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SUMMARY

An organism’s DNA sequence is a virtual cornucopia of information, and

sequencing technology is the key to unlocking it. The past few decades have been

witness to meteoric growth of these technologies and the volume of data they produce.

New industries are forming around it, existing ones are changing as a result of it, and

modern medicine is on the precipice of a genomic revolution.

Turning this deluge of data into useful information is already a challenging task

with advances in sequencing technology far outstripping advances in semiconductors,

and this trend shows no signs of stopping. Incremental advances are being made

in sequence analysis techniques, but progress is far too slow to keep up with the

volume of data delivered by modern sequencing platforms. This gap is often filled by

allocating more computing resources in the form of distributed computing platforms,

and this can quickly become prohibitive. Because medicine requires a quick answer

and science often has limited funding, the analysis bottleneck is a major concern.

Instead of finding new ways to dedicate more computing resources to the problem,

I am interested in streamlining the process. In this dissertation, I explore methods to

make the analysis faster and more efficient. My ultimate goal is to create algorithms

that can run on a standard computer workstation, and when necessary, make the

most of expensive distributed and cloud computing resources.

Many analysis pipelines start by aligning sequence reads to a reference or assem-

bling them into long consensus sequences, but it can take several hours to analyze

a single sample on a workstation computer. Instead aligning or assembling sequence

reads, the approaches described in this dissertation transform and analyze the se-

quence data without alignments. These alignment-free approaches often improve
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performance by an order of magnitude or more.

The first step for many alignment-free approaches involves transforming the se-

quence reads into k-mers, which are short overlapping fragments of uniform size. If

the size, k, is 48, then all substrings of length 48 are extracted from each sequence

read and counted. The resulting frequency of each k-mer can then be used as evidence

for genomic analysis techniques.

When I started as graduate student, I began by working on a program to transform

sequence data to k-mer frequencies. The resulting software, KAnalyze, was incredibly

flexible because of its software architecture and approach to solving the k-mer count-

ing problem. This became the foundation for the rest of my graduate work because

it was possible to test new ideas that required data structures and transformations

not commonly used today.

After my initial work with k-mers, I was connected with the Centers for Disease

Control and Prevention (CDC) Mycobacterium tuberculosis (M. tuberculosis) science

team. They were interested in replacing existing software with an alignment-free

approach based on k-mers. The new software significantly reduced analysis time, and

it reduced errors. K-mers are more rigid than sequence aligments, so I had to find a

way to correct for mutations in the samples. This resulted in a novel algorithm that

could identify single nucleotide polymorphism (SNP) and insertion/deletion (indel)

mutations, and it still took far less time than the alignment approach.

I am not aware of an error correction algorithm with k-mers that does not employ

a simple hamming distance calculation, and therefore, is capable of handling indel

variants. The CDC M. tuberculosis project solved this problem in a näıve way; when

a variant was detected, it took 4 paths and assumed that it might be a SNP, insertion,

deletion, or no variant. The result is an algorithm that runs with a computational

time complexity of O(4n). Although this worked well on the short reference sequences

analyzed for this project, it would never scale to larger references.
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After some thought and experimentation, I realized that the reconstruction al-

gorithm I had created was generating a sequence that was ostensibly related to the

reference, and comparing two sequences to determine how well they match is the fun-

damental task of alignments. Instead of taking multiple paths for each base mismatch,

could it be possible to guide the rebuilding algorithm by aligning the dynamically con-

structed sequence with the reference? Although it is not 100% alignment-free, this

approach would significantly reduce the computational burden of modern methods,

which aligns each of the sequence reads to the reference. What was more exciting is

that it might be able to pick out variants blind to sequence read alignments, such as

dense SNP loci or large insertions. This work culminated in Kestrel, which is a novel

first-in-class variant caller application that uses this idea.

The chapters that follow tell this story from the current state of the art to novel

applications of this new technology that are under development today.
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CHAPTER I

AN INTRODUCTION TO SEQUENCE ANALYSIS

1.1 Abstract

The arrangement of letters in our DNA has a profound impact on our lives, and

in some ways, has coded our own fate from zygote to senior citizen. It determines

our appearance, what diseases we are likely to suffer from, and it even informs our

personalities. The arrangement of DNA letters in the organisms around us has an

equally significant impact. The code of pathogens gives them tools for infecting hosts,

evading immune systems, and mitigating the effects of antibiotics. Manipulating the

code has led to a biotech revolution that has changed the way we farm and eat. It

is difficult to understate the impact that the sequence of these letters has on human

health and all living things.

Sequencing equipment is becoming smaller, more affordable, and capable of mul-

tiplexing more data per run, but the sequence reads generated by modern technology

are relatively tiny compared to the length of the molecule it came from. The human

genome consists of 3 billion bases, and with sequence read lengths in the hundreds,

finding useful information in a torrent of short reads is no small task. It requires

clever approaches, and often, expensive computing resources such as distributed and

cloud computing systems.

Modern analysis methods often align sequence reads to a reference. Since it re-

quires millions of inexact string comparisons, generating an alignment can require

many CPU-hours to complete. However, analyzing the resulting structure is often far

more efficient. Fortunately, there is emerging class of alignment-free algorithms that

offers alternatives that can decisively outperform methods based alignments.
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1.2 Next-generation sequencing

Sanger sequencing was originally described in 1975 [105] as a sequencing method using

gel electrophoresis and radioactively labeled di-deoxy nucleoside bases. It was later

improved by using one dye for each base, and so the whole reaction could be done

and electrophoresed together [110]. This had the added advantage of making it easier

to analyze the result with a computer since merging 4 lanes was no longer required.

Gels were replaced with capillaries, and at its height, 96 strands of DNA could be

sequenced simultaneously by a single machine.

Sanger sequencing was the technology that made the Human Genome Project a

success [81]. Subsequent efforts to characterize common variation within the human

genome, known an the HapMap project [22], also relied heavily on this technology.

These early efforts continue to have an unmeasureable impact on biological sciences,

but expanded efforts, such as the 1000 Genomes Project [21], required far more se-

quencing data than Sanger sequencing offered.

In 2005, the first of a new wave of sequencing technologies was published: py-

rosequencing [82]. This approach is implemented by the Roche 454 and the Thermo

Fisher Scientific Ion Torrent sequencers. Soon after pyrosequencing, reversible termi-

nator technology was released [7], and this is used today by the Illumina sequencing

platforms, which can produce up to 1800 Gb in a single run [50]. These and other

approaches developed since 2005 are collectively known as next generation sequencing

(NGS) technologies.

Because it runs many reactions in parallel, NGS sequencing has higher throughput

per run, and therefore, produces larger quantities of data in a shorter amount of time.

This increased throughput, and therefore depth of sequence coverage, has enabled

many new types of studies that were not possible before [81, 87].

The higher throughput and lower cost of NGS has also led to an explosion in

the demand for sequencing. Once relegated to well-funded laboratories, sequencing

2



Figure 1: Cost to generate 1 Mb of sequencing data compared to Moore’s law.

experiments have become more accessible and even standard practice. More afford-

able and impressively capable benchtop sequencers are now available so that smaller

laboratories can run their own projects [77]. For example, these sequencers could be

used to fully characterize the causative agent of an infection in less than 24 hours [48].

There is a monumental effort underway to find ways to make sense of this data and

to answer biological questions once out of reach. For example, the Centers for Disease

Control and Prevention (CDC) has earmarked $150 million to improve bioinformatic

and NGS approaches for molecular epidemiology [41].

As sequencing throughput increases, so does the the demand for sequence anal-

ysis. Each year, National Human Genome Research Institute (NHGRI) publishes a

well known graphic depicting the cost of sequencing against moore’s law [89], which

estimates the rate of semiconductor advancement. Figure 1 shows this graphic as

of 2015. Because of this explosion of data availability, it now takes many computer

processors to analyze that data in a reasonable amount of time, and many biological
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studies must rely on cloud computing resources to do it [28].

With improving NGS technologies and the emerging trend for benchtop sequencers,

the amount of sequencing data that will be generated in coming years will only grow.

Since semiconductors cannot keep up with this pace, we must turn to algorithms that

make the most of the processing power and memory we do have. Without it, the cost

of analysis will outstrip the cost of sequencing, and this is a serious impediment to

the progress of biotechnology.

1.3 Sequence alignment

The sequence reads produced by NGS technologies do not represent a full strand

of the original DNA; they are tiny fragments of it. For a strand of DNA that may

contain many megabases, each sequence read typically covers 100 to 500 bases of it.

Any one of these sequence reads reveals very little about the sample, so they must

be aggregated in some meaningful way.

To put the sequence data back into a useful context, the reads are typically aligned

with a reference genome. Inference about the sample is then made on the aligned

reads using tools such as the GATK [85] HaplotypeCaller and FreeBayes [40]. The

majority of variant calling pipelines follow this pattern [96, 92]. Figure 2 shows an

alignment with highlighted variants.

Although the alignment approach is the de facto standard, it does have some sig-

nificant disadvantages. Because it is essentially a string-matching problem, finding

the location of sequence reads is a complex and CPU-intensive process. To simplify

this problem, the BWA [68, 69] and SOAP2 [74] aligners use burrows-wheeler trans-

forms to generate a compressed index of the reference, and the Bowtie [64, 63] aligner

uses seed sub-sequences. These are among the most well respected tools, but the

alignment process can still take many CPU hours to complete.

No matter how advanced the alignment algorithm is, it can never correctly assign
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Figure 2: Depiction of a sequence alignment. The gray bars are sequences aligned
to a reference. Blue and red lines on the sequence reads denote loci where the read
and the reference are different. This image is a screenshot of The Broad Institute’s
Integrative Genomics Viewer (IGV).

sequence reads when it differs too much from the reference without incorporating

some assembly approach. This is especially true for sequence reads in a large insertion

because they will have no bases in common with the reference.

1.4 Alignment-free analysis

There is an alternative class of alignment-free algorithms where sequence reads are

not directly mapped to a reference. Typically, these approaches transform sequence

data to k-mers, which are short overlapping fragments of uniform length. Each unique

k-mer in a set of sequence reads is then counted, and the map of unique k-mers to

their frequency serves as the basis for genomic analysis. CHAPTER II will discuss

k-mer counting in greater detail.

Alignment-free approaches benefit by skipping the alignment step. Furthermore,

k-mers can be treated numerically, and so expensive string-matching operations are

not needed. Where an alignment and an alignment-free algorithm produce similar

results, the alignment-free approach tends to be much faster.

By avoiding alignments, many CPU cycles can be reclaimed allowing for deeper

and more frequent processing of data. As sequencing machines produce more data
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every year, these approaches represent a promising way forward. This is even more

critical with the gaining popularity of benchtop sequencers. Not every scientific or

medical lab can afford to offload analysis to a cloud, and even in CLIA certified

platforms, there is still and issue of data privacy.

1.5 Chapters

CHAPTER II discusses how sequence data is transformed into k-mers, and it outlines

key data structures and algorithms. A k-mer toolkit is presented, KAnalyze [4], and

this is the software that enable the analysis methods described in subsequent chapters.

CHAPTER III outlines an alignment-free bacterial typing project that uses k-mers

and KAnalyze. This project created a novel, although inefficient, sequence correction

algorithm. Solving this efficiency problem led to a more general method of variant

calling, which is described in CHAPTER IV.

CHAPTER IV presents a novel variant calling algorithm that does not require

sequence alignments, de Bruijn graphs, or de novo assembled sequences. A software

implementation, Kestrel, characterizes variant in regions where alignments fail.

CHAPTER V discusses novel applications k-mer technology, and it shows how

Kestrel can be used in a wide variety of applications. Future applications of this

technology are being developed, and they are discussed here.

CHAPTER VI concludes this dissertation and summarizes my contributions to

sequence analysis.
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CHAPTER II

K-MERS AND KANALYZE

2.1 Abstract

A k-mer is a sequence that is exactly k bases long, and a larger sequence can be

transformed to a set of k-mers by finding all possible substrings of length k. Viewing

sequence data as these shorter constructs is one of the keys to efficient alignment-free

genomic analysis. The transformation to k-mers takes less time than aligning reads,

and it has the power to replace alignments for an emerging class of algorithms. These

algorithms are further streamlined by avoiding string operations because k-mers have

a native binary representation.

Often, the k-mer frequency of a data set is used in alignment-free algorithms,

and this requires matching and counting all instances of each unique k-mer. Given

millions of sequence reads and many gigabytes of data, counting becomes a hopelessly

inefficient task if done näıvely. Clever algorithms are needed to make counting a

tractable problem, and this is especially true when the set of k-mers cannot not fit

into the memory of one machine.

KAnalyze [4] is the result of a software development effort to create not only a

k-mer counter, but also a toolkit of reusable components. This software is not the

first in its class, but it is by far the most flexible, and this flexibility has made it an

indispensable tool for the development of novel analysis algorithms.

2.2 Introduction

To study the genomics of some biological sample, DNA is extracted and sequenced.

There are several steps involved, but the result is typically one or more FASTQ files
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with millions of short sequence reads and quality scores for each base-call. Ideally,

these sequences cover the genome several times over and are a good representation of

the DNA in the original sample.

These sequence reads must be transformed in some meaningful way in order to

extract useful information about the genome the sample represents. Many approaches

start by mapping these reads to a reference sequence, as outlined in Section 1.3.

However, this chapter is concerned with a different kind of transformation: k-mers.

Interesting characteristics of a genome can be revealed by examining k-mer fre-

quencies, such as the genome size and read coverage [76]. Chor et al. [19] show

that the 11-mer frequency distribution of the human genome has a distinct tri-modal

distribution, which suggests that certain sequence characteristics play specific roles.

This is especially true for the CpG motif, which tends to occur only in CpG islands,

as demonstrated by the same study with 8-mers. More recently, methods based on k-

mers have led to significant advances in metagenomics [118], RNASeq analysis [98, 12],

bacterial phylogenetics [39, 38].

The algorithms presented in this paper are mostly concerned with k-mer frequen-

cies, which are represented as a set of unique k-mers in the sequence data and the

number of times each was found. This set is another view on the sequence data, and

alignment-free algorithms can make inferences based in it.

The remainder of this chapter will discuss how k-mers are generated and handled.

Subsequent chapters will outline various analysis methods using k-mer data.

2.2.1 Generating k-mers from sequences

For illustration purposes, the k-mer size in the following examples will be 4. In real

sequencing data, this length is typically in the range of 30 to 80. Section 2.2.3 will

discuss choosing an appropriate k-mer size.

K-mers can be extracted from a sequence by reading it from left to right and
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taking each k bases. The first k-mer starts on the first base, the second k-mer starts

on the second base, and so on until the last base of the sequence is added to a k-mer.

This is essentially a sliding-window of size k over the sequence. Figure 3 shows an

example of k-mers generated from a sequence.

Example: k = 4

GCGTTGCGTTA

GCGT

CGTT

GTTG

TTGC

TGCG

GCGT

CGTT

GTTA

Figure 3: K-mer generation by a sliding window.

2.2.2 Canonical k-mers

K-mers represent one strand of DNA, but sequencing protocols typically sample from

both strands. Therefore, each region of k bases is represented by two complementary

k-mers. For example, when matching the frequency to k-mers in a known gene se-

quence, only half of the sequence reads in that gene are reflected in the those k-mers.

To get the true k-mer depth, both the k-mer and its reverse complement need to be

considered.

One approach is to transform each k-mer to its canonical form, which is defined

as the lesser of a k-mer and its reverse-complement where “lesser” is defined by

sort order [60]. For example, the canonical representation of “CAAT” is “ATTG”

(its reverse-complement). The canoncial representation of “ATTG” is itself since its

reverse complement is lexically greater.
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When these canonical k-mers counted, both DNA strands are represented without

duplicating data. This tranformation has the added benefit of reducing the original

k-mer frequency set to approximately half its size. However, useful strandedness

information is lost, and so it may not be suitable for some algorithms.

2.2.3 Choosing the size

Choosing the k-mer size has been heavily researched for de novo genome assembly.

De Bruijn graphs are constructed by letting the k-mers of each sequence be a vertex

and letting edges connect the vertices where the k-mers are adjacent in sequence

reads. Repeat structures and homologous regions create loops in the graph, and so

the longest possible k-mer should be used to span them. Some software applications,

such as KMERGENIE [18] and an optimizer program for Velvet [120] attempt to pick

the optimim k-mer size given the data.

In the absence of read errors, the k-mer size might be the size of sequence reads.

However, since read errors do occur, the optimal length depends on the error rate, read

lengths, and the length of k-mers required to resolve repetitive sequence [18, 120]. If

larger k-mers must be used and the error rate causes a significant loss of data, sequence

reads could be corrected before they are transformed to k-mers [119]. This correction

would increase the execution time, but it may still be faster than alignments.

Smaller k-mers have been found to be usful for other purposes. 16-mers may be

adequate for bacterial species identification [48], and a k-mer size of 10 to 16 is useful

for correcting sequence read errors [119].

2.2.4 K-mer Space

The analytic power of these approaches is related to the size of k-mer space, which

is defined as all possible k-mers of size k. For example, there are 431 unique k-mers

in 31-mer space. If the human genome was a random sequence of bases, then the

chance of randomly picking a k-mer that was found in it would be 3× 109 · 1/431, or
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6.5× 10−5. Real genomes have structure that makes them non-random, however, an

adequately chosen k and a good algorithm can often identify useful patterns in the

data.

It is worth noting that this space inherently contains mutual information because

a k-mer and its reverse complement are linked. However, by using the canonical

representation (Section 2.2.2), this mutual information is removed, and the k-mer

space is reduced to almost 1
2

its original size (“almost” because some k-mers are their

own reverse-complement).

When necessary, I will refer to the space of k-mers with size k > 0 as Kk. This

space is a set with size (cardinality) |Kk| = 4k. When k is 1, then this space becomes

a set of the 4 bases. Technically, this space could have k = 0, in which case it is an

empty set Kk = ∅, however this is not useful. I restrict k to values greater than 0 for

this discussion.

2.2.5 Advantages and disadvantages

One key advantage of k-mers is that they naturally represent fragments of the genome

in a compressed form. As will be shown in Section 2.3.1, each k-mer can be represented

as a number. Algorithms and data structures are far more efficient on these numbers

than they are on their string equivalents. This numeric structure is made possible

by a binary representation that can also be transformed with the bitwise operations

available in many programming languages.

