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Summary 

Large space structures (LSS) with energy-dissipating, nonlinear joints were 
investigated. The research involved the modeling and computational analysis of these 
systems and the design of LSS for improved damping performance. Active and passive 
joint designs were developed that enhanced the damping contribution from the connecting 
joints of LSS. A number of important results have emerged from this research: 

• Models of built-up structures that allow normal forces (forces applied normal to 
the frictional interface) to vary with structural displacement are useful in helping to 
understand the vibratory and damping properties of these structures. The 
simulated behavior of these models agrees qualitatively with available 
experimental results. 

• When normal forces in a structural joint vary with transverse displacement the 
overall damping properties are very similar to those of a linear, viscously damped 
structure. This is an important result because it implies that the modeling and 
analysis process for large structures with many nonlinear joints may be easier to 
perform than previously thought to be possible. 

• The damping characteristics of built-up and joined structures may be substantially 
increased if the inter-member interfaces are designed to take full advantage of 
displacement-dependent normal forces. 

Controlling the normal forces to a frictional interface through use of an active 
feedback system can substantially increase the damping of large flexible space 
structures. In fact, it is possible to give the joint linear characteristics through the 
proper selection of the feedback control law. 

These results as well as copies of the technical papers resulting from this work are 
contained in this report. 
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I. Introduction 

One of the major problems remaining in the development of large space structures 
(LSS) is the anticipated low level of passive damping. This low level of damping impacts 
the feasibility of placing large flexible space structures in orbit for a number of reasons. 
Perhaps the most important reason is that it is difficult to design attitude and shape 
controllers for lightly damped flexible structures. Since the open-loop system has low 
relative stability, it is quite possible that perturbations to the control scheme, such as 
observation spillover or plant uncertainty, can drive the closed-loop system unstable [1]. 
Many researchers have aimed to circumvent this problem by designing better (often more 
complicated and sophisticated) control systems. A review of the literature up until 1984 
can be found in reference [2]. An alternate approach is to design structures to have a 
greater passive damping capacity. It has been shown that the addition of passive damping 
to a flexible structure can greatly facilitate the model reduction and control design of 
flexible structures [3,4]. Since connecting joints have long been considered to be an 
important contributor to the overall passive damping of traditional flexible truss-like 
structures [5,6], this research has concentrated on the modeling, analysis and design of 
connecting joints of large space structures. 

The primary damping mechanism in truss structure joints is dry (Coulombic) friction. 
The analysis of structures with dry friction has received considerable attention. See, for 
example, Ferri [7] or the references cited therein. In most of these studies, it is assumed 
that the normal force to the sliding interface is constant. This may be termed the "classic" 
dry friction damped case. It is shown in this report that when the normal force is allowed 
to vary with displacement, the damping properties of the structure can be substantially 
modified. This result is very important to a number of aerospace applications: large space 
structures, aircraft structures, jet engines and helicopters. However, these results also 
concern a variety of ground-based applications, including turbomachinery and rail and road 
vehicles. 

One of the results of this research is that it is often possible to obtain viscous-like 
damping properties solely through the use of dry friction. The viscous-like damping 
property suggests that many mechanical designs can be improved by configuring frictional 
interfaces in ways that allow the normal forces to vary with displacement. In some 
applications, classic dry friction is inadequate to suppress vibration. For example, turbine 
blade systems experiencing flutter cannot be globally stabilized with classic dry friction. See 
for example Ferri [8] and Griffin and Sinha [9]. The deficiency stems from the fact that the 
damping level of dry friction damped systems with constant normal forces varies inversely 
with the amplitude of response. Hence, for a sufficiently large disturbance, it is possible for 
the energy input to the system by aerodynamic forces to overcome the energy dissipation 
provided by dry friction. In the field of LSS dynamics and control, the instabilities resulting 
from uncertainties and inaccuracies in the system model also result in forces which are in- 
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phase with displacements and/or velocities. In these cases however, the external forces are 
provided by the force and torque actuators which are driven by a feedback control law. By 
designing connecting joints to have frictional forces which are dependent on relative joint 
displacements and velocities, it may be possible to greatly increase the stable operating 
range of an LSS attitude or shape controller. 

It should be noted that viscous damping augmentation, especially in the form of 
viscoelastic materials such as those used in constrained layer damping, are subject to 
problems of "outgassing" in space environments [10]. This causes the material properties of 
the viscoelastic material to change with time, resulting in a degradation of the effectiveness 
of the damping treatment. An active or passive joint design which is based on energy 
dissipation from dry friction could provide a viscous-like damping, but still be well suited to 
a space environment. 

The outline of the remainder of this final report follows. Section 2 contains a 
description of the modeling work for flexible structures jointed by nonlinear sleeve joints. 
Section 3 presents results of an analysis technique based on the frequency domain, steady-
state harmonic balance method. Section 4 contains a description of the design work aimed 
at improving the energy-dissipative capabilities of large space structures. Finally, 
conclusions are contained in Section 5. 

2. Modeling of Nonlinear Sleeve Joints 

One of the three objectives of the research was to investigate modeling techniques for 
nonlinear joints used to join flexible truss members together. In previous work, a very 
detailed model for a sleeve joint was developed [11-13]. In that previous work, it was found 
that the complicated interaction of sleeve and the inserted portion of the adjacent beam 
could be largely modeled by a combination of piecewise linear springs and dampers in the 
rotational and transverse directions. As part of this research, these simplified joints were 
incorporated in a flexible system consisting of three linear, flexible Euler-Bernoulli beams 
interconnected with two sleeve joints. The development of the equations of motion were 
facilitated by the use of component-mode-analysis. Details are contained in Appendix A. 

A major finding of this work is that the CMA method provides a relatively simple 
methodology for generating the equations of motion for these interconnected space 
systems. It was also found that the resulting system exhibited significant nonlinear response 
when subjected to impulsive and sinusoidal excitation. In particular, hardening spring 
behavior was evident in the frequency response curves; the "natural frequencies" were 
dependent on the amplitude of response; subharmonic and superharmonic response was 
evident in the steady-state response to harmonic excitation. These findings can have 
important consequences for the control of these types of space structures. 
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This work is currently being extended in a number of significant ways. The model is 
being extended to include beam foreshortening effects due to large amplitude transverse 
displacements of the beam system. This effect could prove to be crucial to the correct 
determination of the damping contribution from the joints. A second extension is the 
replacement of the simplified-joint models with more complicated and detailed sleeve joint 
models. 

3. Analysis of LSS with Nonlinear Joints 

Extensive use of time integration was used in the simulation of the nonlinear models 
developed for this research. In addition, a harmonic balance algorithm was also 
investigated for its suitability to these types of problems. In previous work [14], it was 
found that a multi-harmonic, frequency domain approach could be used on systems with 
non-smooth nonlinearities (in particular, dry friction damped systems). However, the 
determination of the appropriate number of temporal harmonics to include in the analysis 
had to be chosen carefully. If chosen too low (too few harmonics) accuracy could suffer; if 
chosen too large (too many harmonics) the computation time might be excessive. The 
purpose of this research was to determine an a-posteriori error estimate for harmonic 
balance solutions to harmonically excited nonlinear systems, and to optimize the solution 
algorithm by incorporating an FFT routine. The details of this technique are included in 
Appendix B. 

4. Design of Joints for LSS 

A substantial effort was directed at designing nonlinear joints for large space 
structures to maximize energy dissipation through dry friction. Both active and passive 
strategies were considered. The details of this work can be found in Appendix C. 

The chief results of this work were that it is possible to significantly effect the type and 
the amount of damping from dry friction in structural joints. It was seen that passive 
frictional interfaces could be designed so as to give the structure a "classic" frictional 
behavior (damping inversely proportional to amplitude), a viscous-like behavior (damping 
invariant with respect to amplitude), a hydraulic type damping (damping directly 
proportional to amplitude) or even a damping proportional to the square of amplitude. In 
fact, the type of damping that a system exhibits could depend on the magnitude and the 
distribution of the excitation forces. This may explain why experiments on dry friction 
damped, built-up structures have resulted in so many different types of vibratory behavior. 

The results of the active joint reveal that substantial enhancement of "passive" 
damping of a structure can be obtained through a relatively light (low mass) and 
inexpensive means. It was found that one could even linearize the joint, making the overall 
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dynamics of the dry friction damped system behave in a linear manner. A more extensive 
investigation of the active joint is continuing. Among the topics that are important to 
consider are: experimental verification, optimal feedback control, and interaction of the 
active joints with global shape and pointing control strategies. 

5. Conclusions and Recommendations for Future Work 

The research has uncovered a number of interesting and important results: 

• Models of built-up structures that allow normal forces (forces applied normal to 
the frictional interface) to vary with structural displacement are useful in helping to 
understand the vibratory and damping properties of these structures. The 
simulated behavior of these models agrees qualitatively with available 
experimental results. 

• When normal forces in a structural joint vary with transverse displacement the 
overall damping properties are very similar to those of a linear, viscously damped 
structure. This is an important result because it implies that the modeling and 
analysis process for large structures with many nonlinear joints may be easier to 
perform than previously thought to be possible. 

• The damping characteristics of built-up and joined structures may be substantially 
increased if the inter-member interfaces are designed to take full advantage of 
displacement-dependent normal forces. 

• Controlling the normal forces to a frictional interface through use of an active 
feedback system can substantially increase the damping of large flexible space 
structures. In fact, it is possible to give the joint linear characteristics through the 
proper selection of the feedback control law. 

On a more general note, it is interesting to find that while nonlinearities in the joints 
present very challenging impediments to the analysis and modeling of LSS, they provide a 
number of potential benefits to the design and performance of closed-loop LSS control 
systems. 

Future work should include: 

• inclusion of beam foreshortening to models of nonlinear sleeve joints in flexible 
space structures 
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• investigation of stick-slip behavior in dry friction damped systems with amplitude-
dependent friction forces 

• experimental verification of vibratory characteristics of systems with amplitude-
dependent dry friction 

• development of adaptive harmonic balance solution algorithm that makes use of 
the a-posteriori error estimate discussed above 

• development of optimal control strategies for actively controlled joint 

• investigation of interaction between active and/or passive joints and spacecraft 
attitude and shape controllers 

• investigation of performance degradation in closed-loop control systems 
attributable to unmodeled spacecraft nonlinearities in joints 

• experimental verification of active and/or passive joints incorporated into flexible 
structures 
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Modeling and Analysis of Nonlinear 
Sleeve Joints of Large Space Structures 

Aldo A. Ferri* 
Georgia Institute of Technology, Atlanta, Georgia 

A nonlinear sleeve Joint model that accounts for the presence of clearances, impact damping, and dry 
(Coulombic) friction is developed. By studying the free and forced response of this model, it is seen that the 
overall damping appears to be predominantly viscous-like In nature. This is found to be true even for the cases 
studied in which dry friction is the sole source of energy dissipation. In addition, the nonlinear behavior of a 
rigid beam inserted Into a sleeve joint is investigated and discussed. 

I. Introduction 
Hel 

 
SCENT interest in the dynamics and control of large 

.1% space structures (LSS) has spurred a need for a better 
understanding of truss structure joints. The main function of 
these joints is to connect one or more truss elements together 
to form space-frame structures. However, another important 
function that they serve is to provide passive damping to these 
flexible space structures. 42  It is well known that low levels of 
passive damping are a major concern of controls designers. 
The low relative stability of LSS may cause small perturba-
tions to the control scheme, such as observation spillover or 
plant uncertainty, to result in poor performance or even 
instability in the closed-loop system.• Recently, it has been 
shown (quantitatively) that passive damping not only reduces 
the tendency for instability in flexible structures, but also 
lessens the model reduction error caused by mode trun-
cation." Thus, joints may be a simple but effective way to 
ease the stringent requirements on the controls design. From a 
mathematical perspective, however, the joints are nonlinear 
elements and hence are difficult to analyze. For this reason, it 
is difficult to determine analytically or computationally the 
overall damping contribution from the joints. Experimental 
determination of truss structural damping is also hampered by 
the joint nonlinearities.' The prestressing of the joints caused 
by gravity loading in a laboratory environment causes the 
measured properties to differ from their operational values 
encountered in a zero-g, zero-atmosphere space environment. 
Also, because of the large size and low natural frequencies of 
these systems, it is difficult to perform full-size testing, espec-
ially if one wishes to place the entire structure in a vacuum in 
order to simulate a space atmospheric environment. 

This paper addresses the mathematical modeling and nu-
merical analysis of a nonlinear sleeve joint. Although the 
modeling and control of linear flexible structures has received 
considerable interest, relatively little has been done on the 
modeling and control of structures with multiple nonlinear 
joints. Some work, however, is relevant to the present effort. 
Hertz and Crawley have studied the experimental and analy-
tical determination of damping in nonlinear LSS). 2• In par-
ticular, Refs. 1 and 2 develop simple joint models and single 
harmonic analyses are performed to estimate loss factors. 
Hertz and Crawley's work serves as a starting point for the 
present research effort. 

Many of the dissipative mechanisms in space structure 
joints are tied to nonlinear behavior. One of the major dis-
sipative mechanisms in joints is dry (Coulombic) friction. The 

Received July 2, 1987; revision received May 17, 1988. Copyright 0 
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general problem of analyzing structures with dry friction has 
received considerable attention. See, for example, Ferril° or 
the references cited therein. It has been shown that dry friction 
can cause some significantly nonlinear behavior in an other-
wise linear structure. Clearances in mechanical systems are 
another source of nonlinear behavior in large truss structures. 
These clearances are often present because of imperfections in 
nominally "snug" joints or because of wear that can take 
place on an initially snug design. At times, clearances are 
purposely designed into a joint in order to facilitate deploy-
ment or permit relative slip and impact to occur. In fact, this 
"impact damping" may be an important contributing factor 
to the overall damping level of the structure. 2  However, clear-
ances introduce so-called "dead zone" nonlinearities and hys-
teresis into the system. The clearances further complicate the 
situation since they can cause the structures to behave dif-
ferently in space than they do on the ground. This is caused by 
both the presence of oxidation in the ground environment and 
ground-level gravity fields that cause different operating 
points to become effective.'• 

The outline of the remainder of the paper is as follows. 
Section II contains the development of the equations of 
motion for a rigid beam partially inserted into a sleeve joint as 
shown in Fig. 1. Results obtained through time integration of 
this model are presented in Sec. III. Some concluding remarks 
are contained in Sec. IV. 

II. Sleeve Joint Model Development 
This section deals with the modeling of a generic sleeve 

joint. Although many types of truss structure joint designs are 
currently used, sleeve joints are relatively simple in concept 
but still retain many of the important characteristics of more 
complicated joint geometries. (See Refs. 1 and 2 for a descrip-
tion of other commonly used joint types.) A brief outline of 
the modeling steps follows. For a more detailed development, 
see Ferri)i 

The generic sleeve joint consists of a cylindrical outer sleeve 
that fits around the end of a mating beam or truss member. As 
previously mentioned, Hertz and Crawley have developed 
simple models for such types of joints)• 2  Their model con-
siders only dry friction nonlinearities. Loss factors are cal-
culated assuming simple harmonic motion and taking a one 
mode approximation for the beam motion. This model is used 
as the starting point for the present study. 

The major characteristics that need to be modeled in order 
to develop an accurate general-purpose sleeve joint model are 
the following: 

Dissipative effects 
Damping caused by dry friction. 
Damping caused by impact. 
Material damping caused by deformation of the joint. 



A 	
SLEEVE 	0 

BEAM I 

BEAM 2 

(4) 
or  5. 0 

6E > 0 
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Geometry and elastic effects 
Overall beam/sleeve geometry including possible clear-

ances between the beam and sleeve. 
Hardening spring characteristics caused by large defor-

mations of the beam and/or sleeve. 

An attempt has been made to account for the possibility of 
any of the foregoing effects in the joint models. Although, as 
pointed out in Ref. 9, many of these effects are difficult to 
quantify, the qualitative effects of each joint characteristic can 
be studied through parameter variation. 

For the purpose of modeling, it is assumed that the sleeve 
joint is composed of two parts: an outer sleeve that moves 
with the one beam and an inner cylinder that moves with the 
other beam. Figure 1 shows a closeup schematic of the sleeve 
joint model. Six degrees of freedom are identified to describe 
the planar motion of the sleeve joint system. Note that y i , xi, 
and 8, are the lateral displacement, longitudinal displacement, 
and rotation of the end of the left-hand beam (beam 1) and .Y2,  
x2 , and 82  represent the corresponding quantities for the right-
hand beam (beam 2). These six generalized coordinates fully 
describe the interaction of the outer sleeve and the inner cyl-
inder. Three coordinate systems can be identified: the i,j coor-
dinate system that remains fixed in inertial space, the W I 

 system that is fixed on sleeve 1, and the 4,12  system that is 
fixed on inner cylinder 2. Unit vectors in the longitudinal and 
transverse beam directions are respectively represented by 
and j; 8 is defined to be positive in the counterclockwise 
direction. Kinematic relationships are used to derive expres-
sions for the distances between beam and sleeve contact points 
and for the relative velocities between the sleeve and the beam, 
both tangent to and normal to the contact plane. 

One of the main reasons for choosing the six generalized 
coordinates just defined is the ease with which the relative 
motion of the sleeve and cylinder can be expressed. Another 
motivation for this choice of coordinates is that it provides a 
relatively easy way of incorporating the sleeve joint model into 
a flexible truss system using either the finite-element method 
or component mode synthesis techniques. The analysis pre-
sented next is developed for the simplified case in which the 
sleeve is fixed in inertial space, and only beam 2 is allowed to 
move. The equations and methodology can be extended to the 
case in which both the sleeve and inner cylinder can move. 

Figure 2 shows the deflected position of the sleeve (shown 
with solid lines) together with the undeflected state (shown 
with dotted lines). It is seen that the distance from point E to 
side BC can be expressed as 

	

OE = • rEe 
	

(1) 

where rEB iS the vector from B to point E as shown in Fig. 2. 
After describing rEB  in terms of sleeve length and deflection 
parameters, Eq. (1) gives 

OE = (x 1  — x2  — L i ) sine'  + (y2  —y 1 ) cos8 1  + L2 sin(8 1  — 62) 

(d2/2) cos 	— 82) + (d,/2) 	 (2) 

Fixing the sleeve in inertial space is accomplished by setting 
= y, = 0 1  = 0. This yields 

6E = 92 —  L2 sin82  — (d2/2) 	cos82  + (d,/2) 
	

(3) 

A similar analysis can be performed to obtain SF , defined to 
be the distance from point F to side AD. The distance from 
point I to side AB is similarly defined as •5 1 . The remaining 
distances are defined along the direction transverse to the 
beam; S c- and OD are defined as the distances from point C to 
side EH and from point D to side FG, respectively. in each 
case, the distances are defined to be positive when contact is 
not occurring at that respective point. Complete details and 
expressions may be found in Ref. 11. 

