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The results in this paper come from a project to develop an Uncertainty Quantification (UQ)
framework to assist researchers in technology development and maturation. This framework
aims to re-frame technology maturation as a process of reducing quantifiable uncertainty instead
of completing requirements on a Technology Readiness Level (TRL) scale. The framework
provided in this paper uses Bayesian statistics to redefine the technology maturation task as a
process of reducing uncertainty in system inputs and outputs. This framework is powered by
the calculation of a Variance Reduction Potential (VRP) for each system inputs that relates how
much how uncertainty in the system-level outputs are related to the uncertainty in the system
inputs. This variance reduction potential can be estimated by simulating the system of interest.
This allows for researchers to determine which variables are the most important to test before
any testing has actually been done. This framework empowers researchers to gain as much
information on their system as possible before spending resources on physical testing rounds,
making research and development of new systems more efficient.

I. Nomenclature

𝐸 = Young’s Modulus
𝐺 = Shear Modulus
𝑀𝐶𝑀𝐶 = Markov Chain Monte Carlo
𝑇𝑅𝐿 = Technology Readiness Level
𝜃 = Probabilistic System Input Parameter
𝑈𝑄 = Uncertainty Quantification
𝑉𝑅𝑃 = Variance Reduction Potential
𝑦 = Probabilistic System Output Parameter

II. Introduction
The task of developing a new technology to the point where it can be confidently integrated into a system design is a

difficult problem that generally results in a complex, non-linear process that varies between organizations. The primary
underlying concern in this task is the quantification and reduction of uncertainties in the technology, but this is often
addressed with indirect methods that obfuscate this driving factor. There are many types of uncertainty that impact
the confidence level of how well a technology might perform in a given system. This project focuses on epistemic, or
reducible, uncertainty, which refers to a quality of the system that can be known given more information. This type of
uncertainty is plentiful early in design or development processes when little is known about a system or technology.
Even once a technology is matured enough to be applied to a specific system, its performance may differ greatly for an
alternative system or use case which can require extensive work to re-qualify the technology.

Due to the complexity of the problem, it is difficult to determine the development progress for a technology in a
general sense. This leads to projections and generalities such as readiness levels, which will be described in more detail
below. Qualitative metrics such as these help to facilitate discussion between technology developers and potential users,
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but they are subject to irregularities since they are often based on generic milestones instead of quantifiable metrics
of improvement. This work seeks to instantiate a framework to provide a more methodical and transparent process
for assessing the progress of technology development through uncertainty quantification techniques, identifying key
sources of uncertainty, assessing the impact of these uncertainty sources, and providing insight for how to systematically
reduce uncertainties. These methods and tools will be developed, tested, and demonstrated on parametric finite element
models, representing the implementation of a notional novel material technology in a system.

III. Background
In order to better understand this problem, multiple topics have to be addressed. These relate to the way that

maturation is typically and generally defined, as well as the methods and tools related to the new approach proposed by
the framework.

A. Technology Readiness Levels
A common method of relating the status of a technology is the Technology Readiness Level (TRL) scale, which is a

single digit scale from one through nine developed internally at NASA and initially published in a 1989 white paper
before going several rounds of revisions[1][2]. The terms readiness and maturity are sometimes used interchangeably,
but in this context we will define maturity as the general feasibility of a technology and the readiness as the feasibility of
a technology with respect to a specific system of interest. Therefore maturity of a technology will be system-independent
and singular while it may have different levels of readiness for different systems. Many different types of readiness
levels have been proposed such as Manufacturing, Integration, and Software readiness levels among others[3][4][5].
These scales have been proposed to supplement TRL or redefine the scale definitions to suit particular use cases. This
work will focus on TRL to describe the overarching family of techniques.