Many bioinformatic algorithms align reads to a reference. This takes considerably

more time and more computing resources to complete than transforming the data to

a set of k-mer frequencies because of the string operations that must be performed

to match the read and the reference. With efficient data structures, such as the one

outlined in Section 2.3.6, these frequencies can be rapidly queried.

K-mers are a rigid structure. When any base is changed, such as sequence read
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errors or genomic variants, the k-mers that touch that base are different. It is difficult

to perform fuzzy matching with k-mers, and when it is done, it typically comes in the

form of a limited hamming distance. If more than one variant occurs in the region

of a k-mer, such as 3 or 4 SNPs, or if the sequence contains indels, attempting to

apply this type of approach with k-mers becomes unwieldy and inefficient. Generally,

a k-mer matches a region of k bases, or it does not, and algorithms have to work

around it. It may appear that k-mers are unsuited for nothing but the most trivial

analysis tasks, however, the algorithm presented in CHAPTER IV shows how k-mers

can characterize genomic events that cause even the best alignment algorithms to fail.

The most significant disadvantage is that some valuable information is lost when

sequences are shredded to k-mers. This is especially true when the sequence reads are

used to generate k-mer frequencies. In this case, each k-mer is a snapshot of k bases

from a sequence read, and it is irrecoverably separated from the rest of the data in

that read. Furthermore, paired-end context is lost. De Bruijn graphs preserve some

linkage among k-mers of a read, and SPAdes [5] preserves paired-end information

by using paired de Bruijn graphs. In most cases, however, this causes a significant

problem when dealing with genomic regions that share homology with other regions,

such as paralogues or repeats.

In the future, hybrid approaches may be able to use k-mers to increase the speed

of analysis, but preserve sequence read information to improve it. Very little has been

done with such approaches, but I think some of the best algorithms in the future will

operate this way.

2.3 Methods and algorithms

The algorithms and data structures described in this section are implemented by

KAnalyze [4], a k-mer toolkit that I developed.
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2.3.1 Binary and numerical representation

K-mers are not strings: they are numbers. For each k-mer, there is an integer V ∈

Z, 0 ≤ V < 4k. This relationship is bijective, so the value V maps back to the original

k-mer string. This mapping is unambiguous as long as k is known.

Just as the decimal system is base-10 with 10 symbols, [0-9], there is a base-4

system with symbols [ACGT]. Let A = 0, C = 1, G = 2, and T = 3. By assigning

U = T = 3, RNA sequences may also be represented. For each letter, its value is

multiplied by 4 raised to a power for the position of the letter. This is done for all

bases in the k-mer, and the values are summed to obtain V . See Equation 1 for the

transformation and Figure 4 for an example.

V =
N∑
i=1

v(si) · 4N−i (1)

V := Numeric value of a k-mer

s := Character string representation of a k-mer

N := Number of characters in s

si := Character in s such that s1 is the left-most character and i ∈ 1 . . . N

v(si) := Assigns a value to a character, si (A = 0, C = 1, G = 2, T = 3, U = 3)

More formally, let Kk be the set of all possible k-mers of size k (the k-mer space)

and Kk be one k-mer Kk ∈ Kk. For each possible k-mer size k > 0, there exists a

bijection between a subset of integers Z and Kk, such that ∀Kk ∈ Kk∃! V ∈ Z, 0 ≤

V < 4k.

This numeric representation is more compact, and each k-mer takes exactly 2

binary bits because there are 4 bases (log2 4 = 2). Since each byte is 8 bits, 4 bases

can be compacted into a byte. The string representation consumes one byte per base,

so the numeric representation requires 1
4
th of the space with no loss of data.
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Example: GTTA

i = 1 2 3 4
s = G T T A

v(si) = 2 3 3 0

V =
N∑
i=1

v(si) · 4N−i

= 2 · 43 + 3 · 42 + 3 · 41 + 0 · 40

= 188

Figure 4: When it is converted to an integer, the k-mer “GTTA” in k = 4 space maps
to the integer value 188. Since this relationship is bijective, 188 also maps uniquely
back to “GTTA”.

Because the numeric values of the bases were assigned in lexical order (A = 0,

C = 1, etc.), sorting k-mers in their numeric form is equivalent to sorting them as

strings. When viewing the bases in their binary form (A = 00, C = 01, G = 10, T

= 11), another useful property emerges: the complement of the base and its binary

complement are the same. For example, Ac = 11 = T and Cc = 10 = G.

Note that ambiguous bases, such as N, cannot be represented in this binary en-

coding scheme. Therefore, any k-mer containing an ambiguous base is undefined.

2.3.2 K-mer counting

Counting the unique k-mer frequency is a trivial task when the data are small. The

simplest implementation would take each sequence read, k-merize it, and update a

hash table in memory that maps k-mers to counts. When the number of k-mers is

sufficiently small, this approach is fast and runs in O(n) time. When the data are

large, caching all k-mers in memory is no longer feasible, and a different approach is

needed.

One approach is to reduce k-mers from sequence read errors. Each one can produce

up to k extra k-mers, and these will have a frequency around 1. One solution, as
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implemented in BFCounter [86], is to stochastically remove these singleton k-mers

using a Bloom filter [10]. This statistical construct does not yield exact k-mer counts,

but it does reduce the data. Another approach, as implemented by khmer [121],

attempts to improve accuracy by using an array of Bloom filters. For large data,

real k-mers can still overrun memory, and these stochastic filters cannot solve that

problem. For our purposes, we will look at efficient implementations of exact counters.

DSK [102] is one interesting exact k-mer counter that implements a multi-pass

approach over the sequence data using an impressively small amount of memory [4].

As a tradeoff, this implementation does not scale as well to larger data.

The most popular k-mer counter today is Jellyfish [80]. This program uses a

limited-size hash table to store k-mer counts in memory. When the hash table reaches

a set capacity, it is offloaded to disk. When all sequence reads are processed, the hash

tables are merged. Jellyfish can fill hash tables using multiple threads, which will

lead to race conditions when the same memory location is modified simultaneously.

Atomic locks on the data structure can eliminate these conditions, but this approach

would spend too much time acquiring and releasing the locks. Instead, Jellyfish

uses compare-and-swap (CAS) operations to detect and recover from simultaneous

updating. This advanced hash table implementation is very fast, and it has made

Jellyfish the de facto choice for k-mer counting.

All of these implementations come with significant limitations. For example, the

output of Jellyfish is a hashtable on disk that can be queried, but listing the set

of k-mers is not as easily done. Therefore, comparing the k-mer distributions from

two samples is not a simple algorithm since the records are distributed in the data

structure according to a hash function. Custom transformations on k-mers are also

not as easy to perform with these tools. Furthermore, none of them are distributed

with a well-documented application programming interface (API), so they cannot be

directly integrated into larger software applications.
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For the algorithms described in later chapters, these existing tools had too many

limitations, and so I created one that fit my needs.

2.3.3 KAnalyze

I set out to create not only an efficient k-mer counter, but an efficient toolkit of

reusable parts. This work resulted in KAnalyze [4]. The project is designed around

an API, which is then driven by a user interface or by another program, and a

command-line user interface is included in the package. Other tools do not make the

API available, so other programs must drive them by their user interface.

KAnalyze is a collection of components that can be connected in flexible ways.

The only requirement is that the output type of one component match the input type

of the next. Pipelines of components, or modules in KAnalyze, can be built in flexible

ways. For example, a filtering component can be placed arbitrarily in a pipeline, and

k-mers can be transformed at almost any step as needed. This flexibility has been

critical in many of the applications and algorithms that follow.

Each component is connected by an in-memory queue that is synchronized. When

no data is available for a component, it sleeps until an upstream component writes to

the queue. The component then wakes up, processes the data, writes it to the next

queue, and information continuously flows through the pipeline. Components run in

threads for task-level paralellism, and multiple components may execute a single step

for data-level parallelism. To avoid excessive overhead from synchronization, data is

written in batches. Batch sizes and queue sizes can be configured, but are fixed at

runtime so that the pipeline is memory stable. The value of KAnalyze lies with this

pipeline structure because it is fast, flexible, and extensible.

2.3.3.1 Design philosophy

This project is written in Java for its flexibility and speed of development. Throughout

the design and implementation of this software, the principals of scientific software
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engineering were observed [117]. KAnalyze comes packaged in a project under version

control with Git and an automated build system managed by Apache Ant. Automated

unit-test code is also included in the form of JUnit test suites, which can be easily

executed using the build system.

Java is a strongly typed language, and so values and data structures have a defined

format. This is perhaps the opposite of Python’s “duck typing”1, which defers all type

checking to runtime. In Java, an API method can require that it be passed an object

of a specific type, and it is up to the caller to make any transformations to that type.

The interface of that type is known, and so there is no ambiguity about its structure

or interface. In Python, however, the caller can pass anything to an API, including

lambda functions. Python is an incredibly flexible and useful language, but it was

unsuitable for an application like KAnalyze because everything is checked to mitigate

bugs that are difficult to trace.

The disadvantage of using Java is that it lacks unsigned integers, and it severely

limited performance when k-mers sizes were expanded past 31 (Section 2.3.3.3). How-

ever, the 31-mer limitation was debilitating for experiments on human data. This

problem might have been solved by using other languages, namely C++, but other

properties of Java still made it a good choice (see Section 2.3.3.2 for an example).

I believe that proper error handling is one of the cornerstones of good software

design and that most programmers do not dedicate enough effort to it. For example,

if KAnalyze reads a FASTQ file that contains irrecoverable problems, the error it

reports includes what it found, what it expected to find, and the corresponding line

number. I have seen too many bioinformatics applications that lack error detection so

completely that it can’t detect when it is given the wrong file type; the program either

crashes with a cryptic error message, silently ignores the data, or inputs nonsensical

1Alex Martelli wrote in a newgroup, “In other words, don’t check whether it IS-a duck: check
whether it QUACKS-like-a duck, WALKS-like-a duck, etc, etc, depending on exactly what subset
of duck-like behaviour you need to play your language-games with.” (2000)
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data. In a scientific setting, this should never be an acceptable practice.

Java makes it easy for the prudent programmer to write applications that are

very difficult to crash, and the result is sometimes called “bomb-proof” code. These

programs check everything, assume nothing, and even check for some cases that should

never occur. For example, what if a FASTQ and FASTA are accidentally concatenated

and used as input? The näıve parser would assume that it is still reading a FASTQ

file when it encounters the FASTA records. It might generate “sequences” containing

FASTA headers instead of sequence data. Other code, probably equally as näıve,

might try to use this sequence and fail with some meaningless error. Since this crash

would not immediately implicate the FASTQ parser or the input file, debugging

this kind of code requires many unnecessary hours of user and programmer time.

In contrast, the bomb-proof parser fully checks every record, and when it finds a

problem, it reports the error. The user then knows which input file is to blame and

where in the file the offending data was found. The näıve parser leaves the user with

no information and no choice but to start troubleshooting blindly.

Figure 5 shows a sample of code from the FASTQ parser. This section of code is

entered at the end of a sequence line or when whitespace is found while reading the

sequence characters. It allows arbitrary whitespace at the end of the line, but it does

not allow spaces embedded in the sequence. Lines 5 generates the error messages

when these rules are violated, and line 15 generates an error when the end of the

file is reached at this point, which would truncate the sequence record. The function

err() reports the error and stops processing the file. sourceName and lineNum are

the name of the input file and the current line number, respectively.

Built within KAnalyze is an event handling system that makes it possible for

components and pipelines to report problems and make no assumptions about how

they are handled. The events passed through this system are one of two classes. An

error means the component aborted processing the data and that the analysis task
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1 // Only allow whitespace to end of line

2 while (readBuffer[readBufferIndex] != ’\n’) {

3
4 if (! Character.isWhitespace(readBuffer[readBufferIndex ]))

5 err("FASTQ record contains text data after whitespace

on a line with sequence data (whitespace may

surround the sequence string , but may not be

embedded in it): " + StringUtil.charDescription(

readBuffer , readBufferIndex), sourceName , lineNum);

6
7 ++ readBufferIndex;

8
9 // Refresh buffer

10 if (readBufferIndex == readBufferSize) {

11
12 readBufferSize = refreshBuffer(reader , readBuffer , 0);

13
14 if (readBufferSize <= 0)

15 err("FASTQ file truncated while reading sequence

data: End of file before reading quality data

for a record", sourceName , lineNum);

16
17 readBufferIndex = 0;

18 }

19 }

Figure 5: FASTQ parser code that is entered when whitespace is found in a sequence
line after sequence characters are read. Arbitrary whitespace is allowed at the end
of the line, but it may not be embedded in the sequence. Line 5 shows the error
reported when this rule is violated. Line 15 shows the error reported when the end
of the file is reached at this point in the FASTQ record, which would truncate the
record before the quality string was read.

should be stopped. A warning reports conditions that were recoverable, but may have

lead to incorrect results. When an event is reported, it is up to the implementation

to decide how to handle it. For example, a command-line interface might write errors

to standard output, but a larger system using the API might log it or stop some task

the KAnalyze components are only a small part of.

Building this level of error handling into a system requires a significant devel-

opment effort. KAnalyze dedicates thousands of lines of code to the error handling

system and the checks that push events to it. In my experience, however, it takes less
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than 10 minutes to find and fix a bug, and this is only possible because error condi-

tions are adequately reported. The time spent on error handling has saved countless

hours of debugging and troubleshooting.

Documentation is also critical to making a project maintainable and usable. KAn-

alyze has a manual written in LATEX and distributed as a PDF file. It contains ex-

ample usage, all command-line options, and information about the structure of the

KAnalyze project.

KAnalyze has a custom command-line processing library that allows each option

to be defined with a single object, which contains the name of the option, default

values, help text, and code for processing the option. Because options are defined

in one place, it is easier to add and modify them. These options make API calls

to configure the module, so applications using the API have access to all the same

features.

For maintenance programmers and developers using the API, Javadoc comments

appear on every class, method, and data member in the project. These comments

can be used to build a navigable HTML site documenting all elements of the project.

Documentation generation is automated in the build system.

This section describes good software engineering principals that helped make this

project a success. As part of my work, I hope to inspire others bioinformatics pro-

grammers to use them.

2.3.3.2 Dynamically loadable classes

Many features are implemented by classes that are loaded dynamically at run time.

These classes must implement an interface known to KAnalyze and have a default

constructor. Java’s Reflections API and flexible class-loading system make it possible

to find and load the classes at runtime. Custom components can be created by a user,

compiled independently from the rest of the code, and loaded at run time. KAnalyze
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needs to know nothing about these components a priori .

Several features are handled by these dynamic elements. For example, the se-

quence reader component uses the input type, such as FASTA or FASTQ, to find and

load a class that handles converting the bytes in the input files into batches of se-

quence reads. Because of this architecture, a custom reader can be integrated directly

into KAnalyze. It can parse sequence data in any format, and it could even read from

a database. KAnalyze can automatically resolve the reader for custom file patterns

and even output help on the command-line for custom readers as if the reader were

part of the KAnalyze system. At its core, custom readers and readers shipped with

the package are not treated any differently; they are all dynamically loaded as needed.

Like the sequence reader, the output writer follows the same convention. The

desired format can be specified on the command line, and the writer is automatically

loaded at run time. These also have methods for getting information about the writer,

so that KAnalyze can list them and a help string on the command-line.

Filters, discussed in Section 2.3.5, are also loaded dynamically, and these enable a

vast array of custom transformations that can be applied to data within the KAnalyze

pipeline.

This is one of the features that sets KAnalyze apart from other k-mer processing

programs. Instead of a narrowly defined use case, KAnalyze can be shaped to meet

the unique needs of applications that I, the original programmer, could never imagine.

As I developed the algorithms and software described in later chapters, I made full

use of this flexibility.

2.3.3.3 K-mer structure

In the KAnalyze pipeline, binary k-mers are packed into arrays of 32-bit integers each

encoding 16 bases, and each 32-bit integer is referred to as a k-mer word. The binary

representation of k-mers is described in Section 2.3.1.
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Integers are two’s complement where the highest-order bit is set when the number

is negative, and there is no support for unsigned integers or alternative primitive

data structures in Java. This presents a challenge for comparing k-mer order, and

KAnalyze must sort k-mers to count them (Section 2.3.4). If a k-mer word starts

with G or T, its integer representation is negative, and it would be sorted before a

word starting with A or C. There are several approaches to solving this problem, such

as comparing a copy of the word with the highest-order bit negated, but the copy

operation caries a significant performance penalty.

An alternative approach is to test for negative numbers and handle them accord-

ingly. Algorithm 1 is an example of how this is implemented in KAnalyze to test for

k-mers for a strictly greater-than relationship. To further mitigate the performance

penalty, shortcut logic evaluation is used once the sign of one k-mer is known.

Algorithm 1: Greater-than k-mer comparison with 32-bit signed integer words
Input: left: Left k-mer as an array of 32-bit words
Input: right: Right k-mer as an array of 32-bit words
Input: N : Number of words per k-mer
Output: A boolean value indicating TRUE if left is strictly greater than right and

FALSE otherwise
1 index← 0 . Loop control variable

2 while index < N do
3 if left[index] 6= right[index] then
4 if left[index] < 0 then
5 return right[index] ≥ 0 || right[index] < left[index]
6 else
7 return right[index] ≥ 0 && right[index] < left[index]

8 index← index + 1

9 return FALSE

It is possible that performance may be improved by simply avoiding the high-

order and allocating 15 bases per word instead of 16. Within memory, this makes

sense. It would require more memory and disk space when k-mers are offloaded as

binary structures. Also, not all programming languages suffer from a lack of unsigned

integers, and this would make little sense in that context. Complicating the data
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structure may also complicate future applications. Here I made a design decision to

suffer the performance impact for comparisons and keep the structure cleaner.

2.3.3.4 K-mer algorithm

As outlined in Section 2.2.1, a sequence is converted to a k-mer using a sliding window

of size k over the sequence. Because neighbors share all but one base, recomputing the

whole window at each step is unnecessary. To find the next k-mer from the previous

one, the whole k-mer is shifted by one base, which discards the first base, and the

next base from the sequence is appended. This process continues until the last base

is read. If an ambiguous base is encountered, such as N, the current k-mer must be

discarded and rebuilt starting with the next base.