Fig. 1 Sleeve joint model. 

Fig. 2 Deflected position of sleeve joint. 8E 

In order to model the contact forces, nonlinear, one-way 
springs are placed at the four contact points. (See Fig. 3.) The 
term "one-way" implies that the spring forces can be only 
compressive in nature; no tension is allowed. Mathematically, 
the spring force at contact point E is given by 

KI I OE I + el ISE 1 3  FEi = { 0  

where K, represents the linearized, small deformation elastic 
constant and e l  is typically a small, positive quantity that 
determines the spring "hardening" characteristic at contact 
points E and F. As seen in Fig. 3, parameters K2 and e 2 

 correspond to stiffness characteristics at contact points C and 
D. For a particular sleeve joint, K,, K,, ei, and 6 2  might be 
found from a finite-element model or perhaps by approximate 
methods from the theory of elasticity. Expressions similar to 
that shown in Eq. (4) can be obtained for the spring forces at 
contact points F, C, and D. Note that forces FE, and Fpi act 
normal to sides BC and AD, respectively, and that forces FD, 
and Fci  act normal to sides FG and EH, respectively. 

In addition to the four transverse springs already discussed, 
a linear spring is placed at location I to model the retaining 
characteristic of the sleeve joint, if any. Only this spring at lo-
cation I is allowed to transmit both tension and compression. 

The total compressive force at locations E, F, D, and C will 
consist of the elastic force from the springs plus any viscous 
damping or rate-dependent forces. In order to model the rate-
dependent forces caused by material deformation and impact, 
viscous damping elements are placed in parallel with the one-
way nonlinear springs as shown in Fig. 3. Like the springs, the 
dampers are also permitted to transmit compressive forces 
only. Thus, the viscous damping forces are nonzero only when 
contact has occurred (S< 0) and when the relative velocity is 
such that further compression takes place; that is, S.<0. 

The viscous damping forces are proportional to the rate of 
deflection of the beam or sleeve. These deflection rates can be 

FE, FEL  j; 



INNER DIAMETER 
Ka x•e2 x3 	 OF SLEEVE 

K, x *cots 
	

Ka r•et irl  

0E  5 0, SE  5 0 
otherwise 

(6) 

found by differentiating the corresponding expressions for a. 
For example, the expression for SE  is 

	

SE = .11"2 — L262 cos02  + (d2/2) 62 sine2 	(5) 

The corresponding expression for the viscous damping force 
at point E is given by 

FE2  = FE2  j; 
	

FE2
ci ISE I 

— {0 

Similar expressions can be found for the other contact points. 
Whereas the dampers at points E, F ,C , and D are one-way in 
nature, the damper at location I is two-way and is, in fact, a 
fully linear viscous damper. 

The total compressive force at contact point E is found by 
summing the spring and damper forces: 

	

FE= FEj i- FE2 = FE j 	 (7) 

When contact occurs, friction forces come into play, acting 
tangent to the contact plane. The friction forces can be mod-
eled approximately by Coulomb's Law. In the most general 
case, two coefficients of friction can be defined: a static coef-
ficient of friction p that applies when sticking has occurred, 
and a dynamic or kinetic coefficient of friction ;I d  that applies 
when slipping occurs. When sticking takes place, the friction 
force has whatever value it needs to maintain equilibrium at 
that contact point. If the force required is greater than '01, 
where Nis the normal force to the contact plane, then slipping 
is said to occur. In the case of slipping, the friction force has 
magnitude AdNand a direction that opposes the relative move-
ment of the contact plane. 

As discussed in the preceding paragraph, the friction forces 
depend on the signs of the relative slip speeds. Note that the 
relative slip speed is the component of the relative velocity 
along the contact plane (or contact line for the planar system 
under consideration). For contact point E, the relative vel-
ocity in question is the difference in the absolute velocities of 
points E1  and E2, where E l  is the point along side BC of the 
sleeve (body I) that is in contact with the corner E2 on the 
inner cylinder (body 2). That is, 

VEVE2 =  VE 1  — VE 2 	 (8) 

Since the sleeve is fixed in space, VEI  = 0. The coordinates x2 , 
y2 , and °2 can be used to find VE2  

	

= — 
dt (r

2  + r502) 
	

(9) 

Vectors r2  and rE02  are seen in Fig. 2 to be given by 

r2 = x2 + j; 
	

rE02 = — L2 12— (d2/2)  12 

Substituting these expressions into Eq. (9) and accounting for 
the rotation of the unit vectors i 2  and j2  gives 

	

VE2 =-- (X2  + j12  j) + 62 k x I— L2  12 — (d2/2):/2/ 
	

(10a) 

VE2  = 1i2 (d2/2) 62 COS82 + L282 sine21 

+ Cy2  + (d2/2) 62  sine2  L202  cos8 21 j 
	

(I0b) 

The relative slip speed is the component of the difference in 
absolute velocities in the direction of the contact plane (side 
BC) 

Fig. 3 Sleeve joint model showing nonlinear, one-way springs and 
impact dampers (x = compression of the springs). 

VEI2 = 	— (d2/2) 62 COS82 — L262 Si1182 
	(11b) 

Again, similar expressions can be found for the other contact 
points. 

The friction force at point E is determined using the relative 
slip speed and Coulomb's Law 

1 JEt ,  fE As FE 
J E =  

Ad FE sgn(VE12 ) 

where 

sgnV= 	0 	V= 0 

	

{1 

	V >0 

	

-1 	V < 0 

	 (13) 

The friction forces at contact points F, C, and D can be found 
in a similar manner. Note that the contact line (and, hence, the 
friction forces) at locations C and D are parallel to the sides 
EH and FG, respectively. 

Equations of Motion 
The normal forces and friction forces constitute all of the 

forces exerted on the beam by the sleeve. In addition to the 
beam-sleeve interaction forces, an externally applied excita-
tion force F(1) = F(t )j acts on the beam as seen in the free-
body diagram shown in Fig. 4. The equations of planar mo-
tion for this system are obtained from two force balances and 
one moment balance about the beam's center of gravity (c.g.) 

mk,=-Fx 	 (14) 

m = + F(1) 

Ic  9 = 	cos° + 2
2

sine) +f4 sine - c4; case) 

L2 L2 	d2 cose + 
2 
 sine) +A(-2- sine + —

2 
cost/ 

L2 
+22  F1  sin° - (FD  — Fc) —2 - (fo - ./c) 

d2 
2 

FD rEp2G — Fc rcgi + L4 sine F, - L4 COS° F, 

d 
+ (L F  cose + -2- sine) F(t) 

VE12 = 0 	
(12) 

VEI2* 0  

(15) 

(16) 

VEI2 = (VE I  VE,) 1  
where m is the mass of the beam, I,. is the mass moment of 

(11a) 	inertia about the beam's c.g., F, and F, are beam-sleeve 
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1\4,--rcipo  

Fig. 4 Beam free-body diagram. 

interaction forces in the x and y directions, respectively 

Fx  = + fE  + fF  + (FD  - Fc) sine + (fc, + fc ) cosi) (17) 

Fy  = FE FF (Fc  - FD ) cos0 + (fo  + fc ) sine 	(18) 
and where rz,2G  and rcly  are given by 

r D20  = 	- x2d2  sine + (d2/2)2  + y2 - y2(di  - d2  cos8) 

+ (d1/2)2  - (did2/2) coser 	 (19) 

rc2H  = fx1 + x2d2  sine + (d2/2)2  + y2 + y2(d1  - d2  cos0) 

+ (d1 /2)2  - (d1d2/2) cosOr 	 (20) 

Equations (14- 16) form the equations of motion for a rigid 
beam partially inserted into a sleeve joint. Defining the state 
vector as 

= [Xt.. Ye* 0 . ire, .fr c. e] T  

the equations of motion can be summarized in first-order 
vector form 

X = flx,F(t)i 	 (21) 

III. Results for the Sleeve Joint Model 
One of the advantages of the rigid beam fixed-sleeve model 

developed in Sec. H is that it isolates the sleeve joint so that an 
accurate assessment of its effects can be made. For example, 
since the beam is rigid, the total damping of this system is 
entirely caused by the dry friction and material damping in the 
joint. Hence, the damping contribution of the joint to the 
system is easily determined. Another advantage of this model 
is that it allows one to perform many parametric studies at a 
relatively low computational cost. 

A baseline configuration for the fully nonlinear joint model 
was chosen to have the parameter values given in Table 1. 
Length dimension nomenclature is defined in Fig. 5. The coef-
ficient of friction A is the baseline value for both the static and 
dynamic coefficients of friction; that is, = µd = A. Unless 
otherwise stated, parameters may be assumed to have their 
baseline value. 

A sample time response is shown in Figs. 6 and 7. The 
quantity y2  refers to the transverse displacement of the beam 
at a position that lies just outside the sleeve (see Fig. 1). The 
figures show the free response of y2  and 0 for the baseline set 
of parameter values and a particular set of initial conditions: 
x, = 0, y2  = 0.003 m, 8 = 0.09 rad. The plotted quantities are 
normalized by various system parameters. The displacement 
y2  is normalized with respect to the clearance D = (d 1  - d2 )/2. 
If Iy2/D I >1, it implies that contact is taking place. The beam 
rotation 0 is normalized with respect to D / (L 2/2). This is the 
approximate beam rotation (in radians) when contact begins 
to occur. Thus, I - 1. 2/ 2D)1> I also implies that contact has 
occurred. 

The motion shown in Figs. 6 and 7 is largely composed of 
two frequencies: a highly damped, high-frequency motion 
( - 24 rad/s) related to transverse displacement of the beam's  

end, and a dominant low-frequency motion ( -0.4 rad/s at 
high amplitudes) related to the gross rotation of the beam. 

The significance of these two types of motions can be 
determined by examining the linearized equations of motion 
for a sleeve joint model with no clearances 

m + IC, x, = 0 	 (22) 

m + y, - L 4K, 0 = 0 	 (23) 

Table 1 	Baseline parameter values for sleeve Joint model 

Item Symbol Baseline value Units 

Mass m 1.3493 kg 
Mass moment of inertia 0.12167 kg • m2  
Lateral stiffness 100 N/m 
Lateral stiffness K2  100 N/m 
Longitudinal stiffness K3 100 N/m 
Cubic stiffness El 0 N/m3  
Cubic stiffness 53 0 N/m 3  
Lateral damping Cl  0 N • s/m 
Lateral damping C2 0 N • s/m 
Longitudinal damping C3 0 N s/m 
Coefficient of friction 0.47 — — 
Sleeve length L 0.0401 m 
Inner cylinder length L2 0.04 m 
Distance from c.g. to point 2 L3 0.48 m 
Distance from c.g. to point a L. 0.50 m 
Distance from c.g. to forcing LF 0 m 
Total beam length Lim] 1.04 m 
Inner sleeve diameter 0.0252 m 
Outer beam diameter d2 0.0250 m 

Fig. 5 Definition of length and displacement parameters. 

O ° 
>. 

8 
N 

0.00 	50.00 	100.00 	1 so.00 
	

200.00 

Time (sec) 
Fig. 6 yz/D vs time. Baseline sleeve Joint model. Initial conditions 
x:(0) = 0.0, yz(0) as 0.003 m, 8(0) = 0.09 rad. 
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Time (sec) 
Fig. 7 014/(2D) vs time. Baseline sleeve joint model. Initial condi-
tions .r2(0) = 0.0, Y2(0) = 0.003 m, 8(0) • 0.09 rad. 

— KyL 4y, + (K e, + KyL,1)0 = 0 
	

(24) 

K1 , K,, and K, can be defined approximately as follows: 

Kr = K3 

lc= K 1 + K2 

Ks = (L1/4)(K, + K 2 ) 

Since Eq. (22) is uncoupled from Eqs. (23) and (24), we can 
easily identify the natural frequency for longitudinal motion 
to be 

co, =IV-Z/7n = IN/777n 	 (25) 

The natural frequencies associated with the remaining two 
equations are found to be (if we assume K, = K 2 ) 

2 	[ 	
2m 4 

m L 2  2/, N.r( mL 2  + 24 ) 2  4m 4 Ll 

	

422 .3 K1 	 (26) 

where L 2  RI 1/2 L2 + 	If we use baseline parameters, this 
gives 

= Vic; (0.861), w2  = VT, (0.0417), w3  = -sir, (2.366) 
(27) 

It is seen that the natural frequencies of the system grow as 
'1k. More im_portant, the difference between w 3  and w2  also 
grows with VIC,, causing the equations of motion to become 
numerically "stiff ' as the joint gets physically stiffer. 12 

 Numerical solutions to stiff differential equations require 
large amounts of computer time in order to maintain accur-
acy. For this reason, most of the simulations presented here 
are done for the cases of relatively low joint stiffness, with 
results for higher stiffnesses based on extrapolation and rela-
tively fewer numerical simulations. 

When we examine the eigenvectors associated with Eqs. (23) 
and (24), it is seen that for the case K, = K2 = 100 N/m 
(K. = 200 N/m), the low-frequency motion corresponds to the 
case where y2  and 0 are "in phase" and the high-frequency 
motion corresponds to the case where y 2  and 0 are "out of 
phase." Although the longitudinal degree of freedom does not 
interact strongly with the other two degrees of freedom, it is 
very important in accurately predicting the losses caused by  

friction. Hence, the longitudinal degree of freedom is retained 
for the subsequent computations, but concentration will be 
directed to y2  and 0 since these quantities dominate the global 
motion of the beam. 

There are two aspects of Figs. 6 and 7 that are worth noting. 
The first is that the envelopes of decay are largely exponential. 
Note that the entire damping of this system is the result of dry 
friction, since the baseline model has the impact damping 
parameters set equal to zero (C, = C2 = C3 = 0). In classical 
dry friction damped systems, the normal forces are indepen-
dent of amplitude and, consequently, the envelopes of decay 
are linear." In this case, however, the normal forces at the 
contact points vary depending on the beam motion; in 
particular, they are dependent on the compression of the 
one-way springs. As a result of this amplitude dependence, the 
envelopes of decay are exponential. This type of behavior has 
been found in other systems with amplitude-dependent fric-
tion as well.'•" 

A second important observation from Figs. 6 and 7 is that 
the frequency appears to be strongly affected by the amplitude 
of response. As the amplitude grows smaller, the frequency of 
response becomes lower. This can be understood by examining 
a describing function approximation of the piecewise linear 
springs of the simplified sleeve joint model. As the amplitude 
decreases, the effective spring constant also decreases. In fact, 
for amplitudes of response smaller than the clearance displace-
ment, the effective spring constant is zero. 

The damping ratio for the low-frequency motion was esti-
mated using the log decrement approach. The formula for the 
damping ratio, provided that ('<<1, 1, isu 

r. (1/2r) ö = (1/2r) in (E,/E 2 ) 	 (28) 

where t, is the amplitude of one peak in a free response and 
E2 is the amplitude of the next peak. It should be noted that 
the log decrement approach is derived for single-degree-of-
freedom (single-DOF) linear systems; thus, it is only an ap-
proximate formula when applied to nonlinear, multi-DOF sys-
tems. From Fig. 6, we see that initially, when y 2/D = 30, the 
damping ratio is approximately = 0.146. After the amplitude 
decreases, y2/D = 12, the damping ratio is reduced to 

= 0.079. Thus, it is seen that, qualitatively, low-amplitude 
motions are more lightly damped than high-amplitude mo-
tions. This characteristic was seen in many of the results of 
this research. 

The effect of beam sleeve geometry on overall damping is 
shown in Fig. 8 for a stiffness of K, = K2 = K3 = 10 N/m. The 
quantity D/L 2  is essentially a relative clearance defined as the 
true clearance, D = (d, — d2 )/2, divided by the sleeve length 
L2. It is seen that the damping ratio is inversely proportional 
to D/L 2 ; that is, small clearances are more beneficial for dry 
friction damping than large clearances. Note that the abscissa 
of the graph is the (unnormalized) amplitude of y 2 . (This 
quantity is left unnormalized because the clearance D is being 
varied from curve to curve.) It is also seen that for a given 
D/L 2, the damping ratio increases with amplitude. 

The effects of sleeve joint stiffness and coefficient of 
friction were also studied. Damping ratios were computed for 
joint stiffness values ranging from K, = K2 = K3 = 0.1 N/m to 
10 x 106  N/m. It was found that, even over such a broad range 
of values, the system damping ratio was relatively insensitive 
to changes in joint stiffness. Of course, increasing the sleeve 
stiffness increases system natural frequencies so that the 
response decays to zero faster, but it undergoes the same 
number of oscillations before it settles out. A variation of the 
coefficient of friction between 0 and 1.0 revealed that p affects 
the damping ratio in a linear manner. 

The baseline system was forced with a sinusoidal point force 
to generate frequency-response information. The forcing is 
assumed to be applied to the center of mass of the beam; that 
is, LF= 0. A normalization for the forcing amplitude was 
chosen to be F„ = K,DL 2/(2L 4 ) where K, = K, + K2. It may be 
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noted that this is the static force necessary to deflect the beam 
through an angle of 2D/L 2  rad. Using baseline parameters, F„ 
is 8 x 10 -4  N. The frequency-response curves for F/F„ = 3, 
3/2, and 3/16 are shown in Fig. 9. The amplitude shown is the 
peak response per cycle. Observations of the time histories of 
the forced response revealed that the motion was often multi-
harmonic in nature. At low frequencies, the motion typically 
had a third or fifth harmonic of the forcing frequency signif-
icantly present. An example of such superharmonic response 
is shown in Fig. 10 for a forcing frequency of w = 0.1 rad/s 
and forcing level F/F„. 3. At or near resonance, the motion 
was mainly sinusoidal in nature. However, at higher frequen-
cies, subharmonic response was typical. Figure 11 shows the 
response for to = 1.0 rad/s and F/F„ = 3. It is seen that the 
motion is dominated by a 1/5 subharmonic response; that is, 
the motion repeats after every five cycles of the forcing. Such 
types of motion were typical at the higher frequencies at each 
of the three force levels investigated. Often, very low-order 
subharmonics were observed (on the order of 1/20th) or even 
at times aperiodic beating motion, which indicated the pre-
sence of two or more nonconunensurable frequencies of re- 
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Fig. 8 Dampieg ratio vs peak displacement y2 in centimeters; various 
values of D/L,. 
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Fig. 9 Amplitude 2.2/D vs frequency of excitation; various levels of 
excitation amplitude (baseline sleeve joint model). 
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Fig. 10 Steady-state forced response for baseline sleeve joint model. 
F/F..• 3.0, (a = 0.1 rad/s. 
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Fig. 11 Steady-state forced response for baseline sleeve joint model. 
F/F.= 3.0, co = 1.0 rad/s. 

sponse." It should be added that such unusual behavior is not 
uncommon for nonlinear systems and, in particular, for 
systems with clearances. See, for example, the papers by Shaw 
and Holmes,I 6,17  which examine the existence of chaos in 
mechanical systems with clearances. 

