
1

Simpli�cation and Repair of Polygonal

Models Using Volumetric Techniques
F.S. Nooruddin and Greg Turk

I. Abstract

Two important tools for manipulating polygonal models are simpli�cation and repair, and

we present voxel-based methods for performing both of these tasks. We describe a method

for converting polygonal models to a volumetric representation in a way that handles models

with holes, double walls and intersecting parts. This allows us to perform polygon model repair

simply by converting a model to and from the volumetric domain. We also describe a new

topology-altering simpli�cation method that is based on 3D morphological operators. Visually

unimportant features such as tubes and holes may be eliminated from a model by the open

and close morphological operators. Our simpli�cation approach accepts polygonal models as

input, scan converts these to create a volumetric description, performs topology modi�cation

and then converts the results back to polygons. We then apply a topology-preserving polygon

simpli�cation technique to produce a �nal model. Our simpli�cation method produces results

that are everywhere manifold.

II. Introduction

We are in the midst of an explosion in the production of very large geometric models. Advances

in many technical areas are fueling this trend: remote sensing, medical scanning, scienti�c

computing, CAD. Remote sensing devices such as synthetic aperture radar produce enormous

terrain datasets. Medical sensing technology such as MRI, CT and PET scanners produce

large volume datasets that lead to the creation of large isosurfaces. Scienti�c computing for

applications such as structural analysis, synthetic wind tunnels and weather prediction result in

large datasets that may vary over time. Finally, computer-aided design is used routinely for large

tasks in architecture and mechanical design. Polygon representations of CAD models may run

into the hundreds of thousands of polygons. We require robust methods for manipulating such

large models. Two important tools are repair of models that are non-manifold and simpli�cation

of models. Repair is the process of taking a model that may have undesirable features such as

cracks or self-intersections and creating a new model similar to the original but that has none of

its aws. Simpli�cation of a polygonal model produces another model that has much the same

appearance as the original but has many fewer polygons. Our paper addresses both of these

tasks.

Many algorithms and applications require well-behaved polygon models as input. T-joints,

cracks, holes, double walls, and more than two polygons meeting at an edge are just a few of the

possible degeneracies that are often disallowed by various algorithms. Unfortunately, it is all

too common to �nd polygonal models that have such problems. Applications that may require

\clean" models include �nite element analysis, radiosity, shape transformation, surface smooth-

ing, calculation of moments of inertia, automatic model simpli�cation, and stereolithography.

Several approaches to polygonal model repair have been presented in the graphics literature.

Unfortunately, most of these proposed methods are complex to program and some do not scale

well as the polygon count increases. We present a method of scan-converting polygons into

a voxel representation that yields a simple yet e�ective solution to polygon repair. The same

voxelization process is also an important step in our simpli�cation method.

Much work has been published recently in the area of automatic simpli�cation of polygonal

models, and yet there are still many problems that need to be addressed. One of the important

2

issues is the elimination of unnecessary �ne details such as small holes or thin struts| a task that

implies making changes to the topology of a model. Many of the earlier published simpli�cation

methods made an e�ort to preserve the topology of the original model. It eventually became

evident, however, that topology is often a limiting factor in the simpli�cation of a given object.

Consider a box with 100 tiny holes punched all the way through it. A simpli�cation method

that preserves topology must retain at least three polygons to represent each hole, and thus

will retain at least 300 polygons, yet the model can be fairly well represented using just six

faces. This problem has led several researchers to relax the restriction on topology preservation

in order to remove small features such as small holes or thin bars and pipes. One important

issue in topology simpli�cation is whether a user may specify the exact size of the features to be

removed from a model. A second issue is whether the simpli�cation method produces manifold

surfaces. Additional issues include the simplicity of programming, the memory requirements

and the computational cost, and these are important regardless of the treatment of topology.

We have pursued a volumetric approach to geometric simpli�cation. There are several reasons

for this choice. First, volume models have none of the topological ambiguities that a polygonal

model may have. For example, it is possible for a polygonal model to contain three or more

polygons that share an edge| a non-manifold situation. Purists may argue that such models

should never be created in the �rst place, but the fact is that models with non-manifold surfaces

are only too common. We feel it is necessary to handle these common cases, and we do this

during the step that converts polygonal models to a volumetric representation. A second reason

for working in the volume domain is that we then have access to a wide array of techniques

that have been developed for image processing, since volumes have the same regular structure

as images but in one higher dimension. Finally, there are dozens of polygon-based methods for

performing simpli�cation, and in contrast there have been relatively few proposed methods that

make use of a volumetric representation.

Figure 1 shows a schematic diagram of our simpli�cation pipeline. There are four stages in

our simpli�cation method: voxelization, 3D morphology, isosurface extraction and triangle count

reduction. If the goal of the user is only to repair a polygonal model, then the morphological

operations are not performed.

The remainder of this paper is organized as follows: in Section 3, we present a brief literature

review of polygon simpli�cation, voxelization and model repair. In Section 4 we describe our

new method for converting a polygonal model into a volumetric representation. In Section 5, we

describe volumetric morphology and show how it is used to simplify the topology of an object.

In Section 6 we discuss isosurface extraction and topology preserving triangle count reduction

for producing the �nal model. Section 7 presents the results of our approach when used on a

variety of models, discusses these results and gives timing information. Section 8 summarizes

the characteristics of our approach and describes possible future work.

III. Related Work

In this section we review previous work in simpli�cation and model repair. Because conversion

of polygons into voxels is an important step in our approach, we also review related work in

voxelization.

A. Simpli�cation

A large number of approaches to geometric simpli�cation have been published in the graphics

literature. Rather than attempting to cover all of them, we will concentrate our attention on

those simpli�cation methods that allow the topology of a model to be changed.