Algorithm 2 depicts the process of converting the sequence read. For the purpose

of illustrating this algorithm, the k-mer words are concatenated into a single long

word, kval, which has exactly the number of bits needed to represent the k-mer.

When it is shifted to the left by two bits, the left-most base is discarded, and two

zero bits are inserted on the right end. load keeps track of how many valid bases are

in kval, and it is reset when an ambiguous base is encountered. Only full k-mers are

emitted.

KAnalyze implements Algorithm 2 without a switch statement. Instead, an array

is pre-loaded with the numeric values for each base character to avoid the multiple

tests and jumps associated with the switch implementation.

2.3.4 KAnalyze count

The KAnalyze count module outlined in Figure 6 breaks k-mer counting into two

distinct phases. The first phase is executed by all elements up to the split component,

and the second phase begins with the merge component. With this parallel pipeline

structure, KAnalyze is able to scale to handle large amounts of data.

In the first phase, k-mers are accumulated into a memory array up to a configurable

23



Algorithm 2: String to numeric k-mer conversion
Input: s: A nucleotide sequence
Input: k: Kmer size
Output: A set of numeric k-mers

1 M ← ∅ . Multiset of k-mers

2 kval← 0x0 . Current k-mer

3 load← 1 . Number of valid bases in kval
4 for each character c in s do
5 kval← lshift(kval, 2) . Left shift 2 bits (discards first base)

6 switch c do
7 case A do

. Nothing to add: A is 0

8 case C do
9 kval← kval | 0x01

10 case G do
11 kval← kval | 0x02

12 case T | U do
13 kval← kval | 0x03

14 otherwise do
15 load← 0

16 if load = ksize then
17 M ←M ∪ kval
18 else
19 load← load + 1

20 return M

limit. The array is sorted, the number of occurrences of each k-mer is counted, and

this set of sorted k-mers and counts is offloaded to disk. Each of these groups of

k-mers is called a “segment”. The array is then filled with the next set of k-mers, and

the process repeats. To reduce disk space consumption by segment files, binary k-

mers are written, and k-mer counts are compressed using a variable-length ULEB-128

encoding.

The second phase merges all segments using a modified external merge sort algo-

rithm [56], and the final k-mer counts are sent to output.

Sorted output is inherent to this k-mer counting approach, and this has some

useful properties. When comparing the k-mers of two or more samples, a trivial

24



Figure 6: The count pipeline contains 5 basic steps. Blue arrows depict data transfer
in memory, and red arrows depict data transfer to disk. Sequence data is read from
a file, batched in memory, and sent to a component that translates the sequences to
binary k-mers. The split component aggregates a set number of k-mers in memory,
sorts them, and offloads the k-mers and counts to disk. When all sequence data
has been processed by the split component, the merge component merges the k-mer
counts from each file. Finally, the k-mer counts are written to output.

O(n) algorithm can read the k-mers for each set. This sort order can also be defined

arbitrarily, which was a key to efficiently building a new data structure essential for

quickly randomly querying k-mers from disk, as discussed in Section 2.3.6.

2.3.5 Filtering and transformations

Because of the pipeline structure, filtering and transformations can occur in a number

of places without modifying existing components. With dynamic component loading

(Section 2.3.3.2), this is one of the most powerful features of KAnalyze.

2.3.5.1 Filtering k-mers

The count pipeline has hooks for dynamic k-mer filters in two places: after k-mers are

generated from sequence data (pre-count), and after they are counted (post-count).

The pre-count filter can remove or modify k-mers before they are aggregated and

counted. Typically, k-mers are reverse-complemented or changed to their canonical
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form at this step (Section 2.2.2). Section 2.3.2 discusses stochastic k-mer counting,

and this feature could be added to KAnalyze by placing a filter at this location.

The post-count filter is typically used to filter low-frequency k-mers. This was the

goal of the stochastic k-mer counters, however, KAnalyze can accomplish the same

goal with exact k-mer counts. The stochastic filters may still be useful for speeding

up the count pipeline in particularly time-sensitive tasks, but this remains untested.

These filters are unrestricted, and they can alter k-mers in any way needed to

accomplish a task. For example, KAnalyze has an option to output the forward and

the reverse complement of each k-mer, and this pre-count filter writes twice as many

k-mers as it reads.

2.3.5.2 Sequence reads

The overall quality of k-mers can be improved by removing low-quality bases, and

FASTQ files encode this information for each base. When enabled, the count pipeline

will automatically attach a quality filter to the sequence reader. This filter examines

each base’s quality score, and when it is below a set threshold, the corresponding base

in changed to an N. Because ambiguous bases cannot be represented (Section 2.3.1),

all k-mers containing N are discarded. This effectively removes all k-mers that would

have contained a low-quality base.

All sequence readers use filters, but only the FASTQ quality filter is packaged

with KAnalyze. Custom filters for any reader may be defined and loaded at run time.

2.3.6 The indexed k-mer count format

2.3.6.1 Minimizers

Minimizers [103] are a method for grouping k-mers such that neighboring k-mers in

a sequence read are likely in the same group, and this arrangement can be exploited

to create fast random access data structures by selectively loading subsets of k-mers

into memory as needed. Kraken [118], a metagenomic application, uses this method
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to rapidly query phylogenetic groups associated with k-mers.

To find the minimizer of a k-mer, all forward and reverse-complement sub-k-mers

of a set size are extracted. The lesser of these sub-k-mers, as defined by sort order,

is the minimizer of the original k-mer. The next k-mer in a sequence will likely have

the same minimizer because neighbors overlap by k − 1 bases. Therefore, grouping

k-mers by their minimizer and sorting within the groups creates a data structure such

that once one k-mer is found, the same group can be searched for the next k-mer.

The advantages are realized when this minimizer-grouped data structure resides

on disk and is opened as a memory mapped file. Pages of this file are swapped into

memory as they are accessed, and they are swapped out of memory when no longer

needed. Therefore, once a k-mer is searched, the whole minimizer group is likely

loaded into memory for the next k-mer search. This creates a data structure that can

be queried efficiently without loading the whole set into memory.

The disadvantage to this approach is that it is relatively expensive to compute

minimizers. For this reason, the minimizer of a k-mer is computed only if it is not

found in the last minimizer group. If the k-mer is not found a second time, then it

does not exist in the file. Kraken uses this same optimization.

KAnalyze is organized so that all k-mer comparisons are implemented by an in-

terface, and the class implementing that interface determines the sort order. When

output is written to an IKC file, or if minimizers are turned on, KAnalyze uses an

implementation of the class that tests the minimizer first and then the k-mer if the

minimizers are equal.

Sorting with a minimizer suffers a massive performance penalty if the minimizer

is computed for each comparison. Since k-mers are implemented as an array 32-

bit words, an additional word is allocated for each k-mer to cache the minimizer. To

simplify comparisons, the maximum minimizer size is 15, which occupies 30 bits. This

conveniently avoids the high-order bit, and so minimizers can be compared without
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testing for sign.

2.3.6.2 IKC file format

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

---+-------------------------------------------------------------------------------+

1 | MAGIC |

---+-------------------------------------------------------------------------------+

2 | MAGIC | VERSION |

---+-------------------------------------------------------------------------------+

3 | RESERVED | MIN_SIZE|

---+-------------------------------------------------------------------------------+

4 | KMER_SIZE | MASK |

---+-------------------------------------------------------------------------------+

5 | INDEX_OFFSET |

---+-------------------------------------------------------------------------------+

6 | META_OFFSET |

---+-------------------------------------------------------------------------------+

7 | ID |

---+-------------------------------------------------------------------------------+

8 | ID |

---+-------------------------------------------------------------------------------+

9 | ID |

---+-------------------------------------------------------------------------------+

10 | ID |

---+-------------------------------------------------------------------------------+

| |

| |

| DATA |

| |

| +------------+ |

| | KMER | KEY | |

| +------------+ |

| |

| |

| |

---+-------------------------------------------------------------------------------+

| |

| INDEX |

| +--------------------+ |

| | MINIMIZER | OFFSET | |

| +--------------------+ |

| |

---+-------------------------------------------------------------------------------+

| |

| METADATA |

| |

| +-------------+ |

| | KEY | VALUE | |

| +-------------+ |

| |

| |

---+-------------------------------------------------------------------------------+

Figure 7: Structure of an IKC file.

The KAnalyze API includes classes for reading and writing this data structure,

which it calls the indexed k-mer count (IKC) format. To output this file efficiently,

k-mers must be received by the IKC writer in their minimizer groups, and k-mers in
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each group must be sorted.

The IKC format is shown in Figure 7. The file header starts with a magic

value, which all IKC files must have. This is a NULL-terminated string contain-

ing “Idx Kmer Count” (UTF-8/ASCII encoded). The next field is a version, and it

tells the IKC reader how to interperet the file. The format shown here is version

1. Reserved fields are strategically placed for future use. The k-mer size is next. A

minimizer mask in an XOR mask applied to minimizers to break up large groups due

to low complexity, such as repetitive “A” in the sequence data. By default, this is 0

(binary string of all zeros), which disables masking. The index and metadata offsets

are 64-bit file locations for these sections, which are described below. Lastly, the

ID field is filled arbitrarily by the writer, and it may use the field to identify what

software created the file.

The data section begins immediately after the header, and it is an array of k-mer

records. Each record is allocated enough bytes to store the k-mer in its binary form.

Each k-mer associated value, or key, which is a signed 32-bit integer. The KAnalyze

count pipeline writes the frequency into this key, but the key may be any value as

needed by the application. These records are sorted by minimizer and then by the

k-mer.

The index section is an array minimizers and the file offset where the minimizer

group begins, which will always point to a location in the data section. Each record

is a 32-bit integer and a 64-bit offset.

The metadata section follows the index, and it is optional. Instead of the data key

representing a k-mer count, it can represent a key in this metadata section. Therefore,

the key is a 32-bit integer. The value is a null-terminated string, and it is up to the

implementation to define the format of that string. This section allows the k-mers to

index any kind of data, such as phylogenetic associations. The IKC format was built

with applications like Kraken in mind, but it was made flexible enough to associate
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k-mers with any kind of data a particular application might demand.

2.3.6.3 IKC Searching

When the KAnalyze IKC reader loads a file, it first reads the index section and builds

a binary tree so that the start and stop offsets of each minimizer group can be looked

up in O(log n) time.

When looking up a k-mer, it first searches the last minimizer group with a binary

search. If the k-mer is not found, the minimizer is computed, and if it is different

from the last group, the correct minimizer group is searched. If the k-mer is not found

on the second search, the key returned is 0. These are the optimizations that Kraken

described.

Because k-mers from the same sequence tend to be grouped by minimizer, the

minimizer group is loaded into memory when the IKC is opened as a memory mapped

file. When a k-mer group is not used, its memory is freed. With this format and

the search optimizations, the IKC provides very fast k-mer lookups using minimal

resources.

2.4 Results

2.4.1 Methods

Testing was executed on a 12 core machine (2 x Intel Xeon E5-2620) with 32 GB of

RAM (DDR3-1600), RAID-6 over SATA drives (3 GB/s, 72K RPM), and CentOS

6.7. Commands were executed with custom C code that spawns the process, restricts

it to 4 cores, and monitors its memory usage. 2 cores were chosen from each processor

on this machine, and they were not part of the same hyper-threading group.

Two data sets were tested independently, human chr1, from the hg19 reference,

and SRR014079, a random 1000-Genomes data set. These were chosen because they

contain a similar amount of sequence. However, chr1 is an assembled sequence in a

FASTA file, and SRR014079 is a set of sequence reads in a FASTQ file. Both represent
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a potential use of KAnalyze that is different. Subtly, chr1 also tests the KAnalyze

sequence readers, which can break large records into fragments that produce the same

k-mers as the whole sequence. This preserves memory, and the parallel pipeline does

not have to wait for a large sequence to be loaded.

KAnalyze and Jellyfish were tested with 31-mers and 128-mers. Both of these

applications were originally restricted to 31-mers, but later updates added large k-

mer support. 31-mer performance is measured to preserve historical information, and

128-mers are tested to see how well the program scales as the k-mer size is increased.

For KAnalyze, the output is a sorted tab-delimited text file of k-mers, as nucleotide

strings, and their counts. The Java virtual machine (JVM) is allowed 3 GB, and all

default KAnalyze options were used. A pre-2.0 release of KAnalyze, 1.0.0dev5, was

used for these tests

Jellyfish parameters need to be tuned to maximize performance given the resources

available. Before executing these tests, preliminary benchmarking was done to de-

termine the best parameters for running in 3 GB of RAM and 4 cores. For 31-mers,

Jellyfish was run with a hash size of 536870912 elements and 4 threads. For 128-mers,

Jellyfish was run with a hash size of 134217728 and 4 threads. Jellyfish version 2.2.6

was used for these tests.

Jellyfish outputs a hash table of k-mer counts. The records are in an order defined

by the hash function, which is effectively random. Jellyfish can write k-mers to a

FASTA file where the record ID is the k-mer count. Custom Python code converts

that FASTA output to a sorted tab-delimited k-mer count file, identical to KAnalyze

output, so that the results can be compared. This conversion is not included in the

Jellyfish runtime or memory metrics reported in this section.

A custom Python pipeline executes k-mer counting with a simple näıve algorithm,

and it reflects what an average bioinformatician would do if all k-mers could not be

loaded into memory as they are counted. Each sequence is read, k-mers are extracted
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as substrings, and each is dumped into a file. The file is sorted with the Linux sort

command. Python code then reads the sorted file and collapses the list of k-mers into

k-mer counts. The output produced is identical to the KAnalyze output.

The final tab-delimited k-mer count file from each of these three approaches (KAn-

alyze, Jellyfish, and the simplistic Python script) should be exactly the same if each

approach is correct. A SHA-1 checksum is computed over each file, and the checksum

for each is compared.

2.4.2 CPU performance

Figure 8: KAnalyze runtime performance vs Jellyfish. (a) 31-mer (b) 128-mer.

For 31-mers over both data sets, Jellyfish is clearly faster than KAnalyze (Fig-

ure 8(a)). For 128-mers, however, KAnalyze begins to close the performance gap, and

this suggests that is some cases, KAnalyze may scale better (Figure 8(b)).

The original KAnalyze publication [4] tested the same data sets, but in that case,

KAnalyze was faster than Jellyfish. This loss of performance in the current version

is due mostly to the fact that k-mers are compared by 32-bit words, and the words

have to be compared accounting for negative numbers because Java does not have

unsigned integers (Section 2.3.3.3). The original version restricted k to 31 or less, and

the k-mer was stored as a 64-bit long integer.

Despite these differences, it would still likely take far more time to convert the
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Jellyfish output to some of the formats that KAnalyze can output natively, such as

the IKC file. Recall that the Jellyfish output is an unsorted hash table and that

the time to perform conversions to the k-mer count format are not included in these

metrics. The conversions added an average of 2707 seconds to the 31-mer SRR014079

test case and 2778 seconds to the 31-mer chr1 test case (approximately a 5x KAnalyze

speedup when compared to Jellyfish).

2.5 Discussion

The flexibility of KAnalyze makes it a powerful tool for transforming sequence data.

Its pipelined architecture enables non-trivial data transformations with both built-in

and custom components. Filters can be inserted in almost any step, and k-mers can

be altered in any imaginable way. Furthermore, KAnalyze’s merge-sort approach to

counting not only sorts the output, but it makes it possible to write more complex

data structures, such as the IKC format. KAnalyze provides a foundation for k-mer

transformations unlike anything available today.

Jellyfish is the de facto k-mer counter, but since it is very rigid in its design,

it cannot be extended easily. Since its output is a hash table of k-mer counts, the

results must be loaded into memory or transformed to a different data structure. The

flexibility of KAnalyze makes it amenable to new ways of using k-mers. KAnalyze

cannot compete with Jellyfish in terms of raw speed to its native output, however, it

can better support many algorithms where a hash table is not practical.

The effort to build this platform was a software engineering endeavor. If scientific

programs are unstable, then the inferences made from their results are unreliable.

Error conditions, no matter how unlikely, must tested before they cause the program

to crash or output incorrect data, and well designed software testing practices should

be used to ensure the stability of the code. As a scientific software engineer, this is

an issue I take seriously, and I hope to inspire others to do the same.
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CHAPTER III

ALIGNMENT-FREE SPOLIGOTYPING

3.1 Abstract

Tuberculosis (TB) is a global threat that claims more more than a million lives each

year. Fortunately, new treatment options and better monitoring capabilities have led

to a sharp decline in TB disease over the past few decades, and rates continue to fall.

Although these improvements have saved many millions of lives, additional advances

are needed to reach the World Health Organization (WHO) goal to end the epidemic

by 2035.

Some of the most powerful new methods use whole genome sequencing (WGS)

to characterize infections and outbreaks. With advanced techniques, this data can

precisely determine the lineage of the bacteria and accurately identify patterns of drug

resistance. WGS is a powerful tool in the battle to end TB, but advanced analysis

methods are needed to maximize its impact.

A great deal of information is still stored in the context of older techniques, such

as spoligotyping. As the transition is made from the laboratory assays to modern

WGS methods, it is helpful to use sequencing data to recapitulate the results that

would be obtained from in vitro experiments. This chapter discusses a new method

for performing spoligotyping from sequencing data.

As is common in scientific endeavors, the answer to one question inspires a new

question. This was my experience with this work, and in trying to find a viable

solution to one problem, I realized that it had much broader implications. This led

directly to the work presented in CHAPTER IV.
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3.2 Introduction

3.2.1 Treating Tuberculosis Disease

According to the 2015 World Health Organization (WHO) Global Tuberculosis Re-

port [1], 9.6 million people were ill with Tuberculosis (TB) disease in 2014, and 1.5

million of those victims died. TB ranks with HIV/AIDS, which claimed 1.2 million

lives in 2014, as the leading cause of death by infectious diseases. Multi-drug resistant

(MDR) cases are of particular concern, which accounts for 3.3% of new cases and 20%

of previously treated cases. Of the MDR cases, 9.7% are extensively drug resistant

(XDR), and these are far more difficult to treat.

