Algorithms For Rendering Cubic Curves

Benjamin Watson and Larry F. Hodges

Graphics, Visualization, and Usability Center
College Of Computing
Georgia Ingtitute Of Technology
Atlanta, GA 30332

Abstract

We present two integer-only algorithms to be used in tandem for rendering cubic functions and
parametric cubic curves with rational coefficients. We then show how to take advantage of curve
shape to improve agorithm performance. Analysis of execution speed of existing agorithms
shows that our algorithms will match or outperform other current algorithms. Furthermore, while
other existing algorithms can only handle curves shaped by rational coefficients by introducing
some approximation error, our algorithms always choose the best approximation. When plotting
parametric curves, our algorithms may require more bits of representation for some integer
variables than other existing algorithms.

Categories and Subject Descriptors. G.1.1 [Numerical Analysis]: Interpolation — spline and
piecewise polynomial interpolation; G.1.2 [Numerical Analysis]: Approximation — spline
and piecewise polynomial approximation; 1.3.3 [Computer Graphics]|: Picture/lmage
Generation — display algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling — curve, surface, solid, and object representations, geometric algorithms,
languages and systems.

General Terms: Algorithms

Additional Key Words And Phrases: rendering, parametric curves, raster graphics.

1. INTRODUCTION

Computer scientists have been developing line- and curve-rendering agorithms for over 25 years.
But only recently have efficient algorithms for the plotting of cubic curves begun to appear. This

paper will develop and propose two fast, integer-only algorithms, which can be used in tandem to
render on araster display cubic curves with rational coefficients defined by the function

Y = (A/AQX3 + (By/Bg)x? + (CH/Cy)x + (Dy/Dy). (1)

The agorithms are based the midpoint method, described by Van Aken and Novak in [17] and
below.

2. HISTORY AND EXISTING ALGORITHMS

J. E. Bresenham was the first to present afast, integer-only line rendering algorithm in 1965 [1].
Research in line rendering since has seized on the periodic patterns shown by Bresenham's
algorithm when viewed on araster display as a means of improving algorithm speed [4,14].

Algorithms for rendering circles began to appear in the 1970s. Bresenham [2,3], Horn [7], and
Mcllroy [12] have al presented algorithms. Later, algorithms for rendering ellipses were
published [9,15,16], and more recently, algorithms for the plotting of parabolas and hyperbolas
were presented [13,15,18].

Algorithms for the rendering of cubic curves have only begun to appear in the last few years. In
[11], Klassen presented two algorithms for rendering parametric cubic curves. First he identified
the family of Bezier curvesthat are "worst-case”, meaning that they are most likely to cause
overflow during calculation. If 2his screen length or width, Klassen asserted that "worst case”
curves would have the four Bezier control points [-h,5h,-5h,h] in at least one dimension, which
would describe the one-dimensional parametric Bezier cubic 32ht3 - 48ht2 + 18ht - h. Klassen
called such curves S curves. Klassen then presented his two algorithms and outlined their relative
speed and overflow restrictions for worst-case curves. Algorithm A uses a fixed-point
representation of curve coordinates, and thus incorporates an inherent level of error. However, it
isfast and has aliberal overflow restriction. Algorithm B divides forward differencesinto integer
and fractional parts, providing perfect accuracy. But it is slower than agorithm A, and can only
take 1024 parametric stepsif overflow isto be avoided with 32-bit words. Both algorithms allow
arbitrary step size and do not restrict curve segments to certain slope octants. Both can be used

d(x,y) <|0
[/...~ Dn/Dd
> >
dix,y) >0
Figure 1: Elimination of the constant term Figure 2: If the decison function is
can be compensated for by atrandation. evaluated at a point above the curve, it

is negative. Otherwiseit is positive.

with non-integer coefficients. However, use of such coefficients with algorithm B would eliminate
its perfect accuracy.

In [10], Klassen studied the use of these two algorithms with cubic spline curves. He envisioned
the use of the algorithms with adaptive forward differencing [6,8], which dynamically adjusts step
Sizeasacurveis plotted.

Simultaneous to Klassen, Chang et al. [5] developed an agorithm similar to Klassen's algorithm B
that also could be used with adaptive forward differencing. Differences between the two
algorithms are minor.

3. PRELIMINARIES

3.1. Elimination Of The Constant Term D,/Dgy

Since the last term (D/Dg) in (1) does not change the shape of the curve, we can render the curve
described by instead rendering the curve

Yy = (An/Ag)x3 + (By/Bg)x2+ (Cy/Cqg)x 2

with a compensating trandation (seefigure 1). Notethat if the (D/Dg) rational coefficient isnot an
integer, trandation of the Y coordinate at plotting by round(D,/Dg) alone will not necessarily
produce the best approximation of the curve. In section 4, we discuss a method of compensating
for thiserror.

Table 1

O O O The candidate points and the midpoint used depend on curve slope and
X and Y plotting directions. The points here are listed in clockwise
(X+1,Y+1) order.
e —
‘— ‘ O Y Plot Dir|X Plot Dir||Slope]| Candidate Points |Midpoints
X,Y) (X+1Y) positive positive <1 [(X+L)Y); (X+1,Y+1) [(X+1,Y+1/2)
positive positive >= 1 |(X+1,Y+1); (X,Y+1) [(X+1/2,Y+1)
positive negative | >=1 |(X,Y+1); (X-1,Y+1) |(X-1/2,Y+1)

O O O positive negative | <1 [(X-1,Y+1); (X-1Y) [(X-1Y+1/2)

. negative | positive <1 [(X-1Y); (X-1,Y-1) [(X-1,Y-1/2)
Figure 3: If |slopel <O and X and ¥ negative | positive | >=1 [(X-LY-1); (X.Y-1) |(X-1/2,Y-1)
plotting directions are positive the negative | negative | >=1 |(X,Y-1); (X+LY-1) |(X+12,Y-1)
S(af‘lj;date pointsare (X+1,Y) and (X+1, negative | negative | <1 [(X+LY-1); (X+L1Y) |(X+1Y-1/2)

o O O o O O O _

40()(}1_Y+1/2) (X+2,Y+1/2)
o0 O 0 @ O

(X)Y) (X)Y) (X+LY)
Figure 4. If |slopel < 0O and the X and Y Figure 5: With this curve, (X+1,Y) would be
plotting directions are positive the midpoint plotted, and (X+2,Y +1/2) used as the next midpoint.
is (X+1,Y+1/2).

3.2. The Midpoint Method

The midpoint method, described by Van Aken and Novak in [17], requires the incremental
evaluation of a decision function that indicates which of two candidate pixels should be chosen for
rendering. If the equation for acurveisy = f(x), then the decision function has the form d(x,y) =
f(X) - y. Noticethat thisfunction will have adifferent sign on each side of the curve f(x) (see
figure 2).

Where do we evaluate this function? This depends on the slope of the curve. If -1<f'(x) <1
and we are plotting in positive X and Y directions, then if we have just plotted the point (X,Y), the
two candidate points for plotting are (X+1,Y) and (X+1,Y +1) (seefigure 3; table 1 for a complete
list of candidate points). The midpoint method eval uates the decision function at the midpoint
between the candidate pixels. In our example, thismidpoint is (X+1,Y +1/2), and thus we evaluate
d(X+1,Y+1/2) (seefigure 4; table 1 for the complete list of midpoints). We will call the decision
function the "decision variable" when it is evauated at a midpoint.

Since the sign of the decision function d(x,y) correspondsto a specific side of f(x), the sign of
decision variable d(X+1,Y +1/2) indicates the side of f(x) on which the midpoint lies, and also
which of the candidate pixelslies closer to the curve being plotted, f(x). In figure 4, the sign of the
decision variableis negative, so the lower candidate pixel is chosen for plotting.