Rossignac and Borrel created one of the earliest methods of performing polygonal simpli�cation

that allows topological changes [23]. Their approach is to group the vertices of a model into

clusters that fall within the cubes formed by a uniform spatial subdivision. Those vertices that

fall within one cell are merged into a single vertex, and the degenerate triangles that are created

3

Voxelization

3D Morphology

 Isosurface
 Extraction

 Polygons

Triangle Count
 Reduction

 Final Polygonal
 Model

 Voxels

 Original
Polygonal

Model

Volume with
 Simplified
 Topology

Fig. 1. The simpli�cation pipeline. Dotted arrow shows the path used for model repair.

4

by this are removed from the model. More recently, Low and Tan have enhanced this approach

by making the vertex clustering independent of the position of the model in 3D, and they also

select the position of the new vertices using new heuristics [18]. Luebke and Erikson also used

such a vertex clustering scheme in their view-dependent simpli�cation approach [19]. Due to

the dynamic nature of view-dependent simpli�cation, they used a tree data structure in which

to store a hierarchy of potential vertex clusters.

Schroeder and co-workers created one of the earliest polygonal simpli�cation algorithms that

successively removes vertices near relatively at regions [25]. The original algorithm pre-

served topology, but in more recent work, Schroeder extended this method to allow topological

changes [26]. When no more vertices can be removed from the model due to topological restric-

tions of the algorithm, the method splits apart the polygons adjacent to a vertex. This allows

greater freedom in vertex removal, and thus allows the model to be further simpli�ed. This

newer algorithm also tracks error bounds at vertices, allowing bounds to be put on the amount

of error incurred during simpli�cation.

Garland and Heckbert demonstrated a topology-modifying simpli�cation algorithm based on

a generalization of the edge collapse operator [7]. An edge collapse replaces two vertices that

share an edge with a single vertex, removing two triangles in the process. Their more general

vertex pair contraction operator merges together any two vertices, regardless of whether they

are joined by an edge or not. Garland and Heckbert use a quadric error metric to determine the

best vertex pair contraction during simpli�cation. Popovic and Hoppe take a similar approach

to simpli�cation, also using vertex pair contraction to reduce a model's complexity [24]. They

use a cost function for a contraction that includes a measure of distance to the original surface

as well as a term that penalizes contractions that would merge vertices which have di�erent

material properties.

El-Sana and Varshney use an approach that is inspired by alpha-hulls (a distance-controlled

portion of the Delaunay triangulation) to identify small holes and protrusions that can be

removed from a model [5]. Sharp edges are marked as candidates that are likely to surround a

hole. Then an alpha-prism is used to determine whether candidate hole is small enough to be

�lled. Identi�ed holes have their associated polygons removed and the boundary edges that are

created are �lled using triangulation. They use the same process to identify and remove thin

structures that protrude from a model.

Quite a di�erent approach is taken by He et al. to perform topology-modifying simpli�cations

of models[11]. They convert models into the volumetric domain, perform low-pass �ltering, and

then use isosurface extraction to produce a new polygonal model. Low-pass �ltering of the

volume model eliminates �ne details such as thin tubes and surfaces, and also closes small holes

in the model. Unfortunately, low-pass �ltering does not o�er strict control over the topological

changes that are to be made to an object. For instance, a hole of radius r might be �lled if the

hole is in the middle of an otherwise unbroken surface. A hole of the exact same size, however,

can help create a larger hole if it is near one or more additional holes. In addition, large, thin

surfaces of a model that should be retained can be accidentally eliminated by low-pass �ltering.

Despite these shortcomings, the volumetric �ltering method has much to recommend it. Inspired

by this approach, we created the new volumetric simpli�cation method that we present in this

paper.

B. Voxelization

Converting a polygonal model into a volume is an integral step in our method, thus we

briey review previous techniques that convert polygonal models into volumes. Wang and

Kaufman use a method that samples and �lters the voxels in 3D space to produce alias-free 3D

volume models [29]. They place an appropriately shaped �lter at the voxel centers and �lter

the geometric primitives (e.g. polygons) that lie inside the region of support of the �lter kernel,

and this produces the �nal density value for the voxel. Their technique produces a thin-shelled

5

volumetric representation of objects that are collections of polygons.

Huang et al. describe separability and minimality as two desirable features of a discrete

representation [13]. If a discrete surface is thick enough to prevent ray penetration it is said

to meet the separability condition. If it contains only those voxels that are indispensable for

separability then it also satis�es the minimality condition. They use bounding spheres around

vertices, bounding cylinders around edges and bounding planes around each edge of each polygon

to produce surfaces that meet both the separability and minimality conditions. The volumetric

representations produced by this method are also thin-shelled.

Schroeder and Lorensen create volumetric models by calculating a distance map from the

input polygonal model [27]. Using this distance map they �nd the closest polygon to a given

voxel and use the polygon's normal to classify the voxel as interior or exterior. They then use a

distance threshold to obtain an isosurface from this distance map. They use the resulting o�set

surface to generate swept surfaces for the purpose of path planning for object assembly.

C. Model Repair

There are several di�erent approaches that have been taken towards repairing polygonal mod-

els, including user-guided repair, crack identi�cation and �lling, and creating manifold connec-

tivity.

Several interactive systems have been proposed for �xing errors in polygonal models such as

cracks and T-joints. Two such systems that used manual intervention to repair architectural

models are described in [6] and [15]. Morvan and Fadel proposed a virtual environment in which

to perform user-directed repair for layered manufacturing [21]. Interactive techniques for model

repair becomes unattractive as the size of the models becomes large.

