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SUMMARY  
 
 
       Solid-state amorphization of a crystalline solid to an amorphous phase is extensively 

studied as a first order phase transition at low temperature for almost thirty years. Many 

similarities between heat-induced melting and solid-state amorphization have been 

recognized and a generalized Lindemann melting criterion has been built by focusing on 

the total mean-square atomic displacement as a generic measure of crystalline disorder in 

metastable solid solutions. In this dissertation, we report the recent progress on 

phenomenological models employed for thermodynamic description of macroscopic 

systems and fluctuations and nucleation of mesoscopic inhomogeneous systems in binary 

solid solutions under polymorphic constraints with no long-range diffusion involved.   

      Based on our understanding on atomic picture of solid-state amorphization in binary 

solid solutions, we propose a Landau free energy to describe amorphization as the first 

order phase transition. The order parameter is defined which represents the loss of long-

range translational order. The elastic strain field induced by composition disorder plays 

the important role through the bilinear coupling with the order parameter.  Elastic 

softening and amorphization happen simultaneously. From the similarity between the 

melting and amorphization, we use the temperature and composition as two external 

variables and treat solid-state amorphization as low temperature melting under 

polymorphic constraints. For homogeneous system, the phase diagrams for endothermic 

melting and exothermic melting are built separately and the corresponding 

thermodynamic quantities are presented.  

       A microscopic homogeneous nucleation mechanism is proposed conceptually in 

binary solid solutions under polymorphic constraints. The formation of an amorphous 
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embryo is initiated from the composition modulation in the crystal state and a subsequent 

polymorphous nucleation within the as-formed heterophase fluctuation. This 

homogeneous nucleation path is thought to be associated with the nonlinear energy 

localization mechanism connected with the localized large-amplitude excitations of 

atoms, which are induced by nonlinear and disorder. A Landau-Ginzburg free energy is 

constructed to describe the critical nucleus and the growth of the new phase in one-

dimensional systems. Analytical and numerical methods contribute to the understanding 

the fluctuations and nucleation processes.  

      Size-dependent melting and amorphization in nanosolids are investigated.   Two 

models are proposed for nanocrystalline solid solutions to glass transformations. Based 

on the thin film model with finite thickness, we build one-dimensional Landau-Ginzburg 

approach, which includes surface contribution and size dependence, and numerical results 

do show similarity with experiments’ results qualitatively.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 
 

 

 
CHAPTER I                                                  

INTRODUCTION 

1.1  Background 

       Melting has been recognized as heating induced phenomena from solids to liquids 

for hundreds of years. The conventional crystal-to-liquid transition at high temperature 

has been extensively investigated. Amorphization is another transformation that produces 

a disordered final solid state from an initially crystalline state. As a solid material, 

amorphous phase with no structural long-range order and has liquid-like short-range 

ordered configurations of its atomic arrangements with vibrational motions about their 

average positions within certain observation period. In the literature, people recorded the 

formation of amorphous phases as the natural phenomena driven by irradiation since 

1893 [1]. For over 60 years, vapor quenching and liquid quenching [2, 3] techniques have 

been used and investigated to produce amorphous metallic materials. The first noted 

solid-state-amorphization experiment was done on intermetallic compounds in1962 [4].  

For recent years, solid-state-amorphization has been an active research area because of 

the potential use in industry. Experimentally, solid-state-amorphization could be induced 

in an alloy system under mechanical, chemical, or irradiation condition.  

 

1.2  Current Progress on Solid-state Amorphization 

1.2.1  Experimental Investigation on Amorphization 
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      In binary solid solution systems, it may cause the amorphous phase formation by 

tuning the concentration under polymorphous constraints. The negative enthalpy of 

mixing would provide the chemical driving force for the transformation. Once beyond a 

certain concentration, the crystal is driven to the amorphous state with the increasing 

static disorder [5, 6, 8]. Below that limit, ‘pretransformation’ effects were investigated, 

such as elastic softening and increasing average atomic root-mean-square displacement 

[7]. A reentrant melting behavior was observed in Zr-Al solid solutions under mechanical 

alloying. Mean square total atomic displacement could be the indication of amorphization 

with the increasing composition in binary systems [7]. For a binary system with positive 

heat of formation, the stored elastic energy and interface energy is proposed to induce the 

driving force necessary for the amorphization [9].    

 

1.2.2  Theoretical Studies on Solid-state Amorphization 
 
       Both melting and amorphization are the topological order-to-disorder transition in 

two and three dimensions. The parallel between them has been recognized: nucleation-

and-growth as first order phase transition or homogeneously due to a catastrophic 

instability [5, 11-14]. Heterogeneous nucleation occurs at extrinsic defects such as grain 

boundaries, free surfaces, voids or dislocations. Homogenous transformation could be 

induced by electron irradiation, hydrogenation, and compression. The evidence comes 

from the softening of shear elastic constants in the absence of nucleation centers. One of 

the mechanical instability is Born’s criterion: loss of shear rigidity. The lattice stability 

condition for cubic crystals is 

0,0,02 4412111211 >>−>+ CCCCC , 
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where C11, C12 and C44 are Voigt’s notation for elastic constants.  Beside the mechanical 

catastrophe, several other lattice instability criterions are proposed: vibrational, 

entropical, or defect-induced catastrophe. Recent simulation results show that local 

instability could be induced simultaneously by Lindemann’s criterion and Born’s model 

[15]. However, as one-phase theory, both models couldn’t predict the discontinuous 

change of first order transition [16]. Local inhomogeneity of defects at some surface 

could initiate a disordered nucleus. Based on the simulation results and experiments, 

defect-mediated melting successfully account for the discontinuous character. Egami and 

Easeda [17] proposed a topological criterion for amorphization that the critical elastic 

strain could be caused by the atomic-size mismatch in binary metallic systems. 

      Okamoto et al. [18] developed a unified thermodynamic approach on melting and 

amorphization. They generalized the Lindemann’s criterion in disordered crystals and 

characterized the disordered processes by the static and the dynamic mean-square atomic 

displacements from the equilibrium lattice positions, which are the generic measures of 

topological and thermal disorder, respectively.   

 

1.3  Motivations and Contributions 

     Based on the space distribution of particles in solids, there are three types of matter: 

periodic, quasi-periodic, and amorphous or glassy states, which are metastable with finite 

lifetimes. In real materials, disorder induced by defects will bring up complex structures, 

but the crystal lattice may still exist. The influence of disorder on the phase transition 

from the ordered state to the glassy state has received lots of attention [19]. The elastic 

degree of freedom plays an important role at phase transitions in solids [20]. Both the 
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spin glass state and the orientational glass state, which depend on the concentrations, 

have been observed in experiments and predicted in theory from solid solutions [21]. The 

strain field related to the frozen-in defects plays a role by coupling to the spin degree of 

freedom or orientational degree of freedom [21, 22]. As one type of structural glasses, 

metallic glass state from solid solutions has also been extensively studied recently under 

polymorphous constraints, i.e. no composition change related by long-range diffusion at 

low temperature (Figure 1.1). 

 

 

(a)                                                                           (b) 

Figure 1.1   Phase diagram of spin glass [21] and polymorphic melting phase diagram for 
a binary solid solution [10]. 
 

      There are many types of disorder in binary solid solutions that contribute to the 

destabilization of the initial crystalline state by increasing the free energy in one way or 

another [7, 11]. Molecular dynamics simulation has been used to explore the microscopic 

mechanisms of solid-state amorphization for a binary solid solution with varying 

concentration of solute atoms or crystal lattice defects under polymorphous constraints 

[23] (Figure 1.2). The level of disorder could be tuned by the concentration of solute 

atoms. At a given low temperature, the increasing static disorder, accompanied by Lattice 
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softening and increased anharmonicity of lattice vibrations, will raise the free energy of 

the parent crystal state. Lattice softening and increased anharmonicity will give rise to 

additional dynamic disorder. Elastic instability of the metastable crystalline phases is 

related to the internal strain fields induced by the mismatch of atomic sizes and the frozen 

defects provided by the rearrangement of the atoms in the lattice primarily through local 

shear displacement. Because of the low temperature, homogeneous impurity distributions 

are possible and the rearrangement only happens locally. The elastic shear instability and 

amorphous phase are simultaneously reached at some critical composition. For binary 

solid solutions, we sill focus on the system with polymorphous constraints and 

topological disorder is induced by the interaction between position disorder and 

composition disorder with atomic size difference.  For a thermodynamic description of 

the amorphous phase as a metastable state, the internal relaxation time is supposed to be 

shorter than the observation time, but still long enough for an ergodic sampling [24] in 

the binary systems. The time scale for amorphization from the initial crystal state is 

shorter than the evolution time for the stable crystal state, which is competing with the 

amorphous phase [11].       

       The Landau theory has been used to study melting as first order phase transition [25], 

and the multi-component order parameters are related to the Fourier components of the 

atomic density with nonzero reciprocal lattice vectors, which vanish in the liquid state. In 

our work, the disordering processes for amorphization by composition-induced 

destabilization are described in terms of a disorder parameter and internal strain fields 

besides temperature and composition, which means topological disorder is induced by the 

position disorder and chemical disorder with atomic size mismatch subject to 
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polymorphous constraints (Figure 1.3, Figure 1.4). Below the thermodynamic melting 

temperature of the initial perfect crystal, a solid solution could undergo a disorder-

induced melting process at any temperature with sufficient alloy elements for 

endothermic processes. In the phenomenological approach, we apply continuum 

thermodynamic quantities to describe the transition for macroscopic systems. For the 

binary system at constant pressure, a phase diagram for melting transitions under 

polymorphous constraints could be determined by the temperature and composition. 

Exothermic melting phase diagram at low temperature are also obtained and the physical 

origin is discussed.  

      For macroscopic objects, Landau theory could be used to study the bulk properties for 

the first order phase transition processes. But, the order parameter usually shows smooth 

behavior from initial equilibrium state value to final equilibrium value for real materials, 

which is explained by the fluctuations of order parameter. In real systems with first order 

phase transition phenomena, there are two types of fluctuations, i.e. homophase 

fluctuations with small amplitude and heterophase fluctuations with large amplitude. 

Homophase fluctuations are associated with linear elementary excitations such as 

phonons in crystals. The microscopic mechanism for heterophase fluctuations is still 

unclear. For polymorphic melting in binary solid solutions, which is dominated by 

nonlinearity and disorder, we generalize the nonlinear energy localization mechanism as 

the microscopic origin of heterophase fluctuations. Two-step processes are involved, 

composition modulation and structure fluctuations. Large amplitude localized excitations 

could be initiated around several atoms through modulation instability, and the 

subsequent mesoscopic structural fluctuations may involve tens or hundreds of atoms 
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with superposition and fusion of localized excitations. For transient type of heterophase 

fluctuations, critical nuclei play the key role of nucleation and growth theory. The growth 

rate and dissolution of critical nuclei are studied in one dimension and several nuclei are 

obtained in a two-dimensional system by numerical methods through Landau-Ginzburg 

approach with our diffuse-interface model. 

      Besides the investigation on amorphization of bulk solid solutions, the understanding 

of nanocrystalline solid solutions to glass transitions driven by the grain boundary energy 

contributions is also of great importance to the application and synthesis of 

nanocrystalline materials. Experiments and theories show the existence of critical grain 

size that indicates the beginning of partial or complete amorphization. The question still 

remains that what happen for a gain after reaching the critical grain size. Surface effect 

and size dependence of melting phenomena have been extensively investigated in pure 

element nanosolids, and the alloys samples are also draw some attention.  Amorphization 

on nanoscale has been studied for a while. Two possible transition paths are proposed to 

describe the amorphization processes in nanocrystalline solid solutions. Based on the thin 

film model, we include the surface contribution to the Landau free energy of the finite 

systems. Our numerical results show depression and superheating of melting points based 

on the different nature of surface influence. Melting points do have linear dependence on 

the size of the systems. Two types of melting processes are obtained, i.e. homogeneous 

melting and two-step melting which includes the initial surface transitions and the 

subsequent first-order transition.  The numerical simulation does explain the 

experiments’ results qualitatively.  

 



 8 
 

 

1.4  Organization 
 
      Some thermodynamic properties and the phase diagram of the model system of binary 

solid solutions are discussed in bulk systems in Chapter II. Based on the generalized 

Lindemann’s criterion, we propose a general Landau free energy with a disorder 

parameter for melting in Section 2.1 and develop the Landau theory to describe the first 

order polymorphic melting in macroscopic binary alloy systems in Section 2.2.1. The 

mathematical form of our Landau free energy is presented in Section 2.2.3. 

Thermodynamic quantities and polymorphic phase diagrams are presented separately in 

Section 2.2.4 for endothermic melting and Section 2.2.5 for exothermic melting.  

      One-dimensional model is investigated in Chapter III. Several reviews are made on 

amorphous models and phase transitions in one dimension in Section 3.1, Nucleation and 

growth theory in Section 3.2, homophase fluctuations and heterophase fluctuations in 

Section 3.3, and energy localization in Section 3.4. Conceptually, we generalize the 

nonlinear energy localization mechanism as the microscopic origin of heterophase 

fluctuations for polymorphic melting in binary solid solutions in Section 3.4. Our 

analytical results on critical nuclei in one dimension are presented and the stability 

analysis is made in Section 3.5. Then we present our numerical results on homogeneous 

nucleation in one dimension in Section 3.6 and the nuclei in two dimensions are simply 

discussed in Section 3.7. In Section 3.8, we present numerical results from our thin film 

model and the prediction is discussed comparing to the experiments’ results.  

      We simply mentioned the multi-component order parameters model in high 

dimension in Chapter IV. And the conclusion and future works are presented in Chapter 

V.  
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(a) 
 

   
(b)                                                   (c) 

 
(d) 

Figure 1.2 Molecular dynamic simulation results for binary Lennard-Jones solid  
solutions: (a) static mean square displacement, (b) (c) tetragonal and trigonal shear 
modulus, and (d) Enthalpy as a function of composition [23].  
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(a)                                                           (b) 

 
(c)                                                         (d) 

Figure 1.3 Schematic views of various types of disorder in binary systems: (a) perfect 
crystal, (b) composition disorder in random alloy, (c) position disorder, and (d) 
topological disorder. 
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(a) 

 
(b) 

Figure 1.4 Examples of short-range order in binary solid solutions: (a) ‘black’ atoms are 
preferentially surrounded by ‘white’ atoms; (b) ‘black’ atoms are preferentially 
surrounded by other ‘black’ atoms [26]. 
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      CHAPTER II                                                 

A PHENOMENOLOGICAL THEORY FOR 

POLYMORPHIC MELTING IN MACROSCOPIC 

BINARY SOLID SOLUTIONS 

 
2.1 Lindemann’s Criterion and Phase Transition Theory for 

Melting 
 
     Melting in crystals is an old topic for material scientist and physicist. To understand 

that phenomena, people proposed two different mechanisms: thermodynamic instability 

and mechanical instability such as Born’s criterion [14]. In 1910, Lindemann proposed 

his thermodynamic criterion: melting happens when the vibration of atoms reaches some 

certain value with the increasing temperature.  Mean square thermal displacement 

amplitude is used to characterize the thermal disorder: 2
0

2 acu = .  a  is the nearest 

neighbor’s distance, and 0c  is the Lindemann constant, which is around %10 .  

Generalized Lindemann’s criterion is proposed to study heat-induced melting and 

disorder-induced amorphization in disordered crystals. The condition is 

222
cristadyn uuu =+ . 2

dynu  is the mean square dynamic atomic displacement, and 

directly related to the temperature. 2
stau  is the static component, and measure the static 

disorder induced by the defects. For a Debye crystal, we have: 

2
0

2 9
θmk
Tudyn
h

= . 
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(h , Plank’s constant; m , average atomic mass; k , Boltzmann constant; 0θ , Debye 

temperature). As one phase theory, the above discussion is not related to the coexistence 

of the crystal and liquid state observed from experiments. 

     To study the transition from crystal to liquid phase as a first order phase transition, we 

will use a Landau free energy with a one-dimensional order parameter M , which 

characterize buildup of disorder and the loss of long-range order in melting process. A 

surface melting case for pure element crystals is studied by Lipowsky [25] and the 

disorder parameter could be defined as η−= 1M , where η is the original normalized 

order parameter by bulk values and η=0 represents the order phase. For polymorphic 

melting in binary solid solutions, the primary order parameter M  could be chosen as root 

mean square of total local atomic displacements. The Landau free energy is  

( ) ( ) ,, 642
0 EMCMAMTFTMF +−+=                                                                       (2.1)    

which describes the discontinuous change of thermodynamic quantities of melting 

transition in pure crystal solids. We choose ( )TTaA −= 00  and 00 >a . The fundamental 

properties of Eq. (2.1) are discussed in the section (Figure 2.1, Figure 2.2) [10]. 

(1) Local equilibrium states  

Condition for the minimum solutions of ( )TMF ,  is  

0642 53 =+−=
∂
∂ EMCMAM
M
F                                                                                 (2.2)       

which have three set of solutions: (i) 01 =M ; (ii)
2/1

2

2 3
3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
±=

E
EACCM ; (iii) 

2/1
2

3 3
3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
±=

E
EACCM . 
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Figure 2.1   Phase diagram for Landau free energy of Eq.(1) with E>0 (Example: E=4). 
Dot line is for T=T1, dashed line for T=Tm, and the origin represents the tricritical point 
T=Tcr, the line C<0 is the second order transition line. The region between T1 line and 
positive A axis represents the stable initial state; the region between T1 line and positive 
C axis indicates the metastable state; the region between positive C axis and negative A 
axis represents the stable final state. 
 