Fortunately, 43 million lives have been saved since 2000, and TB mortality has

fallen 47% since 1990 [1]. In the past decades, better treatment options and diagnos-

tics have changed the landscape of this disease. The WHO intends to end the TB

epidemic with a targeted 95% reduction of deaths between 2015 and 2035. With cur-

rent tools and trends, the annual decline in the TB incidence rate is 1.5%, however,

a 10% annual decline is needed by 2025 to reach the 2035 goal [95] (Figure 9).

Figure 9: The annual decline in TB incidence must drop from 1.5% per year to 10%
per year by 2025 to reach the goal to end the TB epidemic by 2035. Image retrieved
from the WHO website [95]

As our understanding of TB improves, agile analysis techniques are critical for
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turning it into actionable information. Strain type and drug resistance profiles, cur-

rently based on laboratory assays, are two of the most important. Today, many of

these are still in vitro assays performed in a laboratory setting. While these assays

continue to improve, they are still rigid in their application. For example, the line

probe assay (LPA) is a method that uses PCR to amplify specific resistance regions,

and it detects drug resistance with labeled probes far more rapidly than traditional

drug susceptibility tests [25]. Updating LPA for new drugs, such as bedaquiline and

delamanid, would require designing new primers and probes. However, since it is one

of the best methods today, the WHO recommends its use [1].

Typing is the focus of this chapter, but there is significant overlap with types and

drug resistance. It is well documented that lineage 2, known as the Beijing lineage,

is associated with higher rates drug resistance and MDR TB cases [11, 32]. A higher

rate of mutation in this lineage appears to be responsible for its ability to acquire

resistance to many anti-TB drugs [37] (Figure 10). Rapidly determining the lineage

and other genetic properties of samples can have a profound impact on how infections

and outbreaks are to be treated.

Figure 10: The TB Euro-American lineage (4) and East Asian lineage (2) acquire
drug resistance at different rates. (a) rifampicin. (b) isoniazid and ethambutol.
Images published by Ford et al. [37]
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3.2.2 Bacterial typing

Bacterial typing was traditionally based on in vitro assays, and these methods are

useful for broadly grouping samples. Modern typing can detect outbreaks, and WGS

analysis can reveal transmission chains within an outbreak [57, 17]. This is critical

information for anyone attempting to control an infectious disease.

Separating a bacterial species into groups is an original goal of bacteriology, and

it reveals useful clues about species evolution and epidemiological surveillance. These

groups tend to share important characteristics, such as ancestry, virulence, and resis-

tance to antibiotics.

The traditional phenotype methods measure characteristics of the sample, but

they do not directly measure the genome. Typing by the differential lytic activity of

phages is one of the earliest. Bessie Callow was the first to observe that isolates from

separate infections reacted differently to phages [14]. By 1953, this method was well

established for Staphlycoccus spp. [9], when it was capable of identifying four distinct

groups with known antibiotic susceptibility statistics for each.

Serotyping is a method of using antibody specificity. It was developed by Rebecca

Lancefield in 1933 for typing Streptococcus spp. [62], and it is still used in clinical

settings [114].

These phenotypic methods still have relevant applications today, however, they

have some critical limitations. For example, phage typing sometimes groups unrelated

individuals and fails to group related ones [114]. With modern technology and our

understanding of bacterial genomics, more powerful genotypic methods are becoming

available.

M. tuberculosis typing methods currently in use include phage typing, drug suscep-

tibility profiling, IS6110-restriction fragment length polymorphisms (RFLP), variable

number of tandem repeats (VNTR), and spoligotyping [108]. Even though modern

genotyping techniques are more sensitive, some of these methods are still capable
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of at least differentiating outbreaks, and there is valuable historical data stored in

the context of these types. For example, when spoligotyping the notorious Beijing

subtype of the East Asian lineage, samples hybridize with spacers 35-43 [32]. As

the field shifts toward newer genomic methods, there must be a way to recapitulate

this information for new samples without performing additional expensive laboratory

assays. Fortunately, some of them can be determined by examining the genome.

Spoligotyping characterizes clustered regularly interspaced short palindromic re-

peat (CRISPR) region of the genome, which contains many unique spacers each sep-

arated by a short direct repeat sequence. This region is part of a bacterial adaptive

immunity system designed to stop viral infections [6], and the unique spacers contain

a record of past viral infections that are heritable by sister cells when a bacterium

replicates. Spacers are also sometimes lost by deletion events within the CRISPR

locus. The gain and loss of these unique spacers occurs at a rate sufficient to make

identifying them useful for typing.

Spoligotyping was originally a hybridization assay designed to simultaneously de-

tect and type M. tuberculosis species [55]. With membrane-bound oligonucleotides

and tagged primers, this assay amplifies the CRISPR genomic region and detects the

presence of 43 specific spacers. In 2000, additional spacers were characterized [30]. It

is used in tandem with other methods today [43, 115], and it is still part of pathogen

surveillance efforts at the Centers for Disease Control and Prevention (CDC).

3.2.3 Sequencing TB

When treating an individual, which tests should be run? Should typing be routine,

and if so, at what resolution? Which drug-resistance variants should be detected?

Fortunately, genome sequencing can replace many of these tests with one laboratory

procedure and many in silico assays on the resulting data. Furthermore, when im-

portant new patterns are confirmed, they can be instantly distributed electronically.
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As sequencing technology becomes more affordable (Section 1.2), this technology be-

comes more widely available.

The need to culture isolates makes sequencing many days slower [58, 16]. For-

tunately, it was recently shown that MTBC cultures can be extracted directly from

BACTEC
TM

MGIT
TM

tubes for sequencing in as little as three days [116], and metage-

nomics approaches may be a way to bypass culturing altogether [26]. As sequencing

becomes a more viable approach, automated analysis techniques must be made avail-

able [58].

While traditional typing methods are useful for linking isolates to a particular

outbreak, they lack the precision to construct transmission chains among individuals

in an outbreak. For this work, WGS is often applied to find the source of individ-

ual infections and identify super-spreaders [57, 17]. M. tuberculosis is not naturally

competent, and so only a few SNPs may differ among individuals in an outbreak. It

is also a slow-growing bacteria, and so extracting and amplifying small amounts of

DNA can lead to a result faster than many traditional laboratory assays.

As the barriers for TB sequencing are lowered, so is its cost. With benchtop

sequencers, there is no need to send a sample to another location, and the time

to generate sequencing data can be further reduced [77, 48]. The future of clinical

microbiology depends on WGS analysis [8], and this technology is improving at just

the right time to make the WHO 2035 goal a reality.

3.2.4 K-mer spoligotyping

The CDC M. tuberculosis science team, which is led by Dr. Jamie Posey, asked me

to apply KAnalyze [4] to spoligotype and characterize spacers by looking at sequence

data as k-mers sets. They were using existing software, Lasergene (DNASTAR R©,

Madison, WI) to perform spoligotyping with DNA sequence data amplified over the
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CRISPR region. This software would align the sequence reads with the spacer se-

quences and estimate the sequencing depth for each spacer. The team was not satisfied

with the results because it took 30 to 60 minutes to run on a plate of 96 samples, and

when it ran low on memory, it appeared to give erroneous results.

Using the KAnalyze API, I developed a spoligotyping application to read sequence

data and estimate the read depth of each CRISPR spacer. This resulted in a much

faster and much more reliable application.

While developing this software, I realized the importance of correcting for SNPs

and small indel variants in the samples. Because the sequences detected by spolig-

otyping are short, and because k-mers are rigid structures (Section 2.2.5), a single

variant could cause a significant portion of the data to disappear. I was able to find a

solution that worked well for this problem, but it would not generalize well to larger

sequences. It was only after I completed this project that I was able to solve this

problem for a more general case. That work deserves special attention, and so it is

presented in CHAPTER IV.

3.3 Methods and algorithms

3.3.1 Data

From Dr. Posey, I obtained IonTorrent sequence data amplified over the CRISPR

region for 92 samples and sequences for 68 CRISPR spacers with lengths between

29 bp and 43 bp (median = 38.0 bp).

3.3.2 Determining spacer depth

The approach described here uses k-mers counted from the sequencing sample. Be-

cause the CRISPR spacers are short, a k-mer size of 16 was chosen. All k-mers in the

sample are counted using the KAnalyze API, low frequency k-mers are filtered out,

and the resulting frequencies are stored using a hash set in memory. This project was

completed with the original KAnalyze implementation, which did not have some of
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the advanced features discussed in CHAPTER II. The indexed k-mer count (IKC)

format had not yet been implemented, and so the original version of this software

had to keep k-mers in memory for random access.

The k-mers of the spacer sequence are determined, but they are left in order. The

k-mer frequencies from the sample are assigned to the k-mers in the spacer sequence.

To avoid biases in spacer calls, the minimum frequency is the estimated read depth

of the k-mer.

3.3.3 Sequence variants

Within the 92 samples, 13 contained a single nucleotide polymorphism (SNP), and

2 contained a single-base deletion in a spacer sequence. Since all k-mers that cross

a variant are different from the reference, the expected frequency for these reference

k-mers is 0. A single SNP can alter up to k k-mers since that altered base will appear

at each position of the k-mer. With a median spacer length of 38.0 bp, a significant

number of k-mers would differ between the reference and the sample. These variants

have to be accounted for in order to obtain reliable results.

When a sample contains a variant within a CRISPR sequence, there will be a

clear disruption of the distribution of k-mer frequencies over that region (Figure 11,

red line). If at least one k-mer in the spacer is not altered, then it can be used as

a seed for a correction attempt. Assuming that the variant is a single SNP, shifting

the high frequency k-mer over one base will reveal which base is at that location in

the sequence data. This is done by removing a base from one end and trying all four

nucleotides at the other end.

With this method, the altered base can be found and corrected, but the algorithm

cannot determine why the base was altered. That base could a SNP, and in that

case, the variant is easily corrected by accounting for it at one locus. That base

could also be the start of an insertion or a base following a deletion. If the variant is
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Figure 11: An example of variant correction in one sample with a variant in a
CRISPR spacer. The red line represents k-mer frequencies for the uncorrected spacer
sequence, and the blue line represents k-mer frequencies for the corrected spacer
sequence.

an insertion or a deletion, then it must be corrected accordingly, and the remaining

sequence must be shifted to remove a base or to make space for an inserted base. Since

the reason for the alteration is not known a priori , one correction attempt will change

one unaltered state into 3 altered states and 1 unaltered state. All these possibilities

must be explored independently. Because more than one variant can occur in the

sequence, this is a O(4n) problem, and it will not scale to large sequences. However,

the CRISPR spacers are relatively small, and so these paths can be explored quickly.

Algorithm 3 summarizes the correction process. A “call state” data structure is

created assuming the original sequence contains no variants, and it is assigned as the
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Algorithm 3: Correcting errors using k-mer frequencies. This illustration as-
sumes that errors are corrected from left to right.
Input: c: An ordered list of k-mer counts in a CRISPR sequence
Input: max: Maximum number of corrections allowed
Input: threshold: K-mer count difference that triggers a correction attempt
Output: A call state that represents the corrected sequence
Data: C: A structure containing the current call state
Data: S: A set of call states
Data: M : Call state with the highest minimum k-mer count
Data: index: Current index in c

1 S ← ∅
2 C ← NewCallState(c)
3 M ← C
4 while S 6= ∅ do
5 C ← S1 . Get next state

6 S ← S/C . Remove state from C
7 index← C.index
8 if Min(C.c) > Min(M.c) then
9 M ← C . Current state has the highest minimum k-mer count

10 while index < Length(C.c) do
11 if (C.cindex − C.cindex+1) > threshold then
12 if C.corrections < max then
13 S ← S ∪ { CorrectSnp(C, index) }
14 S ← S ∪ { CorrectIns(C, index) }
15 S ← S ∪ { CorrectDel(C, index) }

16 index← index + 1 . Move to the next element of c

17 return M

optimal state until a better one is found. This call state contains all the information

necessary to keep track of the sequence, k-mers of the sequence, frequency of those k-

mers, and the current position in the sequence where scanning and correcting should

continue.

The k-mers of the state are traversed until a large difference in the frequency of

neighboring k-mers is found. It then attempts to correct the sequence as if it is a SNP,

an insertion, and a deletion. Each case creates a new call state with the sequence and

k-mers updated, and each state is added to a set of states. The algorithm continues

with the next k-mer in the current state as if the frequency difference was erroneous.
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When the end of the sequence is reached, it is abandoned and the next state is taken

from the set. Each time a call state is taken from the set, it is checked against the

optimal state, and if it has a higher minimum k-mer frequency, then it becomes the

new optimal state.

The optimal state when the set of possible states is exhausted is returned by the

algorithm. The minimum k-mer frequency of this state is the depth estimate of this

CRISPR spacer in this sample. Variants detected within the spacer are also contained

within the state information. The frequency distribution over the corrected k-mers

should be roughly uniform (Figure 11, blue line).

3.4 Results

From sequence data and spacer sequences, this alignment-free spoligotyping approach

takes 1 minute and 19 seconds to run on all 92 samples. If Lasergene takes 30 minutes,

which is on the lower end of what the M. tuberculosis CDC science team was reporting,

then an estimated 22x speedup was observed.
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Figure 12: A comparison of spacer depth estimates from k-mer spoligotyping and
Lasergene for 92 samples and 68 spacers in each sample.
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All 13 SNPs and both deletions were identified and corrected by the software.

The depth estimates for each spacer in each sample (6,256 estimates) matched with

verified results from Lasergene (Figure 12) with an R2 of 1.00.

Spacer 16 has a 5x T homopolymer repeat. Pyrosequencing, which is the technol-

ogy employed by IonTorrent, tends to mis-call the number of bases in these repeat

regions [49], and this phenomenon was observed by the software. However, it did not

affect the results.

3.5 Discussion

In this limited test case, the alignment-free method of spoligotyping produced perfect

results in a fraction of the time when compared to the alignment approach. Although

spoligotyping with sequence data was not prohibitive before this software, this does

align with my goal of analyzing sequence data using minimum resources.

SpolPred is an existing software application for straintyping M. tuberculosis with

sequence data [20]. This software matches spacers to sequences, but it only allows

a fixed number of varied bases in the form of a hamming distance (distance = 1 by

default). It cannot correct for indel mutations, and therefore, it would miss some

of the calls in the 92 samples. The alignment-free algorithm presented here is more

tolerant to these errors.

Further work is needed to correlate the types of mutations in the spacer regions

with their effect on hybridization. This method is potentially more sensitive than

the in vitro spoligotyping assay because it may detect heavily mutated or partially

truncated spacers. However, the nature of these variants and their location in the

spacer would be revealed, and a scoring system could be applied to the results to

see what the hybridization approach would likely show. I leave this issue for future

studies.

What remains to be shown is that the alignment-free method can work on WGS
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data. To be sure that it could handle the complexity of the whole genome, I thought

that the error correction algorithm needed improvements, and so I turned my atten-

tion to this issue.

To my knowledge, k-mers have never been used to identify variants from sequence

data in a general way, and this is especially true for indels. Some error correction

on sequence reads has been done by looking at the k-mer spectrum of a sample and

by using hamming distances [119], but there has never been a full-featured variant

calling algorithm that uses k-mer frequencies.

This approach is novel and interesting, but it lacks general applicability because of

its complexity restraints. Is it possible that the error correction algorithm described

here could be applied to broader a variant-calling problem? Could the process be

guided so that it was more efficient thanO(4n)? The answer is yes, and CHAPTER IV

presents the results of that work.
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CHAPTER IV

MAPPING-FREE VARIANT CALLING

4.1 Abstract

Characterizing variants from sequence data is one of the most ubiquitous tasks of

bioinformatics because the results are useful for a variety of applications. For exam-

ple, the etiology of a tumor or its susceptibility to chemotherapeutic drugs can be

revealed. Analyzing the variants of bacterial specimens can reveal lineage or virulence

characteristics, and by identifying SNPs in many samples, the transmission network

of an outbreak can be revealed.

Modern variant calling software relies on sequence read alignments. Although it is

by far the de facto standard, important variants are missed by the alignment. When

SNPs are packed too densely or if there are large indels, the sequence reads in these

regions cannot be confidently assigned to the correct location, and so the information

contained within them is lost. Variant calling without alignments is one way to solve

this problem, but they demand even more computing resources than alignments.

Sequencing platforms are producing more data at a lower cost. As the depth

of coverage increases, the confidence of variant calls also increases, but so too does

the cost of analysis. Very little research has been dedicated to variant identification

without sequence read alignments, but such a method would make analyzing this

data less prohibitive.

CHAPTER III introduced a rudimentary variant calling algorithm, but it was

too inefficient to scale to large reference sequences. Recognizing that the rebuilding

process could be guided by aligning the generated sequence with the reference was

the key to making this algorithm tractable. With this modification, the rebuilding
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process is streamlined, and the alignment consumes a small fraction of the overall

CPU time.

4.2 Introduction

Modern sequencing methods produce a deluge of data. The genome of a sample is

often sequenced to a depth of 100 or greater so that for any given base, there are at

least 100 sequence reads that represent it. With such depth, the impact of errors in

individual sequence is minimized. However, each sequence read covers a tiny fraction

of the genome. An Illumina HiSeq instrument is capable of generating sequence reads

up to 250 bp long, but when compared to a genome size of 4.4 Mb (Mycobacterium

tuberculosis), a read only represents 0.0057% of the genome. For the human genome

of 3.3 Gb, a 250 bp read represents 0.0000076% of the genome. Even with the best

sequence data, finding patterns in a set of these sequence reads is a true technical

challenge.

The standard protocol for detecting variation in DNA is to map millions of short

sequence reads to a known reference and to find loci where the reference and sequence

reads do not agree [96, 92]. This process takes place in two steps; sequence reads are

aligned to a reference, and variants are called from the alignment.

This approach works well for most data where variants are not too densely packed

and where indels are short. Useful information can be hidden in regions of dense

variation and large indels, and so for many applications, it is important to properly

characterize these events. In such cases, an alternative to the standard alignment-

based variant calling approach is needed.

