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NOMENCLATURE 

Engl i sh Symbols 

A •• = UC + VD 

Al stretching parameter 

a speed of sound 

B = UK 

C •' ••= d y / d x 

D = Sy/dr 

E = DG 

f . dummy variable 

F = CG 

G 
2 

= a 

H = D/y 

h specific enthalpy 

I axial grid point index 

J radial grid point index 

K - dz/dx 

L = KG 

M Mach number 

P pressure ratio P'/P' 
o 

R In, p 

R gas constant 

B t = r /r 
c' t 



NOMENCLATURE (Continued) 

r cylindrical radial coordinate 

r throat contour radius 
c 

r, radius of nozzle throat t 

t time 

T total truncation error 

U axial velocity 

V radial velocity 

HX total velocity 

X physical axial coordinate 

y transformed radial coordinate 

W shock speed 

Z transformed axial coordinate 

Greek Symbols 

a axial weighting function for Rusanov method 

3 radial weighting function for Rusanov method 

A difference in variable between two grid points; forward 
difference operator (second definition used only in finit 
difference section) 

A backward difference operator 

§ dummy coordinate, 

6 centered difference operator 

Tl = Ay/Az 

e finite difference truncation error 

Y ratio of specific heats 
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NOMENCLATURE (Concluded) 

p density ratio p'/p' 

0 Courant constant 

u; Rusanov variable 

Superscripts 

T dimensional variable 

-¥: vector quantity 

n time step number v 

Subscripts - , 

0 stagnation condition 

n conditions at nozzle wall 

A, A or 6 indicates function derived with A, A or 6 operator 

x, y, z, r or t indicates differential with respect to x, y, z, r or t 

i or j indicates grid location of variable 

R indicates function derived from finite difference 
equation for R 
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•SUMMARY 

To find a solution to the rapidly converging nozzle problem, a 

search of existing numerical methods was conducted. From the literature 

it was concluded that the method that was best suited for use with 

a computer in solving the problem was a finite difference equation 

approximating the time dependant flow equations. Two methods, the 

Moretti and Rusanov, were chosen for further study based on their 

performance as presented in the literature. These two methods were 

applied to a rapidly converging nozzle, with boundary conditions 

consistent with the physical problem. 

A truncation error analysis was performed on both methods by 

using Taylor series expansions to derive the differential equation 

actually being represented by the finite difference equation. The 

difference between the desired and the actual differential equation is 

the truncation error. An order of magnitude study of the truncation 

error was performed by calculating the truncation error for the 

starting conditions, which were the isentropic, one-dimensional flow 

solutions. The results of the order of magnitude study showed that 

both methods were incapable of providing an adequate solution. 



CHAPTER I 

INTRODUCTION 

In recent years there has been considerable interest in rocket 

nozzles with high inlet angles and small throat radius curvature. 

These rapidly converging nozzles can offer less weight, smaller size 

and less cooling requirement than conventional nozzles. It has been 

experimentally shown .that the heat transfer in a rocket nozzle can be 

reduced by as much as 50 percent by using a high inlet angle. It 

also appears that the performance loss of the large inlet angle 

nozzles may be small enough to make the rapidly converging nozzles 

attractive. 

Development of numerical techniques to aid in design of the 

rapidly converging nozzles has been hindered by the severe two-

dimensional effects near the throat and the existence of mixed sub

sonic, transonic and supersonic flpws. 

The experimental determination of the heat, transfer coefficients 

and propulsive performance of rapidly converging nozzles would involve 

large amounts of manhours, sophisticated, instrumentation, and money. 

