of community detection study could be found in [31].

3.3 Overlapping Community Structure

Notice that, in both the leading eigenvector and the multi-eigenvector methods, we do not

allow a node to be assigned in more than one community. However, in many applications, a

particular node might have closed relationships with members in other communities, which
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possibly makes it be a member of them. In such a case, Overlapping Community Structure

might be a better representation.

3.3.1 Overlapping Community Identification Algorithms

In the literature, overlapping community identification receives quite less attention com-

pared to that of the non-overlapping case; and, most of the algorithms devised for overlap-

ping community identification are based on clique and its variants.

In Clique Prelocation Method [73], the total numbers of cliques associated with nodes

are counted and used to identify overlapping community structure. However, extracting

all cliques, especially in large and complex networks, usually requires costly computational

time. Instead of using pure clique-based methods, many researchers have alternatively

extended the results of the modularity maximization method, from non-overlapping to the

overlapping setting, by defining new modularity functions and devising algorithms that

maximize such values.

Since there is no clear definition for the wellness of overlapping community, many forms

of the modularity functions have been proposed. In [68], they defined the modularity

function for directed networks as Equation (53), and maximized it by means of genetic

algorithm.

Qo =
1

W

∑
c∈C

∑
i,j∈V

(
βl(i,j),cAij −

βoutl(i,j),ck
out
i βinl(i,j),ck

in
j

W

)
, (53)

where

• βl(i,j),c is the belonging coefficient of link (i, j) in community c,

• βoutl(i,j),c is the expected belonging coefficient of any link l(i, j) pointed from nodes in

community c,

• βinl(i,j),c is the expected belonging coefficient of any link l(i, j) pointing to nodes in

community c.

[82] argued that the explanation of the belonging coefficient defined in [68] was not clear

and it was quite difficult to apply such a framework on large and complex networks. Instead,
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they defined an alternative formulation of the modularity function in a much simpler form,

as shown by Equation (54).

Qo =
1

W

∑
c∈C

∑
i,j∈V

δicδjc

(
Aij −

kouti kinj
W

)
, (54)

where δic and δjc are belonging coefficients reflecting the degree that nodes i and j

belong to community c defined by Equation (55).

δij =
1

δi

∑
j∈V (c)

Ocij
Oij

Aij , (55)

where

• V (c) is the set of all nodes belonging to community c,

• Ocij denotes total number of maximal cliques containing link (i, j) in community c,

• Oij denotes total number of maximal cliques containing link (i, j) in the entire network,

• δi is a normalization term of of δic, i.e. δi =
∑

c∈C
∑

j∈V (c)

Ocij
Oij
Aij .

In addition, these belonging coefficients must satisfy the following normalization prop-

erties.

1. 0 ≤ δvc ≤ 1, for all v ∈ V and c ∈ C.

2.
∑

c∈C δvc = 1, for all v ∈ V

With the aforementioned definitions, [82] revealed an overlapping community structure

by first constructing the maximal clique network associated with the network of interest,

and then applying a community detection algorithm on such a network. They shown that

the maximization of Qo on the original network was equivalent to the maximization of the

modularity function defined on its associated maximal clique network. This approach is

expected to work well in undirected networks, but, unfortunately, not for the directed ones

as directed clique is not well defined.

Recently, [32] pointed out that the modularity optimization might fail to detect commu-

nities whose sizes were smaller than a specific scale, which is known as the resolution limit.

41



In order to avoid the resolution limit, [83] established a two-step algorithm to identifying

overlapping community structure. In the first step, they first marked all leaders in the

network, where a leader was defined as a node having more influence on its neighbors. All

nodes other than the leaders were assigned membership coefficients associated with each

leader in the second step. While this approach is a resolution-limit-free algorithm, we still

need some well-defined measures to evaluate its performance, which, unfortunately, do not

exist.

3.3.2 Community Adjusting Algorithms

One interesting class of overlapping community detection algorithms that we will discuss

next is the Community Adjusting Algorithm, where we adjust a hard partition of non-

overlapping structure to a soft partition of overlapping one based on some predefined criteria

of improvement that still maximizes the modularity value.

Examples include the algorithms proposed by [96] and [99], where the modularity func-

tion for undirected unweighted networks is defined as Equation (56),

Qo =
1

2m

∑
c∈C

∑
i,j∈Cc

1

OiOj

(
Aij −

kikj
2m

)
, (56)

where Oi and Oj are the numbers of communities that nodes i and j belong to.

In order to identify overlapping community structure, they moved the border nodes

around based on some local measures of improvement instead of computing the increasing

value of Qo to help decrease the computational time. While the algorithms proposed by

[96] and [99] shared the same concept, we will discuss only the algorithm proposed by [96],

since it is easier in terms of implementation.

Let U be a partition matrix of N rows and c columns, where N and c are total numbers

of nodes and communities. In the non-overlapping case, U(i, k) takes only a binary value,

that is, U(i, k) = 1 if node i is a member of community k, and zero otherwise; but, in the

overlapping case, we have 0 ≤ U(i, k) ≤ 1, where U(i, k) reflects the membership of node i

in community k.

Notice that not all nodes could be members of multiple communities, but, generally,

the border ones, i.e. nodes having connections with other communities. Based on this
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observation, we can enhance the algorithmic performance by focusing only on this kind of

nodes. Formally, we define border nodes of community c by Equation (57).

Bc = {{j}|(i, j) ∈ E, {i} ∈ c, {j} /∈ c} (57)

If we move a border node into different communities, we must ensure that the modularity

value increases, or, at least, some well-defined local measures reflecting community improve-

ment do. In their setting, [96] used community strength as a local measure of community

improvement, whose mathematical expression was shown by Equation (58).

S(c) =

∑
i∈c l

in
i(∑

i∈c li
)r , (58)

where

• S(c) denotes the strength of community c,

• lini denotes total internal degrees of node i within community c,

• li denotes total degrees of node i,

• r is a tuning parameter of the overlapping extent, i.e. the lower the value of r, the

greater the extent of overlapping structure. As suggested by [96], r is typically set

around 0.8 - 1.0.

Since a community is strong in the sense that its members are all well connected within,

the contribution of a node to the community strength is sufficient to define its membership

in such a community. Mathematically, the strength of community c with respect to the

presence of node i might be evaluated by Equation (59).

F (c, i) = S(c ∪ {i})− S(c \ {i}), (59)

where S(c∪ {i}) and S(c \ {i}) are the strength of community c with and without node

i, respectively. If F (c, i) is positive, node i should belong to community c; however, in order

to avoid unstable soft partitions, a specific threshold for the normalized F (c, i) might be

set, i.e. node i is a member of community c if the normalized value of F (c, i) is greater than

the threshold t.
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Algorithm 5 summarizes the aforementioned community adjusting algorithm based on

community strength criterion.

Algorithm 5 The Community Adjusting Algorithm

1: Input: Partition Matrix Uin of size N by c, where N and c > 0.
2: For each community c, find border nodes Bc.
3: while the border node set is not empty do
4: For each of the border nodes i in Bc, for all c ∈ C,
5: if i is in community k then
6: Ĉk = Ck \ {i}
7: else
8: Ĉk = Ck ∪ {i}.
9: end if

10: Calculate F (Ĉk, i).
11: if F (Ĉk, i) > 0 then
12: Û(i, k) = F (Ĉk, i).
13: end if
14: end while
15: Normalize membership vector Û and store it back to Û .
16: Set a threshold t and construct the finalized partition matrix, Uout, where Uout(i, k) = 1

if and only if Û(i, k) > t.
17: return Overlapping community structure Uout, with the modularity value

In the literature, such as [65] and [92], we can define another class of centrality measures

based on the modularity value, called community centrality, where a node that mostly

contributes to the modularity value is considered as the most important one. Intuitively,

high community centrality node is a node acting like the center of its neighborhood.

3.4 Community Structure Comparison

In the literature, there exist numerous methodologies to identify community structure in

a network, such as mixed integer programming [100], tabu search [55], simulated annealing

[53], and the spectrum-based methods previously discussed. While these methods provide

varieties of community structures with different modularity values, the best community

structure could be determined by the one giving the maximum modularity value. However,

by relying on such a value, we would not know whether these community structures are

alike, or unlike, to what extent.
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In order to quantify the difference between community structures, [102] proposed in-

tuitive measures of similarity and dissimilarity by counting co-appearing elements between

two different community structures, called the similarity value S.

Based on [102], similarity measure s and dissimilarity measure d of sets A and B are

defined by Equations (62) and (61).

s =
|A ∩B|
|A ∪B|

(60)

d =
(|A ∩B′|) ∪ (|A′ ∩B|)

|A ∪B|
(61)

Since |A ∪B| = |A ∩B|+ (|A ∩B′| ∪ |A′ ∩B|), it is enough to consider one of them as

a measure of similarity for comparison. For convenience, we will use the similarity measure

s for the development of the similarity value.

In the context of community detection, given two set of community structures {A1, A2, . . . , AK}

and {B1, B2, . . . , BM} over the same set of nodes in the network, where |K| does not nec-

essarily equal to |M |. The similarity between all pairs of Ai and Bj could be calculated by

Equation (62).

sij =
|Ai ∩Bj |
|Ai ∪Bj |

, for all i ∈ K and j ∈M (62)

The similarity value (S) between two community structures is then defined as the sum-

mation of all pairwise similarity values, which could be written as Equation (63).

S =

∑max(k,m)
i=1 si
max(k,m)

, (63)

where k = |K| and m = |M |. Notice that it might require a re-ordering for index sets i

and j since community matching between these two sets must have been done. In order to

maximize similarity value defined by Equation (63), we have to solve a matching problem,

which is done by a so-called Greedy Algorithm in the original and their following research

papers ([28], [29], and [102]). However, this problem is indeed an assignment problem, which

could be solved efficiently by simple optimization techniques, such as simplex method. Thus,

instead of using greedy algorithm, we solve this problem as if it were an assignment problem.

Algorithm 6 summarizes the calculation of the similarity value (S), which is consequently

used in our research for comparison purpose.
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Algorithm 6 The Calculation of Similarity Value

1: Input: Two sets of community structures {A1, A2, . . . , AK} and {B1, B2, . . . , BM} over
the same set of nodes in the network, where |K| does not necessarily equal to |M |.

2: For each pair of communities (i, j), calculate sij = sij =
|Ai∩Bj |
|Ai∪Bj | .

3: Solve an assignment problem, by maximizing total pairwise similarity values.
4: return similarity value (S) and re-ordering index sets

Observation 3.4.1 Since k does not necessarily equal to m, it might be the case that some

communities in one set have no counterparts in the other, though their pairwise similarity

values between these two set are positive.

Observation 3.4.2 Theoretically, the similarity value defined by Equation (63) lies in the

range of 0 to 1, where the maximum value of one is attained only when two community

structures are the same.

3.5 Conclusions

In this Chapter, we provide a detailed discussion of a community structure identification

algorithms called the spectrum-based methods — where eigenvectors are used as guidelines

for partitioning a network into communities. In the leading eigenvector method, only the

principal eigenvector is used to maximize the modularity value — a generally accepted

measure of community structure wellness, while in the multi-eigenvector method, we use as

many eigenvectors as possible to identify community structure.

In many cases, nodes might have connections with many communities, which, in turn,

makes them as part of several communities. Unfortunately, both the leading and the multi-

eigenvector methods are incapable of revealing this kind of structure. In such cases, we

may apply a community adjusting algorithm to the network, where a hard partition of non-

overlapping community structure is adjusted into a soft partition of the overlapping one by

moving border nodes around without hurting the modularity value.

At the end of this chapter, we also provide a discussion of similarity value which could

be used to quantify the structural difference between community structures.

In Chapter 4, we will reveal the community structure inherited within the Global

Container-Shipping Network (GCSN) by means of the leading eigenvector method, where
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a community is referred to as trading community. Based on the resulting community struc-

ture, we are able to uncover several interesting facts about the GCSN, such as the patterns

of world trade and the strategic roles of terminal ports within a community.
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CHAPTER IV

THE CONTAINER PORT CONNECTIVITY INDEX

In this Chapter, we establish a new measure of port importance, called the Container

Port Connectivity Index (CPCI), to rank global container ports in the Global Container-

Shipping Network (GCSN). The CPCI is derived based on the Hyperlink-Induced Topic

Search (HITS) algorithm, which is primarily used for web page ranking. This measure

has several advantages over the existing measures, such as the Liner Shipping Connectivity

Index (LSCI), the Logistics Performance Index (LPI), and the three traditional centrality

measures in social science. Firstly, while the aforementioned measures are based either on

network topology or economic information, the CPCI is capable of satisfactorily integrating

both. In addition, it provides separate scores for inbound and outbound, which could

be consequently used to analyze the strategic position that terminal ports serve. We also

conduct an experiment on the GCSN about how well these container ports connect and form

communities using the Maximization Modularity Method. Our study reveals that trading

communities are less related with geography, but interrelated with trade connections.

4.1 Measures of Port Attractiveness

What makes a container port attractive as a logistics hub? From an operational point of

view, a port derives importance from three main factors. The first is the infrastructure

required to move containers, such as cranes, quays, hinterland transportation, and so on.

Another important factor is location, which includes geography, and, in particular, distance

from other ports. Finally, there is connectivity within the network of container shipping:

to what degree do shipping liners call at the port?

A traditional measure of port importance is the annual number of TEUs handled. How-

ever, this number is merely a local statistic that reflects handling and not patterns of

trade flow. Others have proposed more systematic measures of port importance that reflect
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something about the position of the port in the network of global container shipping. Ex-

amples include degree centrality, closeness centrality, betweenness centrality, or the number

of origin-destination pairs the port serves (The Network Connectivity Index, NCI [85], and

the Port Cooperative Index, PCI [54]). While all these measures emphasize connectivity,

they do not directly reflect economics.

In terms of economics, the United Nations Conference on Trade and Development (UNC-

TAD) has established an interesting measure for comparing countries’ trade competitiveness

with respect to maritime logistics and transportation called the Liner Shipping Connectiv-

ity Index (LSCI). The LSCI is an aggregation of the following five statistics: (i) number of

liner services calling, (ii) number of liner companies, (iii) number of ships, (iv) combined

capacity of ships in TEUs, and (v) the largest capacity of ships calling [71], computed by a

simple normalization scheme. More specifically, for each component, each country’s value is

normalized by the maximum value of its kind, and the LSCI is then defined by the normal-

ized value of country’s average over these five statistics multiplied by 100. Since the LSCI

focuses on the accessibility of a country to global trade, economists have found it useful as

a joint measure of trade facilitation and maritime connectivity. The LSCI is also found to

be strongly correlated with the Logistics Performance Index (LPI), which is another index

relying on a comprehensive survey of perceptions reported annually by the World Bank ([6]

and [71]).

While meaningful to some extent, the LSCI is of limited use, especially in a more detailed

analysis, as it treats each country as if it were a single location and the entire rest of the

world is its counterpart trading partner. In other words, the world container network is

reduced to a two-node network, as in Figure 13.

To utilize this idea at a more granular level, we develop a new trade intensity between

ports, using the same calculation like that of the LSCI, except for ports rather than the

countries. With the LSCI-like measure defined as link weights reflecting direct connectivity

between ports, we can establish a network model of container shipping called the Global

Container-Shipping Network (GCSN), as in Figure 14, in which there is a link from port i

to j if there is direct service from port i to j and the weight of such a link indicates rate of
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USA Rest of the world
The LSCI for USA

Figure 13: The visualization of the LSCI from network perspective, when we consider the
computation of such an index for the United States.

capacity movement between them.

Advantageously, we can use the GCSN to better understand the patterns of world trade,

i.e. trading communities, and the relative importance of various ports therein, based on a

new measure of port importance called the Container Port Connectivity Index (CPCI).

Figure 14: The Global Container-Shipping Network (GCSN), which is constructed based
on the LSCI-like measure. In this network, nodes represent ports, links represent rates of
container movement between ports, or trade intensity, where the darker the link, the higher
the LSCI-like measure.

4.2 The Global Container-Shipping Network

Prior to the establishment of a new index for measuring port importance, we would like to

clarify detailed construction of the GCSN and discuss its properties compared with another

network of container shipping studied by [44]. While their study concerns the structure of

general cargo-shipping network and its subnetworks of containers, tankers, and dry bulk,

based on traces of each cargo vessels, ours will focus only on the movement of container
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vessels.

In both networks, each node represents a unique container port, but the meaning of a

link differs due to different data sources and research objectives. More specifically, in [44],

a directed link from port i to j indicates the existence of ships traveling from port i to j at

any time during 2007, as reported by www.sea-web.com; but, in our network, such a link

indicates the existence of mainline, or a scheduled container service traveling from port i

to j, as reported by www.compairdata.com on 25 September 2011. In other words, our

network is a snapshot of container vessel movements on 25 September 2011, while that of

[44] is a time-exposure network aggregating all ship movements for a year. Although, the

network studied in [44] may include more ephemeral services, such as variants of seasonal

services that typically do not co-exist, it does make sense for the bio-invasion problem in

which the authors were interested. In contrast, our network suits the objective of studying

the nature of container movements, which is more operational.

Based on the aforementioned, we refer to the subnetwork of container vessel movements

described by [44] and the snapshot of the scheduled services presented in this work as the

Time-Aggregated Container Network (TAC network) and the Scheduled Container Network

(SC network) respectively. While the TAC network and the SC network are similar in

general, they differ in serval ways.

Firstly, while both networks have almost the same number of ports, that is, 378 in the

TAC network versus 409 in the SC network, the number of links in the TAC network is

significantly greater, or about 6,059 links. As a consequence, the mean degree of a port in

the TAC network is undoubtedly much greater than that of the SC network, reported as

32.4, where the diameter1 of the TAC network is reported to be 8 links.

The SC network is rather sparser, with only 2,312 links; it is nevertheless strongly

connected2, with mean degree of 11.3 and diameter of 11 links3. Interestingly, with almost

4,000 fewer links, the diameter of the SC network is just three links above that of the TAC

1The longest length of the shortest path between any two ports.
2For any two ports u and v, u is reachable by some directed path from v, and vice versa.
3From Maizuru (Japan) to Fortaleza (Brazil) passing ports of Niigata (Japan), Tomakomai (Japan),

Hachinohe (Japan), Busan (South Korea), Savannah (United States), Kingston (Jamaica), Port of Spain
(Trinidad and Tobago), Degrad des Cannes (French Guiana), and Belem (Brazil).
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network. This difference is likely and it could be explained by the construction of the TAC

network. As a time-exposure network, those additional links may come from both seasonal

and unplanned service routes of local small feeder lines and short-sea services, which are

not expected to significantly reduce network diameter. Because our dataset includes transit

times, we can also report the diameter of the SC network measured by travel at sea (ignoring

time spent at ports) as 56 days 4.

The mean shortest path in the TAC network is reported as 2.76 links, while in the SC

network we can compute it as 4.02 links, with a median of 4 links. Similarly, we can find the

time-shortest path of the SC network as 18.6 days, with the median of 19 days. The global

clustering coefficient, i.e. the average of local clustering coefficient of all ports, which is a

measure of how connected are the immediate neighbors in the network, is also calculated

for both networks and reported as 0.52 and 0.40, respectively.

The last but most important difference between these two networks is the definition of

link weight. In the TAC network, the weight of a link is simply the sum of gross tonnage of

all ships traversing that link in 2007; but, in the SC network, the weight of a link is trade

intensity between ports computed by the pairwise-port LSCI previously described. Table 1

lists the twenty links of greatest weight computed by the LSCI-like measure. Interestingly,

links among East Asian ports constitute all but one. Notably, Shanghai figures in six of

these links, three times as an origin and three times as a destination.

In conclusion, Table 2 gives the summary of the standard topological statistics of each

network. Observably, these statistics provide only facts about the networks but not detailed

information or insights into geography or economics.

4.3 The Container Port Connectivity Index

Based on the dimension of measurement, all of port attractiveness measures could be classi-

fied as either Network-Based or Economics-Based Measure. The measures in the first group

include all three traditional social science measures, together with the NCI and the PCI,

4To ship from Honiara, Solomon Islands to Sortland, Norway requires 56 days and traverses 9 links. Any
container must pass, en route, through Shanghai, Busan (South Korea), Cristobal (Panama), Manzanillo
(Panama), New York, Halifax, Argentia (Newfoundland), and Reykjavik.
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Table 1: The twenty links of greatest weight, as determined by the LSCI-like computation.
Only one is outside East Asia.

From To Weight

Shanghai Ningbo 1.000
Ningbo Shanghai 0.987
Hong Kong Yantian, Shenzhen 0.834
Port Klang Singapore 0.635
Busan Shanghai 0.605
Singapore Hong Kong 0.556
Yantian, Shenzhen Hong Kong 0.528
Shanghai Busan 0.523
Hong Kong Shekou, Shenzhen 0.515
Singapore Port Klang 0.519
Qingdao Shanghai 0.505
Ningbo Hong Kong 0.477
Shanghai Hong Kong 0.462
Kaohsiung Hong Kong 0.459
Rotterdam Hamburg 0.454
Yantian, Shenzhen Tanjung Pelepas 0.438
Chiwan, Shenzhen Hong Kong 0.423
Shekou, Shenzhen Hong Kong 0.421
Qingdao Ningbo 0.410
Qingdao Busan 0.408

Table 2: Summary of the comparison statistics of two network models (degree = total
number of links, CC = clustering coefficient, Dia. = diameter measured in links, SP =
shortest path measured in links).

Network Ports Links Link weight Avg degree CC Dia. Avg SP

TAC network 378 6,059 Gross tonnage 32.4 0.52 8 2.76
SC network 409 2,312 LSCI-like 11.3 0.40 11 4.02
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which require only information regarding network topology, but not the economics, for the

computation. In contrast, the measures in the latter group, including the LSCI and the

LPI, are based on economics, but not the network structure. While none of the existing

measures is capable of reflecting port importance taking both into account, we are able to

establish one, which we called the Container Port Connectivity Index (CPCI).

The computation of the CPCI is based on the Hyperlink-Induced Topic Search (HITS)

algorithm [46], which is an eigenvector-based method primarily used for web page ranking5.

Similar to the HITS algorithm, where a web page is assigned two types of scores, namely,

the hub and authority scores, reflecting its importance as hub and authority page, the CPCI

assigns two types of importance scores to each container port, referred to as the inbound

and outbound scores.

In the context of container shipping, a port with high inbound score has greater power

to aggregate goods; and, a port with high outbound score has greater power to distribute

goods. In addition, a port receives a higher inbound score if many services call from many

other ports with high outbound scores, or it is located not too far downstream from them,

while a port receives a higher outbound scores if many services depart to many other ports

with high inbound scores. For example, St. Vincete, a container port in Cape Verde, receives

a relatively high inbound score due to direct service originated from Algeciras, a regional

hub with a relatively high outbound score. Although, such a service continues on to Praia,

another container port of the Cape Verde islands, it has comparatively lower inbound score

since it is located further away from Algeciras.

As measured by the CPCI, Figure 15 visualizes the importance of 409 container ports

in the GCSN in terms of inbound.

Our proposed measure of port importance has several advantages over the existing ones.

5See Chapter 2 for more details. It is worth noting that while the concept of both the HITS and the
Google’s PageRank algorithms is the same, where importance scores are derived based on the principal
eigenvector, the underlying assumption in each algorithm is quite different. In the PageRank algorithm, we
assume that, at a particular page, the user could move freely to any other pages with a specific probability
vector, known as the random-surfer assumption. In terms of network, this vector may be regarded as link
weight vector connecting a web page to the rest. As a consequence, the user at each web page is treated
equally important. This assumption does not hold in the GCSN where trade intensity between ports are of
different importance.
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Figure 15: The visualization of the CPCI in the GCSN containing 409 ports. Ports rep-
resented by larger disks are scored proportionally higher according to the new measure of
port connectivity described in terms of inbound.