A number of other model repair methods have concentrated on automatic crack identi�cation

and �lling. Bohn and Wozny use Jordan curve construction and local hole �lling to �x models

with cracks [3]. Barequet and Sharir describe a method for crack �nding and �lling by triangu-

lation [2], and Barequet and Kumar improve upon this method by sometimes shifting vertices

to eliminate cracks [1]. Murali and Funkhouser create a BSP-tree representation of a model and

then construct and solve a linear system of equations in order to determine which cells of the

BSP-tree are solid or non-solid [22].

A third approach to model repair is presented by Gueziec et al. [10]. The goal of their repair

method is to produce models that are everywhere manifold (perhaps with boundaries), and

they are not concerned with eliminating cracks or self-intersections. Their method separates

edges between polygons and then selectively stitches together some of these edges in a manner

that avoids non-manifold con�gurations. This method operates entirely upon the connectivity

between polygons and does not examine the 3D positions of the vertices.

All of the repair methods described above operate directly upon a polygon or half-space

description of a given model. The method of model repair that we present in this paper is

unique in that we convert a model into voxels in order to perform repair.

Now that we have reviewed the related work, we will describe the components of our model

manipulation pipeline for simpli�cation and repair.

IV. Polygons to Voxels

In order to use morphological operators to simplify topology, we must �rst voxelize the given

polygonal model. In this section we present two new methods of voxelization, the parity-count

and the ray-stabbing methods. At the end of this section we describe how voxelization provides

a simple method for performing model repair.

A voxel representation of a model is a regular grid of cells, in our case a rectilinear grid, in

which each cell (voxel) contains a density value in the range of zero to one. In this paper we

will use a voxel-value of zero to represent a portion of un-occupied space and a value of one to

6

Fig. 2. (a) Slice through a thin-shelled volumetric representation of a sphere, (b) Slice through a solid
volumetric representation of a sphere.

represent a voxel that is entirely interior to our model. Values between zero and one represent

voxels that are near the surface of an object.

As described above, there are several published methods for performing voxelization of poly-

gons [13],[27],[29]. Unfortunately, none of the published techniques are satisfactory for our needs.

For our purposes, the voxel representation should not be thin-shelled. A thin-shelled voxeliza-

tion of polygons is one in which only voxels that are near a polygon of the original model have

a non-zero voxel value. Thin-shelled voxelization is performed by �nding the distance between

a given voxel and the nearest polygon [16, 29]. A thin-shelled representation of a sphere, for

instance, would contain non-zero voxels only near the sphere's surface. Such a sphere would

have a large region of zero-valued voxels inside its boundary. Figure 2 (a) shows a slice through

such a thin-shelled sphere model. Performing isosurface extraction on such a model would pro-

duce a polygonal model that had two surfaces that are very near one other. In contrast, the

voxel models that we use have voxel values of one in the interior of the object so that isosurface

extraction yields a single surface. Figure 2(b) shows a slice through such a voxel model of a

sphere.

A. Parity Count

To produce voxel models with true interiors, the exterior/interior classi�cation of a voxel must

take into account non-local aspects of the polygonal model. We will �rst discuss our parity count

method of voxel classi�cation when used on manifold polygonal models that are water-tight (have

no cracks or boundaries). For such models, we classify a voxel V by counting the number of

times that a ray with its origin at the center of V intersects polygons of the model. An odd

number of intersections means that V is interior to the model, and an even number means it is

outside. This is simply the 3D extension to the parity count method of determining whether a

point is interior to a polygon in 2D. Note that for manifold models the direction of the ray is

unimportant, and we can take advantage of this to speed up the voxel classi�cation. In essence,

we cast many parallel rays through the polygonal model, and each one of these rays classi�es all

of the voxels along the ray. For an N �N �N volume, we need to cast only N �N rays, with

each ray passing through N voxel centers. Instead of using ray-tracing, however, we actually

use orthographic projection and polygon scan-conversion to create a \deep" z-bu�er. Each pixel

in the z-bu�er retains not just the nearest polygon, but a linked list of depth samples. Each of

these depth samples records an intersection with one polygon. Thus a \deep" pixel represents

one of the parallel rays that has been cast through the model. Each voxel behind a given pixel

can be rapidly classi�ed by counting how many depth samples are behind or in front of the voxel

center. Figure 3(a) shows a 2D representation of this process. In this �gure, each blue circle

represents a depth sample along a ray. Polygon scan-conversion takes advantage of incremental

7

3 a. Scan Converting a closed model
using the parity count method.The black
dots represent voxels that are inside the
model. The blue circles show where the
scanlines intersect the model.

3 c. Scan Converting a model with
intersecting parts using parity count.
This is another instance where ray
stabbing yields better results.

3 b. Scan Converting a model with a hole
. The grey dots represents voxels for which
 we do not know whether they are inside
or outside the model. Scan converting from
multiple directions solves this problem.

3 d. Scan Converting a double−walled
model using parity count. This shows why
some models require the ray stabbing
method.

Fig. 3. Scan-converting polygonal models with a variety of degeneracies.

calculations, so this process is much faster than a ray-tracing approach would be.

Although the parity count method works well for manifold models, many polygonal models

have various degeneracies that require us to modify the voxelization process. One common

problem is for a model to have small cracks or holes in the surface. The Stanford Bunny model,

for example, has several holes on its base, and the Utah Teapot contains a hole at the tip of

the spout. Figure 3(b) illustrates the problem. To voxelize such models, we extend the parity

count method by using k di�erent directions of orthographic projection and by scan-converting

the model once for each direction. Each of the k projections votes on the classi�cation of a voxel

(interior or exterior), and the majority vote is the voxel's �nal classi�cation. For water-tight

models, all of the votes will agree. This is not the case, however, for models that have a crack

through which a ray may pass. Rays that pass through a single crack or hole will have an odd

number of depth samples, and these rays are marked as invalid and do not vote. It can happen on

rare occasions that one ray will pass through two cracks, and this will cause the ray to improperly

classify many of the voxels. The majority voting between the directions of projection overrules

the voting of such rays. Typically we perform three orthographic projections, one in each of

the major axis directions. For troublesome models, we project in 13 directions, three along the

8

major axes and 10 directions that are described by the surface normals of an icosahedron. By

choosing an odd number of projection directions we avoid having many ties in voting. Voting

ties can still occur due to invalid rays, and we mark such voxels as being exterior to the model.