IV. Concluding Remarks 
A generic sleeve joint model has been developed that ac-

counts for clearances, geometric stiffening, dry friction, and 
impact damping. This model was then tested using numerical 
integration to determine the damping contribution from the 
joint and the overall dynamic behavior of the beam-sleeve 
system. A parametric study was conducted to determine the 
qualitative influence of various joint characteristics on the 
damping contribution of the joint. It was found that the 
overall damping was qualitatively similar to viscous damping, 
even for the case of zero impact damping. It was also seen that 
the system damping ratio was dependent on the amplitude of 
response; high-amplitude motions had greater damping than 
low-amplitude motions. Forced response to harmonic excita-
tion revealed noticeable hardening spring behavior. In addi-
tion, the time response to harmonic excitation displayed both 
subharmonic and superharmonic response. 
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ABSTRACT 

A simplified model of a flexible space structure consisting 
of three visco-elastic beams and two nonlinear sleeve joints 
is investigated. Numerical results showing the relationship 
between system dynamic behavior and various joint 
properties are presented. It is found that system damping 
appeals to be directly dependent on amplitude. It is also 
found that even a small amount of play in the sleeve joints 
causes nonlinear, hardening spring behavior to become 
evident in free and forced response. 

NOMENCLATURE 

Symbol Definition 

cl 	transverse damping coefficient for joints of 
three-beam system 

ez 	rotational damping coefficient for joints of three- 
beam system 

dc, 	outer diameter of flexible beam 
E Young's modulus 
el 	transverse clearance in joints 
e2 	rotational clearance in joints 
F 	amplitude of harmonic excitation 
F1 	transverse shear force transmitted by the first 

joint of the three-beam system 
F2 	transverse shear force transmitted by the second 

joint of the three-beam system 
constraint relation, or governing equation 

1 	moment of inertia for flexible beam cross-section 
kl 	transverse joint stiffness 
k2 	rotational joint stiffness 
L length of the flexible beams 

modified Lagrangian 
M 	total mass of one flexible beam, or total number 

of generalized coordinates 
M1 	moment transmitted by the first joint 
M2 	moment transmitted by the second joint 
m 	mass/unit length 

transverse displacements for flexible beam ends 
generalized force 
generalized coordinate 
angular displacements for flexible beam ends  

T 
	

kinetic energy 
V 
	

potential energy 
wi(x,t) 
	

transverse displacement of flexible beam 
x17 
	coordinate location for external force 

Xi 
	spacial coordinate of the is" flexible beam 

01 	Lagrange multiplier 
virtual displacement of is" generalized coordinate 

4W 
	

virtual work 
cti 	jib modal damping ratio of is" flexible beam 

jib modal amplitude for is" flexible beam 
4;i(x1) 
	

js" mode shape of the lib  flexible beam 
frequency of excitation fir 
P" natural frequency of i'" flexible beam ' lii 	
denotes a derivative with respect to time • 
■ d/dx, 

denotes a column vector 
denotes a matrix quantity 

INTRODUCTION 

A major problem remaining in the development of large 
flexible spacecraft and space platforms is that of accurately 
predicting the passive damping level. In addition to 
vibration suppression, passive damping determines the 
relative stability of the uncontrolled (open-loop) structure. 
A low level of passive damping can limit the robustness of 
closed-loop attitude and shape controllers. In particular, 
observer spillover associated with modelling errors 
becomes much more serious a problem in systems with low 
relative stability [1]. A related problem is that light 
damping tends to increase the model uncertainty tied to 
modal truncation [2,3]. 

It is generally believed that joints in large space structures 
(LSS) are a major source of energy dissipation [4-6]. A 
considerable amount of research has been directed towards 
designing joints which take maximum advantage of energy 
dissipative mechanisms such as dry friction and impact. 
Still, very little analytical work has been performed that 
predicts the damping and the dynamic behavior of 
structures with nonlinear joints. One of the complicating 
aspects of the problem is that the major enere, dissipative 
mechanisms, impact and dry friction, are both nonlinear 
phenomena. Thus, the analysis of structures with numerous 
joints is a formidable task. Here, a generic model of a 
flexible system with two nonlinear joints is studied to 
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The Qi's are obtained from an expression for virtual work 
[13] 
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examine the qualitative trends and consequences of having 
nonlinearities at discrete locations in an otherwise linear 
structure. 

In previous work [7,8], a mathematical model for a 
nonlinear sleeve joint was developed. The joint model 
included the effects of impact damping, dry friction and 
clearances in fit. In the present study, the simplified joint 
model described in Ref. [8] is incorporated into a flexible 
structure consisting of three visco-elastic beams and two 
sleeve joints as shown in Figure 1. In the following section, 
the equations of motion for the system are developed. The 
Results section contains a presentation and discussion of 
numerical results. 

DEVELOPMENT OF EQUATIONS OF MOTION 

The equations of motion for the three-beam system of 
Figure 1 are developed using the Component Modc 
Analysis (CMA) technique. CMA is a technique by which 
collections of subsystems can be analyzed. It is very 
convenient for systems that consist of linear sub-structures 
interconnected by discrete nonlinear elements. See, for 
example, the work of Dowell and co-workers [9-12]. 

A simplified way of applying CMA is to use Lagrange's 
equations with a modified Lagrangian, 

• 
L 	T - V + 	 p.f 	 (I) 

J J-1 

where the ft's are constraint equations, the B p's are Lagrange 
multipliers and C is the total number of constraints. The 
modified Lagrangian is used in the standard form of 
Lagrange's equations [13] 

aw i  2 

T i m 8t 

 

where L is length and m is the mass per unit length for each 
beam. x1  is the spacial variable and w,(x„t) is the transverse 
displacement function associated with the ith beam. For 
each beam, a finite modal expansion for the displacement 
function is used, retaining N of the natural modes 

w
i

(x
i
,t) • 	nij (t) 0

ij
(x

i
) 	(5) 

j.1 

Taking into account the "pinned-pinned" conditions of the 
three-beam system, the 0 11's are chosen to be the natural 
modes associated with a uniform pinned-free beam of 
length Li ; the 021's are chosen to be the natural modes of a 
uniform free-free beam of length 1. 1; the 01's are chosen to 
be the natural modes of a uniform free-pinned beam of 
length L. 

Substituting (5) into (4) and making use of the 
orthogonality of the mode shapes, expression (4) becomes 

1• 2 T 	 ri
iJ 	

(6) 

where 
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	i 
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j 

dx i 
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0 

The mode shapes are normalized such that m u  = M, where 
M=mL is the total mass of one beam. Using this fact, the 
total kinetic energy of the three-beam system can be 
written 

QJ 8 
	 ( 3 ) 

.1.1 

The analysis procedure can be separated into five tasks: 1) 
obtain an expression for kinetic energy, 2) obtain an 
expression for potential energy, 3) obtain an expression for 
virtual work, 4) determine constraint relations between 
redundant generalized coordinates and 5) substitute these 
expressions into Lagrange's equations (2). These five tasks 
are presented in order in the sequel. 

Kinetic Energy 

The kinetic energy of the system is the sum of the kinetic 
energies of the three beams. To simplify the development, 
it is assumed that the three beams are identical in physical 
dimension and material properties. It is also assumed that 
the joints are massless. The kinetic energy of the ith beam 
can be written 

Potential Energy 

The potential energy of the combined system is the sum of 
the potential energies associated with flexure of the three 
elastic beams plus the potential energies associated with 
the elastic deformation of the joints. The potential energy 
of the ith beam is given by 

8
2

w. 
2 

1 
Vi 	2 — 	El 	2 1 	dx i 

o 	ax i 

where EI is the (constant) flexural rigidity of the beams. 
Substituting (5; into (9) and again using the orthogonality 
of the mode shapes, equation (9) gives 

V 	 M. ri2 	 (10) i 	2  	J iJ J-1 

(9) 
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where 04  is the generalized force associated with 

Constraints 

Mathematical constraints are introduced to require that the 
p, and r, coordinates move and rotate with the ends of the 
beam. Assuming small angles, eight constraint relations 
can be obtained which relate the modal coordinates to the 
displacements and rotations of the beams' ends. The eight 
relations can be written in the matrix form 

q - [G] n 
where 

[131,r142,r2413,r344,re 
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[G] is the following 8x3N constant coefficient matrix 
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where 

on(x) - ioni(x) , 0.2(x) , -.. , 0floxmT 

and where ON is an Nxl zero-vector. 

Equations of Motion 

At this point, all the items needed for Lagrange's equations 
(1) and (2) have been assembled. The result of substituting 
(8), (12), (16) and (17) into (1) and (2) yields 3N+8 
governing equations. The 8 equations associated with the 
generalized coordinates p, and r, are simply algebraic 
relations: 

-F 1--$1 ; 1 --02 ; F1 --#3 ; M1 --$4 	(22) 

(16) 

[G] (20) 

(21) 

	

where 	is the jth natural frequency of the ith beam 
assuming the previously discussed boundary conditions. 
Note that Mwe is given in terms of the flexural rigidity and 
the modeshapes as 

L 
w.. 	f I 

11,) 

The potential energies associated with the sleeve joints is 
best obtained by introducing *extra .' or redundant 
generalized coordinates p h  and rk  defined in Figure 2. The 
ph's are the transverse displacements at the ends of the 
beams which connect to the joints. The r h's are the 
rotations at the beam ends. Based on the simplified model 
of the sleeve joint developed in Ref. [8], we assume that a 
nonlinear transverse spring is placed beiween pt  and p2  and 
between p3  and p,. Similarly, a nonlinear rotational spring 
is placed between coordinates ri and r 2  and between r3  and 
r,. The potential energy will be a scalar function of the 
quantities (p2-p1 ), (p, p3), (r241 ) and 0,-0. Labeling the 
potential energies as V ;  = the potential energy associated 
with the lateral spring of the ith sleeve joint and V s;  the 
potential energy associated with the rotational spring of the 
ith joint, we can write an expression for the total potential 
energy of the 3-beam system 

3 
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Virtual Work 

The virtual work of the total system is the sum of virtual 
work done by non-conservative forces. In this case, there 
are three sources of virtual work: viscous damping of the 
beams, damping of the joints, and external excitation 
forces. The virtual work associated with viscous damping of 
the ith beam can be written 

SW 	2 	S 
cielim 	nii 	

(13) 
 -1 

A discussion of the virtual work associated with joint 
damping will be deferred until later in this section. The 
virtual work of the external force, shown in Figure 1 to be a 
time varying point force applied to the first beam, is 

SW F  a F(t)•Swi (x l -xF ,t) 	 (14) 

Substituting (5) into (14) gives 
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Summing together 6W 1, SW2, SW3  and SWF  and comparing 
the resulting expression with (3) yields the following 
generalized forces: 



0 (37) 

Since equation (24) implies that only 4 of the /Vs are 
necessary, Q is a 4 x I vector given by 

[01,024546]T 	 (31) 

Finally, the matrix RI] is of dimension 3Nx4 and is given 
explicitly as 
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The Fi  and M, are forces and moments, respectively, 
exerted on the beams by the joints. Note that the Lagrange 
multipliers in this problem are simply the forces and 
moments of constraint. Combining relations (22) and (23) 
gives 
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The 3N governing equations associated with the 
generalized coordinates ; can be written in the concise 
matrix-vector form: 

i'+ [C] II  + 	n iF  F(t) + [8] 1 	(25) 

where [M] is a 3N x 3N diagonal mass matrix with diagonal 
elements all equal to M and off diagonal elements all equal 
to zero. [C] is also diagonal and is of the form 

(C) - Diag([0], (C2], (C3 ]) 	 (26) 

where each N x N [0] matrix is given by 
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The vector tp is of dimension 3Nx1 and is given by 
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Similarly, the [K] matrix is block diagonal, of the form 
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2
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where k 1  is the lateral or transverse stiffness constant, e l  is 
(27) the clearance distance, k 2  is a rotational stiffness and e 2  is 

the "rotational clearance". The damping forces and 
moments are given by 

1; 4 43 > 0 

	

14" /;3 < 0 	(38) 

{ 

c
2 (r2

4.
1
) ; r

2
-r

1 
> e

2 
and ;.

2
4.

1 
> 0 

	

c
2
(r

2
-;

1
) ; r

2
-r

1 
<-e

2 
and

2
-;

1 
< 0 	(39) 

0 	; otherwise 

y1;2 1; 1 ) ; p2
-p

1 
> e

1 
and 

F
DI 

▪ 	

c16241 ) ; p2
-p

1 
<-e

1 
and 

0 
	

otherwise 

c 1 (P443 ) 
	

p
4
-p

3 
> e

1 
and 

F
D2 	c1443 )  ; p4

-p
3 

<-e
1 

and 

0 	; otherwise 

01 

/4D2 

c2 (r4 4.3 ) ; r4 -r3 > e2 and ;4 4-3 > 0 
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At this poii.t, we can introduce the damping forces 
associated with the joints. In equations (22) and (23), the 
Lagrange multipliers were identified as the forces and 
moments transmitted by the joints. Hence, we can add 
joint damping by modifying the expressions for F, and M 1  to 
include both spring and damping forces. The spring forces 

where c 1  and c2  are the lateral and torsional damping 
constants, respectively. Note that the damping forces and 
moments are active only when contact has occurred and 
the relative velocity is such that further joint deformation 
takes place. These so called "one-way" viscous dampers are 
used to emulate the effects of friction and impact damping. 



The total joint forces and moments are given by 

Fi 	F51 	FDi 	i 	1,2 	 (41) 

N. 	MSi  + MDi  ; 	i • 1,2 	 (42) 

Equations (22), (23) and (33)-(42) can now be combined in 
the form 
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Equations (17), (25) and (43) can be combined into two 
first-order vector differential equations. Substituting (17) 
into (43) yields 
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Substituting (44) into (25) gives 
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Defmingni .n and a, an, equation (45) becomes 

. 
22 
	 (46) 

i12 .R11 1 (-[C].112 -[K]ri i4IFF(t)+[8]!1 (21 , 22 )] 
	

(47) 

Equations (46) and (47) are coupled, nonlinear, ordinary 
differential equations of first order. In this form, they are 
easily analyzed using standard time integration software 
packages. In the next section, this model is used to 
generate parametric results relating system damping and 
system response frequencies to joint properties. 

RESULTS 

In this section, results are presented and discussed for the 
system consisting of three linear, elastic beams connected 
by two nonlinear joints. The baseline system parameters 
are listed in Table 1. The beams are approximately 1 inch 
(2.54 cm) in diameter and 1 meter in length. Baseline 
damping for each flexible beam was chosen to be 0.1% in 
all (component) beam modes. 

A sample impulse response is shown in Figure 3 for the 
baseline system. The impulse is approximated by a 
constant amplitude force, F..25 N, applied at the midpoint 
of the first beam (xF..0.5) for a duration of 1..0.036 sec. 
Three beam modes are used for each of the three beams, 
giving the combined system nine degrees of freedom. The 
displayed outputs correspond to the transverse 
displacements at the midpoints of the first and second 
beams. Beam displacements are normalized by the beam 
outer diameter, d,. It is seen that the second beam 
responds with a higher amplitude than the first beam, due 
to the shape of the first "mode" of the three-beam system. 

The two displacements show good qualitative agreement. 
Damping calculations can be made from the free and 
impulse response curves using the log decrement approach 
as was done in References [7] and [8]. To investigate the 
dependence of damping on amplitude, the damping ratio 
was calculated at several different points along the free 
response curves. It was found that, as in the rigid beam 
system studied in References [7] and [8], the damping is 
inversely proportional to the amplitude. Also evident from 
an examination of the free response is the dependence of 
the fundamental response frequency with amplitude. As 
with all systems having "hardening-spring" type 
nonlinearities, the response frequencies tend to increase 
with amplitude. 

Forced response to harmonic excitation, F(t)..Fcos(fi,t), 
was also studied. Figure 4 shows the frequency response 
curves for two levels of forcing Fa 1.0 and F=0.3. In each 
case the forcing is applied to the midpoint of the first beam 
(x F ..0.5), coincident with the point at which the 
displacement is calculated. The natural frequency of the 
system is approximately w..5.5 rad/s. This is approximately 
1/3 of the first natural frequency of a pinned-pinned beam 
with identical cross-sectional properties and having length 
of 3 meters (w 1 ..16.7 rad/s). Note that the curves exhibit 
marked hardening spring characteristics, with the response 
curves "bending to the right" as the amplitude is increased. 
Associated with this hardening spring characteristic is the 
presence of "multiple-valued" steady-state response. The 
standard hardening spring frequency response curve has a 
range of frequencies for which there are three possible 
amplitudes of response. It usually is the case that only the 
highest and lowest amplitude solutions are stable; the 
middle amplitude solution is unstable [13]. For both levels 
of excitation, Figure 4 shows that, over a limited range of 
frequency, multiple steady-state solutions are possible. The 
unstable solution branches are denoted by the dashed lines 
in Figure 4. Note that if the hardening spring 
characteristics were cubic in nature, the frequency response 
curves would continue to bow to the right as the amplitude 
is increased. However, with piecewise linear systems. as 
the amplitude increases, the effective spring stiffness 
asymptotically approaches the stiffness associated with 
large amplitude response. 

As with the rigid beam model studied in References [7] and 
[8], the three-beam model experienced a variety of 
different types of nonlinear behavior. When forced below 
its natural frequency, the system often exhibited super-
harmonic response. At frequencies of excitation higher 
than the natural frequency of the system, the response often 
exhibited subharmonic motion. Since most joints have 
clearances and/or hardening spring characteristics, the 
influence of nonlinear behavior on the performance of 
linear controllers and estimators for flexible space 
structures should be investigated. 