In addition, optimization of design can not always be performed by 

the cut-and-try method. The goal of this investigation is to find 

a method of solving the axisymmetric compressible flow equations so 

that designers can save money and time in designing propulsion and 

other ramdly converging nozzles. 
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CHAPTER II 

DESCRIPTION OF THE PROBLEM 

The greatest difficulty associated with the rapidly converging 

nozzle problem is the existence of coupled subsonic and transonic 

flows in the region of investigation. The desired technique should 

be valid, from low subsonic into the supersonic regions. The technique 

must handle the elliptic subsonic, parabolic transonic, and hyper

bolic supersonic flow equation. Existing methods can only solve the 

equations for subsonic and transonic regions separately. Since 

information should be allowed to be transmitted from the throat 

to inlet and back, by the nature of the elliptic and parabolic 

equations the two regions must be solved simultaneously. 

In addition, the sonic line at the throat of nozzles with small 

contour radius "can be quite concave. The Mach number at the wall can 

be sonic or greater while at the same axial location the mach number 

at the centerline can be subsonic. The higher pressure at the centerline 

causes the flow near the wall to turn into the wall necessitating a 

compressive returning of the flow to bring the flow parallel to the wall. 

This compressive turning can precipitate a shock formation aft of the 

throat. 

The usual method of attempting a solution is to simplify the Navier-

Stokes equations with approximations based on consideration of known 

physical characteristics of the flow. In the subsonic this method 
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allows one to reduce the Navier-Stokes equations to Laplaces' equation 

for the incompressible region and another equation of elliptical form 

for the compressible region. The solution for Laplaces1 equation is 

well within the state of the art. The compressible region presents 

more of a problem and since the two regions are by nature inter

dependent, it would be preferable to. have one method to solve the two 

regions simultaneously,. " 

The reduced Navier-Stokes equations in the transbnic region 

are of parabolic form and also by nature interdependent with both of 

the subsonic regions. 

Due to the inability for disturbances in the supersonic region 

to propagate up stream, the solution to the supersonic flow can be 

performed when the flow variables at the entrance of the supersonic 

region are known. Such proven methods as the method of characteristics 

can be used in this region with little difficulty. 

The problem and goal of this work is to find a method of solving 

the transonic parabolic equations and subsonic elliptical equations 

simultaneously. 
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CHAPITER III 

HISTORICAL SURVEY 

The first attempts to solve1the nozzle problem utilized 

approximations in the steady state differential equation. Taylor 

[56],* Hooker [57]* Sauer [Vf] and Mendelson [27] each improved on 

previous studies and achieved a direct solution to the transonic 

region. Unfortunately the use of Taylor's method and improvements 

required the patching of two methods to achieve the subsonic and 

transonic flow field solution. Also it was found that the above 

direct methods were applicable to only nozzles with small inlet angles 

and large throat radius of curvature. 

Oswatitach and Rothstein [36, 37] utilized an interative 

method to solve the transonic flow equations. Their method had the 

same short comings as the direct solutions of Taylor. 

Hall [15], Moore and Hall [29], Quan -and-Kliegal [^0], 

Kliegal and Levine [20], and Shelton [50] utilized an inverse series 

expansion method hut again they found the same short comings as the 

direct method. 

To find a numerical solution which can solve all regions 

simultaneously and which can handle large inlet angles the numerical 

solution of the time dependent differential equations was studied. 

* Numbers in brackets refer to references. 
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The two methods of solving'the time dependent developed to date are 

(1) the Method of Characteristics and 

(2) direct substitution of finite difference approximations 

for the partial derivatives in the continuity and momentum equations. 

Due to the complexity in programming the Methods of Character

istics problem in two space and one time dimension and excessive 

execution time the direct substitution was examined in much more 

detail. 

The technique of solving the time-dependent equations by 

substituting finite difference approximations for the partial differ

entials and using a scheme to integrate the resultant equations with 

respect to time was first suggested by von Neumann and Richtmyer [ 55] • 

These investigators used a Taylor series expansion to compute each of 

the flow variables at time t + At. The time derivatives in the 

Taylor series expansion were rewritten by algebraic substitution from 

the differential equations as space derivatives which were then approx

imated by finite differences. The major benefit of this method in 

application to mixed flow problems is that the unsteady state flow 

equations are of hyperbolic form for all regions of the flow. Thus 

one method can be used for the entire flow problem. 

