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NOMENCIATURE

English Symbols

A

Al

o R o =g
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NOMENCLATURE (Continued)

r cyiindfical radial cqordinaﬁe
r, throat contour radius
r. fadius of'hozzlg throat B
t  time
__T_. total-trunéation.erfbr
U. axial velocity
v radial velocity
X “total vélocity
.X | physical axial coordinate
¥y transfbrmed radial coordiﬁaﬁé
W - shock speed -
.Z hransformed.axiai'cbordinate

Greek Symbols

o " sxial weighting function for Rusanov method
B ' radial weighting function for Rusanov method
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difference operator (second definltlon used only in flnlte
difference sectlon)

A backward difference operator
g duiminy coor&in&te.' |
& "centered difference opera#or
N =ty/e o
€ _ finife-difference_trﬁnca£ion error
Y ratio of-sﬁecific hegts
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NOMENCLATURE (Concluded)

. L [
tio p'/pl
g . Courant .constant
W Rusanov varisble
Superscripts
v - dimengional variable
+ - vector quantity
‘n- - time step number: -
.Subscripts e
N stagnation condition ~
n conditions at nozzle wall
'Q, Aor 6 indicates function derived with 4, A or & operator

indicate$ difflerential with re5pect to x, ¥y, 2, r or &
indicates grid location of variable |

indicates function derived from finite difference
equation for R : '




 SUMMARY

To find & solution to the.raﬁidiy con%erging nozile problem, &
search of.existing.numeriCal_methqu;was conducted. From the literature
it was concluded that the méthod that was best suited for use with
© a computer in solving-the problem'was a finite_difference eéuatién
"approximating'the tiﬁe dependant flow equation#. Two ﬁethods, the
Moretti and Rusénov, were chosen for further étudy based on their
. ﬁerformance as presented in the litérature. .These_ﬁwO'methods were
appliéd to a rapidly converging nozzle,'with bouﬁdary'coﬁditions
. consistent with the phySical.problem.

A truncation errdr.anélysis was.performed:on both methods by
usihg'Taylor-series expansions to derife-the differénfidl equation
actudlly being fepresented by the finite_diffefence'equation) The  '
difference between the desired and the actual differential eqguation is
the truncaﬁion error. An order of megnitude study of the truncation
-error was performed by celculating the truncatiﬁn errdf_for the .
.starting conﬁitions, which were the isentropié, one-diménsional flow
‘golutions. The results of the order of magnitﬁde stﬁﬁy showed that

hoth méthods were incapable of providing an adequate-édlution.




" CHAPTER I
INTRODUCTION

In recent years there'haslbéen considersble interest in rocket

1nozzles with high inlet angles and'Small throat radius curvature.

' These rapidly converging nozzles can offer less weight, smaller size

and less cooling requirement than éohvéntional nozzles. it.has.béen

Experimenﬁally shown .that tﬁe'heat~transfer in a.rbcket'nozzle can_ﬁe-_-'

‘reduced by as mch as 50 percent by using a high inlet angle. It

also appears that the performance loss of the large_inlet_anglé

' nozzles may be small encugh to make the rapidly converging nozzles

: attfactive1

Development of numerical techniques to aid in design of the
rapidly converging nozzles has been hindered by the severe two-

dimensional effects near the throat and the existence of mixed sub--

©  sonic, transonic and supersonic flows.

The;experimenta; determination of the heat transfer.coefficients

and propulsive performance of rapidly converging nozzles would involve

 large amounts of manhours, sophisticated instrumentation, and money.

In addition, optimization of design can not always be performed by

. the cut-and-try method. The goal of this investigation is to find

a method of solving the axisymmetric compressible flow equations so

. that designers can save money and time in designing propulsion and

other rapidly converging nozzles.,




 CHAPTER IT.
DESCRTPTION OF THE FROBLEM

The gréateot diffioulty_associéted with.the rapidiy oonterging-f
- nozzle pfoblem is the exiStEnco of coupled subsonic ond transonic

flowo in the region of inveotigation.'_The.desired'téchﬁioue'shouid

be valid from low subSOnic into_tho-supefsonic-reéions.l The tochnique
~mst hondle the elliﬁtic subsonic, parabolio transonic, and hypor-

' ”oolio.suPerSoniC'flow equation.:.Existing.methods can only solve the
__equations for subsonic ‘and transonic regions separately.- Since

| 1nformation should be allowed to be transmitted from the throat

to inlet and back, by the nature. of the elliptic and parabolic :
_equations the two regions mist be solved simultaneously

in addition, the sonic line at the throat of nozzles with small

contour radius can be quite concave. The Mach number at the wall can

he Sonic or greater while.at the same axial location thé mach numbef

at the centerline can be subéonio. The higher preasure at the centerline
causes the flowlnear the wall to turn into the wail neoeositating a
compressive returning of the flow to bring the flow parallei to the wall.
This compressive turning cén'pfeoipitaté”a'ohock formation aft of the

throat.

The usual method of attempting a solution is to simplify the Navier-

Stokes equations with approximatioﬁs based on consideration of known

physical characteristics of the flow. In the subsonic this method




allows one to reduce the Navier-Stokes equations to Laplaces' eqguation
for the incompressible reglon and another equation of elliptical form
for the e¢ompressible region; The solution for Laplaces' equation is
well within the state of the art. The. compressible region préseﬁts
ﬁore of a problem and since the twd regions are by nature inter-
dependent, it would be prefersble to. have one method to solve the two |
regions simultanecusly.

| The reduced Navief-StokeS”equationg in thé_tfénsohic region
are of parabolic form and aiso'bylnaf;ie intérééﬁendent_with both of
the subsoniec regions. |

Due to the inability for disturbances in the supersonic region

to propagate up stream, the solufion to the supersonic flow can be
performed when the flow variaﬁles at the entrance of the:supersﬁnic
region are known. Such proven methods as the method of ¢haracteris£ics
can be used in this region with 1little difficulty. |

| The prcblem and goal of this work is to find a methoed of sclving
ihe transonic parébolic equations -and subsonic elliptical equations’

simul taneously.
i




CHAPTER ITX
HISTORICAL SURVEY

The first attempts to soive‘the nozzle problem utilized
épproximations in the steady staté differential equation.  Taylor .
[56],* Hooker [57]), Sauer [47] and Mendelson [27]'each_improved on

previous studies and achieved a direct solution to the transonic

region. Unfortunately the use of Taylor's method and improvements

required the patching of two methods to achieve the subscnic and

't:ansonic'flow field solution. Also it was found that the above

direct methods were applicable to onlf nozzles with small inlet angles
and large throat radius'§f curvature.