Figures 4(a) and (d) are two views of the Stanford Bunny polygonal model, and (d) shows

the large holes in its base. Parts (b) and (e) show the result of using a single orthographic

projection for the parity count voxelization method. The holes in (b) and (e) are the result of

the algorithm classifying invalid columns of voxels (an odd number of ray intersections) as being

exterior to the model. Using 13 projections creates a water-tight model, shown in parts (c) and

(f) of Figure 4. This repaired model has none of the holes that were in the original model. In

addition to the bunny model, both the turbine blade and the chair models (Figures 6 and 9)

were voxelized using the parity count method.

We note that Lorensen and Schroeder also have converted polygonal models to voxel models

that have true interiors [27]. They �nd the closest polygon to a given voxel and classify the

voxel based on the polygon's normal. Their method is tolerant of models with small cracks,

but it would produce poor results for polygonal models that are double-walled or that have

intersecting surfaces. We handle such models using our ray stabbing approach.

B. Ray Stabbing

Unfortunately, cracks and holes are not the only kind of troublesome degeneracies in polygonal

models. One other common problem is to have a model that is composed of several interpene-

trating sub-parts. This is often found in articulated �gures of humans and animals, where each

limb or limb segment is a separate closed surface. For instance, an upper arm might be placed

so that portions of its surface are inside the torso. This is not a problem if we are just rendering

such a model. The parity count method, however, would incorrectly classify the overlapped

portions of the arm and torso as being outside of the model. Figure 3(c) shows an example

of two objects intersecting in this manner. Another common problem is to have a polygonal

model in which there is more than one polygon at or near the same location in space. This is

often the case for mechanical models where two sub-components are made exactly adjacent, but

where the shared surface is represented by polygons from both sub-components. Double walls

in building models are a similar problem. Such redundant polygons may cause problems for the

parity count method as well. Figure 3(d) shows that the parity count method would create an

empty interior for such a model. To voxelize this kind of model, we have created the ray-stabbing

method of voxel classi�cation.

The ray-stabbing method also makes use of orthographic projections of a polygonal model. It

di�ers from the parity count method, however, in the way it interprets the depth samples of a

ray. The ray stabbing method only retains the �rst and last depth sample along each ray. In

e�ect, each ray only keeps those points of intersection where the ray �rst stabs the surface of

the model. By keeping both the �rst and last depth sample, this is equivalent to stabbing the

surface from two directions at once, at no extra cost. A voxel is classi�ed by a ray to be interior

if the voxel lies between these two extreme depth samples, otherwise it is classi�ed as an exterior

voxel. For a single direction of projection, this can cause some voxels to be mis-classi�ed as being

interior to the surface. To avoid this, we perform several projection in di�erent directions. If

any of the projections classify a voxel as exterior, it is given an exterior �nal classi�cation. Only

those voxels that are classi�ed as interior for all projections are given the �nal classi�cation of

interior. Although reasonable voxel models result from three projections, we typically perform

13 projections for the ray-stabbing approach. Both the Al Capone and motor models of Figures 7

and 8 were voxelized using the ray stabbing method.

C. Polygonal Model Repair

We perform polygon repair by converting a model to a volumetric representation and then

converting it back to polygons using isosurface extraction. This produces an everywhere man-

9

8 a. Original Bunny Model (Top View)
69,451 Faces

8 b. Results of Parity count using one
scanning direction (Top View)

134,920 Faces

8 d. Bunny Model (Bottom View)
69,451 Faces

8 e. Results of Parity count using one
scanning direction (Bottom View)

134,920 Faces

8 c. Results of Parity count using 13
scanning directions (Top View)

101,536 Faces

8 f. Results of Parity count using 13
scanning directions (Bottom View)

101,536 Faces

F
ig
.
4
.

10

ifold polygonal model that is free of holes, cracks, T-joints, double walls and interpenetrating

polygons. The number of polygons produced by the conversion to and from the voxel domain is a

function of the resolution of the voxel representation. If the polygon count for the model should

be small, we reduce the number of polygons using standard polygon-based simpli�cation. Our

polygon repair method uses the same basic pipeline of operations as our simpli�cation approach,

but we skip the volumetric morphology step, as indicated by the dotted line shows in Figure 1.

Figure 7 shows an example of polygon repair of a model with a number of interpenetrating parts,

and Figure 4 illustrates repair of a model with several large holes.

The �nal results of polygon repair are signi�cantly improved if proper sampling and anti-

aliasing are performed during voxelization. To do so, we use supersampling and �ltering in our

implementation. We have implemented several �lter kernels, and our best results are from a

Gaussian �lter kernel with a radius of two voxels and a standard deviation of 0.7 voxels. For

an excellent survey of �lter kernels for volume anti-aliasing, see [20]. We typically use 3� 3� 3

supersampling to achieve high quality results, but using 2 � 2 � 2 often produces results that

are quite acceptable.

V. Morphological Operations

The morphological operators constitute the heart of our topology simpli�cation algorithm.

These operators are well suited to simplify the topology of objects because they present a clean

and e�cient way to remove small features, close holes and join disconnected components of a

model. In addition, openings and closings provide precise tolerances so that the user can specify

the size of the feature to be removed or the size of the hole to be closed. Finally, because these

operations are done in the volume domain, we are able to recover a manifold mesh after the

topology simpli�cation has taken place.

