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Abstract

We present two integer-only algorithms to be used in tandem for rendering cubic functions and

parametric cubic curves with rational coefficients.  We then show how to take advantage of curve

shape to improve algorithm performance.  Analysis of execution speed of existing algorithms

shows that our algorithms will match or outperform other current algorithms.  Furthermore, while

other existing algorithms can only handle curves shaped by rational coefficients by introducing

some approximation error, our algorithms always choose the best approximation.  When plotting

parametric curves, our algorithms may require more bits of representation for some integer

variables than other existing algorithms.

Categories and Subject Descriptors: G.1.1 [Numerical Analysis]: Interpolation –– spline and

piecewise polynomial interpolation;  G.1.2 [Numerical Analysis]: Approximation –– spline

and piecewise polynomial approximation;  I.3.3 [Computer Graphics]: Picture/Image

Generation –– display algorithms;  I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling –– curve, surface, solid, and object representations, geometric algorithms,

languages and systems.

General Terms: Algorithms

Additional Key Words And Phrases: rendering, parametric curves, raster graphics.
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1. INTRODUCTION

Computer scientists have been developing line- and curve-rendering algorithms for over 25 years.

But only recently have efficient algorithms for the plotting of cubic curves begun to appear.  This

paper will develop and propose two fast, integer-only algorithms, which can be used in tandem to

render on a raster display cubic curves with rational coefficients defined by the function

y = (An/Ad)x3 + (Bn/Bd)x2 + (Cn/Cd)x + (Dn/Dd). (1)

The algorithms are based the midpoint method, described by Van Aken and Novak in [17] and

below.

2. HISTORY AND EXISTING ALGORITHMS

J. E. Bresenham was the first to present a fast, integer-only line rendering algorithm in 1965 [1].

Research in line rendering since has seized on the periodic patterns shown by Bresenham's

algorithm when viewed on a raster display as a means of improving algorithm speed [4,14].

Algorithms for rendering circles began to appear in the 1970s.  Bresenham [2,3], Horn [7], and

McIlroy [12] have all presented algorithms.  Later, algorithms for rendering ellipses were

published [9,15,16], and more recently, algorithms for the plotting of parabolas and hyperbolas

were presented [13,15,18].

Algorithms for the rendering of cubic curves have only begun to appear in the last few years.  In

[11], Klassen presented two algorithms for rendering parametric cubic curves.  First he identified

the family of Bezier curves that are "worst-case", meaning that they are most likely to cause

overflow during calculation.  If 2h is screen length or width, Klassen asserted that "worst case"

curves would have the four Bezier control points [-h,5h,-5h,h] in at least one dimension, which

would describe the one-dimensional parametric Bezier cubic 32ht3 - 48ht2 + 18ht - h.  Klassen

called such curves S curves.  Klassen then presented his two algorithms and outlined their relative

speed and overflow restrictions for worst-case curves.  Algorithm A uses a fixed-point

representation of curve coordinates, and thus incorporates an inherent level of error.  However, it

is fast and has a liberal overflow restriction.  Algorithm B divides forward differences into integer

and fractional parts, providing perfect accuracy.  But it is slower than algorithm A, and can only

take 1024 parametric steps if overflow is to be avoided with 32-bit words.  Both algorithms allow

arbitrary step size and do not restrict curve segments to certain slope octants.  Both can be used
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Figure 1: Elimination of the constant term Figure 2:  If the decison function is
can be compensated for by a translation. evaluated at a point above the curve, it

is negative.  Otherwise it is positive.

with non-integer coefficients.  However, use of such coefficients with algorithm B would eliminate

its perfect accuracy.

In [10], Klassen studied the use of these two algorithms with cubic spline curves.  He envisioned

the use of the algorithms with adaptive forward differencing [6,8], which dynamically adjusts step

size as a curve is plotted.

Simultaneous to Klassen, Chang et al. [5] developed an algorithm similar to Klassen's algorithm B

that also could be used with adaptive forward differencing.  Differences between the two

algorithms are minor.

3. PRELIMINARIES

3.1. Elimination Of The Constant Term Dn/Dd

Since the last term (Dn/Dd) in (1) does not change the shape of the curve, we can render the curve

described by instead rendering the curve

y = (An/Ad)x3 + (Bn/Bd)x2+ (Cn/Cd)x (2)

with a compensating translation (see figure 1).  Note that if the (Dn/Dd) rational coefficient is not an

integer, translation of the Y coordinate at plotting by round(Dn/Dd) alone will not necessarily

produce the best approximation of the curve.  In section 4, we discuss a method of compensating

for this error.
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Figure 3: If |slope| < 0 and X and Y
plotting directions are positive the
candidate points are (X+1,Y) and (X+1,
Y+1).

Table 1

The candidate points and the midpoint used depend on curve slope and
X and Y plotting directions.  The points here are listed in clockwise
order.

|Slope|Y Plot Dir X Plot Dir Candidate Points

(X+1,Y); (X+1,Y+1)

(X+1,Y-1); (X+1,Y)

(X+1,Y+1); (X,Y+1)
(X,Y+1); (X-1,Y+1)
(X-1,Y+1); (X-1,Y)
(X-1,Y); (X-1,Y-1)
(X-1,Y-1); (X,Y-1)
(X,Y-1); (X+1,Y-1)>= 1

< 1
>= 1

>= 1

>= 1
< 1
< 1

< 1

positive

negative

positive
positive
positive

negative
negative
negative

positive
positive

positive

negative
negative

negative
positive

negative

(X+1,Y+1/2)

(X+1,Y-1/2)

(X+1/2,Y+1)
(X-1/2,Y+1)
(X-1,Y+1/2)
(X-1,Y-1/2)
(X-1/2,Y-1)
(X+1/2,Y-1)

Midpoints

(X,Y)

(X+1,Y+1/2)

(X,Y)

(X+2,Y+1/2)

(X+1,Y)

Figure 4: If |slope| < 0 and the X and Y Figure 5: With this curve, (X+1,Y) would be
plotting directions are positive the midpoint plotted, and (X+2,Y+1/2) used as the next midpoint.
is (X+1,Y+1/2).

3.2. The Midpoint Method

The midpoint method, described by Van Aken and Novak in [17], requires the incremental

evaluation of a decision function that indicates which of two candidate pixels should be chosen for

rendering.  If the equation for a curve is y = f(x), then the decision function has the form d(x,y) =

f(x) - y.  Notice that this function will have a different sign on each side of the curve f(x) (see

figure 2).

Where do we evaluate this function?  This depends on the slope of the curve.  If -1 < f'(x) < 1

and we are plotting in positive X and Y directions, then if we have just plotted the point (X,Y), the

two candidate points for plotting are (X+1,Y) and (X+1,Y+1) (see figure 3; table 1 for a complete

list of candidate points).  The midpoint method evaluates the decision function at the midpoint

between the candidate pixels.  In our example, this midpoint is (X+1,Y+1/2), and thus we evaluate

d(X+1,Y+1/2) (see figure 4; table 1 for the complete list of midpoints).  We will call the decision

function the "decision variable" when it is evaluated at a midpoint.
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Since the sign of the decision function d(x,y) corresponds to a specific side of f(x), the sign of

decision variable d(X+1,Y+1/2) indicates the side of f(x) on which the midpoint lies, and also

which of the candidate pixels lies closer to the curve being plotted, f(x).  In figure 4, the sign of the

decision variable is negative, so the lower candidate pixel is chosen for plotting.