Assessing the appropriate TRL for a technology in regards to a specified system is a non-trivial task. The definitions
for each TRL for a technology are primarily based on which benchmark demonstrations the technology has successfully
completed. The two primary methods of determining TRL are structured assessments such as those published by
Mankins that rely on subject matter expertise, and detailed TRL calculators such as those published by NASA and the
Air Force Research Lab that specify the full breadth of demonstrations that must be satisfied for a given readiness level
[6]. Some combination of these demonstrations and subject matter expert opinions are used to generate a TRL for the
technology.

However, there are limitations to these mostly qualitative processes. The activity of performing an experiment or
demonstration would logically suggest that the level of knowledge about a technology has increased, which should
thereby increase the TRL. However, the current a priori determination of benchmark experiments could potentially lead
to conducting experiments that do not suitably address the currently problematic areas of uncertainty. The experimental
results may simply validate something that was already assumed, and alternatively, performing the experiment does not
guarantee that the resulting data was examined in a way which best benefits decision-makers. The synthesis of all the
information regarding the status of a technology into a single value makes the TRL scale a valuable tool for high-level
decision making. However, its basis on nominal benchmarks or subjective opinion can potentially lead to a lack of
traceability and limits its ability to fully characterize the technology.

The TRL scale can be viewed effectively as an implicit encapsulation of the uncertainty in a technology. Shifting
the technology development process to be based on uncertainty will create the information necessary for TRL to be
explicitly based on specific categories and levels of uncertainty present in a technology at a given moment. The practical
usability of the ordinal TRL scale succinctly summarizing the status of a technology cannot be ignored, so the aim of
this work is to supplement its definitions with actionable and traceable information.

B. Bayesian Approach to Uncertainty Quantification (UQ)
The field of uncertainty quantification is a broad area, but generally involves creation of a distribution or similar

measure to represent variation in a system attribute. This measure is then updated as more knowledge is generated with
the goal of reducing the uncertainty of the parameter value. The initial creation of the distribution can come from expert
elicitation [7] or data, be it collected from modeling and simulation or real world sources. As more data is generated,
these initial distributions, called priors, are updated and refined into posteriors, representing the current understanding
of variation.

There are two main schools of probability theory: objective (Frequentist) and subjective (Bayesian). The main
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Fig. 1 Uncertainty Quantification Cycle

difference of these schools is that objective statisticians limit probability to only be meaningful over a long-run frequency,
so uncertainty can only be relevant as the limit in the long run. Subjective statisticians can operate on subjective
uncertainty with statistical and probabilistic tools, and this allows them to take a narrower view of uncertainty and apply
them to single instances [8]. The introduction of subjective uncertainty in Bayesian statistics is incredibly powerful. It
allows researchers to directly quantify their uncertainty in their knowledge of a system and compare it to test data. Then,
as more data is generated about the system, researchers can directly quantify how this new data contributes to their
existing knowledge.

As introduced above, there are two main types of uncertainty: aleatory and epistemic [9]. However, the sources of
these uncertainties are vast and difficult to enumerate. Early in the quantification process, a variety of aleatory and
epistemic uncertainties will all be aliased with one another, but gradually the sources should become less abstract. As
previously discussed, the process of technology maturation is focused on identifying and reducing epistemic uncertainties
so that the projected implications of application of a technology can be verified and validated to convince a system
developer of its value. As more experiments are performed and models executed, the understanding of the system should
improve. However, within this iterative process, there is a trade off between the attempt to quantify uncertainty without
inserting additional or erroneous characteristics. To put it differently, the process of gathering data does not inherently
beget lower uncertainty.

IV. Framework
The uncertainty quantification framework developed for this paper can be seen in Figure 1. As with any UQ process,

it is iterative and consists of data gathering, data processing, and decision-making steps. These decision-making steps
may be used in the future to determine whether a technology has advanced to the point where its level should increase,
but those thresholds may be case specific and lie outside the scope of this work. It should be reiterated that in addition
to the central goal of identification, quantification, and reduction of uncertainty, performing these steps include methods
and tools that provide a greater understanding of the models, experiments, and system itself. One such secondary benefit
is an improved capability to troubleshoot, debug, verify, and validate numerical models due to the insights gained about
the relative relationships between inputs and responses.