Firstly, it is capable of satisfactorily integrating both network structure and economics; and,

it is the only one, to the best of our knowledge. In addition, it provides separate scores for

inbound and outbound, which could be consequently used to analyze the strategic position

that terminal ports serve. It also allows us flexibility to study the relative importance

of ports in alternative network settings. More specifically, we can use other interested

characteristics of the network as input, and still obtain two well-defined ranked lists of

ports preserving all intrinsic properties like those of the CPCI. For example, we may redefine

link weights of the GCSN by using trade flow instead of capacity to properly reflect trade

intensity between ports.

Later, in Chapter 5, we show that we can extract more detailed information regarding

port importance by a simple disaggregation scheme, where the overall port importance score

is decomposed into several components — each reflecting its contribution to the overall port

importance score. This information, in turn, allows the port authority to comprehend and

compare its strategic port importance with competitors’ in great detail.

4.3.1 Ranking Ports by the Container Port Connectivity Index

As measured by the CPCI, the most important ports may not necessarily be the ones

with the most links. For example, Cartagena receives services from 20 different ports, and

Yantian receives only from 18; however, Yantain ranks much higher as scored by the CPCI
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with regard to inbound in the GCSN (0.286 versus 0.0036). This is a reflection of fact that

the CPCI does not depend only on the number of links but also on link quality and the

scores of the ports to which they connect.

Similarly, the most important ports may not necessarily be the busiest ones. Tables 3

and 4 show the CPCI of the twenty ports that scored highest with respect to our measure

of inbound and outbound connectivity, together with ranking by TEUs handled in 2010 for

comparison. The ports of East Asia dominate with respect to either measure. Even though

Shanghai handled more TEUs, Hong Kong ranks higher by the CPCI, presumably because

it is better connected within the GCSN6.

On the other hand, our ranking appears to neglect the high-volume European ports

such as Rotterdam, Antwerp, and Hamburg, as well as the busy Mideast port of Dubai, but

this is because they are more isolated from other big ports. In contrast, the big East Asian

ports are well-connected with the rest of the world — and with each other, which further

increases their scores based on our algorithm.

Figure 16 plots scores of all 409 ports. Several stand out for the significant differences

between inbound and outbound scores, and these differences illustrate how the the CPCI

can make structural distinctions about the position of a port in the network. For example,

Yokohama has a higher outbound than inbound score because it receives from smaller ports

but ships to major Asian ports such as Shanghai, Ningbo, Yantian, Xiamen, Kiaosiung, and

Busan.

A more elaborate example is provided by Los Angeles and Long Beach, which have

inbound scores that are relatively high in comparison to outbound scores. This reflects the

fact that these are the two main ports of entry for products manufactured in East Asia.

To reduce in-transit inventory, powerful retailers in North America insist that their freight

be the last loaded out of Asia and the first unloaded in North America, and so there are

many direct links from big Asian ports into Los Angeles and Long Beach. Services that

have traversed the Pacific Ocean to call at Los Angeles or Long Beach then typically call

6The ranking by volume combines several of the Shenzhen ports, including Yantian, Chiwan, Shekou,and
Da Chan Bay, into one, ranked fourth in volume.
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Table 3: All but two of the twenty highest-scoring ports by the CPCI (inbound) are in Asia.
(Volume rankings are based on the number of TEUs transported through the ports in 2010
[20].)

Rank Port Inbound Outbound Country By volume

1 Hong Kong 0.4080 0.4035 China 3
2 Shanghai 0.3726 0.3475 China 1
3 Ningbo 0.3040 0.3419 China 6
4 Yantian 0.2861 0.2646 China
5 Busan 0.2515 0.2415 South Korea 5
6 Singapore 0.2456 0.3420 Singapore 2
7 Kaohsiung 0.2054 0.2009 Taiwan 12
8 Chiwan 0.1973 0.1905 China
9 Xiamen 0.1933 0.1841 China 19

10 Shekou 0.1859 0.1614 China
11 Port Klang 0.1748 0.1935 Malaysia 13
12 Qingdao 0.1725 0.1593 China 8
13 Nansha 0.1369 0.1109 China
14 Tanjung Pelepas 0.1289 0.1134 Malaysia 16
15 Gwangyang 0.1289 0.1182 South Korea
16 Los Angeles CA 0.0927 0.0286 USA 17
17 Long Beach CA 0.0917 0.0187 USA 18
18 Xingang/Tianjin 0.0890 0.0802 China 11
19 Da Chan Bay 0.0829 0.0809 China
20 Laem Chabang 0.0818 0.0633 Thailand 22
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Table 4: All but one of the twenty highest-scoring ports by the CPCI (outbound) are in
Asia.

Rank Port Inbound Outbound Country By volume

1 Hong Kong 0.4080 0.4035 China 3
2 Shanghai 0.3726 0.3475 China 1
3 Singapore 0.2456 0.3420 Singapore 2
4 Ningbo 0.3040 0.3419 China 6
5 Yantian 0.2861 0.2646 China
6 Busan 0.2515 0.2415 South Korea 5
7 Kaohsiung 0.2054 0.2009 Taiwan 12
8 Port Klang 0.1748 0.1935 Malaysia 13
9 Chiwan 0.1973 0.1905 China

10 Xiamen 0.1933 0.1841 China 19
11 Shekou 0.1859 0.1614 China
12 Qingdao 0.1725 0.1593 China 8
13 Gwangyang 0.1289 0.1182 South Korea
14 Yokohama 0.0619 0.1147 Japan 36
15 Tanjung Pelepas 0.1289 0.1134 Malaysia 16
16 Nansha 0.1369 0.1109 China
17 Oakland 0.0132 0.0883 USA
18 Da Chan Bay 0.0829 0.0809 China
19 Xingang/Tianjin 0.0890 0.0802 China 11
20 Cai Mep 0.0517 0.0750 Viet Nam 28
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at Oakland before returning to the large ports of Asia. Consequently, Oakland has a high

outbound score in comparison to its inbound score. This is a general pattern that may be

observed along many service loops; ports that are immediately downstream from important

ports tend to have higher inbound scores, while ports toward the end of the loop tend to

have higher outbound scores.
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Figure 16: As computed by the CPCI, those container ports for which inbound and out-
bound scores fall in the lower right are inbound-dominant and those in the upper left are
outbound-dominant.

4.3.2 North American Ports

Table 5 shows that, among the ports of North America, the west coast ports, led by Los

Angeles and Long Beach, dominate by the measure of inbound connectivity, reflecting the

many services that come directly from the great manufacturing centers of East Asia. More-

over, many of the west coast ports score much higher with respect to inbound connectivity

than to outbound.

New York is the only port on the east coast to score highly with respect to inbound

scores. But Table 6 shows that east coast ports such as Savannah are more competitive

with respect to outbound scores. It will be interesting to see how these rankings change

after the widening of the Panama Canal is completed in 2014.
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Table 5: All but one of the top ten North American ports measured by the CPCI (inbound)
are on the west coast.

Rank Port Inbound Outbound

1 Los Angeles CA 0.0927 0.0286
2 Long Beach CA 0.0917 0.0187
3 New York NY/NJ 0.0586 0.0070
4 Lazaro Cardenas, MEX 0.0349 0.0108
5 Manzanillo, MEX 0.0325 0.0406
6 Tacoma WA 0.0305 0.0084
7 Prince Rupert BC 0.0285 0.0048
8 Vancouver BC 0.0260 0.0249
9 Seattle WA 0.0231 0.0207
10 Oakland CA 0.0132 0.0883

Table 6: Four of the top ten North American ports ranked by the CPCI (outbound) are on
the east coast.

Rank Port Inbound Outbound

1 Oakland CA 0.0132 0.0883
2 Manzanillo, MEX 0.0325 0.0406
3 Savannah GA 0.0122 0.0289
4 Los Angeles CA 0.0927 0.0286
5 Vancouver BC 0.0260 0.0249
6 Seattle WA 0.0231 0.0207
7 Long Beach CA 0.0917 0.0187
8 Boston MA 0.0007 0.0150
9 Wilmington NC 0.0008 0.0133
10 Miami FL 0.0030 0.0125
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4.3.3 Panamá as a Transshipment Hub

The ports of Panama lead their region in terms of connectivity: Balboa has scores of 0.0291

and 0.0208 for inbound and outbound respectively; Manzanillo has scores of 0.0184 and

0.0213; and Cristobal has scores of 0.0182 and 0.0082.

The Panama Canal Authority currently operates a transcontinental railroad that makes

it possible to move containers between the Panamanian ports on the Pacific and Atlantic

sides. Currently, it takes at least three hours to move containers from one port stack

to another (one hour to load the train; one hour of travel time; one hour to unload the

train); and because of the delay between trains, eight hours is more typical. If the transit

time could be reliably reduced, the ports at each end of the Canal might be considered as

one, in which case the inbound and outbound scores of the aggregated port would become

0.0455 and 0.0313 making it be one of the highest scoring outside East Asia (specifically,

thirty-sixth in inbound and forty-second in outbound). Furthermore, its connectivity would

dominate that of the regional competitors such as Kingston, Jamaica (0.0037 and 0.006)

and Freeport, Bahamas (0.0026 and 0.0044).

4.3.4 Comparison With Other Measures

Fundamentally, we may evaluate the centrality of a vertex within a network by degree

centrality, which, in our context, tells from how many other ports a port receives direct

shipments (in-degree) or to how many others it sends direct shipments (out-degree). Tables 7

and 8 report the twenty most central ports measured by in-degree and out-degree centrality,

together with the CPCI ranking. While interesting, these measures neglect economic issues,

such as the volume of trade along each link and interrelationship among ports within the

network. Literally, it merely records the fact of trade, but not the importance of ports in

the GCSN.

Another fundamental means of evaluating port centrality is by distance: is a port close

to other ports? Shorter travel times mean less operating cost for the shipping company and

less in-transit inventory for the shipper or consignee. In such a case, closeness centrality,

the reciprocal of the sum of shortest distances from a vertex to all other vertices, may be
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Table 7: The twenty most central ports measured by in-degree centrality, together with the
CPCI ranking.

Port Country In-Degree Outbound Inbound

Singapore Singapore 56 3 6
Hong Kong China 44 1 1
Port Klang Malaysia 41 8 11
Busan South Korea 39 6 5
Shanghai China 35 2 2
Kaohsiung Taiwan 35 7 7
Algeciras Spain 30 32 44
Tanjung Pelepas Malaysia 30 15 14
New York NY/NJ United States 28 113 28
Rotterdam Netherlands 27 24 24
Jeddah Saudi Arabia 25 26 31
Tokyo Japan 24 22 23
Ningbo China 23 4 3
Antwerp Belgium 23 37 42
Keelung Taiwan 22 23 27
Dubai, Jebel Ali United Arab Emirates 22 28 30
Qingdao China 22 12 12
Cartagena Colombia 20 146 127
Tanger Morocco 20 84 51
Yokohama Japan 20 14 25
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Table 8: The twenty most central ports measured by out-degree centrality, together with
the CPCI ranking.

Port Country Out-Degree Outbound Inbound

Singapore Singapore 53 3 6
Shanghai China 41 2 2
Hong Kong China 40 1 1
Port Klang Malaysia 40 8 11
Busan South Korea 40 6 5
Kaohsiung Taiwan 33 7 7
Tanjung Pelepas Malaysia 33 15 14
Valencia Spain 27 71 74
Jeddah Saudi Arabia 24 26 31
Yantian China 24 5 4
Algeciras Spain 23 32 44
Ningbo China 23 4 3
Antwerp Belgium 23 37 42
Le Havre France 23 41 48
Cartagena Colombia 22 146 127
Oakland CA United States 22 17 80
Tanger Morocco 21 84 51
Kobe Japan 21 21 22
Tokyo Japan 20 22 23
Dubai, Jebel Ali United Arab Emirates 20 28 30
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considered as an appealing measure. Table 9 shows the twenty most central ports measured

by closeness. Interestingly, most container ports have approximately the same closeness

centrality. Although closeness centrality may be interesting as it includes time as part

of centrality, it neglects the fact that container flow does not always follows the shortest

distance. In addition, it treats all the links from either big or small ports with equal weight,

which seems questionable in practice.

Table 9: The twenty most central ports measured by closeness centrality, together with the
CPCI ranking.

Port Country Closeness (10−4) Outbound Inbound

Singapore Singapore 9.2937 3 6
Port Klang Malaysia 9.1996 8 11
Tanjung Pelepas Malaysia 8.9606 15 14
Hong Kong China 8.8968 1 1
Kaohsiung Taiwan 8.7566 7 7
Le Havre France 8.7566 41 48
Yantian China 8.7184 5 4
Savannah GA United States 8.7184 46 85
Rotterdam Netherlands 8.6356 24 24
Manzanillo Panama 8.5543 56 71
Valencia Spain 8.5034 71 74
Algeciras Spain 8.4317 32 44
Port Said Egypt 8.3963 29 35
Antwerp Belgium 8.3542 37 42
Busan South Korea 8.3333 6 5
Chiwan China 8.2305 9 8
Shanghai China 8.2237 2 2
Bremerhaven Germany 8.2102 43 76
Jeddah Saudi Arabia 8.0906 26 31
Ningbo China 8.0645 4 3

The last benchmarking centrality measure for container ports is betweenness, i.e. the

number of shortest paths within the network on which the vertex lies, as reported in Table

10. We find that the twenty ports of greatest betweenness centrality in the SC network is

quite different from those of the TAC network, as shown in Table 11.

A systematic difference seems to be that some among the twenty ports of highest be-

tweenness in the TAC network are ranked much lower in the SC network. Consider, for
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example, the following ports, where the first ranking is that within the TAC network and

the second is that within the SC network: Jebel Ali 5 (20), Barcelona 8 (49), Bremerhaven

9 (26), Hamburg 10 (58), Tacoma 11 (313), Malaga 12 (162), Antwerp 13 (34), Piraeus 17

(160), Felixstowe 19 (40), Colombo 20 (63). We speculate that these ports had seasonal

services, which would have added artificially to their betweenness by suggesting paths that

did not actually exist.

Table 10: The twenty most central ports measured by betweenness centrality, together with
the CPCI ranking.

Port Country Betweenness (10−2) Outbound Inbound

Singapore Singapore 13.4482 3 6
Algeciras Spain 9.0277 32 44
Busan South Korea 8.9076 6 5
Shanghai China 8.5991 2 2
Hong Kong China 6.5738 1 1
Cartagena Colombia 6.3407 146 127
Port Klang Malaysia 6.2749 8 11
Balboa Panama 5.6483 60 55
Tanjung Pelepas Malaysia 5.4653 15 14
New York NY/NJ United States 5.4225 113 28
Valencia Spain 5.0959 71 74
Port Said Egypt 4.8993 29 35
Kingston Jamaica 4.8179 129 124
Savannah GA United States 4.8110 46 85
Manzanillo Panama 4.3594 56 71
Santos Brazil 4.2839 61 52
Le Havre France 4.0957 41 48
Rotterdam Netherlands 3.9718 24 24
Tanger Morocco 3.8974 84 51
Dubai, Jebel Ali United Arab Emirates 3.7566 28 30

In comparison with the LSCI defined for countries, we can only compare the rankings

from our indices with those of countries having a single dominant port. In doing so, we

identified 64 container ports that were, within our data source, unique within their country,

and then compared rankings by the 2011 LSCI and the inbound and outbound versions of

the CPCI. The results appear in Table 12 and are generally consonant: those ranked among

the top ten by LSCI are among the top twenty by the CPCI, either inbound or outbound.
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Table 11: The twenty most central ports measured by betweenness centrality of the SC
network comparing with those of [44].

Port Country SC Network TAC Network

Singapore Singapore 1 4
Algeciras Spain 2 6
Busan South Korea 3 18
Shanghai China 4 1
Hong Kong China 5
Cartagena Colombia 6 3
Port Klang Malaysia 7
Balboa Panama 8 3
Tanjung Pelepas Malaysia 9
New York NY/NJ United States 10
Valencia Spain 11
Port Said Egypt 12 14
Kingston Jamaica 13
Savannah GA United States 14
Manzanillo Panama 15 3
Santos Brazil 16 15
Le Havre France 17 7
Rotterdam Netherlands 18 16
Tanger Morocco 19
Dubai, Jebel Ali United Arab Emirates 20 5
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The differences in ranking between Gothenburg and Gdansk again illustrate how our

suggested index captures the global structure of the network. Gdansk ranks relatively high

in inbound strength because it receives shipments directly from Hamburg but ships only

to the lesser port of Aarhus, which accounts for its relatively lower ranking in outbound

strength. On the other hand, Gothenburg receives freight only from Aarhus, but it ships to

the more significant port of Bremerhaven, from which it derives a higher outbound score.

Table 12: Ranks among those countries represented by a single port, the LSCI, and the
CPCI, are in general agreement.

Port by LSCI by The CPCI (inbound) by CPCI (outbound)

Singapore 1 1 1
Rotterdam 2 2 2
Colombo 3 3 3
Malta 4 6 11
Beirut 5 4 10
Piraeus 6 7 6
Buenos Aires 7 18 26
Karachi 8 8 5
Gothenburg 9 35 20
Gdansk 10 15 57

4.4 Properties of the CPCI

Evidently, the CPCI has been proven to be a useful tool in a new ranking scheme as it

allows us to draw a systematic inference about the importance of a port, as well as the

patterns of trade flow within the network. In this section, we will provide some interesting

properties of the CPCI which might be useful for further inferences.

4.4.1 Degree, Distance, and Connectedness

One interesting property of the CPCI is that, among degree, distance, and connectedness,

port connectedness is the most crucial factor driving the CPCI — this is the reason why we

name such an index as the connectivity one. In order to explore how degree, distance, and

connectedness could affect the CPCI, as well as other classical centrality measures, let us
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consider the network shown in Figure 17, where the links shown are bidirectional with equal

weights. Port Sm is the center of the star graph whose degree is m, and each path of Sm

comprises a line graph of l links connected with a complete graph K of size n. In addition,

we define port c, a member of the complete graph that is connected with the line graph, as

the connection port which serves as a gateway from the outside world to a well-connected

and dense subgraph.

Sm Ll Kn

degree m length l size n

Figure 17: A theoretical network of ports comprising of three different graphs, that is, a
star graph of degree m, m line graphs of l links, and m complete graphs of size k. Since the
underlying network is symmetric and all m paths connected with port Sm have the same
structure, each path will be scored equally position-wise.

By construction, the center port is initially set as the most central one in terms of

degree. In addition, as it is located at the center of the whole network, both its betweenness

and closeness would also be the highest. For simplicity, we denote the configuration of

the underlying network by the triplets (Sm, Ll,Kn), and define an importance ratio as

the relative importance of the connection port c to that of the center port Sm — more

specifically, the higher the ratios, the more important the connection port.

Any changes in the CPCI ratio, betweennness ratio, and closeness ratio, are observed

when the parameters m, l, and n, have been altered. Interesting observations are as follows.

i. When the length l is fixed, as the complete graph grows larger, i.e. n has been in-

creased, the CPCI of the connection port quickly dominates that of the center port,

especially when the length l is also increased (Figures 18 – 20).

Betweenness and closeness ratios also increase as the complete graph grows larger,

which is expected, since the connection port is just one link away from a new member

of the complete graph, but it is l links away from the center port. However, these

ratios decrease as the length l increases, since it would make each path farther away
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from the others (Figures 21 – 26).

ii. Similarly, we can infer that, when the complete graph is considerably large, the greater

the length of the line graph, the smaller the CPCI of the center port.

iii. Given that the degree of the center port is the same as the size of the complete graph,

the center port tends to significantly lose its importance to the connection port as the

degree of the center port and the size of the complete graph grow at the same level

(Figure 27). In contrast, both betweenness and closeness ratios keep decreasing as the

network grows larger (Figures 28 and 29).

iv. It requires a considerable number of degree for the center port to regain its rank back,

while it requires only a very few number increasing in either the length of the line

graph or the size of the complete graph to outrank the center port.

Based on the aforementioned results, we can conclude that port connectedness, or port

connectivity, is the one that drives the CPCI, not the degree. This distinct property of the

CPCI clearly distinguishes itself from other measures and, unquestionably, is the reason

why we name such a measure as the Container Port Connectivity Index.
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Figure 18: Relationship between the CPCI ratio and the size of the complete graph when
the degree of star graph is 2(n− 1).

69



3 4 5 6 7

0

200

400

600

800

1,000

Size of the complete graph

C
P

C
I

R
a
ti

o

L = 1
L = 2
L = 3
L = 4

Figure 19: Relationship between the CPCI ratio and the size of the complete graph when
the degree of star graph is 3(n− 1).
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Figure 20: Relationship between the CPCI ratio and the size of the complete graph when
the degree of star graph is 4(n− 1).
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Figure 21: Relationship between betweenness ratio and the size of the complete graph when
the degree of star graph is 2(n− 1).
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Figure 22: Relationship between betweenness ratio and the size of the complete graph when
the degree of star graph is 3(n− 1).
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Figure 23: Relationship between betweenness ratio and the size of the complete graph when
the degree of star graph is 4(n− 1).
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Figure 24: Relationship between closeness ratio and the size of the complete graph when
the degree of star graph is 2(n− 1).
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Figure 25: Relationship between closeness ratio and the size of the complete graph when
the degree of star graph is 3(n− 1).
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Figure 26: Relationship between closeness ratio and the size of the complete graph when
the degree of star graph is 4(n− 1).

73



3 4 5 6 7

0

200

400

600

800

Size of the complete graph or degree of the star graph

C
P

C
I

R
at

io

L = 1
L = 2
L = 3
L = 4

Figure 27: Relationship between CPCI ratio and the size of the complete graph, or the
degree of the star graph.
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Figure 28: Relationship between betweenness ratio and the size of the complete graph, or
the degree of the star graph.
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Figure 29: Relationship between closeness ratio and the size of the complete graph, or the
degree of the star graph.

4.4.2 Link Modification

Another interesting property of the CPCI concerns the change of the CPCI as links have

been modified. Typically, when a particular link has been added or removed, the CPCI is

expected to change, not only those of the ports directly connected with such a link but also

those of the rest, since the CPCI depends on the global structure of the network.

For example, consider a network shown in Figure 30, where link (3, 8) is the one to be

removed. V1 and V2 show the connectivity scores of all ports, i.e. before and after the

removal of link (3, 8).

1

2

3

4 5 6

7

8

Figure 30: An example network for evaluating the effect of the removal of link (3, 8), where
all links are bidirectional with unity link weight.
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V1 = [0.2819 0.3732 0.4492 0.2819 0.4492 0.2819 0.2819 0.3732]

V2 = [0.3181 0.4197 0.4051 0.3324 0.4715 0.2790 0.2647 0.2790]

As each of these vectors is a unit vector, we can systematically define and compare the

effect of link modification by the difference between the squared value of these two vectors.

Table 13 shows the result of such a procedure.

Table 13: The observed differences of the squared value of the two different CPCI vectors,
given that link (3, 8) is the one to be removed from the network shown in Figure 30.