Once the next pixel is chosen and plotted, the decision function must be evaluated at the next

midpoint to allow the plotting of the next pixel.  In our example (figure 5), the appropriate decision

variable would be d(X+2,Y+1/2).

3.3 Forward Differencing

Simple evaluation of the decision function at each successive midpoint would be computationally

expensive.  Fortunately, there is a method of incremental function evaluation, called forward

differencing, which is uniquely suited to our needs.  This method, which was known to Newton,

involves the initialization of several difference values that may be added together to produce the

value of a function at a certain point.  These difference values are then themselves incrementally

evaluated, to prepare for the next evaluation of the original function.  Note that mulitiplication is

only required for function and difference initialization.  Furthermore, if all function coefficients are

integers, no floating point addition is required.

As an example, consider the simple function f(x) = 2x + 1.  f(x+1) differs from f(x) only by the

constant difference value 2.  By successively adding 2 to an initial value for f(x), we could

incrementally calculate the value of f(x) at integer intervals on X.  For the higher-order function

g(x) = x2, the binomial expansion g(x+1) = (x+1)2 = x2 + 2x + 1 gives us the first-order

difference value 2x + 1 for an integer interval.  Since this difference value is also dependent on X,

it must also be subjected to forward differencing, as already discussed.  Thus the incremental

calculation of g(x) = x2 would require two additions per integer interval.

4. THE RUNRISE ALGORITHM

Let us first find the decision function d(x,y) for equation (2) when -1 < f'(x) < 1.  In this case, the

X component of f'(x) is larger than the Y component: the curve "runs" faster than it "rises."  We

will label segments of f(x) where this condition holds true "RunRise."  Since we will only make

use of the sign of our decision function, we multiply our cubic function (2) by 2AdBdCd to increase

efficiency by eliminating the floating point division calculations.  To conserve space, we use the

shorthand Ai = AnBdCd, Bi = BnAdCd, Ci = CnAdBd, and Di = AdBdCd, in the rest of this paper
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and the equation below.  We assume without loss of generality that Di (and thus the denominators

Ad, Bd, and Cd) are positive:

2Diy = 2Aix3 + 2Bix2 + 2Cix. (3)

We will find it useful to plot in both positive and negative X and Y directions.  Our direction-

flexible decision variable is then

d(x±1,y±1/2) = 2Ai(x±1)3 + 2Bi(x±1)2+ 2Ci(x±1) - 2Di(y±1/2) (4)

where ± is positive if we are plotting in a positive direction, negative otherwise.

We must evaluate (4) incrementally as we plot the RunRise portion of f(x).  To avoid

computationally complex multiplications, we will use forward differencing.  The difference

constant d0y is the difference between d(x,y) evaluated at the "current" Y coordinate, and d(x,y)

evaluated at the "next" Y coordinate:

d0y = d(x±1,y±3/2) - d(x±1,y±1/2)
= 2Di(y±3/2) - 2Di(y±1/2)
= ±2Di.

This difference constant is used to update the decision variable when a "Y step" is made -- that is,

when the last plotted pixel differs from the previously plotted one in its Y coordinate.

Because the decision variable (4) is a third-order function in X, updating it when an X step is made

is more complex.  The second order difference function d2(x) is the difference between the

decision variable at the current X coordinate and the next X coordinate:

d2(x) = d(x±1,y±1/2) - d(x,y±1/2)
= 2Ai(x±1)3 + 2Bi(x±1)2 + 2Ci(x±1) - 2Aix3 - 2Bix2 - 2Cix
= 2Ai(x3±3x2+3x±1) + 2Bi(x2±2x+1) + 2Ci(x±1) - 2Aix3 - 2Bix2 - 2Cix
= 2Ai(±3x2+3x±1) + 2Bi(±2x+1) ± 2Ci
= ±6Aix2 + (6Ai±4Bi)x + (±2Ai+2Bi±2Ci).

d2(x) must itself be subjected to forward differencing.  The first order difference function d1(x) is

the difference between the value of d2(x) at the current and next X coordinates:

d1(x) = d2(x±1) - d2(x)
= ±6Ai(x±1)2 + (6Ai±4Bi)(x±1) - ±6kAix2 - (6Ai±4Bi)x
= ±6Ai(x2±2x+1) + (6AnBd±4Bi)(x±1) - ±6Aix2 - (6Ai±4Bi)x
= ±6Ai(±2x+1) + (±6Ai+4Bi)
= 12Aix + (±12Ai+4Bi).
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Finally, d1(x) must be subjected to forward differencing.  The difference between d1(x) evaluated

at the current and next X coordinates gives us constant d0x:

d0x = d1(x±1) - d1(x)
= 12Ai(x±1) - 12Aix
= ±12Ai.

Stepping one pixel at a time, and using the global declarations below, we can construct a direction-

flexible algorithm for plotting the RunRise segments of cubic curves.  Figures 6 and 7 show the

core of this algorithm in C.  For brevity's sake, we have removed the variable and function

declarations (all variables are long integers).  The initialization of Ai, Bi, Ci and Di is not shown --

it is common to all curve segments.

In its loop, the RunRise algorithm performs 4 additions for each step in X, 2 additions for each

step in Y.  This gives a cost of

4a|XEnd-X| + 2a|YEnd-Y|,

where (X,Y) and (XEnd,YEnd) are the endpoints of the plotted curve segment, and a the cost of one

addition operation.

Earlier, we noted that compensating for the elimination of the non-integer constant  with translation

will not necessarily produce the best approximation of the curve.  Adding an appropriately signed

round(Di * ((Dn/Dd) mod 1)) to the initial decision variable will simulate a fractional Y step and

improve accuracy.

5. AN OPTIMIZED RUNRISE ALGORITHM

In RunRise cubic curve segments, as f'(x) approaches zero, the number of Y steps will decrease

greatly, resulting in the plotting on-screen of a series of ever-longer horizontal lines, which we will

call "runs" (figure 8).  This implies that the length of the next run Li+1 will always be greater than

the length of the previous run Li.  If plotting direction was adjusted to aim at slope-zero points,

algorithm speed could be improved by plotting, at each Y step, a beginning run segment of length

Li (figure 9), in effect "skipping" Li X steps of the above, unoptimized algorithm.  Normal plotting

of the the remaining Li+1-Li pixels of the run could then be completed using the techniques of the

above algorithm.
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XDec2Const1 = Ai<<1; /* Used to init 2nd order diffc function */
XDec0Const = (XDec2Const1<<2) + (XDec2Const1<<1); /* Used to init diffc constant */
XDec2Const2 = Bi<<1; /* Used to init 2nd order diffc function */
XDec1Const = XDec2Const2<<1; /* Used to init 1st order diffc function */
XDec2Const3 = Ci<<1; /* Used to init 2nd order diffc function */
DecConst = Di; /* Used to init decision variable */
YDecConst = DecConst<<1; /* Difference constant for a Y step */

Temp1 = XDec2Const1*X; /* Used several times to save multiplies */
if (X < XEnd) { /* If plotting in positive X direction */

XStep = 1; /* Set X increment */
XDec0 = XDec0Const; /* Difference constant for an X step */
XDec1 = (Temp1<<2) + (Temp1<<1) /* Init 1st order diffc function */

+ XDec0Const + XDec1Const;
XDec2 = ((Temp1<<1) + Temp1 /* Init 2nd order diffc function */

+ (XDec0Const>>1) + XDec1Const)*X
+ XDec2Const1 + XDec2Const2 + XDec2Const3;