The �rst step in using morphological operators is the calculation of a distance map. Given a

binary volume that is classi�ed into feature and non-feature voxels, a distance map associates

with each voxel the distance to the nearest feature voxel. Feature voxels are those that are

inside the object and non-feature voxels are those that lie outside the object. Feature voxels

have a distance map value of zero. We used Danielsson's algorithm [4] to calculate the distance

map on our volumes. Speci�cally, we chose to implement the 4SED (four-point sequential

Euclidean distance mapping) algorithm proposed by Danielsson. This algorithm is fast, but it

is known to give slightly incorrect distances in some situations due to the fact that only the four

immediate neighbors of a pixel contribute to its distance value. However, Danielsson reports

that the absolute error in this case is less than 0.29 pixel units, which is quite acceptable for our

purposes. When more accuracy is necessary, the user may simply use a �ner voxel grid.

Below, we explain how the algorithm works on 2D images, after which we give a brief outline

of how this is extended to 3D in order to create distance maps for volumes. Danielsson's

2D algorithm produces a oating-point distance map that contains one scalar value per entry.

During the calculation of the distance map, the distances at each pixel are represented as two-

dimensional integer vectors. For a given pixel, its distance map vector gives the integer distance

in the x and y directions to the nearest feature pixel. The �nal step in the algorithm involves

calculating the magnitude of these vectors, yielding the �nal scalar oating-point distance map.

The 2D algorithm starts by assigning a distance of zero to all feature pixels and a value of

MAXVAL to the non-feature pixels. After the distance map is initialized, the image is scanned

from bottom to top (the j direction). A pixel's distance map value changes if its distance

map value is greater than that of its neighbors. Thus distance map values propagate from the

sources of change (the feature pixels) to the non-feature pixels. For every j scan of the image,

new values are propagated left, right and from the row of pixels below. This bottom-to-top scan

only propagates information about a given feature pixel horizontally and upward. The image

is then scanned a second time, from top to bottom, so that the distance values are propagated

downward as well.

11

First loop of Danielsson's algorithm (sweeping from bottom-to-top)

for j = 1 to dy -1

Examine pixels below the current row

for i = 0 to dx - 1

if mag(
����!
D(i; j)) � mag(

�������!
D(i; j� 1) +

�����!
< 0; 1 >)

����!
D(i; j) =

�������!
D(i; j � 1) +

�����!
< 0; 1 >

Examine pixels to the left of each pixel in a row

for i = 0 to dx - 1

if mag(
����!
D(i; j)) � mag(

�������!
D(i� 1; j) +

�����!
< 1; 0 >)

����!
D(i; j) =

�������!
D(i� 1; j) +

�����!
< 1; 0 >

Examine pixels to the right of each pixel in a row

for i = dx - 2 downto 0

if mag(
����!
D(i; j)) � mag(

�������!
D(i+ 1; j) +

�����!
< 1; 0 >)

����!
D(i; j) =

�������!
D(i+ 1; j) +

�����!
< 1; 0 >

The above pseudo-code is that of the bottom-to-top scan of an image. The second loop (top-

to-bottom scan of the image) of Danielsson's 2D algorithm is similar to the loop shown above.

The extension of this algorithm to 3D involves applying Danielsson's algorithm on a slice by slice

basis to the volume. There are two passes done through the volume: one each in the forward

and backward directions in the k dimension. For each of these passes, the distance map for each

slice is calculated as described above. In 3D, a voxel's distance map value is calculated from the

distance map values of its six immediate neighbors.

The two atomic morphological operations are erosion and dilation. They take as input the

volume, the distance map and an erosion/dilation distance. For dilation, we look through the

distance map, and any non-feature voxel that has distance less than or equal to the threshold is

turned into a feature voxel. Erosion is the complement of dilation. In this case, we negate the

volume (i.e. a feature voxel becomes non-feature and vice versa), calculate the distance map,

and then perform a dilation. After this, the volume is negated again to obtain the �nal result.

These basic morphological operations are commonly used in image processing [14].

Figure 5 shows the results of applying erosion and dilation to a 2D image. Figure 5 (a) shows

the original image. This is a slice of the volumetric description of the motor model. Figure 5

(b) shows a colorized distance map in which the colors indicate the distance of a pixel from the

surface. Near the surface the blue color indicates a small distance, while the red color indicates

a large distance. The colors cycle at greater distances. Using this distance map, we performed

dilation and erosion on the image. Figure 5 (c) shows the result of performing dilation on the

input image. It demonstrates how dilation will close small holes and join previously unconnected

parts of the input image. The result of performing erosion is shown in �gure 5 (d). Erosion

eliminates thin structures and increases the distance separating two unconnected parts of the

image.

While useful by themselves, erosion and dilation are usually used in conjunction with each

other. The reason is that if they are used in isolation, then they increase (in the case of a

dilation) or decrease (in the case of an erosion) the bounds of the volume. When an erosion is

done followed by a dilation, it is called an opening. This is due to the fact that this operation

will widen holes, eliminate small features and disconnect parts of the model that are connected

by thin structures. The complement of this operation is a closing, which is a dilation followed

by an erosion. This will close holes and connect previously disconnected parts of the model.

Notice that if erosion or an opening is performed on a thin-shelled volume model, the erosion

12

Fig. 5. (a) Slice through voxelized motor, (b) distance map, (c) dilation, (d) erosion.

will completely destroy the surface. This is another reason we require that our voxelization

process not produce a thin-shelled volumetric representation.

VI. Polygonal Model Creation and Triangle Count Reduction

Now that we have seen how to remove small features using volumetric morphology, we turn

our attention to converting the model back to polygons. There are two steps involved in this:

isosurface extraction and polygon simpli�cation.