4.2.1 Alignments

Because it is such a critical task, and because it is technically challenging, sequence

alignment has been the subject of intense bioinformatics research, and it has yielded
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some impressive results. Early alignment tools were designed for the Sanger sequenc-

ing method, but as next generation sequencing (NGS) rose, the earlier alignment tools

no longer performed well [71]. One category of new aligners arose based on hashing

sequence k-mers, and algorithms use a seed-and-extend similar to BLAST [2]. Some

hash the sequence reads, such as Eland [7] and MAQ [72]. Eland was developed by

Illumina, and MAQ was the first to link the genotype confidence with the alignment

confidence. Others hash the reference, such as SOAP [73].

The most advanced sequence aligners to date use a Burrows-Wheeler transform [13]

to create an index of the reference sequence that can be efficently searched for inexact

matches. An FM-Index [36] compresses the space requirements so that the human

genome can be stored in 2-8 GB of RAM [71]. Sequence reads are then compared to

this structure and mapped to the genome. This approach is used by Bowtie [64, 63],

BWA [68, 69], and SOAP2 [74], and they are some of the fastest and most reliable

aligners to date.

4.2.2 Alignment-based variant calling

Once an alignment is obtained, it is searched for differences between the reference

sequence and the mapped sequence reads. If a given locus has an “A” in the reference,

but the majority of reads show a “G”, then there is strong evidence for a A→G variant

at that locus. Short indel variants can also be identified this way.

Given the alignment, a software program must search it for these differences.

The näıve approach is to simply scan each base of the alignment for differences, but

modern variant callers are more sophisticated. Instead, haplotypes are built from the

data, and variants are called from those haplotypes.

The GATK [85] HaplotypeCaller [51] is one of the most heavily used alignment-

based variant callers today. This software first identifies active regions where the

reference and aligned reads do not agree. For each active region, a haplotype is
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Figure 13: An overview of the GATK HaplotypeCaller. Active regions are identi-
fied from the alignment and haplotypes are assembled from sequence reads in the
alignment over that region. A hidden markov model aligns the sequence reads to
the haplotypes and determines the likelihood of alleles per read for each site with a
variant. The likelihood of each variant is then analyzed, and the final variant call is
made. Image retrieved from the GATK website [51]

assembled over it using a de Bruijn-like graph structure. Sequence reads aligned to

the active region are re-aligned with each haplotype using a pair hidden Markov model

(PairHMM), and this gives a likelihood for each haplotype based on the sequence

read evidence. The likelihood of each variant is determined using Bayes rule and the

haplotype likelihood. Figure 13 outlines this process.

FreeBayes [40] is another popular haplotype-based variant caller. Instead of con-

sidering the likelihood of a haplotype in one sample, it considers the likelihood from

multiple samples. This approach was designed to better characterize variants with

different allele frequencies due to copy number alterations.
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4.2.3 Limitations of alignment-based variant calling

Although modern alignment tools are designed to handle errors and variation, a se-

quence read that differs significantly from the reference cannot be confidently assigned

to the correct location. When a read is correctly mapped to such a region, it is still

difficult to separate true variants from false calls because the variant call confidence

is affected by the quality of the alignment of the reads that support it. In extreme

cases, the read is clipped or not mapped at all, and there is no alignment coverage at

that locus.

There are several alternative approaches to this problem with tools that are al-

ready available, but they come with some significant disadvantages. The simplest of

these is to perform a de novo assembly on the sequence reads to produce scaffolds

from the sequence data independent of any reference sequence. These scaffolds can

then be treated as very long sequence reads and aligned to the reference. Although

dense variation may still occur, the matched bases will likely improve the mapping

quality enough to confidently identify variants in those regions.

The assembly alternative assumes that the allele frequency is 1 at all loci, so

it can only work for monoploid organisms, and it is incapable of identifying minor

alleles that may be present in the sequence data. For example, if a large variant was

present in a small frequency, but was selected for when the colony was exposed to an

antibiotic, it would be infeasible for this approach to characterize the allele until it

reached high-frequency. Furthermore, sequencing depth is essentially collapsed to 1

regardless of the sequence read coverage, and it becomes difficult to correct for false-

calls [94]. Also, the de Bruijn graphs used by modern de novo assembly software

require significant computing resources [75], so this method may take a long time and

more expensive equipment to execute.
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Cortex [53] was designed to overcome limitations of the de novo assembly ap-

proach. This software builds a de Bruijn graph from the sequence data and a ref-

erence. Instead of collapsing the de Bruijn graph to a single sequence, variants are

called directly from it. This preserves important information from the sequence reads,

such as read depth and alternate alleles. However, it still requires significant resources

to build the de Bruijn graph.

Instead of assembling all sequence reads, Platypus [101] performs local assemblies.

This approach is similar to the GATK Haplotypecaller, except that it aligns all reads

to all possible haploypes. Therefore, this method incurs the overhead of mapping

all reads to the reference if the variant loci are not know a priori , and it incurs the

overhead of read mapping again on each haplotype.

4.2.4 A new approach

This chapter will outline a novel algorithm capable of characterizing densely-packed

SNPs and large indels without mapping, assembly, or de Bruijn graphs. The algo-

rithm and the implementation here are collectively referred to as “Kestrel”. Where

appropriate, I will make a distinction between the algorithm and the implementation.

Instead of relying on alignments or de Bruijn graphs, the evidence for variant

calls comes from k-mer frequencies within the sequence data. Like the other methods

described here, active regions are identified and haplotypes are assembled over them.

However, Kestrel uses k-mer frequencies as evidence to support both steps. A novel

alignment algorithm guides the haplotype reconstruction process, and this greatly

reduces the amount of time and resources spent resolving alignments. The result is

an impressively fast variant caller that is capable of characterizing regions with dense

variation and large indels.

This approach is the first in its class. In my research, I have not seen anything

like this algorithm in the literature or reduced to practice.
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4.3 Methods and algorithms

The Kestrel algorithm identifies active regions and assembles haplotypes over those

regions. The active region identification is performed using a sequence of expected

k-mers from the reference and the k-mer frequencies from the sequence reads. Once

an active region is identified, one or more haplotypes are assembled over it using a

novel alignment algorithm to guide the process. Variants are easily identified from

the alignment of the active region with the haplotype. The following sections outline

this process method in detail.

4.3.1 Kestrel Overview

Using KAnalyze [4], the frequency of each k-mer in the sample is stored in an indexed

k-mer count file (IKC) (Figure 14(a)). The IKC structure is a minimizer-grouped set

of k-mers outlined in Section 2.3.6. From the reference sequence, the frequencies for

each k-mer and its reverse complement are obtained from the IKC file and summed,

but these are left in order (Figure 14(b)). Kestrel searches the resulting array for loci

where the frequency declines and recovers (Figure 14(c)), which suggests the k-mers

of the reference and sample differ. Analogous to the GATK[85] HaplotypeCaller, this

low-frequency region is called an active region, and haplotypes are reconstructed over

it. The high frequency k-mers at the ends, the anchor k-mers, are part of this region,

and they seed the haplotype reconstruction process.

Starting with the left anchor k-mer, the first base is removed, all four bases are

appended to this (k - 1)-mer, and the k-mer frequency is queried for each of the

four possibilities (Figure 14(d)). An equivalent process is performed on the reverse

complement k-mer, and the frequencies are summed. The base that yields a high

frequency k-mer is appended to the haplotype. The new k-mer ending in that base

is then used to find the next base by the same process. If more than one of these

k-mers has a high frequency, a haplotype is assembled for each one.
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A modified Smith-Waterman [111] algorithm guides the process by aligning the

active region and the haplotype as it is reconstructed (Figure 14(e)). By setting an

initial score and disallowing links to zero score states, alignments are anchored on

the left and allowed to extend until an optimal alignment is obtained. Variant calls

follow trivially from the alignment (Figure 14(f) and Figure 14(g)).
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Figure 14: Overview of the Kestrel process from sequence data to variant call. (a)
The sequence reads are converted to an IKC file. (b) The reference sequence is
converted into an array of k-mers. (c) K-mer frequencies from the sequence reads
(vertical axis) are assigned to the k-mers of the reference (horizontal axis). A decline
and recovery of the frequencies bound an active region where one or more variants
are present. (d) Starting from the left anchor k-mer (last k-mer with a high fre-
quency), the first base is removed, each possible base is appended, and the base that
recovers the k-mer frequency is appended to the haplotype. (e) A modified align-
ment algorithm tracks haplotype reconstruction and terminates the process when an
optimal alignment is reached. (f) This algorithm yields an alignment of the reference
sequence and haplotype within the active region. (f) Variant calls are extracted from
the alignment. Image created by Dawn Audano.

This section gives a brief overview of the process to give the reader context for
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what follows. The details of each step are outlined below.

4.3.2 Preliminaries

Given a known reference sequence, X, identify active regions, x, which are suspected

to contain variants. Using evidence from the sequence reads, dynamically find one

or more haplotypes, y, that align with x. x and y must align end-to-end, and may

contain mismatched bases or gaps in either sequence. Building y and calling variants

from it is the aim of the Kestrel algorithm.

X := Full reference string.

x := A substring of X, called the active region, where variant detection occurs.

y := A haplotype over x, which is discovered by the Kestrel algorithm.

k := The number of bases in each k-mer.

4.3.3 Locating active regions

N is an array of frequencies for each k-mer in the reference sequence, X, from the

first k-mer (N1) on the left end to the last k-mer on the right end of X. Ni = 0

if the k-mer at position i contains ambiguous bases. If X contains no variants, and

therefore no active regions, the distribution of the frequencies in N is roughly uniform

with some fluctuation due to sequence read errors, non-uniform read coverage, k-mer

overlap with other regions of the genome, and other sequencing anomalies.

N is traversed from left to right searching for a sharp decline or increase of the

frequency between neighboring k-mers Ni and Ni+1, which may indicate the edge of

an active region. The threshold, ε, is the magnitude of difference between Ni and

Ni+1 that must be exceeded to trigger an active region scan.

If Ni > Ni+1+ε, then the active regions spans from Ni to some downstream k-mer,

i + l, where the k-mer frequency returns to a value near Ni. The active region, x,
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defined by this range includes both Ni and Ni+l, which are the anchor k-mers, and

they help seed and terminate the process of building y. If y does not start and end

with these anchor k-mers, then y is rejected.

The shortest active region is the case when one or more bases are inserted and

no other variants occur within k bases of the insertion. In this case, the number

of k-mers with a frequency affected by this insertion will be k − 1. Since an active

region, x, includes one unaltered k-mer on each end (anchor k-mers), x must span

k + 1 k-mers or it is rejected.

If a variant occurs less than k bases from the right end of the sequence, X, then

there will be no anchor k-mer on the right side because all k-mers up to the end of

X are altered. In this case, x may be left un-anchored on its right end, and y is not

required to match the missing anchor k-mer. y must also be allowed to end with a

deletion from x. Since the evidence for discovered variants is not as strong, Kestrel

requires both anchor k-mers by default.

If Ni < Ni+1− ε, then the k-mer frequencies increased significantly, and an active

region may be present from N1 to Ni+1. Similar to an active regions scan that reaches

the right end of N , this will occur if variants are found less than k bases from the left

end of X. This region is anchored on the right side by Ni+1, but it is not anchored on

the left side. In this case, y may begin with a deletion on the left side. Since this case

requires that active regions are built from right to left, Kestrel reverses the sequence

of the active region, builds in the left to right direction, and reverses the result. Note

that sequences are only reversed and not complemented. As with the case where the

right anchor k-mer is missing, this active region will be ignored by default because

the evidence for variants will not be as strong.

Real data is not uniform, so several heuristics are employed to aid active region

detection. Because the read coverage may decline, an exponential decay function is

applied to the recovery threshold. K-mers may map to more than one region, and

56



this would create peaks in the sequence data, and these peaks must be detected

and ignored. Section 4.3.13 discusses these active region detection heuristics in more

detail.

ε is chosen automatically by Kestrel based on the distribution of reference k-mer

frequencies, and this process is discussed in Section 4.3.11.2.

N := A set of k-mer frequencies ordered by the k-mers in X.

ε := K-mer frequency difference threshold.

l := The number of k-mers from the first low-frequency k-mer to the right anchor k-mer.

4.3.4 Haplotype reconstruction

Starting with the left anchor k-mer, the haplotype is reconstructed from left to right.

The active region contains the anchor k-mer, and so this k-mer is first added to the

alignment. The first base is removed from the k-mer, and each of the possible four

bases are appended to the resulting (k− 1)-mer. The base that produces the highest

count is added to the alignment, and the new k-mer ending in that base seeds the

next step.

Algorithm 4 shows a summary of this reconstruction process. Base A is added to

the (k − 1)-mer first, and the count of that k-mer is highest by default. C is then

added to the (k−1)-mer, and if it produces a higher k-mer count, it replaces A as the

base to be added, and the maximum count, countmax is updated. The same process

is repeated for G and T. The base that produced the highest count in the end is

appended to the alignment.

For illustration purposes, Algorithm 4 is simplified in two ways. First, it does

not show how the reverse-complement k-mer is used to include information from the

other DNA strand. When the (k−1)-mer is created, the same is done for the reverse-

complement, except the last base is removed instead of the first. When a base is
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Algorithm 4: Alignment-guided haplotype reconstruction process.
Input: kmer: The anchor k-mer that seeds haplotype reconstruction.

1 for each base in kmer do
2 addBase(base) . Add the anchor k-mer to the alignment

3 repeat
4 kmersub ← shift(kmer, 2) . Create the (k - 1)-mer

5

6 kmertest ← append(kmersub, A) . Append A

7 countmax ← getCount(kmertest)
8 base← A
9

10 kmertest ← append(kmersub, C) . Append C

11 count← getCount(kmertest)
12 if count > countmax then
13 countmax ← count
14 base← C

15

16 kmertest ← append(kmersub, G) . Append G

17 count← getCount(kmertest)
18 if count > countmax then
19 countmax ← count
20 base← G

21

22 kmertest ← append(kmersub, T) . Append T

23 count← getCount(kmertest)
24 if count > countmax then
25 countmax ← count
26 base← T

27

28 if countmax > 0 then
29 kmer ← append(kmer, base) . Update k-mer

30 addBase(base) . Append to alignment

31 until Alignment cannot improve with more bases or countmax == 0

appended to the (k−1)-mer, its complement is prepended to the reverse-complement

of the (k − 1)-mer, and the counts are summed. Second, it does not illustrate how

multiple haplotypes are allowed within the active region. Whenever the maximum

count is greater than 0 and a base is appended that produces a k-mer count greater

than 0, they are compared. The lesser of the two is saved to a state that is later

resumed, and the reconstruction process continues with the base that produced the
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higher count. This way, any number of haplotypes can be discovered for the active

region.

In noisy data, an excessive number of haplotypes can be discovered. Therefore,

Kestrel limits the number of states that can be saved. It is for this reason that the

algorithm checks the highest k-mer count before deciding which one to save and which

one to continue building. The haplotype states are alse saved in a way so that the

least likely one is dropped when the cache limit is exceeded.

The following sections describe the alignment that guides reconstruction.

4.3.5 Alignment parameters

The alignment step is a dynamic programming algorithm based on the well known

Smith-Waterman [111] algorithm. The key difference is that only the active region

sequence, x, is known a priori , and each haplotype, y, is built using a local assembly

approach that terminates when an optimal alignment obtained. All acceptable align-

ments must match each base of the left anchor k-mer in x and y, but the right end

of y is not known. Since this alignment must guide the process of building y, it must

anchor on one side, but extend arbitrarily as y is reconstructed.

Two key modifications were made to Smith-Waterman; (i) any subalignment with

a score of 0 cannot be extended, and (ii) the alignment must begin with a score

greater than 0. These modifications force all possible alignments terminate on the

left side as if it were a global alignment, but update dynamically as y is extended.

Section 4.3.10 outlines how the scores are used to determine when to stop building y.

As with other alignment algorithms, a set of scoring criteria is required, and the

alignment is optimized over these parameters. When two bases are aligned, Rmatch

is added to the alignment score if the bases match, and Rmismatch is added when

the bases do not match. For each base aligned with a gap, Rgap is added to the

score. Rgapopen is added to the score for each time a gap is opened, i.e., once for every
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maximal substring consisting of gap character, “-”. The initial score of the alignment

is Rinit, as required by our modification to Smith-Waterman. Note that Rmatch and

Rinit are strictly positive, Rmismatch, and Rgap are strictly negative, and Rgapopen is

non-positive. The optimal score matrix will be determined by the application, such

as how divergent the sequences may be and the size of allowable insertion or deletion

events.

Rmatch := Aligned bases match, Rmatch > 0

Rmismatch := Aligned bases do not match, Rmismatch < 0

Rgapopen := A gap was opened, Rgapopen ≤ 0

Rgap := Base aligned with a gap, Rgap < 0

Rinit := Initial alignment score, Rinit > 0

For convenience, we define a function, match(i, j), to return the appropriate score

for aligned bases, as shown by Equation 2.

match(i, j) =

 Rmatch : xi = yj

Rmismatch : xi 6= yj

(2)

4.3.6 Alignment data structures

The optimal alignment has the highest score of all possible alignments of x and y.

Trying all possible alignments is clearly an inefficient way of solving the problem,

however, the score of one particular alignment can be seen as the score of the same

alignment one position shorter plus the score of the last position [27]. The dynamic

programming solution effectively memoizes1 the score of shorter alignments in a score

matrix instead of recomputing it.

1“Memoization” is a computer-science technique for caching and reusing intermediate results.
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The alignment data structures are analogous to those typically employed in Smith-

Waterman implementations using an affine gap model. One score matrix, Saln, tracks

scores through aligned (matched or mismatched) bases. Two more score matrices,

Sgact and Sghap, track alignment scores through gaps in the active region (x) or a gaps

on the haplotype (y), respectively. The bases of x are positioned along the vertical

axis of each matrix, and the bases of y are positioned along the horizontal axis.