CONCLUSIONS 

A simplified model of a flexible space structure consisting 
of three visco-elastic beams and two nonlinear sleeve joints 
was studied. The equations of motion were derived using 
component mode analysis. These equations were time 
simulated to investigate the dependence of system damping 

• f (q,  4i) 	(43) 



13. Meirovitch, L., Elements of Vibration Analysis, 
McGraw-Hill, New York, 1975. 

Table 1. Baseline Parameter Values 

Item 
m 
E 
I 
L 
k, 
k2 

 c, 

e, 
e2  

Baseline Value 
3.2552 
7.4464 x 10 10 

 1.014 x 
1 
20,000 
100 
50 
0.75 
0.0001 
0.0035 
0.001 

Units 
kg/m 
N/m2  
m4 

m 
N/m 
N•m/rad 
N s/m 
N ms/rad 
m 
rad 

I 	— x2 H x3 

F(t) 

Figure 1. Three-beam system. 

r4 

Figure 2. Definition of beam-end coordinates. 

and system behavior on various joint properties. It is found 
that the damping appears to be directly dependent on 
amplitude. larger amplitudes tended to give rise to larger 
"damping ratios" than small amplitudes. It was also found 
that even a small amount of play in the sleeve joints caused 
nonlinear, hardening spring behavior to become evident. 
The presence of sub- and super-harmonics under sinusoidal 
excitation was observed. 
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An Improved Algorithm for Galerkin Solutions to Nonlinear Systems 

Aldo A. Ferri 
School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332-0405 

Galerkin and Harmonic Balance solution routines have been used 
extensively to find approximate solutions to the governing equations of 
nonlinear systems. Typically, these solutions are approximated by a finite 
number of basis functions. In order to check the accuracy of the Galerkin 
approximate solution, a few approaches can be used. First, an N term 
Galerkin solution can be checked against an N+ 1 term solution to see 
whether an appropriate level of convergence is obtained. A second approach 
is to compute the solution using an alternate technique and compare it to the 
Galerkin solution. For example, time integration or finite element techniques 
can be used to provide an independent check on the Galerkin solution. Of 
course, both of these approaches have the disadvantage of requiring 
significantly more computation. An alternative accuracy indicator is 
developed here and incorporated in a Galerkin solution algorithm. The 
method is applied to find the steady state time response to harmonically 
forced nonlinear systems. In this case, the error criterion turns out to be 
proportional to the higher harmonic content in the output of the nonlinearity. 
The algorithm is computer implemented and tested on a forced Duffing 
equation and a Coulomb damped system. It is found that the behavior of the 
error parameter can be used to judge quantitatively the suitability of 
Galerkin solution routines to various types of nonlinear systems. In addition, 
the use of this error criterion to form an algorithm that automatically picks 
the correct number of basis functions and the efficiency of implementation of 
this error criterion is discussed. 



A-Posteriori Error Estimates for Harmonic Balance 
Solution Techniques 

Aldo A. Ferri 
Assistant Professor 

School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332-0405 

Abstract: 

The harmonic balance method is commonly applied to linear and nonlinear systems to 
approximate their steady-state response to periodic excitation. This paper presents two 
different a-posteriori error estimates for harmonic balance solution techniques. The first 
is computationally easy to calculate, but is less reliable as an indication of accuracy. The 
second is more difficult to calculate, but provides a better indication of solution accuracy. 
Numerical results for a Duffing-type oscillator are presented for each error estimate. 

Introduction: 

The Harmonic Balance (HB) method is commonly applied to linear and nonlinear 

systems to approximate their steady-state response to periodic excitation. Unlike time 

integration and other time domain techniques, the harmonic balance technique does not 

involve consideration of a transient response, therefore it is very well suited to those 

systems that have low levels of damping. Another advantage over time domain methods is 

the ease with which it can handle systems with widely differing response frequencies. 

Such systems are termed numerically "stiff' [1,2]. This characteristic seriously impedes the 

efficiency and accuracy of time integration schemes but does not significantly affect the 

performance of HB algorithms. Systems such as large flexible space structures, flexible 

robotic manipulators and turbomachinery systems can have both low damping levels and 



widely differing response frequencies and, so, are ideal applications for the harmonic 

balance technique. 

An "exact" steady-state solution of a nonlinear system to periodic excitation will, in 

general, be composed of an infinite set of frequencies. In the case of period-1 solutions; 

i.e., solutions that repeat with the fundamental period of the excitation, the solution is 

generally composed of the fundamental excitation frequency plus a countable number of 

harmonics of the excitation frequency. In practice, the amplitude of the "higher 

harmonics" will be substantially lower than the "first few" harmonics, hence, it is justified 

to include only a finite number of harmonics in the analysis. In most cases, however, it is 

not known apriori how many harmonics will constitute a good approximation to the exact 

solution. In some cases, a single harmonic provides a very accurate approximation. Other 

situations may require many harmonics to adequately represent their steady-state 

response; for example, systems with relay nonlinearities and hard limiters. The most 

difficult systems to analyze from a practical standpoint are those for which the appropriate 

number of harmonics change with the frequency or the amplitude of excitation or with 

initial conditions. Good examples of this may be found in dry friction damped systems 

[3,4]. When forced harmonically near a resonant frequency, a dry friction damped system 

will generally respond with the frequency of excitation and negligible amounts of higher 

harmonics. However, in those frequency ranges where stick-slip motion occurs, a larger 

number of harmonics are needed to obtain the desired level of accuracy. When frequency 



response curves are desired over a range of excitation frequencies, an estimate of solution 

accuracy is necessary to ensure that the desired level of accuracy is maintained. 

This paper addresses a-posteriori estimates of accuracy. Such an accuracy estimate 

is essential in being able to develop adaptive solution techniques which automatically 

determine the numbers of harmonics that are sufficient to obtain a specified level of 

accuracy. The problem is similar to that encountered in the Finite Element Method. See 

the papers on adaptive mesh refinement [5-8]. In the following sections, two error 

parameters are developed that can be used to assess the accuracy of the frequency domain 

solution in a computationally efficient way. Their interpretation will be discussed and 

each will be calculated for a harmonically forced Duffing-type oscillator. These error 

parameters will also be compared to a more conventional measure of solution accuracy, 

namely the root mean square (RMS) difference between the HB and the time integration 

solutions. 

Development of Error Estimates 

The simplest form of a-posteriori accuracy check is to compare the HB solutions 

against other solutions which are known to be more accurate. For example, one could 

compare the HB solution to the solution obtained through time integration. This, 

however, presents three problems. The first is the excessive computation time required to 

obtain the time integrated result. The second is that it is difficult to know whether the 

time integration solution is indeed accurate. A choice of time step that is too large may 

lead to a numerically unstable computation. The third problem is that the periodic 



solution that is desired may, in fact, be an unstable equilibrium. Finding this steady-state 

solution using time integration may be quite difficult, especially when the periodic 

solution has saddle-type stability. 

A second approach to checking a multi-harmonic solution is to compare an n 

harmonic result to a n+ m harmonic result, m. 1. The primary drawback to this approach 

is that of computation time; it requires at least twice the computation time to calculate the 

accuracy check as to calculate the original answer. Furthermore, the accuracy check itself 

is guaranteed to produce at least as accurate a result [9] negating to some extent the need 

for the original solution. Here, the objective is to develop efficient  ways of determining 

the accuracy of a HB result after it has been obtained. 

The two error estimates presented here are developed for a general, nonlinear 

second-order system, although the method is easily extended to multi-degree-of-freedom 

systems. Consider the following system: 

. 	• 
m

.
z + cz + kz + h(z,i) 	F(wt) 	 (1) 

where represents a derivative with respect to time and h is a general nonlinear function 

of z and 2 which need not be continuous. Using the standard definitions for viscous 

damping ratio and natural frequency for the linear part of (1) gives 

• 
m(r+ 2cw

n
z + wiz) + h(z,i) 	F(wt) (2) 

Defining r = wt and denoting derivatives with respect to r with a prime gives 



m(w2z" + 2cwnwz' + 2z) + g(z,z') = F(r) 
	

( 3 ) 

where 

g(z,z') = h(z,wz') 

Finally, defining E =1/k, f(r) =F(r)/k and il=w/o, equation (3) becomes 

02z" + 2cOz' + z +eg(z,e) = f(r) 
	

(4) 

For the remainder of this paper, it will be assumed that f(r) is simply harmonic; i.e., f(r) 

= fecos(r)+fssin(r). The extension to the case of two or more harmonics is 

straightforward. The first step in any HB solution is to assume that the solution z(r) is 

period-1 with the following form: 

A 	 C 	. 	S . 
i Z(7)= 

11 	1 
 Z.COS17 	z.sinr 

.1 	 1 
(5) 

Note that the constant or "bias" term has been omitted but can be included without 

difficulty. Substituting (5) into (4) yields 

2 A 	 A 	A 	A A 

z " 	+ z +eg(z,e) - f(r) = e(r) 

where e(r) is a residual term which arises because (5) satisfies (4) only approximately. 

Following the Galerkin procedure, the coefficients z ie and zis in (5) are chosen to render 

e(r) orthogonal to each of the temporal harmonics in (5). Thus the following 2n scalar 

equations are obtained: 

(6) 



<e(r),cosir> = 0 

<e(r),sinir> - 0 

where the inner product is defined as 

<a( 7),b(r)> 

These 2n equations can be written in the 

() 	= 

where 

2 

[CLIO 

[B] = 20 

	

n 	
[z1c ,z c ,...,zc ,z s ,...,z 

	

[A] 	- -02Diag(1,4,...,n 

1 

[CL
n 

vector 

i -1,2,...n 

" 
a(r)b(r) dr 

j 

0 

form 

]z+ (Tit ) 	0 n 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Diag(1,2,...,n) 

n 	1 

[B] 	1 
[A] 	_I 

2 

n 

s 	T 
n 

) + I
n 

AA 

<g(z,z'),coslr> - fc 
AA 

<g(z,e),cos2r> 
• 

A A 

<g(z,z'),cosnr> 
AA 

<g(z,z'),sinlr> - fs 
AA 

<g(z,z'),sin2r> 

A A • 
<g{z,e),sinnr> 

(14) (RNLn ) = 



Note that I. is an nxn identity matrix. When numerical solutions to (9) (or, equivalently 

(7)) are sought, it is customary to use some norm of R. as a measure of the accuracy of 

the solution vector z. Often, in iterative solution techniques, iteration is continued until 

the norm of R. is smaller than some specified convergence parameter. 

Now, consider a m-harmonic residue vector, with m>n. 

-R-rn (-zin ) 
	

(15) 

where zm  is based on the previously found n-harmonic result: 

C C z = [z z ,... z c 	... 	s s  ... s 	0 ... N T 
in 	l' 2 	' n"00 	0zz 	z ' " l' 2" n' 0  " ' (16) 

Note that if the n-harmonic result is accurate compared to an m-harmonic solution 

(m> n), then the coefficients of the cosine and sine components of frequencies 

n+ 1,n + 2,...,m should be "small" in some appropriate sense. Thus, one check on the 

accuracy of zn  is given by the norm of R m(zm). It is desirable to find a computationally 

efficient way of expressing the norm of Rm. The 2m scalar equations comprising R. can 

be separated into four groups. 

<e(r),cosir> i=1,...,n (17a) 

<e(7),cosjr> j=n+1,...,m (17b) 

<e(r),sinir> i=1,...,n (17c) 

<e(r),sinjr> j=n+1,...,m (17d) 

It is important to recognize that the solution vectors ; and zm  imply the same expression 

for Z(7), since the coefficients of the harmonics n+ 1 through m are identically zero in 



both cases. Therefore, e(r) appearing in (17a)-(17d) is the exact same function as that 

appearing in equation (7) and consequently, (17a) and (17c) form the elements of Rn. It is 

also apparent that, since the linear portion of (6) does not contain any harmonics greater 

than n, (17b) and (17d) depend only on the nonlinearity, g. If the Euclidean or 1 2  norm is 

considered, the following expression is found 

1111,(4)11 2  = lEn (zn )1 2 	A 2 	 (18) 

where 

A A 

A = f 	j= 
!n+1 <g(z,z'),cosjr>

2 
+ <g(;,;'),sinjr>' 	

1/2 
(19) 

It may be noted that the inner-product terms in (19) are simply the Fourier coefficients of 

g for the frequencies n+ 1 through m. Thus an interesting interpretation ofµ is that it is 

proportional to the RMS spillover of g into the harmonics n+ 1 through m. As will be 

discussed later,µ is computationally very easy to calculate. This is especially true if an 

FFT is used to evaluate the Fourier coefficients appearing in (19). Furthermore, if an 

FFT algorithm is used to evaluate the inner-product terms in (14), then the terms 

appearing in (19) are already available for use. 

Looking at (18) it is clear that I R. I will be equal to I Rn  I when u  is identically zero. 

If c is a sufficiently accurate solution then I R n  I is approximately zero. Thus the size of 

R. is mostly dependent on the size of A. A "large" value of i  indicates that the n-harmonic 

solution does not represent a very accurate m-harmonic result. One drawback of using 



solution does not represent a very accurate m-harmonic result. One drawback of using IL 

as an indicator of solution accuracy is that it tends to increase with increasing amplitude. 

This is most readily seen when one considers that µ is proportional to the RMS spillover 

in the higher harmonics. As the amplitude increases, so must u. In order to remove some 

of this amplitude dependence,µ can be normalized with respect to a quantity that also 

grows with amplitude. The following normalization scheme is used 

A A 	 2 -1/2 A 	 n 	A A 

= 	 . 

j 1 	g ' 	' 
 < (z z') COS 7>

2 + <g(z,z'),sinj.r> (20) 

The error parameters it andµ have the deficiency that they do not utilize any of the 

information associated with the linear portion of the differential equation. Furthermore, 

they do not directly reflect the error in the solution vector.  To examine this further, 

consider the true solution to the m-harmonic residue vector z.* and determine an 

expression for the error between it and z.: 

aR 
R m (z—m ) = 0 = R—m (z—m + Az--m 	—m ) = R (z—m 	oz ) + 	Az--m 	 (21) — 	—  

—m z=z — —m 

where Az. = z.*-z.. Defining [C m] to be the 2mx2m dimensioned Jacobian matrix, 

equation (20) can be solved for Az. 

- 
Az = -(Cm ) 1 13m ( m) (22) 



The error parameter v is defined to be the error in the norm of the solution vector divided 

by the norm of the solution vector 

IAZm i 	I [Cmf i rj_np_m ) I 
1/ mg 	 a:  	 (23) 

lzm  1 	1 z n 1 

Note that v requires more computation than it, but that it more correctly reflects the error 

in the solution vector. It is interesting to study equation (21). A well known property of 

induced norms is that [10] 

I Rm ( zm ) i 
	ICI l[cm ]1 	1 '14 1  5 1[Cm] -1 11%(4)1 (24) 

It is seen that the relationship of 1R.1 to lAz.1 is dependent on the Jacobian matrix [C m]. 

If [C.]-1  is small (indicating that R is "steep" in the vicinity of z.) large values of 1R.1 do 

not necessarily imply large errors in the solution vector. Alternatively, if [C.1 -1  is large 

(indicating that R is "shallow" in the neighborhood of z.) then a small value of I Rm  I does 

not necessarily imply a small error in the solution vector. 
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Abstract 

Though single-degree-of-freedom systems with classical dry (Coulombic) friction have been 
studied extensively, the properties of systems damped with generalized friction laws have not 
been thoroughly examined. This paper investigates the properties of a system damped by a com-
bination of viscous damping, dry friction with constant normal force, dry friction with amplitude-
dependent normal force, and dry friction with rate-dependent normal force. This system is studied 
first using an "exact" time domain method and using first-order harmonic balance. The stick-slip 
behavior of the system is also studied. It is seen that amplitude-dependent normal force gives 
rise to a viscous-like damping characteristic. It is also seen that the response amplitude can be 
decreased or increased by the addition of amplitude-dependent friction. 

1. Introduction 

Dry friction is an important source of mechanical damping in many physical systems. In fact, 

in systems such as turbomachinery rotors and large flexible space structures, dry friction may 

be the most important source of energy dissipation. In turbine blade systems, many researchers 

have studied the dynamic behavior of dry friction damped rigid and/or elastic blades [1-11]. In 

most of these studies, it is assumed that the normal force to the sliding interface is constant. This 

may be termed the "classic" dry friction damped case. In the few studies where the normal force 

was allowed to vary with blade amplitude, it was found that the system exhibited a viscous-like 

damping characteristic; see, for example, Bielawa [11]. In the field of large space structures (LSS) 

the inclusion of amplitude-dependent normal forces have also produced viscous-like damping 

properties [12-14]. In most frictionally damped physical systems, some amplitude dependence is 

natural, although at times the amplitude-dependent component of the total friction force may be 

small compared to that of the constant normal force. 

The viscous-like damping property suggests that many mechanical designs can be improved 

by configuring frictional interfaces in ways that allow normal forces to vary with displacement. In 

some applications, classic dry friction is inadequate to suppress vibration. For example, turbine 

blade systems experiencing flutter cannot be globally stabilized with classic dry friction. See, for 

example, Ferri [15] and Griffin and Sinha [8]. The deficiency stems from the well known property 



of classically damped systems that the effective damping varies inversely with the amplitude of 

the response. Hence, for a sufficiently large disturbance, it is possible for the energy input to the 

system by aerodynamic forces to overcome the energy dissipation provided by dry friction. By 

designing turbine blade systems so that the friction forces are dependent on blade displacement, 

it may be possible to greatly increase the stable operating region of turbine blades. Taking 

advantage of amplitude-dependent friction forces in the design of LSS joints may also significantly 

increase the passive damping level of spacecraft. 

This paper systematically examines the dynamic behavior of a single-degree-of-freedom sys-

tem with amplitude- and rate-dependent friction forces. As will be shown, a system with 

amplitude-dependent friction is much more likely to experience intermittent sticking. If the 

system sticks a significant amount of time, the energy disssipation capability may be seriously 

degraded. Hence, special care is taken in this analysis to examine sticking conditions. In the 

following sections, the model and subsequent equations of motion are developed. Approximate 

solutions are presented to gain qualitative insight to the problem. Sticking conditions are de-

termined for different ranges of parameter values. Finally, the exact solution to the equation of 

motion is developed. Representitive results are also presented. 