} else { /* If plotting in negative X direction */
XStep = -1; /* Set X increment */
XDec0 = -XDec0Const; /* Diffc constant for an X step */
XDec1 = (Temp1<<2) + (Temp1<<1) /* Init 1st order diffc function */

- XDec0Const + XDec1Const;
XDec2 = (-(Temp1<<1) - Temp1 /* Init 2nd order diffc function */

+ (XDec0Const>>1) - XDec1Const)*X
- XDec2Const1 + XDec2Const2 - XDec2Const3;

} /* end if */

Dec = ((Temp1 + XDec2Const2)*X + XDec2Const3)*X; /* Init decision variable */
if (Y < YEnd) { /* If plotting in positive Y direction */

YStep = 1; /* Set Y increment */
Dec = Dec + XDec2 - YDecConst*Y - DecConst; /* Final decision variable init'zation */

} else { /* If plotting in negative Y direction */
YStep = -1; /* Set Y increment */
XDec0 = -XDec0; /* Negate X differences */
XDec1 = -XDec1;
XDec2 = -XDec2;
Dec = -Dec + XDec2 + YDecConst*Y - DecConst; /* Final decision variable init'zation */

} /* end if */

Figure 6: RunRise algorithm initialization.  (X,Y) and (XEnd,YEnd) are segment endpoints.

if (X == XEnd) /* If degenerate curve, */
{LinPlot(X,Y,XEnd,YEnd); /* Plot a line */

else /* Otherwise, */
for (X=X; X<=XEnd; X=X+XStep) { /* For each X in the curve */

Plot(X,Y); /* Plot a point */
XDec2 = XDec2 + XDec1; /* Update the 2nd order diffc */
XDec1 = XDec1 + XDec0; /* Update the 2st order diffc */
if (Dec > 0) { /* perform Y step */ /* If must perform Y step */

Y = Y + YStep; /* Adjust Y accordingly */
Dec = Dec + XDec2 - YDecConst; /* Update the decision var accordingly */

} else Dec = Dec + XDec2; /* If no Y step, update dec var accdgly */
} /* end for */

Figure 7: RunRise algorithm loop.  (X,Y) and (XEnd,YEnd) are curve segment endpoints.
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Li+1
LiLi

Figure 8: Plotted runs increase in length if Figure 9: Run i+1 could be plotted by first
plotting direction heads towards points with plotting a run of length Li, and then using normal
slope equal to zero. midpoint method techniques.

Li+1
LiLi-1

Figure 10: A plotted curve segment with Figure 11: Run i+1 is safely plotted by first
1/3 ≤ slope ≤ 1/2.  Run length alternates plotting a run of length Li-1, and then using
between 2 and 3. normal midpoint method techniques.

There is one catch: run length does not increase in a strict fashion.  When for an integer I, the

condition 1/I ≤ f'(x) ≤ 1/(I+1) holds over several Y steps, run length will alternate between I+1 and

I (figure 10).  We will allow for this by assuming at each Y step that the ensuing run length Li+1

will only be greater than or equal to Li-1, which would result in an initial run segment plot of

length Li-1 (figure 11).

When we plot such run segments, we must at once take l = Li-1 forward differencing steps in our

decision variable.  In other words, given d1(x), d2(x) and d(x±1,y±1/2), we must find d1(x±l),

d2(x±l), and d(x±(l+1),y±1/2).  For the first-order decision function d1(x), we have

d1(x) = d1(x)
d1(x±1) = d1(x) + d0x
d1(x±2) = d1(x) + d0x + d0x
d1(x±3) = d1(x) + d0x + d0x + d0x
etc.

Clearly, this sequence forms the sum

d1(x±l) = d1(x) + i=0Σl-1 d0x.

The closed form of this sum is

 d1(x±l) = d1(x) ± 12Ail.
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For the second order difference function d2(x), the sequence of values is

d2(x) = d2(x)
d2(x±1) = d2(x) + d1(x)
d2(x±2) = d2(x) + d1(x) + d1(x±1)
d2(x±3) = d2(x) + d1(x) + d1(x±1) + d1(x±2)
etc.

This gives us the sum

d2(x±l) = d2(x) + i=0Σl-1 d1(x±i).

Below, we solve for the closed form:

d2(x±l) = d2(x) + i=0Σl-1 (d1(x) ± 12Aii)
= d2(x) + ld1(x) + i=1Σl-1 ±12Aii
= d2(x) + ld1(x) + (±12Ai) i=1Σl-1 i
= d2(x) + ld1(x) + (±12Ai) l(l-1)/2
= d2(x) + ld1(x) + (±6Ail2) - (±6Ail)
= d2(x) + l(d1(x) + (±6Ail) - (±6Ai))
= d2(x) + l(d1(x±l/2) ± 6Ai).

Updating the decision variable d(x±1,y±1/2) is the most complex.  Beginning with the summation

d(x±(l+1),y±1/2) = d(x±1,y±1/2) + i=0Σl-1 d2(x±i),

we solve below for the closed form that requires the fewest multiplications and additions:

= d(x±1,y±1/2) + i=0Σl-1 (d2(x) +id1(x) +(±12Ai) i(i-1)/2)
= d(x±1,y±1/2) + ld2(x) + d1(x) i=1Σl-1 i + i=1Σl-1 ((±12Ai) i(i-1)/2)
= d(x±1,y±1/2) + ld2(x) + d1(x) l(l-1)/2 + (±12Ai) i=1Σl-1 i(i-1)/2
= d(x±1,y±1/2) + ld2(x) + d1(x) l(l-1)/2 + (±6Ai) i=1Σl-1 i2-i
= d(x±1,y±1/2) + ld2(x) + d1(x) l(l-1)/2 + (±6Ai) (i=1Σl-1 i2 - i=1Σl-1 i)
= d(x±1,y±1/2) + ld2(x) + d1(x) l(l-1)/2 + (±6Ai) (l(l-1)(2l-1)/6 - l(l-1)/2)
= d(x±1,y±1/2) + ld2(x) + d1(x) l(l-1)/2 + (±6Ai) l(l-1)/2((2l-1)/3 - 1)
= d(x±1,y±1/2) + ld2(x) + l(l-1)/2 (d1(x) + (±6Ai) ((2l-1)/3 - 1))
= d(x±1,y±1/2) + ld2(x) + l(l-1)/2 (d1(x) + (±2Ai) (2l-1) - (±6Ai))
= d(x±1,y±1/2) + ld2(x) + l(l-1)/2 (d1(x) + (±4Ail) - (±8Ai))
= d(x±1,y±1/2) + ld2(x) + (l2-l)/2 (d1(x) + (±4Ail) - (±8Ai))
= d(x±1,y±1/2) + ld2(x) + (l2-l)/2 d1(x) + (l2-l) (±2Ail) - (l2-l)(±4Ai)
= d(x±1,y±1/2) + ld2(x) + l2/2 d1(x) - l/2 d1(x) + (±2Ail3) - (±2Ail2) - (±4Ail2) - (±4Ail)
= d(x±1,y±1/2) + l(d2(x) + l/2 d1(x) - 1/2 d1(x) + (±2Ail2) - (±6Ail) - (±4Ai))
= d(x±1,y±1/2) + l(d2(x) + l/2 d1(x) - 1/2 d1(x±l) + (±2Ail2) - (±4Ai))
= d(x±1,y±1/2) + l(d2(x) + 1/2(-d1(x±l) + l((±4Ail)+ d1(x))) - (±4Ai))

If skipped run segment length l = Li-1 is a power of two, all the adjustments above can be

performed using only left shifts and additions.
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Figure 12 shows the optimized plotting algorithm.  It  makes use of the same global declarations of

Ai, Bi, Ci and Di used by the unoptimized algorithm.  Again, we have removed all variable

declarations.  Rather than reprint all the unoptimized initialization statements, we show only the

necessary additional statements.  We make use of indirect function calls to conserve space.  If the

last iteration of the loop is partially unrolled, the indirect calls can be replaced by direct calls.  Also,

if the algorthm is split into two algorithms specialized for positive or negative X plotting directions,

the absolute function call may be removed.