The first base of x and y are represented in row 1 and column 1, respectively. Each

base of the anchor k-mer is added to y, and one column is created in all matrices for

each base of y. The initial alignment score, Rinit is assigned over the anchor k-

mer (Equation 3), and all other scores in all three matrices are initialized to 0. A

fourth matrix, T , contains traceback information from the end of an alignment to

Saln(0, 0). It is initialized so that there is one sub-alignment over the anchor k-mer

(Equation 4). This initialization of Saln and T matches each base of the active region

and haplotype over the anchor k-mer that seeds haplotype reconstruction, and all

acceptable alignments must enter this path at Saln(k, k).

Saln(i, i) = Rinit ∀i ∈ Z, 0 ≤ i ≤ k (3)

T (i, j) → T (i− 1, j − 1) ∀i ∈ Z, 1 ≤ i ≤ k (4)

Storing the whole of all four matrices would result in a large memory footprint, and

Section 4.3.12 outlines how the software implements this algorithm more efficiently.

Saln := Score matrix for alignments through aligned bases.

Sgact := Score matrix for alignments through insertions (active region gaps).

Sghap := Score matrix for alignments through deletions (haplotype gaps).

T := The traceback matrix.
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4.3.7 Alignment score matrices

The score matrices are built using the usual alignment algorithm, but with the Kestrel

modifications. For example, transitioning to Saln(i, j) requires adding match(i, j) to

each Saln(i− 1, j − 1), Sgact(i− 1, j − 1), or Sghap(i− 1, j − 1) that are above 0 and

choosing the maximum value. T (i, j) is updated to link Saln(i, j) to the cell or cells

that yielded the maximum score. If all scores in Saln(i− 1, j − 1), Sgact(i− 1, j − 1),

and Sghap(i− 1, j − 1) are 0, or if the computed score is 0 or less, then Saln(i, j) = 0

and no link is added to T . Equation 5 outlines assignment of Saln(i, j).

Sgact(i, j) is set by finding all non-zero scores from (i, j − 1) in each score matrix.

Rgapopen is added to the scores from Saln and Sghap, and Rgap is added to all scores.

If it is above 0, then the maximum score is recorded in Sgact(i, j) and T is updated.

Equation 6 describes this calculation, and Equation 7 describes a similar calculation

for Sghap.

Saln(i, j) = max



0

Saln(i− 1, j − 1) +match(i, j) : Saln(i− 1, j − 1) > 0

Sgact(i− 1, j − 1) +match(i, j) : Sgact(i− 1, j − 1) > 0

Sghap(i− 1, j − 1) +match(i, j) : Sghap(i− 1, j − 1) > 0

(5)

Sgact(i, j) = max



0

Saln(i, j − 1) +Rgapopen +Rgap : Saln(i, j − 1) > 0

Sgact(i, j − 1) +Rgap : Sgact(i, j − 1) > 0

Sghap(i, j − 1) +Rgapopen +Rgap : Sghap(i, j − 1) > 0

(6)

Sghap(i, j) = max



0

Saln(i− 1, j) +Rgapopen +Rgap : Saln(i− 1, j) > 0

Sgact(i− 1, j) +Rgapopen +Rgap : Sgact(i− 1, j) > 0

Sghap(i− 1, j) +Rgap : Sghap(i− 1, j) > 0

(7)
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4.3.8 Alignment extension

Recall from Section 4.3.3 that the start of the active region, x, was found by locating

neighboring k-mers where the frequency difference exceeded a threshold, Ni > Ni+1 +

ε. The haplotype, y, is initialized using the k-mer associated with Ni, the left anchor,

and as described in Section 4.3.6, all bases in that anchor initialize the alignment.

The next k-mer after the anchor is altered, and so it has a low frequency. Since

the anchor k-mer shares (k − 1) bases with the next k-mer, it can be permuted to

find what the next base should be. This starts with removing the first base of the

anchor to create a (k− 1)-mer. Then, each possible base is appended to this (k− 1)-

mer, and frequency for each resulting k-mer is retrieved. The base with the maximum

frequency is appended to y, and the alignment is updated. The new k-mer is then used

to find the next base, and the process repeats until y is fully constructed. Because

active region detection takes place using the forward and reverse-complement k-mers,

a parallel process on the reverse-complement is performed, and the k-mer frequencies

are summed.

If no bases produce a k-mer with an acceptable frequency, the alignment is ter-

minated. If more than one base produces an acceptable k-mer frequency, then the

alignment state is saved and resumed after another alignment completes. Therefore,

more than one haplotype, y, may be found for each active region x.

If the active region has no left anchor, and if variant calling without both anchors

is enabled, then its right anchor seeds the alignment. In this case, whole alignment

process takes place in reverse. Each y is then reversed back to its original configuration

to match x after this step completes.

4.3.9 Maximum score and optimal alignments

After each base of y is added to the alignment, the overall score can be examined.

Since the alignment must cover all of x, only the last row of the alignment score
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matrix, Saln, needs to be queried. Equation 8 defines Rmax, the maximum alignment

score.

Rmax = max ({Saln(|x|, j) ∀j, 0 ≤ j ≤ |y|}) (8)

If x extends to the end of the reference, X, then it is possible that the alignment

ends in a deletion because there is no anchor k-mer on that end. In this case, the

maximum score can be computed as the maximum of the final row in both Saln and

Sghap. The maximum score is never calculated from the Sgact because inserting bases

on the end of x can only lower the maximum score. The full alignment is found

by traversing the traceback matrix, T , from the cell with the maximum score to

Saln(0, 0).

If any cell of T has more than one path out, then there is more than one optimal

alignment, and the first alignment as defined by the alignment sort order is used.

When comparing two alignments, the one with the first non-matching base comes first.

If the non-matching bases agree (same variant), then the next non-matching base is

queried. If the non-matching bases do not agree, then alignments are prioritized by

mismatch, insertion, and deletion, in that order. This gives the algorithm predictable

output for cases such as a deletion in a homopolymer repeat; Kestrel will always

report that the first base was deleted even though the alignment score would be the

same for a deletion at any locus of the repeat.

4.3.10 Alignment termination

The extension of y must be terminated when the best possible score is reached. Each

time a base is added to the alignment, the maximum alignment score is known.

However, the maximum possible alignment score that could be obtained by adding

more bases to y must also be known. When this maximum potential score is less than

the maximum alignment score, then the alignment cannot be improved by extending
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y further.

The maximum potential score is determined by examining the last column of

Saln. The best possible score that can be obtained from any cell is the case where

all subsequent bases of x are aligned with matching bases in y. Equation 9 defines

maxpot(i, j), the maximum potential score from cell Saln(i, j). Equation 10 defines

Rmaxpot as the maximum maxpot(i, j) of the last column of Saln. If Rmax > Rmaxpot

(Equation 8), a greater or equal score cannot be obtained by adding more bases to y.

maxpot(i, j) =


Saln(i, j) + (|x| − i) ·Rmatch : Saln(i, j) > 0

0 : Saln(i, j) = 0

(9)

Rmaxpot = max ({maxpot(i, |y|), 0 ≤ i ≤ |x|}) (10)

When the alignment extends to an end of the reference sequence, then the maxi-

mum potential score from the deletion score matrix, Sghap, must also be considered.

The modifications to Smith-Waterman outlined in Section 4.3.5 are important

to make the termination condition deterministic when y does not align well with x.

Firstly, the algorithm gives up on alignments that pass through a cell with a zero

score. This is also the reason Rgap may not be 0; if it were 0, then the alignment

could attach to another region of the genome and extend without bound. These

modifications allow degenerate cases to be limited before spending many CPU cycles

trying to solve it.

4.3.11 Parameter selection

4.3.11.1 K-mer size

The most visible parameter is the k-mer size, k, which should be selected to balance

genome complexity with expected error rates. The majority of k-mers must match

one region of the genome. When a k-mer maps to multiple regions, the frequencies

from both will be mixed together. This will hinder both active region detection and
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assembly. If the k-mer size approaches the read size, few k-mers will be extracted

from each read and the observed coverage will decline. A high error rate in the

sequencing data will also cause an observed loss of coverage. Section 2.2.3 contains

more information about this topic.

In my research, I have not encountered many reliable rules for choosing the k-mer

size for this type of problem. I have also not dedicated much time to it because I

have not found it difficult to pick sizes that worked for my purposes. This parameter

appears to place rigid bounds on the performance of k-mer algorithms, but I believe

it is far more flexible than it appears. Unless the error rate is very high, there tends

to be a flexible range for the k-mer size where this algorithm works well. In my

experience, I have used 31-mers for bacterial species, and 48-mers for human data.

Note that some repeat regions are longer than any k-mer or sequence read, and these

will still cause issues regardless of the chosen size.

Clearly, more research using diverse data sets could be dedicated to providing a

more complete answer to this question.

4.3.11.2 Difference Threshold

Active regions are detected when the absolute difference between neighboring k-mers

exceeds some threshold, ε. This parameter is selected by choosing a quantile, Qε,

over the absolute differences of all neighboring k-mer frequencies. Of all frequency

differences |Ni − Ni+1|, Qε of these will be large enough to trigger an active region

scan. Choosing this parameter depends on how many active regions can be expected,

although, a value as high as .95 to .99 works in many cases.

Qε := A quantile of the frequencies of N for choosing ε.
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4.3.12 Alignment matrix implementation

Storing the whole of all four alignment matrices defined in Section 4.3.6 would use

an excessive amount of memory (O(n2)). This problem would be compounded when

multiple haplotypes are searched because all matrices would need to be duplicated.

Fortunately, only a small fraction of this data needs to be stored, and the memory

requirements can be reduced significantly (O(n)).

Because of the nature of the dynamic programming algorithm, only the last col-

umn of the score matrices (Saln, Sgact, and Sghap) needs to be stored while the next

column is built. Therefore, each of these matrices can be reduced to two arrays where

one contains the last column, and one contains the new column being added. When

another haplotype is found, the alignment splits. An alignment with one base will

continue, but the other needs to be saved and restored later. When this occurs, only

one array for each matrix needs to be stored.

The traceback matrix, T , is more complex because it is not stored as a matrix.

Instead, it is a linked-list of alignment states. Following the links always leads back

to Saln(0, 0), which is where all alignments begin. When a non-zero score is added

to a score matrix, a link is added to T . This slightly complicates the score matrices

because they must store a score, and for all non-zero scores, they must also store a

node in T .

The nodes in T must also contain more than one link in the case that there is

more than one optimal alignment path. Where the first link traverses back toward

Saln(0, 0), the second link points to other nodes at the same level. When this second

link is not NULL, the alignment splits into multiple paths at that location.

Since the active region must be aligned from end to end, the only acceptable

alignments contain a non-zero score in the bottom row of the matrix. Since the whole

score matrix is not saved, the optimal alignment score must be tracked for each new

column, and the optimal node is saved separately from the score matrices. The score
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and link into T is stored. When a column is added that is greater, it’s link and score

replaces the previous one. As with the linked list, more than one node may have the

high score, and so a list of nodes into T are stored for this case.

In the case that multiple haplotypes are found, the alignment must split. As

already noted, only the last column of each score matrix must be stored, and this

column contains links into T . Since T is a linked list that is only traversed toward

Saln(0, 0), one node of the alignment may have several links into it. Therefore, differ-

ent haplotypes may link to the same node in T where it split and no part of T needs

to be duplicated or saved other than the nodes already stored in the score matrix

array. Both haplotypes will trace back to the point where they merged and continue

on toward Saln(0, 0).

The linked list structure has another more subtle property that Java uses to keep

memory usage low. When an alignment path reaches a dead end, the node at the

end of the path has no reference to it. This allows the Java Virtual Machine (JVM)

garbage collector to detect and remove these nodes. In other words, dead branches

of T are automatically pruned. This improves scalabilty by reducing the memory

requirements for large active regions where many haplotypes are investigated.

4.3.13 Active region heuristics

In an ideal scenario, sequence data would cover the sample uniformly at all loci,

contain no error, and k-mers would be long enough so that no k-mer would map to

any other region of the genome. This is never observed in practice. Sequence data

does contain errors, and it is almost never distributed uniformly. Furthermore, it

may be impossible to choose a k-mer size that eliminates all clashes with other loci.

For an algorithm that relies on k-mer frequencies, this presents a challenge. These

situations must be carefully handled by additional heuristics to avoid errors in the

results.
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4.3.13.1 Exponential decay

While scanning for the end of an active region, the active region detector searches

for a k-mer frequency that is close to the frequency of the anchor k-mer. When the

read depth is not uniform over the active region, this recovery threshold may never

be found, and the scan may reach the end of the reference sequence.

To address this problem, an exponential decay function, f(x), is employed to

reduce the recovery threshold as the active region extends. f(0) is the anchor k-mer

frequency, and it approaches a lower bound, fmin, asymptotically. By default, fmin =

0.55 · f(0) to avoid ending an active region prematurely on a heterozygous variant.

f(x) is defined by scaling and shifting the standard exponential decay function, h(x),

as highlighted by Equation 11 and Equation 12.

h(x) = e−xλ (11)

f(x) = (f(0)− fmin) · h(x) + fmin (12)

h(x) is parameterized by λ, which must be also be set, but Kestrel does not

configure this parameter directly because it is difficult to know how to choose a

reasonable value. Instead, λ is chosen by a configurable parameter, α, that is defined

as the proportion of the decay range, f(0) − fmin, after k k-mers. This provides a

more intuitive way to define how rapidly the recovery threshold is allowed to decline.

Choosing λ given α is shown in Equation 13. Figure 15 illustrates exponential decay

with two values of α.
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Figure 15: To end an active region, the Kestrel algorithm searches for a k-mer
frequency that is close to the frequency anchor k-mer. An exponential decay function
is applied to the recovery threshold so that the value declines asymptotically as the
scan moves to the right.

h(k) = α

e−kλ = α

−kλ = log(α)

λ =
− log (α)

k
(13)

At k k-mers, the recovery threshold f(k) = α · (f(0) − fmin) + fmin. In other

words, f(k) has declined in its range from f(0) to fmin by a factor of α. This is true

for all nk such that f(nk) = αn · (f(0)− fmin) + fmin. Figure 16 gives a proof for this

claim.

f(x) := Exponential decay function for the active region recovery threshold.

h(x) := The standard exponential decay function, e−xλ.

fmin := Lower bound of f(x).
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h(x) = e−xλ

= e−x
− log (α)

k

=
(
elog (α)

)x
k

= α
x
k

Figure 16: A proof of the claim that f(k) declines by α
x
k . For every x = nk, the

decay function has declined αn.

4.3.13.2 Peak detection

Due to chance or homology, peaks may be observed in the k-mer frequencies of a

reference, N . If k is not large enough so that all k-mers map to exactly one locus,

then the frequency of some k-mers will be higher because it was found in multiple loci.

This causes a peak in the data, and if not properly handled, can lead to an arbitrary

active region scan or the premature end of an active region. Figure 17 shows a peak

in an active region where some reference k-mers happened to match another locus. If

the active region scan ended on that peak, variants would be missed.

To deal with this problem, Kestrel does not stop immediately when it finds a peak.

Instead, it scans ahead to see if the frequency declines again after some number of

k-mers (7 k-mers by default). If it does decline within that threshold, then Kestrel

passes the peak and continues as if it were not present.

Occasionally, a scan through an active region will encounter many peaks because

the scan recovery threshold is at the level of the k-mer frequencies in that region.

These peaks are normal fluctuations in the frequencies. When Kestrel finds many

peaks, it goes back to the last sharp increase of k-mer counts within the active region

scan. If there was no sharp incline, the scan is abandoned and no active region is

declared.
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Figure 17: Peaks must be detected and bypassed to prevent prematurely ending an
active region scan.

4.4 Results

4.4.1 Motivation

Streptococcus pneumoniae (S. pneumoniae) is known to cause severe respiratory and

systemic disease including pneumonia, meningitis, and sepsis. Mortality and morbid-

ity is particularly high in immunocompromised individuals [34], and it is responsible

for up to 11% of child deaths [93].

β-lactam compounds constitute a large family of broad-spectrum antimicrobial

penicillin-like drugs. Their structural similarity to a component of pepditoglycan

allows them to bind and covalently link to a serine in the active site of proteins

involved in cell wall synthesis. The S. pneumoniae penicillin binding protein (PBP)

genes are the targets of these drugs.

Many bacterial species evade these drugs by expressing β-lactamases capable of

degrading the antibiotic compound, however, these genes are rarely found in S. pneu-

moniae. Instead, the mechanism of S. pneumoniae resistance is its ability to signifi-

cantly alter its PBP genes with homologous extracellular DNA [46]. In several studies,
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20% or more of a PBP gene may be altered by inter-species recombination [83, 61],

and this can create mosaic PBP genes with a lower β-lactam binding affinity. Because

these recombination events may alter hundreds of contiguous bases, variant calling

from a standard alignment pipeline cannot characterize them.

4.4.2 Data

Testing was done with 181 whole genome sequence (WGS) samples representing 29

serotypes that were recently released by the Centers for Disease Control and Preven-

tion in NCBI under BioProject PRJNA284954. These data are whole-genome 250 bp

paired-end Illumina sequence reads ranging from 14 Mbp to 1,176 Mbp (median =

308 Mbp).

All variants were called against a single reference, TIGR4 (NC 003028.3). Select-

ing the best S. pneumoniae reference out of more than 10 is often necessary [67] for the

alignment approach, however, Kestrel was tested to see how well it generalize when

the lineage of the reference sequence diverged from the sample. Figure 18 shows the

relationship of all samples as a phylogenetic tree based on average nucleotide identity

(ANI) [44].

Contamination was identified in samples SRR2072298, SRR2072306, SRR2072339,

SRR2072342, SRR2072351, and SRR2072379. Each of these exhibited many variant

calls in the PBP genes with a relative depth of 0.70 or less. The size of the IKC files

is also larger than expected, which supports my conclusion that there is sequence

data in these FASTQ that does not belong the sample. Based on the IKC files, two

more samples (SRR2072345 and SRR2072352) are also likely contaminated, but since

I saw no evidence for this in the variant calls over the PBP genes, these samples were

included in the analysis.

Two other samples were removed for having incomplete sequence data: SRR2072219

and SRR2072360. They contain 10 Mb and 37 Mb, respectively, where the median
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has 323 Mb and the next lowest sample has 92 Mb. Figure 21(d) shows the contami-

nated sample floating to the top of the IKC file size distribution, and the low-coverage

samples at the bottom left.