Oswatitach and Rothstein [36, 37) utilized an interative
method to solve the transonic flow equations.. Their method had the
same short comings as the direct solutions of Taylor.

Hall [153)], Moore and Hall [29], Quan and Kliegal [40],
Kliegal and Levine [20], and Shelton [50].utilized an inverse series
expansion method but again they found the same short camings as the
direct method. | |

To find a numerical solutioﬁ which can solve all regions
simultaneousiy and which can handle large inlet angles thé numerical

solution of the time dependent differential equations was studied.

#* Numbers in brackets refer to references.
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The two methods of,sgl?ingvthe'fiMQfaepehdénifdévéidﬁed tb date are

(1) the Msthod of Characteristics and

(2) direct substitution of finite difference approximations
for.the.partiél derivatives in the coﬂtiﬁuity and momeﬁtum equations.

Due to the complexity in programming thé Methods of Character-
istics problem in two space and one time dimension and excessive
execution time the direct substitution was examined in much more
detail.

The technique of solving the time-dependent equations by
substituting finite'diffefence approximations for_the partial_differ-

entials and using a scheme to-intégrate the_resultant'equations with-

respect to time was first suggested by von Neumann and Richtmyer'[55ﬂ.

These investigatbrs_uséd a Taylor series expansion to compute each of’

the flow variables at time t + At. The time derivatives in the .

Taylor series expansion were rewritten by algebraic gubstitution frqn

the differential equations as space derivatives which were then spprox-

imated by finite differences. The major benefit of thié method in
application to mixed fiow problems is that the unsteady siate flow
equations are of hyperbolic form for all regions of the flow. Thus
one method can be used for the entire flow problem. *

Tax L24], rewrote the flow equations in the conservative form,’
used central d;fferences for the space derivatives,'and used foreward
differences for the time derivative. Lax and Wendroff [24] further
improved the time ihtegration scheme in their One Step Method bj

averaging the first term of the Taylor series over the adjacent points

-
¥




and included an additional time derivative in the expansion. Table 1
contains basic information about the schemes discussed here._

Lax and Wendroff have also developed a two step or predictor-
corrector method where the parameters for time t + At are calculated
from. the parameters at time t but the parameters at t + 24t are cal~
culated from the: parameters at t and 1 + AL, The Lax-Wendroff Two
Step was developed 1o reduce cdmpufer storage and executlon tlme
requirements and to improve the stability by approximating the central
differences for the time derivatives. Richtmyer [417 shows that a
scheme with eentrel differences (an implicit scheme) is iﬁherentlj
stable. |
| Most of the time-deﬁendent numerical solutions exhibit errors

* described as overshoot, undershoot, er.numerical instdbiiiﬁy. To
smooth the effects of these errors Lax and Wendroff introduced an
Yartificial viscosity™. The effect of the "artificial viscosity" was
to smooth all large gradients such as shocks and expansion waves where
the physical situation results in steep gradients. Rubin and
Burnstein [43] utilize the Lax-Wendroff Two Step method with a simpli-
fied "artificial viscosity" to.investigate the numerical stability in a
shock tube problem. Lapidus [22] further simplified Burnstein's
"artificial viscosity" and developed the method to study transonic
flow around blunt bodies. Lapidus does prove that the use of
"srtificial viscositj“ does not prehibit the solution to the time
dependent equations from converging to a eolutioﬁ which should be '

close to the real eolﬁtion. Lapidus demonstrated the ability of the




Table 1. Survey of Uhétéady Methods

e

Order of

£ = (e + flol'%) + 202 A

Investigator =~ Referemce = Method . Stability
: Condition  Accuracy
_ +1 '
Buler [30] £ =, + At 1
n+l sl T n gtz
von Neuman and {551 £o = Lo + £ab + £, === 2
Richtmyer . _ . '
. ' a4l _ an L .n 1 a2
Lax-Wendroff [10] fo = £, + A6 + foo 5 2
- One Step ' . :
- n+s  =n n., n atg
Lax-Wendroff [30] £5 ? = fo + LA+ fp 5 2
Two Step : '
o gn o, vk ok a2
o "ottty 2 tt 2
Moretti ["30. Foal . S fﬁ a? 2
€ ] o "ot 4 tt 2
Equations are written in
non-conservational form
_ n+s n n
MacCormack [30] fo = fO + f‘t At 2




Table 1. (Continued)

Investigator  Reference ' Method Stability Order of
: ' Condition Acouracy
: ¥l *n  on ' ' '

| Rusancv | [10] f =f, + ft At _ _ 1

n _on', AZ° D
_"f =1 + 5 37

RPN .
‘.'»aY a . R .
8 2 (e

_ sw(V + é.).b_.Y_a

(Tra)_ (8¥°+070)

(T + a) a7 o
B T F 2 2 : il
(V4a) o (BY +427) | i

In the above methods : _ _ _

' % z :
n i
f =
U-w v
Al = '
P/p U-w
fn.= average values of adjacent points




LaxAJendroff Twa Step.method to.sdlve thehpransonic flew-region. Laval

[23] applied Lapldus' approach to the rapidly converging nozzle.

problem ahd presents good agreement with experlmental data for the

throat section. Serra (497 uses the Lax-Wendroff One Step method

with Burnstein's form of “artificial viscosity" are presents good

agreement for the transenie region of a rapidly converging.nozzle.
Prozan and Kooker [39] developed an ervor manimization technique

to solve the time dependent equations and also show good egreement for

.the trangonie portion of the rapidly couverging nozzle. Prozan

_attempted_to get as good & sclution for the subsonic region by ¢

running the program. for long times. However, instabilities'in the
subsonic regions aceurmulated errors which propagated to'the throat

destroying the whole eoiuﬁion._ This Phenomencn can be exhibited by

" several of the numerical technigues discussed here.

Moretti [301 presente a survey of some_ef the above methods.
In Moretti's survey he performs a truncation error analysis and
numerical experiments in a shock tube problem to inﬂicete the besgt
method. The methods compared and their truncation errors are shown
in Table 2. In the numericsl experiments,_Meretti determined the error
at one location of & shock tube for g time span ineluding the arrival
of the shock at ﬁhe'point of interest. Moretti also writes all methods

in the non-conservation and conservation ferm. Although previous

investigators [ RiChtmyer L1, 42, Lax 24] had argued that the conservative

forms were better, Moretti proceeds to prove that the conservation forms

- actually have greater error than the non-congservative forms. Moretti

also shows that his scheme, which is a Lax-Wendroff One Step method
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Table 2. Truncation Errors From Moretti

Methoqd, Truncation Error for ft = 'AlfZ
B L2 2
Euler -5 fttﬁz_-
. Lax First Order | -+ (r__+ oof 3 ﬂZ2
€ Mgz tt

Lax-Wendroff Two Step - 1/6 (o2a1® - 1)0’1’-‘11&23

Moretti and_Lax-Wendroff : '1/6 (Alfzzz + ogfttt)dﬂZB
One Step

L1
.