Notice that where a single step in X costs 4 additions, one skip in X costs 10 additions and 6

shifts.  In machines with barrel shifters, a shift is much less expensive than an addition.  A

conservative estimate would give an addition 20 times the cost of a shift.  Thus to break even, at

least  log(3)  = 4 pixels must be skipped.  Thus the smallest skip size is 4.

Skipping is not performed when |f'(x)| > 1/4, so cost in this case is similar to cost for the

unoptimized algorithm.  However, because the algorithm checks for skip size adjustments at each

Y step, algorithm overhead has increased: the skipping algorithm uses 2 more additions and 1 shift

for each step in Y.  Thus, if the entire curve has |f'(x)| > 1/4, total cost is

4a|XEnd-X| + (4a + s)|YEnd-Y|,

where s is the cost of a shift operation.  When |f'(x)| < 1/4 over the entire curve, skip size is

checked and a skip made at each Y step.  Increasing skip size by a factor of 2n costs a(n + 1) + sn.

For most curves, all adjustments except the first will have n = 1, only doubling skip size.  If skip

size is adjusted the minumum of one time, and 1/M is the largest slope on the curve segment, then

total cost is

(14a + 7s)|YEnd-Y| + 4a(|XEnd-X| - 2 log(M) |YEnd-Y|).

If skip size is adjusted the maximum of |YEnd-Y| times, total cost is

(16a + 8s)|YEnd-Y| + 4a(|XEnd-X| - (2 log(M)  + |YEnd-Y| - 2 log(M) )).

The cost of a curve segment with portions that fulfull both |f'(x)| < 1/4 and |f'(x)| > 1/4 will be the

sum of the costs of each of the separate portions.

Obviously, the performance of the optimized algorithm depends heavily on curve slope.  In

general, the closer the absolute slope of a curve is to zero, the better the performance of the

optimized RunRise algorithm.  The optimized algorithm should not be used if the smallest absolute

slope of the plotted curve is greater than 1/4.
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if (X < XEnd) /* If plotting toward positive X */
SkipSize = 2; /* Positive skip size */

else SkipSize = -2; /* Otherwise negative skip size */
XDecSkipConst = XDec0>>1; /* Used when updating 1st/2nd ord diffcs */
DecSkipConst = Ai<<2; /* Used when updating decision variable */
if (XDec0 < 0) /* Adjust for plotting direction */

DecSkipConst = -DecSkipConst;
XLastYStep = X; /* Where last Y step was made */
CheckShift = 2; /* Range w/i which skipping begins (4) */
SkipShift = 1; /* Skip size in X dimension */
NextPlot = PtPlot; /* Set first plot type */

while (Y != YEnd) { /* While we haven't reached the last run */
(*NextPlot)(X,Y,XLastYStep,Y); /* Peform a line or point plot */
if (Dec <= 0) { /* If not making a Y step, don't skip */

X += XStep; /* Increment X */
XDec2 += XDec1; /* Increment 2nd order X diffc */
XDec1 += XDec0; /* Increment 1st order X diffc */
Dec += XDec2; /* Increment decision variable */
NextPlot = PtPlot; /* Indicate next plot type */

} else { /* adjust skip size, plot */ /* If making a Y step */
RunHighBits = abs(X-XLastYStep)>>CheckShift; /* Find most sig bits in len last run */
if (RunHighBits != 0) { /* If > 2*skip size, adjust size */

NumHighBits = 1; /* How many times to double skip size */
while (RunHighBits != 1) { /* While more doubling required */

NumHighBits++; /* Record one more doubling */
RunHighBits >>= 1; /* Elim one doubling from RunHighBits */

} /* end while */
SkipSize <<= NumHighBits; /* Double skip size needed num times */
SkipShift += NumHighBits; /* Change dec var skip shift to match */
CheckShift += NumHighBits; /* Change most sig bit rng for last run */

} /* end if */

XLastYStep = X+XStep; /* Record location new Y step */
Y += YStep; /* Increment Y to perform Y step */
if (SkipShift == 1) { /* If skip size too small */

X += XStep; /* Perform an X step as above */
XDec2 += XDec1;
XDec1 += XDec0;
Dec += XDec2 - YDecConst;
NextPlot = PtPlot;

} else { /* If skip size lg enuf to reduce cost */
X += SkipSize; /* Increment X by skip size */
OldXDec1 = XDec1;
HalfXDec1Skip = (XDecSkipConst<<SkipShift);
XDec1 += HalfXDec1Skip;
OldXDec2 = XDec2;
XDec2 += ((XDec1 /* Update 2nd order diffc */

- XDecSkipConst)<<SkipShift);
XDec1 += HalfXDec1Skip; /* Update 1st order diffc */
DecSkip = (OldXDec1

+ (DecSkipConst<<SkipShift))
<< SkipShift;

DecSkip = (DecSkip - XDec1) >> 1;
DecSkip = (OldXDec2 + DecSkip

- DecSkipConst) << SkipShift;
Dec += DecSkip - YDecConst; /* Update decision variable */
NextPlot = LinPlot; /* Indicate next plot type */

} /* end if */
} /* end if */

} /* end while */
(*LinPlot)(XEnd,YEnd,XLastYStep,Y); /* Plot last run */

Figure 12: The optimized RunRise algorithm.  (X,Y) and (XEnd,YEnd) are endpoints.
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6. THE RISERUN ALGORITHM

Now let us find the decision variable needed when |f'(x)| > 1.  In this case, it is the Y component

of f'(x) that is larger, so the curve will "rise" faster than it "runs."  We will label segments of f(x)

where this condition holds true "RiseRun."

As is clear from table 1, the direction-flexible midpoint decision variable is d(x±1/2,y±1).

Expanded, this is

d(x±1/2,y±1) = 8Ai(x±1/2)3 + 8Bi(x±1/2)2 + 8Ci(x±1/2) - 8Di(y±1). (5)

We have used the constant 8Di rather than 2Di in (5) to allow the integer performance of the half

step x±1/2.  (5) reduces as follows:

= 8Ai(x3±3/2x2+3/4x±1/8) + 8Bi(x2±x+1/4) + 8Ci(x±1/2) - 8Di(y±1)
= 8Aix3 + (±12Ai+8Bi)x2 + (6Ai±8Bi+8Ci)x + (±Ai+2Bi±4Ci) - 8Di(y±1)

We use this all-integer equation to initialize our decision variable.  The following forward stepping

increments allow us to update that decision variable:

d2(x) = d(x±3/2,y±1) - d(x±1/2,y±1)
= 8Ai(x±3/2)3 + 8Bi(x±3/2)2 + 8Ci(x±3/2) - 8Ai(x±1/2)3 - 8Bi(x±1/2)2

- 8Ci(x±1/2)
= 8Ai(x3±9/2x2+27/4x±27/8) + 8Bi(x2±3x+9/4) + 8Ci(x±3/2)

- 8Ai(x3±3/2x2+3/4x±1/8) - 8Bi(x2±x+1/4) - 8Ci(x±1/2)
= ±24Aix2 + (48Ai±16Bi)x + (±26Ai+16Bi±8Ci)

d1(x) = d2(x±1) - d2(x)
= ±24Ai(x±1)2 + (48Ai±16Bi)(x±1) - ±24Aix2 - (48Ai±16Bi)x
= ±24Ai(x2±2x+1) + (48Ai±16Bi)(x±1) - ±24Aix2 - (48Ai±16Bi)x
= ±24Ai(±2x+1) + (±48Ai+16Bi)
= 48Aix + (±72Ai+16Bi)

d0x = d1(x±1) - d1(x)
= 48Ai(x±1) - 48Aix
= ±48Ai

d0y  = 8Dif(x±1/2,y±2) - 8Dif(x±1/2,y±1)
= 8Di(y±2) - 8Di(y±1)
= ±8Di.