A. Isosurface Extraction

To create a manifold polygonal model, we extract an isosurface from our volumetric repre-

sentation of the model. We do this using the standard Marching cubes algorithm [17]. This

algorithm works by examining the eight adjacent voxels at the corners of a cube. Using a thresh-

old value, the corners of this cube are classi�ed as being either inside or outside the surface.

This classi�cation scheme yields 256 possible con�gurations. A lookup table is used to generate

triangles within a cube based on the con�guration of its corners. The Marching Cubes algorithm

can produce up to 11 triangles from each cube.

As shown in Figure 1, there are two possible paths through our simpli�cation pipeline: one

where volumetric morphology is performed, and the other where we extract the isosurface di-

rectly after scan converting the input polygonal model into a volumetric representation. We

omit the morphology stage if our goal is either to repair a polygonal model or to eliminate its

interior detail. If no morphological operations are performed, then the resulting isosurface is

smooth. This results from the fact that during scan conversion we use supersampling to obtain

voxel values that vary between 0 and 1. On the other hand, because morphological operations

act on binary volumes, the isosurfaces extracted after volume morphology have voxelization

artifacts. We use Taubin's smoothing technique to reduce these artifacts [28]. Taubin uses a

low-pass �lter over the position of the vertices to create a new surface that is smoother than the

original. One of the design goals of this smoothing method was that it be able to reduce the

voxelization artifacts that are introduced during the voxelization stage. Gortler et al. use the

same method in The Lumigraph to smooth polygonal models that they produce via isosurface

extraction [9].

13

B. Triangle Count Reduction

The isosurface we extract usually has simpler topology than the input model. In addition,

because the Marching cubes algorithm considers cubes in isolation, it frequently over tessellates

the surface. These two properties of the isosurface allow us to drastically reduce its triangle

count without degrading the model's quality. To achieve this end, we use Garland and Heckbert's

polygon-based simpli�cation method that is guided by a quadric error measure [7]. We use their

method because it is e�cient and produces high quality results. Garland and Heckbert use the

planes passing through a vertex to estimate the amount of error introduced by an edge collapse.

As discussed in the Section 3, their simpli�cation process is based on a generalized form of the

edge collapse operation called vertex pair contraction. A vertex merge may join together two

vertices that do not share an edge, altering the topology of a model. Since we have already

performed topological modi�cations using volumetric morphology, we only allow the merging of

vertices that share an edge when using their simpli�cation method.

When volume morphology is used to simplify the topology of an object, the resulting volume

typically has no small holes, interior details, or tunnels. Thus all the polygons of the resulting

isosurface can be used to represent the exterior surface of the object. This enables us to reduce

the triangle count of a given model to much lower levels than would have been possible with the

original model.

In order to maintain the color of a given model, we record the color values of the polygonal

model during voxelization. These color values are associated with surface voxels. Surface voxels

are those that intersect a polygon of the input model. During scan conversion, when we detect

the intersection of a polygon with a voxel we record the color of the polygon and associate

it with the voxel that the polygon intersects. These color values are then carried through

the rest of the simpli�cation pipeline. During the morphology stage, we process a volumetric

representation of an object that has color by dividing the morphological operations into two

steps. In the �rst step, a distance map is calculated based on the density values. This distance

map is then used to perform either the opening or closing operation. After the morphological

operations have been performed on the density values, a second distance map is calculated using

the color voxels. This distance map is used to �nd the color of the nearest surface voxel to

each voxel in the volume. The density volume and the color volume are combined to form the

new volumetric representation of the input polygonal model. The next step in the simpli�cation

pipeline is isosurface extraction. Here, we extend the Marching Cubes algorithm to take into

account color when generating triangles. In our version of the Marching Cubes algorithm, we

simply interpolate the color values associated with voxels when we are generating triangles

within a cube. These interpolated color values are then associated with the triangles that are

generated. The �nal step in our simpli�cation algorithm is triangle count reduction. In this

step, we use Garland and Heckbert's newer simpli�cation method that preserves the color of the

original surface [8]. This extension to their previous algorithm simpli�es meshes that have color

associated with the vertices by adding the red, green and blue color coordinates to the quadric

error measure.

VII. Results

Figures 6-9 show the results of our algorithm on four models. The model of Figure 6 is a CT

scan of a turbine blade. This model poses a challenge to most simpli�cation algorithms due to

its size, �ne interior detail and complex topology (small holes, thin tunnels etc.) Many methods

cannot simplify this model beyond a certain point because of its complex topology. Part (a)

of Figure 6 shows the original model, part (b) is a volume rendering of the voxelized model,

and part (c) shows the model after morphological closing and isosurface extraction. Parts (d)

and (f) show the surface after the polygon reduction stage. For comparison to part (d), the

e�ect of using Garland and Heckbert's quadric simpli�cation method alone is shown in part (e).

1
4

4 a. Origina Turbine Blade Model
1,726,892 Faces

4 b. Voxelized Model (Volume rendered)
 643x300x382 Voxels

4 c. Isosurface after Morphological
closing

578,098 Faces

4 d. Simplified Model
2,200 Faces

4 e. Model Simplified by Qslim
2,200 Faces

4 f. Simplified Model
500 Faces

F
ig
.
6
.

1
5

5 d. Wireframe of Original Model
(shows intersecting parts)

13,476 Faces

5 e. Wireframe of Repaired Model
(shows manifold surface)

13,476 Faces

5 f. Simplified Model
860 Faces

5 c. Simplified Model
1,721 Faces

5 b. Repaired Model
13,476 Faces

5 a. Original Al Capone Model
13,476 Faces

F
ig
.
7
.

16

6 a. Original Motor Model
140,113 Faces

6 b. Simplified Model
5,000 Faces

6 c. Simplified Model
3,300 Faces

6 d. Model Simplifiedby Qslim
3,300 Faces

Fig. 8.