Ports and Scores V 2
4 V 2

1 V 2
4 − V 2

1

1 0.1012 0.0795 0.0217
2 0.1762 0.1393 0.0368
3 0.1641 0.2017 -0.0376
4 0.1105 0.0795 0.0310
5 0.2223 0.2017 0.0205
6 0.0779 0.0795 -0.0016
7 0.0701 0.0795 -0.0094
8 0.0779 0.1393 -0.0614

Sum 1 1

From Table 13, with the removal of link (3, 8), port 5 has become the most central port

in the network as connections between the rightmost and the leftmost ports have found

themselves convenient by passing port 5, while port 8 significantly loses its importance due

to direct connectivity loss with port 3.

Based on the aforementioned comparison, one may evaluate and identify the most im-

portant link to any interested port by a sequential link removal evaluation. Interestingly,

we have found that some indirect links may have greater effect than that of the direct ones.

For example, consider the network shown in Figure 31, where, in this example, we are

identifying the most influential link associated with port 13.

As ports 14 and 15 are well-connected, these two ports are unsurprisingly important

ports in the network with the importance scores of 0.324 and 0.533, respectively.

By sequentially removing direct links of port 13, that is, (9,13), (12,13), and (13,14), we
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Figure 31: An example network for identifying the most influential link to port 13.

can evaluate the effect of these link removals to the importance score of port 13 as reported

below.

Port (9,13) (12,13) (13,14)

13 -0.0164 -0.0144 -0.0306

Since port 14 may be regarded as a hub port, by removing link (13,14), the connectivity

of port 13 is significantly reduced — port 13 would be located at greater distance from the

rest of the network. In contrast, deleting link (12,13) has less effect on port 13 since port

12 itself is far less important compared to that of port 14. In addition, port 13 could still

be reached from well-connected ports like port 9 or 14.

However, we have found that some indirect links might pose greater threats to port 13

than the direct ones. More specifically, the removal of link (14,15), which clearly reduces

connectivity of port 13 as flow is required to travel a longer distance between the left and

right of the network. Based on our computation, indirect link (14,15) has been found as

the most influential link to port 13 with the removal effect of -0.0316.

Let us consider another example shown in Figure 32, where we are identifying whether

the most important link to port 15 is direct or indirect. For better visualization, we will use

the network shown in Figure 32b to represent the original network shown in Figure 32a. In
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addition, the darker link is the one that is identified as the most influential link to port 15.

1 2 3 4

567

8 9

10 11 10 13 14 15

(a)

1 2 3 4

567

8 9

A B

(b)

Figure 32: A network of 15 ports used to identify the most influential link to port 15 (the
darker link), where Figure 32b represents Figure 32a by replacing groups of nodes as A and
B.

Figure 33 shows the changes of the most influential link to port 15 as the position of B

changes. Interestingly, the most influential link tends to be the one that is crucial for the

flow moving from port 15 to a more important port 1. This result reflects that fact that

the CPCI depends on global structure of the network, and not on the local connectivity to

its immediate neighbors.

4.5 Trading Communities

Beside the CPCI which ranks the container ports around the world based on their inbound

and outbound connectivity, one might be interested in how the GCSN is arranged and

resolved into communities based on trade patterns, which is herein referred to as Trading
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Figure 33: The changes of the most influential link (darker link) to port 15 as the position
of B changes.

Community.

4.5.1 Identifying Trading Communities

The concept of trading community in this context is similar to that of community structure

in social science’s network analysis. More specifically, a community within a network is a

collection of vertices with dense and strong connections among themselves but sparser and
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weaker connections to other vertices. Although there exist several community detection

algorithms in the literature7, we will rely on the Modularity Maximization Method [66]. In

this method, the modularity Q is defined as the difference between actual and expected

links within a community. Clearly, the modularity value is high when there is more total

weight contributed by links within the communities than might be expected by chance [63].

More formally,

Q =
1

m

∑
ij

(
Aij −

(
∑

k Aik) (
∑

k Akj)

m

)
δci,cj ,

where Aij has value wij if there is a link of weight wij from vertex (port) i to vertex (port)

j, m =
∑

ij Aij , δij is the Kronecker delta symbol, and ci is the label of the community to

which vertex (port) i is assigned.

To identify communities in a network one must search over all partitions {ci} of the

vertices to find one that maximizes the modularity Q. We used the same heuristic search

method as [44] devised by [66]8, which is known to work well, under which the GCSN is

resolved into eight communities based on links weighted by the LSCI; (i) Asia-Pacific and

Trans-Pacific, (ii) Trans-Atlantic, (iii) South Asia and Mideast, (iv) West and South Africa,

(v) Southeastern United States, Caribbean, and Pacific South America, (vi) Southeastern

Latin America, (vii) New Zealand, and (viii) Southern Europe, as shown in Figure 34.

Interestingly, the communities we identify differ greatly from those of [44], where there are

about 12 communities in their container subnetwork9. In addition, the first five largest

communities are:

• Middle East, South and East Asia, and South Africa,

• Eastern United States, Caribbean, and Northern Latin America,

• Mediterranean, Black Sea, and Western Europe,

• Northern Europe,

7Interested readers could find a detailed discussion of community structure and community detection
algorithms in Chapter 3.

8See Algorithm 4 in Chapter 3 for more details.
9In their study, the community detection algorithm was applied on directed unweighted network, where

information about economic information, such as trade flow or freight capacity, is neglected.
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• Trans-Pacific.

As supported by [29] that link weight may help improve community detection contrast,

our computation clearly recognized important global patterns, including trans-Pacific trade

(Figure 34a), as well as trans-Atlantic (Figure 34b), and intra-American trade (Figure 34e).

Other interesting observations are as follows.

• Figure 34a: This community is the most strongly-defined in the sense that it includes

the ports that contribute most to the total modularity.

It may seem surprising that this Pacific-spanning community also includes the Caribbean

port of Colon, Panama (all the other Panamanian ports are, as would be expected,

in the Caribbean community of Figure 34e). But this makes sense because services

from Asia to the US East Coast find it convenient to tranship at Colon for subsequent

disbursement throughout the Caribbean.

• Figure 34b: Rotterdam and Hamburg are the core ports of this community.

• Figure 34c: The Mideast trading community includes East Africa above the ports of

Tanzania and the Comoros and Seychelles Islands.

• Figure 34d: The East African ports below Tanzania, including the large ports of South

Africa, are better connected to the West African trading community than to others.

Tanjung Pelepas is the easternmost member, reflecting its role as point of distribution

of manufactured goods to Africa. The few European members are connected primarily

through the ports of Tanger or Algeciras.

• Figure 34e: The Caribbean community includes two outliers inviting comment. Wilm-

ington, Delaware, in the US, has strong ties to Central America because of its spe-

cialization in the handling of tropical fruits and fruit juices. On the west coast, San

Diego is more strongly connected to Latin America than to East Asia because the

Asian services prefer to call at Los Angeles or Long Beach for their larger regional

market and superior hinterland storage and transportation infrastructure.
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• Figure 34f: Port-of-Spain (Trinidad) is the northernmost member. Services travel

from it into this community.

• Figure 34g: This community is an artifact of geography, in this case, the fact that New

Zealand is far from trading partners. This community consists of the New Zealand

regional ports of Lyttelton, Napier, Port Chalmers, and Wellington, which have very

few direct international connections. They are better connected amongst themselves

than to the rest of the world. The international connections to New Zealand call

mainly at Auckland and Tauranga which are members of the Asia-Pac and trans-

Pacific trading community.

• Figure 34h: This is another community determined by the geography of the Mediter-

ranean Sea. These ports are locally connected but all significant connections to the

outside world are mainly through a few ports near the exit to the Atlantic Ocean.

The ports that contribute most to the modularity score are overwhelmingly Asian and

especially Chinese, with the top ten being Shanghai, Ningbo, Hong Kong, Busan, Rot-

terdam, Yantian, Hamburg, Port Klang (Malaysia), and Qingdao. The ports that con-

tribute most within the Trans-Atlantic community are Rotterdam, Hamburg, and Savan-

nah; within the South Asia/Mideast community: Port Klang, Jeddah, and Dubai; within

the West/South Africa: Tanjung Pelepas, Cape Town, and Durban; and within the south-

eastern US, Caribbean, and Pacific South American community: Callao (Peru), Manzanillo

(Panama), and Balboa (Panama).

It is worth noting that Singapore is not among the ten largest contributors to the

modularity. It is a member of the powerful Asia-Pac and trans-Pacific community, but it

does not have dense local connections as do the big China ports. Instead, it serves more

as a transshipment hub, with services to and from other ports that may not be directly

connected themselves. In fact, the clustering coefficient of Singapore, which measures how

connected to each other as its immediate neighbors, is very low among all container ports.

Lastly, when we allow ports to be assigned in multiple trading communities10, we have

10This is known as an overlapping trading community structure, see Algorithm 5 in Chapter 3 for more
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(a) Asia-Pac and trans-Pacific (b) Trans-Atlantic

(c) South Asia and Mideast (d) West and south Africa

(e) Southeastern United States, Caribbean, and Pa-
cific South America

(f) Southeastern Latin America

(g) New Zealand (h) Southern Europe

Figure 34: Trading communities identified by maximizing total LSCI weight of links within
groups (rather than between groups), with reported modularity value of 0.5085.
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found that there are about 32 ports that could be assigned in alternative communities

without hurting the modularity value, as reported in Table 14. Most of the ports are

generally small, located at the border of their original trading communities, having weak

connections within both their original trading communities and the alternative ones.

4.5.2 Comparing Trading Communities Across Networks

It is evident from the studies of [9] and [91] that trading communities evolve over time as

trade patterns change, mostly from the shift of demand and supply all around the globe.

In [91], it was found that the community structure of the World Trade Web (WTW),

consisting of 178 nations, has been changed greatly from a dispersed island structure to a

more centric one reflecting an increase in intercontinental services across the globe. [9] also

found several interesting observations in a study of the evolution of community structure

in the Multi-Layer World Trade Web as follows.

• The community structure of commodity specific networks usually differs from that

of the aggregated one over the period of study. More specifically, the number of

communities obtained from the aggregated network keeps increasing, but this is not a

typical trend for most of commodity specific networks — which is quite stable. This

implies that the structural change within specific commodity networks is less volatile.

• By using the Normalized Mutual Information Measure (NMI) as a measure of similar-

ity comparison, they have found that geographical distance is more related with the

formation of community, which is surprisingly irrelevant with trade.

In this study, by using the Similarity Value11 as a measure for community structure

comparison, we can identify the evolution of trading communities in the GCSN over time, as

well as the structural difference between the GCSN and its counterpart networks. However,

as our data set is quite limited and does not include trade information during economic

downturns, we can only compare the community structure of the GCSN with those of

details.
11See Algorithm 6 in Chapter 3 for more details.
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Table 14: A list of ports that could be assigned in multiple trading communities without
hurting the modularity value.

Port Country Original Alternative

Gibraltar Spain 2 5
Pointe-a-Pitre Guadeloupe 4 5
San Pedro, Ivory Coast Ivory Coast 4 2
Jacksonville FL United States 2 5
Pasir Gudang, Johor Malaysia 1 3
Izmit Turkey 4 3
St Johns, Antigua Antigua and Barbuda 2 5
Montoir France 4 2
Freetown Sierra Leone 4 2
Bintulu, Sarawak Malaysia 1 4
Vitoria Brazil 7 5
Degrad des Cannes French Guiana 2 7
Lobito Angola 2 4
Monrovia Liberia 2 4
Longoni, Comoros 3 4
Izmir Turkey 3 6
Havana Cuba 2 6
Bridgetown Barbados 2 5
Malabo Equatorial Guinea 2 6
Melilla Spain/N Af 2 5
Agadir Morocco 2 6
Salerno Italy 6 2
Cagliari Italy 2 3
Tanger Morocco 4 2
Miami FL United States 5 2
Casablanca Morocco 2 6
Motril Spain 2 5
Marina di Carrara Italy 3 6
Colon Panama 1 2
Alicante Spain 2 6
Malaga Spain 4 2
Taranto Italy 3 6

85



its adjacency counterpart network, and the continent-based network, where each port is

assigned a community based on its geographic location over seven continents.

The result has been reported in Table 15, where we found that the community structure

detected in the GCSN was less related with geographic location, but more with trade

connection, which is quite different from the observation of [9].

Table 15: The results obtained from the comparison study of three different community
structures detected from three different networks, namely, the GCSN, the adjacency coun-
terpart network, and the continent-based network.

Network 1 Network 2 Similarity Value

GCSN Adjacency 0.3962
GCSN Continent-based 0.2958
Adjacency Continent-based 0.2697

4.6 Conclusions

The Container Port Connectivity Index (CPCI) is a descriptive index summarizing how each

port is connected to others within the larger network. Importantly, the CPCI expresses more

than local connectivity to immediate neighbors but also neighbors-of-neighbors, and so on,

with all links weighted by the Liner Shipping Connectivity Index (LSCI). Furthermore, the

CPCI allows inbound and outbound strengths to be studied independently, and this gives a

more detailed look at the economic roles played by each port. Finally, the CPCI supports

what-if analysis in a way that survey-based indices, like the Logistics Performance Index

(LPI), cannot.

Any index of logistics performance is an attempt to summarize a complex environment.

The LSCI may be criticized for the rather arbitrary way that data is agglomerated, and

the LPI criticized for its reliance on perception rather than measurement. The CPCI has

weaknesses as well. In particular, because it uses an LSCI-like computation, it inherits any

criticism of that. In addition, while the CPCI scores are based on connectivity, they are

not based on geography, and so do not explicitly account for travel time between ports.

It should be remarked that neither our network model nor that of [44] captures anything
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about transshipment. Even though there may be direct links from port A to port B and

from port B to port C, to transport a container from A to C may require transshipment.

In this case ports A and C are further apart in both time and cost than they might appear

in these models. Nevertheless, the CPCI has many useful properties. In particular, it is

based on link weights that are computed just like the LSCI; and because the LSCI has been

vetted by economists as capturing intensities of trade, our index inherits that descriptive

power and exercises it at a more granular level.

It is worth noting that link weights could be plausibly generated in other ways than the

LSCI-type computation suggested herein. The LSCI represents shipping capacity but ideally

one would like to assign weights to the links in some way that reflects the actual number

of TEUs transported, rather than TEU capacity. Unfortunately, data at this level of detail

is not generally available. Yet the mechanism we use to generate the CPCI supports any

relevant alternative of link weight assignment, depending on the focal point of the research.

For example, we may assign link weight as the reciprocal of the typical travel time so that

the strength of a port would be determined by how close its neighbors are, which could be

used in a study that focused on speed of freight flow rather than volume.

We expect the CPCI to be useful in some of the same ways as the LSCI. This may include

explaining how the container-shipping network changes over time or using the link weights

and port scores as explanatory variables for economic phenomena. We believe these finer-

grained statistics will be easier to understand and to explain because they directly reflect

immediate decisions of primary actors such as shipping companies.
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CHAPTER V

AN EXTENSION OF THE CONTAINER PORT CONNECTIVITY

INDEX

In Chapter 4, we provided a detailed discussion of a new ranking scheme that ranks container

ports based on a new index of port importance called the Container Port Connectivity Index

(CPCI). In that setting, the CPCI takes the Liner Shipping Connectivity Index (LSCI) as

input and returns two separate scores, namely the inbound and outbound scores, for port

ranking. In this chapter, we will show an interesting modification of such an index by

exercising alternative input, that is, the container flow. In doing so, we simply assume that

a port derives its importance based on the container flow it handles. In practice, a port, with

little demand or supply, could become a strategic hub due to a great number of transshipped

containers, such as the port of Singapore. By using the CPCI as a tool in a disaggregation

fashion, where the importance score of a port is decomposed into components, each reflects

its contribution to the overall port importance score, we can explore how each type of flow

affects port importance and why a particular port has become important. This would allow

the port authority to realize its strategic port importance compared to those of competitors.

Following the same idea, we can also establish route and leg importance scores by help

of hyperedges, reflecting multidimensional relationship between ports, routes, legs, and

container flow circulating within the network.

5.1 A Simple Disaggregation Scheme

In the Global Container-Shipping Network (GCSN), we use the Container Port Connectivity

Index (CPCI) to quantify port attractiveness in terms of inbound and outbound connectivity

based on rate of capacity movement between ports, or trade intensity. While the CPCI tells

us which port is important based on the connections with other ports, it does not explain

why such connections affect port importance in detail. In order to answer this question

properly, we propose an extension of the CPCI in a disaggregation fashion, where the
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overall port importance score is computed and decomposed into components, each reflects

its contribution to the overall port importance score.

Instead of using capacity, we alternatively use container flow to define link weights. In

doing so, we simply assume that a port derives its importance based on the container flow

it handles. For better understanding, we will show this procedure in a two-phase fashion.

In the first phase, we construct an optimization model to help shipping lines decide the

optimal channel of container flow through ports. Such a solution is then arranged into a

proper matrix form used subsequently for the computation of port importance scores, in

the second phase.

Depending on the metric spaces used, the construction of both the optimization model

and the container-flow matrix may vary. In order to show such a difference, two different

metric spaces, namely the link and the route metric spaces, will be discussed. In the link

space model, there is a link from port i to j if there exist services from port i to j, while,

in the route space model, port j is connected from port i if there exist routes containing

leg (i, j).

Since we do not track the number of containers carried in each route but rather the

number of containers traversing each link in the link space model, we may simply categorize

the container flow into three groups, that is, (i) direct shipment, which is defined as the

total number of pick-up and drop-off containers reflecting demand and supply at ports, (ii)

indirect shipment, defined as the total number of containers passing through ports which

are not their destinations, i.e. the transshipment hubs or other intermediary ports in service

loops, and (iii) empty container shipment preserving container balancedness. By applying

the HITS algorithm to proper matrix arrangements, the overall port importance score and

its components could be revealed. We can then use these resulting scores to answer why a

particular port has become important

In the route space model, the importance of a particular port might depend not only on

the flow it handles but also on the importance of routes and legs to which it belongs. For

example, a port which is a member of important routes should be treated differently from

those of the trivial ones. In such a case, we need to modify the flow matrix such that the
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relationship between ports, routes, and legs is included. With proper modifications, we can

also establish route and leg importance scores in addition to port importance score by help

of hyperedges and their associated incidence matrix representation.

In order to visualize such concepts, the detailed discussion of both link and route space

models is provided, followed by an example illustrating how we construct both the opti-

mization model and the flow matrix in each case.

5.2 The Link Space Model

In this section, we show how to extend the CPCI using container flow to define link weights

instead of capacity in a disaggregation fashion under the link metric space. For simplicity,

we will restrict ourselves with three types of container flow, that is, (i) direct shipment, (ii)

indirect shipment, and (iii) empty container shipment. In Phase 1, we establish a simple

optimization model to find the optimal flow of containers satisfying sets of practical con-

straints, including demand, supply, and capacity constraints. Once solved, we then use the

solution of such a model to construct a flow matrix used subsequently for the computation

of port importance score and its components, in the second phase. The computation of the

importance scores in this extension is the same as that of the CPCI, except for different

matrix representations.

5.2.1 The First Phase

Given a set of ports V and a set of directed links E comprising a network G, together with

all demand and supply of containerized goods from ports to ports, the main objective of

this phase is to find the optimal flow of containers that minimizes liner shipping operational

costs, constrained by sets of practical restrictions. For simplicity, we will focus on a simple

model where all demand must be satisfied and there must be sufficient empty containers to

load goods at all ports. In addition, there exist link capacities, which the total number of

containers moved on any links, both full and empty ones, must not exceed. In this setting,

the containers passing by intermediary ports, i.e. ports which are not their destinations,

are counted as indirect shipment. It is worth noting that, in the link space model, we do

not take account for the transshipment of containers. More specifically, while the containers
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might be carried by their original vessels or transshipped to the others, we treat them as

the same.

Sets

• C denotes a set of all commodities, where each commodity is defined as an origin-

destination pair of containers represented by a tuple of two ports, i.e. (k, l).

• E denotes a set of directed links.

• V denotes a set of ports.

Parameters

• tij denotes time, or cost, of moving a container from port i to j.

• uij denotes capacity of link (i, j).

• Skl denotes total supply amount of commodity (k, l) measured in containers.

• Dkl denotes total demand amount of commodity (k, l) measured in containers.

Decision Variables

• xklij denotes full containers of commodity (k, l) moved on link (i, j).

• yij denotes total number of empty containers moved on link (i, j), where yii represents

empty containers available at port i.

At the moment, we assume that port importance score depends mostly on the container

flow from ports to ports. Since such flow is mainly controlled by shipping lines, thus, our

objective function might be properly defined as a cost minimization supposedly solved by

the shipping lines,

min
∑

(k,l)∈C

∑
(i,j)∈E

tijx
kl
ij +

∑
(i,j)∈E

tijyij . (64)

In the case where profits of fulfilled demand are known, we may instead redefine the

objective function to profit maximization.
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Constraints

• Supply amount of commodity (k, l) must be originated from port k.

∑
j∈V

xklkj = Skl, for all (k, l) ∈ C (65)

• Demand of each commodity must be fulfilled at its destination.

∑
i∈V

xklil = Dkl, for all (k, l) ∈ C (66)

• Capacity constraint on each link (i, j).

∑
(k,l)∈C

xklij + yij ≤ uij , for all (i, j) ∈ E (67)

• Empty containers at port k must be sufficient for loading goods and for repositioning

to other ports.

ykk ≥
∑

(k,l)∈C

Skl +
∑
j∈V

ykj , for all k ∈ V (68)

• Empty-container balancing constraints reflecting the availability of empty containers

at ports.

yll =
∑

(k,l)∈C

∑
i∈V

xklil +
∑
i∈V

yil, for all l ∈ V (69)

• Indirect-shipment balancing constraints, i.e. if port j is not the destination of com-

modity (k, l), the containers will only pass by port j.

∑
i∈V

xklij =
∑
i∈V

xklji , for all (k, l) ∈ C, and for all j, l ∈ V where j 6= l (70)

• Other technological constraints imposed on the network, i.e. traffic control constraint

at each port.

• Non negativity and integrity constraints for all decision variables.
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5.2.2 The Second Phase

In this phase, the overall port importance score is computed based on the resulting container

flow from Phase 1, using the HITS algorithm. Recall that, from the establishment of the

CPCI, a port is assigned two types of importance scores, namely the inbound and outbound

scores, which are computed by Equations (15) and (16). Similar to the LSCI-based CPCI,

in this setting, we still get those two scores, with additional capability of quantifying the

contribution of each flow type to each of those connectivity scores. This piece of information

could consequently be used to explain why some ports, with little demand or supply like

the port of Singapore, is considered as the world logistics hub, while there are many more

ports with relatively high demand or supply that have been ranked much lower.

Regarding its computation, assume that we have the optimal flow of containers in matrix

form, denoted as F , which is the composition of (i) direct shipment from the ports of origin

to the ports of destination without passing by any intermediary ports (D), (ii) indirect

shipment from the ports of origin passing by a series of intermediary ports before reaching

its final destination (I), and (iii) empty container shipment between ports (E). Since the

overall port importance score is structurally contributed by these three components, one

can calculate the inbound (x) and outbound scores (y) of all ports by Equations (71) and

(72).

λx = (D + I + E)T y =⇒ λ2x = (D + I + E)T (D + I + E)x, (71)

λy = (D + I + E)x =⇒ λ2y = (D + I + E)(D + I + E)T y. (72)

Notice that once the overall inbound and outbound scores have been calculated, we

could substitute these values into Equations (71) and (72) to obtain the contribution of

each flow type. With this approach, the port authority would be able to comprehend

and benchmark its importance in terms of (i) direct freight forwarding/receiving ability,

(ii) strategic intermediary, and (iii) empty repositioning ground, with competitors, which

would be crucial for the planning of its future course of operations.
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5.2.3 An Example of the Link Space Model

Let us consider a small example consisting of four ports and seven commodities shown in

Figure 35, where its associated demand and supply information is provided in Table 16. For

simplicity, we assume that all links have the same transportation cost per container and

capacity of one and 10, respectively.