-
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. with non-conservation form of the equatlons has the 1east error for

the time span 1nvest1gated in his numerlcal experlments.
- The Moretti scheme was chosen to be stud:.ed gince it was
shown to have less error than the other avallable schemes. Difficulties

in the subsonlc reglon prampted more study and surveys by Tyler [5&],

Taylor, et al. [53],_and"Hirt [17] were found_which_Compare the per-

formance and stability of many different methods acfos$ shocks,

contact discontinuifies, and expahsibn waves.3

Taylor, étlﬁl., compared the Rusanov and Godunov first ofder
schemes, Maccbrmack'and Richtmyer second ordér'tﬁo-éteﬁ schemes and
Ruéanov‘s_third-order scheme. Of this group ﬁﬁe Godunov scheme
performed'with least error across shocks,'con£dct discontinﬁities,

and'expansion waves. The first ofdef Rusano# was the gsecond most

 des1rable gcheme, The second and thlrd order scheme all exhlblted

: overshoots and under§poots near the dzscontlnultles.

Because the Godunov first order method is very complex to
program,the Rusonov first order scheme was.. chosen for fUrther
examination. In addition, the Ruganov first order scheme is more

flexible in use as well as simpler to program.
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CHAPTER IV
STABILITY ANALYSIS METHODS

Since the most:cémmoﬁ pfoblems in humerical'solutions of.
time dependent differential equatioﬁs-are the ldcai and gldbal
stabilites, a search was made to.find a ﬁethod'of.predicting
instabilities. |

The first stability conditions which must be satisfied is

" the well-known Courant-Fredrichs-lewy condition which says that the.

~ distance traveled by a sound wave relative to the fluid must not
exceed the distance between neighborihg grid pointg. The exact form
~ of the CFL condition is derived for a constant coefficient form of

the time integration scheme. The applicability of the CFL derived

for a constant coefficient to a problem with nonconstant coefficients

has been proven only by experience for both the Moretti and Rusanov
method.

- Moretti [30] shows that the CFL condition for his scheme ig

At < %ﬁf;;- and at's.fgfgy . (1)

‘Kentzer [19] shows by an error propagation analysis that
6. =1//2 is the optimum condition to minimize the growth of both |
la_,'rge and small wave length error disturbances.

Rusanov [46] shows that the CFL condition, his first order
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method by using the Fourier method is

At = = 29& Axgy' o (2)
(" + ay ) (HK + a)
and, _ ST

c<w<lle (3)

However, the CFL stability condltlon alone is not sufficient
to predlct all the 1nstabillt1es thaet 1mpede the appllcatlon of the

time ‘dependent numerical solution. The study of the truncation
- error supplies the cause of these additional_instebilities.

Rlchtmyer [42] deflned truncatlon error as’ the difference -

between the differential equation and the actual differentlal represented

by the finite difference equation. To find the differential equation
. represented by the finite difference equation each term in the time

integrator scheme is expended by a Taylor Series as in equation (U4)

and (5)

n+l n - 5t2 ' Qts 4

- av ab
fp = fy FEM L S f T Ty o tree (W)
2 3 4

_ e ' bx Ax” Ax o
flj[_lﬂ—fi '.tfxﬁS‘!’fmc—é— ifm—B-"‘f —-§E+....(5)




For example
£ 2= 4 ftat o (6)

is the time integration scheme for the Euler method. The time

derivative of f is replaced with

£, = -Alf, - (7)

or

n+l _ . n - ' '
£ = f;" -ALf_Ab _ (8)

The space derivatives are replaced by finite difference
approximations and each term in equation (9) is expanded by

equation (4) or (5). This results in equaetion (10).

n+l n I . :
£y = £ CALa(f ., - f, )/2ax (9)
: : 2’ 3 Lo
n At i At .
£, LML St T &+ Teeet 2B - (10)

. a 3 5
) AX AX .
(2f_px + 2f __ S+ 2f 120)/25::

1h
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._2 3 - h "
f AL it B ftttt "E’“ -Al . (11)
3 .5
. Ax7y
(ﬁxﬂF'* fxxx A%_'+ fxxxxx.lEO

Each fime derivative is expanded by_diffefentiation of equation
(T).with respéct'to timé, ‘Equation (7) can be differentiated with
fespect to x to yield termé which when subsﬁituteﬁ into ﬁhe'timé
dlfferentiatlons of equatlon (h) yleld expre331ons for £

tt? tt
.ltttt in terms of space derivatlves only. Rewrlting equatlon (11):

2 .
e BB A
£, + ALE, (ftt 27 Toee 5 F T "‘E) - 2
e oA
AL (f e T T iﬁﬁ)

From the CFL condition of stability

t=gg_\,x/a
o, o omd o’
£ P A = - (o 00t To (o * foeee ] (13)

g, and
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The termé 6n_the'left when séﬁ.to zerO'give exactly the
_ differential equation fpf.which a solution is désired. The tenméion
._ the right are the.truncatioh_e:ror.(T). |

| Hirt [i'?] suggests that tile terms of T that contain even 'ofder
dé?ivatiﬁes of the function béing3integrated in time be congidered as
‘diffusion-like terms. Tﬁe sign of thesé "mmerical diffusion” terms
cﬁn.indi¢ate instabilities. If-the-coefficiént_of'the lowest even
ﬁrder term is ﬁegative , then "ﬁonlinear insté.bilities"_ can occur in sbme
area of-the flow such as a'coﬁtact-discontinuity, shock; or expansion
ﬁave;. Nonlinear instabilities.aie.éharacterized by sharp spikes
that grow with time and do not flip-flop with each time step. If_dué
1.:0. some pé_rturbation a sharp .gra.dient is built up, the ﬁegative
‘diffusion 'coeffic'ient prdduces th-e difms_'ion of emr in the direction |
of.the gradieﬁt rﬁther fhan aﬁa&nfréﬁ.the gradient (uﬁ-ﬁill r#ther |
than .down-hi]_'l.) . Thus the -i)erturbation contiﬁués to build.