 
(2) Stability condition of the equilibrium states 

 The stability of equilibrium states depends on the second derivative of Eq. (1): 

42
2

2

30122 EMCMA
M

F
+−=

∂
∂ .                                                                                    (2.3) 

 Solution (i) is stable for 0>A . Solution (ii) is stable for 0<⋅ AC  with 0>E . Solution 

(iii) is stable for 0>⋅ AC  with 0>E . 

When 32 MM = , we have
E

CA
3

2

=  , which means the equilibrium state has neutral 

stability 02

2

=
∂
∂
M

F at 
Ea

CTTT
0

2

01 3
−== .  

(3)  Melting temperature mT  
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Figure 2.2  Phase changes indicated by free energy with increasing temperature: 
102 TTTT m >>> . 0T  is the critical point. (E=4, C=2, and A=0.333 for neutral stability 

point T1 (dash dot line), A=0.250 for transition point Tm (dot line), A=0 for critical point 
T0 (sold line) and A=-0.050 for T2 (dash line). 
     

At the transition point, we have 0=F . Three solutions for 0=F  are: (i) 0~
1 =M ;      

(ii)
2/1

2

2 2
4~

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
±=

E
EACCM ; (iii) 

2/1
2

3 2
4~

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
±=

E
EACCM with ( )TTaA −= 00 . 

When the temperature reaches at mTT = , we see 32
~~ MM = . So the condition for the 

melting is 
E

CA
4

2

=  and
Ea

CTTm
0

2

0 4
−= . The energy barrier for the phase jump is 

2

32

54
1

27
8

E
C

C
AF ==Δ , which is fixed for constants C  and E . 

(4) Critical point 0T  

The crystal phase will lose the stability when 0=A  at 0TT = . 
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(5) Tricritical point cT  

 Supposing the coefficients A  and C depending on two external variables: the 

temperature T and the compositionΧ . The phase diagram, the tricritical point tcTT =  at 

0== CA connects the first order transition line mTT =  and the second order transition 

line csTT = .  

(6) Thermodynamic quantities 

Entropy is defined as
pT

FS ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−= . At equilibrium state, we have  

20 M
T
A

T
F

T
FS

p ∂
∂

−
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=                                                                                       (2.4) 

Specific heat capacity is 
p

p T
STc ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  and: 

0TT < , 2
0

2

T
F

Tc p ∂
∂

−= , 

0TT > , ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

+
∂
∂

−
∂
∂

−=
T

M
T
AM

T
AT

T
F

Tc p

2
2

2

2

2
0

2

, 

 
EAC

a
cc pp

32

2
00

−
+=     for ( )TTaA −= 00 . 

Susceptibility associated to the order parameter is defined as 

M

M
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
→ ζ

χ
ζ 0
lim  

withζ   referring to the conjugated field. We have (Figure  2.3) 
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( )⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−+−

<
=

022

0

338
3
2
1

TT
EACCEAC

E

TT
Aχ .                                                              (2.5) 

 

 

Figure 2.3 Susceptibility χ of Eq. (2.5) as a function of temperature with ( )TTaA −= 00  
of Eq. (1) for a first-order phase transition (E=4, C=2, a0=2, T0=1). 
 

2.2 Model and Theoretical Predictions for Polymophic Melting 

2.2.1 Construction of Model and Rescale 
 
     Similarities between melting and solid-state amorphization have been recognized [11-

14]: Heterogeneous and homogeneous nucleation processes, loss of long-range order, 

elastic behavior, and volume change. We treat them as the unified topological disordering 

processes, melting at high temperature and amorphization at low temperature, 

respectively. Since the dynamics of glass and liquid are quite different, the amorphous 

phase could be considered as an undercooled liquid state that is a configuration-frozen in 
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state thermodynamically. In a two-component system, an equilibrium phase can be 

characterized by temperature, pressure and composition. The numbers of independent 

variables are chosen according to the Gibbs phase rule. At constant pressure, one degree 

of freedom can define the equilibrium state, and all other parameters are chosen to 

minimize the Gibbs free energy. Under the condition of ergodic sampling, 

thermodynamic functions can be discussed for metastable states, liquid and amorphous 

phase, which is a local stability of the system at a local minimum of Gibbs free energy 

with respect to atomic rearrangements.  To apply equilibrium thermodynamics to discuss 

polymorphic melting, several kinetic constraints are needed. The time scale τ2 for validity 

of polymorphous constraints is long enough to make the metastable crystalline phase 

accessible in laboratory characterized by the time scale τobs. The corresponding time 

window is  

τ1<τobs<τ2, 

where τ1 is the internal time scale for the relaxation, and τ2 could be around 10-100ps 

with the time scale for atomic motion about 0.100ps[11]. For liquids, τ1 is short for all the 

relaxations, but the slow relaxation modes in amorphous phase could be specified by  

τslo>τ2. Those slow modes could be blocked by the imposed auxiliary constraints with 

τfas→∞ [27]. Also, the time scale τ1→a for crystal-to-glass transformation is short   

compared with the time scale τa→2 for possible competing glass-to-crystal transition [11]. 

After imposing appropriate constraints, both the liquid and amorphous phase behave 

ergodically whereas the amorphous phase is only allowed to access parts of phase spaces 

associated with a particular frozen-in state. 
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     Based on the Lindemann’s criterion on melting, the instability occurs once the local 

atomic dynamic displacement amplitude is large enough and exceeds some threshold 

value.  Later on, the generalized criterion, which includes the static and dynamic atomic 

displacement amplitude, is used to describe the amorphization [7, 8, 18, 23, 28]. The 

atomic mean square displacement could be a measure of the stability of the crystal 

structure from elastic neutron diffraction scan and molecular dynamics simulation under 

polymorphous constraint. The static mean square displacement plays an equivalent role to 

the dynamic mean square displacement to measure the melting transition in solid 

solutions and the probability distribution of static displacements is not Gaussian [29]. For 

cubic materials, all the atoms have the same isotropic mean square displacement: 

222
zyx uuu == . As a part of configuration free energy, elastic energy depends on the 

atomic configuration of two atom species and individual atomic position in binary solid 

solutions.   

      We use one component order parameter and elastic degree of freedom to construct 

Landau free energy as following:  

( ) ( ) ( )εε ~,~~~~~~~~
0 MffMfff c+++= ,                                                                                 (2.6) 

where M~  is the order parameter contributed by position disorder and represents the root 

mean square of the local atomic displacement field over the corresponding crystal state. 

ε~  is the shear strain induced by the composition disorder. 

( ) 642 ~~~~~~~~~~~ MEMCMAMf ⋅+⋅−⋅=  is the bulk free energy to describe the phase transition, 

and ( ) 20 ~
2

~~~ ε
μ

ε =f  is the part of the elastic energy contributed by shear strain. The choice 

of ( )Mf ~~  by including only the even terms stems from the fact that only 2u  is 
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physically meaningful. 0
~μ is the bare shear elastic constant. ( ) εε ~~~~,~~

⋅⋅= MeMfc  is the 

coupling term between the position disorder and shear strain and 0f  is independent of M~  

and ε~ .       

     For solid solutions, the atomic size difference and composition disorder produce the 

strain field and the static displacement field. The stored elastic energy will raises the free 

energy of the crystal state, and also the long-range field interacts with the local atomic 

displacement field. Elastic stability’s criterion on melting needs to soften the shear 

modulus. From the interaction, the transition happens when the shear modulus reaches 

the minimum.  

        For later convenient, we rescale the variables as M
E

F
M ~

~~

~~

6/1

6/1
0= , ε

μ
ε ~~~

~~

2/1
0

2/1
0F

= . 

( ) 642 MEMCMAMf ⋅+⋅−⋅=                                                                                (2.7a) 

( ) 20

2
ε

μ
ε =f                                                                                                                 (2.7b) 

( ) εε ⋅⋅= MeMfc ,                                                                                                       (2.7c)      

with 
3/13/2

0

~~~~

~~

EF

AA = , 
3/23/1

0

~~~~

~~

EF

CC = , 1=E , 10 =μ , 
2/1

0
6/13/1

0
~~~~~~

~

μ⋅
=

EF

ee . 

Also, we could obtain the dimensionless form of the equation. Let η

2/1

~~

~~
~~

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
E

C
M  , 

2

3

0 ~~

~~
~~

E

C
F = . ⎟

⎠
⎞⎜

⎝
⎛Mf

~~~  is transformed into the following form: 
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( ) 642

0

~~

~
ηηηη +−⋅== a

F

ff                                                                                           (2.8) 

2.2.2 Static Equilibrium Condition 
 
      Under static equilibrium condition (stress free), we have: 

00 =⋅+⋅=
∂
∂ εμ
ε

Mef ,                                                                                                  (2.9) 

and 

Me

0μ
ε −= .                                                                                                                 (2.10) 

Substituting Eq. (2.10) into Eq. (2.6), we obtain the effective free energy: 

642~ MEMCMAfeff ⋅+⋅−⋅=                                                                                    (2.11) 

with
0

2

2
~

μ
eAA −= . 

     Expression for the effective elastic constant is: 

                                                                    (2.12) 

with the order parameter susceptibility 
1

2

2 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
M

fχ . 

 

2.2.3 Landau Free Energy with Two External Variables   
 
      The First polymorphous melting phase diagram [5] was obtained by Fecht et al. 

(1989) by the generalized Clapeyron equation for a binary system. The equilibrium 

condition among crystal, liquid and amorphous phase is the same molar Gibbs free 
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energies, which depend on the temperature, pressure and composition. At constant 

pressure, a calculated example of Ni-Zr alloys is given and discussed. Also the 

metastable phase diagram could be derived by the CALPHAD method [30, 31] with 

temperature and composition, which is very popular for experimentalists. In the 

following sections, we will use Landau theory to obtain phase diagrams.  

     From Landau free energy of Eq. (2.11), we consider the coefficients have the 

following general forms: 

( ) ( ) .,,~~ consECCTAA =Χ=Χ=                                                                         (2.13) 

with two external variables: T and X. We will determine the possible choice for 

function A~ . At fixed compositionΧ , the free energy will have the same behavior with the 

increasing temperature as in Figure 2.2. At high temperature, we will focus on the 

endothermic behavior for melting. Based on the low temperature behavior (below the 

triple point), we will discuss two cases for solid-state amorphization: endothermic 

melting and exothermic melting. In the following discussions, low temperature melting is 

referred to the solid-state amorphization and high temperature melting corresponding to 

the traditional normal melting. They are separated by the triple point, which is indicated 

as zero entropy change and defined as the coexistence state of crystal phase, liquid phase 

and amorphous phase.   

 

2.2.4 Endothermic Melting 
 
     For normal melting with absorbing heat, a solid solution can only has one melting 

point and melt polymorphically to either liquid at high temperature or undercooled liquid 
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state at low temperature. The expansion form for function ( )Χ,~ TA  at some reference 

point ( )00
~,~ ΧT is [32]: 

( ) ( ) ( ) ⋅⋅⋅+−⋅Χ+Χ=Χ 010
~)(~~,~ TTAATA                                                                        (2.14) 

Substituting Eq. (2.13) and Eq. (2.14) into Eq. (2.11), we find the solutions for neutral 

stability point 1T , transition point mT , and critical point 0T : 

( )
( )

( )
( )Χ
Χ

−
Χ
Χ

+=
1

0

1

2

01 ~
~

~3
~

A
A

A
CTT                                                                                             (2.15) 

( )
( )

( )
( )Χ
Χ

−
Χ
Χ

+=
1

0

1

2

0 ~
~

~4
~

A
A

A
CTTm                                                                                           (2.16) 

( )
( )Χ
Χ

−=
1

0
00 ~

~
~

A
A

TT                                                                                                            (2.17) 

For endothermic melting transition, we need mTT <1 which means that the transition could 

be caused by the increasing temperature at fixed composition.  So we have ( ) .0~
1 <ΧA .  

And ( ) 0~
0 >ΧA  if 00

~TT > . Assuming the following function form: 

( ) ( ) 0.~~~~
0000 >=Χ−Χ⋅=Χ constAAA                                                                   (2.18) 

( ) 0~
1 <ΧA                                                                                                                   

Since the melting transition is first order, we could have the function form for ( )ΧC : 

( ) ( )( )2
010 Χ−Χ+=Χ CCC ,                                                                                         (2.19) 

with 0,0 01 >> CC  to keep C(X)>0. 
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     For the coupling function ( )Χ= ,Tee  that indicates the interaction between the 

position disorder and composition disorder with atomic size effect, we choose the 

following simple form at low temperature 

( ) ( )( )( )
( )( )( )( )⎪⎩

⎪
⎨
⎧

Χ≥ΧΧ−ΧΔ+−−

Χ≤ΧΧΔ+−−
=Χ

m

m

TT
TT

Te 2/1
010

2/1
010

~,
ββ
αα

,                                             (2.20) 

based on understanding of the measurement of Debye-Waller factor from the 

experiments’ results [7, 8] with isotropic approximation, where mΧ  is the threshold value, 

Χ~  the corresponding value of pure solute crystal, and Δ,,,, 1010 ββαα  are parameters. An 

example is shown in Figure 2.4(a) and the maximum point is the transition point at fixed 

low temperature. For high temperature melting, the coupling will disappear after reaching 

the threshold value. The total atomic mean square displacement clearly depends on the 

temperature and the composition in binary solid solution. The mean square total atomic 

displacement increases with increasing temperature at low composition values and 

decreases at high composition values [7, 8]. The mean square static displacement is 

increasing with increasing composition at constant temperature, varying with temperature 

at high constant composition and almost no change for low constant composition [7, 8], 

and linearly related to the mean-square chemical disorder [18, 28].   

       Assuming function A  in Eq. (2.11) also has the form of Eq. (2.13): 

( ) ( ) ( )0100, TTAATA −+Χ−Χ=Χ .                                                                             (2.21) 

Substituting Eq. (2.19)—(2.21) back into Eq. (2.11), we have the following equation 
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with δ−Χ=Χ 0
~

c , Δ−= 0
~ TTc , 

1

0

C
C

=δ . Comparing Eq. (2.22) with Eq. (2.17) and Eq. 

(2.18), we could choose the parameter values to set up the following relations:  

0
~~ Χ=Χ c , 0

~~ TTc = , 
0

0
00 2

~
μ
α

+= AA , ( )
0

1
11 2

~
μ

α Χ
+=Χ AA ,                                     (2.23) 

( ) 0
2 10

0

0
0 =Δ⋅−−Χ−⋅ AA δ

μ
α

δ                                                                                 (2.24) 

We can rewrite Eq. (2.19) and Eq. (2.22): 

 

Table 1 Parameter values for endothermic melting 
T0 X0 E μ0 Δ A0 A1 C0 C1 α0 α1 β0 β1 

1 1 1 1 0.100 2 -1 0.150 1 0.941 0.100 0.599 0.100

 

 

(a)                                                                    (b) 

Figure 2.4  (a) Coupling function ( )xTe ,  as a function of composition X at temperature 
T=1.100. (b) Coupling function with variation of temperature at fixed composition 
X=0.500. The other parameters are shown in Table 1. 
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( ) ( )( )21

~
cCC Χ−Χ=Χ                                                                                                    (2.25) 

( ) ( ) ( ) ( )cc TTAATA ~~~~,~
10 −⋅Χ+Χ−Χ⋅=Χ                                                                      (2.26) 

where ( )ccT Χ~,~  is the triple point. 

     For the pure crystal solids (solvent or solute), there will be no internal strain field 

induced by impurity atoms. For solid solutions at constant temperature (Figure 2.4), the 

coupling will increase with the composition and reach the maximum at the melting 

transition point. Comparing with the experiments [7, 8], the more solute atoms added in, 

the more disordered solids you could make for certain composition range. Beyond the 

critical composition value, it will decrease until the full solute crystal is reached. In a 

solid solution with certain components (Figure 2.4(b)), the static displacements could 

make more contribution to the disorder at low temperature. At high temperature, the 

thermal disorder from heating is the main cause to induce the melting transition from 

crystal phase to liquid phase. 

      The crystalline phase need climb a potential barrier into the disordered phase. The 

barrier is defined as        

( )
2

3

54
1

E
CF Χ

=Δ                                                                                                            (2.27) 

for the first order phase transition. And the critical order parameter square value is  

( )
E

CM c
Χ

=
2
12                                                                                                              (2.28) 

at the transition points. One reason for the choice of ( )ΧC  without temperature 

dependence is trying to use simple calculus to obtain the phase diagram and takes into 

account of composition disorder by composition dependence. In Figure 2.6(a), for high 
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temperature melting, the free energy barrier decreases with the increasing composition 

from zero value and reach the zero at the triple point. When adding more solute atoms 

into the solid solvents, the crystal structure will become weaken with enhanced static 

disorder and the atoms could be deviated from their crystal lattice position and displaced 

from each other more easily. So the corresponding critical order parameter square values 

will decrease along the melting line (Figure 2.8(a)). And the transition temperature will 

decrease with the increasing composition (Figure 2.5).  Once the system reaches the triple 

point, the energy barrier disappears, and the crystal phase, liquid phase and amorphous 

phase meet together. In Figure 2.8(b), the amplitude of shear strain change along the 

melting line has a peak with the composition variance. It indicates that the contribution of 

the static disorder for the melting increases before saturation. Because of the weakening 

of the crystal structure, the energy barrier decreases deep, and the critical order parameter 

value could be reached easily. Relatively, the less static disorder will make the crystal 

structure broken.      

     For low temperature melting, the disorder induced by composition and atomic size 

mismatch will dominate the process and dynamic disorder always is helpful to destabilize 

the system. Along the melting line, the slightly increasing energy barrier (Figure. 2.5(a)) 

and critical order parameter square value (Figure 2.8(a)) indicates the competition 

between disorder and nonlinearity by increasing impurity atoms, which could stabilize 

the crystal structure somehow. During the endothermic melting process, the crystal solids 

will absorb the heat and the entropy change will be positive (Figure 2.7(a)). The entropy 

contribution from the increasing disorder by alloy elements is responsible for the positive 

entropy change along the melting line even with typical short- range chemical disorder in 
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amorphous phase (Figure 2.7(a)). The triple point is the isentropic transition point: 

0=Δ=Δ FS . Kinetics of first-order phase transitions, nucleation and growth 

mecahnism, occurs as the result of heterophase fluctuations in a homogeneous system 

and describes the process from a metastable to a stable state. Around the melting point, 

the heterophase fluctuations are enhanced with the increasing composition [5, 32]. The 

probability, which is defined as λ))(exp( Sp Δ−= , for the evolution of small liquid-like 

clusters could reach one at the triple point (Figure 2.10). λ is some positive constant. The 

contribution for melting from static disorder is described in the generalized Lindemann’s 

criterion, and the melting temperature is 

2
2

2

9 cri
d

m u
mk

T
h

θ
= ,                                                                                                       (2.29) 

 

 

Figure 2.5 Melting line for the chose parameters in Table 1. The region below the 
melting line represents the crystalline state. The arrow shows the triple point at 
( ) ( )850.0,900.0~,~ =Χ ccT . 
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                              (a)                                                                (b) 
Figure 2.6 Free energy barrier (a) and chemical potential change (b) along the melting 
line (Figure 2.5) for the chosen parameters in Table 1. 

 

                              (a)                                                                (b) 
Figure 2.7 Entropy change (a) and Enthalpy change (b) along the melting line (Figure 
2.5) for the chosen parameters in Table 1. 
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(a) (b) 

Figure 2.8 Mean square order parameter values change (a) and absolute value of shear 
strain change (b) along the melting line (Figure 2.5) for the chosen parameters in Table 1. 

 
                                         (a)                                                                    (b) 

Figure 2.9 01
m

d
m

s T
T

d −= indicating the contribution from static disorder (a) and mean 

square static atomic displacement change (b) along the melting line (Figure 2.5) for the 
chosen parameters in Table 1. 
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Figure 2.10 )exp( Sw Δ−=  that probability is defined as λ))(exp( Sp Δ−= for heterophase 
fluctuations of liquid-like clusters andλ  is some positive constant (parameters in Table 
1).                                                               
 
 
 
 

 
Figure 2.11 Shear elastic constant as a function of composition at the triple point 
temperature T=1.1 for the chosen parameters in Table 1. 
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. 
The effective Debye temperature dθ  for the disordered crystal is 

⎟
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and also the average shear modulus is defined as 
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From Figure 2.9(a), we can clear see the increasing contribution from static displacement 

for the melting, which induced by the impurities, with the approximation 

222
sdyn MMM +≈  and the static disorder does dominant during the amorphization 

process at low temperature. And chemical disorder also play more important role for low 

temperature melting [18, 28] (Figure 2.9(b)). At fixed temperature, the softening effect of 

the static disorder on the average shear modulus is shown in Figure 2.11. At the transition 

point, shear modulus reaches zero. The lattice instability induced by the softening of 

long--wave acoustic modes indicates the onset of the low temperature melting----

amorphization [6, 28] (Figure 2.11). 

     In Figure 2.6(b), chemical potential difference indicates 0≤Δμ . At the three-phase 

coexisting point, 0=Δμ . Since the positive enthalpy of fusion shows that the positive 

heat of mixing couldn’t provide the driving force for phase transition, the stored elastic 
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energy could be the origin to lower the free energy of the crystal phase. The chemical 

potential will drive the crystal solids into the stable amorphous phase. 

 

2.2.5 Exothermic Melting----Reentrant melting 
 
      Beside the normal melting point at high temperature, a solid solution could have the 

other melting scenario at low temperature, for which the entropy change is negative and 

the amorphous phase becomes more stable than the metastable crystal state. This 

situation has been called inverse melting and characterized by reentrant behavior that the 

melting line is bent over and entering into low temperature range in a binary phase 

diagram [30, 31, 33]. For the reentrant behavior, we need to consider a polynomial of 

degree two inT , which is determined by the parabolic nature of the T-X line near the 

triple point [32].   

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅−⋅Χ+−⋅Χ+Χ=Χ
2

02010
~~~)(~~,~ TTATTAATA                                              (2.32) 