Once the next pixd is chosen and plotted, the decision function must be evaluated at the next
midpoint to allow the plotting of the next pixel. In our example (figure 5), the appropriate decision
variable would be d(X+2,Y +1/2).

3.3 Forward Differencing

Simple evaluation of the decision function at each successive midpoint would be computationally
expensive. Fortunately, thereis amethod of incremental function evaluation, called forward
differencing, which is uniquely suited to our needs. This method, which was known to Newton,
involvesthe initialization of several difference valuesthat may be added together to produce the
value of afunction at a certain point. These difference values are then themselves incrementally
evaluated, to prepare for the next evauation of the original function. Note that mulitiplicationis
only required for function and difference initialization. Furthermore, if all function coefficients are
integers, no floating point addition is required.

As an example, consider the simple function f(x) = 2x + 1. f(x+1) differsfrom f(x) only by the
constant difference value 2. By successively adding 2 to an initial value for f(x), we could
incrementally calculate the value of f(x) at integer intervals on X. For the higher-order function
g(x) = x2, the binomial expansion g(x+1) = (x+1)2 = x2 + 2x + 1 gives us the first-order
difference value 2x + 1 for an integer interval. Sincethis difference value is aso dependent on X,
it must also be subjected to forward differencing, as aready discussed. Thus the incremental
calculation of g(x) = x2 would require two additions per integer interval.

4. THE RUNRISE ALGORITHM

Let usfirst find the decision function d(x,y) for equation (2) when -1 < f'(x) < 1. Inthis case, the
X component of f'(x) islarger than the Y component: the curve "runs’ faster than it "rises.” We
will label segments of f(x) where this condition holds true "RunRise.” Since we will only make
use of the sign of our decision function, we multiply our cubic function (2) by 2A 4B4Cq to increase
efficiency by eliminating the floating point division calculations. To conserve space, we use the
shorthand A; = ApB¢Cqy, Bj = BhA¢Cq, Ci = ChAgBg, and D; = A4B4Cy, in the rest of this paper

and the equation below. We assume without loss of generality that D; (and thus the denominators
Ag, By, and Cy) are positive:

2Djy = 2AiX3 + ZBiX2 + 2Gix. (3)

We will find it useful to plot in both positive and negative X and Y directions. Our direction-
flexible decision variable is then

d(x+1,y+1/2) = 2Ai(x£1)3 + 2Bj(x+1)2+ 2Cj(xx1) - 2Dj(yx1/2) 4)
where + is positive if we are plotting in a positive direction, negative otherwise.

We must evaluate (4) incrementally as we plot the RunRise portion of f(x). To avoid
computationally complex multiplications, we will use forward differencing. The difference
constant doy is the difference between d(x,y) evauated at the "current” Y coordinate, and d(x,y)
evaluated at the "next" Y coordinate:

~

= d(xx1,y+3/2) - d(x+1,y+1/2)
= 2D;i(y+3/2) - 2Di(y+1/2)
=+2D;.

This difference constant is used to update the decision variablewhen a™Y step” ismade -- that is,
when the last plotted pixel differsfrom the previoudly plotted oneinitsY coordinate.

Because the decision variable (4) is athird-order function in X, updating it when an X step is made
ismore complex. The second order difference function dy(x) is the difference between the
decision variable at the current X coordinate and the next X coordinate:

da(x) = d(xx1,y+1/2) - d(x,y+1/2)

2Ai(Xil)3 + ZBi(Xi:I.)2 + 2Ci(x£1) - 2Aix3 - 2Bix2 - 2Cix
2A(x3+3x24+3x+1) + 2Bj(x2+2x+1) + 2Cj(x+1) - 2Aix3 - 2Bjx2 - 2Cix
2A(£3x2+3x£1) + 2Bj(¥2x+1) + 2C;

+6AiX2 + (6A;+4B;)x + (x2A+2B+2C;).

da(x) must itself be subjected to forward differencing. Thefirst order difference function d1(x) is
the difference between the value of dy(x) at the current and next X coordinates:

di(x) = da(x£1) - da(x)

+6A(x£1)2 + (6Aix4B;)(x£1) - +6kAx2 - (6A+4B;)x
+6A;(x2t2x+1) + (6AnBd+4B;)(x+1) - +6AiX2 - (6Ax4B;)x
+6A(x2x+1) + (£t6A;+4B;))

12Aix + (x12A+4B;).

Finally, d1(x) must be subjected to forward differencing. The difference between d;(x) evaluated
at the current and next X coordinates gives us constant doy:

dox = dy(xz1) - di(X)
12Ai(Xi-l) - 12Aix

= +12A;.

Stepping one pixel at atime, and using the global declarations below, we can construct a direction-
flexible agorithm for plotting the RunRise segments of cubic curves. Figures 6 and 7 show the
core of thisalgorithmin C. For brevity's sake, we have removed the variable and function
declarations (all variables are long integers). The initiaization of A;, B;, C; and D; is not shown --
it iscommon to al curve segments.

Initsloop, the RunRise algorithm performs 4 additions for each step in X, 2 additions for each
stepinY. Thisgivesacost of

4a|xend-X| + 2alYEnd-Y],

where (X,Y) and (XEnd,YEnd) are the endpoints of the plotted curve segment, and a the cost of one
addition operation.

Earlier, we noted that compensating for the elimination of the non-integer constant with trandation
will not necessarily produce the best approximation of the curve. Adding an appropriately signed
round(D; * ((D/Dg) mod 1)) to theinitial decision variable will smulate afractional Y step and
improve accuracy.

5. AN OPTIMIZED RUNRISE ALGORITHM

In RunRise cubic curve segments, as f'(x) approaches zero, the number of Y steps will decrease
greatly, resulting in the plotting on-screen of a series of ever-longer horizontal lines, which we will
cal "runs' (figure 8). Thisimpliesthat the length of the next run L+, will always be greater than
the length of the previousrun L;. If plotting direction was adjusted to aim at slope-zero points,
algorithm speed could be improved by plotting, at each Y step, a beginning run segment of length
L; (figure 9), in effect "skipping" L; X steps of the above, unoptimized algorithm. Normal plotting
of the the remaining Li+1-L; pixels of the run could then be completed using the techniques of the
above algorithm.

XDec2Const 1 = A <<1;

/'k

Used to init 2nd order diffc function */

XDecOConst = (XDec2Const 1<<2) + (XDec2Const1<<1l); /* UWsed to init diffc constant */

XDec2Const 2 = Bi <<1;
XDeclGonst = XDec2Const 2<<1;
XDec2Const 3 = 4 <<1;
DecConst = D ;

YDecConst = DecConst <<1;

Tenpl = XDec2Const 1* X;
if (X< Xend) {

XStep = 1;
XDecO = XDecOConst ;
XDecl = (Tenpl<<2) + (Tenpl<<l)

+ XDecOConst + XDeclConst;
XDec2 = ((Tenpl<<l) + Tenpl
+ (XDecOConst >>1) + XDeclConst)*X
+ XDec2Const 1 + XDec2Const 2 + XDec2Const 3;

} else {
XStep = -1;
XDecO = - XDecOConst ;
XDecl = (Tenpl<<?) + (Tenpl<<l)

- XDecOConst + XDeclConst;
XDec2 = (-(Tenpl<<l) - Tenpl
+ (XDecOConst >>1) - XDeclConst)*X
- XDec2Const1 + XDec2Const2 - XDec2Const 3;
} /*endif */

Dec = ((Tenpl + XDec2Const2)*X + XDec2Const 3) *X;
if (Y < YEnd) {

YStep = 1;

Dec = Dec + XDec2 - YDecConst*Y - DecConst;
} else {

YStep = -1;

XDecO = - XDecO;

XDecl = - XDecl;

XDec2 = - XDec2;