1 2

34

Figure 35: An example of four fully connected ports with transportation cost of one unit
per container, and each link has capacity of 10 containers.

Based on the three traditional centrality measures, all ports are equivalently important

since they all have the same number of degrees, and the same shortest path length connecting

with each other. However, with flow information, ports 1 and 2 are expected to be the most

important ports, since they are expected to handle more containers than the rest. Some

might also suggest that port 3 would be the least important one, since it only requires goods

from port 1 and produces nothing to supply the rest; however, this might not always be the

case. In practice, terminal ports like port 3 might be a lot more important than it seems,

due to its transshipment or empty repositioning function, which would only be revealed

once the first phase has been solved.

Table 16: Demand and supply information of all commodities

From/To 1 2 3 4

1 15 10
2 5 5 5
3
4 5 5

According to the aforementioned information, the optimal flow of container and its
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associated disaggregation obtained from phase 1 is shown in Equation (73). The left hand

side of Equation (73) is the aggregated flow, which is decomposed into three flow types,

that is, (i) direct shipment, (ii) indirect shipment, and (iii) empty repositioning shipment,

on the right hand side.

0 10 10 5

10 0 5 5

10 0 0 5

5 10 0 0


=



0 10 10 0

5 0 5 5

0 0 0 0

5 10 0 0


+



0 0 0 5

0 0 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

5 0 0 0

10 0 0 5

0 0 0 0


(73)

If we apply the HITS algorithm to the direct decomposition above, we can compute

inbound and outbound scores of all four ports as shown in Tables 17 and 18. In terms of

outbound connectivity, from Table 18, port 1 is the most important hub, which is mostly

contributed by its direct shipment component. Although, port 3 is the least important hub

port, as expected, interestingly, its outbound score is comparable to that of port 4 which has

more activities due to a considerable amount of empty repositioning containers. Regarding

consolidation, or inbound connectivity, from Table 17, port 1 is also the most important,

not port 2, which requires more incoming containerized goods compared to port 1. The

reason behind this controversy is the empty repositioning activity at port 1. Since demand

at port 1 is less than its supply, it must draw empty containers from other ports nearby to

satisfy the availability of empty containers. This is evident from Equation (73) and Table

17, where the main contribution of port 1’s inbound score comes from empty reposition;

while the inbound score of port 2 is derived solely from its direct shipment.

Table 17: The inbound scores of all ports.

1 2 3 4

Inbound scores 0.5911 0.5374 0.4509 0.3981

Direct shipment 0.2459 0.5374 0.4509 0.1351
Indirect shipment 0 0 0 0.1579
Empty repositioning 0.3452 0 0 0.1051

In practice, container ports are of different sizes and capacities. Without a scaling
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Table 18: The outbound scores of all ports.

1 2 3 4

Outbound scores 0.6124 0.5238 0.4075 0.4296

Direct shipment 0.5097 0.3714 0 0.4296
Indirect shipment 0.1027 0 0 0
Empty repositioning 0 0.1524 0.4075 0

scheme, it might be cumbersome to apply the HITS algorithm to the decomposition of

flow matrix directly — this might cause a precision problem in the calculation of port

importance score since the sum of port importance squared is preserved at unity. However,

not all scaling schemes are appropriate in this setting. For example, consider the unity row

sum scaling scheme mimicking the Google’s Pagerank algorithm as shown in Equation (74),

i.e. the sum of each row equals one.

F =⇒



0 0.5 0.5 0

0.33 0 0.33 0.33

0 0 0 0

0.33 0.67 0 0


+



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

1 0 0 0

0.67 0 0 0.33

0 0 0 0


(74)

If we apply the HITS algorithm to Equation (74), we can compute inbound and outbound

scores of all ports as reported in Tables 19 and 20. With this scaling scheme, port 2 has

now become the most important hub instead of port 1. Even worse, ports 1 and 3 are now

equally important, which is preposterous. This contradiction is caused by neglecting flow

magnitude, where all outgoing containers from each port are treated as equally important.

A better scaling scheme would be one that scales all values at the same rate, such as the

LSCI-like measure.

Table 19: The inbound scores of all ports when container flow is scaled by row sum.

1 2 3 4

Inbound scores 0.8079 0.2166 0.2733 0.4751

Direct shipment 0.1976 0.2166 0.2733 0.1506
Indirect shipment 0 0 0 0.2453
Empty repositioning 0.6102 0 0 0.0791
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Table 20: The outbound scores of all ports when container flow is scaled by row sum.

1 2 3 4

Outbound scores 0.4203 0.7743 0.4068 0.2415

Direct shipment 0.1430 0.3028 0 0.2415
Indirect shipment 0.2773 0 0 0
Empty repositioning 0 0.4716 0.4068 0

5.3 The Route Space Model

In the previous section, we have demonstrated the extension of the CPCI using container

flow as link weights to compute the overall port importance score and its components under

the link metric space. Observe that, in that setting, we neglect all information about

vessel routes, which allows containers to be moved freely between ports. In this section,

we will show how to incorporate route information into the computation of the importance

scores using hyperedges to reflect multidimensional relationship between ports, routes, and

legs, as well as the container flow circulating within the network. With more embedded

information, we can extract not only the inbound and outbound scores but also the route

and leg importance scores.

5.3.1 The First Phase

As opposed to the link metric space, in the route metric space, we need to modify the model

to capture more detailed information about the container flow on each leg of all routes. In

order to do so, we need one more set R representing the set of all routes, and we need to

redefine the decision variables as follows.

• xklij,r denotes the number of full containers of commodity (k, l) moved on leg (i, j) of

route r.

• zi denotes the number of empty containers available at port i.

• yij,r denotes the number of empty containers moved on leg (i, j) of route r.

The objective function of the route space model is quite similar to that of the previous

one, as shown in (75), except the inclusion of route index in the decision variables. At the
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moment, we assume that we have information of all available routes and their associated

capacities.

min
∑

(k,l)∈C

∑
r∈R

∑
(i,j)∈E

t(i,j),rx
kl
ij,r +

∑
r∈R

∑
(i,j)∈E

tij,ryij,r (75)

Constraints

• Supply amount of the commodity (k, l) must be originated at port k and transported

through all possible routes r having leg (k, j) as their comprising leg.

∑
r∈R

∑
j∈V

xklkj,r = Skl, for all (k, l) ∈ C (76)

• Demand of each commodity must be fulfilled at its destination.

∑
r∈R

∑
i∈V

xklil,r = Dkl, for all (k, l) ∈ C (77)

• Capacity constraint on leg (i, j) of route r.

∑
(k,l)∈C

xklij,r + yij,r ≤ uij,r, for all (i, j) ∈ E, and for all r ∈ R (78)

• The number of empty containers at port k must be sufficient for loading goods and

for empty repositioning.

zk ≥
∑

(k,l)∈C

Skl +
∑
r∈R

∑
j∈V

ykj,r, for all k ∈ V (79)

• Empty-container balancing constraints.

zl =
∑

(k,l)∈C

∑
r∈R

∑
i∈V

xklij,r +
∑
r∈R

∑
i∈V

yil,r, for all l ∈ V (80)

• Constraints regarding transshipment and indirect shipment at ports, i.e. if port j is

not the destination of commodity (k, l) transported on the leg (i, j) of route r, those

containers will just pass by port j.

∑
r∈R

∑
i∈V

xklij,r =
∑
r∈R

∑
i∈V

xklji,r, for all (k, l) ∈ C, and for all j, l ∈ V where j 6= l (81)

• Other technological constraints imposed on the network, i.e. traffic control constraint

at each port.
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• Non negativity and integrity constraints for all decision variables.

Before proceeding to Phase 2, observe that the solution to the modified phase-one prob-

lem is route-based optimal flow, which is impossible to represent by a flow-through matrix,

since the relationship between ports, routes, and their comprising legs, together with their

associated flow, could not be fitted in. In order to capture such information, we instead

use a hypergraph, i.e. a network consisting of hyperedges, and its associated incidence

matrix, for network representation. With the presence of hyperedges, multidimensional

relationships concerning more than two entities, such as a buyer-seller-broker transaction

described in Chapter 2, could be described and properly defined in matrix form. Since the

resulting incidence matrix contains more information, we can extract two more interesting

importance scores, namely the route and leg importance scores, as the output1.

In order to visualize this concept, let us consider the same example shown in Figure 35;

but, in this case, we restrict the containers to be moved only on 8 available routes shown

in Table 21.

Table 21: Information of all eight available routes for the underlying network shown in
Figure 35.

Route Number Direction

1 1-2-1
2 1-3-1
3 1-4-1
4 2-3-2
5 2-4-2
6 3-4-3
7 2-1-4-2
8 2-3-4-2

With the aforementioned information, the solution to the modified phase-one problem is

shown in Table 22. For simplicity, we do not further classify container flow by commodity;

but this could be done when importance scores are suspected to be commodity dependent.

1Recall that the computation of these scores is similar to that of the multidimension centrality described
in Chapter 2.
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Table 22: The solution to the modified phase-one problem.

Route Number Direction Leg Full Container Empty Container

1 1-2-1 (1,2) 10 0
(2,1) 5 5

2 1-3-1 (1,3) 10 0
(3,1) 0 5

3 1-4-1 (1,4) 0 0
(4,1) 5 0

4 2-3-2 (2,3) 5 0
(3,2) 0 0

5 2-4-2 (2,4) 5 0
(4,2) 5 0

6 3-4-3 (3,4) 0 0
(4,3) 0 0

7 2-1-4-2 (2,1) 0 5
(1,4) 5 0
(4,2) 5 0

8 2-3-4-2 (2,3) 0 0
(3,4) 0 0
(4,2) 0 0

5.3.2 The Second Phase

The most crucial modification for this second phase is the construction of an incidence

matrix, where port-route-flow relationship must be captured. For better understanding, we

will show a step-by-step development of this modification starting from the most general

case, where all information takes only binary value reflecting membership, to the most

sophisticated one, where we blend both binary and canonical information together.

Firstly, let us consider a modification where all information takes only binary value,

i.e. either 0 or 1, indicating whether there exists member-wise relationship between two

interested entities. In particular, this incidence matrix captures all affiliated relationship

between ports, routes, and legs, as shown in Equation (82), where rows of A represent

legs and columns of A represent ports (N) and routes (R). In other words, matrix A is a

concatenation of columns representing ports followed by the columns representing routes.

For simplicity, let Ak(i, j) be the element of A corresponding to the row of edge (i, j) in

column k. If k ∈ N , let Ak(i, j) = Nk(i, j), and Ak(i, j) = Rk(i, j) otherwise. For any edge

connecting ports i and j, we have Ni(i, j) = Nj(i, j) = 1. Similarly, for any route r ∈ R, if
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(i, j) ∈ r, then we have Rr(i, j) = 1, and Rr(i, j) = 0 otherwise.

A =


| | | | | | ... |

N1 N2 N3 N4 R1 R1 ... R8

| | | | | | ... |

 (82)

For purposes of construction, we assume that (i) leg importance score is a function

of ports and routes, and (ii) both port and route importance scores are functions of legs.

However, since we do not incorporate flow information into such a matrix, the resulting

importance scores will be primarily derived based on membership, which might mislead

their true importance. In addition, when some routes are not being used, i.e. routes 6 and

8, their route importance scores should be zero; however, with this setting, they will remain

in the positive side due to the existence of route-leg relationship. In order to alleviate

these effects, we need to modify matrix A in such a way that both membership and flow

information are well blended.

The easiest way to modify matrix A is to use container flow instead of binary parameter

Rr(i, j). Based on this modification, we can decompose such flow into full and empty

containers as shown in Equation (83).

A′ =

[
N R

]
=

[
N̄1 RC

]
+

[
N̄2 RE

]
, (83)

where N̄i is the ith weighted submatrix preserving row sum unity, and RC , RE are full

and empty container submatrices.

With this disaggregation scheme, we would obtain port, route, and leg importance

scores, where, (i) leg importance score is a function of connected ports and the container

flow it handles from various routes, (ii) port importance score is a function of legs having

ports of interest as members, and (iii) route importance score is a function of container flow

moving on their comprising legs.

In the aforementioned modification, the assumption that port and route importance

scores are functions of only legs may seem incorrect since both port and route importance

scores should also depend on the flow of containers. Thence, we might further modify

matrix A′ to Ā by adding rows of ports in addition to the existing rows of legs as shown in
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Equation (84).

Ā =

 F1 C1

C2 F2

 , (84)

where (i) the first |V | rows and the rest |E| rows of Ā represent ports and legs in the

network, (ii) the first |V | columns and the rest |R| columns of Ā represent ports and all

available routes, (iii) F1 denotes container flow submatrix among ports, which is the same

as the flow-through matrix used in the link space calculation, (iv) F2 denotes a submatrix of

container flow moved on each leg of all routes, (v) C1 denotes leg-route membership matrix,

and (vi) C2 denotes port-leg connectivity matrix. Similar to the previous modification, we

can apply a simple disaggregation scheme to Ā, where the result is shown in Equation (85).

Ā =

 F1C C̄1

C̄2 F2C

+

 F1E C̄1

C̄2 F2E

 , (85)

where Fix denotes the ith weighted submatrix of container flow type x and C̄i is the ith

weighted membership submatrix. With this modification, both membership and flow infor-

mation is properly captured and we could obtain all importance scores and the contribution

from each flow type as designed.

5.3.3 An Example of the Route Space Model

In this section, we will illustrate the aforementioned concepts of the importance score com-

putation that take multidimensional information into account. We begin the discussion

with the simplest model, where only affiliated information among ports, routes, and their

comprising legs is considered. Based on Table 22 and Equation (82), we can construct

the incidence matrix A as shown in Table 23, where Table 24 summarizes the resulting

port, route, and leg importance scores derived from such a matrix. Since importance scores

depend solely on port-leg and route-leg memberships, ports with high degree and legs ap-

pearing in many routes are expected to have relatively high scores. In addition, the longer

the routes, the higher the route importance scores, regardless of the container flow circu-

lating on such routes, for example, routes 6 and 8 containing more legs than the rest are

expected to have high importance scores, though there are no containers carrying within.
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In order to make the result more informative, we replace binary relationship between

legs and routes with actual container flow. Based on Equation (83), matrix A′ could be

constructed as shown in Table 25, where Tables 26 and 27 show its decomposition based on

the type of container flow. After applying the HITS algorithm to matrix A′, port, route,

and leg importance scores are extracted, as reported in Tables 28 and 29. Unsurprisingly,

since most activities have occurred at ports 1 and 2, we would expect high port importance

scores on these two ports. Additionally, legs connecting these two ports, i.e (1, 2) and (2, 1),

are also expected to have higher scores than the rest since higher ranked ports are connected

by these legs. Consequently, route 1 has become the most important. On the contrary, since

routes 6 and 8 have no flow, their route importance scores are undoubtedly zero. It is worth

noting that, in this decomposition, N̄1 and N̄2 are set to be the same. This implies that

the importance of full and empty containers handled is equally important, i.e. each type of

flow will have the same score.

In the last modification, where port importance score is a function of both legs and

flow, we can construct matrix Ā based on Equation (84), as shown in Table 30. With

this construction, we expect to obtain better results since both membership and flow are

being utilized; however, there are several issues needing clarification. Firstly, observe that

since membership is part of importance score calculation, there would be no entity with

zero importance score. For example, while routes 6 and 8 have zero importance score

in the previous alteration, in this alteration these two routes would receive some positive

importance scores contributed by route-leg relationship (see Table 33). Similarly, from Table

34, ports 1 and 4 have not generated any empty containers; however, their empty container

scores are not zero due to the same relational effect. Lastly, legs (3, 2), (3, 4) and (4, 3) as

parts of the unused routes have fairly high importance scores due to the contribution of

route-leg relationship. For better interpretation, empty routes should be discarded before

proceeding to the calculation of importance scores, though in practice, empty routes are

quite rare.

After removing empty routes and their associated legs, the updated matrix Ā and its

decompositions are shown in Tables 35 – 37, while the updated importance scores are
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reported in Tables 38 and 39. This result is much clearer since all relational effects previously

discussed have been removed.

One interesting feature about the extension of the CPCI in the route space model is that

the constructed matrix is not required to be a symmetric matrix for the derivation of all

importance scores, since the multiplication between the constructed incidence matrix and

its transpose is always symmetric. And, therefore, all importance scores are well-defined,

and always exist.

5.4 Conclusions

Other than the LSCI-like measure defined as link weights, we show that the CPCI can take

alternative input, such as container flow, for the computation of port importance score. We

also show that, with proper modification, we can extract detailed information about route

and leg importance scores in addition to that of a port. These importance scores, in turn,

allow us to understand why a port has become important, though it is neither the world’s

largest manufacturer nor consumer, such as the port of Singapore.

The computation of these scores is quite similar to that of the CPCI, except for different

matrix representations. In the link space mode, the overall port importance score and its

components are computed based on a flow-through matrix, while, in the route space model,

they are computed based on an incidence matrix, where hyperedges are used to represent

multidimensional relationship between ports, routes, legs, and container flow circulating

within the network.

Based on our illustration, it is evident that the crucial step for the derivation of impor-

tance scores lies on the construction of the flow matrix. Such relationship may vary from one

to another application, making the construction of the flow matrix more like an art rather

than a science. Nevertheless, we believe that the extension of the CPCI presented here gives

several insights into the construction of meaningful measures for ranking network’s entities

other than nodes or links.

104



Table 23: Matrix A.

Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

(1,2) 1 1 1
(1,3) 1 1 1
(1,4) 1 1 1 1
(2,1) 1 1 1 1
(2,3) 1 1 1 1
(2,4) 1 1 1
(3,1) 1 1 1
(3,2) 1 1 1
(3,4) 1 1 1 1
(4,1) 1 1 1
(4,2) 1 1 1 1 1
(4,3) 1 1 1

Table 24: Importance scores derived from matrix A.

Legs Unscaled Scores Scaled Scores Ports and Routes Unscaled Scores Scaled Scores

(1,2) 0.2518 0.0737 1 0.4027 0.2345
(1,3) 0.2317 0.0679 2 0.4558 0.2655
(1,4) 0.3173 0.0929 3 0.4027 0.2345
(2,1) 0.3173 0.0929 4 0.4558 0.2655
(2,3) 0.3173 0.0929 R1 0.1431 0.1037
(2,4) 0.2718 0.0796 R2 0.1165 0.0844
(3,1) 0.2317 0.0679 R3 0.1431 0.1037
(3,2) 0.2518 0.0737 R4 0.1431 0.1037
(3,4) 0.3173 0.0929 R5 0.1696 0.1229
(4,1) 0.2518 0.0737 R6 0.1431 0.1037
(4,2) 0.4029 0.1180 R7 0.2609 0.1890
(4,3) 0.2518 0.0737 R8 0.2609 0.1890
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Table 25: Matrix A′.

Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

(1,2) 1 1 10
(1,3) 1 1 10
(1,4) 1 1 5
(2,1) 1 1 10 5
(2,3) 1 1 5
(2,4) 1 1 5
(3,1) 1 1 5
(3,2) 1 1
(3,4) 1 1
(4,1) 1 1 5
(4,2) 1 1 5 5
(4,3) 1 1

Table 26: Matrix A′F .

Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

(1,2) 0.5 0.5 10
(1,3) 0.5 0.5 10
(1,4) 0.5 0.5 5
(2,1) 0.5 0.5 5
(2,3) 0.5 0.5 5
(2,4) 0.5 0.5 5
(3,1) 0.5 0.5
(3,2) 0.5 0.5
(3,4) 0.5 0.5
(4,1) 0.5 0.5 5
(4,2) 0.5 0.5 5 5
(4,3) 0.5 0.5
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Table 27: Matrix A′E .

Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

(1,2) 0.5 0.5
(1,3) 0.5 0.5
(1,4) 0.5 0.5
(2,1) 0.5 0.5 5 5
(2,3) 0.5 0.5
(2,4) 0.5 0.5
(3,1) 0.5 0.5 5
(3,2) 0.5 0.5
(3,4) 0.5 0.5
(4,1) 0.5 0.5
(4,2) 0.5 0.5
(4,3) 0.5 0.5

Table 28: Leg importance score derived from matrix A′, and its decomposition.

Legs Unscaled Scores Scaled Scores Full Container Empty Container

(1,2) 0.6352 0.3667 0.6282 0.0070
(1,3) 0.0181 0.0105 0.0146 0.0036
(1,4) 0.1218 0.0703 0.1176 0.0041
(2,1) 0.7487 0.4322 0.3176 0.4311
(2,3) 0.0082 0.0047 0.0045 0.0036
(2,4) 0.0272 0.0157 0.0230 0.0042
(3,1) 0.0127 0.0073 0.0036 0.0091
(3,2) 0.0073 0.0042 0.0036 0.0036
(3,4) 0.0016 0.0009 0.0008 0.0008
(4,1) 0.0093 0.0054 0.0052 0.0041
(4,2) 0.1407 0.0812 0.1365 0.0042
(4,3) 0.0016 0.0009 0.0008 0.0008
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Table 29: Port and route importance scores derived from matrix A′, and their decomposi-
tion.

Port and Routes Unscaled Scores Scaled Scores Full Container Empty Container

1 0.1036 0.4462 0.0518 0.0518
2 0.1050 0.4524 0.0525 0.0525
3 0.0033 0.0143 0.0017 0.0017
4 0.0202 0.0872 0.0101 0.0101

R1 0.9272 0.6896 0.6764 0.2508
R2 0.0164 0.0122 0.0122 0.0042
R3 0.0031 0.0023 0.0031 0
R4 0.0027 0.0020 0.0027 0
R5 0.0563 0.0419 0.0563 0
R6 0 0 0 0
R7 0.3387 0.2520 0.0879 0.2508
R8 0 0 0 0

Table 30: Matrix Ā.

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

1 10 10 5 1 1 1 1
2 15 5 5 1 1 1 1 1
3 5 1 1 1 1
4 5 10 1 1 1 1 1

(1,2) 1 1 10
(1,3) 1 1 10
(1,4) 1 1 5
(2,1) 1 1 10 5
(2,3) 1 1 5
(2,4) 1 1 5
(3,1) 1 1 5
(3,2) 1 1
(3,4) 1 1
(4,1) 1 1 5
(4,2) 1 1 5 5
(4,3) 1 1
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Table 31: Matrix ĀF .

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

1 10 10 5 0.5 05 0.5 0.5
2 5 5 5 0.5 0.5 0.5 0.5 0.5
3 0.5 0.5 0.5 0.5
4 5 10 0.5 0.5 0.5 0.5 0.5

(1,2) 0.5 0.5 10
(1,3) 0.5 0.5 10
(1,4) 0.5 0.5 5
(2,1) 0.5 0.5 5
(2,3) 0.5 0.5 5
(2,4) 0.5 0.5 5
(3,1) 0.5 0.5
(3,2) 0.5 0.5
(3,4) 0.5 0.5
(4,1) 0.5 0.5 5
(4,2) 0.5 0.5 5 5
(4,3) 0.5 0.5

Table 32: Matrix ĀE .