Figures 13 and 14 show the unoptimized RiseRun algorithm.  Again, variable declarations and

global initializations are not shown.
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XDec0Const = (Ai<<5) + (Ai<<4); /* Used to init diffc constant */
XDec2Const = XDec0Const>>1; /* Used to init 2nd order diffc function */
XDec1Const = XDec2Const + (Bi<<4); /* Used to init 1st order diffc function */
YDecConst = Di<<3; /* Difference constant for a Y step */
XDecConst = Ci<<3; /* Used to init 1st/2nd order diffc fcts */

Temp1 = (Ai<<3)*X; /* Used several times to save multiplies */
if (X < XEnd) { /* If plotting in positive X direction */

XStep = 1; /* Set X increment */
XDec0 = XDec0Const; /* Difference constant for an X step */
XDec1 = (Temp1<<2) + (Temp1<<1) /* Init 1st order diffc function */

+ XDec0Const + XDec1Const;
XDec2 = ((Temp1<<1) + Temp1 /* Init 2nd order diffc function */

+ XDec1Const + XDec2Const)*X
+ XDec1Const + (Ai<<1) + XDecConst;

Dec = ((Temp1 + (XDec1Const>>1))*X /* Init decision variable */
+ (XDec1Const>>1) - (XDec2Const>>2)
+ XDecConst)*X + Ai + (Bi<<1)
+ (Ci<<2);

} else { /* If plotting in negative X direction */
XStep = -1; /* Set X increment */
XDec0 = -XDec0Const; /* Diffc constant for an X step */
XDec1 = (Temp1<<2) + (Temp1<<1) /* Init 1st order diffc function */

- (XDec0Const<<1) + XDec1Const;
XDec2 = (-(Temp1<<1) - Temp1 /* Init 2nd order diffc function */

+ XDec0Const + XDec2Const
- XDec1Const)*X + XDec1Const
- XDec0Const - (Ai<<1) - XDecConst;

Dec = ((Temp1 + (XDec1Const>>1) /* Init decision variable */
- XDec2Const)*X - (XDec1Const>>1)
+ XDec2Const - (XDec2Const>>2)
+ XDecConst)*X - (Ci<<2) + (Bi<<1)
- XDecConst;

} /* end if */

if (Y < YEnd) { /* If plotting in positive Y direction */
YStep = 1; /* Set Y increment */
Dec = Dec - YDecConst*Y - YDecConst; /* Final decision variable init'zation */

} else { /* If plotting in negative Y direction */
YStep = -1; /* Set Y increment */
XDec0 = -XDec0; /* Negate X differences */
XDec1 = -XDec1;
XDec2 = -XDec2;
Dec = -Dec + YDecConst*Y - YDecConst; /* Final decision varaible init'zation */

} /* end if */

Figure 13: RiseRun algorithm initialization.  (X,Y) and (XEnd,YEnd) are segment endpoints.

if (Y == YEnd) /* If degenerate curve, */
{LinPlot(X,Y,XEnd,YEnd); /* Plot a line */

else /* Otherwise, */
for (Y=Y; Y<=YEnd; Y=Y+YStep) { /* For each Y in the curve */

Plot(X,Y); /* Plot a point */
if (Dec < 0) { /* perform X step */ /* If must perform X step */

X = X + XStep; /* Adjust X accordingly */
Dec = Dec + XDec2 - YDecConst; /* Update the dec variable accordingly */
XDec2 = XDec2 + XDec1; /* Update the 2nd order diffc */
XDec1 = XDec1 + XDec0; /* Update the 1st order diffc */

} else Dec = Dec - YDecConst; /* If no X step, update dec var accdgly */
} /* end for */

Figure 14: RiseRun algorithm loop.  (X,Y) and (XEnd,YEnd) are curve segment endpoints.
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The RiseRun algorithm, like the RunRise algorithm, performs 4 additions for each step in X, 2

additions for each step in Y.  Thus algorithm cost is

4a|XEnd-X| + 2a|YEnd-Y|.

Note, however, that |YEnd-Y| will in this case always be greater than |XEnd-X|.

7. AN OPTIMIZED RISERUN ALGORITHM

With RiseRun curves, as f'(x) approaches infinity, the number of X steps will decrease greatly,

resulting in the plotting of series of ever-longer vertical runs.  We will adjust our plotting direction

so that we always plot towards infinite-slope points.  This allows us to skip like we did with

RunRise curves.  Since runs are now vertical, we skip Y steps rather than X steps.  Updating the

decision variable to reflect this skip is thus much easier:

d(x±1/2,y±(l+1)) = d(x±1/2,y±1) ± 8Dil.

Figure 15 shows the optimized RiseRun skipping algorithm.  Variable declarations are not

included.  Rather than reprint all of the unoptimized RiseRun algorithm's initializations, we show

only the needed additional initializations.  Unrolling the last iteration would allow removal of the

indirect function calls.  If the algorthm is split into two algorithms specialized for positive or

negative Y plotting directions, the absolute function call may be removed.

A Y step in this algorithm costs 2 additions, while a skip costs 2 additions plus 1 shift.  Thus a

skip size of 2 is adequate for a net gain.  Thus skipping is not performed when |f'(x)| < 2, so cost

in this case is again similar to cost for our non-skipping RiseRun algorithm.  The skipping

algorithm uses 2 more additions and 1 shift for each step in X.  Thus, if the entire curve has

|f'(x)| < 2, total cost is

2a|YEnd-Y| + (6a  + s)|XEnd-X|.