2. Model Development and Analysis 

The extended friction law considered in this paper is given by 

Ff  = ii(Ko 	K2iii)sgn(i) 	 (1) 

where x represents the relative slip displacement, i represents the relative slip velocity, K 0  is 

the constant portion of the normal force, K 1  is the friction interface amplitude "gain", K2 is 

the friction interface velocity "gain", and y is the coefficient of friction. In general, the friction 

coefficient, p , should be written as a static coefficient, p„ when i = 0 and a dynamic coefficient, 



/id, when i 0 0. However, in this paper, it will be assumed that A, = µd = 

Two possible systems having a generalized friction law are shown in Figures la and lb. 

The device in Figure la is purely "passive" while Figure lb represents an "active" device. The 

equation of motion for either system forced harmonically is given by 

mi + ci + kr + A(Ko + 	+ KzliDsgn(i) = F cos Let 	 (2) 

Introducing the following nondimensional quantities: 

kr 	 c +  AK2 == 	- 	f= 	C- 	 = 	
dr 	

(3) , M — 
PAo 	0717-n 	i/Ko 	 = k 

Eq. (2) becomes 

fl2 zu + 2Clizt  + z + sgn(z 1 )+ itilzisgu(zi) = f cos r 
	 (4) 

Note that the ihK2 parameter is mathematically equivalent to a viscous damping coefficient. For 

this reason the effect of K2 is contained in the viscous damping ratio C. 

Unfortunately, this nondimensionalization scheme does not permit the study of the case 

KQ = 0; therefore, a second nondimensionalization scheme is also considered. For this situation 

the following dimensionless variable is introduced: 

= kr 
:i 4  — 

F 

This leads to the equation of motion 

	

11 2 	+ z + 	= cos T 

where Si, C, tr1 are as defined in (3). It may be noted that there is a strong similarity between 

equations (4) and (6). The equations differ only in the exclusion of the sgn(z 1 ) term in (6) and 

the forcing term. f scaled to unity in (6). It is important to note, however, that these equations 

(5)  

(6) 



are cast in terms of variables scaled to different parameters. Approximate solutions to (4) and 

(6), will now be sought. 

2.1 Approximate Solutions 

First order harmonic balance will be used to form an approximate solution to (4) and (6). 

The response is first assumed to be composed of a single harmonic 

z(t) = Zc  cos + 2, sin 7. 	 ( 7 ) 

The amplitude of the response is given by 

Z = NIZT: 	 ( 8 ) 

Obviously, this approximation will be best for the case of stick-free motion. At low frequencies, 

it may be expected that this approximation will be less accurate as sticking is known to occur 

more often there [16]. Next, the assumed response (7) is substituted into the equation of motion, 

(4) or (6). The equation is then multiplied by cos r and integrated over one period. Multiplying 

the equation of motion by sin r and integrating provides another relation. These two equations, 

along with (8), lead to the response functions given by (9) and (10), for the governing equations 

(4) and (6), respectively. 

1 

V(1 — S2 2 ) 2  + (201 + 2K1  /702  

From equations (9) and (10) approximate frequency response plots can be generated. Also, 

equivalent viscous damping can be found by equating the second term under the square-root sign 

in (9) and (10) with the quantity (2(e,n) 2 . This yields 

Ceq = 	+ 	 (11) 

f 	V(1 — C/ 2 )2  + (20-2+ 4/(7rZ) + 21i, 1  /7r)2  

2 - 	 1 
 



where 

(12) Co = ri22 

= 
Kl 	

(13) 

2 

and C is defined in (3). For the K o  = 0 case, Co = 0. For Ko 0 0 at resonance, Co = 2/7rZ 

which means that damping decreases with increasing amplitude. In the absence of C and CI , it 

is theoretically possible to get an unbounded response at resonance (provided that f > 4/70[17]. 

Both and Si have the effect of bounding the response at resonance. Note that at resonance, 

= constant = Ki hr, resembling the linear viscous damping ratio C. It should be emphasized 

that relations (12) and (13) are approximate relations which reveal the qualitative trends in the 

type of damping resulting from the constant component of the normal force and the amplitude-

dependent portion of the normal force. Also, this approximation is not very accurate for the case 

of stick-slip motion, which is known to be more prevelant at low amplitudes and low frequencies 

of excitation. 

2.2 Sticking Regions in Phase Space 

Much insight to the behavior of the system can be gained by studying the sticking regions in 

phase space. Since, sticking can occur only when the velocity is zero, all regions discussed below 

are presented in the z' = 0 plane; i.e., the z-r plane. Sticking regions are obtained by studying 

the acceleration vector field as zi approaches zero. For sticking to occur, both relations (14) and 

(15) must be satisfied. 

lira z" < 0 
	

(14) 

lim z" > 0 
	

(15) 

The sticking regions are those combinations of : and r that satisfy (14) and (15). Substituting 



z > 0 

z > f cos r — 1 
1 + 

`
> 

—(f cos7 +  1)  
—1 

1 z < 0 

or 	z < 
1 — 

< 
+ 

f cos 7 +  1  
1  

1 — f cos 7 
1 (17) 

> 0 

f cos r — 1 z > 	 
2 

z" from equation (4) into (14) and (15), the following sticking regions are obtained for the case 

K0  0: 

for K 1  < 1, 

f 	1 	f cos + 1 

	

< z < 	for z > 0 1 + te l  	— 	1 — ici  

f cos r— 1 	f cos r+ 1  

	

< z <  	for z < 0 	 (16) 1 — Ki — 1 + iti 

for ,c1  > 1, 

1 
for sci  = 1, 

1 f cos r > —1 

z < 0 

f cos r + 1 z 	 or 	 < 

	

. — 	2 

f cos r < 1 

(18) 

Regardless of the value of K 1 , sticking occurs at z = 0 when —1 < f cos r < +1. 

For the case K0 = 0, !" from equation (6) can be substituted into equations (14) and (15), 

yielding the following sticking regions: 

for i < 1, 

for Ki  > 1, 

COS 7< 
	< 	COS T 

for 	> 0 

for 	< 0 

< 0 

— COS T 

(19) 

(20) 

1 + /el — 1 — /*CI 

COST < 	< 	COS T 

1—k1 

> 0 

COS 7 

1+ 1C1  

or — 1 + 

> — COS '7' 

<
Kl — 1 
cos 1- 

— 1 
z < 

1 + K.1  



z < 0 

< COS T 

2 

cos? < 0 

(21) 

} 

	

or 

>0 

1 cos 7 > 0 

> COST 

— 2 

for K i  = 1. 

Sticking cannot be sustained at i = 0 as the sticking condition here reduces to cos 7 = 0 

which does not occur over a finite time interval. 

Figures 2-7 show the sticking regions for various parameter values. The ordinate label 'Posi-

tion' refers to the relative slip displacement, z. The hatched regions refer to those combinations 

of and T for which sticking occurs when the system is subjected to harmonic excitation. It 

should be mentioned here that for the case Ko # 0 the forcing ratio, f, must be greater than 

unity for sustained motion to occur as f <1 implies that the constant portion of the friction force 

is greater than the input force. Obviously, the sticking regions depend strongly on ts y  . For K i  > 1 

sticking is much more likely to occur than for hl < 1. Note that on Figures 4 and 7, values of 

exist through which a horizontal line can be drawn which remains entirely in the sticking region 

for all time. At these permanent lockup takes place. For te i  > 1 (Figures 4 and 7) sticking. as 

well as permanent lockup, occurs over a far greater area of the z-7 plane than for Ni< 1 (Figures 

2 and 5). This can be explained by examining (3). For K 1  > 1 the interface "stiffness" is greater 

than the spring stiffness. Thus, at any position, the friction force is greater than the spring force. 

When far enough away from the zero position, the input force cannot overcome the friction force 

and sticking occurs. 

If Kl = 1 (Figures 3 and 6), the spring and interfacial stiffnesses are exactly equal. Now 

sticking can only take place far from the origin at times when the spring force acts in the opposite 

direction of the input force. When the spring and input force act in the same direction, sticking 

can only occur when If cos ri < 1 for Ko 0 and only when cos r = 0 for Ko = 0. When K l  = 0 



the sticking region reduces to that presented by Shaw [18]. For 0 < Ki < 1 the sticking region 

expands as a function of z as one would expect; see Figure 2. Also, notice that (, and therefore 

K2 , has no effect on the sticking regions. 

Finally, stability of the free response is studied. The system is positively damped at all times 

and is clearly stable in the sense of Lyapunov. However, the system is not asymptotically stable 

for Ko 0 0. This is most easily seen by considering the sticking regions given by expressions 

(16), (17), and (18) with the external force amplitude f set equal to zero. It is seen that for 

the classically damped dry friction system (t = 0) the sticking region reduces to —1 < z < +1. 

Thus, the motion would die down until the velocity becomes zero while 1z1 < 1. At that point, 

permanent lockup would take place. Note that, in general. permanent lockup would not occur at 

= 0. hence the system could not be classified as asymptotically stable. As 	becomes larger 

(0 < al  < 1) the sticking region grows to 	< z < 1  1K1 .  This implies that permanent lockup 

can now occur further from the origin. Finally, for x i  > 1, the sticking region becomes the entire 

z—r plane. In this case, motion would continue only until the first time that the velocity becomes 

zero. 

For the case Ko = 0, the dimensional form of equations (19), (20), and (21) reveal that the 

sticking region collapses to the line x = 0 as long as 0 < < 1. Thus asymptotic stability 

is guaranteed. However, for K i  > 1, the sticking region becomes the entire z—r plane and the 

system loses asymptotic stability. 

It is interesting to note that while the generalized friction law can improve the passive 

damping of a mechanical system, it may do so at the expense of asymptotic stability. 

2.3 Exact Solution 

A straightforward approach to solving (4) and (6) is simply to numerically integrate the 



equations. However, attemps to time integrate the equations using a sixth-order Runga-Kutta 

techinque met with considerable difficulty. The source of the problem was the -unusually high 

numerical "stiffness" of the equations for small velocities. Another problem with this approach lies 

in the determination of sticking, which can only occur when the velocity becomes zero. Since time 

integration can only produce the time interval over which the velocity changes sign, determination 

of the exact time that the velocity becomes zero is difficult. This drawback, combined with the 

system's high numerical stiffness for small velocities, made the results quite sensitive to the time 

step of integration. Consequently, time integration solutions required an unusually small time 

step which, in turn, gave rise to requirements of substantial computation to obtain the results. 

To circumvent these difficulties, a. second time domain approach that utilized the piecewise linear 

nature of the governing equations was developed. 

Composite analytical solutions can be found to (4) and (6) as both equations are piecewise 

linear. Like the sticking regions, the solution is highly dependent on x i . Equations (4) and (6) 

are put in the following form: 

fez" + 2CClz' w y,2 z = f cos r — sgn(?) 	 (22) 

c2 2  + 20)5' + 44,2  = cos r 	 (23) 

where 

2 = 1 + Ki sgn(z.:?)• 	 (24) 

From (24) one can see that ul,2, takes on two possible values depending on whether the magnitude 

of the displacement is increasing or decreasing. In terms of the z—z' phase plane, wn2  will be 

constant within each quadrant and will change value when an axis is crossed. In one cycle of 

motion (if no sticking occurs), w 2n  will change value four times. In quadrants I and III, c4, will 

take on a positive value regardless of the value of K 1 . In quadrants II and IV, w n2  will be positive, 



zero, or negative for Ki < 1, 	= 1, or x i  > 1 respectively. 

For a given value of w,,2 , an analytic solution can be obtained which is valid until either z 

or z' becomes zero. Each solution consists of a homogeneous part that involves two unknown 

constants and a particular part that depends exclusively on the "inputs" to the system. By 

matching "initial" conditions (position, velocity) of the new solution to the "final" conditions 

of the old solution to satisfy continuity, one can solve for the unknown  constants and uniquely 

determine the solution in each quadrant of phase space. 

Homogeneous solutions are obtained by first assuming an exponential response and solving 

for the roots of the resulting characteristic equation. One of five different homogeneous solutions 

is possible depending on the values of to! and C. For w. > 0, the solution form is simply that for 

a single-degree-of-freedom, spring-mass-damper system. Three solution types are possible: 

underdamp ed 

overdamped 

critically damped 

wn2 > C2 

wn2 < c2 

	

2 	" 

	

"in 	is
2 
 • 

All of these solutions are stable for positive C and the solution can be found in numerous texts. 

See, for example, [19]. 

The fourth possibility is w = 0. This solution contains an eigenvalue that is negative and 

real as well as a zero eigenvalue. This situation is analogous to that of a mass-damper system. 

However, as mentioned earlier, this will only be the case during two "quarters" of the forcing 

period. The other two intervals will produce solutions of type with co n2  > 0. As expected, the net 

behavior over a complete cycle of forcing is that of a spring-mass-damper system. 

Finally, it is possible for can to take on negative values. In this solution one root is positive 

real and the other is negative real (saddle-type stability). The positive real root will produce an 

exponential growth in the response. Using physical reasoning, one might expect that increasing 



c1  would always result in smaller amplitudes of response. However, 4,4,2  can become negative (in 

two separate quarter-cycles) only when K i  > I. Therefore, it is possible for an increase in K i  to 

produce an increase in the amplitude. As will be seen later, this type of behavior is observed 

especially at low frequencies of excitation. 

By observing (22) and (23), it appears that there are two unique "inputs" to the system. 

Particular solutions to each of the two "inputs" must be found. First, the cosine input is studied. 

The particular solution for a linear system forced sinusoidally is harmonic, with the same fre-

quency as the input. The amplitudes of the sine and cosine response are easily obtained through, 

for example, harmonic balance. Next, the solution to the sgn(z') input is assumed to be made 

up of two terms; one which is linear in time, and one which is constant in time. Except for the 

case of w.:,. 12  = 0, the linear solution in time is zero. Note that when wn = 0, the portion of the 

response which is linear with time is present only over every other quarter-cycle, therefore, the 

total response may still be bounded. The magnitude of the constant solution depends only on 

the value of wn. The magnitude of the solution which is linear in time for wn = 0 depends on 

both C and n. 

Thus for any set of parameter values, it is possible to find a closed-form expression which, 

based on the position and velocity at the entry to a particular quadrant in phase space, determines 

the system trajectory throughout that quadrant. The position and velocity at the trajectory's 

exit from the quadrant then becomes the initial condition for the next quadrant of phase space. 

A stick-free nonlinear motion over a period of forcing can be viewed as the composition of four 

linear maps [18]. This fact can be used to determine an "exact" steady-state solution for har-

monic excitation. However, unlike the "exact" solutions developed by Den Hartog and Shaw, the 

determination of the stick-free periodic motion requires the solution of a system of transcendental 

equations. This anaylsis procedure is outlined in Appendix A. 



As mentioned above, each solution applies only until z or z' becomes zero. Each time z' = 0, 

a check must be made to determine if sticking occurs. The spring force and input force are 

algebraically summed and termed the external force. The total friction force required to initiate 

sticking is determined and if the magnitude of this force is less than or equal to the maximum 

possible friction force, A,N, sticking is said to occur. If sticking does occur, time is stepped 

forward until the input force and, hence, the external force, becomes large enough to exceed the 

maximum possible friction force magnitude and produce motion. Based on the direction of the 

external force just before the motion resumes, one can determine the direction of the motion 

(in particular, sgn(zz 1 ) can be obtained) and use that information to compute the value of con 

needed for the next solution segment. If the magnitude of the external force is greater than the 

maximum possible friction force, no sticking occurs. In this case, a new value of wn is calculated 

based on the impending direction of motion and the next "piecewise-valid" solution is found. 

Alternatively, sticking can be determined by checking to see if the trajectory has "landed" in a 

sticking region when z' = 0. If sticking occurs, one can move along the z-r plane at the same z 

value until reaching a sticking boundary at which time motion will resume. 

With the solution types known and using the above algorithm to deal with sticking, a com-

puter program was written to solve the single-degree-of-freedom system with a generalized friction 

law. Results obtained are presented and disscussed in the next section. 

3. Numerical Results 

As mentioned throughout this paper, the value of K 1  is extremely important in determining 

the system response. In particular, the sticking regions and response depend on whether K 1  < 1, 

til = 1, or K1 > 1. For this reason, six representative cases are presented in this section. These 

are for Ki  = 0.4, 1.0. and 1.2 each with K0 zero and nonzero. In all six cases C = .1, and for 



the nonzero K0  cases, the forcing ratio, f, was chosen to be 5. The sticking regions for these six 

cases can be seen in Figures 2-7 and were discussed previously. 

We will begin by discussing equivalent viscous damping. For small values of K i  and C, the log 

decrement method can be used to calculate an approximate value for the viscous damping ratio. 

For email values of tcl , the damping ratios calculated from this method agree somewhat with 

the one harmonic approximation, however, the correlation degenerates as the degree of sticking 

increases. Also for small Ceq , the half-power method can be applied to the frequency response plot 

to approximate viscous damping. Values obtained from the above method compared favorably 

to those given by equation (11) for small K2. For higher values of Ki where sticking is prevalent 

no good approximation for viscous damping was found. It appears that the viscous-like behavior 

is almost entirely eliminated when a substantial amount of sticking occurs. 

Approximate frequency response curves drawn from equations (9) and (10) are compared to 

the "exact" response curves in Figures 8 and 9. The upper curves in both plots corespond to 

K i  = 0.4. with the lower curves drawn for c1 = 1.2. For high frequencies, the approximate and 

true curves approach the same values, however, for low frequencies there is very poor agreement 

as stick-slip motion occurs. Recall that the one-harmonic approximations (9) and (10) do not 

account for sticking. At low values of K i , there is good agreement between the single harmonic 

frequency response results and results from the "exact" time domain analysis. For higher values 

of Ki , the single harmonic approximation is poor as sticking. which produces higher harmonics, 

occurs more often. A better approximation could be obtained by considering a multi-harmonic 

solution. However, these approximations require solving a system of nonlinear alegbraic equations. 

Figures 10 and 11 show true frequency response curves for values of K i  > 1, ,c1  < 1, and 

K i  = 1. In Figure 10 the forcing ratio, f, as well as C, is the same for all curves. The special 

case of Ko = 0 is drawn in Figure 11. Note that in Figures 10 and 11, the curves of different 



Ki intersect, which means that for different levels of amplitude-dependent friction, the same 

amplitude response can occur for a given frequency of excitation. Perhaps more important is 

the fact that for frequencies of excitation slightly lower than I/ PZ 0.4, small increases in K1 

can actually increase the amplitude of the response. Further investigation reveals that as K1 

is increased further, a maximum amplitude is eventually reached; as K 1  approaches infinity, the 

amplitude goes to zero. Also note that the approximate curves drawn from equations (9) and (10) 

do not exhibit this behavior. This suggests that stick-slip motion is largely responsible for the 

intersection of the frequency response curves. This can be verified somewhat by examining Figure 

12, where time traces are shown for a frequency of excitation ft = 0.369 and for two different 

levels of K 1  (0.4 and 1.2). Although the amplitude of the responses is the same, the sticking time 

and phase of the responses is different. Obviously, the percentage of time per cycle that the mass 

spends fully stuck is a very important design consideration as no energy is dissipated during those 

times. 