3



A. Determination of Priors
In lieu of model or experimental data, early in the process, prior distributions must be estimated more from expert

elicitation. Due to the semi-qualitative nature of such a step, one must seek to provide a justifiable starting point
without over-determining variability. This leads to the discussion of "informativeness" of priors, which is related to the
concentration of probability in a given dimension.

When the probability is more spread out, the prior can be referred to as diffuse, where a more informative prior will
have a narrower range. Further confusing the issue, this classification as diffuse, weakly informative, or informative is
situational. Additionally, even a diffuse prior can constrain the posterior distribution to a known region. A uniform
distribution is an example of a diffuse prior, since it is simply dependent on an upper and lower bound [10].

B. Sampling
When attempting to populate a continuous distribution from discrete samples, a sampling method is needed. The

most rudimentary sampling technique is a simple Monte Carlo, randomly selecting points within the variable space.
However, it is well known that this method can be inefficient [11]. Despite that, due to the intended generality of the
framework herein, and the emphasis on leveraging modeling and simulation to supplement physical experimentation,
it can serve as the default approach. If it is known that the data generation source is inordinately expensive, a more
efficient avenue can be employed, but that will be left up to the user for the time being.

C. Identifying and Selecting Critical Uncertainty Sources
The next step after prior determination in the UQ framework is the identification and selection of critical uncertainty

sources, as seen in Figure 1. Critical uncertainty sources are parameters in the system of interest that have the most
inherent uncertainty, and this uncertainty propagates up to the system-level outputs. In many cases, these parameters
are determined using a main effects test like ANOVA. These tests highlight the parameters to which the output is the
most sensitive. This can lead to an erroneous determination, though, because prior knowledge about the parameters is
not taken into account. Therefore, this method can highlight a parameter as critical even though much is known about
that parameters compared to other parameters. This may cause researchers to prioritize their efforts in areas that they
have an abundance of knowledge in and ignore other areas that may yield more benefits in the context of system-level
uncertainty reduction.

In an effort to incorporate prior knowledge into critical parameter identification, the authors of this paper have
developed a metric they have named the Variance Reduction Potential. Say a system level metric 𝑦 depends on a
parameter 𝜃. The posterior variance of the parameter 𝜃 for a given realization of 𝑦 can be calculated using Equation 1
[12].

𝐸 (𝑣𝑎𝑟 (𝜃 |𝑦)) = 𝑣𝑎𝑟 (𝜃) − 𝑣𝑎𝑟 (𝐸 (𝜃 |𝑦)) = 𝑣𝑎𝑟 (𝜃)
(
1 − 𝑣𝑎𝑟 (𝐸 (𝜃 |𝑦))

𝑣𝑎𝑟 (𝜃)

)
(1)

𝑉𝑅𝑃 =
𝑣𝑎𝑟 (𝐸 (𝜃 |𝑦))

𝑣𝑎𝑟 (𝜃) (2)

With this equation, the posterior variance of the parameter 𝜃 is inversely related to 𝑣𝑎𝑟 (𝐸 (𝜃 |𝑦))/𝑣𝑎𝑟 (𝜃), otherwise
known as the Variance Reduction Potential, shown in Equation 2. Another way of framing this relationship is that the
parameter 𝜃 is expected to reduce its variance proportional to the VRP after it has been conditioned the system level
distribution of distribution of 𝑦. Therefore, the variances of the two parameters 𝜃 and 𝑦 are linked through the VRP,
and reducing the uncertainty of system input parameters with high values of VRP will reduce the uncertainty in the
system-level outputs.