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R6 R7 R8

1 0.5 05 0.5 0.5
2 10 0.5 0.5 0.5 0.5 0.5
3 5 0.5 0.5 0.5 0.5
4 0.5 0.5 0.5 0.5 0.5

(1,2) 0.5 0.5
(1,3) 0.5 0.5
(1,4) 0.5 0.5
(2,1) 0.5 0.5 5 5
(2,3) 0.5 0.5
(2,4) 0.5 0.5
(3,1) 0.5 0.5 5
(3,2) 0.5 0.5
(3,4) 0.5 0.5
(4,1) 0.5 0.5
(4,2) 0.5 0.5
(4,3) 0.5 0.5
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Table 33: Inbound score and route importance score derived from matrix Ā, and their
decomposition.

Ports and Routes Unscaled Scores Scaled Scores Full Container Empty Container

1 0.6359 0.3483 0.2672 0.3687
2 0.4678 0.2562 0.4530 0.0148
3 0.4228 0.2316 0.4147 0.0080
4 0.2993 0.1639 0.2905 0.0088

R1 0.2313 0.2978 0.1546 0.0767
R2 0.0965 0.1243 0.0626 0.0340
R3 0.0578 0.0744 0.0359 0.0219
R4 0.0523 0.0673 0.0327 0.0196
R5 0.0872 0.1122 0.0621 0.0251
R6 0.0266 0.0343 0.0133 0.0133
R7 0.1671 0.2152 0.0810 0.0861
R8 0.0580 0.0746 0.0290 0.0290

Table 34: Outbound score and leg importance score derived from matrix Ā, and their
decomposition.

Ports and Legs Unscaled Scores Scaled Scores Full Container Empty Container

1 0.5232 0.3012 0.5100 0.0132
2 0.6565 0.3780 0.3385 0.3180
3 0.1630 0.0938 0.0056 0.1574
4 0.3942 0.2270 0.3848 0.0095

(1,2) 0.1632 0.1630 0.1368 0.0264
(1,3) 0.0967 0.0966 0.0714 0.0253
(1,4) 0.0846 0.0845 0.0623 0.0223
(2,1) 0.2031 0.2029 0.0816 0.1215
(2,3) 0.0550 0.0550 0.0338 0.0213
(2,4) 0.0575 0.0574 0.0391 0.0183
(3,1) 0.0736 0.0735 0.0253 0.0483
(3,2) 0.0425 0.0425 0.0213 0.0213
(3,4) 0.0345 0.0345 0.0172 0.0172
(4,1) 0.0585 0.0584 0.0361 0.0223
(4,2) 0.0974 0.0973 0.0791 0.0183
(4,3) 0.0345 0.0345 0.0172 0.0172
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Table 35: Updated matrix Ā.

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R7

1 10 10 5 1 1 1 1
2 15 5 5 1 1 1 1
3 5 1 1
4 5 10 1 1 1

(1,2) 1 1 10
(1,3) 1 1 10
(1,4) 1 1 5
(2,1) 1 1 10 5
(2,3) 1 1 5
(2,4) 1 1 5
(3,1) 1 1 5
(4,1) 1 1 5
(4,2) 1 1 5 5

Table 36: Updated matrix ĀF .

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R7

1 10 10 5 0.5 05 0.5 0.5
2 5 5 5 0.5 0.5 0.5 0.5
3 0.5 0.5
4 5 10 0.5 0.5 0.5

(1,2) 0.5 0.5 10
(1,3) 0.5 0.5 10
(1,4) 0.5 0.5 5
(2,1) 0.5 0.5 5
(2,3) 0.5 0.5 5
(2,4) 0.5 0.5 5
(3,1) 0.5 0.5
(4,1) 0.5 0.5 5
(4,2) 0.5 0.5 5 5
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Table 37: Updated matrix ĀE .

Ports and Legs 1 2 3 4 R1 R2 R3 R4 R5 R7

1 0.5 05 0.5 0.5
2 10 0.5 0.5 0.5 0.5
3 5 0.5 0.5
4 0.5 0.5 0.5

(1,2) 0.5 0.5
(1,3) 0.5 0.5
(1,4) 0.5 0.5
(2,1) 0.5 0.5 5 5
(2,3) 0.5 0.5
(2,4) 0.5 0.5
(3,1) 0.5 0.5 5
(4,1) 0.5 0.5
(4,2) 0.5 0.5

Table 38: Inbound score and route importance score derived from the updated matrix Ā,
and their decomposition.

Ports and Routes Unscaled Scores Scaled Scores Full Container Empty Container

1 0.6392 0.3502 0.2685 0.3707
2 0.4678 0.2563 0.4538 0.0140
3 0.4201 0.2302 0.4147 0.0054
4 0.2979 0.1633 0.2907 0.0072

R1 0.2354 0.3361 0.1858 0.0495
R2 0.0974 0.1391 0.0796 0.0178
R3 0.0581 0.0829 0.0581 0.0000
R4 0.0525 0.0750 0.0525 0.0000
R5 0.0879 0.1254 0.0879 0.0000
R7 0.1692 0.2415 0.1196 0.0495
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Table 39: Outbound score and leg importance score derived from the updated matrix Ā,
and their decomposition.

Ports and Legs Unscaled Scores Scaled Scores Full Container Empty Container

1 0.5241 0.3020 0.5241 0.0000
2 0.6582 0.3792 0.3516 0.3066
3 0.1605 0.0925 0.0072 0.1533
4 0.3927 0.2263 0.3927 0.0000

(1,2) 0.1660 0.1844 0.1394 0.0265
(1,3) 0.0975 0.1084 0.0721 0.0254
(1,4) 0.0855 0.0950 0.0630 0.0225
(2,1) 0.2066 0.2295 0.0830 0.1236
(2,3) 0.0552 0.0613 0.0339 0.0213
(2,4) 0.0578 0.0642 0.0394 0.0184
(3,1) 0.0742 0.0824 0.0254 0.0488
(4,1) 0.0589 0.0654 0.0364 0.0225
(4,2) 0.0984 0.1093 0.0800 0.0184
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CHAPTER VI

MARKET STABILITY OF A LOGISTICS HUB

It might be true that a strategically located port with advanced and efficient infrastructure

may attract more liners and container flow, and consequently create opportunities for freight

consolidation or transshipment. Yet there are several threats that might affect the stability

of such a hub, for example, the competition among ports in the region, connectivity loss, and

hub relocation. In this chapter, we show that these risks are closely related and they should

all be recognized in a unified framework. In doing so, we establish an analytical framework

for assessing market stability of a logistics hub, which could also be used to predict the

behavior of shipping lines in a competitive/cooperative setting. With this analytical scheme,

it is possible for the port authority to comprehend and evaluate the expected loss from

shipping lines’ defection with respect to the actions executed by competitors. This piece

of information, in turn, allows the port authority to devise counter strategies protecting its

business from competing ports, such as strengthening its relationship with the customers

anticipated to leave.

6.1 Shipping Lines and Market Stability of a Logistics Hub

Among all members of the container-shipping industry, ports and shipping lines might be

considered as the most crucial players — since a port acts as a gateway for containerized

goods to be distributed, while a shipping line is the one that physically transports them from

the origins to the destinations via its service network. In practice, shipping lines usually

form an alliance to help enhance their vessel capacity. This also gives them opportunities

for serving more destinations by integrating their service networks with those in the same

alliance via transshipment at a logistics hub. Interestingly, it is shipping lines, not a hub,

that provide this connectivity. And, a popular hub with great connectivity usually induces

more liners, which consequently helps it remain popular.

From the port’s perspective, in order to become a logistics hub, a port must possess at
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least two important characteristics. The first is the infrastructure that allows shipping lines

to operate at lower cost but with higher speed. The latter is its geographical location, or

centrality. A hub possessing these two characteristics, such as ports of Singapore and Hong

Kong, usually attracts more liners, container flow, and so achieves connectivity for freight

consolidation or transshipment. Yet there are several threats that might affect the stability

of such a hub.

The first is the competition among ports in the vicinity. Obviously, ports in the vicinity

possess approximately the same importance in terms of centrality. Therefore, a port with

better infrastructure, as well as other external factors, such as lower port charges or lower

labor costs, generally attracts shipping lines to camp their operations at such a port. As

a consequence, a dramatic change in container-shipping patterns is evident. For example,

in 1991, Port of Hong Kong was the first and only container port in the Pearl River Delta

which served as the gateway to the southern region of China. The port of Hong Kong

became the world’s busiest container port several years before the emerging of the port of

Shenzhen, located in the same region. The port of Shenzhen began its container operation

with capacity of less than a million TEUs in 1991, which was far less than one tenth of Hong

Kong’s at the same period. However, with lower cost of operation and its location close to

the world manufacturer, China, the port of Shenzhen has become more and more important,

with a huge leap of both throughput and capacity. During 1991 – 2008, although ports of

Hong Kong and Shenzhen have increased both their throughput and capacity dramatically,

market share of the port of Hong Kong significantly dropped from 99% in 1991 to 53% in

2008, which is opposite to that of Shenzhen’s [56].

Another prominent example of port competition is the emerging of the port of Tanjung

Pelepas in Southeast Asia. It is well known that port of Singapore is one of the most

efficient container ports in the world, with designed capacity of over 24 million TEUs. The

port of Singapore, together with Port Klang and port of Tanjung Pelepas, is major port

accounting for 68.2% of container throughput in this region. Additionally, in terms of

transshipment, these three major ports account for almost 100% of transshipment traffic

[48]. However, based on the study of [48], they found that the annualized slot capacity
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called at the port of Tanjung Pelepas increased dramatically from 1999 to 2004, while the

exclusive market share of the port of Singapore decreased from 64.6% to 47.8% during the

same period. Apparently, a fierce competition among ports in the vicinity inevitably affects

market stability of logistics hubs.

Since ports themselves are static entities that cannot move freely, they are more vulnera-

ble to any decisions made by other players, especially the shipping lines. Without container

flow fed by the liners, a port is merely a gigantic monument located along the shore. Having

that in mind, port authorities have generally tried to bind shipping lines to operate at their

complexes by a wide range of strategies, such as providing dedicated terminals to their best

customers or contracting the minimum container amount to be handled to ensure lower

port fees charged. By having more operating lines at a port, it will become popular and

remain popular by help of its customers that provides port connectivity. Therefore, losing a

customer implies a reduction of both port connectivity and its attractiveness as a logistics

hub at the same time. In the worst case, this may trigger a series of defections by others

whose transshipment opportunities have been reduced. A transshipment hub is especially

vulnerable to this threat due to its smaller demand and supply, which might not otherwise

justify port calls made by the liners.

One prominent example demonstrating this risk is the competition between the ports of

Singapore and Tanjung Pelepas, Malaysia [10]. While Tanjung Pelepas and Singapore are

located on the opposite side of the Johor Strait, next to each other, labor cost at the port of

Tanjung Pelepas is much lower. In order to secure lower operational costs, in 2000, Maersk

Sealand, the largest operating line at port of Singapore, moved its operating hub from the

port of Singapore to the port of Tanjung Pelepas. Afterward, in 2002, Evergreen, the second

biggest line, also moved to the port of Tanjung Pelepas. Under economic pressure on small

shipping lines, some have to establish connection services to the port of Tanjung Pelepas

in order to transship their containers with those who moved, and the others have followed

them to the port of Tanjung Pelepas. By this succession of moves, the port of Singapore

has lost millions of TEUs of container flow to its competitor. Ironically, the most important

customer is also the greatest threat to the hub itself since it could abandon the current hub
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and easily move to a competing one, which increases economic pressure on the rest to follow

its move.

Based on the aforementioned, it might be true that, in order to maintain its status, as

well as its market share, a logistics hub must improve not only its operational performance

but also the relationship with its customers. Unfortunately, such a claim is not quite

complete since the container-shipping industry is more dynamic and such stability depends

not only on the hub’s decision itself but also on other players’.

In order to capture the whole picture of such a system, we establish a unified frame-

work for analyzing the effect of external forces on market stability of a logistics hub in a

competitive environment, taking account of both ports’ and shipping lines’ decisions. In

this setting, ports decide on their infrastructure which consequently defines shipping lines’

operational costs. With this cost function, shipping lines then decide on their operational

plans directing their container flow through these ports in a competitive/cooperative set-

ting. Once the system reaches stability, where no shipping line is better off moving its

business away to competing ports, each shipping line’s value of cooperation is determined

and used as base solution for the hub to devise counter strategies or policies preventing a

defection.

6.2 Literature Review

There are several research streams associated with port and shipping line operations ranging

from planning to operations in both non-cooperative and cooperative settings. Network op-

timization is regarded as one major research stream concerning shipping line’s best response

in a non-cooperative setting. The problems in this class mostly focus on shipping line’s op-

erational improvement, such as network design or ship scheduling. In [2], ship scheduling

and network design problems were modeled simultaneously by means of a time and space

network to help minimize liner shipping operational costs. In [94], the authors developed a

cost minimization model to help identify ship types and their associated numbers in each

shipping route to maintain the desired service level at minimal cost. In [93], liner shipping

schedule design and container routing problems were combined and solved for the optimal
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shipping plan that minimized total transshipment cost and penalty cost associated with

longer transit times at ports. Lastly, in [95], an interesting method of cost minimizing path

generation taking into account practical operational constraints, such as maritime cabotage

and maximum allowable transit time, was presented.

In order to make the model more realistic and practical, many researchers have incor-

porated an implicit cost, such as queuing or congestion, into their models. For example,

in [40], a multiserver queuing model was embedded within the optimization model to help

find the optimal number of open gate lanes that minimize total operating costs at marine

container terminals for trucking services.

In a large-scale optimization, the liner shipping network may be integrated with the

rail line or trucking network, reflecting intermodal transportation, such as those sea-land

networks studied in [27], [42], and [43]. In [43], they studied an integrated model of liner

shipping and rail line networks taking both transportation and inventory costs into account.

The objective of their research model was to identify the optimal channels of shipment from

the origin located somewhere in Asia to the Regional Distribution Centers (RDCs) in the

US. For modeling simplicity, several assumptions were imposed. For example, the demand

at each RDC was set to be proportional to the purchasing power in the region that such

a RDC served. In addition, each RDC was served only by one port using one channel of

transportation, where there was no capacity constraint at ports or rail line terminals, as

well as the minimum contractual volume. In [42], they revised their previous model by (i)

including the minimum contractual volume at each port and (ii) using the result from a

so-called short-run model presented by [52] to update the parameters of the revised model,

reflecting the fluctuation of transit times with seasonality.

Similarly, in [25] and [27], the studies of the North American container flow diversion in a

competitive environment were conducted. In their studies, congestion was considered as part

of shipping line’s operating costs modeled by means of a piecewise linear function. The result

from their model indicated the optimal routes, ship sizes, ports, and hinterland shipping

channels, that satisfied demand and capacity constraints at minimal cost. According to their

model, demand units were referred to as the Business Economic Areas (BEAs), which were
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defined as geographical groups that were relevant for economic analysis. They also used

such a model to evaluate the impacts of the Panama Canal Expansion and the change of

infrastructure at the port of Prince Rupert on the North American container flow diversion.

In [26], they extended their previous works to analyze the diversion of container flow in the

US ports caused by congestion. They concluded that congestion existed at most ports in the

US; and in some cases, flow diversion might be required to lower the cost of transportation.

Besides network optimization whose primary objective is to improve shipping line’s

operational performance, several researchers have instead focused more on the behavioral

study of players in the container-shipping industry. From the shipping line’s perspective

[88], an empirical study of port selection was conducted based on a survey of major lines

in Singapore and Malaysia. Their study concluded that, among seven factors, only port

charges and a wide range of services were the most influential factors in the selection

process. Similar studies were done by [69] and [87], but from different players’ perspective.

From freight forwarders’ perspective, [87] concluded that, among seven factors, efficiency,

shipping frequency, and infrastructure, were the top three influential factors in the selection

process, while cost and time related factors were the most significant ones from the shippers’

side [69]. In [84], the authors performed a detailed analysis of port selection incorporating

shipper size and other external factors under the control of port management. They found

that the most influential factors for different sizes of shippers were not the same. More

specifically, larger shippers focused more on the factors associated with delivery speed, while

the smaller ones focused more on costs. Although we can explain player’s behavior through

these sophisticated statistical methods, unfortunately they are too subjective and heavily

dependent on the design of the survey.

Observe that most of the literature discussed so far focuses on the performance of an

individual player, such as shipping lines or shippers, without considering the mechanism

between the player itself and others. In the case where the resulting outcome depends on the

decisions of several players, game theory might be used as a tool for explaining the behavior

of those involved players, where port competition is one of the active studies relying on such

a concept.
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The competition between Busan and Shanghai ports for transshipment container flow

was conducted by [3]. In their study, the payoff received by a port was assumed to depend

not only on the investment it made in its infrastructure but also on the investment made

by its competitor. In order to defend its market share, the key decision for a port was to

decide whether to invest, as well as the extent of such an investment, taking the strategies

of its competitor as factors for making a decision. In [56], the competition between the

ports of Hong Kong and Shenzhen was studied based on a two-stage game concerning price

and capacity of the competing ports as factors for decision making.

Recently, [57] investigated the duopolistic competition of transshipment ports using a

game-theoretic approach. This problem was motivated by a series of shipping line’s de-

fections from the port of Singapore to the port of Tanjung Pelepas mentioned earlier. In

their study, the relationship between shipping line’s operating costs and the number of

transshipped containers at ports was captured by a two-stage game solved by a traditional

backward induction. Though their study is interesting in several aspects, their model is

unrealistic since it heavily relies on speculative assumptions. For example, the demand

function used in their study assumes the same number of transshipment containers for all

shipping lines. In addition, transshipment volumes are assumed to depend on port connec-

tivity, or port efficiency, which is merely a conceptually undefined quantity. Objectively,

these assumptions are imposed solely for problem characterization and the derivation of

model’s solution.

Although both ports and shipping lines are each competing with their rivals within the

same business, interestingly, the cooperation among themselves has found to be useful and

it is widely used for enhancing their operational performance. From the shipping line’s

perspective, vessel capacity is time sensitive, and unfilled capacity is considered as loss.

Capacity sharing within a cooperative group of shipping lines, or the alliance, could help

improve member’s vessel utilization. Additionally, within an alliance, each member would

have more opportunities to serve more destinations by combining its network with others

via transshipment.

Since the contribution of each member to the formed alliance is not the same, the main
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issue that might arise in that setting is how to secure the stability of such an alliance.

Cooperative game theory then comes into sight. In the literature, we can model this kind of

problem by using the concept of cooperative game theory to find a condition that stabilizes

the formed coalition. Theoretically, such a condition is a fair sharing of cost or benefit

based on a specific set of allocation rules. There are three prominent solution strategies for

such an allocation in the literature, that is, the core solution, the Shapley value, and the

nucleolus.

The core solution is defined as an allocation such that no one is better off outside the

coalition. While the core solution is outstanding in terms of stability, unfortunately, in many

cases, it is not uniquely defined, or it might be empty. In order to alleviate this problem,

attention has been turned to another allocation concept called the Shapley Value. The

Shapley value is axiomatically characterized based on three properties, that is, (i) dummy,

(ii) symmetry, and (iii) additivity. Intuitively, one can interpret the Shapley value as the

marginal contribution of a player to the coalition. The Shapley value has several appealing

properties over the core, including that it is uniquely determined. Lastly, the nucleolus is

defined as the allocation rule such that player’s dissatisfaction is minimized.

In the container-shipping industry, cooperation between liners is common, but not for

the ports. Yet it is conceptually possible. For example, [77] studied a two-stage game involv-

ing cooperative structures among container terminals of the port of Karachi that directly

competed with another terminal of the port of Qasim. In the first stage, each terminal

decided whether to join the coalition non-cooperatively. Once the coalition was formed,

those who joined the coalition cooperatively determined the price in order to maximize the

coalition surplus in the second stage. In their model, market share of each terminal was

solely a function of price set by terminals. Such a function was derived from the multinomial

logit model and the equilibrium price was then determined by backward induction. As an

extension to their previous work, [78] used the same model to explain the effects of different

concession contracts on the coalition formation.

Lastly, [7] developed a game theoretic model to study the competition and cooperation

among three parties in the network of container shipping, that is, two major hub ports and
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the shipping companies. In that setting, market share of a hub port was a function of its

utility and such a utility function was solely based on its handling charge and that of its

competitors — and not the congestion. While their study, as well as their associated model,

is quite similar to ours in several aspects, our framework is more operational and, plausibly,

more beneficial for both ports and shipping lines. In particular, our framework properly

and better explains the mechanism between ports and shipping lines, in both competitive

and cooperative settings, without any further assumptions on port’s market share. It also

supports what-if analysis in such a way that their model, or the aforementioned models

discussed so far, could not.

Besides the applications of cooperative game theory in the container-shipping industry,

[36] showed that a significant decrease in the systemwide cost of the southern Sweden

forestry industry could be achieved by a cooperation within the forestry companies. Similar

to [36], but with different setting of cooperation, [8] proposed a methodology to answer one

interesting question: how should the collaborating group be formed? They answered such

a problem by modeling it as a transferable utility game in an extensive form, where a

subset of players in the leading companies (LC) was considered as the first and central

decision maker offering the proposition of bilateral agreement to the rest in the non-leading

companies (NLC), one at a time. Each players in the NLC decided whether to accept or

reject the proposal offered by the LC, whose proposition was offered only once. Once the

coalition formation ended, a set of potential solution paths would be revealed, together

with their associated payoff vectors. The optimal path was then determined based on the

concept of subgame perfect Nash equilibrium (SPNE) using backward induction.

Interested readers should refer to [79] and [30] for the comprehensive review of coopera-

tive game theory in coalition games, and a detailed discussion of the general framework for

cost allocation.

6.3 The Structure of Stability

Conceptually, a community of customers at a hub is stable if no customer is better off

moving his business to the competing ports. This means that the hub is resistant to the
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external forces from both its competitors and customers. In particular, we can analyze the

stability of a logistics hub by the following steps (see Figure 36).

• Step 1: Given infrastructure of ports in a competition and a set of actions to be

executed by competitors, we establish a model called the Liner Shipping Cooperative

Model to predict the diversion of container flow made by shipping lines in a cooperative

setting.

Conceptually, we use such a model to minimize total operating costs of a group of

shipping lines taking both port infrastructure and other cost factors into account.

Such a model is then sequentially solved from a singleton containing one particular

shipping line to the grand coalition constituting all lines. At each step, shipping lines

are assumed to work as a single entity planning for a centralized operational plan that

benefits them as a whole. As the coalition grows larger, shipping lines are expected to

perform better; and, the grand coalition is the most desirable state for all lines with

the largest surplus. In our study, market stability is reached when the grand coalition

has been formed.

• Step 2: At stability, we compute value of cooperation for each shipping line based

on the Shapley value. In this context, value of cooperation indicates incentive that a

shipping line expects to receive from cooperation.

• Step 3: From the logistics hub’s perspective, the grand coalition may be regarded

as the expected outcome caused by competitors, and the value of cooperation is the

condition that stabilizes it.

A hub can comprehend how container flow has been shifted from one to another

state during the formation in Step 1, as well as the condition sustaining the stable

community of shipping lines from Step 2. This information, in turn, allows the hub

to destabilize undesirable outcomes by devising and evaluating counter strategies or

policies preventing market share loss — by repeating these three steps.
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Figure 36: An analytical framework for investigating the stability of a logistics hub in a
competitive environment.