The corresponding formulas for the neutral stability point 1T , transition point mT , and 

critical point 0T  are: 

( ) ( ) ( ) ( ) ( ) ( )
E

CATTATTA
3

~~~~~ 2

0011
2

012
Χ

=Χ+−⋅Χ+−⋅Χ , 

( ) ( ) ( ) ( ) ( ) ( )
E

CATTATTA mm 4
~~~~~ 2

001
2

02
Χ

=Χ+−⋅Χ+−⋅Χ ,                                   (2.33) 

( ) ( ) ( ) ( ) ( ) 0~~~~~
0001

2
002 =Χ+−⋅Χ+−⋅Χ ATTATTA , 

and more details is in Appendix A. The coupling function has the following form at low 

temperature: 
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( ) ( ) ( )( )( )
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The function A  in Eq. (4) has the following form: 

( ) ( ) ( ) ( )2
020100, TTATTAATA −+−+Χ−Χ=Χ                                                         (2.35) 

After the renormalization, we have: 
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We choose the parameters with the following relations:  
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Finally, we get the normalized coefficient: 

( ) ( ) ( ) ( ) ( ) ( )2210
~~~~~~,~

ccc TTATTAATA −⋅Χ+−⋅Χ+Χ−Χ⋅=Χ                                         (2.38) 

We still use the same form for )(ΧC  as Eq. (2.19). The functions of temperature in Eq. 

(2.38) have the quadratic forms and could give two solutions with the appropriate 

parameters. The extreme point is chosen at ( ccT Χ~,~ ). Based on the physics of 

polymorphic melting, for the high temperature melting (larger than cT~ ), the necessary 

condition is 01 TTT m << . For the reentrant melting (smaller than cT~ ), we have 

01 TTT m >>  with the right choice of parameters. 
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     From the numerical solution, we obtain the melting line ( mT line) with 0=Δf in 

Figure 2.12. Along the melting line, both the energy barrier in Figure 2.13(a) and the 

mean square order parameter Figure 2.15(a) are decreasing with the increasing 

composition for high temperature melting and reach zero at the triple point ( ccT Χ~,~ ). 

Since )(ΧC  does not depend on the temperature, the energy barrier and the mean square 

order parameter value are no difference for high temperature melting and low 

temperature melting. But the amplitude of shear strain at low temperature is increasing 

with the decreasing composition after it reaches zero at the triple point. At the beginning, 

the amplitude of shear strain at high temperature melting is increasing and will 

decreasing with the increasing composition once beyond certain point (Figure 2.15(b)). 

That bump shows the original crystal solid is weaken by the addition of the solute atoms. 

That weakening process is induced by the static disorder caused by the solute atoms 

(Figure 2.16). Because of the weakening, the melting temperature is decreasing (Figure 

2.12), the less energy is needed for phase transition and the jump for the order parameter 

 

Table 2 Parameter values for exothermic melting 
T0 X0 E μ0 Δ A0 A1 A2 C0 C1 α0 α1 

1 1 1 1 0.100 2 -1 -1.500 0.150 1 0.906 1.647

Table 2 Parameter values for exothermic melting (continued) 
Α2 β0 β1 β2 

-0.850 0.953 0.100 -0.100 
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Figure 2.12  Melting line with triple point ( ) ( )850.0,900.0~,~ =Χ ccT  for the chosen 
parameters in Table 2. 
 

 
(a)                                                                       (b) 

Figure 2.13  Free energy barrier (a) and chemical potential change (b) along the melting 
line(Figure 2.12) for the chosen parameters in Table 2.  
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(a)                                                                            (b) 
Figure 2.14  Entropy change (a) and Enthalpy change (b) along the melting line(Figure 
2.12) for the chosen parameters in Table 2.  
 
 

 
Figure 2.15  Mean square order parameter values change (a) and absolute value of shear 
strain change (b) along the melting line (Figure 2.12) for the chosen parameters in Table 
2. 
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                                        (a)                                                                    (b) 

Figure 2.16 01
m

d
m

s T
T

d −= indicating the contribution from static disorder (a) and mean 

square static atomic displacement change (b) along the melting line (Figure 2.12) for the 
chosen parameters in Table 2. 
 

 
Figure 2.17 )exp( Sw Δ−=  that probability is defined as λ))(exp( Sp Δ−= for heterophase 
fluctuations of liquid-like clusters andλ  is some positive constant  (parameters in Table 
2) 
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                                           (a)                                                                  (b) 
Figure 2.18 Coupling function (a) and shear elastic constant (b) as a function of 
composition at the triple point temperature T=0.509 for the chosen parameters in Table 2. 
 
 
 
value is smaller (Figure 2.13(a) and Figure 2.15(a)).  Also for the reentrant melting, the 

static disorder will play dominant role for phase transformation since the dynamic 

disorder is decreasing at low temperature (Figure 2.16(a)). And it also suggests the 

atomic scale distortion by atomic size mismatch and the amplitude of the accompanying 

strains increase with decreasing temperature (Figure 2.16(b)). The entropy change along 

the melting line is decreasing (Figure 2.14(a)) with the increasing composition and keeps 

positive until it becomes zero at the triple point. Then it turns into negative and continue 

to decrease along the melting line. That shows the exothermic case proposed by Fecht 

and Johnson [5]. The negative enthalpy of fusion indicates that the negative heat of 

mixing is necessary condition for reentrant melting, which providing the driving force for 

the formation of amorphous phase (Figure 2.14(b)). The small bump shows the 

competition process between the static disorder and the dynamic disorder.  The elastic 
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softening of the crystal lattice is caused by the impurities and reaches zero at the 

transition point.             

       The origin of re-entrant behavior for amorphization is explained by the existing 

chemical short-range order in amorphous phase, which is responsible for the negative 

excess entropy value along the melting line [30, 31, 33]. For the entropy of a binary solid 

solution system, there are three major parts: (i) a contribution from vibrations, caused by 

the variation in force constants and frequency; (ii) a contribution from the anharmonicity; 

(iii) a contribution from the configurations. For the amorphous phase from low 

temperature melting, an excess of low frequency vibrations over the corresponding 

crystal state is one of the anomalies of glass properties, indicated by the boson peak 

observed in inelastic light (Raman) and Neutron scattering densities. Anharmonicity and 

disorder are used to develop various models to try to understand the physical origin of the 

boson peak. One of the interesting explanations is taking into account the interplay 

between anharmonicity duo to temperature and compositional fluctuations, which is 

responsible to stabilize the harmonic vibrational modes, and disorder [34,35]. At low 

temperature, the first two contributions could be small and the decreasing configurational 

contribution induced by the short-range order could make the excess entropy be negative. 

From Eq. (2.34), the excess entropy is defined as ( ) ( )( )[ ] 2
21

~~2~ MTTAAS c−Χ+Χ−=  and 

the sign of S  is depending on the competition between ( )Χ1
~A  and ( )( )cTTA ~~2 2 −Χ . 

Along the low temperature melting line, we have 0<S  with ( ) 0~
1 <ΧA , ( ) 0~

2 <ΧA  and 

( )
( )Χ
Χ

−<
2

1~2

~
~

A
A

TT cm . The linear dependence on temperature is from the coefficient of the 

quadratic term of order parameter and the coupling coefficient between the strain and 



 41 
 

 

order parameter. Experimentally, chemical short-range order does depend on the alloy 

composition and temperature in disordered solids, and it could induce large changes in 

the vibration for one-dimensional model [36, 37, 38]. And its influence on glass-forming 

ability is also discussed that chemical ordering is important although the atomic size 

plays the main role for normal melting [39, 40]. Based on the microscopic theory of 

configuration free energy in solid solutions, the chemical part comes from the atomic 

configuration and elastic energy depends on the configurational and positional degree of 

freedoms. For binary cases, short-range order could bring the extra ordering energy in 

comparing the random distributions of solute atoms [41, 42]. In our Landau free energy, 

the enhanced short-range order effect could rely on temperature, composition and elastic 

degree of freedom from the coupling coefficient for the reentrant melting. Since the 

random mixture is the reference state, the elastic contribution could make a limited 

contribution to decrease the enthalpy and the pronounced short-range order could induce 

the relatively lower entropy. For endothermic melting, the amount of increasing entropy 

contribution from vibration and anharmonicity may exceed the decreasing part from 

configurations by increasing temperature or composition and the excess entropy could be 

positive. For that situation, the atomic mismatch will provide the thermodynamic driving 

force for the phase transformation even with the developed short-range order in the 

amorphous phase. 

     From our model, the melting line could be further extrapolating to zero temperature 

and still show negative excess entropy, caused by the decreasing number of available 

zero-temperature configurations for amorphous phase over the metastable crystal state. 

However, it is unreasonable for another argument that the entropy should be zero for the 
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frozen in disordered state at zero temperature [19, 43]. This behavior is clearly a violation 

of the third law of thermodynamics for the metastable crystal phase, ‘Kauzmann 

paradox’.             

 

2.3 Summary: Endothermic Melting and Exothermic Melting 
 
     With our simplified model, equilibrium thermodynamics are used to study melting and 

solid-state amorphization. Based on the proposed Landau theory of polymorphic melting 

for binary solid solutions, the addition of impurities (alloy elements) weaken the original 

crystal lattice, lower the melting temperature and cause the elastic softening with phase 

transition. Shear elastic instability happens right at the transition point, which means the 

connection between thermodynamic instability and mechanical instability based on 

vibrational instability [14].  Position disorder and chemical disorder are used to describe 

the topologic disorder, and their coupling effect is stressed for the topological order-

disorder transition in disordered crystals. At high temperature melting, the system needs 

to absorb the heat and the induced static disorder plays important role during the process. 

Vibration of atoms induced by thermal effects governs the event. Energy barrier, entropy 

change and enthalpy change are decreasing with the increasing composition along the 

melting line. Finally, they reach zero value at the triple point.  At low temperature 

melting, the static disorder plays the dominant role for solid-state amoprphization. For 

endothermic melting, the elastic energy induced by the atomic size mismatch provides 

the driving force since the enthalpy of fusion is positive.  Experiments show that the 

binary systems with the positive heat of mixing allow the formation of amorphous phase 

driven by mechanical condition. For reentrant behavior, the negative enthalpy of fusion is 
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the necessary condition for solid-state amorphization. The crystal phase is unstable at any 

temperature once beyond the composition value at the triple point. 
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CHAPTER III                                             

FLUCTUATIONS AND NUCLEATION IN 

INHOMOGENEOUS BINARY SOLID SOLUTIONS 

 
3.1 Amorphous Structure and Phase Transitions in One    

Dimension 
 
      A real one-dimensional glass does not exist. However, there is a well-defined base 

lattice in one dimension and a one-dimensional glass model may show some significant 

results to be helpful to understand the real two and three-dimensional amorphous solids. 

For disordered alloys, the imposed disorder may be well considered in one dimension 

rather than the dimensionality. In two and three dimension, topological defects are 

considered to play a crucial role for melting [44--47]. Quasi-one dimensional systems do 

exist, e.g., amorphous Boron nanowires and Co-B amorphous alloy nanochains [48--50] 

(Figure 3.1). Also one-dimensional model may be applied to layered structures with 

randomness in atomic positions and compositions along one direction [51]. One-

dimensional models of disordered solids have been studied extensively, which include 

liquids, ordered alloys and random alloys, based on different information on short-range 

and long-range order. For the liquid models, the interatomic spacing is characterized by a 

definite continuous probability distribution with short-range order, which is originally 

proposed by Gubanov [52--60] (Figure 3.2). The atomic positions are randomly arranged 

for disordered-alloy models and atomic species are related to discrete probabilities. One-

dimensional chaotic maps are also proposed to model quasi-crystals and amorphous 

materials [61--64]. In a temporal chaotic nonlinear dynamical system [65], the evolution 
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of the system is only predictable for short time scale in the corresponding phase space. 

Amorphous solids have a similar spatial behavior, which show short-range correlations at 

the atomic length scale without long-range order. To examine the analogy between 

spatial chaos and amorphicity, Reichert and Schilling [62] used the baker transformation 

to build a mathematical model that has one-dimensional chaotic configuration. Later on, 

they developed a physical model by an infinite chain of identical classical particles with 

anharmonic and competing interactions [63] (Figure 3.3).  

                      
(a) (b) 

Figure 3.1 (a) A high-resolution transmission electron microscopy image of a single 
amorphous boron nanowire [48, 49]; (b) A transmission electron microscopy image of 
amorphous Co-B chain [50]. 
 
 
In 1950, van Hove showed that thermodynamics phase transition, which is defined as 

singularities of the free energy, does not occur in particle systems with pair interactions 

of sufficiently short range [66]. That mathematical result is called von Hove’s theorem, 

which is applied to homogeneous system for pairwise potentials with a hard core and a 

cut-off under no external fields. It has been extended to one-dimensional continuous 
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(a) 

 
(b) 

Figure 3.2 (a) ordered chain model with the atomic position as yi=d0+εid0 and <yi>=d0; 
(b) disordered chain model with the interatomic distance as yi-yi-1= d0+εid0 and <yi-yi-

1>=d0. 

 
(a) 

                           
(b) (c) 

Figure 3.3 One-dimensional amorphous model by the Baker transformation with un+1-
un=υn=A+Bxn. (a) the orbits of the Baker transformation and the corresponding atomic 
configurations; (b) amorphous–like pair correlation functions obtained using the Baker 
transformation; (c) amorphous-like pair correlation functions obtained using a nonlinear 
potential model. 
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(gases) and discrete system (Ising model, lattice gas) with short-range interaction [67]. 

Landau’s argument reinforces this point of view, which shows that domain walls will 

make contribution of entropy and make macroscopic phase coexistence impossible at any 

positive temperature [68]. His argument does apply to a large class of one-dimensional 

systems (short range Ѕ=1/2 Ising model, the φ4model, etc) though it is not a rigorous 

result and only physically intuitive. However, it is established that phase transitions could 

occur in the one-dimensional discrete (lattice gas [69], Ising model [70] and helix-coil 

transition [71]) and continuous (fluid model [72]) systems with long-range interactions. 

For example, one-dimensional Ising models with 1/r1+σ ferromagnetic interactions are 

known rigorously to exhibit a phase transition if σ≤1 but no-long rage order if σ>1 [70] 

(Figure 3.4). 

         

(a)                                                              (b) 

Figure 3.4 First order phase transition in an Ising ferromagnet chain with discontinuous 
long-range order. Magnetization as a function of temperature is obtained by 
renormalization group methods (a) and by Monte Carlo calculation (b) [70]. 
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      In one-dimensional inhomogeneous systems, there are no rigorous mathematical 

results to predict nonexistence of phase transitions. There are examples that show the 

existence of phase transitions in one-dimensional systems with quenched disorder. 

Heterogeneous DNA melting is an example of the influence of structural disorder by 

hydrogen bonds onto order-disorder transitions in one-dimensional systems [73]. One 

type of “2D wetting” transitions near a random one-dimensional wall is in fact one-

dimensional problem in the mathematical sense [74, 75].  

      Fisher discussed the solid-liquid transition in a one-dimensional continuous system 

and a lattice gas model with long-range interaction [76, 77]. Based on the long-range 

behavior of the pair distribution function, which is defined as the ratio of the local 

number density at a distance r to the average number density, around a central particle, 

phase diagram on the temperature-density is discussed and the existence of a triple point 

of gas-like, liquid-like and crystal-like states is mentioned. Recently, the pair distribution 

function is also calculated in homogeneous mixtures and inhomogeneous mixtures in 

one-dimensional systems [78, 79].       

      Melting behavior in metallic nanowires, which show clear characteristic first order 

phase transition for thick nanowires, has drawn people’s attention in recent years 

experimentally and theoretically. Computer simulations provide an opportunity to 

investigate the thermodynamic instability and melting processes at the atomic scale. In 

general, the melting of a crystalline solid will initiate at the surface layer and propagate 

into the interior. Melting also could proceed by simultaneous disordering of all shells, or 

start from inner core shell atoms in metallic nanowires [80, 81, 82]. Dimensionality and 

size effect along the transverse direction do play important roles on the thermal and 
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mechanical properties of nanowires, e.g. no clear indication of first-order transition in 

ultrathin titanium sample [83].  At low temperature, structural phase transitions (solid-

solid transitions) do exist and compete with melting process with increasing temperature 

in nanowires and nanoclusters. In alloy nanomaterials, the composition dependence of 

thermodynamic states is clearly indicated by the temperature and composition phase 

diagram, e.g. FCC to HCP transitions and melting transition in Pd nanowires [84, 85, 86]. 

The liquid-glass transition phenomenon is also observed in simulated nanowires with 

cooling by molecular dynamics, which shows the size dependence [87, 88]. In nanowires 

under mechanical condition, the initial crystal phase could continuously transform into 

the amorphous phase at high strain rate and exhibit a dramatic change in atomic short-

range order accompanying a near vanishing of tetragonal shear elastic constant 

perpendicular to the tensile direction [89, 90]. Size mismatch effect does favor the strain- 

                                    
(a) (b) 

Figure 3.5 Phase transitions in one-dimensional hard-core model with intermolecular 
potential for ε0<0 (a) and the corresponding phase diagram (b) [94, 95]. 
 

-rate amorphization in alloy nanowires. A new mode of amorphization is observed which 

occurs directly from the homogeneous, elastically deformed system with no chemical or 

structural disorder [89, 90]. A comprehensive understanding of the solid-state 
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amorphization mechanism is still lacking. For a one-dimensional lattice and continuous 

fluid model, a triple point could exist for certain parameter ranges when the hard-core 

potential has both a short-range repulsion and a long-range attraction [91--98] (Figure 

3.5).   From above discussions, we are confident to talk about the existence of long-range 

order and the possibility of phase transitions in one-dimensional systems in the following 

sections.  

 

3.2 Homophase Fluctutions and Heterophase Fluctuations 
 
     There are two kinds of fluctuations in metastable solid solutions with first order phase 

transitions: homophase fluctuations and heterophase fluctuations. Nucleation and growth 

theory focuses on the distribution of heterophase fluctuations and the growth of them, 

which is started by Gibbs [99] and Volmer and Webber [100]. For first order phase 

transition, nucleation is the initial stage that small regions reminiscent to new phase form 

through heterophase fluctuation. Some fluctuations with smaller than a critical size will 

shrink and called ‘clusters’ or ‘embryos’. Those fluctuations with greater size than the 

critical value will grow with a high probability and called ‘nucleus’. Heterogeneous 

nucleation initiated at some extrinsic sites is more general in real world and assist the 

formation of heterophase fluctuation. In case of absence of free surfaces or internal 

surfaces (grain boundaries), homogeneous nucleation could be activated by large 

fluctuation and the new phase is formatted spontaneously and grows subsequently. 

Heterophase fluctuations involve the interface free energy between two different phases 

and related to the localization phenomena (Figure 3.6). The embryos could be induced by  
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Figure 3.6  Schematic illustrations of Heterogeneous Nucleation at surfaces. 
 

 
(a)                                      (b)                                          (c) 

Figure 3.7 Schematic illustrations of a nucleus of Homogeneous nucleation: (a) a nucleus 
with dark area; (b) distribution of order parameter value in real space; (c) distribution of 
order parameter value for sharp interface model (solid line) and diffuse interface model 
(dashed line). 

               
(a)                                                                             (b) 

Figure 3.8 Schematic views of (a) homophase fluctuation and (b) hetrerophase 
fluctuation for first order structural phase transitions in binary alloys [101]. 
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large fluctuations (Figure 3.7) and exist at interfaces or some foreign particles. Under 

certain conditions, the solid solutions may become unstable, and the small amplitude 

fluctuations could grow spontaneously. In most cases, homophase fluctuations will decay 

and be just around the stable phase. 