17

9 a. Original Chair Model
3,261 Faces

9 b. Simplified Model
170 Faces

Fig. 9. (a) Original Chair Model (3,261 faces), (b) Simpli�ed Model (170 faces).

As can be seem from the images, our approach retains more details than Qslim (Garland and

Heckbert's method) alone for the same number of faces in the simpli�ed model. We note that

there are many parameters for Garland and Heckbert's method. For fairness, we use the same

choice of parameters to produce both parts (d) and (e). (Recall that Qslim is a component of

our simpli�cation pipeline.)

Figure 7 demonstrates our approach on a model of Al Capone. This hand-constructed model

has �fteen interpenetrating parts. The head, arms and legs continue into the torso region, as

can be seen by the darker regions in the wireframe rendering of part (d). In addition, this model

also has color, which is an attribute that we preserve during the simpli�cation and repair. For

this model we do not perform any morphology on the model, but instead recover an isosurface

after the model has been scan-converted. The resulting isosurface has no intersecting parts and

is everywhere manifold. This guarantees that the di�erent body parts will not become disjoint

from one another when the object is simpli�ed, as shown in parts (c) and (f). After the isosurface

was extracted, we reduced its triangle count to match that of the input model. The resulting

surface can be seen in parts (b) and (e) of the �gure.

Figure 8 demonstrates simpli�cation of a car motor. This model contains many degeneracies

such as T-joints, zero-area faces and non-manifold vertices. In addition, the motor model has

interesting topology in that there are a number of parts connected by thin structures and a

lot of interior detail. Again in the comparison with Qslim, our method retains more detail at

comparable levels of complexity.

Figure 9 shows simpli�cation of a model chair. This model demonstrates the topology modi�-

cation capabilities of our algorithm. Our approach closes the holes that are present in the back

and the seat of the model. We do not know of any other simpli�cation algorithms that would

smoothly join the slats of the chair into a single component and produce a manifold surface.

The results shown in these �gures illustrate the improvement that our morphological opera-

tors make when used in conjunction with Garland and Heckbert's polygon-based simpli�cation

approach. We believe that similar bene�ts will result if our morphological technique is used

in conjunction with any other polygon-based method. All of the polygon-based simpli�cation

methods that we know keep some memory of such small features from the original model even

after these features have been eliminated during simpli�cation, and thus the �nal models from

such methods are still a�ected by these features. The bene�t of the morphological stage of our

18

Simpli�cation Pipeline Timing (minutes)

Voxelization Morphology Isosurface Smoothing Triangle Total

Extraction Count Reduction

Blade 19.06 (78 %) 1.03 (4 %) 0.76 (3 %) 1.9 (8 %) 1.6 (7 %) 24.35 (100 %)

Motor 2.6 (29 %) * 0.63 (7 %) 3.63 (41 %) 2.02 (23 %) 8.88 (100 %)

Al 9.7 (47 %) * 1.7 (8 %) 3.4 (17 %) 5.7 (28 %) 20.46 (100 %)

Chair 0.9 (25 %) 0.9 (25 %) 0.4 (11 %) 0.9 (25 %) 0.5 (14 %) 3.6 (100 %)

Table I. This table shows the timing information for each stage of our simpli�cation pipeline. All the
timing measurements were taken on a 4 processor SGI Onyx with 1 Gigabyte of main memory.

Dimensions of Models

Original Volume Isosurface Simpli�ed

Model (# faces) Representation (# faces) Model (# faces)

Blade 1,729,892 268x128x161 578,098 200

Motor 140,113 386x256x197 177,158 200

Al 13,476 107x256x276 489,552 200

Chair 1,087 153x128x150 32,750 200

Table II. This table contains the sizes of the polygonal models as they move through the simpli�cation
pipeline. Table I above, gives the timing information for these model sizes.

pipeline is that it produces models in which the small features are completely absent. When

morphological changes are performed before polygonal simpli�cation, the polygon-based simpli-

�cation stage never needs to be concerned with the small features in any way. The polygon-based

method is never penalized for creating a surface that is distant from the small features because

it never has knowledge of these small features. This results in better simpli�ed models.

Table I shows the timing results for each stage of the simpli�cation pipeline. Table II contains

the sizes of the di�erent representations of a model as it moves through the pipeline. To collect

timing statistics that reect all of the stages of the pipeline, we performed an extreme amount

of simpli�cation on all of the models{ simplifying each model down to two hundred faces. (Note

that these 200 face models are not the models shown in the �gures.) When the input model

contains a large number of faces, then voxelization is the most time consuming stage of the

pipeline. On the other hand, if the volume representation of the model is large compared to

the input polygonal model, then the morphological operations become the bottleneck in the

simpli�cation pipeline.

VIII. Conclusion and Future Work

In this paper we have introduced a new surface simpli�cation technique that makes use of

morphological operations in the volume domain to simplify the topology of an object. Speci�c

advantages of the simpli�cation method include:

� Performs controlled topology modi�cation, allowing extreme simpli�cation.

� Accepts arbitrary collections of polygons as input.

� Produces manifold meshes as output.

� Preserves surface attributes such as color.

A bene�t of converting the input polygonal models into volumes is that we can repair a

number of degeneracies in polygonal models. This model repair method is simple to program

and it produces clean models that are everywhere manifold.

19

There are several possible avenues for future research. The erosion operator eliminates thin

surfaces, thus large thin parts of the model can be eliminated resulting in a large perceptual

error. For this reason we always perform dilation before erosion (which together are an opening),

but we are investigating possible solutions to this issue. Another future direction would be to

extend other 2D image processing techniques into 3D, possibly resulting in other new and useful

methods of manipulating volumetric models.

IX. Acknowledgements

We thank the many people at Georgia Tech who have helped and encouraged us. This work

was funded by ONR grant N00014-97-1-0223.