Our proposed methodology differs from the existing research in three ways. Firstly,

while most of the existing models may incorporate both explicit and implicit costs into

consideration, an implicit cost, such as waiting or congestion, is improperly captured. Par-

ticularly, such a function is modeled by means of G/G/m queuing model [41], where the

distribution of container processing time and interarrival time of the containers at ports are

assumed to be general with m operating cranes. As a consequence, given port infrastruc-

ture, we can compute the average waiting time that each container must wait in the steady

state.

In general, as container flow reaches port capacity, the average waiting time abruptly

increases. This means that shipping lines who operate at congested or highly utilized ports

will suffer more from this implicit cost. In the literature, we may model this cost by a

piecewise linear function, where such a cost is linearized into several connected segments as

an approximation of the original function. However, there is a pitfall with regard to this

particular technique; containers are assessed with different average waiting times, which is

improper to reflect the congestion at busy ports as they handle a great number of containers

at all times.

In our proposed cooperative model, we address this issue by using an alternate approach

called the piecewise-affine cost function introduced by [89], which assigns only one cost rate
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to all containers, modeled as a mixed integer program.

Secondly, to the best of our knowledge, we are the first to tackle this problem by means

of an optimization-based cooperative game theoretic approach. More precisely, instead of

defining relationship between interested quantities, we take advantage of the optimization

model to explain such a mechanism, without need of any further assumptions for the char-

acterization of the model’s solution.

Lastly, the structure of our proposed methodology allows us opportunity not only to

investigate the behavior of shipping lines taking port information into account but also

to provide insights into the changes in container-flow patterns. This information, in turn,

allows a logistics hub to comprehend and quantify the threats posed by its competitors,

which is crucial for devising counter strategies or policies attaining its stability in the future.

It is worth noting that, depending on the structures of cooperation, we may use variants

of the Shapley value for the evaluation of shipping line’s value of cooperation in Step 2.

And since there exist several variants that might be useful for our study, we will next review

the concept of cooperative game theory and the Shapley value, together with its variants

and applications, in Chapter 7, while the detailed discussion of liner shipping cooperative

model and its results will be presented in Chapter 8.

Interestingly, as the concept of the Shapley value is gradually built, the connection

between the Shapely value and centrality measures will become more apparent. At the end

of Chapter 7, by using network expansion as a criterion, we show that the Shapley value

might be used as a centrality measure to identify key operational lines at ports.

125



CHAPTER VII

THE SHAPLEY VALUE, CENTRALITY MEASURES, AND KEY

OPERATIONAL LINES

In complex systems, where the interaction among members affects their decisions and wel-

fare, Game Theory is regarded as a proper tool for the behavioral study of those rational

decision makers. In a non-cooperative game, each player independently chooses the strat-

egy that maximizes its own welfare assuming that other players would react to its action

rationally. On the contrary, if players are allowed to cooperate, we call such a game a coop-

erative game, where a group of cooperating players is usually referred to as a coalition, or an

alliance in the context of shipping liners. While cooperation could help increase systemwide

welfare, and so better payoff, one question needs to be answered: How would this surplus

be fairly allocated to each member of the coalition? In this chapter, we will discuss one

prominent solution strategy for such an allocation, called the Shapley Value. And, as the

concept of the Shapley value is gradually built, the connection between the Shapley value

and centrality measures will be more apparent. This suggests that the Shapley value may

be used as a centrality measure to identify key players in cooperative games. Based on this

observation, we show that the most influential shipping lines at a port, or Key Operational

Lines, could be revealed by such a value.

7.1 The Shapley Value

In cooperative game theory, we define N as a non empty set of players and any subset s ∈ N

is called a coalition, where the grand coalition is the one that constitutes all players. Given

a coalition s, the coalition value v(s) is defined as total worth gained from such a structure

— which is usually referred to as a characteristic function — and by definition v(φ) = 0. If

total worth could be divided and allocated to the coalition members freely, i.e. there is no

restriction on the distribution of total worth among members, such games are called games

with transferable utility (TU), else the games are nontransferable (NTU). Since our focus
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lies on the TU games, from here on, unless specified, all games are considered TU games.

The Shapley value is one of the solution strategies that allocates total worth v(s) to the

coalitional members based on three axioms: dummy, symmetry, and additivity, where the

allocation vector φi(v) denotes the worth each member i ∈ s receives.

Axiom 7.1.1 Dummy (Carrier): Define a coalition s as a carrier of game v if and only

if v(s ∩ t) = v(s) for all s ⊆ N . It follows that, for any game v and coalition s, if s is a

carrier of v, then
∑

i∈s φi(v) = v(s).

Intuitively, the first axiom states that dummy players, i.e. any players who are not the

carrier, contribute nothing to the coalition. Therefore, they should not get any worth from

the allocation.

Axiom 7.1.2 Symmetry: Let v be a game and π be a one-to-one permutation function

mapping N onto N , where π(i) = j. Moreover, for any game v and coalition s, let πv be

the game such that πv{π(i)|i ∈ s} = v(s) for all s ⊆ N , we have φπ(i)(πv) = φi(v).

This axiom states that the role of player i in v, and π(i) in πv, are essentially the same.

In other words, relabeling does not change total worth of the coalition.

Axiom 7.1.3 Additivity (Linearity): For any games v and w, φ(v + w) = φ(v) + φ(w).

Prominently, Shapley has shown that, given a game v, there exists a unique function φ,

or the Shapley value, satisfying those three axioms.

Theorem 7.1.1 The Shapley value: There exists a unique function φ mapping coalition

vector v to RN which satisfies all three axioms, i.e. dummy, symmetry, and additivity

axioms. For each i ∈ N , such a function could be defined as Expression (86).

φi(v) =
∑

s⊆N,i∈s

(|s| − 1)!(|N | − |s|)!
|N |!

(v(s)− v(s− {i})) (86)

Interestingly, the Shapley value has a nice interpretation in terms of a probabilistic

model. Suppose that all players are going to form the grand coalition at a specific place.
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However, each player can enter the place one at a time. Clearly, there would be |N |!

combinations of queues possible. Further assume that the next player to enter the place is

player i and the resulting coalition to be formed is s. Without player i, the total worth would

be v(s−{i}) and the marginal contribution of player i to the coalition s is v(s)−v(s−{i}).

Since (|s|−1)!(|N |−|s|)!
|N |! is the probability that player i would find itself in the coalition s once

it enters the place, the Shapley value is indeed the expected payoff that player i obtains

under this randomization scheme.

Besides the Shapley value, we will briefly discuss other prominent solution strategies

called the core and the nucleolus1. The core of a game is defined as the set of allocated

payoffs that no member is better off in any coalitions. Mathematically, if x ∈ RN is an

allocation vector, where
∑

i∈n xi = v(N), x is in the core if and only if
∑

i∈s xi ≥ v(s),

∀s ⊆ N . Although the core solution is appealing in terms of stability, researchers have

found that the core might be empty and finding the core solution is as hard as solving an

NP-complete problem (as cited in [79]). Additionally, the core is not uniquely defined and

the allocations that lie in the core might not be fair to all players.

The nucleolus of a game is defined as the allocation vector that minimizes player dissat-

isfaction. More formally, given a coalition s, the excess e(x, s) = v(s)−
∑

i∈s xi, is defined

as a measure of dissatisfaction of the allocation vector x in coalition s, and O(x) is the

excess vector of x arranged in a non-increasing order. The allocation vector x such that

O(x) is lexographically less than O(δ), for any allocation δ, is called the nucleolus. While

the nucleolus is quite an interesting solution concept, it has been rarely studied due to its

computational complexity.

7.2 Variants of the Shapley Value

7.2.1 Graph-Restricted Games

According to the calculation of the Shapley value, all coalitions are assumed to be equiprob-

able. Yet, in practice, some coalitions might not even exist. For example, let us consider

a three-player game, where (i) player 1 desires to cooperate with both players 2 and 3, (ii)

1Interested readers may find detailed discussion about the core and the nucleolus in [61] and [79].
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player 2 prefers to cooperate with only player 1, and (iii) player 3 wants to cooperate with

only player 1. This dilemma would make coalitions {123}, {12, 3}, and {13, 2} seem im-

plausible. However, if we consider the cooperation between members as cooperative links,

this puzzle is immediately solved, and the graph shown in Figure 37 properly reveals their

cooperation preferences. In the literature, we refer to this kind of games, where the coalition

is represented by a restricted cooperative graph as graph-restricted games.

1

2 3

Figure 37: A graph representing cooperative preference of a three-player game, where (i)
player 1 desires to cooperate with both players 2 and 3, (ii) player 2 prefers to cooperate
with only player 1, and (iii) player 3 wants to cooperate with only player 1 [59].

To establish a fair allocation, let N be a non empty set of players and CL be the set

of all coalitions formed by members of N , i.e. CL = {s|s ⊆ N, s 6= φ}. A graph-restricted

game is defined as vector v in RCL; and, for any game v ∈ RCL and coalition s ∈ CL, we

define v(s) as total transferable utility of coalition s.

In addition, let g be the network containing a list of unordered pairs, or links, connecting

nodes i and j, denoted as ij. If we let gN be the complete graph, i.e. graph containing all

links connecting all nodes, then G = {g|g ∈ gN} represents the set of all possible graphs

generated by N players.

For simplicity, from here on, we denote the symbol \ as the removal operation. For

example, given a coalition s and node j, s\j denotes the removal of node j from coalition

s, i.e. s\j = {i ∈ N |i ∈ s, i 6= j}. Similarly, g\nm = {ij|ij ∈ g, ij 6= nm}. Lastly, given

a graph g and coalition s, g|s denotes the resulting graph after removing all links except

those connecting nodes within s, i.e. g|s = {ij|ij ∈ g and i, j ∈ s}, while s|g denotes the

partition of s on g, or the collection of smaller coalitions of s induced by graph g. In other

words, the symbol | denotes the division of the first component based on the structure of
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the second component.

Let Yi(g) be the expected payoff of player i under cooperative graph structure g, [59]

shown that the payoff vector Y (g) could be axiomatically derived the same way as that of

the Shapley value, but with two allocation rules, (i) component balanced condition and (ii)

equal bargaining power condition.

Definition 7.2.1 Component Balanced Condition: An allocation Y is component balanced

if for any graph g ∈ G and any coalition s ∈ g|N ,
∑

i∈s Yi(g) = v(s). In other words, for

any connected component of g, total worth of s, denoted as v(s), should be allocated only to

the members of s. In addition, this allocation rule is independent of connected structures.

Definition 7.2.2 Equal Bargaining Power Condition: An allocation Y is equal bargaining

power if for any graph g ∈ G and ij ∈ g, Yi(g) − Yi(g\ij) = Yj(g) − Yj(g\ij). In other

words, players i and j equally benefit or lose from the removal of cooperative link ij.

As proven by [59], there exists a unique fair allocation Y satisfying these two rules, as

shown in Equation (87).

Yi(g) =
∑

s⊂N\{i}

(v(g|s ∪ {i})− v(g|s))
(
|s|!(|N | − |s|!− 1)!

|N |!

)
(87)

Moreover, if v ∈ RCL is supperadditive, i.e. for any game s and t in RCL, if s ∩ t 6= φ

and v(s ∪ t) ≥ v(s) + v(t), the allocation vector Y is also proven to be totally stable.

Example 7.2.1 Consider a three-player game with v ∈ RCL, where v({1}) = v({2}) =

v({3}) = 0, v({1, 3}) = v({2, 3}) = 1, and v({1, 2}) = v({1, 2, 3}) = 2. If the cooperative

graph g is {12, 13, 23}, by Equation (87), Y1({12, 13, 23}) could be calculated as follows.

Y1(g) =
∑

s⊂N\{1}

(v(g|s ∪ {1})− v(g|s))
(
|s|!(|N | − |s|!− 1)!

|N |!

)

• s = {2}, we have (v(g|{1, 2})− v(g|{2}))
(
|1|!(|3|−|1|!−1)!

|3|!

)
= 1

6(2− 0) = 1
3 .

• s = {3}, we have (v(g|{2, 3})− v(g|{3}))
(
|1|!(|3|−|1|!−1)!

|3|!

)
= 1

6(1− 0) = 1
6 .

• s = {2, 3}, we have (v(g|{1, 2, 3})− v(g|{2, 3}))
(
|2|!(|3|−|2|!−1)!

|3|!

)
= 1

3(2− 1) = 1
3 .
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Here we have Y1(g) = 5
6 . Similarly, Y2(g) = 5

6 and Y3(g) = 2
6 , and the allocation vector

for graph g is (5
6 ,

5
6 ,

1
3).

In this example, we find that both the core and the nucleolus lead to the same allocation

vector (1,1,0) as player 3 is considered as a dummy player. However, in terms of the

cooperative graph, if either player 1 or player 2 is about to break its relationship with player 3,

its allocated worth would decrease, i.e. Y ({12, 23}) = (1
2 ,

1
2 , 1) and Y ({12, 13}) = (7

6 ,
2
3 ,

1
6),

which implies that vector (5
6 ,

5
6 ,

1
3) is indeed stable and fair for this game.

7.2.2 Games in Partition Function Form

Games in partition function form were firstly introduced by [86], and [60] has extended

the result of the Shapley value to such games. In that setting, we assume that the payoff

of any coalition depends not only on its members but also on the structure outside the

formed coalition. More specifically, given a coalition s, the coalitional structure set B is

defined as B = {s1, s2, s3, . . . , sl} such that ∀i 6= j, si ∩ sj = φ, and ∪ii=1si = N , where the

total worth of coalition s depends on both s and B that s ∈ B, denoted as v(s,B). For

example, let us consider a four-player game, where s1 = {12}, s2 = {34}, s3 = {3}, and

s4 = {4}. In addition, let B1 = {s1, s2} and B2 = {s1, s3, s4}. In this game, although the

coalition s1 is a member of both partitions B1 and B2, as the partitions B1 and B2 differ,

v(s1, B1) 6= v(s1, B2).

In the literature, this type of effect is usually referred to as the externality. To model

externality [60], let B be the set of all partitions of N , we define the embedded coalitions,

denoted as ECL, as the set of coalitions that specifies the structure of the coalition formed

by both players inside and outside coalition s, that is, ECL = {(s, q)|s ∈ q ∈ B}.

With all of the aforementioned notations, games in partition function form are defined

as vectors in RECL, and, for any game w ∈ RECL and (s, q) ∈ ECL, w(s, q) is total

transferable utility of coalition s in partition q. Deriving from the same axioms as those of

the original Shapley value, it was shown by [60] that there exists a unique function mapping

games in partition function form to allocation vectors in RN , denoted as Φ(w), where the
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ith element of such a function is calculated by Expression (88).

Φi(w) =
∑

(s,q)∈ECL

(−1)|q|−1(|q| − 1)!

 1

|N |
−

∑
s̃∈q,s̃ 6=s,i/∈s̃

1

(|q| − 1)(|N | − |s̃|)

w(s, q) (88)

Example 7.2.2 Consider an arbitrary three-player game, by Expression (88), Φ1(w) could

be calculated as follows.

Φi(w) =
1

3
w({1, 2, 3}, {{1, 2, 3}}) +

1

6
w({1, 2}, {{1, 2}, {3}})

−1

3
w({3}, {{1, 2}, {3}}) +

1

6
w({1, 3}, {{1, 3}, {2}})

−1

3
w({2}, {{1, 3}, {2}}) +

2

3
w({1}, {{1}, {2, 3}})

−1

3
w({2, 3}, {{1}, {2, 3}})− 1

3
w({1}, {{1}, {2}, {3}})

+
1

6
w({2}, {{1}, {2}, {3}}) +

1

6
w({3}, {{1}, {2}, {3}})

Regarding the first term of this expression, we have |q| = 1 and |s̃| = 0. Thus, the

coefficient of w({1, 2, 3}, {{1, 2, 3}}) is (−1)|1|−1(|1| − 1)!
(

1
3 − 0

)
= 1

3 . Similarly, since both

the second and the third terms appear in partition q = {{1, 2}, {3}}, we have |q| = 2, and 1
6

and −1
3 are the coefficients of the second and the third terms, respectively.

7.2.3 Games in Generalized Characteristic Function Form

If we view a coalition formation as a sequential process, the worth each player gets might

depend not only on its members but also on the order of players forming such a coalition.

For example, consider a three-player game raised by [70], where player 1 has two machines

which are of value to him only if he could sell them. Players 2 and 3 could use these

machines to produce goods for sale. Assume that both players 2 and 3 have valued the

first inferior machine equally as 1 monetary unit, while players 2 and 3 have valued the

second superior machine differently as 2 and 3 monetary units. While both players 2 and 3

try to buy the second machine first, player 1 is going to sell it to anyone offering the best

price. In this setting, it is evident that total worth of any coalitions inevitably depends on

the order of the players forming the coalitions. For example, if player 2 offers to buy the

second machine and at that time player 3 has not shown up yet, S = {1, 2, 3}, the total

worth of this coalition would be 3, v(1, 2, 3) = 2 + 1. However, if player 3 shows up before
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player 2 does, the coalition formed would be S = {1, 3, 2} and its associated total worth is

4, v(1, 3, 2) = 3 + 1.

In conclusion, we have the following.

v(1, 3, 2) = v(3, 2, 1) = v(2, 3, 1) = v(3, 2, 1) = 4

v(1, 2, 3) = v(2, 1, 3) = 3

v(1, 2) = v(2, 1) = 2 and v(1, 3) = v(3, 1) = 3

The coalitions other than those stated above have a worth of zero. In such a case, we can

alternatively say that total worth of the coalitions depends on the information each player

perceived in order, and [70] defined this kind of game as games in generalized characteristic

function form.

More formally, a game in generalized characteristic function form is defined as a function

v that assigns a real value v(T ) to each of the ordered coalition T ∈ Π(s), where Π(s) is

the set of all ordered coalition, and s ⊆ N . [70] shown that such a function, as shown by

Equation (89), was uniquely determined based on the following three axioms, (i) efficiency,

(ii) null player, and (iii) additivity.

ψNRi (v) =
∑
S∈N\i

∑
T∈Π(S)

(|N | − |T | − 1)!

|N |!
(v(T, i)− v(T )) (89)

By applying Equation (89) to the described three-player game, we have ψNR(v) =

(39
18 ,

12
18 ,

15
18), where ψNRi (v) specifies expected payoff that player i receives from this ran-

domized bidding scheme.

Based on similar concept, [80] introduced another variant of the Shapley value for games

in generalized characteristic function form by (i) modifying null player axiom introduced

in [70] and (ii) adding one more axiom called the symmetry axiom. Regarding null player

axiom, in [70], a player i is defined as a null player if v(T, i) = v(T ) for all ordered coalitions

T not containing i, while, in [80], a player i is a null player if v(T, ih) = v(T ) for all

ordered coalitions T not containing i and h ∈ {1, 2, . . . , |T |+ 1}, where (T, ih) denotes the

ordered coalition (i1, i2, . . . , ih−1, i, ih, ih+1, . . . , i(|T |)) — this could be viewed as a stricter
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version, where a null player contributes nothing independently of his position in the ordered

coalitions of every game v.

For symmetry axiom, players i and j are symmetric in game v if for every ordered

coalition T such that, for i, j /∈ T , v(T, ik) = v(T, jk) for all k = 1, 2, . . . , |T | + 1. In other

words, if players i and j are symmetric, total worth under games v would be the same.

According to the aforementioned axioms, [80] axiomatically characterized a variant of

the Shapely value for games in generalized characteristic function form, denoted as ψSB(v),

by Equation (90).

ψSBi (v) =
∑

S⊂N\i

∑
T∈Π(S)

(|N | − |T | − 1)!

|N |!(|T |+ 1)

|T |+1∑
l=1

(
v(T, il)− v(T )

)
(90)

7.3 Applications of the Shapley Value in Cooperative Games

In the literature, cooperative game theory and the Shapley value have been intensively

studied and successfully applied in many applications. Examples include communication

networks, logistics and transportation systems, and bioinformatics. Due to their viability,

in this section, we will present two interesting applications of the Shapley value. Based on

the results of these applications, we are able to develop a game-based centrality measure

for the identification of key operating lines at ports discussed in the following section.

7.3.1 Maximum Flow Games

Let G = (V,E) be a network, where V represents a set of nodes and E represents a set

of (directed) links. Assume that each node has control over a specific set of links, which

consequently limits the flow passing each link. In logistics network, we may consider a node

as a shipper, where each link denotes either shipping capacity or contracted capacity between

shippers. Without cooperation, each shipper can use only its own controlled network for

fulfilling their shipment, which might leave some of its capacity unfulfilled.

To visualize this, let us consider an example network from [76], shown in Figure 38,

where s and t denote source and sink node. Additionally, node 1 has control over edge set

{s1,1t}, node 2 has control over edge set {s2,12,32,2t}, and node 3 has control over edge

set {s3,3t}, where the number shown next to an edge is its capacity.
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Figure 38: An example for describing the use of the Shapley value in a maximum flow game
[76].

If we let v(s) be the maximum flow of coalition s, under the myopic strategy, each

shipper will have limited capacity of v(1) = 19, v(2) = 37, and v(3) = 26, or equivalently

the total capacity of 82. However, they could do better in a cooperative setting, which is

evident from the increase in maximum flow from source to sink as the coalition gets bigger,

v(12) = 64, v(13) = 45, v(23) = 73, and v(123) = 100.

Assume further that fulfilling a unit of flow from source to sink would leave a profit

of one monetary unit to a shipper, as the maximum flow is attained only from the grand

coalition, every player would be tempted to form the grand coalition in order to enjoy the

surplus of 18 more monetary units. [76] referred to this problem as the maximum flow game,

where the Shapley value was used as an allocation rule to sustain the grand coalition.

According to the Shapley value formulation, we can calculate the payoff of player 1 as,

φ1(v) =
1

3
[v(1)− v(0)] +

1

6
[v(12)− v(2)] +

1

6
[v(13)− v(3)] +

1

3
[v(123)− v(23)] = 23.

Similarly, the payoffs of players 2 and 3 are φ2(v) = 46 and φ3(v) = 31. Since it is

well known that the core of flow games is non-empty and we can verify whether the point

(23, 46, 31) lies in the core by substituting it into the definition of the core, it is not difficult

to show that this allocation vector indeed lies in the core. Therefore, it is a stable solution.

7.3.2 Vertex Connectivity Rating

Another interesting application of the Shapley value in network analysis was presented by

[1], where the Shapley value was used as a centrality measure for assessing the influence of
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vertices in terms of their connectivity. In that setting, given a graph G = (V,E), we say

that G is strongly connected if for every pair of vertices u, v ∈ V there is a path defined

on E connecting u to v. In addition, for any coalition s ⊆ V , the characteristic function

v(s) is defined as total number of strongly connected components on graph G induced by a

set of vertices in s. Intuitively, the smaller the value of the Shapley value, the greater the

connectivity.

For later reference, let SCC(G) denote the set of all strongly connected components of

G and fG be the characteristic function mapping any subsets s of V to a real number in R,

that is fG(s) = |SCC(G|s)|, where G|s denotes the subgraph of G induced by s for every

subset s ⊆ V .

For example, consider a directed network G containing eight vertices as shown in Figure

39. Apparently, since G is strongly connected, we must have fG(V ) = 1. And, based on the

aforementioned characteristic function v, we can calculate the Shapley value of all nodes as

φ(f) = (2
3 ,
−7
10 ,
−7
10 ,

2
15 ,

2
15 ,

2
15 ,

5
6 ,

1
2).
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Figure 39: An application of the Shapley value for vertex connectivity rating on a directed
graph G containing eight vertices [1].