The analysis of the truncation error magni tude can show any

are#s vhere the error is a_significant percent of the functibn. This
:type-Of analysis can show tﬁat the application of & methﬁd to.a

particular problem is feasgible.
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CHAPTER V
EXPERIMENTAL STUDIES

Badk,_Cuffél and'Maséier [3,6]_suﬁmarizéd their own' and
preyious investigator's data. Their summary.containéd nozzlesﬂwith
convergent héif éﬁgles of 30 to.TS dégrees throat cohtour rédii-of
0.25 to 2.0, 'and shoulder contour radii of 1.0 to 1.5. COmparing the
thrust, specific impulse; and flow éoefficient velues with values
cal&ulated from a one dimensioﬁal nozzie ﬁf the same area ratio
Provides‘a_measure of a'nézzles.performahce; Back, et al., show that
for a 75 degree nozzle the loss in thrust is:befween.6 and T'éercent
but the loss in specific Impulse is only 1 percent; The_loss in
thrust and specific impulse for a ﬁ5 degree nozzle is only 3 percent .
_énd 1l pércent, respectively.

| Back, Massier and Cuffel [2] experimentaily investigated the
convective heat transfer in nozzles of 10, 30, and ﬁS-degrees
‘throat contour radii of 2.25, 2.0, and .625, and shoulder radii of
2.0, 1.5 and 1;0, respectively. _Back has sthn that the reduction iﬁ
convective heat tranéfef at the throat of a_hS degree‘poézle compared.
“to a 10 degree ﬁozzle.can be as ﬁugh as 20 percént. The high
acceleration of the boundaryJiayer appears to delay the transition
from leminar to turbulent at the fhroat which causes a.lower heat
transfer. | H

Back and Cuffel [5] investigated the shock formation aft of

E
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the throat in the 45 degree nozzle. They pcinted out that such a

f

shock can disrupt the boundary layer and thus could increase the heat

transfer at the wall. Avoidance of such a shock is possible by

properly designing the transition from circular arc throat contour to

conical divergent section.
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CHAPTER VI
" ANALYTICAL DEVELOPMENT

Boundary Conditions

The choice of the method of treatlng the boundary conditions
can be as important as the choice of the time integratlon scheme as .

Prozan [37] points out.

Subsonic Entrance

| Early-investigétors [2,23] utilized an inlet plane a finite
aistance from the throat. Moretti [33] shovs that such treatment
produces an ill posed or incorrect'ﬁoundary condition. Numerical
expe?iments by this and othér investigators show that if thé inlet
plane is not at infinity and there are not enough points between the
iniet and throat, disturbances will propagaﬁe upstream to the inlet.

and be reflected back down stream, thereby being trapped within the

_bbundaries.' Large errors can be built up by these trapped disturbances.

By placing the inlet at infinity only half the problem is solved as
shown below. Also, if a uniform grid spacing is used an infinite
number of points are requifed.

If a nonsingular space transformation is ﬁsed, Lapidus [22]
shows that_tﬁe transform does not adversely affect the solution or the
pfdblem. A transform of the form below has been used by Sheppard [52]

which is a simplified version of the transform used by laval [23].
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1+ ~2/A1 ' -
2=1% :xng-ez{:/g:{) (14)

Where X is the physical axial coordinate, Z the transformed
C6ordinate, énd Al.is a.stretchinglparameter controlling the transform.
This transform was used by this inﬁéétiga’cor and wag found to produce .
the same errors as those produced by.an inlet plane at a finite
location. It was determined that at values of Al which provided a
sﬁfficieﬁt number of grid points in the throat tb provide an acecurate
‘solution in that region, the second point is 0o far from the inlet
that 1t a.c.t.s like an .inlet plane and reflects disturbances Ea.ck-
_downstream. |

Prozan [39] utilized a transform of the form
X = Al ﬁan’ .(1Tz/2)' _ | fls)
| A shghtly modified form was .found to work. satisfactorily.
X = Al tan (mz1/2) ' (16)

7zl = [2/T tan'l(l/Al)ﬂ] Z -1 - (7).

Supersonic Exit

Jinece disturbances Iieg.r the exit cannot propagate upstream the

treatment of the supersonic exit will not éffect'the upstream solution.
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The usual method is a simple linear extrepoletion from the upstream

K points{

Centerline
Due to the symmetry of the problem at the centerline, the.
radial pertial derivatives of the flow paremeters vanish Also thei'
radial veloc1ty vanishes at the centerline.. By using a finite |
tdifference equation for the first derivative of the axial velocity with
respect to the radial coordinate, and settlng it eqpei to_zero,_e-

'_' value of the centerline axial velocity ie obtained. The fofward finite
edlfference equatlon which has a truncation error of one order less then
;the interior centered difference scheme was found to be the simpleet

equetion which would produce a stable solution. A discueszon of_the

finite difference techniques and- thelr stebility follows below._
The treatment of the cont1nu1ty eqpatlon by the above

'technique produced instabilities which destroyed the scluticn.x It

wasg diecovered that due to the transient nature of thejproblem the

_.iSenthPic relationships for density and veloclty are not valid. Also,

since the flow is inviscid there are no physical reasons for the radial

“_derivative for_the density.to vanish.at the centerline. Therefore, a

reduced.form of the continuity equetion,nwhere v = V& = Uy_= Q, is-

used to integrate the den31ty with respect to tlme.. The term V/r

in the axisymmetric equations (see equation. (31)) is indeterminate

_bnt can be pfoven by L'Hopital's rule to vanish. When the time

_dependent equatiqne reach an asymptOtie eolution-the isentropic

relationships will be valid and the solution for the density will exhibit
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© the vanishing radial derivatives for the density.

Wall Boundary

The physical boundary condition at the wall is satisfied if

the velocity is parallel to the wall. Some investigators add additional

constraints to the problem by obtaining the wall values from extrapolat~

ing the interior points with a parabolic curve fit requiring the com-

.ponent of velocity normal to thé'wall vanish. Laval [23] uses this

technique which incorrectly sets a constraint on the second derivative
at the wall.

Serra [497 uses a reflection technique similar to that used

'_ on centeriines. Since this technique does not model the physical

situation,'a more appropriate method is preferred.

Lapidus [22] used a complex system of approximating the flux

of a flow variable into a cube boardering on the wall to update the

flow variable. Even though the flow characteristics are consgidered in
this approach, success has not yet been achieved.