     In crystal solids, homophase fluctuations do not change the crystal symmetry and they 

are described by the phonons, ‘normal modes’, and called elementary excitations. On the 

contrary, heterophase fluctuations could break the local crystal symmetry and represented 

by quasi-static wave packets [101] (Figure 3.8).  The microscopic mechanism of 

localized excitations must provide sufficient energy to activate atoms in a critical nucleus 

over energy barrier to the final stable phase.  Large-amplitude motion of atoms and large 

deviation from original host lattice induced by solute atoms could play key roles as 

possible mechanisms for melting and amorphization in binary solid solutions. 

 

3.3 Energy Localization in Defective Crystals: Nonlinerity and 
Disorder 

 
      Disorder-induced localized vibrational modes have been extensively studied for 

almost seventy years from theory and experiments [102]. There are three types of 

localized excitations in harmonic lattices: Localized, gap and resonance (or 

‘quasilocalized’) modes. Localized modes is characterized by the frequency lying above 

the maximum frequency of the perfect host crystal, and the frequency of gap modes is 

found in the gap between the acoustic branch and optic branch. For both of modes, the 

displacements of the vibrating atoms decay exponentially from the impurity center and 

they are the localized normal modes of the perturbed harmonic crystal, e.g. including 
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small mass and large force constant defects in a monatomic lattice. If a large mass or 

weak force constant defect occurs the resonance mode may appear in a kind of local optic 

mode. The amplitude of a quasilocalized mode decays by a power law with distance from 

the defect. Actually, quasilocalized modes have features of localized modes and extended 

modes and typically are found at low frequencies [103--106]. All these type of energy 

localization could be treated as a result of the weak bilinear coupling between the ‘defect’ 

harmonic oscillator and the ‘host’ harmonic lattice.        

     When nonlinearity is introduced into the homogeneous lattice through interatomic 

interactions or some external on-site potential, intrinsic nonlinear modes, immobile or 

mobile [107, 108], can appear at any lattice site and are special localized with frequencies 

occurring outside the corresponding harmonic plane wave spectrum. The frequency of 

localized modes decreases with the increasing amplitude. Anharmonic resonant modes 

also could exist in the nonlinear lattices with negative anharmonicity terms [109--112].  

When defects are added to the nonlinear lattice, localized nonlinear impurity modes could 

be found around the impurity sites and may be treated as intrinsic nonlinear modes 

trapped by the impurity [113] at low temperature. But at high temperature, these modes 

may be released when anharmonicity is strong enough. For the formation of the nonlinear 

localized modes, nonlinearity-induced modulation instability can create some excitations 

and increase the initial energy density of the system as the first step (Figure 3.9). After 

collecting energy from the other excitations, a larger excitation may be favored. Beside 

the localized kinetic energy, the impurity also could induce the local excitations of 

potential energy at low temperature. At intermediate temperature, both kinetic energy and 

potential energy contribute the high local energy events [114].  
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    Both nonlinearity and disorder could be responsible for the energy localization. In 

disordered crystals, there are different types of localized modes and the competition 

between these two mechanisms will produce the complexity of localized states. They 

could cooperate for the formation of large amplitude nonlinear excitations [115]. At low 

temperature, the disorder dominates the process of the localized excitations and most of 

them are trapped even with the presence of nonlinearity. In the high temperature interval, 

nonlinearity will govern the dynamics of nonlinear energy localization with finite effect 

of the disorder [116, 117].            

      To understand the vibrational properties of glasses, inelastic photon (Raman, x-ray) 

and neutron scattering experiments are generally used and a peak is observed at low 

frequencies in the order of THz, which is called Boson peak. The Boson peak is 

interpreted as an excess of vibrational density of states comparing to the Debye model. 

And the Boson peak is also found from the heat capacity measurement of glasses, which 

is normalized by the Debye T3 law, as a function of temperature. The origin of Boson 

peak is still in controversially debated, either collective in nature [118] or related to the 

localized modes [119]. And nonlinearity and disorder are used to build various alternative 

models, nonlinear localized potential model [119], force constant disorder model and 

elastic constant disorder model (a review see [35, 120]). Disorder will be critical if only 

harmonic degree of freedom considered and quasilocalized vibrational modes could be 

responsible for the peak [34]. The presence of anharmonicity and static displacements 

could stabilize the unstable harmonic vibrational modes, which are necessary to form the 

equilibrium glass structure [34].     
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     The nonlinear localized excitations could be possible mechanism for the localized 

activation processes [121, 122]. Based on the detailed analytical and numerical studies of 

discrete lattices, e.g. DNA denaturation [122] (Figure 3.10) and Toda lattices [121], 

localized energy produced by nonlinear excitations at certain sites could be responsible to 

drive the transition over a barrier. Several attempts have been made to connect the 

nonlinear energy localization, which is associated with intrinsic nonlinear localized 

modes, with the microscopic theory of first order phase transition for homogeneous 

model [123, 124]. For inhomogeneous model of DNA denaturation, the disorder induced 

by the sequence of base pairs only could have slight effect on denaturation at high 

temperature, though the disorder govern the dynamics at low temperature [125, 126].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Modulation instability for the quartic FPU model from [117]. For the last two 
picture (from top to bottom), t=800 and t=8*104. 
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(a)                                                                     (b) 

Figure 3.10 (a) Sketch of two nucleotide chains with two types of base pairs A-T 
(Adenine-Thymine) and G-C (Guanine-Cytosine)and (b)DNA thermal denaturation 
[127]. 
       

The studies show that nonlinearity and disorder could coexist and competition with each 

other in disordered systems, and the disorder could trap the localized excitation. As a 

one-dimensional model, DNA denaturation is a one-dimensional phase transition, which 

has short-range interactions and the appropriate nonlinearity through the coupling [124]. 

     At high temperature, thermal energy is responsible for nonlinear energy localization in 

nonlinear lattices with or without impurities, though the impurities do have some 

influence on the properties of nonlinear thermal excitations. Investigations in nonlinear 

lattices show that potential energy localization is related to the impurities [128, 129, 130]. 

At high temperature, potential energy could be localized at impurity sites even in 

nonlinear lattices with next-neighbor interaction. With decreasing temperature, near-next-

neighbor interaction is also involved for the potential energy localization. When reaching 

low temperature, long-range interaction is critical for the potential energy localization at 

the impurity site, which is defined by the different stiffness constant with the host 

particles, but it could be neglected at high temperature [130] (Figure 3.11).     
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(a) 

 
(b) 

Figure 3.11 (a) The distribution of average potential energy of soft host chain with an 
impurity characterized by stiffness αi at three different temperatures. (b) The ratio of the 
average potential energy of an impurity site to that of a host particle as a function of 
temperature and stiffness [130].       
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For solid-state amorphization caused by composition in binary solutions, frozen-in 

disorder could bring up mesoscopic spatial structure fluctuations since the lifetime of 

disorder disτ  is longer than the observation time obsτ . For high temperature melting, the 

structural fluctuations could be induced the thermal effect with obsdis ττ <  [5, 131].  The 

intrinsic origin of melting is initiated from the energy localization induced by large 

amplitude localized excitations. Soliton-like excitation and fusion of these excitations 

(Figure 3.12), which are analogies to the soliton and soliton fusion in nonlinear lattice 

model, could be used to build a picture of heterophase fluctuations of polymorphic 

melting in binary alloys. In binary solid solutions at intermediate temperature and low 

temperature, heterophase fluctuations are caused by both the composition fluctuations in 

the unperturbed crystal lattice and subsequent structure fluctuations. In the first stage, the 

development of the modulational instability is induced by the composition fluctuations 

and small amplitude localized excitations appear. The localization could be trapped at the 

impurity atoms sites, where the potential energy is the dominant at low temperature, or 

around them. When more solute atoms are added in, those impurity atoms could act as a 

catalyst for the generation of a larger excitation and the interaction of these localized 

excitations will cause the merging of localization lengths with diminish their number. 

Next, more large amplitude localized excitations occur and some will have the 

mesoscopic length scale after merging as superposition of large amplitude elementary 

excitations. The critical nucleus could form, and grow when the heterophase fluctuations 

are large enough to overcome the critical energy barrier or be ‘eaten’ by growing grains 

of the new phase.  
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     On the contrary of first order phase transition in three dimension systems, the nature 

of two-dimensional melting is still unclear [132]. The theory of dislocation-mediated 

melting of two-dimensional solids is developed by Kosterlitz and Thouless [45], Halperin 

and Nelson [46], and Young [47], and the possibility of two successive continuous      

      

 
(a) 

 
(b) 

Figure 3.12 (a) Fusion of two solitons at an impurity site (n=0) in a hard lattice with the 
nonlinear spring parameter ratio b/b0=10. (b) The maximum potential energy Vmax(r0) as 
a function of  b/b0[133]. 
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Figure 3.13 Possible pressure-temperature phase diagrams for two-dimensional model 
described by an attractive potential with a repulsive core. Solid, liquid, gas and hexatic 
phases are shown, together with double lines of first-order transitions and single lines of 
second-order transitions [134]. 
 

transitions for melting is suggested. The first transition is from the crystalline phase to 

hexatic liquid-crystalline phase through by the dissociation of pairs of dislocation. And a 

disclination transition is from hexatic phase to the isotropic liquid phase (Figure 3.13).     

     

3.4 Classical and Modern Nucleation Theory 
 
     For a real critical nucleus, its maximum value should be equal to the equilibrium order 

parameter value. Assuming the radius of curvature of the interface is large enough 

comparing to the molecular dimension, called capillarity approximation, macroscopic 

thermodynamics are used to describe the sharp interface drop model. Also, based on the 

equilibrium distribution of drops, the nucleation rate could be obtained to quantify the 

formation of drops that exceed a critical size and grow spontaneously. Based on the 

classical nucleation theory [135], the excess free energy necessary for nucleation is a 

function of size of the spherical nucleus, 
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γππ 23 4
3
4 rFrF d +Δ=Δ ,  

in which dFΔ  represents the free energy difference between the two phases and γ  is the 

interfacial free energy (Figure 3.14). The critical size is 

dF
r

Δ
−=∗ γ2 , 

which corresponds to the maximum value of FΔ , and a critical work is needed for 

nucleation 

( )2

3

3
16

dF
F

Δ
=Δ

πγ . 

For a nucleus with radius greater than ∗r , it will continue to grow with the decreasing free 

energy. The number of nuclei of size r could be approximated by the Boltzmann 

approximation 

( )kT
Fnm Δ−= exp , 

where n is the number of molecules per unit volume, k Boltzmann constant, and T  

temperature. The nucleation rate for the homogeneous polymorphic nucleation is 

mI ν= , whereν  is the frequency term depending on the ability of an atom to cross the 

interface and become a part of the new phase.  

      As a modification of classical theory, diffuse interface model is introduced by the 

Landau-Ginzburg free energy to describe an interface as an area with finite thickness that 

is comparable with the characteristic length of the considered system [136, 137, 138].  

Recently, homogeneous nucleation process for melting in perfect crystals is considered 

by classical approximation and one order parameter model [139, 140]. A new type of 
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kinetic instability was proposed and failed to include the differences between the 

thermodynamics of crystals and liquids [139].  

      After nucleation stage, the growth of nuclei could be governed by atomic processes at 

the interface or controlled by diffusion conditions. For the interfacial growth, based on 

Avrami’s approximation, the spherical volume ( ) ( )[ ]didi ttvCtV −=  for a nucleus formed 

at it , where v  is the interface velocity (Growth rate), d  the space dimension, and dC  

related to the dimension ( )34,,2 321 ππ === CCC .  The kinetics of a combination of 

nucleation and growth process could be described by the KJMA theory formulated by 

Kolmogorov, Johnson and Mehl, and Avrami [141--145]. The growth of droplets in 

systems of diffusionless first-order phase transitions was studied in terms of the time  

 

 

Figure 3.14 The surface (long dash line) and bulk (dot line) contributions and the total 
excess free energy ΔF (solid line) of a spherical nucleus depending on radius r (e.g. ΔFd 
=-1.500, γ=1.200). The arrow line indicates the critical nuclei position. 
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dependent-Landau-Ginzburg equation with a non-conserved order parameter [146]. 

Based on the sharp interface model, the growth law is tr ∝  by the solitary wave 

analysis.  

       In the Landau-Ginzburg theory, we will use the order parameter model to examine 

the homogeneous nucleation and heterogeneous nucleation of polymorphic melting in 

binary solid solutions. Frenkel studied premelting phenomena in crystals, which show an 

abnormally increase of specific heats and thermal expansion coefficients slightly above 

the thermodynamic melting temperature, as an example of heterophase fluctuations [147]. 

The heterophase fluctuations are represented by the non-uniform stationary solutions of 

the nonlinear equations [131]. The stability of localized solutions and domain growth will 

be studied with the Landau-Ginzburg model. 

        In a solid solution, the system has the higher free energy then the host crystal and a 

significant contribution is from the elastic free energy. Microscopically, the elastic free 

energy has two parts:(i) the chemical contribution is depending on the configuration 

degrees of freedom, corresponding to a particular assignment of atoms to sites of the 

ideal lattice; (ii) the relaxation energy is due to the shifting of the atoms to their 

equilibrium positions by atomic size effect, which relies on the configuration and the 

displacive degrees of freedom. Static displacement of the atom at some site is defined as 

the difference between the actual position of the atom and the corresponding position of 

the mean crystal lattice site, described by the homogeneous strain.   

      First order phase transition is possible in one-dimensional systems with long-range 

interaction and disorder [69--73]. One-dimensional melting has been analytically and 

numerically studied as first-order phase transition in the discrete systems with long-range 
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interaction [91--98], and the crystalline, liquid, and gas phase are defined based on the 

density difference. In the following work, we will focus on melting in one-dimensional 

disordered systems with long-range interaction. In our model, the elastic degree of 

freedom will act as a long-range part that only the compressive behavior is considered in 

one dimension, and the competition between nonlinearity and disorder will determine the 

processes. As a possible microscopic picture of heterophase fluctuation, thermal energy 

localization induced by nonlinearity is dominant at high temperature melting and disorder 

through by the impurity atoms could have some important influence during the process. 

At low temperature, the elastic interaction induced by compositional disorder and size 

effect of the impurity atoms is necessary for the non-thermal energy localization.      

 

3.5 Landau-Ginzburg Free Energy: Stationary Solution in One 
Dimension   

 
       In real metallic glasses, there are local atomic structures on different length scale: 

short-range order over several nearest neighbor distances and medium-range order over 

nanometer scale. A certain level of chemical disorder, coupling to position disorder, is 

necessary to build a topological disorder structure, i.e. to form amorphous phase [148], in 

two and three dimension systems. In one-dimensional model, melting is first order phase 

transition from an order state to a disordered state [149, 150]. For inhomogeneous 

system, Landau-Ginzburg theory is used to take into account the spatial fluctuations. We 

choose the root mean square of atomic displacement as the primary order parameter, and 

coefficients of the nonlinear Landau potential are determined by temperature and 

composition, which represent the influence of the thermal disorder and the chemical 
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disorder on a length scale (correlation length). The elastic degree freedom is considered 

as the long-range interaction and a macroscopic modulation of chemical disorder and 

atomic size effect.  

3.5.1  Rescale 
 
      Under mechanical equilibrium condition (unstressed), the renormalized Landau-

Ginzburg free energy density is: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
0

642,~ xMGxMExMCxMTAxMf ∇+⋅+⋅Χ−⋅Χ= .                       (3.1)              
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The total free energy is 
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     The evolution equation is 
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with the rescaled time τ0Γ=t . Г0 is the Landau-Khalatnikov coefficient that is related to 

the relaxation process and depends on the temperature and composition. 
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3.5.2 Uniform Solutions and Linear Stability Analysis 
 
      For uniform solutions, the gradient term disappears and we have: 

0642 53 =+− ηηη .                                                                                                

We get 

01 =η                                                                                                                              (3.5) 

3
311

2
a−−

±=η                                                                                                       (3.6)         

3
311

3
a−+

±=η  .                                                                                                      (3.7) 

We add small perturbation to do the linear stability analysis: 

( ) ( ) ( )ykitty ⋅⋅⋅⋅Γ⋅+= expexp, δηηη .                                                                        (3.8) 

 

 

(a) (b) 
Figure 3.15  (a) The growth rate of the uniform solution 2η  for a=0.150; (b) The cut-off 
wave vector of the uniform solution 2η . 
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(a) 

 
 

(b) 
Figure 3.16  Evolution of small perturbation around the uniform solution 1η  (a) in time-
space coordinates and (b) space distribution of order parameter profiles with t=0, 5, 7, 50 
for L=156.232, δ=0.005, a=0.150.  
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Keeping the lowest order, we obtain the growth rate (Figure 3.15(a)): 

( ) ( ) 242 230122 kak ⋅−⋅+⋅−⋅−=Γ ηη .                                                               (3.9)    

We could see the two solutions 1η  and 3η  are stable. There is a cut-off wave-vector Κ , 

which determines the stability limit for uniform solution 2η  (Figure 3.15(b)).   

( )aa
g

⋅−−⋅⋅−⋅=Κ 31131
3
22                                                                         (3.10)      

      The uniform solutions describe the macroscopic states of the systems. Small 

perturbation around the stable state will decay. An example of homophase fluctuation is 

shown in Figure 3.16. We use the initial condition  

( ) ( )yky ⋅⋅+= cos0, 1 δηη  

with 005.0=δ , 100.0=k . 

 

3.5.3 Non-uniform Solution and Stability Analysis 
 
      The non-uniform steady solutions are described by 

2

2
53 2642

dy
da ηηηη =+−                                                                                           (3.11) 

i.e. 

( )
dy

dV
dy
d ηη

−=2

2

2                                                                                                         (3.12) 

( ) 642 ηηηη −+⋅−= aV                                                                                              (3.13) 

which describes a particle’s motion in the potential well ( )ηV  with mass 2=m . The first 

integral of motion of Eq. (3.12) is  
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( )( ) 2/1
0 ηη VU

dy
d

−±=                                                                                                   (3.15)      

and analogous to mechanical energy conservation. The various possible phase trajectories 

could be obtained in phase space by Eq. (3.15). For one kind of non-uniform stationary 

solutions, the following boundary condition is used: 

0==
=−= lyly dy

d
dy
d ηη                                                                                                    (3.16) 

( ) ( ) 0flyflyf ===−=                                                                                            (3.17) 

( ) ∫
−+−⋅

=−±
0

6420
fa

dyy
ηηη

η                                                                           (3.18) 

For the case 00 =f , the solution is 

( )
( )][sinh11 0

2
2

3

2
2

2

yya

y

−⋅⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

=

η
η

η
η                                                                (3.19)  

with ( ) ( ) ( )2
3

22
2