Although such an application is quite interesting in many aspects, it is quite costly for

both, counting the connecting subgraphs and calculating the Shapley value. Yet this appli-

cation suggests how cooperative game theory could be connected with centrality measures

in network analysis.
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7.4 Cooperative Game-Based Centrality Measures and Their Applica-
tions

The foundation of cooperative game-based centrality measures might have originated from

the study of power in the context of game theory, where the Banzhaf power index might be

considered as the very first measure of power.

Consider a weighted voting game, where N denotes a set of political parties, where each

political party i ∈ N has a weighted voting power wi, 0 < wi ≤ 1 and
∑

i∈N wi = 1. In

such a game, a coalition is defined as winning if the sum of its members’ weighted voting

power is equal to or greater than a threshold q. A political party i is called a decisive vote,

if its defection leads to losing. In the literature, the decisive vote is usually referred to as

swing mimicking its nature, and the Banzhaf power index of the political party i, denoted

as Bi, is defined as Equation (91).

Bi =
number of swings of party i

total number of swings for all parties
(91)

In general, the normalized version of such an index might be preferable since it allows

us to compare the players’ power across networks. In order to do so, if |N | = n, there are

2N−1 possible coalitions, and, hence, we have the following.

Bi =
number of swings of party i

2N−1
(92)

By using the Banzhaf power index as an alternative measure of node centrality, [39]

redefined the winning coalition as the existence of path connecting nodes, where node i was

a decisive vote if its deviation led to the failure of the winning coalition, i.e. the coalition

could not be formed when node i disappears.

Another interesting class of cooperative game-based centrality measures was introduced

by [38], where the centrality of a node was defined as the difference between the Shapley

values obtained from two different structures of graph games. In order to visualize this

concept, let us consider a three-party voting game discussed in [38], where each party has

different voting power: 40, 20, and 40 %. In addition, assume that each member of each

party has agreed to vote in block. Suppose that, for passing a bill, it requires at least 2/3 of

all votes, which is only possible when the first and the third parties have formed a coalition.
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Since party 2 is a dummy player, and by the symmetry axiom, parties 1 and 3 would have

equivalently the same bargaining power, which leads,

φ1(v) = φ3(v) =
1

2
, and φ2(v) = 0.

[38] pointed out that this allocation was reasonable only if all coalitions were equally

possible; however, in many cases, some coalitions might not even exist with regard to the

relationship among players. For example, if parties 1, 2, and 3 are aligned from the liberal

to the conservative one, it is less likely that parties 1 and 3 could reach an agreement to

form a coalition without party 2. Hence, the only coalition possible now has become the

grand coalition. With this information, we may model this game as graph-restricted game,

and, by Equation (87), we have,

Y1(g) = Y2(g) = Y3(g) =
1

3
,

where g = {12, 23}. It is evident that party 2 has increased its power with regard to its

position, while the power of both parties 1 and 3 have been decreased.

By exploiting the difference between these two values, [38] successfully defined a new

class of centrality measures based on cooperative game theory, where the greater the dif-

ference, the better the centrality of a player. As an extension to their previous work, [21]

introduced another family of centrality measures defined on directed networks by defining

centrality as the difference between the allocations with and without graph restriction.

Similar to [38], [97] explored and used a cooperative game-based centrality measure as

power index by defining players’ power as the difference between two reference values, called

the reference-point dependent measure.

Lastly, as motivated by [38], [58] have established a cooperative game-based centrality

measure for assessing gene centrality in a bioinformatics application, whose objective was

to investigate the most centrality, or powerful, genes causing genetic disorders. In their

setting, two different sets of genes have been firstly defined, (i) a set K of key genes and (ii)

a set N of interested genes supposedly affecting key genes, i.e. when genes in N interact

with genes in K, some genetic disorders might occur.
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If we let I be a set of interactions between genes in N and K, i.e. I ⊆ {{i, k}|i ∈ N, k ∈

K}, the triplet (N,K, I) represents the situation when genes in N and genes in K interact

with interactions in I.

Based on the assumption that, given a set of genes s ⊆ N , the more interactions between

genes in s and key genes K, the higher the possibility that genes in s evolves in the interested

biological process, [58] define a characteristic function v(s) as the number of key genes in

K that only interacts with genes in s by interaction I. The pair (N, v) is now defined as an

association game corresponding to the triplet (N,K, I). Since not all coalitions are possible,

they define a specific network structure of interactions among genes in N prohibiting some

coalitions from being formed, called the interaction network < N,Γ >, where Γ is a set of

edges connecting genes in N .

With all of the aforementioned notations, the centrality measure of genes in N , defined

as γi(v,Γ), could be calculated through Expression (93).

γi(v,Γ) = Yi(Γ)− φi(v) (93)

Based on their example, consider a set of key genes K = {a, b, c}, a set of genes

N = {1, 2, 3, 4}, a set of interaction I = {1a, 1b, 3b, 3c, 4c}, and a set of interaction Γ =

{12, 23, 24, 34}, as shown in Figure 40.

1

2

34

abc

Figure 40: An example of the association game, where the interaction set I is represented
by thin lines and the interaction set Γ is represented by thick lines [58].

By ignoring the interactions of genes in N , we have v(2) = v(3) = v(4) = v(2, 3) =

v(2, 4) = 0, v(1) = v(1, 2) = v(1, 4) = v(3, 4) = v(1, 2, 4) = v(2, 3, 4) = 1, v(1, 3) =

v(1, 2, 3) = 2, and v(1, 3, 4) = v(1, 2, 3, 4) = 3. After applying the Shapley value to such a
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graph, we have φ(v) = (3
2 , 0, 1,

1
2).

Similarly, in its graph-restricted version, where the interaction Γ has been imposed on

gene set N , we have Yi(g) = (4
3 ,

1
3 ,

5
6 ,

1
2), and the centrality of genes in N , which is the

difference between these two vectors is γ(v,Γ) = (−1
6 ,

1
3 ,−

1
6 , 0). This implies that, with the

existence of connecting edges within gene set N , gene 2 is the most influential gene, not

gene 1.

7.5 An Application to Liner Services at a Port

In the shipping industry, cooperation among shipping lines is not unusual since forming an

alliance with other lines helps enhance liner shipping operations in many ways [5]. Firstly,

since liner shipping is a capital intensive industry and ocean vessels are getting bigger in

order to take advantage of economies of scale by pooling vessels within the alliances, all lines

are better off in terms of capacity utilization. This directly helps decrease each member’s

operational cost. In addition, by forming an alliance, shipping lines would be able to explore

new markets by creating new service routes joining their core shipping networks with those

of other members via transshipment.

Observe that, it is also the shipping lines that provide port connectivity for transship-

ment. A port may lose its connectivity, and so its competitiveness, if these customers decide

to move their operations away to the competitors. In the worst case, this may trigger a

series of defections by other shipping lines whose transshipment opportunities have been

reduced. To survive in this situation, a port has to understand how important each of its

customers is, and use this information to estimate the damage from each defection. This

information would in turn allow the port authority to keep its customers, or, at least, lessen

the effect of container bleeding. In order to do so, the port authority may need to identify

the most influential shipping lines, or key operational lines, of the port and treat them with

different standards.

For example, let us consider an integrated service network provided by four shipping lines

at the port of Singapore, namely, Maersk Line, CMA CGM, APL, and Evergreen2. Each

2All information is provided on shipping lines’ websites as of October, 2010.
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shipping line has a different number of services, both from and to the port of Singapore, as

well as total number of reachable ports, which defines the size of its core shipping network.

Table 40: Information of service routes, from and to the port of Singapore, together with
total number of reachable ports of the four interested shipping lines.

Shipping Lines Incoming Routes Outgoing Routes Reachable Ports

Maersk 27 29 183
CMA CGM 17 17 287
APL 43 43 137
Evergreen 17 15 141

From Table 40, APL may be regarded as the most powerful shipping line at the port

of Singapore based on the number of routes; however, the size of its core shipping network

is the lowest. If there exist bigger shipping lines that provide service services covering all

ports that APL serves, losing APL will not seriously affect worldwide connectivity of the

port of Singapore.

By considering worldwide connectivity shrinkage as the most important factor, the most

powerful shipping line is the one whose existence increases total number of reachable ports

the most. Mathematically, if we define N as a set of shipping lines, A as a set of coalitions,

or liner shipping alliances, and R(i) is the set of line i’s reachable ports, a connectivity

game could be defined as v ∈ RA, where v(s) is the incremental number of reachable ports

from coalition s. For example, v(i) = 0, ∀ i ∈ N , and v(s) = {∪i∈s(∪i∈sR(i) − R(i))}. By

applying the Shapley value to this game, we have φ(v) = (80.75, 106.75, 65.42, 66.08).

According to the Shapley value, we can conclude that, with respect to worldwide con-

nectivity shrinkage, CMA CGM is the most powerful shipping line to the port of Singapore,

while both APL and Evergreen are relatively the least powerful.

Similarly, we can use another metric to identify key operational lines other than network

expansion, such as origin-destination pair expansion or container flow; however, it is worth

noting that the best metric should be the one that most reflects port interest.
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7.6 Conclusions

In this chapter, we have provided fundamental concepts of the Shapley value and its variants,

which may be considered as an alternative form of centrality measure. We adapt this idea

to define key operational lines at the port of Singapore. We believe such a model can serve

as a guide for assessing shipping line’s incentives in a cooperative setting (see Chapter 8 for

more details). With this piece of information, it is possible for the port authority to devise

strategies to keep shipping lines from decamping to competing ports.
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CHAPTER VIII

THE LINER SHIPPING COOPERATIVE MODEL AND THE

EVALUATION OF MARKET STABILITY OF A LOGISTICS HUB

In order to evaluate market stability of a logistics hub, we develop an optimization model,

called the Liner Shipping Cooperative Model, to predict the diversion of container flow

made by the shipping lines in a cooperative setting — where the grand coalition defines

the stability of a logistics hub. This model is constructed based on the assumption that

shipping line’s operating costs are the main driver affecting the decision of shipping lines.

Once stability has been reached, we compute value of cooperation for each shipping line

indicating its expected incentive for joining such a coalition. This information, in turn,

allows a hub to devise and evaluate counter strategies for destabilizing undesirable outcomes,

and to regain its market share from competitors.

8.1 The Liner Shipping Cooperative Model

Fundamentally, shipping lines decide how to transport their containers based on their total

operating costs. While a portion of these costs may be observed from direct payment

associated with container-shipping operations such as handling cost, the remainder are

somewhat unintentional costs paid for non-value added processes, for example, the waiting

time — as longer waiting time implies more operating costs for the shipping line and more

in-transit inventory for the shipper.

As traffic at mega-hub ports is usually high, congestion and so longer waiting time is

expected. In such a case, waiting cost may affect both shipping line’s and shipper’s opera-

tional costs greatly. While important, waiting cost is usually omitted during planning due

to its complex nature. In particular, no individual shipping line has control over the costly

waiting time as it is a result from both liner shipping uncoordinated plan and port infras-

tructure. However, shipping lines could plausibly avoid congestion by centralized planning,

where they cooperatively re-route their container flow to nearby ports while maintaining
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the connectivity of liner services.

Based on the aforementioned, and the assumption that shipping lines decide solely on

their total operating costs — which include both implicit and explicit costs — we establish

an optimization model, called the Liner Shipping Cooperative Model, to help them decide

how to cooperatively re-route their container flow through ports optimally. Conceptually,

our proposed model takes port infrastructure as input for constructing a waiting cost func-

tion; and, once observed, shipping lines then centrally decide on the diversion of container

flow through ports such that total operating costs are minimized.

8.1.1 A Waiting Cost Function

In the literature, such as [25], [26], and [27], given port infrastructure, the average waiting

cost at a port could be computed by the G/G/m queuing model [41], where the distributions

of both container interarrival time and container processing time at the port are assumed to

be general with m operating cranes. Figure 41, for example, shows two congestion curves

reflecting the average waiting time at ports A and B computed by such a model, where the

infrastructure of both ports are given in Table 41. Observe that, as container flow reaches

the port’s designed capacity, the average waiting time abruptly rises. This implies that the

shipping lines operating at congested or highly utilized ports are expected to pay more for

waiting to be served.

Table 41: Infrastructure of fictitious ports A and B.

Ports Number of Cranes Crane Efficiency Implied Capacity
(TEUs/hr/crane) (kTEUs/month)

A 10 40 288.0
B 6 30 129.6

Though the waiting time is nonlinear in nature, we can linearlize and model it as a

piecewise linear function, where the function of waiting cost is represented by connected

linear segments. This modeling approach has been widely used in the literature for the

modeling of waiting cost. Unfortunately, it has one pitfall, which is its misinterpretation.

More specifically, by using a piecewise linear function, each container will be assessed with
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Figure 41: Congestion curves of ports A and B, up to 99% of port utilization.

different cost rates rather than one, as it should be in the steady state.

To make it clear, let us consider a port with traffic of d containers per month, where

the computed average waiting time is assumed to be td, i.e. each container would remain in

queue for td on average before getting served. Assume further that the average waiting time

is linearized into three segments having u1 and u2 as breakpoints (see Figure 42). With

this modeling approach, the average waiting time of the first u1 units, the next u2 − u1

units, and the last d− u2 units, will be differently calculated based on different rates, that

is, rates 1, 2, and 3. This is clearly an improper estimate of congestion at busy ports as

they generally handle a great number of containers at all times.

In order to address this issue, we instead use the piecewise-affine cost function proposed

by [89]. As waiting cost is part of shipping line’s operating costs, in the following sections,

we will show how to model such costs using these two different modeling approaches.

8.1.2 The Modeling of Shipping Line’s Operating Costs

Observe that the fundamental service of a logistics hub is to facilitate the transshipment

of freight, which, in turn, allows liners to open new markets by calling at such a hub. In

addition, since the majority of container traffic at major hubs, such as port of Singapore,

is transshipment, and shipping lines have no direct control over demand or supply at any
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Figure 42: An illustration of the approximated piecewise linear function of the average
waiting time at a fictitious port with d containers.

ports, we therefore assume that shipping line’s operating costs are mainly constituted of

transshipment related and congestion costs. More specifically, in this work, shipping line’s

operating costs consist of (i) handling cost at ports, (ii) cost of unfilled demand due to

insufficient capacity, possibly caused by connectivity loss, and (iii) congestion cost reflected

by waiting at ports.

In order to describe these cost components properly, we need the following sets, param-

eters, and decision variables.

Sets

• L is a set of shipping lines, where |L| = l.

• K is a set of ports, where |K| = k.

Parameters

• F ij denotes the required number of containers to be transshipped from shipping line

i to j, where a pair (i, j) might be referred to as commodity.

• LCapi denotes total capacity of shipping line i.

• PCapk denotes total capacity of port k.

• cik denotes the handling cost per container that port k charges shipping line i.
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• CWk denotes the waiting cost per container per time unit at port k.

• TLij denotes loss per container of the commodity (i, j)’s unfilled demand.

Decision Variables

• xijk is the number of containers to be transshipped from shipping line i to j at port k

(see Figure 43, for example).

Port A Port B

Lines

xijA xijB

Figure 43: An illustration of decision variable xijk , which could be considered as freight-flow
allocation through k competing ports (k = 2 in this example).

• f ijk is free capacity of shipping line i allocated to commodity (i, j) through port k

• qij is the number of containers of the commodity (i, j)’s unfilled demand.

• yk is total container traffic at port k.

As the coalition’s objective is to minimize total operating costs for all shipping lines in

a cooperative setting, we have the following.

handling cost =
∑
k

∑
i

∑
j

cikx
ij
k

transshipment loss =
∑
(i,j)

TLijqij

waiting cost =
∑
k

< CWk · tk · yk >,

where tk is the average waiting time at port k. In particular, tk is a function of (i)

arrival rate (r), measured in number of containers per time unit, (ii) processing time (p),

measured in time unit per container, and (iii) number of berths or operating cranes (m).
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Mathematically, tk is defined as,

tk(G/G/m) =

(
c2
a + c2

e

2

)ρ√2(mk+1)−1

k

mk(1− ρk)

 pk, (94)

where ca and ce are the coefficients of variation in container arrival time and container

processing time, and ρk is the average utilization of port k, i.e. ρk = rkpk
mk

.

By modeling the waiting cost as a piecewise linear function [33], we simply replace the

waiting-cost term
∑

k < CWk · tk · yk > with,

∑
k

∑
nk

sk,nkyk,nk ,

where rk is the number of linear segments representing the average waiting cost at port

k and sk,nk is the slope of the nthk segment. With this linearization technique, the total cost

has become,

Total Cost =
∑
k

∑
i

∑
j

cikx
ij
k +

∑
(i,j)

TLijqij +
∑
k

∑
nk

sk,nkyk,nk . (95)

Based on Equation (95), this modeling approach clearly assigns different cost rates to

the container flow as previously described. We may fix this problem by replacing the waiting

cost function with Equation (96).

Wk(yk) =



sk,1yk + bk,1 , if yk ∈ [0, uk,1]

sk,2yk + bk,2 , if yk ∈ [uk,1, uk,2]

· ·

· ·

sk,rkyk + bk,rk , if yk ∈ [uk,nrk−1
, uk,rk ],

(96)

where Wk(yk) is the congestion cost at port k with yk container traffic. Since Equation

(96) is not in a proper form for the modeling purpose, we therefore introduce binary variable

δk,nk and decision variable zk,nk to help transform such an equation into one single linear

equation.

More precisely, for each k, we have,

z̄k = zk,1 + zk,2 + . . .+ zk,rk−1
, (97)
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where

zk,1 =

 sk,2yk + bk,2 , if δk,1 = 1

sk,1yk + bk,1 , otherwise

zk,2 =

 (sk,3 − sk,2)yk + (bk,3 − bk,2) , if δk,2 = 1

0 , otherwise

zk,rk−1 =

 (sk,rk − sk,rk−1
)yk + (bk,rk − bk,rk−1

) , if δk,rk−1
= 1

0 , otherwise.

With logical variable δk,nk , it is obvious that z̄k is the same as Wk(yk) in Expression

(96).

In sum, the modified shipping line’s operating costs, modeled as a piecewise-affine cost

function, could be expressed as Equation (98).

Total Cost =
∑
k

∑
i

∑
j

cikx
ij
kk +

∑
(i,j)

TLijqij +
∑
k

z̄k, (98)

where z̄k is defined as Equation (97).

While these two cost functions differ slightly, the second modeling approach requires

significantly more variables and sets of constraints to completely describe the problem —

particularly, the waiting cost.

8.1.3 The Constraint Sets of Piecewise-Linear Cost Model

For simplicity, we will focus on a simple model, where transshipment traffic and capacity

are key restrictions.

1. Proportion of transshipped containers at each port k.

∑
k

xijk + qij = F ij , ∀(i, j) (99)

2. Boundary constraint for the capacity of each shipping line.

∑
k

∑
j

xijk +
∑
k

∑
j

f ijk ≤ LCap
i , ∀i (100)
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3. Transshipment traffic could not exceed the capacity of each shipping line at ports.∑
j

xjik ≤
∑
j

xijk +
∑
j

f ijk ,∀i, k (101)

4. Waiting cost is a function of container traffic at a port.∑
nk

yk,nk =
∑
(i,j)

xijk , ∀k (102)

Additionally, for each of yk,nk , let dk,nk and dk,nk−1 be the breakpoints of the nthk

segment of the waiting cost function at port k, where dk,0 is 0, we need,

0 ≤ yk,nk ≤ dk,nk − dk,nk−1, nk = 1, 2, . . . rk,∀k. (103)

5. Additional constraints, i.e. capacity constraints at ports.∑
nk

yk,nk ≤ PCap
k , ∀k (104)

6. Non-negativity constraint.

8.1.4 The Constraint Sets of Piecewise-Affine Cost Model

In this modeling approach, the first three constraint sets are the same as those of the previous

model, but the rest concerning the description of waiting cost are completely different.

1. Proportion of transshipped containers at each port k.

2. Boundary constraint for the capacity of each shipping line.

3. Transshipment traffic could not exceed the capacity of each shipping line at ports.

4. Container traffic at each port.

yk =
∑
(i,j)

xijk ,∀k (105)

5. As previously described, δk,nk is used to capture the container traffic at port k. To

control such a variable set, we need 2 logical constraints for each δk,nk as follows.

Dk,nkδk,nk ≤ −(uk,nk − yk) +Dk,nk , ∀nk = 1, . . . , rk − 1 (106)

(dk,nk − ε)δk,nk ≤ (uk,nk − yk)− ε, ∀nk = 1, . . . , rk − 1, (107)

150



where Dk,nk and dk,nk is the maximum and the minimum of (uk,nk − yk) defined by

Equations (108) and (109), given that yk ∈ [0, uk,nk ], and ε is a small value.

Dk,nk = max
nk

(uk,nk − yk) = max
nk

(uk,nk)−min
nk

(yk) = uk,nk (108)

dk,nk = min
nk

(uk,nk − yk) = min
nk

(uk,nk)−max
nk

(yk) = uk,1 − uk,nk (109)

For example, let us consider the constraints that control δk,1 as follows.

Dk,1δk,1 ≤ −(uk,1 − yk) +Dk,1 (110)

(dk,1 − ε)δk,1 ≤ (uk,1 − yk)− ε, (111)

If δk,1 = 1 and δk,2 = 0, or equivalently yk ∈ [uk,1, uk,2], we have dk,1 ≤ (uk,1−yk) ≤ 0

and ε ≤ (uk,2 − yk) ≤ Dk,2, which properly describes the container traffic at port k.

Lastly, for i > j, we cannot have δk,i = 1 while δk,j = 0. Therefore, we need,

δk,nk ≤ δk,nk−1, nk = 2, . . . , rk. (112)

6. Decision variable zk,nk must be controlled as described by Equation (97). In doing

so, let Mk,nk and mk,nk be the maximum and the minimum values of sk,1yk + bk,1 for

nk = 1, sk,2yk + bk,2 for nk = 2, and zk,nk for nk ≥ 3, given that yk ∈ [0, uk,rk ]1.

To control the value of zk,1, we need,

(Mk,2 −mk,1)δk,1 − zk,1 ≤ −[sk,2yk + bk,2] + (Mk,2 −mk,1) (113)

(Mk,1 −mk,2)δk,1 + zk,1 ≤ [sk,2yk + bk,2] + (Mk,1 −mk,2) (114)

(mk,2 −Mk,1)δk,1 − zk,1 ≤ −[sk,1yk + bk,1] (115)

(mk,1 −Mk,2)δk,1 + zk,1 ≤ sk,1yk + bk,1. (116)

Based on Inequalities (113) and (114), if δk,1 = 1, we have zk,1 ≤ sk,2yk + bk,2 and

zk,1 ≥ sk,2yk + bk,2, which implies zk,1 = sk,2yk + bk,2. At the same time, from

Inequalities (115) and (116), we have zk,1 ≥ sk,1 + bk,1 + (mk,2 −Mk,1) and zk,1 ≤

1For example, Mk,3 and mk,3 are the maximum and the minimum values of (sk,3− sk,2)yk + (bk,3− bk,2).
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sk,1 +bk,1−(mk,1−Mk,2). Since Mk,nk and mk,nk are defined as the maximum and the

minimum of zk,nk , last two inequalities then provide us range that covers the resulting

equation implied by the first two inequalities. On the contrary, if δk,1 = 0, the last

two inequalities would imply zk,1 = sk,1yk + bk,1, which is covered by the range of the

first two inequalities.

In sum, we have 4 additional constraints for each decision variable zk,nk ; Expressions

(117) - (120) for nk = 3, . . . , rk, together with Expressions (113) - (116), for all k.