Figures 13 and 14 show the percentage of time per cycle that the mass is stuck. Parameter 

values for Figures 13 and 14 are the same as for Figures 10 and 11, respectively. As the frequency, 

Cl, approaches zero, all of the curves tend to drop off from approaching complete lockup and 

instead cascade with decreasing amplitude. For these low frequencies, the local minima in the 

percent time sticking curves correspond to bifurcations in the number of stops per cycle. As the 

frequency is decreased, each time a local minimum is encountered, the number of stops per cycle 

increases by two. The curves in Figures 13 and 14 then can be used to determine the number 

of stops per cycle as well as the frequency at which sticking begins to occur in Figures 10 and 

11 respectively. Note that the percent of time sticking curves for different values of K 1  do not 

intersect. Therefore, increasing the level of amplitude-dependent friction for a given frequency of 

excitation appears to always produce a greater amount of sticking. 



It should be mentioned that for the cases presented here, numerical integration of the equa-

tions of motion as dissused earlier successfully determines the responses to a good degree of 

accuracy. However, the computer time required was often substantially greater. Also, some pa-

rameter values were found which resulted in erroneous results until a very fine time step was 

used. Therefore, the "exact" solution is recommended. 

4. Conclusions 

A single-degree-of-freedom dry friction damped system with a generalized friction law was 

studied. It was shown that the system is strongly affected by the presence of amplitude-dependent 

frictional forces. A critical parameter governing the system response is x i , the ratio of the 

"fricktional spring constant" plC i  to the elastic spring constant k. In particular, the system 

response and the sticking regions depend on whether x i  is less than, equal to, or greater than 

unity. For low values of x i , the damping characteristics of the system show a strong resemblance 

to those of a viscous damped system. It is also found that for small values of x i , there is good 

agreement between the single harmonic approximate solutions and solutions found using a time-

domain "exact" solution technique. Equivalent viscous damping ratios found from the single 

harmonic analysis are also found to have their best correlation with the "exact" method for small 

values of oci . For larger values of c 1 , the agreement between the single harmonic results and 

results from the "exact" solution method deteriorates. This is due primarily to the increased 

occurrence of sticking It is shown that the amount of time per cycle that the system spends 

stuck grows monotomically with x i  . However, a somewhat sursprising result is that at certain 

frequencies of excitation, increasing the level of amplitude-dependent friction can increase the 

amplitude of the response. 

In contrast to a single-degree-of-freedom dry friction damped system with a constant normal 



force. it is found that unbounded response at resonance can be prevented by the addition of 

either amplitude-dependent or velocity-dependent frictional forces. Thus, it may be possible to 

greatly enhance the performance of dry friction damped systems which are prone to low damping 

levels at high response amplitudes. This is especially important in applications where viscous 

damping augmentation is difficult or impractical, for example large flexible space structures and 

turbomachinery bladed disks. In systems of this type, the present work suggests that beneficial 

damping properties may be achieved through the re-design of frictional interfaces. 
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Appendix A 

The "exact" solution technique used by Den Hartog [17] and Shaw [18] for the classic dry 

friction damped system under harmonic excitation may be extended to the generalized friction 

case. The basic technique consists of deriving expressions for the solution in various linear regions 

of the piecewise-linear system and enforcing continuity and periodicity relations. Continuity sim-

ply implies that the displacement and velocity are matched across the boundary of linear regions. 

The degree-of-difficulty involved in this solution technique depends directly on the number of 

piecewise-linear intervals encountered in a fundamental period of the motion. To yield a tractable 

solution, the following assumption is usually made: 

z(r f r) = —z(r) 	 (A.1) 

Note that this assumption not only enforces period-1 motion, but also restricts the solution 

space to motions which have "similar" behavior in each half-cycle of forcing. Thus, only a single 

half-cycle needs to be considered. 

In theory, there is no limit to the number of piecewise-linear regions that a system can 

encounter in each half-cycle, however, the technique is limited in practice to systems with a 

relatively small number of regions. In the classic dry friction damped case, i = 0, the number 

of regions in phase space encountered per half-cycle of forcing is just one for stick-free motion. In 

the generalized dry friction damped case, K i  > 0, the number of regions encountered is two for 

stick free motion. In both cases, the number of regions per half-cycle of forcing increases by one 

with every addition of a stick per half-cycle. 

As discussed in the paper, the generalized friction nonlinearity results in there being four 

piecewise-linear regions in phase space corresponding to the four quadrants of the z—z` plane. In 

addition. when sticking occurs, the trajectory can spend a finite amout of time on the line z' = 0. 



In each quadrant, the following linear, nonhomogeneous differential equations apply: 

Region I 	(z > 0, z' > 0) : 

Region II (z < 0,z' > 0) : 

Region III (z < 0, 2. 1  < 0) : 

Region IV (z > 0, < 0) : 

12 2  z" 2Citz' + (1 + ki )z = f cos(r 

f2 2 z u  + 2(117. 1 + (1 — KA. )z = f cos(r 

12 2 zu  + 2Caz' + (1 + tti )z = f cos(r + 

12 2 z" + 2(12z' + (1 — K i )z = f cos(r + 

—1 (A.2) 

cb) — 1 (A.3) 

+ 1 (A.4) 

+ 1 (A.5) 

In each case, the general solution involves two unknown constants associated with the homoge-

neous portion of the solution. 

For definiteness, consider the period-1 trajectory shown in Figure Al. The motion begins at 

the point (zo , 0) in the 2 —z '  plane at time r = 0. (Note that choosing this time to be zero makes 

the phase of the harmonic forcing, 0, an unknown.) The initial conditions together with (A.1) 

yield the following four equations: 

z(0) = zo  (A.6) 

7. 1 (0) = 0 (A.7) 

z(r) = —z0  (A.8) 

(r) = 0 (A.9) 

As shown in Figure Al, the trajectory starts in Region IV and, at time r 1 , crosses into Region 

III. A solution for the motion in Region IV, z(r), can be obtained using the initial conditions 

specified by (A.6) and (A.7). The general functional form is 

2(7) = Z4 (ZO, (b, T) 	0 < 7  < 
	

(A.10) 

At time r = r1 , the trajectory crosses into the next piecewise-linear region, Region III. A solution 

in this region can be found using the terminal conditions specified by (A.8) and (A.9). 

z(r) = Z3 (z0 ,0,r) 	T1  < r < r 	 (A.11) 



The unknowns, zo , 0, and r1  are found by enforcing continuity and requiring that the boundary 

point lie on the line z = 0. 

Z4(zo,001)= Z3(zook,ri) (A.12) 

Z4(zo,001)= 4(zo,O,Ti) (A.13) 

Z4 (z0 .0,ri ) = 0 (A.14) 

Equations (A.12), (A.13), and (A.14) constitute three transcendental equations in three un-

lmowns. The solution must be found numerically, using for example a multi-dimensional root 

solver. 

This procedure must be modified somewhat to account for sticking. As a consequence of 

(A.I), the number of stops per cycle must be even, thus, the simplest case of stick-slip motion is 

one that has two stops per cycle. It is assumed that the mass becomes unstuck at time r = 0 and 

that it sticks again at a time r2 , r1  < r2  < ir. In this case, the time r2  at which z' = 0 must be 

added as a fourth unknown. An additional equation to be considered is a force balance just prior 

to slipping, at time r = 

It is interesting to contrast the generalized friction case with the classic dry friction damped 

case. As seen in [17] and [18], the classic dry friction damped case yields a closed-form solution 

for stick-free motion, while motion with two stops per cycle requires the solution of a single 

transcendental equation. For the generalized friction case, stick-free motion involves the solution 

of three coupled transcendental equations, while motion with two stops per cycle involves the 

solution of four coupled transcendental equations. In both the classic and the generalized friction 

cases, each additional pair of stops per cycle (past two) adds three more equations. Therefore, as 

the number of stops per cycle grows, the degree of complexity in obtaining the solution grows. 

The time domain solution method presented in this paper presents several advantages over 



the "exact" method described above. First, the time domain method does not restrict the solution 

to be period-1, and makes no assumption regarding the "anti-symmetry" of the first and second 

half-cycles. Secondly, it is no more difficult to study stick-free motion than to study stick-slip 

motion with any number of stops per cycle. The advantages come at the expense of having 

to first solve for the transient response, while the "exact" method presented here avoids the 

determination of the transient response. 
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Figure 1: Single-degree-of-freedom system with generalized friction 
damping. (a) Passive system. 
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Figure 1: Single-degree-of-freedom system with generalized friction 
damping. (b) Active system. 
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Figure 2: Sticking region for ► 1  = 0.4 with Ko 	0, f = 5, and C, = 0.1. Region where sticking 
occurs is shown hatched. 
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Figure 3: Sticking region for n l  = 1.0 with K0 7-` 0, f = 5, and c: = 0.1. Region where sticking 
occurs is shown hatched. 
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occurs is shown hatched. 
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Figure 6: Sticking regions for K i  = 1.0 with K0 = 0 and (= 0.1. Regions where sticking occurs 
are shown hatched. 
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Figure 7: Sticking regions for K1 = 1.2 with Ko = 0 and (= 0.1. Regions where sticking occurs 
are shown hatched. 
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Figure 8: Frequency response for the case K o  0 0: f = 5. S = 0.1. 	First order harmonic 
balance: — Solution from "exact" method. 
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Figure 9: Frequency response for the case K0  = 0: c = 0.1. 	First order harmonic balance: 
— Solution from "exact" method. 
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Figure 10: "Exact" frequency response for the case K 0  t 0. f = 5, (= 0.1. — n l  = 0.4: 
=1.0: + Ki  = 1.2. 
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Figure 11: "Exact" frequency response for the case Ka  = O. S = 0.1. — K i  =  
Ki = 1.2. 
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Figure 12: Time histories. z(r) vs. r for f2 = 0.369. — Ki = 0.4; ,Ln l  = 1.2. 



0.00 

0.00 0.31 	0.62 	0.94 

P
er

ce
n

t 
S

ti
c

k  

1.25 

Frequency 

Figure 13: Percent-time of sticking per cycle of excitation vs S2 for K0 74- 0. f = 5. c: = 0.1. 
— K i  = 0.4; 	Ki = 1.0: -4- K = 1.2. 
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Figure 14: Percent-time of sticking per cycle of excitation vs SI for K o  = 0. C = 0.1. — 	= 0.4: = 	+ 	= 1.2. 
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Abstract 

Dry friction is an important source of mechanical damping in many physical systems. In 
fact, in systems such as turbomachinery rotors and large flexible space structures, dry 
friction may be the most important source of energy dissipation. Though systems with 
classical dry (Coulombic) friction have been studied extensively, the properties of systems 
damped with generalized friction laws have not been thoroughly examined. This paper 
investigates the properties of a single-degree-of-freedom system damped by a combination 
of viscous damping, dry friction with a constant normal force and dry friction with an 
amplitude dependent normal force. This system is studied using an "exact" time 
integration method and using first-order harmonic balance. The stick-slip behavior of the 
system is also examined. 

It is seen that the system is strongly affected by the presence of amplitude dependent 
frictional forces. A critical parameter governing the system response is ,c 1  defined to be 
the ratio of amplitude dependent frictional forces to elastic spring forces. In particular, 
the system response and the sticking regions depend on whether x i  is less than, equal to or 
greater than unity. For low values of x i, the damping characteristics of the system show a 
strong resemblance to those of a viscously damped system. It is also found that for small 
values of xi, there is good agreement between the single harmonic approximate solutions 
and solutions found using a time-domain "exact" solution technique. For larger values of 
ic l , the agreement between the single harmonic results and results from the "exact" 
solution method deteriorates. This is due primarily to the increased occurrence of 
sticking. A somewhat surprising result is that at certain frequencies of excitation, small 
increases in the level of amplitude dependent friction can increase the amplitude of 
response. As one might expect, though, as the level of amplitude dependent friction 
approaches infinity, the response amplitude goes to zero. The results suggest that the 
passive damping of many mechanical systems can be enhanced by the addition of 
amplitude-dependent friction forces. 
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Abstract 

The damping characteristics of a flexible beam with 
various types of frictional supports is considered. For 
each configuration studied, the only source of damping is 
dry friction at one support. The study considers supports 
with constant normal forces and supports for which the 
normal force varies with beam displacement It is seen 
that the nature of the damping depends on whether the 
frictional interface is transverse to or in line with the 
beam. It is also seen that the equivalent viscous damping 
of the system can be inversely proportional to, invariant 
with respect to, directly proportional to, or directly 
proportional to the square of the displacement amplitude. 

Introduction 

Built-up and fastened structures are of 
considerable interest due to their many applications in the 
aerospace industry. In particular, aircraft frames and 
large space structures (LSS) are typically composed of 
large numbers of monolithic beams and plates which are 
fastened together by various means. In the case of LSS, 
the structures are usually composed of truss elements 
interconnected by joints. The connecting joints are a vital 
source of energy dissipation for LSS and, consequently, 
much interest has been directed towards the design of 
joints that provide a maximum amount of passive 
damping. A survey of some popular joint configurations 
may be found in references 1 and 2. Many studies have 
been conducted to determine analytically and/or 
experimentally the damping properties of built-up and 
fastened structures 14. Unfortunately, the studies have 
often produced contradictory conclusions regarding the 
type and the amount of damping that can be expected 
from built-up structures. See, for example Ungar 7'3. The 
purpose of this paper is to examine the influence of the 
nature of the fastening device on the type of damping that 
the structure exhibits. In particular, the damping 
characteristics of structures damped solely by dry friction 
are investigated. 

A flexible elastic beam is studied with four different 
types of frictional interfaces. The four cases are shown 
schematically in Figures 1 through 4. In each case, the only 
source of damping is a frictional interface on the right-
hand side, x=L Case I incorporates a transverse 
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frictional interface while Cases II, III and IV contain 
longitudinal or "in-plane" frictional interfaces. 
Examination of these four cases provides insight into the 
amount and the type of damping that can be obtained in 
built-up structures through dry friction. 

Case 1: Transverse Slipping 

Figure 1 shows a linear elastic beam with a transverse 
frictional interface on the right-hand side. This type of 
system has been studied by a number of authors. 9-12  The 
governing equation for this system is 

EI a4w(x,t)  + m a2w(x,t)  

ax4 	at 2 

aw.I.  - F(x,t) - aNSgn( (x  a ,t) )8(x-L) 	(1) 

where w(x,t) is the transverse flexural displacement, EI is 
the beam's flexural rigidity, m is the mass per unit length, 
F(x,t) is a distributed time varying external force and p is 
the coefficient of sliding friction. N is the normal force to 
the sliding interface and it is assumed that it does not vary 
with time or with the beam's end deflection. The Sgn 
nonlinearity is defined to be equal to +1 when the 
argument is greater than zero, -1 when the argument is 
less than zero and equal to zero when the argument is 
identically zero. This can be viewed as a simplified 
version of the classic Coulomb damping law. (In this 
study, only steady slipping will be considered. In the case 
of stick-slip motion 13'14, it is necessary to modify equation 
(1) to explicitly define the friction force when the beam tip 
velocity is identically zero.) 

In order to simplify the analysis, an approximate 
system model is considered, making use of a Galerkin 
projection of (1) onto a single spacial beam mode. The 
flexural beam displacement, w(x,t) is approximated by a 
single beam mode 0.(x) (perhaps a cantilevered-free 
uniform beam mode) and a single modal amplitude, a n(t): 

w(x,t) a n (t) 41 n(x) (2) 

Substituting (2) into (1) and performing the Galerkin 
procedure yields: 



Noting that the amplitude of the harmonic excitation force 
f is given by f2 =42+ 42, equations (7) and (8) can be solved 
for the amplitude A. 

f2 	f2 	f2 	m2 16)2 	612,2 A2 4. 
(pNOn (L)! ) 2  c 	s 	n' n 

an ( t) Itl(in (x)) 2dx 
O 

in(t) jt •n (x) 2dx liF(x,t)#n (x)dx 
0 	 0 

- 01  Sgn(in (t)On (L)) 16(x-L)On (x)dx 	(3) 0   

where ' and • denote differentiation with respect to x and 
t respectively. Note that, in keeping with the theory of 
Rayleigh-Ritz techniques, 0.(x) need only satisfy the 
geometric boundary conditions for (3) to yield a "weak" 
solution 1-1. Defining 

•n• fin*n (x) 2dx 
0 

JL „ 2 
 EI(0 (x)) dx 

0 n  

f
n
(t) = fli(x,t)0n (x)dx 

0 

and assuming that 0.(L)>0, equation (3) can be written 

m nn 	n 
i. (t) + 02  a n (t) 

fn (t) - ANSgn(i n (t))0n (L) 	(5) 

First-order harmonic balance is now used to examine the 
qualitative behavior of the single-mode model governed 
by equation (5). The modal amplitude and the modal 
forcing are assumed to be simply harmonic in the form 

an (t) - A cos(mt) 
	

(6a) 

fn (t) 	fccos(mt) + fs sin(mt) 	(6b) 

Note that the simple harmonic motion assumption rules 
out the possibility of stick-slip motion. Substituting (6a) 
and (6b) into (5) and balancing harmonics yields 

A- c 	 (7) 

-00 (L)-
4   - f s 
	 ( 8 ) 

where use has been made of the relation: 

Or 
f 

2 m nn 

(1-(2  ) 2 ) 2  + I  41iNi6n(1-2)  ) 2 	1/2 

I  sAmn
tr

n n 

The equivalent viscous damping ratio is found by equating 
the damping term in equation (10) with the equivalent 
viscous damping term 2cdr/w.: 

404(L) 

!Ain w2 
n n 

2AN0 n ( I.) 
cn 	

xAm ww 
 

It may be noted that, except for the modal quantity, 
expression (11) is the classic result for a single-degree-of-
freedom dry friction damped system 16 . At resonance, 

=wi, and expression (11) reduces to 

Cn 

2AN0n  ( ) 
(12) 

wAm nn 

Case II: Longitudinal Slipping. Constant Normal Force 

The system shown in Figure 2 is studied next. The 
major difference between the procedure carried out for 
the case of transverse slipping and longitudinal slipping is 
that the latter requires the inclusion of a beam 
foreshortening. This problem was studied by Dowell 17, 
and the analysis is included here only for completeness. 
The governing equation for the system of Figure 2 is 

EI a
4
w(x,t)  

N a2w(x,t)  

ax4 	x  ax 2 

m  4121111. 	, 2 

at2 
	Ftx,t) 
	

(13) 

2 -  m m n n 

(4a) 

(4b) 

(4c) 

A - (10) 

2c - n 

Solving for c. gives 

Sgn(-Ausin(wt)) • - 	sin(wt) 
	

(9) 	 N
x 

= -gNSgn(ti) 
	

(14) 



where N. is the axial tension in the beam, and u is the 
longitudinal displacement of the beam tip (defined to be 
positive when in the positive x direction). Neglecting the 
axial deformation of the beam, the longitudinal tip 
displacement is due entirely to foreshortening: 

 2 ji" ( awax
(x,t) ) 2dx u 

0 

Again, approximating the flexural displacement w(x,t) by 
the single mode expression (2), and performing a single 
mode Galerldn projection of equation (13) yields 

Case HI: Longitudinal Slipping. Amplitude- Dependent 
Normal Force 

The analysis for the system of Figure 3 is in most 
respects the same as that described for Case II. Equations 
(13), (15), (16) and (17) still apply. The primary 
difference is the governing law for the axial tension force, 
N. 