When |f'(x)| > 2 over the entire curve, we skip at each X step.  Adjusting the skip size requires 2

additions and one shift (again, normally only the initial adjustment will be more costly).  If skip

size is adjusted the minumum of one time, and m is the smallest slope on the curve, total cost is

(6a + s)|XEnd-X| + 2a(|YEnd-Y| - 2 log(m) |XEnd-X|).
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if (Y < YEnd) /* If plotting toward positive Y */
SkipSize = 1; /* Positive skip size */

else SkipSize = -1; /* Otherwise negative skip size */
YLastXStep = Y; /* Where last X step was made */
YDecSkipConst = YDecConst; /* Used when updating decision variable */
CheckShift = 1; /* Range w/i which skipping begins (2) */
NextPlot = PtPlot; /* Set first plot type */

while (X != XEnd) { /* While we haven't reached the last run */
(*NextPlot)(X,Y,X,YLastXStep); /* Peform a line or point plot */
if (Dec >= 0) { /* no X step */ /* If not making an X step, don't skip */

Y += YStep; /* Increment Y */
Dec -= YDecConst; /* Update decison variable */
NextPlot = PtPlot; /* Indicate next plot type */

} else { /* adjust skip size, plot */ /* If making an X step */
RunHighBits = abs(Y-YLastXStep)>>CheckShift; /* Find most sig bits in len last run */
if (RunHighBits != 0) { /* If > 2*skip size, adjust size */

NumHighBits = 1; /* How many times to double skip size */
while (RunHighBits != 1) { /* While more doubling required */

NumHighBits++; /* Record one more doubling */
RunHighBits >>= 1; /* Elim one doubling from RunHighBits */

} /* end while */
SkipSize <<= NumHighBits; /* Double skip size needed num times */
YDecSkipConst <<= NumHighBits; /* Dble decvar diffc const to match */
CheckShift += NumHighBits; /* Change most sig bit rng for last run */

} /* end if */
YLastXStep = Y+YStep; /* Record location new X step */
Y += SkipSize; /* Increment Y by skip size */
X += XStep; /* Increment X to perform X step */
Dec += XDec2 - YDecSkipConst; /* Update decision variable */
XDec2 += XDec1; /* Update 2nd order diffc function */
XDec1 += XDec0; /* Update 1st order diffc function */
NextPlot = LinPlot; /* Indicate next plot type */

} /* end if */
} /* end while */
(*LinPlot)(XEnd,YEnd,X,YLastXStep); /* Indicate next plot type */

Figure 15: The optimized RiseRun algorithm.  (X,Y) and (XEnd,YEnd) are endpoints.

If we adjust the skip size the maximum of |XEnd-X| times, total cost is

(8a + 2s)|XEnd-X| + 2a(|YEnd-Y| - (2 log(m)  + |XEnd-X| - 2 log(m) )).

The cost of a curve segment with portions that fulfull both |f'(x)| < 2 and |f'(x)| > 2 will be the sum

of the costs of each of the separate portions.

The closer the absolute slope of a curve is to infinity, the better the performance of the optimized

RunRise algorithm.  The optimized algorithm should not be used if the largest absolute slope of the

plotted curve is less than 2.
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8. USE OF THE ALGORITHMS IN TANDEM

Because each of the RunRise and RiseRun algorithms only function for curve segments that have

slope within a certain range, plotting a cubic curve with these algorithms will typically require that

the curve be split into segments which satisify the algorithms' slope range requirements.

Algorithm initialization must then be performed for each curve segment, increasing overhead.

The actual curve splitting itself will also increase overhead.  Since each algorithm takes as input

only function constants and segment endpoints, splitting essentially involves the location of

appropriate segment endpoints.  For the unoptimized algorithms, these endpoints will be the points

on the curve at which the conditions |f'(x)| = 1 and f'(x) = 0 hold true.  Locating these points will

involve floating point arithmetic.  The appropriate algorithm must then be called for each segment.

In the worst case, a curve will have to be split into seven such segments.  However, use of the

algorithms with spline and Bezier curves would typically require the splitting of curves into only

two or three segments.

Because the optimized algorithms take advantage of curve shape, they require some additional care.

In particular, the curve's inflection point (at which f''(x) = 0) must also be located, resulting in the

worst case in eight curve segments (again, two or three is more typical).  Plotting direction must

then be controlled so that the algorithms plot from the points at which |f'(x)| = 1 is true, toward the

points at which f'(x) = 0 and f''(x) = 0 are true.

9. AVOIDING OVERFLOW

Care must be taken to avoid overflow when using these algorithms.  Below, we provide overflow

analysis for the initialization and looping portions of each of the algorithms.

We begin with the unoptimized RunRise algorithm.  During initialization, the largest intermediate

value that must be handled is the first initialization of the decision variable, ((Temp1 +

XDec2Const2)*X + XDec2Const3)*X.  This represents 2Aix3 + 2Bix2 + 2Cix.  For ease of

algorithm use and analysis, we define i  such that each of the coefficients |Ai|, |Bi|, |Ci| and |Di| are

less than i.  The screen space variable |x| has the maximum value w/2, where w  is screen width.

Thus in the worst case, the decision variable will take on the intermediate value |iw(w2/4 + w/2+

1)|.  To represent this value without overflow, the condition

|iw(w2/4 + w/2+ 1)| < 2bits-1,
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where bits  is the number of bits available for representation, must hold true.  As an example, it is

reasonable to expect screen width w  to be less than 1280.  We then have

1280i (3202 + 640+ 1) < 2bits-1

1280i (103041) < 2bits-1

|i | < 2bits-1/131892480.

If a 32-bit word is to be used for representation, bits = 32 and |i |  must be less than or equal to 16.

Clearly, this is too restrictive.  If instead 64 bits are used during initialization, we have |i | <

3.496549627e+10.  Considering that  log(3.496549627e+10)  is 35, this is quite reasonable.

The algorithm changes the state of 5 variables while looping: X, Y, Dec, XDec1, and XDec2.  X and

Y are screen space variables, and thus will not overflow unless any screen coordinate is larger than

2bits-1  in magnitude -- an unlikely event, given the present state of raster technology.  XDec1

represents the difference function d1(x) = d2(x±1) - d2(x), and XDec2 the difference function d2(x).

By definition, then, XDec2 will always be larger than XDec1 in magnitude.

Dec represents the decision function d(x,y) evaluated at the midpoint (X±1,Y±1/2).  When curve

slope |f'(x)| < 1 (the RunRise case), the midpoint method guarantees that this point will be a

distance d of at most 1/2 in Y from the point (X±1,f(X±1)) (see again figure 4 and table 1).  Thus

we have

d = |f(X±1) - (Y±1/2)| ≤ 1/2.

Scaling by 2Di gives

2Did = |2Dif(X±1) - 2Di(Y±1/2)| ≤ Di.

Note now that 2Dif(X±1) - 2Di(Y±1/2) is equivalent to the decision variable (4).  Thus we have

|d(x±1,y±1/2)| = |Dec| ≤ Di.

XDec2 represents the difference function d2(x) = d(x±1,y±1/2) - d(x,y±1/2) = g(x±1) - g(x), where

g(x) is the function (3).  We define the difference d2'(x) = d2(x)/2Di = f(x±1) - f(x), where f(x) is

the function (2).  In the RunRise case, |f'(x)| < 1, which implies that d2'(x) = |f(x±1) - f(x)| ≤ 1,

and then it follows that |XDec2| = |d2(x)| ≤ 2Di.

This allows us to conclude that representing the RunRise looping variables requires only the

fulfillment of the almost trivial inequality

2Di < 2bits-1.
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Then if bits = 32, we must have Di < 230 to loop in the RunRise algorithm without overflow.

The overflow analysis of initialization for the unoptimized RiseRun algorithm is similar to the

RunRise initialization analysis.  The largest intermediate value calculated during initialization is

thepartial sum of the decision variable 8Aix3 + (±12Ai+8Bi)x2 + (6Ai±8Bi+8Ci)x +

(±Ai+2Bi±4Ci).

Here the worst case value is |i (w3 + 5w2 + 12w + 7)|, giving us the inequality

|i (w3 + 5w2 + 12w + 7)| < 2bits-1

if overflow is to be avoided.  Since this inequality is clearly more restrictive than the inequality

required for RunRise initialization, the use of more than 32 bits is appropriate.