Moretti [30, 31, 32, 34] indicated that errors generated
at the wall proPagate'intq the flow and éause instabilities in areas
of the grid system where small perturbétions are poorly defined, i.e;,
near the inlet. To eliminate the errors Moretti suggests the use of
a method of characteristic approach. Since.the time dependent equations
are of hyperbolic nature, a charactériétiC“apﬁfoach with one time and
one space dimension'could be used at the wall to update the wall_
values. The technique involves’using'a Tdyld£ seriés aﬁﬁroximation

of the valocity and speed of sound at the wall at time t + At. Using

i
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the approximations,a characteristic line is constructed to an
interior point P¥ at time t. The flow values at P* are interpoiated
from the surrcunding grid peints. The flow values at the wall at

time t + At are calculated by integrating the cbmpatibiiity equations
along the characteriétic line; these new values are used to recon-
struct another characteristic liﬁé. The process is repeated until the
position of P* stabilizes. _-'-Sﬁeppard;[SE-Zl__—-found this method used
excessive executipn time, did“ﬁoé ééﬁvérge in the.subsonic region, and
abandoned it. Since the two-dimensional method of characteristics
neglects the axial.VafiatiOh of;fié%lpara@etgrs-thié;}nﬁestigator felt
this method would not converge in the subsonic.region where axial
variations become large. Utilizihg'the_three—dimenéional method of
characteristics may provide an accurate solution. Howéver,.the |
complexity of this aﬁproach prompted a search for an alternative
method.

The.use of backﬁard finite difference approximation for one
sided derivatives had been used by Moretti [30] and with lack of
success. However, by using a finite difference scheme with an order of
accuracy . greater than the interior finite difference gcheme, a
stable and accurate scheme can be developed. The.use of a less
accurate scﬁeme can produce a negative numeriéal diffusion coefficient
(see section on stability analysis) and therefore, an unstable method.

The backward difference scheme is used to evaluabe the
partial derivatives for the equations used in the time integration

scheme as applied to the interior points.

%
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Initial Conditions

Since the solution achieved from the {msteady method is the
asymbtotic one, the choice of initial conditions is arbitrary since
the transient solutions are of little interest. Since one of the
primary coneerns in computeér numeriéal_analysis is the minimization
of execution time, the initial conditions are choéen to be close to
the expected solution. This is accomplished by.solving the one=
dimensional flow equations for the variables.and altering the
velocities to make the veloéity vector parallel to the wall. The
radial velocity is linearly decreased radially to zero at the center-
line while maintaining the'same magnitude of the total velocity vector.

_ Figure 1 shows the initial pressure and mach number distribution

used in this study.

Coordinate System

Since the problem is axisymmetric, a cylindrical coordinate

systém with fixed origin at the throat is used.
Because the finite difference technique is to be used a
uniform grid spacing is desirable. It is also desirable to have
grid points on the wall rather ﬁhan havihg to interpolaﬁe from
interior points. By means of a coordinate transformation the
coordinate system .in the physical plane can be mapped into a.rectangular

coordinate system. The radial coordinate transform is

y =/t | (18
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To provide a subsonic iﬁlet at infinity and to prevent
extremely lafge.storage and exécutioﬁ time, the axial coordinate is
transforﬁed. This transform places most of thé axial grid positions
~ in the throat region and provides sufficient axial positions between
the‘throat and subsonic.inlet to prevent too rapid a changg in the

physical coordinate.
X = Al tan [T/2((2/ tan (1/A1) + 1) 2z + 1)] L (19)

Figure 2 ghows the physical coordinate system._ Figure 3

shows the transformed coordinate system.

Non-Dimensionalizatipn Procedure

To generalize the differential equations thé flow parameters
are non-dimensionalized. Théfﬁgégédreqaﬁﬁﬁdénsity'aré yon-dimengions
alized by the stggnation\values:of po'. The_velqcities should be
non-dimensionaliéed-ﬁy the speed of sound at the inlet or (YPO'/pO')%,
however, iﬁ the inferest 6f simpiicity (Pb'fpé'j%.is uSéd instead.

The non-dimengionalized perameters are as follows:

P=P'/P " - _ ~ (20)
p = p’/po' | ' o (21)
o= /(e /o, ") (22)




Figure 2, Physical Coordinate System.
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Figure 3,

Transformed Coordinate System,
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v =V /e, /o, )® (23)
F -
a = a.'-/(Po'/po‘)2 ' . (24)
= +tyt t t % | |
t =t /(PO /p.o ) (25)

Differential iEqliations

The two methods of wr:n.t:n_ng the time—depehde‘nt, axisymmetric
differential ed_uaiitio'né for a compres.sible_fluid dyna.nri:%s are {:he con-
servational and noneconsei'vé.ﬁiOnal forms. The non-conservational
'fc_arm was chosen since Morét-ti [30] shows that thig form is preferable
because of ease of.proéramiﬁg and better é..ccﬁracy-'. |

The equations necessary to define the gystem in the non-

conservational form are below.

- Contimuity Equation: Dp/Dt + pve¥ = 0 (26)
Momentum Equation: 0 ﬁ/m +9P =0 (27
Energy Equation: p Dh/Dt = DR/at . (28)

The energy equation is used to derive an expression relating
density and pressure to eliminate pressure from the continuity and

momentum egquations.
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G = (%f@ isentropic : (29)
P |
3~ ¢ e | (30)

The continuity and momentum equations are expanded in

cylindrical coordinates and simplified by using R = lnp as suggested

by Moretti.

- v
+R, +VR +U +V, +5=0 (31)

Continuity equation: Rt

Axial momentum equation: U

t+wr+wx+GRx=o : (32)

Radial momentum equation: Ve + UV + VW, +GR, =0 (33)

The transformation of the coordinate system as digcussed

in the preceeding section is applied to the above equations. Where

v f; (3%)

7 = (ta.n'l(_x/fxl-) -1/2) ztg,p"lg.l/A1) +1/2) (35)
af _ 3z , waf

'é':':"axaz"%:%ay (36)




Where

of _ oy of
ar or oy
£+ of
ot ot
K.—ax
IS d(rn)
o rn dx
pad=_1
ar
e
A=1TC + VD
B = UK
E = DG
F = CG
L =Gk

G = a° = (Sonic Velocity)?
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(37)

(38)

(39)

(ko)

(k1)

(42)
(43)
()
(45)
(s6)

(47)
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H = Dfy = (48)

21
ry

The transformed equations after simplification with equation

(34) through (48) are as follows.

Transformed continuity equation:

Ry + BR, + AR+ KU, + CUy + DV + HV =0 (49)

Transformed axial momentem eguation

U +BU + AU + LR_ + =0 (50
t Z N 2 FRY : (50)
Transformed radial momentum equation. . , L

Uy + BV, ¢ AV, + R, =0 (51)

Finite Difference Approximation

The choice of possible difference approximations avé.ilable
10 the investigator is large. There are three major types of
approximations, the forward (a), backward.(ﬁ) and centered differences
(8).