Dec = -Dec + XDec2 + YDecConst*Y - DecConst;
} /*endif */
Figure 6:

if (X == Xe&nd)
{Li nPl ot (X Y, XEnd, YEnd) ;
el se
for (X=X X<=XEnd; X=XtXStep) {
Plot(XY);
XDec2 = XDec2 + XDecl,
XDecl = XDecl + XDecO;
if (Dec >0) { /* performY step */
Y=Y+ YStep;
Dec = Dec + XDec2 - YDecConst;
} else Dec = Dec + XDec2;
} /* end for */

/*
/*
/*

/*

/*

Wsed to init 2nd order diffc function */
Wsed to init 1st order diffc function */
Wsed to init 2nd order diffc function */
Wsed to init decision variable */

D fference constant for a Y step */

Used several tines to save multiplies */
If plotting in positive X direction */
Set X increment */

D fference constant for an X step */
Init 1st order diffc function */

Init 2nd order diffc function */

If plotting in negative X direction */
Set X increnent */

Dffc constant for an X step */

Init 1st order diffc function */

Init 2nd order diffc function */

Init decision variable */

If plotting in positive Y direction */
Set Y increment */

Final decision variable init'zation */
If plotting in negative Y direction */
Set Y increment */

Negate X differences */

Final decision variable init'zation */

RunRise algorithm initialization. (X,Y) and (XEnd,YEnd) are segment endpoints.

I f degenerate curve, */

Plot aline */

Q herwi se, */

For each X in the curve */

Plot a point */

Update the 2nd order diffc */

Update the 2st order diffc */

If must performY step */

Adj ust Y accordingly */

Updat e t he deci sion var accordingly */
If no Y step, update dec var accdgly */

Figure 7: RunRise algorithm loop. (XY) and (XEnd,YEnd) are curve segment endpoints.

__—l_——>_-

Figure 8: Plotted runs increase in length if
plotting direction heads towards points with
slope equa to zero.

—

Figure 10: A plotted curve segment with
1/3 < dope < /2. Run length alternates
between 2 and 3.

Figure 9: Run i+1 could be plotted by first
plotting a run of length Lj, and then using normal
midpoint method techniques.

A

Figure 11: Run i+l is safely plotted by first
plotting a run of length Lj-1, and then using
normal midpoint method techniques.

Thereis one catch: run length does not increase in a strict fashion. When for an integer 1, the

condition 1/ < f'(x) < /(1+1) holds over several Y steps, run length will alternate between [+1 and
| (figure 10). We will alow for thisby assuming at each Y step that the ensuing run length L+

will only be greater than or equal to Li-1, which would result in an initial run segment plot of

length L;-1 (figure 11).

When we plot such run segments, we must at once take | = L;j-1 forward differencing stepsin our
decision variable. In other words, given dy(x), dx(x) and d(xx1,y+1/2), we must find di(xzl),

dx(x#l), and d(x£(1+1),y+1/2). For the first-order decision function d;(x), we have

di(x) =dy(x)

di(x+1) =dy(x) + dox

dy(x+2) = dy(X) + dox + dox
dy(x+3) = dy(X) + dox + dox + dox
etc.

Clearly, this sequence forms the sum
da(xl) = dy(x) + j=0=""* dox.
The closed form of thissumis

dy(x=l) = di(x) + 12A].

For the second order difference function dx(x), the sequence of valuesis

da(x) = dy(x)

dp(x+1) = dy(x) + di(x)

dp(x+2) = dy(x) + di(x) + di(x£1)

dp(x+3) = do(X) + dy(x) + dy(x+1) + dy(x22)
etc.

This gives us the sum
da(xl) = da(X) + j=o='"1 dy(x+i).
Below, we solve for the closed form:

da(xl) = da(x) + =" (d1(x) + 12Aii)
= d(X) + dy(X) + gz L +12A]
= dp(x) + 1dy(x) + (+12A) j= =L i
= do(x) + Idy(X) + (£12A, I(1-1)/2
= do(x) + Idy(x) + (+6A12) - (:6A/])
= d(x) + 1(d1(x) + (£6Ail) - (£6A))
= dy(x) + 1(dy(x21/2) = BA).

Updating the decision variable d(x+1,y+1/2) is the most complex. Beginning with the summation
d(x£(1+1),y+1/2) = d(x+1,y+1/2) + j=o='1 dy(xzi),
we solve below for the closed form that requires the fewest multiplications and additions:

d(x+1,y+1/2) + i=gL (do(X) +idy(x) +(*12A) i(i-1)/2)

d(x+1,y+1/2) + Ido(x) + dL(X) j=1=*L i + =121 ((£12A) i(i-1)/2)
d(x+1,y+1/2) + lda(x) + di(x) 1(I-1)/2 + (£12A) j=g=-L i(i-1)/2
d(x+1,y+1/2) + ldp(x) + dy(x) 1(1-1)/2 + (+6A;) ==L i2-i

d(x+1,y+1/2) + da(X) + dy(x) 1(1-1)/2 + (£6A) (=121 i2 - j=g=-L i)
d(x+1,y+1/2) + da(x) + di(X) 1(1-1)/2 + (x6A;) (I(1-1)(21-1)/6 - 1(1-1)/2)
d(x+1,y+1/2) + Ida(x) + di(x) 1(1-1)/2 + (£6A) 1(-1)/2((21-1)/3 - 1)
d(x+1y+1/2) + Id(x) + I(I-1)/2 (dy(x) + (+6A) ((2I-1)/3 - 1))
d(xx1,y+1/2) + 1da(x) + 1(1-1)/2 (da(x) + (:2A)) (21-1) - (+6A})
d(xx1,y+1/2) + 1da(x) + 1(1-1)/2 (d1(x) + (x4Ail) - (£8A}))

d(x+1,y+1/2) + 1da(x) + (12-1)/2 (d1(X) + (x4Al) - (+8A}))

d(xx1,y+1/2) + 1da(x) + (12-1)/2 dy(x) + (12-1) (2A1) - (12-1)(x4A;)
d(xx1,y+1/2) + Ida(x) + 122 dy(x) - 12 dy(x) + (£2Ai13) - (£2Ai12) - (£4A12) - (x4A])
d(xxLy+1/2) + 1(dy(x) + /2 dy(X) - /2 dy(X) + (£2A12) - (+6A1) - (+4A)))
d(x+1,y+1/2) + 1(da(x) + /2 dy(X) - 12 dy(xl) + (£2A(l2) - (x4A;))
d(x+1y+1/2) + 1(da(x) + L2(-dy(xxl) + 1(x4A1)+ dy(X))) - (+4A;))

If skipped run segment length | = L;j-1 is apower of two, all the adjustments above can be
performed using only left shifts and additions.

10

Figure 12 shows the optimized plotting algorithm. It makes use of the same global declarations of
Ai, Bj, C; and D; used by the unoptimized algorithm. Again, we have removed al variable
declarations. Rather than reprint al the unoptimized initialization statements, we show only the
necessary additional statements. We make use of indirect function calls to conserve space. If the
last iteration of the loop is partialy unrolled, the indirect calls can be replaced by direct calls. Also,
if the algorthm is split into two algorithms specialized for positive or negative X plotting directions,
the absolute function call may be removed.

Notice that where asingle step in X costs 4 additions, one skip in X costs 10 additions and 6
shifts. In machines with barrel shifters, a shift is much less expensive than an addition. A
conservative estimate would give an addition 20 times the cost of ashift. Thusto break even, at
least og(3)0= 4 pixels must be skipped. Thusthe smallest skip sizeis4.