Mk,nkδk,nk−1 − zk,nk−1 ≤ −[(sk,nk − sk,nk−1)yk + (bk,nk − bk,nk−1
)]

+Mk,nk (117)

−mk,nkδk,nk−1 + zk,nk−1 ≤ [(sk,nk − sk,nk−1)yk + (bk,nk − bk,nk−1
)]

−mk,nk (118)

mk,nkδk,nk−1 − zk,nk−1 ≤ 0 (119)

−Mk,nkδk,nk−1 + zk,nk−1 ≤ 0 (120)

Lastly, we need equation (97) to complete this set of constraints.

7. Additional constraints, i.e. capacity at ports.

yk ≤ PCapk , ∀k (121)

8. Non-negativity constraints.
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8.1.5 Piecewise-Linear Cost and Piecewise-Affine Cost Models

Model 1 — Piecewise-Linear Cost Model

minC =
∑
k

∑
i

∑
j

cikx
ij
k +

∑
(i,j)

TLijqij +
∑
k

∑
nk

sk,nkyk,nk

Subject To

∑
k

xijk + qij = F ij , ∀(i, j)∑
k

∑
j

xijk +
∑
k

∑
j

f ijk ≤ LCapi , ∀i

∑
j

xjik ≤
∑
j

xijk +
∑
j

f ijk , ∀i, k

∑
nk

yk,nk =
∑
(i,j)

xijk , ∀k

yk,nk ≤ dk,nk − dk,nk−1, nk = 1, 2, . . . rk, ∀k∑
nk

yk,nk ≤ PCapk , ∀k

All variables are positive

Model 2 — Piecewise-Affine Cost Model

minC =
∑
k

∑
i

∑
j

cikx
ij
k +

∑
(i,j)

TLijqij +
∑
k

z̄k

Subject To

∑
k

xijk + qij = F ij , ∀(i, j)∑
k

∑
j

xijk +
∑
k

∑
j

f ijk ≤ LCapi , ∀i

∑
j

xjik ≤
∑
j

xijk +
∑
j

f ijk , ∀i, k

yk =
∑
(i,j)

xijk , ∀k

Dkδk,nk ≤ −(uk,nk − yk) +Dk,∀k, nk = 1, . . . , rk − 1

(dk − ε)δk,nk ≤ (uk,nk − yk)− ε, ∀k, nk = 1, . . . , rk − 1

δk,nk ≤ δk,nk−1,∀k, nk = 2, . . . , rk

153



(Mk −mk)δk,1 − zk1 ≤ −[sk,2yk + bk,2] + (Mk −mk),∀k

(Mk −mk)δk,1 + zk1 ≤ [sk,2yk + bk,2] + (Mk −mk),∀k

(mk −Mk)δk,1 − zk1 ≤ −[sk,1yk + bk,1], ∀k

(mk −Mk)δk,1 + zk1 ≤ sk,1yk + bk,1,∀k

Mkδk,nk−1 − zk,nk−1 ≤ −[(sk,nk − sk,nk−1)yk + (bk,nk − bk,nk−1
)] +Mk, ∀k, nk = 3, . . . , rk

−mkδk,nk−1 + zk,nk−1 ≤ [(sk,nk − sk,nk−1)yk + (bk,nk − bk,nk−1
)]−mk, ∀k, nk = 3, . . . , rk

mkδk,nk−1 − zk,nk−1 ≤ 0,∀k, nk = 3, . . . , rk

−Mkδk,nk−1 + zk,nk−1 ≤ 0,∀k, nk = 3, . . . , rk

z̄k = zk1 + zk2 + . . .+ zk,rk−1 , ∀k

yk ≤ PCapk , ∀k

All variables are positive and δk,nk are binary variables

In this model, we replace Dk,nk and dk,nk with Dk and dk, where Dk = uk,rk and

dk = uk,1 − uk,rk . Similarly, we replace Mk,nk and mk,nk with Mk and mk, where Mk =

maxnkMk,nk and mk = minnk mk,nk .

8.1.6 An Example of the Liner Shipping Cooperative Model

Consider a competition between two ports, A and B, with four container-shipping lines,

where the infrastructure of both ports is given in Table 41 (Section 8.4.1) . In addition, the

handling costs per container for all lines at ports A and B are 400 and 300, respectively.

Assume further that total capacities of these four shipping lines are 150, 120, 80, and

60 kTEUs, where the information about transshipment among lines and loss of unfilled

demand is provided in Tables 42 and 43. Lastly, the operating cost per day per container

is 80 for all shipping lines.

Table 42: Transshipment traffic among shipping lines (kTEUs).

Lines 1 2 3 4

1 100 20 10 5
2 20 75 10 10
3 15 5 55 5
4 15 0 0 35
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Table 43: Loss per unfilled container.

Lines 1 2 3 4

1 1,200 1,000 800 800
2 1,000 1,200 800 700
3 1,000 900 1,200 900
4 1,000 1,100 1,000 1,200

Based on the aforementioned information, we found that total operating costs from

the piecewise-linear cost model are much less than that of the piecewise-affine cost model

(140.387M versus 178.661M), where the difference is mainly from the underestimated wait-

ing cost (785.66K versus 20,613K) and loss from unfilled demand (0 versus 30,735k)2. Ev-

idently, by using an improper estimate of waiting cost, the shipping lines will instead pay

253.29M, or 80% more than what they expected. This clearly stresses how important con-

gestion is for the shipping lines.

With better waiting cost estimation, trade patterns also change, mainly at port B, where

the waiting cost is much higher compared to that of port A (Figures 44 and 45).

Port A Port B

Lines
L1(51.016, 20, 10, 5, 15)
L2(20, 0, 10, 10, 0)
L3(15, 5, 55, 5, 0)
L4(15, 0, 0, 35, 5)

L1(48.984, 0, 0, 0, 0)
L2(0, 75, 0, 0, 0)
L3(0, 0, 0, 0, 0)
L4(0, 0, 0, 0, 0)

Figure 44: Solution to the piecewise-linear cost model, where Li(x
i1, xi2, xi3, xi4, f) denotes

the operational plan of shipping line i in kTEUs.

2Interestingly, while shipping lines have enough capacity to handle all transshipment traffic, it may be
wiser for them to reject some shipment as it does not justify costly waiting time at ports.
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Port A Port B

Lines
L1(9.71, 20, 0, 0, 30)
L2(20, 75, 0, 0, 0.85)
L3(15, 0.85, 55, 5, 0)
L4(15, 0, 0, 35, 0)

L1(90.29, 0, 0, 0, 0)
L2(0, 0, 0, 0, 0)
L3(0, 0, 0, 0, 0)
L4(0, 0, 0, 0, 0)

Figure 45: Solution to the affine-linear cost model, where Li(x
i1, xi2, xi3, xi4, f) denotes the

operational plan of shipping line i in kTEUs.

8.2 The Evaluation of Market Stability of a Logistics Hub

Conceptually, given infrastructure of ports in a competition and a set of actions to be

executed by competitors, we can use the liner shipping cooperative model to predict the

resulting container traffic at all ports. In doing so, we implicitly assume that all shipping

lines deliberately cooperate and simultaneously decide on their operational plans re-routing

their freight flow through ports in such a way that total operating costs are minimized —

which resembles the formation of the grand coalition in the context of cooperative game

theory.

In practice, it is less likely that all shipping lines could take action simultaneously, but

rather through a series of formations from a singleton to the grand coalition. As total

operating costs are less when the coalition grows larger, the grand coalition, or equivalently

the solution to the liner shipping cooperative model, is therefore the most desirable state

for all shipping lines defining stable community of liners at all ports.

If we consider the formation of the grand coalition as a sequential process, we could

observe a progression of reductions in total operating costs, from one to another state until

equilibrium. More specifically, let s1 and s2 be coalition sets such that s1 ⊂ s2 ⊂ N . In

addition, let Cs1 and Cs2 be the associated cost vectors of s1 and s2. Namely, Csi = TC(si),

where TC(Si) is the total cost accrued by shipping lines in coalition si. Since we expect

Cs1 ≥ Cs2 , and Csi ≥ CN , ∀si ⊂ N , by solving a series of liner shipping cooperative
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models, we can observe the effects of competitors’ actions, both cost and coalition changes,

as system gradually moves toward new equilibrium. With this piece of information, a

hub can comprehend how a stable community of liners might be formed. This, in turn,

allows the port authority to devise and evaluate counter strategies protecting its business

from competing ports — by repeating the formation process once again using the previous

equilibrium as the new initial state.

In summary, we can evaluate market stability of a logistics hub by the following steps.

1. Given infrastructure of ports in a competition and a set of actions to be executed,

solve a series of liner shipping cooperative models in a coalition formation setting.

2. Evaluate shipping line’s value of cooperation using the Shapley value, which may be

regarded as incentive each shipping line expects from the cooperation.

3. Utilize the information from Steps 1 and 2 to devise and evaluate counter strategies

protecting its business from competing ports by repeating these three steps.

In the context of cooperative game theory, we may regard the first two steps as the

problem of finding the Shapley value in a coalition formation game, where the characteristic

function of such a game is defined as total cost reduction caused by the coalition formed.

8.2.1 The Coalition Formation Game

In this setting, a set of shipping lines is divided in two groups, that is, a group of shipping

lines with cooperation s and those outside s, denoted as s̄. Given signals from competitors,

we solve a series of liner shipping cooperative models from a singleton, i.e. |s| = 1, reflecting

the decision of each shipping line in a non-cooperative setting, to the grand coalition, i.e.

|s| = N , where all shipping lines cooperate, as shown in Figure 46.

Given a coalition s, the coalition formation game is defined as vector v ∈ Rs, where v(s)

denotes total cost reduction from coalition s. More specifically, v(s) = Cs0 −Cs, where Cs0

denotes total cost at base situation and Cs denotes total cost of coalition s obtained from

the model.
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φ

1 2 . . . N

...

1,2 1,3 . . . N-1,N

...
...

...
...

. . . . . . . . . . . .

1,2,. . . ,N

Figure 46: An illustration of the coalition formation game, where the numbers inside the
circle indicate cooperative group s.

It is worth noting that, in the computation of Cs, we assume that the decisions of

all shipping lines outside s, or s̄, remain the same. In other words, we update only the re-

routing of container traffic within coalition s, while treating all decision variables associated

with shipping lines in s̄ as parameters.

8.2.2 Experimental Results

Let us reconsider the example of liner shipping cooperative model previously discussed in

Section 8.1.6, where the solution to the piecewise-linear cost model is assumed to be base

situation s0. By implementing better approximation technique for the calculation of waiting

cost, trade flow is expected to gradually change and eventually reach new equilibrium, that

is, the solution to the piecewise-affine cost model — assuming that the grand coalition is

eventually formed. Figure 47 shows how trade flow at each port changes at each step of the

formation, together with the coalition and the systemwide cost reductions.

By using the Shapley value as the allocation rule for the total cost reduction of 73.68M,

shipping lines 1, 2, 3 and 4 anticipate to receive 26.71M, 36.03M, 6.16M, and 4.78M as
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φ
(256.02,123.98)

252.34M

1
(250.56,112.75)
16.35M,61.88M

2
(275.52,90.29)
16.34M,61.88M

3
(250.56,123.98)

0,0

4
(250.56,123.98)

0,0

1,2
(250.56,90.29)
58.98M,65.27M

1,3
(250.56,112.75)
25.56M,67.22M

1,4
(250.56,112.75)
23.11M,66.22M

2,3
(250.56,112.75)
36.44M,67.38M

2,4
(250.56,112.75)
34.49M,66.88M

3,4
(250.56,123.98)
3.79M,9.88M

1,2,3
(250.56,90.29)
67.35M,69.77M

1,2,4
(250.56,90.29)
65.40M,69.27M

1,3,4
(250.56,112.75)
29.14M,68.38M

2,3,4
(250.56,112.75)
41.03M,69.55M

1,2,3,4
(250.56,90.29)
73.68M,73.68M

Figure 47: The result of a four-shipping-line coalition formation game with two ports in
a competition. The numbers inside each circle indicate member(s) of cooperative group s,
total flow at ports A and B measured in kTEUs, and total cost reduction from the coalition
s followed by the systemwide cost reduction, except that of state φ, where total cost is
shown.

expected incentives for joining the grand coalition. While this allocation is stable3, it might

seem surprising that shipping line 1 has to pay 8.57M more compared to the solution to

3By substituting this solution into the definition of the core solution.
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the grand model. But this is because such a value is an expectation from all coalitions, not

just the stability state alone.

Regarding flow diversion, interestingly, we have found that trade-flow difference between

s0 and sN at port A is much less than that at port B (2.13% versus 27.18%), which could

be explained by the costly waiting time at port 2. This implies that port infrastructure, or,

equivalently, port efficiency, is the most influential factor for shipping lines in the selection

of their transshipment hubs, not port fees, which is consistent with the empirical studies of

[84] and [88].

8.3 Interesting Implications of the Liner Shipping Cooperative Model

8.3.1 The Order of Shipping Line Defection

In addition to the prediction of trade-flow diversion, we can also predict the order of shipping

line’s defections by defining the most likely coalition formation path based on the result of

the coalition formation game. In particular, such a path is constructed based on the removal

of all coalitions that are less likely to be formed, assuming that shipping lines could join

the coalition one at a time.

These coalitions are usually the ones whose member’s benefits are less than those of the

base solution — in some coalitions, some shipping lines might be worse off as they sacrifice

their own benefits for better coalition-wise results. For example, shipping line 4 in coalition

{1,2,4} in our example has to pay 2.91M more for achieving the coalition-wise cost reduction

of 69.27M. Unless there exists a fair allocation rule for this surplus, shipping line 4 would

be reluctant to join such a coalition making it seem implausible.

From Figure 47, since there is no cost improvement from the singleton coalitions {3} and

{4}, therefore, the most likely coalitions with one member are {1} and {2}. As we assume

that shipping lines could join the coalition one at a time and the coalitions whose member’s

benefits are worse off are unlikely to be formed, so the most likely coalition formation path

predicting the defection of shipping lines in order could be shown by Figure 48.

Based on Figures 47 and 48, it might be inferred that bigger shipping lines, such as

line 1 or 2 in our example, are expected to be the first mover, inducing the smaller ones to
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φ

1

2

1, 2

1, 3

2, 3

2, 4

1, 2, 3

1, 3, 4

2, 3, 4

1, 2, 3, 4

Figure 48: An illustration of the most likely coalition formation path.

new equilibrium. In addition, small lines, such as line 3 or 4, are more dependent on the

decision made by bigger lines as they could not achieve any improvement, or may even be

worse off4, without joining a coalition.

While our model is only preliminary and not yet populated with actual data, nevertheless

it seems consistent with the observation of shipping line’s relocation at the port of Singapore,

previously discussed in Chapter 6, where Maersk, the biggest operating line, was the first

to move to the port of Tanjung Pelapas followed subsequently by Evergreen, the largest by

the remaining lines at the port of Singapore.

8.3.2 Regaining Market Share

Another implication of the liner shipping cooperative model is the evaluation of counter

strategies for a logistics hub to regain its market share from competitors. Based on our

example, it is evident that both ports suffer from high level of congestion which does not

make good economic sense for shipping lines to operate, especially at port B. With this piece

4For example, in the singleton coalition {2}, lines 3 and 4 outside the coalition are worse off as they have
to pay 1.38M and 8.64M more as a result of line 2’s decision. By realizing this threat, it might be better for
them to seek cooperation with other shipping lines to help reduce their operating costs.
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of information, it might be urgent for port B to improve its infrastructure to accommodate

more freight flow, rather than to focus on lowering port fees, or handling charges. In such

a case, depending on which players are interested, the liner shipping cooperative model,

as well as the coalition formation game, could be used to predict the consequences of the

strategies executed by ports, or shipping lines, in a what-if-analysis fashion.

8.4 Conclusions

The container-shipping industry is a dynamic system involving multiple players, of which

ports and shipping lines might be considered the most crucial. We have established a model

called the liner shipping cooperative model to evaluate market stability of a logistic hub in a

competitive environment. Unlike other models, the liner shipping cooperative model takes

decisions from both shipping lines and ports as input for evaluating the resulting freight-

flow diversion at all ports. As we assume that shipping lines decide based solely on their

operating costs and the grand coalition defines the stable community of liners at a hub, we

can use this model to study the behavior of shipping lines with regard to the changes of

policy or strategies made by ports. Consequently, expected trade-flow loss, as well as the

order of shipping line’s defections, could be predicted and avoided.

While the preliminary results from our model conform with the observation of shipping

line’s relocation at the port of Singapore, where the bigger lines are expected to be the first

movers inducing the smaller ones to new equilibrium, there are several observations worth

to be mentioned.

• Regarding the estimation of the average waiting cost, we have not specified the distri-

bution of either the interarrival or the processing time of container flow, as information

at this level is not generally accessible. However, by using a general distribution, our

estimation of the average waiting cost might be overestimated since the variations

in both interarrival and processing times, i.e. ca and ce, might not be that high in

modern hubs with exceptional port planning and management.

• By using the Shapley value as an allocation rule for the computation of shipping

line’s value of cooperation, we implicitly assume that all coalitions are plausible and
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equiprobable. Yet, if we pose some restrictions on the coalition formation process,

like the one we propose for the finding of the most likely coalition formation path,

coalitions {1,4} and {1,2,4} might not exist. In addition, we intentionally ignore the

effects of externality, as well as those of the order of the formations, on the value of

the game5.

If any of the aforementioned matters, the Shapley value might not be a proper alloca-

tion rule since it is no longer fair for the coalition members in some critical dimensions.

Rather, we might need to modify such an allocation rule, or use the existing variants

of the Shapley value6, that accounts for these kinds of special structures.

• While we use the Shapley value as guidelines for identifying the most likely coalition

formation path, it might be interesting for both ports and shipping lines to know

how the surplus would be allocated to the coalition members based on these specific

sequences rather than the randomization scheme assumed by the original Shapley

value.

According to the above observations, our model can be refined and improved, which

would be useful for answering some interesting upcoming issues in the container-shipping

industry — in particular, the effects of the Panama Canal Expansion on the patterns

of freight-flow diversion. By the completion of its expansion, the Panama canal would

be able to handle the so-called Post-Panamax ocean vessels whose capacity is more than

double that of its current capacity, or up to 13,000 TEUs. Clearly, this would significantly

decrease handling cost per container for the shipping lines deploying larger ocean vessels,

but, without justified infrastructure, this could also be an operational trap as congestion

might outweigh the reduction on operating costs. We also expect that the extension of our

proposed framework would be beneficial for the players concerned as it supports what-if

analysis in such a way that none of the existing models could.

5For example, if we consider coalition {1,2} in an arbitrary four-player game, such a routine will as-
sume that the structure outside the coalition has no effect on the coalition value v(12), or equivalently
v({12}|{12, 3, 4}) = v({12}|{12, 34}). In addition, v(12) = v(21).

6See Chapter 7 for a detailed discussion of the Shapley value and its variants.
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CHAPTER IX

CONCLUDING REMARKS AND FUTURE RESEARCH

DIRECTIONS

In this dissertation, we establish a new measure, called the Container Port Connectivity

Index (CPCI), to more accurately reflect the relative importance of container ports within

the Global Container-Shipping Network (GCSN). Unlike any of the existing measures, the

CPCI is based on both economics and network topology, where it expresses more than

local connectivity to immediate neighbors but also neighbors-of-neighbors, and so on. In

particular, as measured by the CPCI, the most important ports are not necessarily those

with the most links, or those handling the most TEUs, but the ones with good connections

with other well-connected ports. This is a reflection of fact that the CPCI does not depend

only on the number of links but also on link quality and the connectivity of the ports to

which they connect.

The CPCI also allows us to better understand the critical roles of some major ports, as

well as the patterns of trade flow within the network of container shipping. For example, as

measured by the CPCI, Los Angeles and Long Beach are ranked relatively high in terms of

inbound which reflects the fact that these two ports are main entry ports for the products

manufactured in East Asia. Once calling at these two ports, services that have to traverse

the Pacific Ocean typically call at Oakland before returning to the large ports of Asia,

making Oakland relatively important in terms of outbound.

We also show that the CPCI is so flexible that it could take alternative input other

than the Liner Shipping Connectivity Index (LSCI) as link weights. We also show that,

with proper modification, the CPCI could be decomposed into components. This helps us

understand why a particular port has become important — and by which factors.

While the CPCI has many useful properties, it also has some weaknesses. Particu-

larly, in the computation of the CPCI, link weights are represented by the LSCI reflecting
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shipping capacity and not the actual number of TEUs transported or transshipped — as

information at this level is generally unavailable. Nevertheless, as the LSCI has been vetted

by economists as capturing intensities of trade, our index inherits that descriptive power

and exercises it at a more granular level.

We expect the CPCI to be useful in some of the same ways as those used by the

economists. This may include explaining how the container-shipping network changes over

time or using the link weights and port scores as explanatory variables for economic phe-

nomena. We believe these finer-grained statistics will be easier to understand and to explain

because they directly reflect immediate decisions of primary actors such as shipping com-

panies.

While powerful, the CPCI is only a descriptive index summarizing how well-connected

a port is within the global structure of container-shipping network. It could not provide us

insights into the behavior of shipping lines or ports with respect to major changes within

the container-shipping industry. To better explain the dynamic between those key players,

we establish an analytical framework for evaluating market stability of a logistics hub in

a competitive environment. In particular, we build a model, called the Liner Shipping

Cooperative Model, to help predict how the stable community of liners at a hub might be

formed as the result of actions by competitors.

Although the liner shipping cooperative model is initially developed to explain the be-

havior of shipping line’s defections at the port of Singapore in 2000 [10], nevertheless, it

has been found to be useful for the behavioral study of both shipping lines and ports with

respect to the environmental changes within the container-shipping industry. In particular,

it allows us to alter critical parameters and evaluate the effects of such changes on the

system from one to another stage until new equilibrium has been reached.

While our preliminary results conform with the empirical studies of [84] and [88], where

efficiency is the most influential factor for shipping lines in the selection of their transship-

ment hubs, and the observation of shipping line’s relocation at the port of Singapore, there

are several observations about our model and framework to be mentioned.

• We assume that (i) shipping lines decide based solely on their operating costs and

165



(ii) the grand coalition which defines market stability of a logistics hub is eventu-

ally formed. While the first assumption is generally true, shipping lines rarely share

information about their business, even with their partners in the same alliance. In

addition, it is less likely that all shipping lines could cooperatively work as one single

entity, but rather as a collective of alliances. Yet our model is still applicable by

treating each alliance as if it were a single line.

• We consider only the allocation of freight flow through ports in a competition without

considering other constraints, such as minimum contractual volume at ports or route

restriction. Nevertheless, these could be integrated into the model without affecting

our broad framework.

• While we use the Shapley value as guidelines for identifying the most likely coalition

formation path, which indicates the order of shipping line’s defections, it might be

interesting for both ports and shipping lines to know how the surplus would be al-

located to the coalition members based on these specific sequences rather than the

randomization scheme assumed by the original Shapley value.

According to the above observations, our model can be refined and improved, which

would be useful for answering some interesting upcoming issues in the container-shipping

industry — in particular, the effects of the Panama Canal Expansion and the construction

of a canal on Kra Isthmus, the narrowest part of the Malay Peninsula separating the Gulf

of Thailand from the Indian Ocean with the distance of only 50 Km, on the patterns of

freight-flow diversion. We expect that the extension of our proposed framework and model

would be beneficial for the players concerned as it supports what-if analysis in such a way

that none of the existing models could.
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