## Firms Strategies in Alternative Energy Markets

Radhika Perrot, PhD Candidate

UNU – MERIT, The Netherlands



The Globelics Academy 2008 Tampere

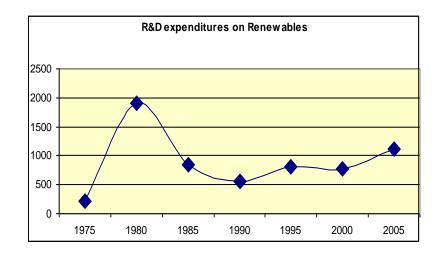
## Outline

- Historical origins from the 1970s 2000s of global firms and individual country strategies
- Observations and the main research question
- Three explanations given for the changing configuration
- The theoretical framework
- Hypotheses development
- Methodology

# 1970-mid 1980s: First move towards alternative energies

Events drawing attention to alternatives...

- Oil price rise (price of oil quadrupled by 1974 to nearly US\$12 per barrel)
- Revives political security concerns on long term energy availability
- Marginal public awareness appealed to by study groups (Club of Rome (*Limits to Growth*), air pollution concerns)


# 1970- mid1980s: move towards alternative energies

- ...trigger responses from market main actors
- Government
- Japan (Sunshine Project), U.S (PURPA, NREL, Clean Air Act 1970), Denmark (RE Committee, RisØ), Brazil (ethanol production)
- Increase in R&D Energy Investments
- Firms
- Solec/Solarex/Solar Technology International
- Vestas (diversification)/BP (acquisition)
- Exxon -Solar Power Corporation/ARCO-ARCO Solar/Mobil- Mobil Solar Energy (JV with Tyco Laboratories)
- Sharp, Matsushita, Hitachi, Toshiba, NEC

- Developments along the internal combustion (IC) engine trajectory, the three-way catalyst, Muskie Act 1973, finding CFC substitutes
- Kemp (1994), moving to a new trajectory, will require new skills, education and training
- Emission norms and product standards were insufficient measures that led end-of-pipe solutions instead of 'clean' technology or cleaner production processes(Soete and Kemp,1992).

## 1985-1990: the Downside for Alternatives

- Government response
  - Decline in R&D expenditure
  - End-of-pipe solutions
  - Phasing out of incentives



• Firm response

-Exit of firms (Hitachi, Toshiba and NEC) -Sale of solar units (Exxon sold off its unit to Solarex)

## Renewed attention 1990s-2000s

- Triggers
- Climate change concerns/more awareness, UNFCCC
- Energy Security Concerns/Energy Demand (developing countries)
- Oil price increases in 2000s
- Response
- Toyota/Honda/GM/Kyocera, Sanyo and Sharp
- BP/Shell/GE/Seimens/DuPont
- VC funded start-ups (e.g. Nanosolar)
- Moser Baer/St.Gobain/Applied Materials

## Differences in two Periods

- Broadening of energy base by many, large nonenergy/oil & gas/electrical firms and more number of acquisitions and alliances than in 1970s and 80s
- Entry of large agricultural, biotechnology firms and semiconductor firms, automobile and glass manufacturers
- Wider range of technologies explored, existence of competing technologies and the application of nano, microchip and laser technology

Changing configuration over the years – in terms of the number of firms, number of technologies and type (cross-sectoral participation)

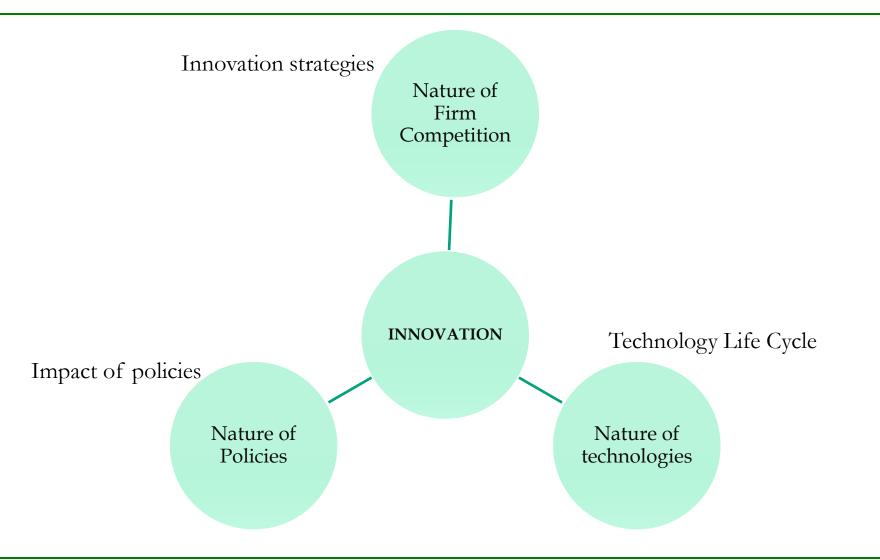
So, what is causing the configuration of the alternative energy market to change?