Skipping is not performed when |f'(X)| > 1/4, so cost in this case is similar to cost for the
unoptimized algorithm. However, because the algorithm checks for skip size adjustments at each
Y step, agorithm overhead has increased: the skipping algorithm uses 2 more additions and 1 shift
for each stepin Y. Thus, if the entire curve has [f'(x)| > 1/4, total cost is

4a|xend-X| + (4a + 9)|YEnd-Y|,

where sisthe cost of a shift operation. When [f'(x)| < 1/4 over the entire curve, skip sizeis
checked and askip made at each Y step. Increasing skip size by afactor of 2" costsa(n + 1) + sn.
For most curves, al adjustments except the first will have n = 1, only doubling skip size. If skip
size is adjusted the minumum of onetime, and /M isthe largest dope on the curve segment, then
total cost is

(14a + 7s)|YEnd-Y| + 4a([XEnd-X| - 2Ho9(M){yENnd-Y]).
If skip size is adjusted the maximum of |YEnd-Y] times, total cost is
(16a + 89)|YEnd-Y| + 4a(|XEnd-X| - (2009(M)C+ [YEnd-Y] - 2Tog(M)0y),

The cost of a curve segment with portions that fulfull both [f'(x)| < 1/4 and [f'(X)| > /4 will be the
sum of the costs of each of the separate portions.

Obvioudly, the performance of the optimized algorithm depends heavily on curve slope. In
general, the closer the absolute Slope of a curve isto zero, the better the performance of the
optimized RunRise algorithm. The optimized agorithm should not be used if the smallest absolute
dope of the plotted curve is greater than 1/4.

11

if (X < Xend)

Ski pSi ze = 2;
el se SkipSize = -2;
XDecSki pConst = XDec0>>1;
DecSki pConst = Al <<2;
if (XDecO < 0)

DecSki pConst = - DecSki pConst ;
XLastYStep = X
CheckShift = 2;

Skipshift = 1;
Next Plot = PtPlot;

while (Y !'= YEnd) {

(*Next Plot) (X Y, XLast YStep, Y);

if (Dec <= 0) {
X += XSt ep;
XDec2 += XDecl;
XDecl += XDecO;
Dec += XDec2;
Next Pl ot = PtPlot;

} else { /* adjust skip size, plot */
RunH ghBits = abs(X- XLast YSt ep) >>CheckShi ft;
if (RunHghBits !=0) {

NumH ghBits = 1;
while (RunH ghBits = 1) {
NurH ghBi t s++;
RunH ghBits >>= 1;
} /* end while */
Ski pSi ze <<= NunH ghBi ts;
Ski pShift += NunH ghBits;
CheckShift += NunH ghBi ts;
}/* endif */

XLast YStep = X+XSt ep;
Y += YSt ep;
if (SkipShift 1) {
X += XSt ep;
XDec2 += XDecl,;
XDecl += XDecO;

Dec += XDec2 - YDecConst;
Next Pl ot = PtPlot;

} else {
X += Ski pSi ze;

d dXDecl = XDecl;

Hal f XDec1Ski p = (XDecSki pConst <<Ski pShi ft);

XDecl += Hal f XDec1Ski p;
d dXDec2 = XDec2,;
XDec2 += ((XDecl
- XDecSki pConst) <<Ski pShi ft);
XDecl += Hal f XDec1Ski p;
DecSkip = (A dXDecl
+ (DecSki pConst <<Ski pShift))
<< Ski pShift;
DecSkip = (DecSkip - Xbecl) >> 1;
DecSkip = (A dXDec2 + DecSkip
- DecSki pConst) << SkipShift;
Dec += DecSkip - YDecConst;
Next Pl ot = LinPlot;
}/* endif */
}/* end if */
} /* end while */
(*Li nPl ot) (XEnd, YEnd, XLast YStep, Y);

[* If plotting toward positive X */

/* Positive skip size */

/* G herw se negative skip size */

/* Used when updating 1st/2nd ord diffcs */
/* Used when updating decision variable */
/* Adjust for plotting direction */

/* Where last Y step was made */

/* Range wi which skipping begins (4) */
[* Skip size in X di mension */

/* Set first plot type */

/* Wile we haven't reached the last run */
/* Peforma line or point plot */

/* If not making a Y step, don't skip */
[* Increnent X */

/* Increment 2nd order X diffc */

/* Increnent 1st order X diffc */

/* Increment decision variable */

/* Indicate next plot type */

/* If making a Y step */

/* Find most sig bits in len last run */
[* |f > 2*skip size, adjust size */

/* How nmany tines to doubl e skip size */
/* Wile nore doubling required */

/* Record one nore doubling */

/* Himone doubling fromRunH ghBits */

/* Doubl e skip size needed numtines */

/* Change dec var skip shift to match */
/* Change nost sig bit rng for last run */

/* Record | ocation new Y step */

/* Increment Y to performY step */
[* If skip size too small */

/* Performan X step as above */

/* If skip size | g enuf to reduce cost */
/* Increment X by skip size */

/* Update 2nd order diffc */

/* Update 1st order diffc */

/* Updat e decision variable */
/* Indicate next plot type */

/* Plot last run */

Figure 12: The optimized RunRise algorithm. (X,Y) and (XEnd,YEnd) are endpoints.

12

6. THE RISERUN ALGORITHM

Now let us find the decision variable needed when [f'(x)| > 1. Inthiscase, itistheY component
of f'(x) that islarger, so the curve will "rise" faster than it "runs." We will label segments of f(x)
where this condition holds true "RiseRun."

Asisclear from table 1, the direction-flexible midpoint decision variable is d(x+1/2,y+1).
Expanded, thisis

d(x+1/2,y+1) = 8Ai(x+1/2)3 + 8B;(x+1/2)2 + 8Ci(x+1/2) - 8Di(y+1). (5)

We have used the constant 8D; rather than 2D; in (5) to alow the integer performance of the half
step x+1/2. (5) reduces asfollows:

8A(x3+3/2x2+3/4x+1/8) + 8Bj(x2xx+1/4) + 8Ci(x+1/2) - 8Dj(y+1)
8AX3 + (ilZAi+8Bi)X2 + (6A+8B;+8Cj)x + (xA;+2B;+4C;) - 8Dj(y+1)

We use this al-integer equation to initialize our decision variable. The following forward stepping
increments allow us to update that decision variable:

da(X) = d(xx3/2,y+1) - d(x+1/2,y+1)

8A(x£3/2)3 + 8Bj(x=3/2)2 + 8C;(x+3/2) - 8A;(x+1/2)3 - 8B;(x+1/2)2
- 8Ci(x+1/2)

8A(x3+9/2x2+27/4x+27/8) + 8B(x2£3x+9/4) + 8C;(x+3/2)

- 8A|(x3+3/2x2+3/4x+1/8) - 8Bj(xZx+1/4) - 8Ci(x+1/2)

+24Ax2 + (48Ax16B;)x + (+26A+16B;+8C;)

di(x) = dp(xx1) - da(x)

£24A(x1)2 + (48A+16B])(xx1) - 24AX2 - (48A+16B;)X
£24A(x2:2x+1) + (48A;+16B;)(xx1) - +24AX2 - (48A=16B;)X
£24A(+2x+1) + (+48A+16B))

48AX + (+72A+16B))

dox = di(xx1) - di(x)
= 48A(xx1) - 48AX
= +48A,

doy =8Dif(x+1/2,y+2) - 8Dif(x+1/2,y+1)
= 8Di(y+2) - 8Di(y+1)

= iSDi.

Figures 13 and 14 show the unoptimized RiseRun algorithm. Again, variable declarations and
global initializations are not shown.