The Variance Reduction Potential can be estimated with computational simulation. This is done by simulating a
large set of potential realized distributions and conditioning theta onto them using Bayes’ Theorem (3) [12]. In order to
develop the set of potential realized distributions, a simulator of the system must be available. This can be as complex as
a detailed finite element model or a surrogate model, but it is recommended by the authors that the model complexity is
as low as possible in order to be able to execute the model many times in a row. Then, using the prior distribution of the
system parameters, many different potential values for the mean and variance of each system parameter are developed.
Then, using these parameters, Monte Carlo simulations are conducted using the model for the realizations of mean and
variance of the system parameters to develop a distribution of the system output (𝑝(𝑦 |𝜃)). Then, a Markov Chain Monte
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Carlo (MCMC) method can be used to calculate the posterior distributions (𝑝(𝜃 |𝑦)) [13]. The authors of this paper used
the Python package PyMC3 to implement the MCMC chains used in this work [14].

The distributions of these potential realizations of 𝑦 are dependent on the system of interest. Once all of the
conditioned posteriors of 𝜃 have been found, the VRP is estimated by calculating the variance of the posterior means of
𝜃 and normalizing it by the prior variance of 𝜃, as seen in Equation 2. This normalization process makes the VRP vary
from 0 to 1, thus making the VRP of different parameters directly comparable. This process is visualized in Figure 2.

𝑃(𝜃 |𝑦) = 𝑃(𝑦 |𝜃)𝑃(𝜃)
𝑃(𝑦) (3)

Once the VRP has been found for all of the parameters of interest, they are ranked by their magnitude. The parameter
with the highest VRP is then chosen as the parameter with the most Variance Reduction Potential. This parameter
should be selected as the most critical uncertainty source.

D. Reducing Uncertainty
Once the critical uncertainty source has been found, its uncertainty must be reduced. This is done through

experimentation. The experiment or experiments that are selected are application dependent, but cost, time, fidelity,
etc. should be considered when selecting the experiments to conduct. Once the experiments have been conducted, the
distribution of 𝜃 should be recalculated. This should be done using Bayes’ Theorem (3) where 𝑝(𝜃) is the previous
distribution, 𝑝(𝑦 |𝜃) is the likelihood of the test data, and 𝑝(𝜃 |𝑦) is the posterior distribution of 𝜃 conditioned on the new
test data. The posterior distribution will be the new prior distribution of 𝜃 in the next iterations of the cycle. A Bayesian
statistics library like PyMC3 [14] can be used to determine the posterior distribution since 𝑝(𝑦) is often difficult to
calculate.

E. Propagate Uncertainty to the System Level
With the new priors for 𝜃, computational modeling should be used to propagate this uncertainty up to the system

level to get new distributions of the system level parameters. This can be done by conducting a Monte Carlo simulation
of the system with the new posterior distribution of 𝜃. Then, the distributions of the system outputs can be investigated
to see the effect of reducing the uncertainty on 𝜃 to the system-level outputs.

V. Use Case
The framework described in this paper has been applied to a simple short cantilever beam model with an applied

tip load, as shown in Figure 3. The output of interest in this model is the tip displacement. This model was chosen
partly because it is known that the Young’s Modulus has the most impact on the tip displacement, followed by a slight
impact from the Shear Modulus. Additionally, this simple modeling framework has been parameterized for a number of
material and geometry inputs and multiple corresponding model outputs for a previous work [15].
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Fig. 3 Cantilever Beam Model

A. VRP Comparison for Different Priors
The framework described in this paper is able to determine the optimal system parameter to investigate based on

the information already available to the experimenters. To study the effectiveness of the framework, a study based
on different priors of the Young’s Modulus and the Shear Modulus has been conducted. In this section, the uniform
distribution will be denoted as 𝑈 (𝐿, 𝐻) where L is the lower bound and H is the upper bound of the distribution. The
results of all of the VRP estimation cases can be seen in Figure 4.