After removal, 173 samples remained for testing.
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Figure 18: Phylogeny by serotype. The reference is colored white, and each major
serotype group is assigned a unique color.

4.4.3 Methodology

Variants were detected in four PBP genes (PBP2X, PBP1A, PBP2B, and PBP2A)

with three distinct approaches. The first is a standard alignment pipeline using

BWA [68, 69], Picard [52], and GATK [85] HaplotypeCaller. The second is Kestrel.

The third is a de novo assembly pipeline using SPAdes [5], BWA, and SAMtools [70].
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4.4.3.1 Assembly

For the purposes of this experiment, the alignment and Kestrel approaches are tested

against the assembly approach. Variants identified by the assembly where the depth

of aligned scaffolds is exactly 1 were defined as the true variants for verifying Haplo-

typeCaller and Kestrel variant calls.

All sequence reads for each sample were assembled with SPAdes using default op-

tions. The scaffolds were aligned to the TIGR4 reference using BWA mem and setting

the mismatch penalty to 1 (-B 1) and the clipping penalty to 1,000 (-L 1000,1000).

The alignment was sorted, and a pileup file was generated for the alignment over all

4 PBP genes with SAMtools mpileup.

Custom code parses the pileup file to identify the variants that the Haplotype-

Caller and Kestrel variant calls are compared against. For any loci with a depth

other than 1, reliable variants cannot be extracted, and these are marked as no-call

loci regardless of the HaplotypeCaller and Kestrel results.

4.4.3.2 Alignment

For HaplotypeCaller, reads are aligned to the TIGR4 reference with BWA mem. With

Picard Tools, the alignment is sorted, duplicates are marked, and the alignment is

sorted again (SortSam and MarkDuplicatesWithMateCigar). Indel realignment is

then performed on the marked alignment with GATK (RealignerTargetCreator and

IndelRealigner). Lastly, variants are called with GATK HaplotypeCaller over the

PBP gene regions.

4.4.3.3 Kestrel

KAnalyze is first run on the sequence reads with a k-mer size of 31, a Phred scaled

base quality filter of 30, and a minimum frequency of 5. An indexed k-mer count

(IKC) file is generated using a minimizer size of 15. With the IKC file and the

reference, Kestrel generates a set of sequence calls over the PBP genes. Kestrel can
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run in one step by reading the FASTQ files, but they were run as separate steps so

that runtime performance could be measured for each one.

4.4.3.4 Comparing variant calls

To avoid incorrectly assigning false positive and false negative calls, the testing

pipeline automatically accounts for differences in the way the same variant is an-

notated. HaplotypeCaller often represents dense SNPs as an insertion and a deletion,

and so the number of expected true variants is lower for this approach because many

SNPs can be represented in two indel events. Erroneous false positive and false neg-

ative calls would result if these indels are not reconciled with the SNPs identified by

the assembly.

For each false positive variant call, the sequence of the variant with 5 bases flank-

ing it on each end was determined. This was accomplished by taking the reference

sequence and replaying the variant along with any neighboring variants that affect the

5 base flank. That sequence, including the flank, is then compared to the sequence

of the affected gene as determined by the assembly. If the variant sequence fragment

matched any part of the assembled gene sequence, then it was accepted as a true

negative.

For each false negative call, a similar approach was taken, but the variants were

replayed from the expected set of variants and compared to the sequence of the gene

as determined by the approach being tested (alignment or Kestrel). If the sequence

fragment from the assembly with the variant call matched the sequence as determined

by the approach tested, then it was accepted as a true positive.

4.4.4 Variant call performance

For all regions where the alignment depth was 15 or greater, Kestrel identified all

5,290 true variants with 0 false positives. HaplotypeCaller identified all 5,273 true

variants with 0 false positives. The number of expected variants differs as a side-effect
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of differences in variant annotation (Section 4.4.3.4).
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Figure 19: Variant calls from Kestrel and GATK are shown for regions with an
alignment depth of at least 15 (left) and with less than 15 (right).

Where the alignment depth is less than 15x, Kestrel identified all 24,588 true

variants with 2 false positives (Sensitivity = 1.000, False discovery rate (FDR) =

8.1334e-5). Because alignments are unreliable over these loci, HaplotypeCaller iden-

tified 12,078 of 23,855 true variants with 24 false positives (Sensitivity = 0.5063, FDR

= 1.9831e-3) (Figure 19).

Figure 20 depicts the number of variant calls for each sample with the ANI phy-

logenetic tree for all samples. Some distantly related samples apparently contained

mosaic regions characteristic of its lineage. Whether the mosaic region is part of the

lineage or a de novo event, Kestrel is able to characterize it.

The HaplotypeCaller false positives were found where the alignment declined.

Filtering by the lowest quality score of all of these calls, 60, would have changed 156

true positives to false negatives. Filtering by the lowest locus depth, 1, would have

changed 5 true positives. Therefore, I did not attempt to apply quality or depth

filters to improve the HaplotypeCaller results.
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Figure 20: Whole genome phylogeny (ANI) (inner track), a heatmap showing the
distance from the reference (white) where blue is closely related and red is distant
(middle track), and a bar chart showing the number of variants per sample (outer
track).

4.4.5 Runtime performance

All tests were run on a 12 core machine (2 x Intel Xeon E5-2620) with 32 GB of RAM

(DDR3-1600), RAID-6 over SATA drives (3 GB/s, 72K RPM), and CentOS 6.7.

Kestrel required an average of 3.35 minutes per million 250 bp reads (Standard

deviation (sd) = 0.74), the alignment approach required an average of 19.21 minutes

per million 250 bp reads (sd = 3.72), and the assembly approach required 30.52

minutes per million 250 bp reads (sd = 12.53) (Figure 21(a)). Per sample, there is a

linear relationship between the time Kestrel and the alignment pipeline required (R2
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Figure 21: Kestrel performance by runtime and IKC file size compared with the
alignment approach. (a) The mean time required by each approach per megabase
(Mbase) of input. Error bars show a 95% confidence interval. (b) Comparison of
BAM and IKC file file sizes as a function of the number of reads in a data set. (c)
There is a linear relationship between the runtime for the alignment approach and the
Kestrel in this data. (d) Size of BAM and IKC files per sample. Removed samples
are shown in red.

= 0.80) with the alignment approach taking approximately 5.94x longer than Kestrel

(Figure 21(c)). There is a noticeable skew along the Kestrel axis suggesting that some

data sets may affect Kestrel’s runtime disproportionately.

Unlike BAM files, IKC files do not grow with read depth because the number of

unique k-mers is fixed in a sample (Figure 21(b)). When the IKC files contain more

k-mers than expected, the number of unique k-mers, and therefore the file size, does

increase (Figure 21(c)).

4.5 Discussion

The strength of Kestrel is its ability to identify variants where the sample differs

greatly from the reference. The algorithm makes no a priori assumptions about the

haplotypes over the active region other than that they should produce an acceptable
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alignment against the corresponding reference region given a set of scoring criteria.

In theory, Kestrel is capable of identifying arbitrarily large insertions. In practice,

the alignment scores must be adjusted to a reasonable value, and this limits the size

of insertions Kestrel will find. If the alignment could tolerate a 1 Kb insertion, then

the algorithm will assemble haplotypes up to at least 1 Kb before giving up on an

erroneous assembly. However, this approach may still be faster than performing a

de novo assembly to identify large insertions.

One of the most significant limitations of Kestrel is its inability to properly handle

regions that have significant homology with other regions. This limitation stems

from the fact that the context of the whole read and of paired-end reads is lost when

sequences are transformed to k-mer frequencies (Section 2.2.5). A sophisticated set of

heuristics is implemented in Kestrel to address this problem, but it remains a difficult

task without alignments or the paired assembly graphs implemented by SPAdes.

Despite its limitations, Kestrel can characterize large genomic events with minimal

computing resources. This not only shortens the analysis time, but it also allows

this approach to be scaled more efficiently. As high-volume sequencing technology

becomes faster and cheaper, reducing the cost of data storage and analysis becomes

critical [59, 107]. Not only does Kestrel require less memory and CPU time, storing

IKC files requires less disk space than BAM files, and the size of IKC files does not

increase with greater read depth as long as low frequency k-mers from sequencing

errors are removed.

Very little research has been conducted where k-mers are used directly for variant

calling. One notable exception, kSNP [39, 38], demonstrated that k-mers could call

SNPs for phylogenetic analysis. A useful property of kSNP can compare samples with

or without a reference sequence. This enables SNP-based phylogeny among samples

where a reference is unavailable, but phylogeny can include a reference genome where

it is available.
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kSNP compares k-mers from samples and allows the central base to vary. If a k-mer

from one sample matches a k-mer with a different central base in another sample, it

is evidence that there is a SNP at that base. Given the k-mers of a reference sequence

and the k-mers of a sample, it is trivial to see how this algorithm could function as

a variant caller for SNPs. However, if another SNP occurs in close proximity, then

the sequence flanking the central base is also altered, and both SNPs would be lost.

Error correction in the form of a hamming distance could be employed, but this seems

to quickly become an unwieldy and inefficient way to call SNPs when an alignment-

based variant caller would work better. Furthermore, there is no clear way to identify

even the smallest indel variants this way. kSNP is an excellent example of identifying

variants using k-mers without de Bruijn graphs, but its approach would not scale well

to identify a wider variety of events.

A subtle but important advancement of Kestrel is that it can utilize k-mers in a

more flexible way. Recall from Section 2.3.1 that a significant advantage of k-mers is

in their numeric representation. This view on k-mers is very rigid because two k-mers

are either an exact match or no match at all regardless of how similar they may be.

The alignment-guided reassembly process can incorporate k-mers into haplotypes that

are arbitrarily distant from the reference sequence. The modified Smith-Waterman

alignment algorithm is also unique in its ability to align one sequence from end to

end and allow another sequence to extend arbitrarily over it. In my research, I have

never encountered anything like it.

Kestrel is open source, and it designed with using best scientific computing prac-

tices [117, 112]. The software was built to be run by people and pipelines, and it

was built as an application programming interface (API) so that it can be directly

integrated into other projects. This implementation was made to be as flexible as

possible so that the parts of Kestrel, such as the aligner, could be used independently

by other types of applications.
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CHAPTER V

APPLICATIONS OF KESTREL

5.1 Abstract

Throughout this dissertation on alternative approaches for sequence analysis, bacte-

rial typing and drug resistance have been themes for the application of this technology.

I have focused mainly on the algorithms themselves, but not their application. This

chapter presents experiments done with Kestrel, and it discusses an application to

human cancers.

The structure of this chapter varies from previous chapters. Instead of one story

from introduction to discussion, three mini-chapters with those same sections are

found here, and each tells one story about the application of Kestrel. The chapter will

wrap up with a discussion on the future applications of Kestrel and k-mer approaches.

5.2 Applying Kestrel to human cancers

Kestrel has been shown to work on bacterial data. However, it is a haplotype caller,

and it was built to handle human data. Some early development efforts on Kestrel

were done with human sequences, and addressing the problems presented by those

data made it a much stronger tool. Since I found a convincing story for this technology

in Streptococcus pneumoniae (S. pneumoniae) PBP genes, that became the focus

of the Kestrel publication ([Submitted]). The results of those early efforts are

presented here.
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5.2.1 Introduction

Mutations accumulate in tumors where some are biologically active and confer a

growth advantage to the tumor [45, 97] or are responsible for chemotherapeutic resis-

tance [42, 99]. BRAFV600E appears in at least 40% of melanomas, and it drives cell

proliferation by constitutively activating MEK/ERK pathway [3, 15].

Predicting drug sensitivity is a complicated task, and the best algorithms use

multiple data sets from each tumor, such as gene expression profiles and variant calls

in gene sequence data [23]. Here, I focus on extracting variant calls from sequence

reads.

Kestrel was tested on sequence data from 526 cancer-associated exons published

by Newman et al. [91]. These data, released in NCBI BioProject PRJNA241385,

contain both a healthy control sample and a non-small-cell lung carcinoma (NSCLC)

cell line sample.

The goal of that study was to develop a system for detecting circulating tumor

DNA by sequencing samples with various dilutions of a tumor sample within a healthy

control sample. I was originally interested to see if Kestrel could detect variants in

the diluted tumor DNA. I found that it could call variants from a 1% dilution, but it

would be too difficult to separate them from erroneous variants. For this discussion,

I will use only the healthy control and the pure cancer sample for variant calling with

Kestrel.

5.2.2 Methods and algorithms

The healthy control and the NSCLC samples from the Newman et al. [91] study were

downloaded from NCBI BioProject PRJNA241385.

From their 526 exons, 14 were removed. One was a duplicate, and the remaining

13 shared significant homology with other regions of the genome. Kestrel can work

around peaks that cover a few bases, but it cannot properly call variants where
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homology with other regions is too great (Section 4.5), and so they were removed.

Several of these were olfactory receptor exons, which are known to appear as false

positive associations in cancer informatic studies [66]. Others, such as PRSS1, have

up to 18 paralogues according to Ensembl, and this is too much homology for the

k-mer approach to handle confidently.

All variants wele called using a BWA [68, 69], Picard, and GATK [85] Haplotype-

Caller pipeline. Variants were called with Kestrel using a k-mer size of 48. 31-mers

were originally tested, however, this led to many false-positive results, and 48-mers

proved to be adequate. The calls from both approaches were merged and analyzed.

Discrepancies between the calls were analyzed. Some low quality calls were removed.

A few exons had poor coverage, and therefore a low quality score, but the alignments

were good for the reads that were present, and so the variants in these exons were

not removed.

5.2.3 Results

Of the 70 high-quality variants in the healthy control, Kestrel correctly identified 68

(sensitivity = 0.97). Both of the missed variants were at the edge of an amplified exon

where coverage was increasing dramatically, and the active region detector failed to

find them. There were two false positives, but I could not find an explanation for

them. The alignment pipeline completed in 360 minutes (178 to align, and 182 to call

variants). Kestrel completed in 23 minutes (21 minutes to generate 48-mer counts,

and 2 minutes to call variants). A speedup of 15.65 was achieved in this example.

Of the 96 high-quality variants in the NSCLC sample, Kestrel identified 92 (sen-

sitivity = 0.96), and there were no false positives. 3 of the 4 missed variants were

in a region that was not amplified well and had extremely low coverage. GATK

confidently called 2 false positives. These false positives were in regions that were

deeply sequenced, and I could not find an explanation for why GATK would call
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them. The alignment pipeline completed in 95 minutes (87 to align, and 8 to call

variants). Kestrel completed in 16 minutes (15 minutes to generate 48-mer counts,

and 1 minute to call variants). A speedup of 5.94 was achieved in this example.

5.2.4 Discussion

This is a limited example of how Kestrel can work on human amplicon data. I found

that a k-mer size of 48 worked well, but it could not eliminate all homology from

paralogues in k-mer space, which would have required a k-mer size larger than the

read size. This recapitulates one advantage of alignments over k-mers: mapping

paired-end reads can resolve much of this homology, but paired-end context is lost

when reads are converted to k-mer frequencies.

Despite the limitations, Kestrel agreed with GATK for most variants, however,

it produced an answer many times faster. When applied correctly and with care,

Kestrel could be used on human data, but it is not well suited as a general purpose

variant caller in this context.

5.3 TB drug resistance

Section 4.4 showed that Kestrel could call variants within gene regions, but it is

also capable of processing whole genomes. The experiment described here performs

variant calling and the whole Mycobacterium tuberculosis (M. tuberculosis) 4.4 Mb

reference and reveals known patterns of drug resistance.

5.3.1 Introduction

Unlike S. pneumoniae, M. tuberculosis lacks natural competence, and therefore the

ability to take up and incorporate foreign DNA into its genome. Some large variants

do exist in this species, but they are not as prolific. Variant calling does not require

an advanced tool like Kestrel, but it may still benefit from an increased speed of

analysis.
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Two Mycobacterium tuberculosis (M. tuberculosis) samples were obtained from

Török et al. [31] with known variants in drug resistance genes, and 90 samples from

Farhat et al. [33]. The Török study used a corrected M. tuberculosis H37Rv refer-

ence [16], and we used the same reference to ensure that our results were comparable

with the known variants.

5.3.2 Methods and algorithms

All variants were called against the corrected M. tuberculosis H37Rv reference [16],

and variants were filtered for SNPs. Variants in all members of the repetitive PE/PPE

class of genes were filtered out.

Sequences were processed by KAnalyze into a 31-mer IKC file with a minimum

frequency of 5, and a minimum allele depth of 0.50. Custom Python code reads the

reference and translates variants to their amino-acid changes.

Many rpoB amino-acid changes are published with coordinates relative to the

Escherichia coli (E. coli) rpoB gene. Using a global alignment of the rpoB protein

sequence from the H37Rv reference and an E. coli k12 reference, custom code was

created to translate coordinates between the two references. With this translation,

I was able to correlate variants from the H37Rv reference with published data and

determine which were responsible for rifampicin resistance.

5.3.3 Results

112,463 occurrences of 10,076 unique SNPs were identified in all 92 samples. As

expected, all 13 SNPs in published in the Török study were found in those two

samples.

katG and rpoB were further analyzed for patterns of resistance to isoniazid and

rifamicin, respectively. Within these two genes, 119 occurrences of 21 unique SNPs

was found in all 92 samples. 11 of these SNPs were non-synonymous, and 8 of

those likely confer drug resistance. Four unique SNPs were found in the rifampicin
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resistance-determining region (RRDR) of rpoB. Table 1 shows the variants in these

genes. Figure 22 shows the locations of the katG and rpoB variants.

Figure 22: Location of variants in the M. tuberculosis rpoB and katG genes. Non-
silent mutations are in red and blue, and silent mutations are gray.

5.3.4 Discussion

This project illustrates Kestrel’s ability to identify variants with known associations.

Because of the speed of variant calling, as demonstrated by previous projects, Kestrel

could be easily integrated into surveillance pipelines for diseases like Tuberculosis.