Because the condition |f'(x)| < 1 does not hold for RiseRun curves, overflow analysis of the

RiseRun looping section will differ significantly from the similar RunRise analysis.  The

unoptimized RiseRun algorithm changes the same five variables as the unoptimized RunRise

algorithm.  We can again conclude that the overflow restrictions required by Dec and XDec2 will

most seriously affect program utility.

In the RiseRun algorithm, d2(x)/2Di = f(x±3/2) - f(x±1/2).  But since |f'(x)| ≥ 1, we cannot

conclude that |f(x±3/2) - f(x±1/2)| ≤ 1 and |XDec2| ≤ 8Di.  Theoretically, the difference |f(x±3/2) -

f(x±1/2)| could be infinite.  Clearly, however, a curve that fulfilled such a condition would have

infinite slope, and f(x) would then simply describe a vertical line.  In fact, any curve segment that

fulfills the condition XEnd = X would for our purposes be a vertical line, and would be most

quickly rendered by a primitive line plotting routine.  Since our RiseRun algorithm captures such

cases, we can guarantee that XEnd ≠ X and thus that |f(x±3/2) - f(x±1/2)| ≤ h, where h is screen

height.  This allows us to conclude that |XDec2| = d2(x) = |8Dif(x±3/2) - 8Dif(x±1/2)| ≤ 8Dih.,

and gives us the restriction

8Dih ≤ 2bits-1.

The RiseRun decision variable d(x±1/2,y±1), like the RunRise decision variable, is proportional to

a distance.  We'll call this distance d' = f(X±1/2) - (Y±1).  However, because |f'(x)| ≥ 1 for

RiseRun curves, |d'| has the wider range [0,h], which implies that |d(x±1/2,y±1)| has the

proportional range [0,8Dih], and that |Dec| ≤ 8Dih.  Thus the above overflow restriction for XDec2

also applies to Dec.
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Table 2

Ranges of looping variables contained in the
optimized RiseRun algorithm.  bits is the
number of bits used to represent Dec, h is
screen height in pixels

Variable Range
RunHighBits [0,bits]
NumHighBits [0,bits]
SkipSize [0,h ]
YLastXStep [0,h ]
CheckShift [0,bits]
YDecSkipConst [-XDec2,XDec2]

Table 3

Ranges of looping variables contained in the
optimized RunRise algorithm.  bits is the
number of bits used to represent Dec, w is
screen width in pixels.

Variable Range
SkipSize [0,w]
XLastYStep [-w/2,w/2]
SkipShift [0,bits]
OldXDec1 [-XDec1,XDec1]
HalfXDec1Skip [-XDec1,XDec1]
OldXDec2 [-XDec2,XDec2]

If bits = 32 and h  = 1024, we have

213 Di < 231

Di < 218.

Initialization in the optimized versions of the RunRise and RiseRun algorithms are practically

identical to the unoptimized initializations, and thus require no new analysis.  However, the

looping portions of these algorithms deserve more discussion.  Each of them uses the same

variables used in the unoptimized algorithms.  Because these variables take on the same sequence

of values that they would in the unoptimized algorithms (with some values in the sequence being

skipped), we can be assured that these variables will not overflow.

Both optimized algorithms change the state of several variables not used in their unoptimized

counterparts.  Tables 2 and 3 are tables of these variables and their ranges.  RunHighBits,

NumHighBits, and CheckShift are not included in table 3 because they are used in the optimized

RunRise algorithm exactly as they are in the optimized RiseRun algorithm.  None of the variables

in these tables will overflow if we hold to the inequalities given during the analysis of the

unoptimized algorithms.

The variable DecSkip in the optimized RunRise algorithm represents the difference

d(X±(l+1),Y±1/2) - d(X±1,Y±1/2).  In the worst case, the two decision variables in this difference

will be of opposite sign, giving a worst case magnitude of 2Di.  This implies that by holding to the

RunRise inequalities above, we can represent  DecSkip without overflow.
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10. USE OF THESE ALGORITHMS WITH PARAMETRIC CURVES

Typically, parametric curves are plotted by making both the X and Y coordinates functions of a

parameter t, which may take on values in the range [0,1].  For a given value of t, the X and Y

values are found, and a pixel plotted.

There are three basic problems which must be overcome if we are to render these curves with our

algorithms.  First, while parametric algorithms plot in the screen space [X,Y], they calculate the

individual X and Y pixel coordinates in the parametric spaces [t,X] and [t,Y].  Our algorithms, on

the other hand, plot and calculate in screen space [X,Y].  To overcome this problem, our

algorithms can be used twice: once to calculate X values, and once to calculate Y values.  The

algorithm variable X can be used to contain the current value of the parameter t., while the variable

Y contains an X or Y coordinate.

We then confront the second problem: since our algorithms can only use a step size of 1, X cannot,

like t, take on values only in the range [0,1].  However, by adjusting the parametric equations, we

can let X take on integer values in the range [0,n], where the even number n is the number of

parametric steps desired.  If we have the parametric equation

x(t) = At 3 + Bt2 + Ct, (6)

t  in [0,1], the equation

x(t') = A(t'3/n3) + B(t'2/n2) + C(t'/n), (7)

t'  in [0,n], would describe the same coordinates.

The third problem is more subtle.  As stated above, we must use our algorithms twice: once to find

values for X, and once to find values for Y.  As we calculate values for X, we must of course vary

t' in [t',X].  But to ensure that an accurate curve is rendered, as we calculate values for Y, we must

vary t' in [t',Y] in the same way.    In other words, x(t') and y(t') must be evaluated at the same t'

values.  If both curve segments in [t',X] and [t',Y] are calculated entirely by the RunRise

algorithm, t' will indeed be varied consistently: it will take on all integer values in the range [0,n].

However, if any portion of either curve segment in [t',X] or [t',Y] is calculated by the RiseRun

algorithm, X or Y -- not t' -- will at some point be varied by 1, and the values t' takes on will

depend on curve shape.  x(t') and y(t') will be evaluated at different t' values.

We avoid this problem by ensuring that all needed curve segments in [t',X] and [t',Y] will be

calculated by the RunRise algorithm alone.  If no point on either of the segments has absolute slope
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greater than one, they will both be plotted entirely by the RunRise algorithm.  In this case, the

number of parametric steps n should greater than max(|x(1)-x(0)|,|y(1)-y(0)|).  Otherwise, we must

consider the slopes of the curves x(t) and y(t) when choosing n.  The slope of (7) is

x(t') = (3A/n3)t'2 + (2B/n2)t' + (C/n). (8)

Clearly, as n increases, absolute slope decreases.  At the same time, increasing the number of

parametric steps n increases algorithm cost.  We must make the minimum number of parametric

steps required to ensure that only the RunRise algorithm will be used.

Slope magnitude on the two curve segments to be calculated will be greatest at one of the curves'

endpoints or inflection points.  At t = 0, (8) reduces to C/n.  If absolute slope is to be less than

one, we must have n ≥ |C|.  At t = n, (8) reduces to 1/n(3A + 2B + C).  We must have

n ≥ |3A + 2B + C|.  The inflection point lies at -B/3A.  If 0 < -B/3A < 1, we must also have

n ≥ |-B2/3A + C|.  In summary, the number of parametric steps n which must be made is the

largest of the following values:

 |Cx| ;  |Cy|
 |3Ax + 2Bx + Cx| ;  |3Ay + 2By + Cy|
 |-Bx2/3Ax + Cx| ;  |-By2/3Ay + Cy|
 x(1)-x(0) ;  y(1)-y(0)

where Ax, Bx, and Cx are the coefficients of x(t), and Ay, By, and Cy are the coefficients of y(t).