13

XDecOConst = (A <<5) + (A <<4);
XDec2Const = XDecOConst >>1;
XDeclConst = XDec2Const + (Bi<<4);
YDecConst = D <<3;

XDecConst = 0 <<3;

Tenpl = (A <<3)*X;
if (X< Xend) {

XStep = 1;
XDecO = XDecOConst ;
XDecl = (Tenpl<<2) + (Tenpl<<l)

+ XDecOConst + XDeclConst;
XDec2 = ((Tenpl<<l) + Tenpl
+ XDeclConst + XDec2Const)*X

+ XDeclConst + (Ai<<1l) + XDecConst;

Dec = ((Tenpl + (XDeclConst>>1))*X

+ (XDeclConst>>1) - (XDec2Const >>2)

+ XDecCQonst)*X + A+ (Bi <<1)

+ (4 <<2);
} else {
XStep = -1;
XDecO = - XDecOConst ;
XDecl = (Tenpl<<2) + (Tenpl<<l)

- (XDecOConst <<1) + XDeclConst;
XDec2 = (-(Tenpl<<l) - Tenpl

+ XDecOConst + XDec2Const

- XDeclConst)*X + XDeclConst

- XDecOConst - (Ai<<l) - XDecConst;

Dec = ((Tenpl + (XDeclConst >>1)
- XDec2Const) *X - (XDeclConst >>1)
+ XDec2Const - (XDec2Const >>2)
+ XDecConst)*X - (0 <<2) + (Bi<<1)

- XDecConst ;

} /¥ end if */
if (Y <YEnd) {

YStep = 1;

Dec = Dec - YDecConst*Y - YDecConst;
} else {

YStep = -1;

XDecO = - XDecO;

XDecl = - XDecl;

XDec2 = - XDec2;

Dec = -Dec + YDecConst*Y - YDec(Const;
} /* endif */

/*

/*

Wsed to init diffc constant */

Used to init 2nd order diffc function
Wsed to init 1st order diffc function
D fference constant for a Y step */
Wsed to init 1st/2nd order diffc fcts

Used several tines to save multiplies
If plotting in positive X direction */
Set X increnment */

D fference constant for an X step */
Init 1st order diffc function */

Init 2nd order diffc function */

Init decision variable */

If plotting in negative X direction */
Set X increment */

Dffc constant for an X step */

Init 1st order diffc function */

Init 2nd order diffc function */

Init decision variable */

If plotting in positive Y direction */
Set Y increnent */

Final decision variable init'zation */
If plotting in negative Y direction */
Set Y increnent */

Negate X differences */

Final decision varaible init'zation */

Figure 13: RiseRun agorithm initialization. (X,Y) and (XEnd,YEnd) are segment endpoints.

if (Y == YEnd)
{Li nPl ot (X, Y, XEnd, YEnd) ;
el se
for (Y=Y, Y<=YEnd; Y=Y+YStep) {
Pot(XY);

if (Dec <0) { /* performX step */

X =X+ XStep;
Dec = Dec + XDec2 - YDecConst;
XDec2 = XDec2 + XDecl;
XDecl = XDecl + XDecO;
} else Dec = Dec - YDecConst;
} /* end for */

/*

If degenerate curve, */

Plot aline */

G herwi se, */

For each Y in the curve */

Pl ot a point */

If must performX step */

Adj ust X accordingly */

Update the dec variabl e accordingly */
Update the 2nd order diffc */

Update the 1st order diffc */

If no X step,

Figure 14: RiseRun algorithm loop. (X,Y) and (XEnd,YEnd) are curve segment endpoints.

14

*/
*/

*/

updat e dec var accdgly */

The RiseRun agorithm, like the RunRise algorithm, performs 4 additions for each step in X, 2
additionsfor each stepin Y. Thusalgorithm cost is

4a|xend-X| + 2alYEnd-Y].

Note, however, that [YEnd-Y| will in this case aways be greater than |[XEnd-X]|.

7. AN OPTIMIZED RISERUN ALGORITHM

With RiseRun curves, as f'(x) approaches infinity, the number of X steps will decrease grestly,
resulting in the plotting of series of ever-longer vertical runs. We will adjust our plotting direction
so that we always plot towards infinite-slope points. This alows usto skip like we did with
RunRise curves. Sincerunsare now vertical, we skip Y steps rather than X steps. Updating the
decision variable to reflect this skip is thus much easier:

d(xx1/2,y+(1+1)) = d(x+1/2,y+1) + 8Djl.

Figure 15 shows the optimized RiseRun skipping agorithm. Variable declarations are not
included. Rather than reprint all of the unoptimized RiseRun algorithm'sinitializations, we show
only the needed additional initiaizations. Unrolling the last iteration would alow removal of the
indirect function calls. If the algorthm is split into two algorithms specialized for positive or
negative Y plotting directions, the absolute function call may be removed.

A'Y step inthisagorithm costs 2 additions, while a skip costs 2 additions plus 1 shift. Thusa
skip size of 2 is adequate for anet gain. Thus skipping is not performed when |f'(X)| < 2, so cost
in this case is again similar to cost for our non-skipping RiseRun algorithm. The skipping
algorithm uses 2 more additions and 1 shift for each step in X. Thus, if the entire curve has
[f'(X)| < 2, total cost is

2alYEnd-Y| + (6a + S)|XEnd-X|.

When [f'(x)| > 2 over the entire curve, we skip at each X step. Adjusting the skip size requires 2
additions and one shift (again, normally only theinitia adjustment will be more costly). If skip
sizeis adjusted the minumum of one time, and m isthe smallest lope on the curve, total cost is

(6a + s)|Xend-X| + 2a(|YEnd-Y| - 200g(MXENd-X]).

15

if (Y < YEnd)
Ski pSi ze = 1;
el se SkipSize = -1;
YLast XStep = Y;
YDecSki pConst = YDecConst ;
CheckShift = 1;
Next Pl ot = PtPlot;

while (X != Xend) {
(*NextPlot) (X Y, X YLast XStep);
if (Dec >=0) { /* no X step */
Y += YStep;
Dec -= YDecConst;
Next Pl ot = PtPl ot;
} else { /* adjust skip size, plot */

RunH ghBits = abs(Y- YLast XSt ep) >>CheckShi ft;

if (RunHghBits !'=0) {
NumH ghBits = 1;
while (RunH ghBits !'= 1) {
NunH ghBi t s++;
RunH ghBits >>= 1;
} /* end while */
Ski pSi ze <<= NunH ghBi ts;
YDecSki pConst <<= NunH ghBits;
CheckShi ft += NunH ghBi ts;
Y /* endif */
YLast XStep = Y+YStep;
Y += Ski pSi ze;
X += XSt ep;
Dec += XDec2 - YDecSki pConst;
XDec2 += XDecl;
XDecl += XDecO;
Next Pl ot = LinPl ot;
}/*endif */
} /* end while */
(*Li nPl ot) (XEnd, YEnd, X, YLast XSt ep);

/*

If plotting toward positive Y */
Positive skip size */

Q herwi se negative skip size */

Wiere last X step was nade */

Used when updating decision variable */
Range wi whi ch skipping begins (2) */
Set first plot type */

Whil e we haven't reached the last run */
Peforma line or point plot */

If not making an X step, don't skip */
Increnent Y */

Updat e deci son variable */

Indi cate next plot type */

If making an X step */

Find nost sig bits inlen last run */
If > 2*skip size, adjust size */

How many tines to doubl e skip size */
Wil e nmore doubling required */

Record one nore doubling */

Himone doubling fromRunH ghBits */

Doubl e skip size needed numtines */
Dbl e decvar diffc const to match */
Change nost sig bit rng for last run */

Record | ocation new X step */
Increnent Y by skip size */
Increnent X to performX step */
Updat e deci sion variable */

Update 2nd order diffc function */
Update 1st order diffc function */
I ndicate next plot type */

I ndi cate next plot type */

Figure 15: The optimized RiseRun algorithm. (X,Y) and (XEnd,YEnd) are endpoints.

If we adjust the skip size the maximum of |[XEnd-X| times, total cost is

(8a + 25)|XEnd-X| + 2a(|YEnd-Y]| - (21eg(Mm)tH [XEnd-X] - 2ogm)),

The cost of a curve segment with portions that fulfull both [f'(x)] < 2 and |f'(x)| > 2 will be the sum

of the costs of each of the separate portions.