References

[1] Barequet, G. and Kumar, S. Repairing CAD Models. In Proceedings of IEEE Visualization '97, October

19-24, 1997, pp. 363{370.

[2] Barequet, G. and Sharir, M. Filling Gaps in the Boundary of a Polyhedron. Computer Aided Geometric

Design, Vol. 12, No. 2, 1995, pp. 207{229.

[3] Bohn, J.H. and Wozny, M.J. A Topology-Based Approach for Shell-Closure. In Geometric Modeling for

Product Realization, Edited by P.R. Wilson et al, North-Holland, 1993, pp. 297{319.

[4] Danielsson, P. Euclidean Distance Mapping. Computer Graphics and Image Processing, Vol. 14, 1980.

[5] El-Sana, J. and Varshney, A. Controlled Simpli�cation of Genus for Polygonal Models. In Proceedings of

the IEEE Visualization., August, 1997.

[6] Erikson, C. Error Correction of a Large Architectural Model: The Henderson County Courthouse. Technical

Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, 1995.

[7] Garland, M. and Heckbert, P. S. Surface Simpli�cation using Quadric Error Metrics. Proceedings of

SIGGRAPH 97. In Computer Graphics Proceedings, Annual Conference Series, 1997, ACM SIGGRAPH, pp.

209{216.

[8] Garland, M. and Heckbert, P. S. Simplifying Surfaces with Color and Texture using Quadric Error

Metrics. In IEEE Visualization '98 Proceedings, October 1998, pp. 263{269.

[9] Gortler, S.J., Grzeszczuk, R., Szeliski, R., and Cohen. M.F. The Lumigraph. In SIGGRAPH '96

Proc., August, 1996,pp. 43{54.

[10] Gueziec, A., Taubin, G., Lazarus, F., and Horn. W. Converting Sets of Polygons to Manifold Surfaces

by Cutting and Stitching. In Proceedings IEEE Visualization 1998., Research Triangle Park, North Carolina,

October 18-23, 1998, pp. 383{390.

[11] He, L. Hong, Kaufman, A.E., Varshney, A. and Wang, S. Voxel-Based Object Simpli�cation, IEEE

Visualization '95 Proceedings, October 1995.

[12] Hoppe, H. Progressive Meshes. Proceedings of SIGGRAPH 96. In Computer Graphics Proceedings, Annual

Conference Series, 1996, ACM SIGGRAPH, pp. 99{108.

[13] Huang, J., Yagel, R., Filippov, V. and Kurzion, Y. An Accurate Method for Voxelizing Polygonal

Meshes. In Symposium of Volume Visualization, 1998.

[14] Jain, A. Fundamentals of Digital Image Processing, Englewood Cli�s, New Jersey, Prentice-Hall Inc., 1989.

[15] Khorramabdi, D. A Walk Through the Planned CS Building. Technical Report UCB/CSD 91/652, Com-

puter Science Department, University of California at Berkeley, 1991.

[16] Levoy, M. A Hybrid Ray Tracer for Rendering Polygon and Volume Data IEEE Computer Graphics and

Applications, Vol. 10, No. 2, March, 1990.

[17] Lorensen, W.E. and Cline, H.E. Marching cubes: A high resolution 3-d surface construction algorithm.

Proceedings of SIGGRAPH 87. In Computer Graphics, July, 1987.

[18] Low, Kok-Lim and Tan, Tiow-Seng Model Simpli�cation using Vertex-Clustering. In Interactive 3D

Graphics, Providence, Rhode Island, April 27-30, 1997, pp. 75{81.

[19] Luebke, D. and Erikson, C. View-Dependent Simpli�cation of Arbitrary Polygonal Environments. Pro-

ceedings of SIGGRAPH 97. In Computer Graphics, August 1997.

[20] Marschner, S.R. and Lobb, R.J. An Evaluation of Reconstruction Filters for Volume Rendering. In Pro-

ceedings of Visualization '94, Washington, D.C., October 17-21, 1994, pp. 100{107.

[21] Morvan, S.M. and Fadel, G.M. IVECS: An Interactive Virtual Environment for the Correction of .STL

�les. In Conference on Virtual Design, University of California at Irvine, August 1996.

[22] Murali, T. M. and Funkhouser, T. Consistent Solid and Boundary Representations from Arbitrary Polyg-

onal Data. In Proceedings 1997 Symposium on Interactive 3D Graphics, Providence, Rhode Island, April

27-30, 1997, pp. 155{162.

[23] Rossignac, J. and Borrel, P. Multi-resolution 3D approximations for rendering complex scenes. Modeling

in Computer Graphics: Methods and Applications, June, 1993.

20

[24] Popovic, J. and Hoppe, H. Progressive Simplicial Complexes. Proceedings of SIGGRAPH 97. In Computer

Graphics, August 1997.

[25] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. Decimation of Triangle Meshes. Proceedings of

SIGGRAPH 92. In Computer Graphics, July 1992, pp. 65{70.

[26] Schroeder, W. J. A Topology Modifying Progressive Decimation Algorithm. In IEEE Visualization '97

Proceedings, October 1997, pp. 205{212.

[27] Schroeder, W. J. and Lorensen, W. E. Implicit Modeling of Swept Surfaces and Volumes, In Proceedings

of Visualization '94, Washington, D.C., October 17-21, 1994, pp. 40{45.

[28] Taubin, G. A Signal Processing Approach To Fair Surface Design. Proceedings of SIGGRAPH 95. In Com-

puter Graphics, July 1995, pp. 351-358.

[29] Wang, S. and Kaufman, A.E. Volume Sampled Voxelization of Geometric Primitives, IEEE Visualization

'93 Proceedings, IEEE Computer Society Press October, 1993.