22 ηηηηηη −⋅−⋅=f . An alternative form of Eq. (3.19) is 

( )
( ) ( )]2cosh[1211

6

0
2/12

3
2

2

32

yya
y

−⋅⋅−+
=

ηη

ηη
η .                                                    (3.20)       

We could rewrite Eq. (3.11) with η=X as two first order ordinary differential equations: 

Y
dy
dX

=                      

53 32 XXaX
dy
dY

+−= .                 
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(a)                                                                    (b) 

 
(c) 

Figure 3.17 Phase portrait for (a) a=0.300, (b) a=0.250 and (c) a=0.150, where X 
represents the order parameter and Y is the ‘velocity’. 
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(a)                                                               (b) 

Figure 3.18  (a) Two non-uniform solutions for a=0.010 (solid line) and a=0.150 (dot 
line); (b) free energy dependence on the space coordinate for the non-uniform solution 
with a=0.150. 
       

      From the phase plane analysis, we have two saddle points 1η , 3η  and one center point 

2η  for 
3
10 << a . Close curves around 2η  are periodic solutions, and there is a bounded 

non-uniform solution for 3η  in physical space. The solution of Eq. (3.19) is along the 

characteristic 00 =f  in Figure 3.17(c). And there are two non-uniform solutions 

connecting two roots of 3η  that separate the periodic solutions around 1η , 2η  and the 

unbounded states. To characterize the relative stability of the two stable uniform 

solutions, we define the supersaturation [151] as: 

 ( )
2

2
2

2
2 3

22
3
13

1

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ −==Ω ∫ ηηηη

η

η

dDf                                                                       (3.21) 

with ( ) ( )53 642 ηηηη +−−= aDf . For 250.0<a , the state 3η is globally stable since 

0>Ω . 
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      We rewrite the solution Eq. (3.19) as: 

( ) ( )
( )( ) ( )]2cosh[12811

64

0
2/12

2
2

2

2
2

2
2

yya
y

−⋅⋅−−+

−
=

ηη

ηη
η  .                                             (3.22) 

We set the maximum value of Eq. (3.22) at 00 =y  (Figure 3.18): 

( ) ( )
( )( ) 2/12

2
2

2

2
2

2
22

2

12811

64

ηη

ηη
ηη

−−+

−
=M  .                                                                          (3.23)   

We define the width R of domain as:  

( ) 2ηη =R  

with 00 =y  and 
3

311
2

a−−
=η . For large supersaturation, which is closing to the 

critical point, the domain width is large but with low maximum value (Figure 3.19). 

When closing to the transition point, we have small saturation with large width and large 

maximum value.  The minimum domain width is around 732.2min =R . Substituting Eq. 

(3.19) into Eq. (3.3), we have the free energy of the non-uniform solution 

 ( )
∫ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= dyU

dy
ydF 0

2

2 η                                                                                         (3.24)               

The excess free energy of the non-uniform solution is defined as [140] 

( ) ( )∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−=Δ dyfU
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ydFFF ηη

0

2

2                                                              (3.25) 

where F  is the free energy of the uniform state η  (Figure 3.20).  
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(a)                                                                    (b) 

 

(c)                                                                      

Figure 3.19  (a) Supersaturation as a function of parameter a; (b) The maximum value of 
the non-uniform solution of Eq. (3.23) as a function of parameter a; (c) The domain width 
of the non-uniform solution of Eq. (3.19) as a function of parameter a. 
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(a) 

 
(b)                                                                  (c) 

Figure 3.20  Free energy of critical nucleus as a function of (a) the domain width and (b) 
the normalized quadratic coefficient a; (c) Ratio F/a over coefficient a. 
 

 
Table 3 Eigenvalues for a=0.150 

 
Index Eigenvalue for a=0.150 
1 -0.584 
2 0.0 
3 0.299 
 
 
                                     



 75 
 

 

 
(a)                                                                    (b)                                               

 
(c) 

Figure 3.21 Eigenfunctions for the eigenvalues (a) λ=-0.584, (b) λ=0, and (c) λ=0.299 
with a=0.150. 
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       To do the linear stability analysis, we need to solve the eigenvalue problem 

( )( ) ( ) ( )yyyL s λδηδηη =                                                                                               (3.26) 

where the linear operator has the following form: 

( )( ) ( )
( )

( )
2

2

2

2

2
dy

ydfyL s

y
s

s

η
η
ηη

η

−
∂

∂
= .                                                                            (3.27) 

And the perturbation is 

( ) ( ) ( ) )exp( λτδηηη −+= yyy s .                                                                                   (3.28)  

The Goldstone mode 

( ) ( )
dy

yd
y sηδη =                                                                                                          (3.29) 

is obvious with eigenvalue 0=λ . The discrete eigenvalues for 15.0=a 0 are listed in the 

Table .1. And the corresponding eigenfunctions are also shown in Figure 3.21. The 

spectrum is obtained numerically (Figure 3.22).       

 
                                     (a)                                                                           (b) 
Figure 3.22 (a) Potential Function for a=0.050, 0.10, 0.150, 0.175, 0.200; (b) Spectrum 
of Eq. (3.26): the shaded area is the corresponding continuous spectrum and the dot line, 
dash dot line and solid line represent the discrete spectrum. 
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3.6  Homogeneous Nucleation in One Dimension: Numerical 
Results 

 
     As shown in Figure 3.16, homophase fluctuations are small amplitude fluctuations 

around the initial phase and do not change the symmetry, which represent the elementary 

excitations that exist in the initial thermodynamic phase and could be described by a 

single plane wave function or superposition of them with finite numbers. Homophase 

fluctuations are in the framework of equilibrium statistical physics.   

      In Figure 3.23 , the initial condition  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅+= y

L
y πχδηη 2cos0, 2                                                                                  (3.30)  

is used, where 005.0,534.2 == δχ  are chosen to make 100.0=k (the cut-off 

141.0=Κ ). The pictures in Figure 3.23 are only possible mathematically and we could 

still call it as a homophase fluctuation since it is small amplitude around the unstable 

equilibrium state.  

      As a term, ‘heterophase fluctuation’ is first used by Frenkel [147] and was referred to 

macroscopic small nuclei of the final phase B dissolved in the solvent----the initial phase 

A in the vicinity of the corresponding transition points. Comparing to the dynamic 

character of homophase fluctuations, local equilibrium could be obtained for mesoscopic 

heterophase fluctuations under quasistatic condition 

τloca<τlife<τobs 

that the characteristic life time scale τlife of heterophase fluctuations is larger than the 

local relaxation time scale τloca and τobs is the observation time scale. The appearing and 

dissolution of those fluctuations are typical dynamical. As localized large-energy 

fluctuations, heterophase fluctuations are nonergodic and are associated with the 
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nonlinear degree of freedoms. Based on the nonequilibrium and inhomogeneous nature, 

the heterophase fluctuations could be induced by the intrinsic properties, strong external 

source and stochastic perturbation [152]. Based on statistical theory of heterophase 

fluctuations, Yukalov studied melting, crystallization and glass-to-liquid transitions for 

pure elements and phase probabilities sere obtained [131, 153, 154, 155]. 

      Since the homophase fluctuations are defined as phonons in crystals, what is the 

possible microscopic origin of heterophase fluctuations in binary alloys [156]?  Nonlinear 

energy localization phenomena have drawn so much attention in nonlinear lattice modes. 

It has been long recognized that localized vibrational modes could be induced by 

impurites in linear lattices. Since 1980s, theoretically the presence of nonlinearity, by 

coupling or onsite potentials, can also lead to localized vibrational modes, called 

‘intrinsic localized modes’. Also in nonlinear lattices, the impurities may lead to energy 

trapping and localization around the impurities sites. Large spatial extent of localization 

may be obtained by the fusion of solitons. Even at low temperature, potential energy 

localization could be induced at the impurity sites by long-range interaction in lattice 

models [130]. Recently, nonlinear energy localization mechanism has been proposed to 

be responsible for the DNA denaturation as a one-dimensional nonlinear model. In more 

realistic models, solitons are unstable and soliton-like excitation and interaction of those 

excitations could be responsible for the nonlinear energy localization. For polymorphic 

melting in binary alloys, nonlinerity and disorder govern the whole process either at high 

temperature or low temperature. At low temperature, composition modulation may 

initiate the small amplitude localization with small amount of impurity atoms and  
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(a) 

 
                                   (b)                                                                        (c) 
Figure 3.23 Growth of a new phase region with a=0.150, L=159.234: (a) evolution of 
order parameter values with time and space coordinates; (b) spatial distribution of order 
parameter profiles for different time; (c) free energy density as a function of time. 
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structure fluctuations could subsequently happen with the increasing composition after 

the development of modulation instability, which induces the energy localization with 

large amplitude.  

     The time evolution of the heterophase nuclei in a metastable system is described by 

the nucleation and growth theory. Landau-Ginzburg approach has been used to describe 

the kinetics of diffusionless first-order phase transitions [146, 157]. The growth law is 

derived as R∞t for a 2-3-4 type of Landau potential for one, two and three dimensions by 

solitary wave asymptotical analysis [146] and the dissolution law is also discussed.  The 

critical nuclei are obtained by solving the stationary solutions of time-dependent Landau-

Ginzburg equation analytically (Eq. (3.22) and Eq. (3.23)). Based on the nonlinear 

stability analysis, small perturbations are added to study the time evolution of initial 

critical nuclei (Eq. (3.26), Table 3 and Figure 3.21).  We add small perturbation from the 

eigenfunction of 2λ :  

( ) ( ) ( )yyy s δηηη ⋅Δ+=                                                                                                (3.31) 

with 005.0=Δ . The system decay and finally go back to the uniform state 01 =η , which 

is corresponding an example of dissolution of the initial critical nuclei in Figure 3.24. For 

goldstone mode, the nucleus has no change for small positive perturbation (Figure 3.25). 

      The growth law is studied for the unstable mode λ1 with small perturbation ∆=-0.005. 

Initially, the nucleus experiences a transient growth until the maximum order parameter 

over space turns into the corresponding bulk equilibrium value (Figure 3.26 (b)), and the 

free energy keeps increasing with time (Figure 3.27(b)). At the second stage, the front 

begins to propagate to both directions until it reaches out the size limit and the system is 

completely transformed into new phase with lower free energy (Figure 3.26(c),  Figure  
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(a)                                                                        (b) 

 

 
(c)                                                                   (d) 

 
Figure 3.24 Decay of the system with the small perturbation: L=49.405, Δ=-0.005: (a) 
evolution of order parameter values with time and space coordinates; (b) spatial 
distribution of order parameter for different time; (c) free energy density as a function of 
time; (d) maximum order parameter values as a function of time. 
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                                  (a)                                                                      (b) 
Figure 3.25 Small perturbation from the Goldstone mode with L=89.443, Δ=0.005, 
a=0.150: (a) evolution of order parameter values with time and space coordinates; (b) 
spatial distribution of order parameter profiles for different time. 
 

3.27(b)).  The time evolution of domain width shows the linear growth rate of new phase 

after the initial transient state in Figure 3.28(a). We also define another linear dimension 

Ld, which is defined by the area between the spatial order parameter profiles and the 

space coordinates in Figure 3.26(c) divided by the maximum order parameter value, and 

the corresponding time evolution still show the same linear growth rate after the transient 

stage (Figure 3.28(b)). 

      From the time evolution equation of Eq. (3.4), the time derivative and the space 

derivative are invariant under the general translation in time and space coordinates  

t→t+∆t , y→y+∆y                                                                                                        (3.32) 

where ∆t and ∆y are arbitrary. Based the definition of domain width  

( ) 2),( ηη =ttR ,                                                                                                             (3.33) 

where 2η is the unstable uniform solution of Eq. (3.6) and we have 
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                                     (a)                                                                  (b)   

 
                                  (c)                                                                        (d) 
Figure 3.26 Growth of the system with the small perturbation: L=49.405, Δ=-0.005: (a) 
order parameter profiles as a function time and space coordinates; (b) spatial distribution 
of order parameter for different time t=0, 5, 6, 8, 12; (c) order parameter values for t=0, 7, 
12, 27, 42, 100; (d) overlapping solutions (propagation front) for t=12 (red square solid 
line) and t=27 (black circle line) which is shifted to the space at t=12. 
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                                       (a)                                                                    (b) 
Figure 3.27 (a) Maximum order parameter value and (b) free energy density as a 
function of time (a=0.150, L=49.405, Δ=-0.005). 
 
 

0=⋅
∂
∂

+
∂
∂

dt
dR

Rt
ηη .                                                                                                        (3.34) 

We redefine the space coordinate as  

)(tRyz −= ,                                                                                                                 (3.35) 

and a particular solution could exist with the following form 

 )),((),( tyzty ηη = .                                                                                                      (3.36) 

With this kind of solution, the evolution equation of Eq. (3.4) is transformed into    

( ) 02 2

2

=
∂
∂

−⋅+
η
ηηη f

dz
d

dt
dR

dz
d ,                                                                                      (3.37)   

 which suggests  

v
dt
dR

=                                                                                                                          (3.38) 

and v is a constant [146].  
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      Our numerical result shows our solution for Eq. (3.4) is the translation invariant with 

time and space. An example is shown in Figure 3.26(c) and the growth rate of domain 

width is v=0.657 from Figure 3.28(a). 

 
                                        (a)                                                                   (b) 
Figure 3.28 Domain width (a) and linear dimension (b) as a function of time. Red lines 
are fitting curves (a=0.150, L=49.405, Δ=-0.005). 
 

      We consider the interaction of two identical nuclei with the same initial perturbation 

and a large enough separation distance. At the initial state, the top of both them begins to 

rise up until reaching the new phase, i.e. the corresponding bulk equilibrium value, and 

then the fronts propagate separately (Figure 3.29). At the second stage, the inside fronts 

meet at the center y=0 and then begin to reach the new phase until the valley disappear 

between two nuclei. After that, two nuclei turn into the bigger nucleus and the growth act 

the same as the previous single one though the rate of linear dimension is a nonlinear 

function of time.  

      One-dimensional melting in binary alloys is studied as a continuum model defined by 

a Landau-Ginzburg free energy. As inhomogeneous systems govern by nonlinearity and  
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                                            (a)                                                            (b) 

 

 
                                        (c)                                                                  (d) 
Figure 3.29 Collision of two identical nuclei with separation distance Ls=40, a=0.150, 
Δ=-0.005, and L=565.690: (a) space-time evolution of order parameter values; (b) space 
distribution of order parameter profiles at different time values; (c) free energy density 
and (c) linear dimension as a function of time. 
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disorder, nonlinear energy localization mechanism is proposed to be responsible for the 

heterophase fluctuations. Nucleation and growth of domains are investigated based on the 

analytical solutions of the well-known nonlinear evolution equation defined by the 2-4-6 

type of Landau free energy and numerical results are presented. 

 
 
3.7  Homogeneous Nucleation in Two Dimension: Numerical 

Results                  
       
       We will use our model of Eq. (3.4) to study the formation of a nucleus and the 

subsequent expansion of domains of new phases in two-dimensional systems.  The 

nonlinear evolution equation is  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
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∂

2

2

2

2

2
xy

f
t

ηη
η
ηη .                                                               (3.39)              

Numerical solutions are obtained by solve the evolution equation with periodic boundary 

condition through Fourier Spectral methods and show how a large-scale fluctuation of 

order parameter initiates and turns the system from a metastable state to an absolutely 

new state. To investigate the dynamics of arbitrary mesoscopic inhomogeneities of the 

sytem, we consider two different initial perturbations, i.e. thermal fluctuations and 

soliton-like excitations.  

     For the thermal fluctuations, the initial condition has the following form  

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅+= 002

2cos2cos0,, xx
L

yy
L

yx πχπχδηη                            (3.40)  

where 2η  is the unstable equilibrium state Eq. (3.6) and we choose the location of (x0, y0) 

at the center of the systems. From our results in Figure 3.30, it is clearly show a nucleus 

starts from the center around 25<t<27 with isotropic shape. Once the maximum order 
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parameter value reaches the new equilibrium profile, the front begins to propagate and 

finally reach the anisotropic shape (Figure 3.30(f)).     

      Based on the corresponding one-dimensional analytical solutions of the critical 

nuclei, we construct the initial spherical soliton-like perturbation 

( ) ( )ryx sηδη ⋅=0,,                                                                                                       (3.41) 

where ( )rsη  has the same mathematical form as the corresponding one-dimensional 

critical nucleus solution and  

( ) ( )2
0

2
0 yyxxr −+−=                                                                                            (3.42) 

with the location of (x0, y0) at the center of the systems.  A spherical nucleus initiates at 

the center around 17<t<19 and the final shape still keeps the spherical shape after the 

expansion (Figure 3.32). 

       Why the final shapes of excitations are different, i.e. anisotropic or isotropic? The 

contour plots of initial state of the above two cases indicate that the final shape i.e. 

determined by the details of the initial perturbations (Figure 3.31(a), Figure 3.33 (a)). 

After the formation of a nucleus, the velocity of the front propagation is depend on the 

local curvature of initial order parameter fields, i.e. the higher the larger radius of local 

curvature. This result is different from Kuzovlev et al’s results [158] that the final shape 

of excitation became isotropic with an anisotropic perturbation.   

     The final stable domain width of two nuclei shows different behavior with variation of 

the size of systems. We study the front propagation by tracing the moving location 

η(y)= 2/η  along some fixed grid lines. The final stable domain width of nuclei initiated 

from thermal fluctuations increases with the increasing systems’ size (Figure 3.42(a)). On  
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(a)                                                      (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

Figure 3.30 Spaptial dependence of order parameter profiles for different time values (a) 
t=0, (b) t=20, (c) t=27, (d) t=30, (e) t=50 and (f) t=160 with a=0.010, δ=0.009, χ=1, L=50 
in Eq. (3.40). 
. 



 90 
 

 

 

 
(a) 

 
(a) 

Figure 3.31 (a) Contour plot for initial state at t=0 and (b) cross section along x=24.610 
line for t=30 (black solid line) and t=80 (red dash line) with a=0.010, δ=0.009, χ=1, L=50 
in Eq. (3.40). 
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(a)                                                                   (b) 

 
(c)                                                                  (d) 

Figure 3.32 Spatial dependence of order parameter profiles for different time values (a) 
t=0, (b) t=17, (c) t=19 and (d) t=50 with a=0.010, δ=0.005, L=20 in Eq. (3.41). 
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                                  (a)                                                                         (b)   
Figure 3.33 (a) Contour plots for initial state at t=0 and (b) cross section along x=9.840 
line for t=30 (solid line) and t=100 (dash line) with a=0.010, δ=0.005, L=20 in Eq. (3.41). 
 

 

(a) (b) 

Figure 3.34 (a) front propagation showed by the moving location of η(y)= 2/η  for 
thermal fluctuations with a=0.010, δ=0.009, χ=1 in Eq. (3.40), along grid lines x=24.610 
for L=50, x=49.120 (dot line) for L=100 (dash line) and x=98.240 for L=200(solid line); 
(b) front propagation showed by the location of η(ys)=η(y-yf)= 2/η  where yf is the final 
stable location for soliton-like fluctuations with a=0.010, δ=0.005 in Eq. (3.41), along 