Converting the sequence reads to k-mers often takes more time than running

the analysis from the k-mer frequencies, as illustrated by previous examples (Sec-

tion 5.2.3). What is interesting is that different types of analysis could be done on

this data. Kestrel shows that variants can be called from it, but it was also shown

that informatic spoligotyping can be done as well (CHAPTER III). Kestrel could

ostensibly build the entire CRISPR locus with a larger k-mer size. For example, a

48-mer might be large enough to span the 36 bp repeats. From 48-mer frequencies,

typing might be done by examining the CRISPR spacers or by SNP typing for higher

resolution. Other actionable variants, such as those associated with drug resistance,

can also be identified. Since all this can be done faster than it could with alignments,

a pathogen surveillance platform may output more information with less time and

lower cost.
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Table 1: SNPs found in katG (Rv1908c) and rpoB (Rv0667) from all 92 samples.
Variants are relative to genes annotated in the corrected H37Rv reference, and rpoB
variants in parenthesis are relative to the E. coli K12 rpoB reference. Synonymous
SNPs are colored gray. SNPs in the RRDR of rpoB are marked with a dagger (†).
Location Ref Alt Gene Variant Count Resistance

2156031 A G katG V30A 4

2156015 G A katG N35N 2

2155397 G C katG P241P 4

2155354 C T katG A256T 1 Likely [35, 113]

2155175 G T katG S315R 1 Likely [90]

2155176 C G katG S315T 16 Likely [90, 104, 88]

2154732 C A katG R463L 18 Likely [90, 104, 84]

2154449 C G katG K557N 2

760111 G A rpoB S100S (S69S) 4

760120 C T rpoB D103D (D72D) 28

761115 A T rpoB D435V (D516V)† 1 Yes [106, 29]

761114 G T rpoB D435Y (D516Y)† 2 Yes [106]

761144 C G rpoB H445D (H526D)† 2 Yes [106]

761160 C T rpoB S450L (S531L)† 1 Yes [106, 29]

763063 C T rpoB I491M (I572M) 1 Likely [109]

761494 G A rpoB E561E (E641E) 3

762058 T C rpoB H749H (H836H) 2

762439 T G rpoB G876G (G1063G) 5

762643 G A rpoB K944K (K1163K) 1

763036 T C rpoB A1075A (A1283A) 18

763063 C T rpoB T1084T (T1292T) 3

5.4 MLST typing

Section 3 discusses typing and presents a method for informatic spoligotyping. How-

ever, other methods of typing can be performed with these approaches. This section

discusses a project where multilocus sequence typing (MLST) was performed with
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Kestrel.

5.4.1 Introduction

Multilocus sequence typing (MLST) [78] has the power to resolve typing with great

detail. This scheme was originally developed on stable house-keeping genes, but for

greater resolution, it can be applied to genes that exhibit more diversity, and therefore,

a greater seletion of alleles among individuals [79].

The current method for performing MLST on WGS data is to execute a de novo

assembly on the sequence data and to use BLAST [2] comparing known alleles with

the assemblies [65, 54]. Because it requires both assemblies an alignments, this process

can take a long time to run on a sample.

I was interested to see if MLST could be done without an assembly or BLAST

using Kestrel. With my guidance, Shashidhar Ravishankar, a fellow Ph.D. student,

designed and executed the experiment. The following results are from his work, and

he is currently improving this method so that it scales over more genes and more

alleles.

5.4.2 Methods and algorithms

7 Neisseria meningitidis (N. meningitidis) samples were obtained from from ENA

study PRJEB3353 (ERR193671-ERR193677) [100] and allele sequences for 7 house-

keeping genes (adk, aroE, abcZ, fumC, gdh, pgm, and pdhC) from pubMLST [54].

These data are WGS 150 bp paired-end Illumina reads.

For each sample, the KAnalyze [4] API transforms sequence data to k-mer fre-

quencies using 31-mers and writes an IKC file with a 15 bp minimizer.

For each gene in the MLST scheme, the Kestrel algorithm is applied using each

allele as a reference and requiring a minimum allele depth of 0.50. The best allele

has the fewest variants and a minimum k-mer frequency greater than 0. Prototype

Python scripts read the output from this step, merge results, and output final MLST
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calls. Lastly, the best allele matches were used to identify the sequence type by

comparing them against types from pubMLST.

The current standard method was executed to veryify the MLST calls. Sequence

reads were assembled with SPAdes [5] using default options, and scaffolds were used to

construct a BLAST database. Each allele downloaded from pubMLST for N. menin-

gitidis was used as a BLAST query, and the best allele for each gene was chosen. The

best allele produced the lowest E value when aligned with the scaffolds by BLAST.

With the allele calls, the sequence type (ST) was identified by comparing against se-

quence type profiles also obtained from pubMLST. This set of alleles and the sequence

type represents the expected results based on the current methods.

5.4.3 Results

There was 100% concordance between the two methods. Table 2 shows allele and

sequence types for each sample.

All samples were called with a minimum k-mer frequency of 5 except ERR193672,

which was reduced to 2 to call gene pgm. The assembly method called this allele as

confidently as the other alleles with higher coverage.

5.4.4 Discussion

While this led to a far more efficient approach without de novo assembly, there are

improvements currently in development. Instead of applying Kestrel to the individ-

ual allele sequences, it can be applied to a consensus sequence. Then, each allele

can be compared more efficiently in O(log n) time. These improvements will allow

MLST typing scale to many genes and thousands of alleles while making the most of

computing resources. Shashidhar Ravishankar is actively developing this technique.
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5.5 Future applications

5.5.1 Whole genome SNP typing

Many of the techniques discussed, such as MLST and spoligotyping, sample a small

subset of the genome. These methods have proven useful for grouping clinically

relevant individuals, which is why they are still in use today. For finer resolution of

samples, using a much larger subset of the genome captures more variation.

An interesting example comes from a study of methicillin-resistant Staphylococcus

aureus (MRSA) [47]. 20 of the samples were closely related because they were isolated

from the same hospital over a 7 month period. 5 of these 20 showed strong evidence

for nosocomial transmission within the hospital itself. This is clearly a clinically

relevant finding, and it could not have been identified with lower-resolution methods.

Because Kestrel can rapidly call SNPs on a whole genome, it is possible that it

can replace alignment-based variant callers for phylogenetic analysis, and this can

be particularly useful for organisms that exhibit significant levels of horizontal gene

transfer (HGT), such as S. pneumoniae.

When working with organisms that are capable of HGT, it is important to remem-

ber that one recombination event can be seen as a region of dense variation. In a SNP

phylogeny study of S. pneumoniae [24], these events were collapsed. This corrected

the length of the branches in the phylogenetic tree and reduced homoplastic sites to

loci mostly occurring in genes associated with drug resistance. The MRSA study [47]

was able to use the core genome to avoid this bias. This kind of post-SNP analysis

would need to be done regardless of the SNP calling method.

5.5.2 K-mer phylogeny

Another whole genome approach is to attempt to compare the genomic content of

each sample more directly. While SNPs are generally called from a reference for each

sample, this approach compares each sample to each other sample for a total of n·(n−1)
2
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comparisons. These methods do not typically require a reference sequence, which may

be useful for studies on organisms where the genome has not been resolved.

Average nucleotide identity (ANI) [44] is one method for doing this. It requires a

de novo assembly for each sample, and it uses BLAST or another alignment method

to compare the nucleotides in assemblies for each pair of samples. Like many other

methods using de novo assemblies or alignments, this too can be done faster without

alignments or assemblies. Instead, the k-mers of each sample can be compared for

differences. These methods would not account for HGT events, and so the results

may be biased for some organisms.
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Table 2: Allele calls for all 7 genes in all 7 samples as called by the de novo approach
and the Kestrel approach. The depth column shows the minimum depth used to
identify the allele. The bolded rows show the sequence type (ST) for the sample, and
its depth is the least of all allele depths.

ERR193671 ERR193675
Gene De novo Kestrel Depth Gene De novo Kestrel Depth
abcZ 11 11 5 abcZ 3 3 5
adk 5 5 5 adk 6 6 5
aroE 18 18 5 aroE 9 9 5
fumC 8 8 5 fumC 5 5 5
gdh 11 11 5 gdh 9 9 5
pdhC 4 4 5 pdhC 6 6 5
pgm 21 21 5 pgm 9 9 5
ST 184 184 5 ST 41 41 5

ERR193672 ERR193676
Gene De novo Kestrel Depth Gene De novo Kestrel Depth
abcZ 10 10 5 abcZ 4 4 5
adk 5 5 5 adk 4 4 5
aroE 18 18 5 aroE 2 2 5
fumC 9 9 5 fumC 5 5 5
gdh 11 11 5 gdh 38 38 5
pdhC 9 9 5 pdhC 11 11 5
pgm 12 12 2 pgm 16 16 5
ST 4183 4183 2 ST NA NA 5

ERR193673 ERR193677
Gene De novo Kestrel Depth Gene De novo Kestrel Depth
abcZ 420 420 5 abcZ 3 3 5
adk 5 5 5 adk 6 6 5
aroE 173 173 5 aroE 9 9 5
fumC 90 90 5 fumC 5 5 5
gdh 11 11 5 gdh 8 8 5
pdhC 24 24 5 pdhC 6 6 5
pgm 21 21 5 pgm 9 9 5
ST 11160 11160 5 ST 485 485 5

ERR193673
Gene De novo Kestrel Depth
abcZ 9 9 5
adk 6 6 5
aroE 2 2 5
fumC 9 9 5
gdh 9 9 5
pdhC 6 6 5
pgm 9 9 5
ST 2487 2487 5
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CHAPTER VI

CONCLUDING REMARKS

In CHAPTER II, I outlined the algorithms and data structures that are critical for

analyzing sequence reads without sequence read alignments, de novo assembly, or

de Bruijn graphs. KAnalyze, which implements these algorithms and structures, was

discussed in detail. The advancements discussed in subsequent chapters are made

possible by KAnalyze.

In CHAPTER III, I discuss an alignment-free approach for identifying the CRISPR

spacers in Mycobacterium tuberculosis (M. tuberculosis) sequence data that resulted

in a 22x reduction in runtime over existing methods. The error correcting algorithm

described in this chapter was inefficient, and efforts to improve it led to the novel

methods described in In CHAPTER IV.

In CHAPTER IV, I describe a novel variant calling software, Kestrel, that uses

k-mer frequencies to identify variant regions and find variants within those regions

using a haplotype approach. In Streptococcus pneumoniae (S. pneumoniae), Kestrel

can reduce analysis time from 19.21 to 3.35 minutes per million reads while using less

than 2GB of RAM. In the time it takes for the alignment approach to complete one

sample, Kestrel can process more than 5.

In CHAPTER V, I discuss other projects using Kestrel and KAnalyze. These

projects illustrate new potential uses of the technology and future applications.

Algorithms that do not rely on sequence read alignments, de novo assemblies, or

de Brujin graphs can analyze genomic data faster than the current state of the art.
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Török, M. E., Gouliouris, T., Harris, S. R., Brown, N. M., Holden,
M. T. G., Quail, M., Parkhill, J., Smith, G. P., Bentley, S. D., and
Peacock, S. J., “Rapid Bacterial Whole-Genome Sequencing to Enhance Di-
agnostic and Public Health Microbiology,” JAMA Internal Medicine, vol. 173,
no. 15, pp. 1397–404, 2013.

[101] Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F.,
Wilkie, A. O. M., McVean, G., and Lunter, G., “Integrating mapping-,
assembly- and haplotype-based approaches for calling variants in clinical se-
quencing applications,” Nature Genetics, vol. 46, no. 8, pp. 912–918, 2014.

[102] Rizk, G., Lavenier, D., and Chikhi, R., “DSK: k-mer counting with very
low memory usage.,” Bioinformatics (Oxford, England), vol. 29, pp. 652–653,
mar 2013.

[103] Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke,
J. A., “Reducing storage requirements for biological sequence comparison,”
Bioinformatics, vol. 20, no. 18, pp. 3363–3369, 2004.

[104] Rouse, D. a., Li, Z., Bai, G. H., Morris, S. L., Rouse, D. a., Li,
Z., Bai, G.-h., and Morris, S. L., “Characterization of the katG and inhA
Genes of Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis,”
Antimicrobial Agents and Chemotherapy, vol. 39, no. 11, pp. 2472–2477, 1995.

[105] Sanger F, C. A., “A rapid method for determining sequences in DNA by
primed synthesis with DNA polymerase,” Journal of Molecular Biology, vol. 94,
no. 3, pp. 441–446, 1975.

[106] Saunders, N. J., Trivedi, U. H., Thomson, M. L., Doig, C., Lauren-
son, I. F., and Blaxter, M. L., “Deep resequencing of serial sputum isolates
of Mycobacterium tuberculosis during therapeutic failure due to poor compli-
ance reveals stepwise mutation of key resistance genes on an otherwise stable
genetic background,” Journal of Infection, vol. 62, no. 3, pp. 212–217, 2011.

[107] Sboner, A., Mu, X. J., Greenbaum, D., Auerbach, R. K., and Ger-
stein, M. B., “The real cost of sequencing: higher than you think!,” Genome
Biology, vol. 12, no. 8, p. 125, 2011.

[108] Schürch, A. C. and van Soolingen, D., “DNA fingerprinting of Mycobac-
terium tuberculosis: from phage typing to whole-genome sequencing,” Infection,
Genetics and Evolution, vol. 12, pp. 602–9, jun 2012.

[109] Siu, G. K. H., Zhang, Y., Lau, T. C. K., Lau, R. W. T., Ho, P.-
L., Yew, W.-W., Tsui, S. K. W., Cheng, V. C. C., Yuen, K.-Y., and

106



Yam, W.-C., “Mutations outside the rifampicin resistance-determining region
associated with rifampicin resistance in Mycobacterium tuberculosis,” Journal
of Antimicrobial Chemotherapy, vol. 66, no. 4, pp. 730–733, 2011.

[110] Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C.,
Connell, C. R., Heiner, C., Kent, S. B. H., and Hood, L. E., “Flu-
orescence detection in automated DNA sequence analysis,” Nature, vol. 321,
pp. 674–679, jun 1986.

[111] Smith, T. and Waterman, M., “Identification of common molecular subse-
quences,” Journal of Molecular Biology, vol. 147, pp. 195–197, mar 1981.

[112] Stodden, V. and Miguez, S., “Best Practices for Computational Science:
Software Infrastructure and Environments for Reproducible and Extensible Re-
search,” Journal of Open Research Software, vol. 2, no. 1, p. 21, 2014.

[113] Torres, J. N., Paul, L. V., Rodwell, T. C., Victor, T. C., Amall-
raja, A. M., Elghraoui, A., Goodmanson, A. P., Ramirez-Busby,
S. M., Chawla, A., Zadorozhny, V., Streicher, E. M., Sirgel, F. a.,
Catanzaro, D., Rodrigues, C., Gler, M. T., Crudu, V., Catanzaro,
A., and Valafar, F., “Novel katG mutations causing isoniazid resistance in
clinical M. tuberculosis isolates,” Emerging Microbes and Infections, vol. 4,
no. April, p. e42, 2015.

[114] van Belkum, A., Tassios, P., Dijkshoorn, L., Haeggman, S., Cook-
son, B., Fry, N., Fussing, V., Green, J., Feil, E., Gerner-Smidt, P.,
Brisse, S., and Struelens, M., “Guidelines for the validation and applica-
tion of typing methods for use in bacterial epidemiology,” Clinical Microbiology
and Infection, vol. 13, no. 3, pp. 1–46, 2007.

[115] Vasconcellos, S. E. G., Acosta, C. C., Gomes, L. L., Conceição,
E. C., Lima, K. V., de Araujo, M. I., Leite, M. D. L., Tannure, F.,
Caldas, P. C. D. S., Gomes, H. M., Santos, A. R., Gomgnimbou,
M. K., Sola, C., Couvin, D., Rastogi, N., Boechat, N., and Suffys,
P. N., “Strain Classification of Mycobacterium tuberculosis Isolates in Brazil
Based on Genotypes Obtained by Spoligotyping, Mycobacterial Interspersed
Repetitive Unit Typing and the Presence of Large Sequence and Single Nu-
cleotide Polymorphism,” PLoS ONE, vol. 9, no. 10, p. e107747, 2014.

[116] Votintseva, A. A., Pankhurst, L. J., Anson, L. W., Morgan, M. R.,
Gascoyne-Binzi, D., Walker, T. M., Quan, T. P., Wyllie, D. H.,
Del Ojo Elias, C., Wilcox, M., Walker, A. S., Peto, T. E. A., and
Crook, D. W., “Mycobacterial DNA Extraction for Whole-Genome Sequenc-
ing from Early Positive Liquid (MGIT) Cultures,” Journal of Clinical Microbi-
ology, vol. 53, pp. 1137–1143, apr 2015.

[117] Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis,
M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,

107



Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P., “Best
Practices for Scientific Computing,” PLoS biology, vol. 12, p. e1001745, jan
2014.

[118] Wood, D. E. and Salzberg, S. L., “Kraken: ultrafast metagenomic sequence
classification using exact alignments,” Genome Biology, vol. 15, pp. 1–12, jan
2014.

[119] Yang, X., Dorman, K. S., and Aluru, S., “Reptile: representative tiling
for short read error correction,” Bioinformatics, vol. 26, no. 20, pp. 2526–2533,
2010.

[120] Zerbino, D. R. and Birney, E., “Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp. 821–829,
2008.

[121] Zhang, Q., Pell, J., Canino-koning, R., Howe, A. C., Brown, C. T.,
Lansing, E., Genetics, M., and Sciences, M., “These are not the k-mers
you are looking for: efficient online k-mer counting using a probabilistic data
structure,” arXiv, 2014.

108



VITA

Peter Audano was born in Fort Myers FL and grew up in Gainesville FL. He finished

high school at a local community college where he got his early education in computer

programming. After high school, he moved to Atlanta and began working for Earth-

link Inc. in 2001. In 2002, he enrolled in the computer science program at Southern

Polytechnic State University (SPSU; now part of Kennesaw University). After three

years, he left Earthlink to work for Internet Security Systems (ISS) where he led a

product support team before moving to quality assurance. There, he designed and

built a modular test automation system for network security devices. IBM acquired

ISS in 2006, but Pete’s role did not change. In 2008, he graduated with his BS in

Computer Science and continued to work at ISS. In 2012, he left IBM to pursue a

graduate degree in bioinformatics at the Georgia Institute of Technology.

109