Cn 
3•1 

pNsn 

am w2  nn 

(23) 

(15) 

sn  • ji (0n  (x)) 2dx 
0 

N
x 

-pK Im(L -E,01 Sgn(ii)• 

where K is the clamping stiffness and E is a small length 
parameter indicating that the clamping force is applied 

(16) close to the beam's end. (It is assumed that there is no 
preload in the clamp.) Substituting the one-mode 
approximation (2) into the expression above yields 

Nx= pklan (t)1Sgn(an (t)in (t)) 	 (24) 

where k • IC101(L-e)1 combines the effects of the 
clamping stiffness K and the mode shape near the beam 
tip. Substituting (24) into (16) and performing first order 
harmonic balance yields the following expression for 
equivalent viscous damping ratio at resonance: 

2Anksn  
cn - 	  2 

3am
n

ce
n  

(25) 

(19) 

Case IV: Longitudinal Slipping, Normal Force 
Dependent on Slip Displacement  

an (t) IiI(On (x))
2  dx + Nx  an (t) 1:(011 (x))

2  dx 

+ in(t) fin 0 (x) 2dx - P(x,t)0 
n

(x)dx 0 	0 

Similarly, substituting (2) into (15) yields 

u • - 	an (t) 2  11- (0,;(x)) 2dx 	(17) 
0 

Since the integral term in (17) is guaranteed to be 
positive, substitution of (17) into (14) gives 

Nx 	pN Sgn(an (t)in (t)) 	 (18) 

Defining 

and using the definitions given previously in (4a)-(4c), 
equations (16) and (18) can be combined in the form 

mn 	i"n (t) + w2n  an (t) ] 

+ pN Sgn(a n (t)in (t))snan (t) 	fn (t) 	(20) 

An approximate solution to (20) is sought, as before, using 
first order harmonic balance. Substituting the relations 
(6a) and (6b) into (20) and balancing harmonics yields: 

% (wn
2  -w2)A.fc 	 (21) 

2 - — pHs n A • fs 	 (22) 

As before, these two equations may be combined to 
determine an expression for the equivalent viscous 
damping ratio at resonance: 

Examining Figure 4, it is seen that the normal force 
is now dependent on the absolute value of the slip 
displacement, u. The axial tension in the beam can be 
expressed as 

Nx_ -/Allu I Sgn (/1) 

where 7 is the "slope" of the beam profile at the right end 
of the beam. As for Case III, it is assumed that the 
preload of the clamp is zero. Using the one-mode 
approximation for u(t) given by (17), the expression above 
becomes 

Nx  = pkIl sn a n (t) 2 1 Sgn(a n (t) n (t)) 	(26) 

where now, k =IC7 includes the effects of the clamping 
stiffness and the beam profile at the clamp. Expression 
(26) can be substituted into (16) yielding the single mode 
approximation for this system. Again, an equivalent 
viscous damping ratio can be found through the 
application of first order harmonic balance: 
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4wm 
11 n 

(27) 

Discussion 

The nature and the amount of damping that each of 
the frictional interfaces contribute to the flexible beam 
system can now be discussed. It is instructive to examine 
the influence of various physical parameters on the 
equivalent viscous damping ratio. 

From equation (12), it is seen that the equivalent 
viscous damping at resonance for Case I is inversely 
proportional to the amplitude. Thus, high amplitude 
motion is more lightly damped than low amplitude 
motion. Such systems are prone to unbounded response 
at resonance and exhibit free time response with linear 
envelopes of decay. The system is also seen to depend 
directly on the magnitude of the friction force, aN. 
Finally, it is seen that the damping is inversely 
proportional to the modal stiffness, nya. 2. 

In order to examine the damping characteristics of 
the systems in Cases II, III and IV in terms of physical 
quantities, the mode shapes for a simply-supported 
uniform beam are used. The nth such mode is given by 

O n (x) • sin( 1721) (28) 

Using this expression in equations (4a), (4b) and (19) 
gives: 

m - 

(,)2  
n 

(29c) 

Substitution of the relations (29a)-(29c) into (23) gives the 
equivalent damping ratio for Case II in terms of the 
physical parameters of the system: 

It is seen that the equivalent viscous damping is inversely 
proportional to El and to the square of the mode number. 
Thus it is expected that for a particular beam material and 
geometry, dry friction contributes less damping to the 
higher modes than to the lower modes. It can also be seen 
that the viscous damping is directly proportional to AN 
and to L2. Note that, in contrast to the transverse slipping 
case, the damping ratio is not dependent on amplitude 
and, as noted in reference 17, the damping is gimilar to 
viscous damping. 

It may be noted that the equivalent viscous damping 
ratio derived by Hertz and Crawley I was also found to be 
independent of amplitude. The system studied there did 
not include beam foreshortening, but did include a 
amplitude-dependent normal force. It appears that a 
number of different systems damped Daly by dry friction 
can exhibit a viscous-like damping characteristic. This 
type of behavior is seen in references 18 and 19 as well. 

In terms of physical quantities, the equivalent 
viscous damping for Case III can be obtained by 
substituting expressions (29a)-(29c) into (25): 

C • 
n 3w3 EIn2 

Again it is seen that the equivalent viscous damping ratio 
in the nth mode is inversely proportional to El and to the 
square of the mode number. It is also found to be directly 
proportional to L2, to aN, and to the clamping stiffness. 
Most importantly, it is seen to be directly proportional to 
the transverse amplitude of response. A.  Thus the 
damping increases as the amplitude of vibration increases. 
This type of behavior is similar to that of a system with 
hydraulic damping. 16  It should be mentioned that the 
value of k is also tied to the mode number n. As seen in 
equation (24), k depends on the mode shape 0, 2 (x) 
evaluated at x•L-e. Thus, the value of k will vary with n 
unless ne/L is maintained equal to a constant. 

These three cases may be contrasted with that of 
Case IV. Substituting (29a)-(29c) into (27) gives 

ALA2 

to 	8wEI 	 (32)  

In this case, the damping ratio is inversely proportional to 
EI, and is directly proportional to aN, the clamping 
stiffness and the beam length. Unlike the previous three 
cases, the damping appears to be independent of mode 
number. In this respect, it is similar to linear viscous 
damping. However, unlike viscous damping, the 
equivalent damping ratio is seen to be directly 
proportional to the square of the amplitude. 

The results suggest that it may be possible for a 
system damped largely by dry friction to exhibit a number 
of different types of damping characteristics. The nature 
of the damping and its dependence on vibration 
amplitude, mode number, material properties and length 
dimensions is governed by the geometry of the connecting 
interfaces. Examining the types of configurations shown 
in Figures 1 through 4, it is reasonable to assume that a 
standard truss structure or typical space-frame may have 
some or all of the clamping conditions shown. Also, one 
might envision that the connecting joints in some 
structures may behave like those of Cases I and II for 
small levels of beam displacement, behave like that of 
Case III for somewhat larger beam displacement 
amplitudes, and behave like that of Case IV for still larger 

s - 

(29a) 

(29b) 

2ukAL2 



amplitudes. Moreover, a joint or interface could have the 
characteristic of two or more of the above cases in the 
same amplitude or frequency range. For example, including 
the effect of clamp preload in Cases III and IV will result 
in different expressions for the equivalent viscous damping 
ratio. Therefore, the amount and the nature of the 
damping exhibited by a structure may be highly dependent 
on the frequency of excitation and on the amplitude of 
response. It is perhaps for this reason that experiments 
that have attempted to measure the damping of built-up 
structures have yielded surprising and, at times, 
contradictory results. 

Finally, it should be emphasized that these results 
are most accurate at system resonant frequencies. 
However, even at a resonant frequency, the presence of 
stick-slip motion or permanent interface lockup" will 
undoubtedly affect the damping characteristics. When the 
system is forced off of a resonant frequency, two or more 
"modes" will respond. The analysis of stick-slip and multi-
modal response requires a more refined analysis, and is 
planned as future work. 

Conclusions 

The analysis shows that a system damped solely by 
dry friction can exhibit many different types of damping 
characteristics. The nature of the damping for a particular 
structure is tied both to the amplitude dependence of the 
normal forces and to the orientation of the frictional 
interface in the structure. It is seen that it is possible for 
dry-friction damped systems to exhibit equivalent viscous 
damping properties that are inversely proportional to the 
response amplitude, invariant with respect to the response 
amplitude, directly proportional to the response amplitude 
or directly proportional to the square of the response 
amplitude. 

The results also suggest that those systems that 
suffer from an inadequate level of passive damping might 
benefit from a redesign of the connecting interfaces. In 
particular, it may be possible to tailor frictional interfaces 
in turbomachinery bladed disks and in large space 
structure joints to enhance the overall structural damping 
level. 
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Abstract 

The low inherent damping of large space structures (LSS) has prompted considerable 
research into active and passive damping augmentation. This paper discusses the 
development and analysis of improved joints for large space structures. These joints are 
able to give LSS higher levels of passive damping without significantly increasing the 
structure's weight or complexity. Two types of joint designs will be considered: passive 
joints and active joints. In each case, the normal force to a frictional interface is varied 
yielding a connecting joint with increased damping performance. A single-degree-of-
freedom joint and a system consisting of two elastic beams connected by a single 
active/passive joint are considered. It is shown that these new joint designs are able to 
enhance the energy dissipation from LSS in a relatively simple and robust way. Numerical 
simulation results are presented and discussed. 

1. Introduction  

One of the major problems remaining in the development of large space structures 
(LSS) is the anticipated low level of passive damping. This low level of damping impacts 
the feasibility of placing large flexible space structures in orbit for a number of reasons. 
Perhaps the most important reason is that it is difficult to design attitude and shape 
controllers for lightly damped flexible structures. Since the open-loop system has low 
relative stability, it is quite possible that perturbations to the control scheme, such as 
observation spillover or plant uncertainty, can drive the closed-loop system unstable [1]. 
Many researchers have aimed to circumvent this problem by designing better (often more 
complicated and sophisticated) control systems. A review of the literature up until 1984 
can be found in reference [2]. An alternate approach is to design structures to have a 



greater passive damping capacity. It has been shown that the addition of passive damping 
to a flexible structure can greatly facilitate the model reduction and control design of 
flexible structures [3,4]. This paper addresses the possibility of increasing the passive 
damping of truss-like structures by enhancing the energy dissipating capability of 
connecting joints. 

It has been suggested that an important contributor to the overall passive damping of 
traditional flexible truss-like structures is the connecting joints [5,6]. One of the major 
dissipative mechanisms in joints is dry (Coulombic) friction. The analysis of structures with 
dry friction has received considerable attention. See, for example, Ferri [7] or the 
references cited therein. In most of these studies, it is assumed that the normal force to the 
sliding interface is constant. This may be termed the "classic" dry friction damped case. In 
the few studies where the normal force was allowed to vary with the relative slip amplitude, 
it was found that the system exhibited a viscous-like damping characteristic; see, for 
example, Hertz and Crawley [6] and Ferri [8-10]. 

The viscous-like damping property suggests that many mechanical designs can be 
improved by configuring frictional interfaces in ways that allow the normal forces to vary 
with displacement. In some applications, classic dry friction is inadequate to suppress 
vibration. For example, turbine blade systems experiencing flutter cannot be globally 
stabilized with classic dry friction. See for example Ferri [11] and Griffin and Sinha [12]. 
The deficiency stems from the fact that the damping level of dry friction damped systems 
with constant normal forces varies inversely with the amplitude of response. Hence, for a 
sufficiently large disturbance, it is possible for the energy input to the system by 
aerodynamic forces to overcome the energy dissipation provided by dry friction. In the 
field of LSS dynamics and control, the instabilities resulting from uncertainties and 
inaccuracies in the system model also result in forces which are in-phase with 
displacements and/or velocities. In these cases however, the external forces are provided 
by the force and torque actuators which are driven by a feedback control law. By designing 
connecting joints to have frictional forces which are dependent on relative joint 
displacements and velocities, it may be possible to greatly increase the stable operating 
range of an LSS attitude or shape controller. 

It should be noted that viscous damping augmentation, especially in the form of 
viscoelastic materials such as those used in constrained layer damping, are subject to 
problems of "outgassing" in space environments [13]. This causes the material properties of 
the viscoelastic material to change with time, resulting in a degradation of the effectiveness 
of the damping treatment. An active or passive joint design which is based on energy 
dissipation from dry friction could provide a viscous-like damping, but still be well suited to 
a space environment. 

The outline of the remainder of this paper follows. Section 2 discusses background 
material related to the dynamics of a dry friction damped system and introduces the design 
of passive and active joints as a method of damping augmentation. Section 3 first describes 



the model development for single-degree-of-freedom joint systems. These models are then 
incorporated into a two-span flexible beam system. Sticking conditions for the joints are 
also obtained. Numerical studies are presented in Section 4 and Section 5 contains 
concluding remarks. 

2. Background Material 

As mentioned above, one of the major dissipative mechanisms in joints is dry 
(Coulombic) friction. It has been shown that dry friction can cause some significantly 
nonlinear behavior in an otherwise linear structure. The major nonlinear characteristics of 
classic dry friction damped systems are threshold force levels, "unbounded response" at 
resonance and "stick-slip" motion. A threshold force phenomenon implies that there exist 
different types of behavior for a flexible system with sliding interfaces. If the sum of the 
external forces acting tangent to the contact surface are not large enough to overcome the 
friction force then the sliding interface will "stick". At some critical value of disturbance or 
excitation level, the interface may break loose, causing a dramatic change in the system's 
behavior. "Unbounded response" at resonance refers to the fact that a structure damped 
only by dry friction can exhibit unbounded response when forced at a system natural 
frequency. As mentioned previously, this is due to the inverse dependence of damping on 
the amplitude of response in classic dry friction damped systems. Thus large levels of slip 
will decrease the damping contribution from the friction interface. "Stick-slip" motion 
refers to the fact that for some levels of excitation and/or for some frequencies of 
excitation, the sliding interface may stick and slip intermittently. One consequence of this 
is a net decrease in the amount of damping from the frictional interface. A second 
consequence is that the stick-slip motion will tend to excite other structural modes, making 
purely harmonic one-mode response unattainable. 

It appears that the undesirable nonlinear effects of classic dry friction can be greatly 
reduced by the introduction of either an active or a passive mechanism by which the 
normal forces (and, hence the frictional forces) can be allowed to vary. At the same time, 
the beneficial contribution of dry friction to the overall damping of the structure can be 
retained or enhanced. For example, when permanent "lockup" occurs or when intermittent 
sticking occurs, the normal force can be reduced allowing motion (and, hence energy 
dissipation) to resume. On the other hand, the undesirable decrease in Coulombic 
damping with relative slip amplitude can be alleviated by allowing energy dissipation to be 
proportional to the square of the relative slip displacement. 

The passive and active types of joints are discussed separately below. 

1. Passive Joint: A passive connecting joint has been developed that has amplitude 
dependent friction forces. Although many types of truss connecting joints possess this 
property to varying degrees, the principle has not yet been fully exploited. One possible 



joint configuration is the modified pin-type joint shown in Figure 1. (Though the connected 
members are shown as being simply curved, the actual geometry remains to be 
determined.) The curved contacting surfaces will allow the normal force to vary with the 
relative rotation angle. To re-iterate, this type of design will cause the overall damping to 
be nearly viscous, without the use of visco-elastic materials or "dash-pots". The passive 
joint design must also be well-suited to automated or human space platform construction, 
and must not adversely affect the structural integrity or the weight of the structure. 

2. Active Joint: One of the limitations of the passive joint design is that the initial 
tension on the joint and the curvature of the connected elements must be chosen a priori. 
However, different vibration environments may require different normal forces. An active 
joint can be designed to choose the proper normal force to optimize the energy dissipation 
based on sensor feedback from colocated or distributed sensors. Many of the sensors used 
in an attitude or shape control system can also be used for the active joint control system. 
A preliminary design is shown in Figure 2. Note that the active control system acts solely to 
enhance the overall damping of the joints. One might therefore consider the strategy to be 
an "active-passive" damping augmentation technique, where active control is used to 
increase the effectiveness of a passive damping source. One advantage of this active 
control strategy is that the required actuator can be as simple as a commercially available 
electromagnetic clamp. Unlike other active damping schemes, the method is not based on 
momentum management techniques such as thruster rockets and control moment gyros. A 
general disadvantage of momentum management techniques is a weight penalty and, in the 
case of thruster rockets, a contamination of the local environment of the spacecraft. 

There are several tradeoffs between active and passive joint types. The passive joint 
appears to be much less expensive and much lighter than the active joint, especially if one 
takes into account the total expense and weight associated with the power harness required 
for the active case. In fact, the passive joint requires no external energy source. A 
disadvantage of the passive joint is that it is non-adjustable. A particular geometry and pre-
load must be chosen apriori and cannot be varied to accommodate changes in frictional 
properties or changes in the structural vibration environment. The active joint, on the 
other hand, is easily modified in real time, is more robust due to feedback, and can even be 
designed to behave linearly, like an ideal viscous damping element (see discussion below). 
The passive joint may be prone to steady-state error due to sticking whereas the active joint 
can be made asymptotically stable. Still, the passive joints proposed here are superior to 
those previously considered (e.g., [14]) where normal forces to frictional interfaces were 
pre-set and not allowed to vary with displacement. 