grid lines x=9.840 for L=20 (dash line), x=19.680 for L=40 (dot line) and x=39.360 for 
L=80 (solid line). 
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the contrary, we obtain a stable nucleus with fixed domain width R≈8.420 that is excited 

from the initial isotropic soliton-like fluctuations (Figure 3.34(b)). 

 

3.8 Heterogeneous Nucleation: Application to Nanosolids  
 
      Structure and thermodynamic instability of low-dimensional systems including 

nanoparticles, nanowires, nanofilms, and nanocrystals, is both scientific and 

technological interest, in which surfaces and interfaces energy play the important role 

[159, 160, 161]. Experiments on solid-state amorphization show that a critical crystallite 

grain size could be achieved in nanocrystalline materials of alloys and single elements 

systems by using various techniques such as ion implantation, mechanical attrition, vapor 

deposition, and so on [162--166]. Comparing to the pure element samples, the alloys have 

a larger critical grain size in presence of solute elements and the size will increase with 

the composition from a few nanometers to hundreds of nanometers.  The energy of grain 

boundaries may contribute significantly to the crystal to amorphous transformation since 

the grain size is in the nanometer range. The formation of a topological disordered layer 

on the boundary by prewetting [167] or premelting would be necessary for the transition 

to amorphous state [164, 168]. This layer with high strain has the higher value of atomic 

mean square displacement than the interior of the grain and is amorphous-like. At 

nanometer scale, the grain in nanocrystals is more closely resemble clusters with short- or 

medium-range crystalline order embedded in the disordered layer. Once the formation of 

the disordered layer at the grain boundaries, there will be two possible scenarios, which 

depends on the interfaces and size of the grains, for the grain from the ordered state to the 

amorphous state below a critical grain size.  The first one is size-driven transition or 
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‘complete melting’, and the grain is transformed into amorphous phase in one step. 

Beside the disordered layer surrounded by the grain, another amorphous layer could be 

induced by the interface between the grains and the grain boundaries before the 

amorphization and it is called ‘surface-induced melting’ as a two-step process for the 

second scenario. This phenomenon is analogous to the structure phase transitions in 

ferroelectric nanostructures [169] and melting in nanoparticles [161].        

      Experimentally observed enhancement or depression of size-dependent melting points 

of nanosolids is essentially controlled by the interface properties between the nanoscale 

objects and its surroundings [170--173]. In 1909, Pawlow [174] reported the decreasing 

melting points with the decreasing particles’ size and Takagi is the first one to 

demonstrate the melting depression experimentally in 1954 [175]. From known results, 

the depressed melting temperature could be linearly or nonlinearly proportional to the 

reciprocal size [159, 176]. The superheating of nanoparticles in a matrix presents only for 

coherent or semi-coherent interfaces and melting could be hindered by the lower mean 

square atomic displacements at the interfaces [176]. Lindemann criterion has been 

developed to explain the melting depression of nanosolids, which takes account into the 

influence of surfaces [176], 

( ) ( ) nnr svsv /2222 σσσσ −+= ,                                                                                      (3.43)        

where σ2(r) is the average mean square displacement over the nanosolid, the subscripts s 

and v represent surface atoms and atoms volume, and ns is the number of surface atoms 

and n the total number of atoms of the nanosolid with ns/n~1/r, r is the radius of the 

nanosolid. 
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      For both solid-state amorphization and melting in nanosolids, the ordered crystalline 

state may transform to the disordered (amorphous or liquid) state below a critical size. 

Based on the two scenarios, the polymorphous melting concept could be used to study the 

size dependent effects, either lowering or enhancing the melting point, where the 

amorphous state is considered as the undercooled liquid state. In alloy nanosolids, 

composition disorder will also play an important role to describe the structure and 

thermodynamic stability beside the structure disorder and size effect [23]. As first order 

phase transition, Landau theory has been used to investigate the melting of small particles 

with a semi-finite approach, and size dependent melting temperature and thermodynamic 

quantities are calculated [177--181]. Also, a thin film model or slab model is applied to 

study the surface-induced melting of nanoparticles with a parabolic form of Landau free 

energy and short-range atomic interactions at two boundaries [179], and a two-step 

melting process is recognized, which include a continuous surface-induced melting and a 

first order transition. For solid-state amorphization and melting in alloy nanocrystals, 

composition disorder is included into one-dimensional model based on the flat grain 

boundary approach [182, 183]. They focus on the grain boundary with finite thickness 

and the boundary is considered as the undercooled liquid state.  

      In alloy nanosolids, composition disorder will also play an important role to describe 

the structure and thermodynamic stability beside the structure disorder and size effect 

[182]. For solid-state amorphization and melting in alloy nanocrystals, composition 

disorder is included into one-dimensional model based on the flat grain boundary 

approach [182, 183]. They focus on the grain boundary with finite thickness and take the 

two grains as the infinite large systems. A phase diagram is established with a quadratic  
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(a)                                                                         (b) 

 

                
(c)                                                                           (d) 

 
Figure 3.35 Schematic representations of formation of disordered layers at grain 
boundaries (prewetting or premelting) ((a), (b))and a subsequent destabilization of grains 
that have two different models as shown in Figure 3.36 after reaching a critical grain size 
d (c). 

                                   
(a) 

                 
(b) 

Figure 3.36 Schematic view of two basic processes for melting and amorphization of 
nanosolids: (a) two-step model with surface-induced transition and first order transition 
and (b) homogeneous transition. 
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 form of Landau free energy that describes the amorphous phase layer approximation of 

grain boundary [182].     

      To understanding the thermodynamic stability of nanoscale crystalline solids, we will 

apply the built Landau theory from the Charpter II, which include the position disorder 

and composition disorder, to the thin film model. Phase diagrams are obtained and size-

driven phase transition and surface-induced phase transition is observed from our 

numerical results. Also this model is used to explain the melting depression and 

superheating in pure elements nanosolids based on the comparison with experimental 

results. In this part, we will discuss the model and the derivation of the theory for thin 

film model in Section 1, and the numerical results will be presented and applied to 

various examples in Section 2 and Section 3. The discussion will be given in Section 4. 

 

3.8.1 Model  
 
      We consider a thin film model that a crystalline solid is between two interfaces at y=0 

and y=L, where L is large enough comparing to the microscopic structure, and it is 

infinite and homogeneous in a plane perpendicular to the direction y. Under stress free 

condition, we use the same mathematical form as Eq. (3.1) and Eq. (3.2) and the 

renormalized Landau free energy per unit area is given by 

( )( ) ( )( )Lff
y

aF
L

ηηηηηη 21
0

2
642 0 ++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++−= ∫ ,                                               (3.44) 

where the terms ( )( )01 ηf  and ( )( )Lf η2  are the free energy contribution from the surface 

per unit area and the integral is the part from the bulk free energy. In the following case, 
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we only assume short-range force at the surfaces and symmetric configuration. For the 

surface contributions ( )( )01 ηf  and ( )( )Lf η2 , we take them as 

( )( ) ( )010 2
1 η

δ
η =f  and  ( )( ) ( )LLf 2

2
1η
δ

η = ,                                              (3.45)  

which describe the disordering effects of the surfaces with ( ) ( ) 10 ηηη == L . For δ<0, the 

surfaces would like to be in a disordered state; for δ>0, the tendency of disorder could be 

suppressed. The spatial dependence of the order parameter is determined by the Euler-

Lagrange equation and boundary conditions derived from the free energy Eq. (3.44): 

53
2

2

32 ηηηη
+−= a

dy
d                                                                                                  (3.46) 

0
0

1η
δ

η
=

=ydy
d                                                                                                             (3.47.a) 

0
1η
δ

η −
=

=Lydy
d .                                                                                                         (3.47.b) 

Because of our choice on ( )ΧC  in Charpter II, we don’t include the temperature 

dependence on the coefficients q  and 0F . We present some examples and show those 

coefficients varying with the composition or temperature in Figure 3.37, Figure 3.38 and 

Figure 3.39. The corresponding correlation length is defined as 
2/11

⎟
⎠
⎞

⎜
⎝
⎛=

a
ξ . We show two 

examples for fixed temperature and fixed composition in Figure 3.40 and Figure 3.41. 

The spatial correlated disorder is increasing with increasing composition at fixed 

temperature or increasing with decreasing temperature at fixed composition for reentrant 

melting at low temperature. The increasing thermal disorder will increase the atom 

mobility and tend to promote the probability of crystallization. Static disorder and  
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(a)                                                                  (b) 
Figure 3.37 Renormalized coefficients of quadratic term of free energy of Eq. (3.2) with 
parameters in Table 2 (a) At fixed temperature (T=0.509); (b) At fixed composition 
(X=0.750). 

 

Figure 3.38 The coefficient to rescale the order parameter ( )

2/1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Χ
=

C
Eq as a function 

of composition at fixed temperature T=0.509 with parameters in Table 2.  
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(a)                                                                   (b) 

Figure 3.39 The coefficient to rescale the free energy 
( )

2

3

0 E
C

F
Χ

=  as a function of X: 

(a) X<0.750, (b) X>0.750 at fixed temperature T=0.509 with parameters in Table 2.  
 

 
(a)                                                                (b) 

Figure 3.40 Renormalized correlation function
2/11

⎟
⎠
⎞

⎜
⎝
⎛=

a
ξ : (a) at fixed temperature 

(T=0.509); (b) at fixed composition (X=0.750) at fixed temperature T=0.509 with 
parameters in Table 2.  
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(a)                                                                      (b) 

Figure 3.41 Renormalized correlation function
2/11

⎟
⎠
⎞

⎜
⎝
⎛=

a
ξ : (a) at fixed temperature 

(T=1.100); (b) at fixed composition (X=0.772) with parameters in Table 1.  
.  

chemical disorder could produce higher probability of nucleation of the amorphous phase 

with the addition of alloy element. 

 

3.8.2 Numerical Results: Order Parameter Profiles and Phase Diagrams                      
 
      We will obtain the order parameter profiles at equilibrium by numerical integration of 

Eq. (3.46). At the transition point, the free energy of the nonzero order parameter solution 

of Eq. (3.46) is the same as the zero solution. Once the numerical solutions of Eq. (3.46) 

are found, the free energy of the corresponding system  is then determined by numerical 

integration of Eq. (3.44). The nonzero order parameter solution, the transition point and 

the free energy could be modified by the relative values of the correlation length ξ, the 

extrapolation length δ and the thickness L. In our investigation, we will scale δ and L 

relative to the fixed bulk correlation length ξ=2. The extrapolation length δ could be 
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positive or negative that depends on the depressed or enhanced disordering influence 

from the interface in our model. 

 
Figure 3.42 The transition points with the reciprocal rescaled thickness for several 
different δ values. 
 
     When δ<0, the order parameter profiles at the transition points could be slightly 

increased with the large thickness, and the dependence on the thickness is shown in 

Figure 3.42. The transition parameter a is increased over the bulk value a=0.250, and the 

decreasing extrapolation length will raise the value of a in Figure 3.42. If δ>0, the order 

parameter profiles for different thickness are shown in Figure 3.43, and η(y) decreases 

when the thickness is decreasing. And the transition parameter a is reduced by the surface 

and lower than the bulk transition parameter. In the limit L→∞, the transition parameters 

will approaches the bulk transition value for δ>0 and δ<0. For δ<0, a first order phase 

transition is observed for large |δ|/ ξ (Figure 3.44) and a surface-induced first order 

transition is observed when |δ|/ ξ<<1 and |δ|/ L<<1 in Figure 3.45(a). The spatial order  
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                                     (a)                                                                       (b) 
Figure 3.43 The renormalized nonzero order parameter solutions for different rescaled 
thickness at δ/ξ=-5(a) and δ/ξ=5(b). 
 
 

 
Figure 3.44 The mean order parameter as a function of transition parameters for L=20 
(dash line) and L=10 (solid line) with δ/ξ=-1.  
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Figure 3.45 (a) The average order parameters as a function of transition parameter for 
L=15 with δ/ξ=-0.100. (b) The order parameter profiles as a function of space coordinates 
at the surface transition point for L=15 with δ/ξ=-0.100. 

 
Figure 3.46 (a) The transition points with the reciprocal rescaled thickness for δ=-0.100 
(solid line) and δ=-0.200 (dash line). Two arrow lines show the cut-off reciprocal 
thickness: L=10 for δ=-0.100 (solid line) and L=9.750 for δ=-0.200 (dash line). (b) The 
average order parameters as a function of transition parameter for L=10 (solid line) and 
L=8 (dot line) with δ/ξ=-0.100. The arrow line shows the second transition point a≈0.390. 
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parameter profiles are characterized by a smooth increasing with the distance from the 

center, which depends on the extrapolation length (Figure 3.45(b)). With the decreasing 

thickness, the second first order transition point will disappear, and the jump of the order 

parameter values will increase at the first first-order transition point (Figure 3.46, Figure 

3.46). The second transition point disappears around L=10 for δ/ξ=-0.100 and around 

L=9.750 for δ/ξ=-0.200 (Figure 3.46). 

 

3.8.3 Numerical Results: Comparison with Experiments 
 
       The melting temperature of nanosolids with free surface decreases with their 

decreasing size, and the similar depression is also observed for nanoparticles embedded 

in a matrix [170--173]. On the other hand, nanocrystals embedded in a matrix could melt 

above the bulk melting point. It is reported that Ar, Pb and In particles embedding in a Al 

matrix show the large enhancement of melting points and the amplitude of thermal 

vibrations near the interfaces is depressed (Figure 3.47). Either superheating or 

depression of melting essentially depends on the nature of the interfaces or surfaces 

[176]. In our model, the nature of the interfaces or surfaces is qualitatively described by 

the surface free energy term, which depends on the sign and the amplitude of the 

extrapolation length relative to the thickness and correlation length. Based on our 

numerical results of Chapter II, we use the coefficients of bulk Landau free energy for the 

exothermic melting case. For the pure element case, we could set the composition X=0 

and obtain the corresponding renormalized melting points as a function of reciprocal 

rescaled thickness for different ratio between the extrapolation length and correlation 
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length in Figure 3.48(a). Although we couldn’t directly set up the corresponding 

theoretical boundary condition and the corresponding space scale from the experimental 

data, the obtained renormalized melting point from our model is still give us some 

valuable information comparing the experiments.      

     The depression of melting points is caused by the enhanced mean square atomic 

displacement at the surfaces, and the smaller amplitude of δ suggests the stronger 

disorder influence from the surfaces (Figure 3.48(b)). On the other hand, the depressed 

mean square atomic displacement could induce the superheating, which reflects the 

strongly ordering from the surfaces (Figure 3.48). For large amplitude of δ, either the 

melting points or the average atomic displacement is almost linearly proportional to the 

reciprocal thickness, and the nonlinear relation will be promoted for smaller amplitude of 

δ (Figure 3.48). The negative surface free energy (δ<0) could lower the system’s free 

energy and be the driving force for melting. The surface contribution will go to zero as 

δ→∞. When the coupling at the surfaces is large enough, two-step melting is induced for 

large thickness, which is driven by very low surface free energy (Figure 3.49). The size 

dependency of the melting temperature is no longer a simple linear or nonlinear relations 

in terms of the reciprocal thickness any more. And there is a critical thickness for surface-

induced melting, and it will become the homogeneous melting once below that size at the 

fixed extrapolation length. Experiments and theory have proved the reduction in the total 

interfacial energy, ∆γ<0, is necessary to observe the surface melting for the flat surface (a 

review in [184]). From our results, it shows a certain thickness is also needed to obtain 

surface melting (Figure 3.49).        
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Figure 3.47 The size-dependence of the melting temperature enhancement of In 
nanosolids in the Al matrix (triangles from [170]) and depression of In nanosolids 
supported by the amorphous C substrate (squares from [171] and circles from [172]). The 
red solid lines are the corresponding linear fitting lines that across the limit bulk melting 
point. 

 
                                      (a)                                                                    (b) 
Figure 3.48 (a) The size-dependence of the melting temperature as a function the 
reciprocal rescaled thickness for different δ/ξ values. (b) The size-dependence of the 
average order parameters as a function the reciprocal rescaled thickness for different δ/ξ 
values. 
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Figure 3.49 The size-dependence of the melting temperature as a function the reciprocal 
rescaled thickness for δ/ξ=-0.100. 
 

 
                                     (a)                                                                            (b) 
Figure 3.50 (a) T=1.100, Xb=0.772. The melting points as a function of the reciprocal 
rescaled thickness for a binary alloy nanosolids with different δ/ξ values (parameters in 
Table 1). (b) T=0.509, Xb=0.750. The amorphization points as a function of the 
reciprocal rescaled thickness for a binary alloy nanosolid with different δ/ξ values 
(parameters in Table 2). 
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      Structure and thermodynamic stability of binary alloy nanoparticles have also draw 

some attention, and the composition does play an important role beside the size effect and 

surface effect. Melting depression and superheating are also observed in some alloys. 

Experiments explicitly show the formation of a liquid layer at surfaces where the melting 

initiates and the remaining crystalline interior will transform into the liquid state suddenly 

[185] (Figure 3.51). The melting point of alloy nanoparticles could be depressed below 

the corresponding bulk glass temperature, and amorphouslike phase is obtained [186]. 

For depression, the smaller size could make more reduction of melting temperature with 

the same composition [185], and our model show that case clearly with the constant 

surface condition for small composition values. For superheating, smaller size particles 

showed a larger melting point in Figure 3.54. For two-step melting process, the predicted 

surface melting line of nanosolids with L=10 is lower than the second transition line and 

bulk melting line, and the difference between them is decreasing with the increasing 

composition (Figure 3.56). From the experiment [185], the corresponding pure element 

nanoparticles don’t show the liquid layer, which is different with our numerical results 

that the surface melting is induced for the pure element nanoparticles at constant 

extrapolation length. Also the experiment data shows the constant surface transition 

temperature for the interval of large composition. Though there is no interpretation for 

this so far, initially the surface coupling is increasing with increasing composition. Our 

numerical results show that surface coupling is relatively small with composition change 

for the low temperature melting at fixed size.  Since the static displacement plays a 

dominant role for low temperature melting and a certain degree of composition disorder 

is necessary, the influence of the surfaces is lowered relatively in binary alloy nanosolids. 
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Enhancement, depression and two-step melting process could also happen for low 

temperature melting in binary alloy nanosolids. 

   

3.8.4 Discussion 
 
      For small systems, such as atomic and molecular clusters and nanosolids with high 

surface-to-volume ratio, thermodynamics is still developing which is different with 

classic thermodynamics for macroscopic systems [187, 188] materials, a phase is defined 

as a portion or the whole of the system with distinguished uniform physical properties 

such as density, index of refraction and chemical composition and first order phase 

transition is characterized by the discontinuities of thermodynamic quantities. Phase 

transitions theory in small systems has attracted lots of attention (a simple review [189]). 

Unlike the behavior in bulk counterpart as the limit of an infinite system, in general, there 

is no sharp change in the corresponding thermodynamics functions for first order phase 