The closer the absolute slope of a curveisto infinity, the better the performance of the optimized
RunRise algorithm. The optimized agorithm should not be used if the largest absolute dope of the

plotted curveislessthan 2.

16

8. USE OF THE ALGORITHMS IN TANDEM

Because each of the RunRise and RiseRun algorithms only function for curve segments that have
dope within a certain range, plotting a cubic curve with these algorithms will typically require that
the curve be split into segments which satisify the algorithms' slope range requirements.
Algorithm initialization must then be performed for each curve segment, increasing overhead.

The actua curve splitting itself will also increase overhead. Since each algorithm takes as input
only function constants and segment endpoints, splitting essentially involves the location of
appropriate segment endpoints. For the unoptimized algorithms, these endpoints will be the points
on the curve at which the conditions [f'(x)| = 1 and f'(x) = 0 hold true. Locating these points will
involve floating point arithmetic. The appropriate algorithm must then be called for each segment.
In the worst case, a curve will have to be split into seven such segments. However, use of the
algorithms with spline and Bezier curves would typically require the splitting of curvesinto only
two or three segments.

Because the optimized a gorithms take advantage of curve shape, they require some additional care.
In particular, the curve'sinflection point (at which *(x) = 0) must also be located, resulting in the
worst case in eight curve segments (again, two or three ismore typical). Plotting direction must
then be controlled so that the agorithms plot from the points at which [f'(x)| = 1 istrue, toward the
points at which f'(x) = 0 and f"(x) = 0 are true.

9. AVOIDING OVERFLOW

Care must be taken to avoid overflow when using these algorithms. Below, we provide overflow
analysisfor theinitialization and looping portions of each of the algorithms.

We begin with the unoptimized RunRise algorithm. During initiaization, the largest intermediate
value that must be handled isthefirst initidlization of the decision variable, ((Tenpl +
XDec2Const 2) *X + XDec2Const 3) *X. Thisrepresents 2A;x3 + 2Bjx2 + 2Cix. For ease of
algorithm use and analysis, we define i such that each of the coefficients |A;|, |Bil, |Ci| and |D;| are
lessthani. The screen space variable x| has the maximum valuew/2, where w is screen width.
Thusin the worst case, the decision variable will take on the intermediate value [iw(w2/4 + w/2+
1)|. To represent this value without overflow, the condition

W(W2/4 + wi2+ 1)| < 2bits-L,

17

where bits isthe number of bits available for representation, must hold true. Asan example, itis
reasonable to expect screen width w to be lessthan 1280. We then have
1280i (3202 + 640+ 1) < 2bits'1

1280i (103041) < 2bits1
i| < 2bits1/131892480.

If a32-bit word isto be used for representation, bits=32 and |i | must be less than or equal to 16.
Clearly, thisistoo restrictive. If instead 64 bits are used during initialization, we have |i | <
3.496549627e+10. Considering that tiog(3.496549627e+10)0is 35, thisis quite reasonable.

The agorithm changes the state of 5 variables while looping: X, Y, Dec, XDec1, and XDec2. X and
Y are screen space variables, and thus will not overflow unless any screen coordinate is larger than
2bits1 jn magnitude -- an unlikely event, given the present state of raster technology. XDec1
represents the difference function di(x) = da(x+1) - dx(x), and XDec?2 the difference function dy(x).
By definition, then, xpec2 will always be larger than XDec1 in magnitude.

Dec represents the decision function d(x,y) evaluated at the midpoint (X+1,Y+1/2). When curve
dope |f'(x)| < 1 (the RunRise case), the midpoint method guarantees that this point will be a
distanced of at most /2inY from the point (X+1,f(X+1)) (see again figure 4 and table 1). Thus
we have

d=[f(X£l) - (Yz1/2)| < V2.
Scaling by 2D; gives
2Did = |2Dif(X+1) - 2Di(Y+1/2)| < D;.

Note now that 2D;f(X+1) - 2D;(Y +1/2) is equivalent to the decision variable (4). Thuswe have
[d(x+1,y+1/2)| = |Dec| < D;.

XDec?2 represents the difference function da(x) = d(x+1,y+1/2) - d(x,y+1/2) = g(x+1) - g(X), where
g(x) isthe function (3). We define the difference d,'(x) = do(x)/2D; = f(xx1) - f(x), where f(x) is
the function (2). Inthe RunRise case, [f'(X)| < 1, which impliesthat dy'(x) = [f(xx1) - f(x)| < 1,
and then it follows that [XDec2| = |dx(X)| < 2D;.

This allows usto conclude that representing the RunRise looping variables requires only the
fulfillment of the almost trivial inequality

2D; < bits-1.

18

Then if bits = 32, we must have D; < 230 to loop in the RunRise algorithm without overflow.

The overflow analysis of initialization for the unoptimized RiseRun algorithm is similar to the
RunRiseinitidization analysis. Thelargest intermediate value calculated during initiaizationis
thepartial sum of the decision variable 8A;x3 + (+12A;+8B;j)x2 + (6A+8B;j+8C;)x +
(iAi+ZBii4Ci).

Here the worst case valueis|i (W3 + 5w2 + 12w + 7)|, giving us the inequality
li (W3 +5w2 + 12w + 7)| < 2bits-1

if overflow isto be avoided. Sincethisinequality is clearly more restrictive than the inequality
required for RunRise initialization, the use of more than 32 bits is appropriate.

Because the condition |f'(x)| < 1 does not hold for RiseRun curves, overflow analysis of the
RiseRun looping section will differ significantly from the similar RunRise analysis. The
unoptimized RiseRun agorithm changes the same five variables as the unoptimized RunRise
algorithm. We can again conclude that the overflow restrictions required by Dec and xpec2 will
most serioudly affect program utility.

In the RiseRun algorithm, dy(x)/2D; = f(x+3/2) - f(x+1/2). But since [f'(x)| = 1, we cannot
conclude that |f(x+3/2) - f(x+1/2)| < 1 and |XDec2| < 8D;. Theoretically, the difference [f(x+3/2) -
f(xx1/2)| could be infinite. Clearly, however, a curve that fulfilled such a condition would have
infinite dope, and f(x) would then smply describe avertical line. In fact, any curve segment that
fulfills the condition XeEnd = X would for our purposes be a vertica line, and would be most
quickly rendered by a primitive line plotting routine. Since our RiseRun algorithm captures such
cases, we can guarantee that Xend # X and thusthat |f(x+3/2) - f(x+1/2)| < h, where hiis screen
height. This allows usto conclude that |XxDec2| = dy(x) = |8D;if(x+3/2) - 8D;f(x+1/2)| < 8Djh.,
and gives usthe restriction

8Djh < 2bits1,

The RiseRun decision variable d(x+1/2,y+1), like the RunRise decision variable, is proportional to
adistance. Well cal thisdistanced' = f(X+1/2) - (Y+1). However, because [f'(x)| = 1 for
RiseRun curves, |d'| has the wider range [0,h], which implies that [d(x+1/2,y+1)| has the
proportional range [0,8D;h], and that [Dec| < 8D;jh. Thus the above overflow restriction for Xbec2
also appliesto Dec.

19

Table 2 Table 3

Ranges of looping variables contained in the Ranges of looping variables contained in the
optimized RiseRun algorithm. bits is the optimized RunRise algorithm. bits is the
number of bits used to represent Dec, h is number of bits used to represent Dec, wis
screen height in pixels screen width in pixels.