Where the form of each is:

8,(2) = (£ - £3,7) | (52)
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= (f141 - fi) - (53)

=g

Fane

Hy
|

[#0]
'_l
oy
¥

Further classification'éf finite difference approximations
involve the truncation error of tﬁe approximation, €. By substituting
a Taylor series expansion (see.equation (1) and (2)) for each term in
the finite difference approximation the order of.magnitude of € can

be determined. For instance

. _8,(0) T T e ue A | (55)
x 2A% 2Ax b4 XXX 6 >
L
AX_
+ fxxxxx 150 + e
2 Y
2 Ax AX
®, " oo 6 Twoox 120 70t (56)
or
. - .
861 = Order of Ax {57
and
¢ = - ¢, = Order of Ax | (58)

R
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To avoid errors being introduced at the bouridaries by large

' more accurate

truncation errors and negative '"numerical diffusion,’

backward and forward difference must be derived.
Hildebrand [15] contains the general methdd of'derivatioh of.

higher ordef approximations of A gnd'ﬁ.' Defining the shifter operator

() and the derivative operator (D) enables the derivation of a

series expansion of D in terms of A‘or A. This series can be

utilized to derive higher order approximstions and approximations

for higher order derivatives as shown in Table 3.

Ef, =1 (59)
1 _ .
ETf =f _ (60)
afy '
DT, = (=)
i X xx, (61)
ra=E-_lorE=1+a (62)
F=1-5"T | : (63)
1 _ L
§ =E* - B ¢ : (64)

Ek'=(1+&)k=1+k,3+%¢2+... (65)
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Table 3. Summary of Difference Approximations Investigated.

Approximation
A
5 N
st fz = (le. - f‘:i.-:l')/ﬂz —fzz 2 + fzzz -
- 2 9 2
fzz - (fi - efi-l * f‘:3.-2)/&Z -fzzzAZ + 1z f'zzzz'é"z
_ 2 2 o3
2qd:_ £, = (3fi hfi—l * fi-E)/eﬁZ : fzzzﬂz fo222 Q%—
2 3
fon = (in Tyt ll'fi-2 fi-?,)/ﬁz Toure 5 * T0z2s 10
3
= (il . 3 21 VAR
3rd fz - (_6 f‘i 3fi—l * 2 fi-2 3 fi-S)/ﬁZ" zzZz L * 10 fzzzz'ﬁf
= _ _ ' _ 2 3.2 4
£z (35fi 10]'Lfi-l * 1lhfi-2 56fi-3 12 fzzzzz‘&Z + 3 #zzzézz&Z
+ 11f )/21;522
i-~b
For p replace all i#n with {-n and AZ = -AZ in the above equations. The same truncation
errors apply except ¢ = -e-

A A’

o ammn nn A g s

1




Table 3. (.Continued)

Approximation
6:
- 2 N
= - 82, p B
st fz (fi+l fi-l)/gﬁz 3 #222'75— * fzzzz 0
&22 ,{\..'7.’-)+

_ 2
£, = (£, -2f + fi_l)/lmz

ZZ i+l féﬁzz 12 * 222222 720

2nd £, =08t - £ )-(8, - 5 o)V .. T30 ;Z"? A - 555 = a%
-..! . . . B .
f2 = [16(f1+1_ e ) (E g £y p) =308, 1/1207 . a_zg a_zg
()]
(oY




From the Taylor series expansion

Hy
I

2
= A
i+l fi * fx R 2 e

mf? 953'3
fi + ﬁfoi +,2! D fi + 31 D fi

(axD

I

XD
= e fi
Bf =t = f els.
1 7 (x+px) i+l i
ar
E = &P
AxD = 1nE
2 3 4 k
= = A - Doy A RRLN
InE = 1n(1+) = p - &+ : ﬁL-+ ce o+ (DA
Thus

(1 + axD + S e b SSE L

) £
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(66)

(67)

(68)
(69)

(70)

(71)
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or
Dfi = (A - 32_ + 13’;‘3 - ﬁl—L+ . .(-1)1“%5) —z-}lz (72)
also
e, = p(o(t,)) : (& “'%E B0 - 32“ - & f1 (73) -

3 3
Thus the finite dlfference approxlmatlon can be derived for A

and E to any desired order of accuracy by‘lncludlng more terms in the

series in equatlon (72)

CE L Lt T e

In order. to derive hlgher order

the Taylor serles expension for p01nts adjacent to the point of interest

must be algebraically manipulated to cbtain the scheme with the
regquired accuracy. | | |

Two dimensional problems require the approximation of cross
derivatives or derivatlves with-respect to two spacé variables.

Again, reverting to operator notation these approximations to any order

can be derived.

f(x:y) - fiaj i | ' (7)
8.,(5) = (f5 1 = T, ;) | (75)
8 (8) = (8 o - £ () (76)
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_of(x,y) 8x(2)

£ = 5re (77)

| 2 o b.(6.(E)
| U3ty Loy aeey) _ Oy'0% (78
oy = o "oy Cox ) - (78)

or
.2 . : . .
_ a flx I - _ )

Ty _ulaxay =(fy = f " fg 4+ f_l’_l)/“&fcw (79)

At the wall and centerline the'cross,derivati#es can be
derivéd by the application of & and A or A. The order of  application

makes no difference to the finite diffefeﬁce equations or
8(a(d)) = a(s(£)) - (80)

The operator A beha‘ve's in the’ ‘sa.memanner

e

s(B(E) = (B (£ o - £ ) - 3(8) 7= 14 7)) (81)
va(f oty o) T 58 5T, Jfm
) 2 2 2 2
%8 "3 Tyyyz Y 15 Taznay (82)

For determination of the simplest scheme to use the stability
analysis for the problem must be performed. The choice of higher

order approximation can sometime improve both the stability and




truncation error of a scheme.

Numerical Techniques

The two numerical techniques compared in thiz study are the
first order Rusanov and the second order Moretti method. These two
schémes were chosen because of their pro#en supériority in references
[30] and [53]. The Moretti method was examined_since it was hoped
that the higher order of Taylor series utilized would produce less
error, |

 The Moretti method utilizes a second order Taylor series

time integration scheme as shown below.

eIt el e

8 |
1,0 T,y YA TS - ®

t tt 2

The equation (83) is applied to R, U, and V where
R=1np (84)

The first time derivatives of R, U, and V are evaluated from
equations (89), (90), and (91). These equations for the first
derivative become equations {92) through (105). When differentiated

again with respect with time or either space coordinate. These

equations can be aigebraically combined and substituted into the time

integration scheme equation (83) to produce equations for the advance

time flow parameters in terms of spatial derivatives only.