transition in small systems. Also, the definition of ‘phase’ is not appropriate in small 

systems with high surface inhomogeneity. But, there is still some possible connection in 

certain cases with the bulk counterpart and the term ‘phase’ still has some sense. One of 

the cases is melting and freezing of clusters investigated by Berry et al [190, 191]. Based 

on experiments and computer simulation of phase transitions on clusters, e.g. Ar, 

solidlike and liquidlike clusters are defined on the difference of rigidity. A solidlike 

cluster is considered as nearly rigid, conventional atomics or molecular with small-

amplitude vibrations and a liquid-like cluster with nonrigidity. The coexistence of 

solidlike and liquidlike clusters is explored through the simulation and analytical work ( 

reviews in [190, 191]) as long as the time scales are long enough to distinguish them, and 
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so the free energy has the character that describes metastable states in terms of 

temperature, order parameter or some other parameters for bulk materials. Simulation 

results do show Clusters could undergo a first order phase transition indicated by a sharp 

change on the internal energy [84, 192, 193].  

 

3.9  Summary 
 
      In this chapter, we propose a microscopic mechanism of the heterophase fluctuations 

for polymorphic melting in binary alloys, which are inhomogeneous systems 

characterized with nonlinearity and disorder. Nonlinear energy localization is dominant 

by the nonlinearity at high temperature. Nonlinear nonthermal energy localization is 

related to a two-stage process, composition modulation and structure fluctuations, in 

binary alloys with necessary long-range interactions at low temperature. We use Landau-

Ginzburg approach to study the critical nuclei, the growth rate and dissolution in one-

dimensional systems. Based on the nonlinear dynamics of the evolution equation, 

homophase fluctuations and heterophase fluctuations are discussed, which are related to 

phonons and nonlinear excitations. 

      We use thin film model to study the surface effect and size dependence of melting for 

nanosolids with Landau-Ginzburg approach. The equilibrium configurations are obtained 

defined as absolute minimum of the free energy of inhomogeneous systems. The 

depression and superheating could be predicted from the appropriate surface condition.  

The model shows a two-stage first-order phase transitions, i.e. a surface transition first 

and a subsequent complete transformation, and a homogeneous first-order phase 

transition for melting in nanosolids. 
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                                       (a)                                                                    (b) 
Figure 3.51 (a) Simulated phase diagrams for bulk Pd-Cu alloys and Pd-Cu alloy 
nanoclusters with the diameter 2.260nm [192]. (b) The experimental binary phase 
diagram for Bi-Pb nanoparticles with the diameter D=10nm. The dashed lines are from 
the bulk phase diagram. The triangles are the experimental data for the surface transition 
lines and the circles for the second transition lines [185]. 

 
                                        (a)                                                                        (b) 
Figure 3.52 (a) Phase diagram for a binary alloy nanosolid with L=1 for δ/ξ=-1 (dash dot 
line), -5 (dot line), -10 (dash line). The blue solid line is the bulk melting line. (b) Phase 
diagram for low temperature melting for a binary alloy nanosolid with L=1 for δ/ξ=-1 
(dash dot line), -5 (dot line), -10 (dash line). The temperature is renormalized by the 
temperature value at the triple point Tbt=0.900 (see parameters in Table 1). 
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                                        (a)                                                                       (b) 
Figure 3.53 (a) Phase diagram for a binary alloy nanosolid with L=3 for δ/ξ=-1 (dash dot 
line), -5 (dot line), -10 (dash line). The blue solid line is the bulk melting line. (b) Phase 
diagram for low temperature melting for a binary alloy nanosolid with L=3 for δ/ξ=-1 
(dash dot line), -5 (dot line), -10 (dash line). The temperature is renormalized by the 
temperature value at the triple point Tbt=0.900 (see parameters in Table 1). 

 
                                          (a)                                                                     (b) 
Figure 3.54 (a) Phase diagram for a binary alloy nanosolid with L=4 for δ/ξ=0.500 (dash 
dot line), 1 (dot line), 5 (dash line). The blue solid line is the bulk melting line. (b) Phase 
diagram for low temperature melting for a binary alloy nanosolid with L=4 for δ/ξ=0.500 
(dash dot line), 1 (dot line), 5 (dash line). The temperature is renormalized by the 
temperature value at the triple point Tbt=0.900 (see parameters in Table 1). 
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Figure 3.55 Phase diagram for a binary alloy nanosolid with L=10 for δ/ξ=0.500 (dash 
dot line), 1 (dot line), 5 (dash line). The blue solid line is the bulk melting line (see 
parameters in Table 1). 
 
 

 
                                         (a)                                                                      (b) 
Figure 3.56 (a) Phase diagram for a binary alloy nanosolid with L=10 for δ/ξ=-0.100: 
surface transition line (dash dot line), and second transition line (dash line). The blue line 
is the bulk melting line. (b) Phase diagram at low temperature melting for a binary alloy 
nanosolid with L=10 for δ/ξ=-0.100: surface transition line (dash dot line), and second 
transition line (dash line). The temperature is renormalized by the temperature value at 
the triple point Tbt=0.900 (see parameters in Table 1). 
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CHAPTER IV                                                     

MULTI-COMPONENT ORDER PARAMETERS AND 

MODELS IN TWO DIMENSIONS AND THREE 

DIMENSIONS 

 
4.1 Phase Transitions in Solid Solutions 
 
     Various mechanical, chemical, irradiational techniques are developed to study solid- 

state-amorphization. We will pay more attention to the investigation results by the 

mechanical methods.  Polymorphism phase transitions in solid solutions are one of the 

observed phenomena during the non-equilibrium processes.  Beside amorphization, 

structural phase transition is obtained, e.g. bcc to fcc. Also, nanocrystalline crystals could 

be made with the variation of the composition. 

      People also use molecular dynamics simulation to study the amorphization 

mechanism. In two-dimensional systems, the dislocations are considered to play the 

major role for the formation of amorphous phase and the nanocrystalline crystals.   

      To build a multiple-component order parameters model, we have to take care of 

crystal symmetry. The question to be asked is that: How does the amorphization process 

related to the crystal symmetry? Or, how does the crystal symmetry breaking during 

amorphization? 

(i) Generalized Lindemann’s criterion 

       In the isotropic approximation, the threshold value exists for the breaking of the 

crystalline state. But what happens when the displacement parameters are anisotropic?      
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(ii) Soft modes frustration 

One or several soft modes may induce the displacive phase transitions. From that idea, 

we say the soft modes are extent to the whole crystals. During the amorphization process, 

more impurities are added in, and soft modes could be localized around the impurities, 

frustrated. Lots of soft modes are activated and localized and finally the crystal state will 

transfer into the amorphous state. The possible source of the localization is the random 

stress field induced by the atomic size differences in solid solutions. 

(iii)Replica symmetry breaking (spin-glass like) 

Edward-Anderson order parameter is used to characterize the ergodicity breaking.  

Based on Imry-Ma’s argument, the random fields would break the long-range 

translational order [194]. Long-range orientational order is more robust than the 

translational order. An orientationally ordered hexatic phase could be observed during the 

melting in 2D crystal solids. Also, Shi. et. al. studied the grain formation with the strong 

randomness induced by the defects in 2D crystals [195].   

 

4.2 Structural Phase Transition: Cubic to Tetragonal phase 
 
      We use the local atomic displacements as the vector order parameter, which relates to 

the relative position change between the atoms. We consider a two-component order 

parameter model with VC4  symmetry in two-dimensional space [196].  

( ) ( ) ( ) ( )( )∫ ++∇∇+= rdfuufuufuufF ijeijyxcyxgyx
rεε,,,,0                           (4.1) 

( ) 211221
3
13

2
1211, IIcIbIaIaIauuf yx ++++=                                         (4.1a)         
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Figure 4.1 Configuration with different randomness in 2D from [195]. 
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Figure 4.2  The atomic configurations of defects in the binary arrays [23]. 
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klijijkle Cf εε=                                                                           (4.1d) 

ijjic uguf ε=                                                                                                                 (4.1e) 

Under mechanical equilibrium condition, we have: 

0=
ij

F
δε
δ                                                                                                                           (4.2) 

The renormalized homogeneous free energy part is: 
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The uniform states are obtained under the stability conditions: 
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We have three different phases: 
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Figure 4.3  Phase (i)----phase (ii) is the transformation from square to rectangle. Phase 
(i)---- phase (iii) is the transformation from square to parallelogram.  
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4.3  Orientational Order Broken and Domain Walls  

      Local orientational field is ( )rrΘ . The free energy from the orientation disorder is 

added to Eq. (4.1): 

( ) ( )( )∫ Θ∇∇∇+Θ∇+= rduuffFF yxc
r,,01                                                                    (4.9) 

( ) 2
21 Θ∇⋅+Θ∇⋅=Θ∇ OOf                                                                                      (4.10) 

( ) Θ∇•∇⋅+Θ∇•∇⋅=Θ∇∇∇ yxyxc ueueuuf 21,,                                                       (4.11) 

For mechanical equilibrium condition, the renormalized free energy density is: 

( ) ( ) ( ) ( )Θ∇∇∇+Θ+∇∇+= ,,,, yxcyxgyxefft uuffuufuuff .                                   (4.12) 
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4.3.1 Correlation Functions 

      Considering the total free energy from Eq. (4.12) up to second order terms, we have: 
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with 01 =O . 

       In Fourier space, we get: 
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                                                                                                                                      (4.14) 

 The corresponding coefficients matrix is: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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ˆ

kOkeke
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k

d
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kekda

A .                                                                        (4.15)  

The correlation function could be obtained from the inverse of the matrix Â . In particular, 

we have (Figure 4.4): 

( ) ( ) ( )
( )k

aOkedOkuku xx ξ
12

22
222 824 −+−

=−
rr

                                                               (4.16) 

( ) ( ) ( )
( )k

aOkedOkuku yy ξ
12

22
112 824 −+−

=−
rr

                                                               (4.17)            

( ) ( ) ( )
( ) 2

2
1

2
1121

4
12 8442

kk
akaddakddkk

⋅
−−−+−

=−ΘΘ
ξ

rr
                                              (4.18) 
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with 

( ) ( ) ( ) ( )( ) 2
12

22
1

2
211212

4
2

2
1

2
21212 8242 aOkeeaddaOkdeedddOk −+++−+++−=ξ  

                                                                                                                                 

4.3.2 Orientational Order and Amorphization in Nanocrystals 

      For 2D case, we use one component order parameter u  to study phase evolution 

between the crystal and amorphous state. The local orientation field Θ  is the angle 

relative to the reference frame.  

( )∫ Θ= rdufF rε,,0                                                                                                        (4.19) 

( ) ( ) ( ) ( ) ( ) ( )τεεβγαε ,,
22

,, 22
2

0 ec fufufuuuuf +++Θ∇+∇=Θ                             (4.20) 

( ) 642

642
ucubuauf ++=                                                                                           (4.21a) 

( ) εε ⋅⋅= ueufc ,                                                                                                         (4.21b)     

( ) 20

2
ε

μ
ε ⋅=ef                                                                                                            (4.21c)            

The coefficient ( )uβ  is some monotonic function of u , and we keep ( ) 0=uβ at the 

transition point to eliminate the meaningless definition for amorphous state. ( )uf  is the 

homogeneous free energy. ( )εef  is the elastic free energy. 

   Under mechanical equilibrium condition (stress free), the system has the minimum free 

energy: 

0=
δε
δF .                                                                                       (4.22)                 



 123 
 

 

 
                                   (a)                                                                     (b) 

 
   (c) 

Figure 4.4 Correlation functions in Fourier space with (a) a1=0.050, d1=0.050, d2=0.070, 
e1=0.020, e2=0.010, O2=0.010, (b) a1=0.200, d1=0.050, d2=0.070, e1=0.020, e2=0.010, 
O2=0.010 and (c) a1=0.200, d1=0.050, d2=0.070, e1=0.020, e2=0.010, O2=0.500. The solid 
line is ( ) ( )kk

rr
−ΘΘ , the long dash line ( ) ( )kuku xx

rr
− , and the space dot line is 

( ) ( )kuku yy

rr
− . 
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Figure 4.5  Representation of orientation field at one location. 
    

We obtain the relation: 

00 =+⋅ εμue                                                                                                                (4.23) 

0μ
ε ue ⋅

−=                                                                                                                      (4.24)      

The effective free energy density is: 

( ) 642

642
ucubuAufeff ++⋅=                                                                                        (4.25)  

( ) ( ) ( ) ( )ufuuuuf eff+Θ∇+∇=Θ 22
2

0 22
,,~ βγαε                                                         (4.26) 

0

2

μ
eaA −=                                                                                                                   (4.27) 

For a simple case, we choose ( ) 21 uu −=β  and α  as some constant. We also choose 

( ) γγ =u  as a constant. We do the transformation into the Fourier space and keep the 

term up to send order: 

( ) ( ) ( ) ( ) ( ) ( )∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−ΘΘ+−= kukuAkkkukukkdF
rrrrrrr

222
2

2 γα                                          (4.28)          

( ) ( ) ( ) ( ) ( )∫ ⎟
⎠
⎞

⎜
⎝
⎛ −ΘΘ+−+= kkkukukAkdF

rrrrr

22
1 22 γα                                                       (4.29) 

We could directly write out the correlation function in Fourier space: 
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2

2
k

G
γ

=ΘΘ                                                                                                                  (4.30a)   

22

2
kA

Guu α+
=                                                                                                         (4.30b)      

The corresponding correlation functions in real space are: 

( ) ( )( )rEulerGammarG log2*22~ −−ΘΘ                                                                   (4.31a) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ 2

202

2~ rAKrGuu αα
                                                                                            (4.31b) 

where 0K  is the modified Bessel function of the second kind. 

We use quaternions, ( )3210 ,,, ηηηηη =
r , to describe the local crystallographic orientation 

in three dimension. We have 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

2
sin,

2
sin,

2
sin,

2
cos 3322110

θηθηθηθη nnn , 

and ∑ =
i i 12η . nr  is the unit vector of the rotation axis.  

( ) ( ) ( ) dufuuuF
i i∫ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∇+∇= 22

2

22
ηβγα                                                           (4.32)  

In Fourier space, we keep those terms up to the second order:  

( ) ( ) ( ) ( ) ( )∫ ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+−+=

i ii kkkukukAkdF
rrrrr

ηηγα
22

1 22                                                 (4.33)       

The correlation functions in Fourier space are: 

0=
iuG η                                                                                                                       (4.34a) 

2

2

1

k
G

γηη =                                                                                                                 (4.34b) 
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2
2

22

1

kA
Guu α

+
=                                                                                                        (4.34c) 

In the real space, the corresponding correlation functions are: 

( ) 0=rG
iuη                                                                                                                   (4.35a) 

( )
r

rG
ii γηη

2~                                                                                                                (4.35b)    

( )
Ar

r
rGuu

⎟
⎠
⎞⎜

⎝
⎛− ξexp2

~                            
A

2
2 αξ =                                                      (4.35c) 

The following examples are the disorder parameter correlation function (with solid line) 

and the orientation field correlation function (with space dash) in Figure 4.6.  

 
4.4 Summary 
 
      By tuning the degree of disorder with the addition of solvent atoms, the initial solute 

lattice could be destabilized and transformed into another low symmetry crystalline 

lattice before the formation of amorphous phase. This route could be related to the 

different single crystalline lattices between solvent and solute atoms. The accompanying 

softening of elastic constants is observed. A unified model is not impossible to describe 

the route. 

       Orientational degree of freedom does play an important role in melting and solid-sate 

amorphization in two-dimensional systems [23, 46]. A hexatic phase characterized by 

quasi-long-ranged orientational symmetry is obtained. In nanocrystalline materials, 

orientational order of the grains has been studied by discontinuity at the grain boundaries 

in one-dimensional model [183].    
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            (a) 

 
(b)                                                                  (c) 

Figure 4.6 Disorder parameter correlation function (solid line) and orientation field  
correlation function (dot line) at (a) γ=1, A=2 and α=2 ; (b) γ=1, A=1 and α=2; (c)γ=1, 
A=0.500 and α=2. 
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CHAPTER V                                                            

CONCLUSION AND FUTURE WORKS 

       In this thesis, we report on the modeling, analysis, and simulation of heat-induced 

polymorphic melting and solid-state polymorphic amorphization in binary solid solutions. 

As first order phase transition, we developed phenomenological theory to study bulk 

thermodynamic properties in macroscopic systems, fluctuations and nucleation in 

mesoscopic inhomogeneous systems. We focus on the position disorder and composition 

disorder on the characterization of the underlying transition processes in the framework 

of Landau theory. 

       For the bulk systems, binary phase diagrams and thermodynamic quantities are 

obtained for two cases, i.e. endothermic melting and exothermic melting at low 

temperature, based on different mathematical forms of Landau free energy. At high 

temperature, they both are endothermic and dominant by thermal disorder. When 

reaching low temperature, static disorder and composition disorder govern the processes. 

For exothermic case, the typical chemical short-range order developed in the amorphous 

state is responsible for the reduced entropy change. 

         On the mesoscopic scale, we use Landau-Ginzburg approach to investigate 

homophase and heterophase fluctuations in binary systems. We generalize the nonlinear 

energy localization as a microscopic mechanism of heterophase fluctuations based on 

two-step process, i.e. modulation instability induced by composition modulation and the 

subsequent structure fluctuations. In one-dimensional systems, analytical results and 

numerical simulation are used to study the growth and dissolution of critical nuclei and 

the growth rate of domain width is linear. For two-dimensional model with periodic 
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boundary condition, the numerical results show a growing an-isotropic nucleus initiated 

from small amplitude thermal fluctuations and a stable nucleus initiated from soliton-like 

isotropic perturbation. The stable nucleus has a fixed domain width and does not change 

with the system’s size. In finite systems, we propose two basic models on solid-state 

polymorphic amorphization and investigate the polymorphic transitions with thin film 

model by Landau-Ginzburg approach including surface contribution. Our model does 

predict the melting depression and superheating of nanosolids and the linear relations 

between the melting point and the reciprocal size for depression.  The surface melting 

shows a first order phase transition character that consistent with the experiments in 

binary alloys. 

        To summarize, this thesis models the polymorphic melting and polymorphic 

amorphization in the framework of Landau phenomenological theory as a first order 

phase transition. There are several remarks for future works. (1) The rigorous results on 

phase transition in one-dimensional inhomogeneous systems need to draw some 

attention. The energy localization mechanism in inhomogeneous systems could be 

investigated by molecular dynamics simulation. (2) Dynamics of the fraction of 

transformed regions in systems could be studied by numerical simulation although the 

rigorous studying is still missing. Landau-Ginzburg approach could be used to study 

nucleation and growth phenomena in two dimensions and three dimensions. The 

definition of critical nuclei is still not clear for high dimensions. (3) In finite systems, 

surface stress caused by lattice mismatch could play an important role on the nanosolids 

properties and geometry factor should be also included.  
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APPENDIX A  
 

( ) ( ) ( ) ( ) ( ) ( )
E

CATTATTA
3