## Explanation (1)

#### Nature of Technologies

- The combinatorial nature of technologies (Mytelka, 2003) has resulted in the cross-sectoral participation of firms like Dupont, Cypress Semiconductor and Applied Materials
- Crossing of trajectories: development along a trajectory is co-dependent on trajectories of other technologies. For eg., innovation in solar PV is strongly integrated with the development path of the semiconductors and optical laser trajectories
- Science base, patent activity and system embeddedness




#### Nature of Competition & Market Entry

- Shortening of product life cycles, faster access to innovation, sharing high risks & technological uncertainties and anticipation of higher regulatory requirements
- Adoption of innovation strategies (a shift from internal R&D to the external scouting for technology, Arora & Gamberdella (1990) and Pisano (1990))
- Innovation strategies are affecting market competition and have given firms, particularly large firm, access to new technologies and markets
- These strategies act as entry barriers to new entrants, determines the speed of dominant design emergence, costs are reduced and systemic constraints are removed Mytelka et al., (1998)

**Nature of policies** (technology specific support schemes Vs. market based mechanisms)

- Overcome lock-ins, eg. Cowan and Gunby (1996) marked localized learning, uncertainty and unpredictable pay-offs (of new technologies)
- Existence of interrelated technological trajectories or systems (Rosenberg, 1989) or the combinatorial nature of the technologies (Mytelka, 2003) . *Energy deregulation policies* in the EU

### Theoretical Framework



## Theories and Concepts Used

| Actors     | Selection Environment    | Selection Mechanisms                     |
|------------|--------------------------|------------------------------------------|
| Firms      | Market                   | Innovation Strategies<br>and competition |
| Government | Policies and regulations | Feed-in tariffs, taxes and incentives    |
| Technology | Technological Paradigm   | Innovation Process                       |

- •Evolutionary Economics
- •Theories of Technical Change
- •Technology Life Cycle
- •Theories of Innovation Strategies

|                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   | Third Phase                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First Phase                                                                                                                                                                                                                                                                | Second Phase                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| Nature of competition                                                                                                                                                                                                                                                      | Nature of competition                                                                                                                                                                                                                                                             | Nature of competition                                                                                                                                                                                                                          |
| Strategies w/t public R&D<br>centers, universities, rise of small<br>& entrepreneurial firms, network<br>oligopolies<br><b>Nature of technology</b><br>High patent activity, high degree<br>of embeddedness and highly<br>science based<br><b>Policies</b> : R&D subsidies | With smaller firms, rivals,<br>cross-sectoral firms, internal<br>R&D<br><b>Nature of technology</b><br>Relatively low patent activity,<br>low degree of embeddedness<br>and relatively low science<br>based activities<br><b>Policies:</b> Technology specific<br>support schemes | Suppliers, users, internal<br>R&D, acquisitions<br><b>Nature of technology</b><br>Very low patent activity, no<br>or little degree of<br>embeddedness and very low<br>science based activities<br><b>Policies:</b> Market based<br>instruments |
| Hydrogen fuel-cell technologies                                                                                                                                                                                                                                            | Solar PV technologies                                                                                                                                                                                                                                                             | Wind technologies                                                                                                                                                                                                                              |

Technology Life Cycle and Interactive Learning (Innovation Strategies)

- **Hypothesis 1:** Under conditions of technological uncertainty, firms that engage in innovation strategy with research organizations and universities have a higher level of innovation or patent activity than those that do not
- **Hypothesis 4:** Small successful firms engage in innovation strategies like technological alliances or acquisitions with other firms particularly in the first two stages of the technology
- **Hypothesis 5:** In the mature stage of the technology, internal R&D expenditure of firms increases, and firms move away from the acquisition of horizontal firms to non-horizontal firms
- **Hypothesis 8:** The more standardized the technology the lesser the number of innovation strategies between horizontal firms

## Methodology

#### Methodology

- Survey of top 300 global firms in wind, solar PV and HFC and test the hypotheses (*questionnaire-design-stage*)
- Case studies of 5 firms for an in-depth analysis of inter-firm interaction for innovation since 1970s. Firm-supplier relations, horizontal innovation networks

#### Variables

• Use of patents data, inter-firm alliances like technological joint venture, technological acquisitions, internal R&D, technology transfer between firms and universities

Extent of study? Degree of an innovation strategy varies with the TLC. Degree of an innovation activity is measured by *resource sharing* and *knowledge spillovers* between firms (Ahuja, 2000)

Can innovation strategies be an interactive form of learning and *when*?



# THANK YOU!