By choosing n as indicated, we are finding the largest t increment which will ensure that X or Y

will never be incremented by more than one, and using it over both of the curve segments x(t) and

y(t).  As a result, we oversample in those portions of the curve which would allow larger t

increments.  However, since these portions of the curve will have slope of low magnitude, use of

the optimized RunRise algorithm should compensate for most of this additional cost.  A different

approach is taken by algorithms that use adaptive forward differencing, which uses some

additional looping operations to dynamically adjust the size of t increments to ensure that X and Y

steps are always close to one.

11. AVOIDING OVERFLOW WITH PARAMETRIC CURVES

The parametric version of the RunRise decision variable (4) is

Ai(t'±1)3 + Bin(t'±1)2 + Cin2(t'±1) - Din3(X±1/2).
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Note that we have not scaled the parametric decision variable by 2 because we know that n is an

even number.  Below, we present overflow analysis only for the parametric equation x(t).  For

overflow restrictions for y(t), simply substitute h for w.The RunRise parametric differences are:

d2(t') = Ai(t'±1)3 + Bin(t'±1)2 + Cin2(t'±1) - Ait'3 - Bint'2 - Cin2t'
= Ai(t'3±3t'2+3t'±1) + Bin(t'2±2t'+1) + Cin2(t'±1) - Ait'3 - Bint'2 - Cin2t'
= Ai(±3t'2+3t'±1) + Bin(±2t'+1) ± Cin2

= ±3Ait'2 + (3Ai±2Bin)t' + (±Ai+Bin±Cin2)

d1(t') = ±3Ai(t'±1)2 + (3Ai±2Bin)(t'±1) - ±3Ait'2 - (3Ai±2Bin)t'
= ±3Ai(±2t'+1) ± (3Ai±2Bin)
= 6Ait' + (±6Ai+2Bin)

d0t' = ±6Ai

For the parametric versions of our algorithms, we only present overflow restrictions for the

looping sections.  Analysis for the parametric RunRise variables XDec2 and Dec is quite similar to

the analysis for the identically named non-parametric RunRise variables, and gives the overflow

restriction

Din3 < 2bits-1.

If bits = 32 and n = 256, we have Di ≤ 128.

Since many parametric curves interpolate or are controlled by points chosen on a computer screen,

it is often the case that the coefficients A, B, C, and D in (6) are integers, not rational.  In such

cases, Ai, Bi and Ci are equal to An, Bn, and Cn.  Most important, however, is the observation that

Di = 1.  In such cases, our RunRise overflow restriction above becomes

n3 < 2bits-1.

If bits = 32, we have n  ≤ 1290.

12. ALGORITHM COMPARISON AND EVALUATION

In this section, we compare the RunRise algorithms as they would be used with parametric curves

with the algorithms A and B presented by Klassen in [11].  We do not take into account the cost of

using Klassen's algorithms with adaptive forward differencing, nor the cost associated with

RunRise oversampling.  Table 4 shows the operation costs and the overflow restrictions associated
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Table 4

A comparison of Klassen's algorithms from [11] with our algorithms as used for plotting parametric curves
with integer coefficients.  n is the number of parametric steps made, w is the width of the screen in pixels,
bits is the number of bits used to represent algorithm values, Z is the number of bits of fractional
precision.

Operation Cost
Main Loop Initialization Overflow

Algorithm + i f < < = + * div xdiv < < i f = Restriction
RunRise 4.1 2 0 4 16 5 0 0 11 2 16 n3 < 2bits-1

RunRiseOpt 2.2 0.9 0.4 2.2 16 5 0 0 13 4 22 n3 < 2bits-1

Klassen's A 4 1 3 4 17+3Z 12 1 5 2 Z 28+2Z 46wn < 2bits-1

Klassen's B 11 4 0 11 40 12 5 0 0 6 33 2n3 < 2bits-1

with Klassen's algorithms and our algorithms.  We have assumed that a barrel shifter is available,

and counted all looping operations.  For initialization, we follow Klassen's practice of weighing

each branch of a conditional statement equally.

We averaged the performance of the main loops of our algorithms over 100 curves of the form

y = Ax3, with A varying between 1/50,000 and 1/500.  The curve segments were chosen so that

skipping was performed over the entire segment.  Testing showed that with other types of

segments, optimized algorithm performance was only comparable to unoptimized algorithm

performance.

Klassen's algorithm A has no conditional statements and thus is trivially averaged.  Algorithm B,

however, is not averaged and is shown as presented by Klassen.

Clearly, the main loop of the unoptimized algorithm uses less operations than the loop in Klassen's

algorithm B, and is comparable to the loop in algorithm A.  The main loop of the optimized

algorithm clearly outperforms the loops in both of Klassen's algorithms.  During initialization, our

algorithms use no expensive divide operations, and use about half the number of add and multiply

operations used by Klassen's algorithms.  It should be noted, however, that while our algorithms

require that a cubic curve be split into segments, both of Klassen's algorithms A and B do not

depend on slope.  Thus, initialization for the RunRise algorithms will in practice require slightly

more addition and multiply operations than Klassen's algorithms, as well as several floating point

calculations.

Klassen's algorithm A has by far the most liberal overflow restriction -- it is linear in n, the number

of parametric steps, and w, screen width in pixels.  The RunRise algorithms and Klassen's

algorithm B both have restrictions that are cubic in n, with the RunRise algorithms allowing twice

as many parametric steps as algorithm B.
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It should be noted that the overflow restriction shown for Klassen's algorithms guarantee that both

initialization and looping will be accomplished without overflow.  The restrictions shown for the

RunRise algorithms guarantee only that looping will be accomplished without overflow.

Initialization of our algorithms requires many more bits for representation than does initialization

for Klassen's algorithms (with the exception of algorithm A's extended precision divide (xdiv)

operation).

Klassen's algorithm A uses a fixed point approach, and thus incorporates an inherent level of error

not present in the other algorithms.  Both of Klassen's algorithms can be used with rational

coefficients, but doing so would require floating point calculation, increase error in algorithm A,

and introduce error into algorithm B.  Our algorithms remain perfectly accurate even with rational

coefficients.

If non-parametric curves are being plotted, overflow restrictions for our algorithms improve: the

RunRise algorithm requires only that the product of the rational denominators Di be less than

2bits–1, and the RiseRun algorithm is similar, but is linear in screen width.  Overflow restrictions

for Klassen's algorithms in such a case will not show such a significant improvement.

In summary, Klassen's algorithms make efficient use of available bits, but at the price of algorithm

speed or accuracy.  Our algorithms require more representational bits and some extra overhead, but

are faster and more accurate.  We believe that if word size is 64 or larger, or non-parametric curves

are being rendered, our algorithms are clear winners.

12. CONCLUSIONS AND FUTURE W O R K

We have presented integer-only algorithms that allow fast, accurate plotting of cubic curves.  We

have also presented optimized algorithms that work even more quickly when curve slope nears

infinity or zero.  Analysis shows that using these algorithms to plot parametric curves may require

more representational bits than already existing algorithms.  But if such bits are not at a premium,

or non-parametric curves are being plotted, our algorithms are the algorithms of choice.

We plan to explore further the use of these algorithms with parametric curves, spline curves, and

Bezier curves.  In particular, we would like to explore the use of these algorithms with adaptive

forward differencing.
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