~~~~~ 2

0011
2

012
Χ

=Χ+−⋅Χ+−⋅Χ  

( ) ( ) ( ) ( ) ( ) ( )
E
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~~~~~ 2

001
2

02
Χ

=Χ+−⋅Χ+−⋅Χ                                    

( ) ( ) ( ) ( ) ( ) 0~~~~~
0001

2
002 =Χ+−⋅Χ+−⋅Χ ATTATTA  

We rewrite the equations: 

( ) ( ) ( ) ( ) ( ) ( ) 0
3
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2

012 =
Χ
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( ) ( ) ( ) ( ) ( ) ( ) 0
4

~~~~~ 2

001
2

02 =
Χ
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E

CATTATTA mm                   

( ) ( ) ( ) ( ) ( ) 0~~~~~
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2
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The solutions for the parabolic equations: 
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( ) ( ) ( ) ( )
( )Χ

ΧΧ−Χ+Χ−
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2
0 ~2
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AAAA
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For the low branches, we should have 2

0
22

10
~ TTTT m >>> ; For the up braches we should 

have 1
0

11
10

~ TTTT m <<< . Since ( ) 0
2

>Χ
E

C , ( ) 0~
2 <ΧA , ( ) 0~

1 <ΧA  and ( ) 0~
0 >ΧA , we 

need ( ) ( )
E

CA 3
~ 2

0
Χ>Χ  . 
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APPENDIX B  
 
For a second order autonomous ordinary differential equation, the standard form is: 

( )Xf
dt

Xd
=2

2

.                                                                                                                 (1) 

We rewrite is as two first order ODE: 

Y
dt
dX

=  

)(Xf
dt
dY

=                                                                                        (2) 
The critical point ( )Y~,~Χ  of the system (1) satisfies: 

0~ =Y , ( ) 0~ =Xf                                                                                                              (3) 
Near the critical point, we consider small perturbation: 

YYYXXX ~,~ −=−= δδ                                                                                                  (4) 
The corresponding Jacobian matrix at critical point ( )Y~,~Χ  is: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==Α 0

10~,~
~

'

X
fYXJ                                                                                                (5) 

The linearized equation is 

AV
dt
dV

=  

with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Y
X

V
δ
δ

. 

The corresponding eigenvalues and eigenfunctions satisfy: 
0=− IA λ  

( ) 0=− jj eIA λ       0≠je  
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