It should also be mentioned that there is a similarity between the active joint and 
"semi-active" suspension elements for rail and road vehicles [15,16]. Semi-active 
suspensions are ones in which an orifice in a hydraulic dashpot is actively varied to produce 
different amounts and types of damping. Systems containing either a semi-active 



suspension element or an active joint are not fully controllable but are only controllable to 
the origin. Another similarity is that a "failure" of the control system can only result in a 
degradation of performance, and not in instability since both elements can only remove 
energy from a system. An important difference, however, is that the mathematical model 
of the active joint is nonsmooth, making traditional optimal control strategies difficult to 
apply. Also, as mentioned earlier, a damper based on dry friction would seem to be better-
suited to a space environment. 

3. Model Development 

In this section, models are developed for the active and passive single- degree-of-
freedom (SDOF) system and the two-span beam. 

SDOF Joint 

Figure 3 shows a schematic of a SDOF joint including a frictional interface. The two 
connecting bodies are represented by the moving mass and the stationary frame. Using the 
nomenclature defined in Figure 3, a force summation in the direction tangent to the sliding 
interface yields the following equation of motion for the SDOF system: 

• 

in 
•

x 	+cx + k x + R(x,Z) = F(t) 	 (1) 

where F(t) is a disturbance force and R(x,t) is the nonlinear force which resists relative slip 
in the joint. In the case of the active joint R(x,t) will be assumed to have the form 

R(x,x)

• 

 = µ N A (x,x)

• 

 Sgn(x) 

where 

Sgn(z) = 
+1 

0 
1 -1 

; 
; 
; 

z>0 
z=0 
z<0 

and NA(x,t) is the active force applied normal to the sliding interface and has the form 

NA  (x,i) = K0 
 + K 1  lxi + K2  IXI 

Although, in practice, nothing limits the functional form of NA  (other than the fact 
that NA>0), the form shown above was chosen due to its simplicity and ease of 
implementation. (Optimal control strategies are left to a forthcoming paper. Note that 
due to the nonsmooth nature of the system dynamics, the optimization process is not 
trivial.) Note that the term 

(2) 

(3) 



p1(2 liciSgn(ic) - AK 2Z 
	

(4) 

can be interpreted as an additional linear, or viscous damping term. Substituting (2), (3) 
and (4) into (1) yields the general form for the active SDOF joint. 

mi 6 + (c+pK2 )ic + kx + p(K0  + Ki  lx1)Sgn(X) = F(t) 	 ( 5) 

A possible design of a passive SDOF joint is shown in Figure 4. In this case, variation 
in the normal force is achieved through contouring or profiling one of the two bodies and 
applying the normal force through an elastic spring element. A force summation in the 
direction tangent to the sliding interface yields the same equation as (1). In this case, 
however, the nonlinear resisting force is given by: 

R(x,X) - pN p (x)Sgn(i) + N p (x)tanaSgn(x) 	 ( 6 ) 

where the second term arises due to the component of the interaction force between the 
movable body and the roller in the direction tangent to the sliding interface. N p(x) is the 
passively applied normal force given by: 

N
P 
 (x) ., k0 + k1 tanalxl 
	

(7) 

where ko  is the preload (force) present in the spring at the point x=0. Substituting (6) and 
(7) into (1) yields: 

mi .+ a + kx + A(ko  + k i tanalx1)Sgn(i) 

+ (k0 + k1
tanalx1)tana Sgn(x) = F(t) 	 (8) 

or, noting that Ix' Sgn(x) = x: 

dc.° + a + (k + kI tan 2cr)x + p(k0 + k 1 tanaix1)Sgn(X) 

+ k
0 
 tana Sgn(x) - F(t) 
	

(9) 



Two-Beam Model 

Consider the two-span beam system shown in Figure 5. The mathematical model for 
this system will be developed using a modal approach. The flexural displacement of the 
two beams are denoted w1  and w2  and are expanded as 

N 
w

1
(x 1 ,t) - . 1, 

a i (t) O i (x 1 ) 	 (10) 
1=1 

N 
w

2
(x

2
,t) 	I 	b i (t) 0 1 (x2 ) 	 (11) 

i=1 

The basis functions Oi  and fib;  are chosen to be the normalized eigenfunctions for pinned-
pinned beams of length L 1  and L2  respectively: 

1/2 	nirx i  
= 	sin( 	1 ) 	 (12) 

	

11 	1 °11 ( x1 )  

*n ( x2 )  

1/2 	nwx 

(

2 	. 	2 
rri: 	sin( T- ) 
2 2 	2 

(13) 

where m 1  and m2  are the mass/unit length for beams 1 and 2 respectively. Using these 
eigenfunctions as the basis functions yields the following equations of motion for the 
combined system. 

2 i; + 2c ra a. + oli  a i  = F l (t) 0(x
Fi

) + M(t) O i (L 1 ) 

2 6; + 2c2i02i 6 i  + w2i  bi 	F 2 (t) 0(x F2 ) - M(t) 0 i ( 0 ) 

M(t) = k re + rR(0,9) 

9(t) = 	b i (t) b.(0)  - I a,(t) O i (L 1 ) 
i=1 	 j=1 

i(t) - 	6 i (t) O i (0) - 	ii (t) 0 1 0_ 1 ) 
j=1 

i=1,N 

i=1,N 



j=1 or 2 	 (19) 

where R( .) is defined for the active joint in equation (2) and for the passive joint in 
equation (6). The angle a represents the relative angular displacement between the left 
end of the second beam and the right end of the first beam. Again, NA  and Np  are the 
forces applied normal to the plane of relative motion (N A  and Np  correspond to the active 
and the passive joints, respectively). The quantity r is an appropriate length dimension 
such that urNA  (or ArNp) is the magnitude of the frictional moment transmitted between 
the two beams. The total moment transmitted between the two beams is composed of the 
frictional moment, an elastic moment due to a restraining spring (having stiffness 
coefficient k.), and for the passive joint an additional moment corresponding to the second 
term in equation (6). Note that wij  represents the jth  natural frequency of the id' beam, 
without any coupling between the two beams. These are given by: 

.2 2 
JO). 

1,] 

El. 	1/2 

m.L4. 
1 1 

1-1,2 	j=1,N 	 (20) 

Equations (14) and (15) can be placed in state-space form by defining the state vector to be 

x = [a l , a2 ,..., aN' b
'

b
N''

i
N' l'' N

] 	(21) 

and defining 

F(t) 	[Fi(t), F2(t)]T 	 (22) 

the equations of motion can be written: 

-Ax+GF(t)+BM(t) 	 (23) 

where 

A= [0]2N 
-Di ag(o) -Diaig

2N
(c) (24) 

22N 	22N 

0 ( x F  ) 	ON  1 
ON 	

10( x F  ) 
2 

(25) G = 



B = [0 2N , (0 (L ))
T 
 - (0 (0))

T 
]

T 	
(26) 

where 

Diag(c) .. Diag(2c 	
2C2Nw21 ) 	(27)  - 11 w11' 2C12w12"'" 2C1Nw1N' 2C21 4121''''' 

	

2 	2 	2 	2 	2 1  
Diag(w) = Diag( 	 (28) wll' w12''''' '1N' w21""' w21' 

0(x) = (0 1 (x), 02 (x),..., ON (x)] T 	 (29) 

0(x) = (01 (x), 02 (x),..., 0N (x)] T 	 (30) 

T 
0 (x) - [0 1 (x), 0 2 (x),..., ON (x)] 	 (31) 

1 	 1 	 1 	
I 	T 

* (x) = [101 (x), 02 (x),..., ON(x)] (32) 

[0]2N is a 2Nx2N null matrix, I2N is  a 2Nx2N identity matrix, Q2N  is a 2Nx1 null column vector 
and fIN  is an Nxl null column vector. The system outputs y 1  and y2  are defined to be the 
flexural displacements of the first beam at x 1 =0.251,1  and x2  = 0.75L2, respectively: 

y = C x 	 (33) 

where 

Y  = (Y1' Y2] T 

T (0.251 	 T I 0  
22N 

	

1
) 	

-N 
C= 

ON 	16T (0.75L 2 ) 22N 

Finally, it is convenient to relate the relative angular displacement B to the state vector x: 

= D x 
1 

(36)  

(37)  

(34)  

(35)  
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are 1x4N constant-valued row vectors. 

The two-beam system may be viewed as a general case of two linear, distributed 
elastic systems coupled with an active/passive joint. The pinned-pinned configuration is 
chosen solely for the resulting simple form of the modal expansions. The modal 
formulation is applicable to arbitrary coupled elastic systems by simply replacing the modal 
eigenfunctions and natural frequencies with those of the actual system. 

Sticking Regions 

An important consideration in the design of an active or passive joint is joint lock-up 
or sticking. Sticking degrades the system performance for two reasons. First, since the 
energy dissipation mechanism is dry friction, slipping is necessary for positive damping to 
occur. Intermittent sticking results in a degradation of energy dissipation, therefore it 
should be avoided. Second, permanent lock-up is undesirable because it destroys 
asymptotic stability. 

Sticking conditions can be obtained by examining the impending motion of the 
system when the relative slip velocity is zero. The body of work in the field of variable 
structure systems (VSS) [17] can be drawn upon to determine the sticking conditions and 
the resultant system dynamics when sticking occurs. (In the terminology of VSS, sticking of 
dry friction damped systems is referred to as sliding. In this paper, sticking and sliding will 
refer to the physical condition of the frictional interface.) For the SDOF system, sticking 
occurs when the following condition is met: 

• .. 	 1.1 x x < 0 	V (x,x) such that lx1<c 	 (40) 

where € is a small positive parameter. Substitution of r from equation (1) into (40) yields 
specific conditions for sticking to occur in both the active SDOF system and the passive 
SDOF system. 

(38) 

(39) 

The sticking conditions for the active SDOF system with no external forcing are given 
as follows: 



i) If AK1 	K, then the system sticks for all x. 
(41) 

ii) If AK1 < K, then the system sticks for all x such that 

AK
0  (x!  K - AK' 

The sticking conditions for the passive SDOF system with no external forcing are 
given as follows: 

i) If A > tana and k 5 (A - tana)k i tana, 

then sticking occurs for all x. 

ii) If A > tana and 	k > (A - tana)k i tana, 

then sticking occurs for all x such that 

(A - tana)k0  

 

(42) k - (p-tana)k i tana 

The sticking conditions for the passive joint are shown graphically in Figure 6. As seen in 
the figure, when the elastic spring constant, k, is sufficiently small, sticking occurs for all 
values of x. For larger values of k, sticking occurs for smaller and smaller values of x. In 
other words, the sticking region grows smaller as the value of the elastic spring constant (or 
the value of a) increases. Also note that for the case k o  = 0, no sticking occurs for 
k>ktana(ii-tana). These sticking conditions can be used to design a frictional interface so 
that it does not stick, or is at least ultimately bounded. Note that a sufficient condition for 
sticking not to occur is 

p S tana 	 (43) 

When sticking occurs, an expression for the system dynamics can be obtained using 
the equivalent control method [17]. The exression for both the active and the passive 
SDOF system is given as follows: 

mac s  MX = 0 
	

(44) 

This system is linear and contains two zero eigenvalues resulting from the constraint that 
the velocity is zero during sticking. It should be noted that, for the unforced case F(t) = 0, 
once the system has stuck, it remains terminally stuck. Thus, while the system is stable in 
the sense of Lyapunov, it is not necessarily asymptotically stable. Also note that stability is 
preserved even under a control system failure. 



The sticking conditions for the two-beam system with either the passive or the active 
joints are obtained in the same way as for the SDOF system. The relative slip displacement 
x must be replaced by the relative angular displacement 0. The first and second derivatives 
of 0 with respect to time can be expressed in terms of the state vector x through use of 
equations (23)-(39). 

xTDTD
2— 

 < 0 V x such that like 	(45) 2  

where, again, c is a small positive parameter. Substitution of (23) into (45) yields: 

xTDTD2  [A x + G F(t) + B M(t)J < 0 V x such that like 	(46) 
2 	— 	— 

An expression for the dynamics of the system during sticking is again found using the 
equivalent control method [17]. Interestingly, the dynamics of the system during sticking 
are the same for both the passive and the active joints: 

(A - B(D
2

B)
-1

A)x + (G - B(D
2

B)
-1

G)F 
	

(47) 

As in the SDOF case, the dynamics of the system during sticking is linear with two zero 
eigenvalues corresponding to the constraint that the angular joint velocity must be zero for 
sticking to occur. Unlike the SDOF system, the unforced two-beam system can still 
experience motion when the frictional interface is stuck. Thus when sticking occurs, the 
damping of the system is reduced to that associated with flexural deformation of the beams. 
It is also interesting that the unforced system can breakloose by itself. Thus, stick-slip 
motion is possible. 

4. Numerical Results 

A variety of simulation results are presented next to show the qualitative effect of the 
various joint design parameters on the free response of the two-beam model. Both active 
and passive joint configurations are considered. For each case presented, the properties of 
the A,B,C and D2 matrices are kept the same. A single beam mode is used to represent 
each beam. The following numerical values are used: m i  =m2 =3.25458 kg/m3, L,1 =1.0 m, 
1.2 =2.0 m, EI2 =EI2 =755.06 N•m2, r =0.01 m, and c11=  cn  =O. The initial condition 
for each simulation result is x = [0.0127617,0,0,0]T. This corresponds to an initial 
deflection of 1 cm at the midspan of the first beam. 

Figures 7-11 pertain to the two-span beam system connected by the passive joint. 
Figures 7 and 8 show the relative effect of the transverse spring constant, k 1. (Recall that, 
for the active joint, K1  plays a role similar to that of k itana in the passive case.) Figure 7 
shows the free response of y 1  for k1 =10,000 N/m. Note that the envelope of decay is 



exponential in shape, similar to the case of linear, viscous damping. It is important to note 
that the only source of damping in this system is dry friction since the beam structural 
damping has been set equal to zero. As the value of k 1  is increased, the response damps 
out faster, but the envelopes of decay remain exponential in shape for large values of 
displacement. For smaller values of displacement, stick-slip motion becomes prevalent as 
seen in Figure 8 which shows the relative angular displacement in the joint, O. The 
constant-valued portions of the curve in Figure 8 correspond to sticking. 

Figures 9 and 10 show the relative effect of k o  on the free response. For these plots, 
a = 0 and k1  = 0, therefore, this corresponds to the case of constant normal force; i.e., the 
classic dry friction case. Note that the envelopes of decay in these figures are linear like 
those traditionally associated with dry friction. As the value of ko  is increased, the 
oscillations die out more rapidly, however, sticking becomes more noticeable. Observe that 
in Figure 10, once permanent sticking has occurred (t=0.2 sec), no further energy 
dissipation takes place and a steady-state oscillation results. 

Figure 11 shows the free response of y 1  for the passive joint case with k o = 10, 
1(1 =10,000 and a =10°. Note that the system exhibits both linear and exponential envelopes 
of decay. The envelope is more nearly exponential for large values of displacement and 
more nearly linear for small values of displacement. 

The effect of a is seen by comparing Figure 11 (where a=10°) to Figure 12 (where 
a= 20°). Essentially, increasing the value of a has two effects: it increases the natural 
frequency of the system by adding an apparent stiffness to the joint, and it increases the 
rate of decay of the free response. 

The performance of the active joint is seen in Figure 13. Figure 13 corresponds to 
the case 1C0 =IC1  = 0, K2 =399 N/(m/s). Recall that setting lc, and K1  both equal to zero 
results in the joint characteristics being equivalent to those of a linear viscous damping 
element. The value K2  = 399 N/(m/s) corresponds to the viscous damping element that 
gives the highest level of damping to the most lightly-damped linear mode of vibration. As 
can be seen, excellent performance is obtained. An extensive study was conducted varying 
Ko, K1  and IC2  for the system with the parameters defined above. It was found that using 
non-zero values of Ko  and K1  in conjunction with K2 =399 N/(m/s) resulted in the 
degradation of system performance over that shown in Figure 13. 

5. Concluding Remarks 

These results suggest that joints designed with amplitude or rate-dependent frictional 
forces can offer substantial improvements in performance over joints with constant normal 
forces. One advantage is that the overall damping characteristics can be made to resemble 
those of a linear viscous damping element. Thus, it may be possible to incorporate the 
joints in a global structural model as simple linear  elements, greatly simplifying the analysis 



of the assembled structure. In addition, the modified joints are well-suited to a space 
environment and do not present a significant weight penalty. 

It should be added that both the active and passive joint types can be used together in 
a single space structure. Although it may be unnecessary (or even impractical) to place 
active or passive joints at every truss structure juncture, it may be possible to achieve good 
results simply by placing a few active or passive joints at strategic locations throughout the 
structure. The interaction of the active and passive joints with an overall attitude or 
pointing control strategy also needs to be addressed. 
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Figure 1: Passive revolute joint geometry. 
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Figure 2: Active joint shown in a truss structure. 



Figure 3: SDOF Dry-Friction Damped System. 
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Figure 4: SDOF passive joint model. 
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Figure 5: 	Two-span flexible beam system connected through an active/passive revolute 
joint 
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Figure 6: 	Sticking values of x as a function of the elastic spring constant k for the case 
it > tana. The shaded region is the region in which sticking will occur. Note 
that for k < kitana(p-tana), sticking occurs for all values of x regardless of 
the value of ko. 
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Figure 7: 	Free response of y1  for two-span beam system with passive joint (k o  = 0, 
k1  = 10,000, a = 10°). 
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Figure 8: 	Free response of 8 for two-span beam system with passive joint (ko  = 0, 
kl  = 100,000, a = 10°). 
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Figure 9: 	Free response of y1  for two-span beam system with passive joint (k o  = 10, 
= 0, a = 00). 
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Figure 10: Free response of y 1  for two-span beam system with passive joint (k 0  = 100, 
ki  = 0, a = 0°). 
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Figure 11: Free response of y 1  for two-span beam system with passive joint (lc °  = 10, 
k1  = 10,000, a = 10°). 
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Figure 12: Free response of y 1  for two-span beam system with passive joint (k o  = 10, 
k1  = 10,000, a = 20°). 
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Figure 13: Free response of y 1  for two-span beam system with active joint (K 0  = 0, 
K1  = 0, K2  = 399). 
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