Variable Range Variable Range

RunH ghBi ts [0,bits] Ski pSi ze [O,w]

NunHi ghBi ts [0,bits] XLast YSt ep [-wi2,w/2]

Ski pSi ze [0,h] Ski pShi ft [O,bits]

YLast XSt ep [Oh] QA dXDecl [- XDecl, XDecl]

CheckShi ft [0,bits] Hal f XDec1Ski p [- XDecl, XDecl]

YDecSki pConst | [-XDec?2,XDec?2] QA dXDec?2 [- XDec?2, XDec?2]

If bits=32 and h = 1024, we have

213D, < 231
D < 218,

Initialization in the optimized versions of the RunRise and RiseRun algorithms are practically
identical to the unoptimized initiaizations, and thus require no new analysis. However, the
looping portions of these algorithms deserve more discussion. Each of them uses the same
variables used in the unoptimized algorithms. Because these variables take on the same sequence
of values that they would in the unoptimized a gorithms (with some values in the sequence being
skipped), we can be assured that these variables will not overflow.

Both optimized algorithms change the state of several variables not used in their unoptimized
counterparts. Tables 2 and 3 are tables of these variables and their ranges. RunHi ghBits,

NunHi ghBi t s, and Checkshi ft are not included in table 3 because they are used in the optimized
RunRise algorithm exactly as they are in the optimized RiseRun algorithm. None of the variables
in these tables will overflow if we hold to the inequalities given during the analysis of the
unoptimized algorithms.

The variable Decski p in the optimized RunRise algorithm represents the difference
d(Xz(1+1),Y+1/2) - d(X+1,Y+1/2). Intheworst case, the two decision variablesin this difference
will be of opposite sign, giving aworst case magnitude of 2D;. Thisimpliesthat by holding to the
RunRise inequalities above, we can represent DecSki p without overflow.

20

10. USE OF THESE ALGORITHMS WITH PARAMETRIC CURVES

Typically, parametric curves are plotted by making both the X and Y coordinates functions of a
parameter t, which may take on valuesin therange [0,1]. For agivenvalueof t, the X and Y
values are found, and a pixel plotted.

There are three basic problems which must be overcome if we are to render these curves with our
algorithms. First, while parametric algorithms plot in the screen space [X,Y], they calculate the
individual X and Y pixel coordinatesin the parametric spaces [t,X] and [t,Y]. Our algorithms, on
the other hand, plot and calculate in screen space[X,Y]. To overcome this problem, our
algorithms can be used twice: once to calculate X values, and onceto calculate Y values. The
algorithm variable X can be used to contain the current value of the parameter t., while the variable
Y containsan X or Y coordinate.

We then confront the second problem: since our algorithms can only use a step size of 1, X cannot,
liket, take on values only in therange [0,1]. However, by adjusting the parametric equations, we
can let X take on integer values in the range [0,n], where the even number n is the number of
parametric steps desired. If we have the parametric equation

X(t) = At 3 + Bt2 + Ct, (6)
t in[0,1], the equation
X(t) = A(t'3/n3) + B(t'2/n2) + C(t'/n), (7)
t' in[0,n], would describe the same coordinates.

Thethird problem is more subtle. As stated above, we must use our algorithms twice: once to find
valuesfor X, and onceto find valuesfor Y. Aswe calculate values for X, we must of course vary
t'in[t',X]. But to ensure that an accurate curveisrendered, as we calculate valuesfor Y, we must
vary t'in[t',Y] inthe sameway. In other words, x(t') and y(t") must be evaluated at the same t'
values. If both curve segmentsin [t',X] and [t',Y] are calculated entirely by the RunRise
algorithm, t" will indeed be varied consistently: it will take on all integer values in the range [0,n].
However, if any portion of either curve segment in [t',X] or [t',Y] is calculated by the RiseRun
algorithm, X or Y -- not t' -- will at some point be varied by 1, and the valuest' takes on will
depend on curve shape. x(t') and y(t') will be evaluated at different t' values.

We avoid this problem by ensuring that all needed curve segmentsin [t',X] and [t',Y] will be
calculated by the RunRise algorithm alone. 1f no point on either of the segments has absolute slope

21

greater than one, they will both be plotted entirely by the RunRise algorithm. In this case, the
number of parametric steps n should greater than max([x(1)-x(0)|,ly(2)-y(0)]). Otherwise, we must
consider the slopes of the curves x(t) and y(t) when choosingn. The slope of (7) is

X(t) = (3A/M3)t'2 + (2B/NA)t" + (C/n). 8)

Clearly, as nincreases, absolute slope decreases. At the same time, increasing the number of
parametric steps n increases agorithm cost. We must make the minimum number of parametric
steps required to ensure that only the RunRise algorithm will be used.

Slope magnitude on the two curve segments to be calculated will be greatest at one of the curves
endpoints or inflection points. Att=0, (8) reducesto C/n. If absolute slopeisto be lessthan
one, we must haven = |C|. Att=n, (8) reducesto 1/n(3A + 2B + C). We must have

n=|3A + 2B + C|. Theinflection point liesat -B/3A. If 0 <-B/3A <1, we must aso have
n=[-B2/3A + C|. Insummary, the number of parametric steps n which must be made is the
largest of the following values:

[OCI0 Ac,|a

[BA + 2By + Cy|0 [3A, + 2By + Cy|0
[}B,2/3A + Cy|[[FB,2/3A, + C,|0
X(1)-x(0)5 ¥(1)-y(0)O

where Ay, By, and C are the coefficients of x(t), and Ay, By, and C, are the coefficients of y(t).

By choosing n asindicated, we are finding the largest t increment which will ensurethat X or Y
will never be incremented by more than one, and using it over both of the curve segments x(t) and
y(t). Asaresult, we oversample in those portions of the curve which would allow larger t
increments. However, since these portions of the curve will have slope of low magnitude, use of
the optimized RunRise a gorithm should compensate for most of this additional cost. A different
approach istaken by algorithms that use adaptive forward differencing, which uses some
additional looping operations to dynamically adjust the size of t incrementsto ensurethat X and Y
steps are always close to one.

11. AVOIDING OVERFLOW WITH PARAMETRIC CURVES
The parametric version of the RunRise decision variable (4) is

Ai(t+1)3 + Bin(t+1)2 + Cn2(t'+1) - Dind(X+1/2).

22

Note that we have not scaled the parametric decision variable by 2 because we know that nisan
even number. Below, we present overflow analysis only for the parametric equation x(t). For

overflow restrictions for y(t), ssimply substitute h for w.The RunRise parametric differences are:
do(t') = Aj(t'+1)3 + Bin(t'+1)2 + Cin2(t't1) - Ajt'3- Bint'2 - Cin2t'
Ai(t'3£3t'2+3t'£1) + Bin(t'2+2t'+1) + Cin2(t'+1) - Ait'3- Bint'2 - Cin2t'
Ai(x3t'2+3t'+1) + Bin(+2t'+1) = Cin2

+3Ait'2 + (BAjx2Bin)t' + (+Aj+Bin+Cin?)

di(t') = £3Ai(t'+1)2 + (3Ajx2Bjn)(t'+1) - +3Ait'2 - (BAjz2Bin)t'
+3Ai(x2t'+1) + (3Aix2Bin)

B6At" + (x6A;+2Bjn)

dor = 26A;

For the parametric versions of our algorithms, we only present overflow restrictions for the
looping sections. Analysis for the parametric RunRise variables xbec2 and Dec is quite similar to
the analysis for the identically named non-parametric RunRise variables, and gives the overflow
restriction

Din3 < 2bits-1.
If bits = 32 and n = 256, we have D; < 128.

Since many parametric curves interpolate or are controlled by points chosen on a computer screen,
it is often the case that the coefficients A, B, C, and D in (6) are integers, not rational. In such
cases, Aj, Bj and Cj are equa to Ap, Bp, and C,. Most important, however, is the observation that
Dij = 1. Insuch cases, our RunRise overflow restriction above becomes

n3 < 2bits-1.

If bits = 32, we have n < 1290.