L1

The first order Rusanov method requires only the first time

derivatives as shown below.

| 2
1 AZ 8 3
£3,5° f:,j TS 3z (“i,jfz) r- e
Y S el W
tsd (aye + azg) (HX + a) max
: 2 + -
o, 5= —ompet  (ESs

(&F + &%) (X + a)max

= - + + + +H
Ry _ (BRz _ARY + KU CUy Dvy HV)

U, = (BUZ + AUy + IR, +F Ry)
V =~ (BY +AY +EER
(BV, v y)

Rtt = -[szt + Bt ¥

U, =-[BU, +B

+ L +
bt 13Uz + AUyt+Ath+ IRZ £ A

vt

(85)

(86i'

- (87)

(88)

(89)

(90)

(91}

R_+ Ath + AtR;y' + KUzt + CUyt+Dvyt+Hvt] {92)

LR+ FR +-F£Ry] (93)

e




<
I

tt

zt

= -[BV,, +B

t yb Tty yt

_ —[BRZz +_Bsz + A RYZ + AzRy + KUZZ + !KZUz +C

+CU +DB '+ HV +HV]
ey zy z z

yy

-| BR + BYyR + AR + AR + KV + CU +CU +
[BR,y + 2R, g Yoy T yy T vy

+ DV +HY + HV
A ¥ ¥ ]

V +AV._+AV +EFER_  +ER]
2 : ty

L2

(9%)

(95)

(96)

_ [B_UZZ Bz_Uz + AUyz + AzUy + LR, + ngz + _.FRyz+ FzRy]l .(97_)| _

-[BU +BU +AU +AU 4+ LR +LR.+FR’ +F'R' '
( 2y ¥y 2z ¥y yvY zy y z yy Y_Y] _(98)

=-[BV. +BV +AV +AV +FR_+ER]
zy y 2 ¥y yy Jy yvy

A = fu.c + vtD]

Bt = U£K
E. =DG

(99)
(200)

{(101)

(102)"
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-%=7w¢)%  . ~ (10k)
L, = Ko, o . (109)

Stability Analysis

The expres.siqns'.for_ the truncation error of the R time
integration scheme of both the Moretti anc'l_Rﬁs_é.nov methods fo].'l.éwing
the analysis of Hirt {17] and Tylgr [54] are presented in equations
(206) and (110). - |

For the Moretti method.

CTREC & s Rgzz ¥ Wazg * 1 MRy * Clyyy * Dyl (206)

233
- 6N R, - N LN

- i -
(B Rzzzzz +-Kuzzzzz .+ i (ARYWW * CUWY * DVW)]

b i : D
-g N Rttttt + Order of A%

Where

O -
= 5 N -
2(ar" + px )3(HX + a)msx

- {107)




L

2 2, 2 2%‘ o
Q= 2 . Lt _ | (108)
2prax(pz + Ay )

1= wlee (109)

Also, Ar is the difference between radial grid points at L
and Ax the difference between a.x'ial grid points at Nmax'

For Rusanov method _

Tp = RZZ[mQ(FDC + ai -crNKE(U2+ a2)]+ | ' B (110)
gy Lol +'8) - (A2 + o E p°a)7+
+ Ry[mQ,(i-D{ + su,)y - ';IN(EA_Z -.A't - B, +I'I-]E + AAY +KF,+

+ CFy + DEy)] +

- Rz[wQ(HZ +_a)z - crN(BBZ + ABy + KL, + Lyc)‘] -

- @I[Ryz(QBA. + KF +CL) + UZZ(EBK) + Uw(eaci + Vy(2ADI) T

+V_(2BD) + U_ (2BC + 2AK) + U (BD_ + AC +CA +
yz (PBD) + U ) + Uy (ED, y ¥

+ KA + DA ) +
2 ¥
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+U (BK +KB +CB })+V_ (BD +2HA +DA )+
Z Z z .y .y z _ ¥

5

+ v, (2HB + DBy) + V(BHZ + AH‘y)] -

AZ _ 2 22
- + + : + + DV -
= [BRzzz EUZZZ n (AR_ _+ CU b }]- o N Rttt*.

2 | ' " N . Rzzzz '
+ 5“% Az [(m;-&a,)z R,o+ (X + a)zzz RZ + (}[X+a) 1+

. : R -
+ g Q_n? Azh [(I-D{+a)y Rm + (I'D{%)m Ry + (MX+a) _I%ﬂ ] +

3 —
- 3 Az
gg N Rtttt + 120 [BRzzzzz * KUzzzzz *

I
+ + CU + DV +
L (Ame YYVYY :m'w)

4 b

L, gN 5 -
+ 155 Rttttt + Order of AL7,

Similar expressions for U and V can be derived and used in
the complete stability analysis. These équat’ions have the same form
and have been omitted for simplicity.

The Rusanov method is a first order .method » therefore, the
truncation error for this method has some additional iower order terms
when compared to the second order Morefti method. However, the.

numerical diffusion terms for the Rﬁsanov method are contained in the




lower order terms. Thus, the Rusanov method has & numerical diffusion

of larger magnitude than the Moretti method and positive where the

Moretti diffusion is negative. The-Rzz and Ryy terms for the Rusanov

Z2Z%2

and R and R terms for the Moretti are the diffusion-like terms

under discussion. The R and R terms come from the R term.

ZZZZ tttt

Since both methods in this study made use of the same centered
differences portions of the truncation error terms are identical
for both methods. The most:important of these terms is the first
set of terms in the Moretti truncation error or the triple spatial
derivatives which come from the truncation error, ¢, of the centered

difference.




.CHAPTER VIT

RESULTS AND CONCLUSIONS. .

To evaluate the performanoe.of both the Moretti arid Rusanov
methods this investigator performed the anhlysis of a rapidly con-
verging nozzle. The nozzle con51sted of a small angle conlcal con—'

vergent inlet sectlon, which extended to infinity upstream, a shoulder

_radius, a large angle conical_convergent sootion, 8, circular arc

throat contour, and a moderate angle conical divergent section. .Baok,
et al. [i;2,33h,5,6]'hove performed experimeﬂtal studies on this and
similar nozzleo._'Figufe 1 contaios a-oketoh of ‘the nozzie investi~
gated and Figures U and 5 contain & summary of Back's data.