1. ANOVA Results
For the model used in this paper, an ANOVA test was conducted to determine the relative importance of the Young’s

Modulus and the Shear Modulus. The model was simulated 1,000 times using random samples that were contained in
𝐸 = 𝑈 (9.86𝑒6, 11.9𝑒6) psi and 𝐺 = 𝑈 (3.6𝑒6, 4.23𝑒6) psi. Then, JMP® [16] was used to determine the log-worth of
each parameter using 𝐿𝑜𝑔𝑊𝑜𝑟𝑡ℎ = −𝑙𝑜𝑔10 (𝑝) where 𝑝 is the p-value of each parameter. The results of this test were E
has a log-worth of 551.3, and G has a log-worth of 121.9. This means that the Young’s Modulus has a much greater
impact on the tip displacement of the beam than the Shear Modulus.

2. Nominal Priors (Case1)
The nominal priors for the Young’s Modulus and the Shear Modulus are 𝐸 = 𝑈 (9.86𝑒6, 11.9𝑒6) psi and

𝐺 = 𝑈 (3.6𝑒6, 4.23𝑒6) psi respectively. By applying the Variance Reduction Potential formula found in Section IV.C,
the VRP of E and G are 0.29 and 0.0007 respectively. This indicates that E is the critical source of uncertainty with the
nominal priors.

3. Lower Prior Uncertainty on E (Case 2)
In this section, assume that the experimenters have a large amount of prior information on the distribution of the

Young’s Modulus. The new distribution of the Young’s Modulus is now assumed to be 𝐸 = 𝑈 (9.86𝑒6, 9.9𝑒6) psi. Now,
applying the Variance Reduction Potential framework yields a VRP of 0.00014 and 0.00010 for E and G respectively.
Now, E and G are essentially equal in terms of critical uncertainty. This demonstrates how infusing prior knowledge
into the critical parameter determination can affect the results of the decision making process.

4. Higher Prior Uncertainty on G (Case 3)
In this section, assume that the experimenters have very little prior information on the distribution of the Shear

Modulus. The new distribution of the Shear Modulus is now assumed to be 𝐺 = 𝑈 (3.6𝑒6, 5.0𝑒6) psi. With this new
prior, the VRP of E and G are 0.40 and 0.006 respectively. This is an interesting result, because it indicates that E is
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Fig. 4 Results of the VRP Estimation Cases

more critical to reduce than G even though the uncertainty for G has increased. The framework has determined that
reducing the uncertainty in the Young’s Modulus can compensate for the increased uncertainty in the Shear Modulus.

5. Lower Prior Uncertainty on E and Higher Prior Uncertainty on G (Case 4)
In this section, assume that the experimenters have little prior information on the distribution of the Shear Modulus

and a large amount of information on the distribution of the Young’s Modulus. The new distribution of the Shear Modulus
is now assumed to be 𝐺 = 𝑈 (3.6𝑒6, 5.0𝑒6) psi, and the new distribution of the Young’s Modulus is now assumed to be
𝐸 = 𝑈 (9.86𝑒6, 9.9𝑒6) psi. With these new priors, the VRP of E and G are 0.00014 and 0.00015 respectively. This result
further solidifies the conclusion found in case 3. While the researchers have a lower understanding of the Shear Modulus
in this case than in the nominal case, the VRP of the Shear Modulus is still very low and on the same magnitude as the
Young’s Modulus. This is because the researchers have a higher understanding of the Young’s Modulus in this case than
in the nominal case. This demonstrates that the Young’s Modulus is much more important to the system behavior than
the Shear Modulus, and therefore it is extremely important to generate test data for the Young’s Modulus.

VI. Conclusions
In this work, a framework is developed to use uncertainty quantification to help technology evaluators find and

drive down the main sources of epistemic uncertainty. This process is demonstrated using a notional new material
system applied to a parametric finite element model of a beam. Priors are generated, propagated through the modeling
environment, and analyzed to help quantify and justify potential future work that can help with the adoption of a
technology. Future work can include evaluation of more advanced sampling techniques when evaluations are more
expensive, as well as expansion in the decision-making capabilities to provide an even deeper understanding for the
technology developer and to help further define the rate of maturity.
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