12. ALGORITHM COMPARISON AND EVALUATION

In this section, we compare the RunRise algorithms as they would be used with parametric curves
with the algorithms A and B presented by Klassen in [11]. We do not take into account the cost of
using Klassen's algorithms with adaptive forward differencing, nor the cost associated with
RunRise oversampling. Table 4 shows the operation costs and the overflow restrictions associated

23

Table 4

A comparison of Klassen's algorithms from [11] with our algorithms as used for plotting parametric curves
with integer coefficients. n isthe number of parametric steps made, w is the width of the screen in pixels,
bits is the number of bits used to represent algorithm values, Z is the number of bits of fractional

precision.
Operation Cost

Main Loop Initialization Overflow
[Algorithm|[+ [if [<<| = + * | div] xdiv]<<] if = Restriction
RunRise 41 21 0| 4 16 5|10 0 [11] 2 16 n3 < 2hits-1
RunRiseOpt|| 2.2| 0.9 0.4| 2.2 16 5|10 0 [13] 4 22 n3 < 2bits-1
Klassen'sA || 4 | 1| 3| 4 |17+3Z| 12| 1 5 2 | z | 28+2z| 46wn < 2bits-1
Klassen'sB || 11| 4 | O [11} 40 | 12| 5 0 0| 6 33 2n3 < bits-1

with Klassen's algorithms and our algorithms. We have assumed that a barrel shifter isavailable,
and counted all looping operations. For initialization, we follow Klassen's practice of weighing
each branch of aconditiona statement equally.

We averaged the performance of the main loops of our algorithms over 100 curves of the form

y = Ax3, with A varying between 1/50,000 and 1/500. The curve segments were chosen so that
skipping was performed over the entire segment. Testing showed that with other types of
segments, optimized agorithm performance was only comparable to unoptimized agorithm
performance.

Klassen's algorithm A has no conditiona statements and thusistrivially averaged. Algorithm B,
however, is not averaged and is shown as presented by Klassen.

Clearly, the main loop of the unoptimized al gorithm uses | ess operations than the loop in Klassen's
algorithm B, and is comparable to the loop in agorithm A. The main loop of the optimized
algorithm clearly outperforms the loops in both of Klassen's agorithms. During initialization, our
algorithms use no expensive divide operations, and use about half the number of add and multiply
operations used by Klassen's algorithms. It should be noted, however, that while our algorithms
require that a cubic curve be split into segments, both of Klassen's algorithms A and B do not
depend on dlope. Thus, initialization for the RunRise agorithms will in practice require dightly
more addition and multiply operations than Klassen's agorithms, as well as several floating point
calculations.

Klassen's algorithm A has by far the most liberal overflow restriction -- it islinear in n, the number
of parametric steps, and w, screen width in pixels. The RunRise algorithms and Klassen's
algorithm B both have restrictions that are cubic in n, with the RunRise agorithms alowing twice
as many parametric steps as algorithm B.

24

It should be noted that the overflow restriction shown for Klassen's al gorithms guarantee that both
initialization and looping will be accomplished without overflow. The restrictions shown for the
RunRise a gorithms guarantee only that looping will be accomplished without overflow.
Initialization of our agorithms requires many more bits for representation than doesinitialization
for Klassen's algorithms (with the exception of algorithm A's extended precision divide (xdiv)
operation).

Klassen's algorithm A uses afixed point approach, and thus incorporates an inherent level of error
not present in the other algorithms. Both of Klassen's algorithms can be used with rational
coefficients, but doing so would require floating point calculation, increase error in algorithm A,
and introduce error into algorithm B. Our agorithms remain perfectly accurate even with rationa
coefficients.

If non-parametric curves are being plotted, overflow restrictions for our algorithmsimprove: the
RunRise agorithm requires only that the product of the rational denominators D; be less than
2bits-1 and the RiseRun algorithm is similar, but is linear in screen width. Overflow restrictions
for Klassen's algorithms in such a case will not show such a significant improvement.

In summary, Klassen's algorithms make efficient use of available bits, but at the price of algorithm
speed or accuracy. Our algorithms require more representational bits and some extra overhead, but
are faster and more accurate. We believethat if word sizeis 64 or larger, or non-parametric curves
are being rendered, our algorithms are clear winners.

12. CONCLUSIONS AND FUTURE WORK

We have presented integer-only algorithms that allow fast, accurate plotting of cubic curves. We
have al so presented optimized algorithms that work even more quickly when curve slope nears
infinity or zero. Anaysis shows that using these algorithms to plot parametric curves may require
more representational bits than already existing algorithms. But if such bits are not at a premium,
or non-parametric curves are being plotted, our algorithms are the algorithms of choice.

We plan to explore further the use of these algorithms with parametric curves, spline curves, and
Bezier curves. In particular, we would like to explore the use of these algorithms with adaptive
forward differencing.

25

10

11.

12.

13.

14.

13. REFERENCES

. Bresenham, J. E. "Algorithm for computer control of a digital plotter,” IBM Syst. J. 4(1)

(1965): 25-30.

. Bresenham, J. E. "Algorithms for circular arc generation,” Fundamental Algorithms for

Computer Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol. F17, Springer Verlag,
Berlin, (1985): 197-218.

. Bresenham, J. E. "A linear algorithm for incremental digital display of digital arcs,” Commun.

ACM. 20(2) (Feb. 1977): 100-106.

. Bresenham, J. E. "Run length dlice algorithm for incremental lines,” Fundamental Algorithms

for Computer Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol. F17, Springer Verlag,
Berlin, (1985): 59-104.

. Chang, S-L., Shantz, M., and Rocchetti, R. "Rendering cubic curves and surfaces with integer

adaptive forward differencing,” Comput. Graph., 23(3) (Jul. 1989): 157-166.

. Foley, J.,, van Dam, A., Feiner, S., and Hughes, J. Computer Graphics. Principles And

Practice, Addison-Wesley, Reading, Mass., (1990).

. Horn, B. K. P. "Circle generators for display devices," Comput. Graph. Image Process. 5

(1976): 280-288.

. Lien, S-L., Shantz, M., and Pratt, V. "Adaptive forward differencing for rendering curves and

surfaces,” Comput. Graph., 21(4) (Jul. 1987): 111-118.

. Kappel, M. R. "An ellipse-drawing algorithm for raster displays,” Fundamental Algorithms

for Computer Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol. F17, Springer Verlag,
Berlin, (1985): 257-280.

. Klassen, R. V. "Drawing antialiased cubic spline curves,” ACM Trans. Graph. 10(1) (Jan.
1991): 92-108.

Klassen, R. V. "Integer forward differencing of cubic polynomials,” ACM Trans. Graph.
10(2) (Apr. 1991): 152-181.

Mcllroy, M. D. "Best approximate circles on integer grids,” ACM Trans. Graph. 2(4) (Oct.
1983): 237-263.

Metzger, R. A. "Computer generated graphics segments in a raster display,” Spring 1969
Joint Computer Journal Conference, AFIPS Conf. Proc.: 161-172.

Pitteway, M. "The relationship between Euclid's algorithm and run length encoding,"
Fundamental Algorithms for Computer Graphics, R.A. Earnshaw, ed., NATO ASI Series,
Vol. F17, Springer Verlag, Berlin, (1985): 105-112.

26

15. Surany, A. P. "An ellipse-drawing algorithm for raster displays,” Fundamental Algorithms
for Computer Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol. F17, Springer Verlag,
Berlin, (1985): 281-285.

16. Van Aken, J. "An efficient ellipse-drawing algorithm,"” 1EEE Comput. Graph. & Appl. 4(9)
(Sept. 1984): 24-35.

17. Van Aken, J., and Novak, Mark. "Curve drawing algorithms for raster displays,” ACM
Trans. Graph. 4(2) (Apr. 1985): 147-169.

18. Watson, B., and Hodges, L. "A fast algorithm for rendering quadratic curves on raster
displays,” SEACM Conf. Proc. 27 (Apr. 1989): 160-165.

27