In applylng the Moretti method to the nozzle in Figure 1, it
was found that a finite Aifference approximation in the-radial_
direction of one order of accuracy higher than the centered difference
approximation (i. e., 53 in Table 3) was required to maintain stable
computations. iflthe truncation errors for the Moretti method using
the centered difference 61 (see equation (106)).52, or 33'are compared,
the instabilities experienced, that rapidly destroy the solution, can
be predicted. |

In equation (106), the group of terms containing the triple
gpatial derivatives and muitiplied by QZQ are the rosults of the_.

finite approximation and thus are the terms that will change with the

use of a different finite'différence approximation. Using 61 in the
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axial a.nd-E2 or 33 in the radial direction results in equation (111)

for 52 and (112) for 5,3

- %— [BRzzz + XU, -lme (ARm + cum + Dvm)] (111)
- A%E'[BRZZZ +x0,,,) E [ yyyj yyy& +_DV&yyy]' (112)

The instabilities that destroyed the solution at the start
were exhibited in the shoulder radius region, where the triple
radial derivatives (i. e., R and U __) are of the seme order of
magnitude'as the triple'axial derivatives (R- ). 'n.was'equal to

five for the grid system determlned most accurate by numerlcal experl-

-ments. Thus, the Ryyy and 1ike deriVatlves are the most important

terms for both §; and 52. The factor of minus four in equation (111)
is sufficiently large to caﬁSe_the computational instabilifies found.

By uging a.53 approximation in the radial direction, therthird
order radial derivative terms are reduced to fourth order derivatives
and their multiplier to_ﬂzgl(see equation (112)). The magnitude of
the terms changes by using 33 are less than or gqpal to the third
order derivative terms in equation (106). Thus, the instabilities
found earlier were avoided. | _

Using the 53 approximatioh.for the radial derifativgs aﬁ-tﬁé
wall and centerline, the Moretti method provided very good results

for the transonic and supersonic regions of the flow. lLarge errors



instahiliti.es
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. develeped in the sheulder radius area and could grow in such a manner
as to destroy the solutlon for the whole flow field after long. com-'
putational times. Flgures 6 and 7 show the growth of thls error as .
"~ time progresses,;rFigures;8Mand 9_show-the results of the Merettl
method compared to.the experimental results'after_thefthroat coﬁf
putations'have;stabilizeg (see Figure.lé).snd'befOre the' long term
.'errers'can destroy the solution, o | |
These 'error's'in the shoulder radius were found to be the
results of the large axial varlatlons in the flow parameters ~1In the

initial conditlons, these axlal Varlatlons were largest in the

shoulder radius area.

. Because of the flexibility and the posztlve diffuslon of the

Rusanov method this method was also app11ed to the nozzle in F1gure 1.

'”t':Flgures 11 andglz ShOW'the growth of errors‘1n the Rusanov solutlon as--

time.prdgresses. The Rusanov method did not perform as well as the
Morett1 method as shown by the lack of agreement w1th experlmental
data in Figures 13 and 1.

A truncation error order of magnitu&e’caicﬁlatioﬁ was performed
-~for—poth methods te investigate the cause-bf.errors in the solutions.

The analysis was performed by calculating the terms of the truncation.

error expressions Which:WErerof'the erder of.the ﬁy3 term or Yower. The

major portlon of the truncation error was retalned by this approxlmatlon.

Figures 10 and 15 present the percent error of R per time step caused
by the truncatlon'error at the 1n1t131 conditiqns. The truncat1qn
- error per time step of the Rusanov method (Figure 15) shows the

reason for this method's lack of agreement with experimentel data.
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' Because'the Rusanov is e first order method, ﬁot ohly.is this error

.:much larger for tﬁe Rusanov.method but i£jalso remains large ovef
most of the flow field whlle the Moretti method's error, Whlch is a-
second order method, is’ large 1n-only phe gshoulder radlus area. The
1aek of agfeement of the Moretti method in the ehoulder radius'sectlon

'..only, is predicted by the truncatlon error analysis very neatly..

. The artif1c1al dlffusion or v1scosity of the Busanov method did

not appear to help in this prdblem, If the Rusanov and Courant_

- variables are adjusted to yield.a.lower truncation error for the Rusanev _ t
.-method the coefficients of the numerlcal dlffusion terms become very _i
| small or negathe.. The snlutlon is then destroyed by the resultant
Zvconstantlf growing errors in the shoulder radlus aT6ﬂa -Thus, the S i

flexibility of the Rusanov method is for nought.

The most genefal method of redueing the truncatioh erfereislﬁo
‘reduce the grid size. .Since the trﬁncation.errOr of the Moretti hethod_
is proﬁertional te azz, reducing-the trﬁncation'error ﬁo 1 percent
of the present value requires the reduction of Az to. one-tenth, If AZ'
were reduced the time step gize must also Be reduced in order to remain
within the CFL stability condition. Thus, to calculate the time
-dependent_solution_to the same pﬁysical time as presept, ten times as

many time steps-must be teken and ten times as many points must be

considered. From numerical experlments, both the Rusanov and Morettl
‘methods requlre approxlmately one second per each tlme step w1th 556 -
points. With the present methods approximately 300 time steps are

required for the celculations to converge. Thus, a reduction of QZ,
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by ten would reguire 3 x_lO5 seconds for convergence. Most computing

. facilities will not even consider this amount of time or one case.

Another possible method of reducing the truncation error would
be to usze a more accurate centered finite difference. The resulting-

form of the Morettl method should reduce the truncation error by one

order of magnitude without 1ncreasing the execution time significantly. o

- However, numerical experiments with the hlgher order oentered differ-

ences wvere destroyed by instebiiities of an undetermined cause.

' Moretti [307 also reported similar problems and discarded this

“approach.

After'much eveluetion, neither'the-Rusanov or the Moretti

method in the present form was capable of prov1ding an adequate solution

Cto the subsonic portion of the nozzle flow field Prev1ous
.investigators also show good results for the transonic reglon but

'present very little data ebout the subsonic region,

It was felt that, gince ‘the Moretti_method was, in general,

more aceurate, some. modified form.might provide & good solution for

the subsonic as well as transonic and supersonic regions. TIsolating

the cuase of the errors of the:higher crder schemes could show the
direction future investigators should follow.

In addition, it was noted that the point of maximum truncation

~error for both methods corresponded to p01nts at which the second
'derivative of-the.nOZZle wall redius with respect tc the axial
-coordinate was discontinuous; Therefore, some form of modified nozzle

'wall or some method of smoothing the second derivative may help te

reduce the truncation error in the shoulder radivs area. A more
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accurate finite difference hpproximation (i.e. a five point finite

~difference), a stretching function pptim;zed to minimize the fruncétion'

”-érror.throughout'the flow field, and utilization of wall contours with

continyous dérivatives'might enable the Moretti method to provide an
adaquate solution.

Many finite difference studies fail to include a trpﬁcation

error and stability analysis and failures of the techniqués are contri-

buted to non~linear instabilities which cannot be éqalyzed. This study -
concludes that many of these failures can be prédiéted'by gtability and
truncation error analysis. The author strongly recommends this be

carried ocut before attempting to obtain numerical solutions.
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