Lax £210, rewrote the flow equations in the conservative form, 

used central differences for the space derivatives, and used foreward 

differences for the time derivative. Lax and Wendroff [2.W] further 

improved the time integration scheme in their One Step Method by 

averaging the first term, of the Taylor series over the adjacent points 
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and included an additional time derivative in the expansion. Table 1 

contains basic information about the schemes discussed here. 

Lax and Wendroff have also developed a two step or predictor-

corrector method where the parameters for time t + At are calculated 

from the parameters at time t but the parameters at t + 2At are cal

culated from the.parameters at t and t + At. The Lax-Wendroff Two 

Step was developed to reduce computer storage and execution time 

requirements and to improve the stability by approximating the central 

differences for the time' derivatives. Richtmyer D+l] shows that a 

scheme with central differences (an implicit scheme) is inherently 

stable. 

Most of the time-dependent numerical solutions exhibit errors 

described as overshoot, undershoot, or numerical instability. To 

smooth the effects of these errors Lax and Wendroff introduced an 

"artificial viscosity". The effect of the "artificial viscosity" was 

to smooth all large gradients such as shocks and expansion waves where 

the physical situation results in steep gradients. Rubin and 

Burnstein [̂ 3] utilize the Lax-Wendroff Two Step method with a simpli

fied "artificial viscosity" to investigate the numerical stability in 

shock tube problem. Lapidus [22] further simplified Burnstein's 

"artificial viscosity" and developed the method to study transonic 

flow around blunt bodies. Lapidus does prove that the use of 

"artificial viscosity" does not prohibit the solution to the time 

dependent equations from converging to a solution which should be 

close to the real solution. Lapidus demonstrated the ability of the 



Table 1. Survey of Unsteady Methods 

Investigator Reference Method Stability 
Condition 

Order of 
Accuracy 

Euler [30] f n+1 *S + *> 1 

von Neuman and [55] f~+ = f« + f̂ At + . f J1 ~ -
Richtmyer 

Lax-Wendroff 
One Step 

[10] ^ - ?Q + f> + ^ *f 

Lax-Wendroff 
Two Step 

[30] f 0 = f 0 + f t A t + f t t ~ 

l .J2. 

c - 4+ *r* ̂ + # *§-

More t t i [30] fQ = fQ + i t At + f u - — 

Equations are written in 
non-conservational form 

MacCormack [30] # * = fl • fl At 

C1 = *(f* + f"4) + f"4 At 0 0 



Table 1. (Continued) 

Investigator Reference Method Stability 
Condition 

Order of 
Accuracy 

Rusanov [10] ,n+l 
f0 + ft At 1 

*n _ f.n AZ. a / « x 

+ 4X_ -1 (of ) + 2 3Y ( PV 

_ ouj(V + a)AY.' 

(V+a). (AY2+AZ2) v 'max " ' 

ott)(V + a) AZ 

" (V+aU^ 2). 

In the above methods 

ft = -Alf 

In 

z 

f =. 
U 

U-w Y 
,1 = 

P/o U-w 

f = average values of adjacent points 
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Lax-Wendroff Two Step method to. solve the transonic flow region. Laval 

[23] applied Lapidus' approach to the rapidly converging nozzle 

problem and presents good agreement, with experimental data for the 

throat section. Serra [49] uses the Lax-Wendroff One Step method 

with Burnstein's form of "artificial viscosity" are presents good 

agreement for the transonic region of a rapidly converging nozzle. 

Prozan and Kooker [39] developed an error minimization technique 

to solve the time dependent equations and also show good agreement for 

the transonic portion of the rapidly converging nozzle. Prozan 

attempted to get as good a solution for the subsonic region by > 

running the program for long times. However, instabilities in the 

subsonic regions accumulated errors which propagated to the throat 

destroying the whole solution. This phenomenon can be exhibited by 

several of the numerical techniques discussed here. 

Moretti [30] presents a survey of some of the above methods. 

In Moretti's survey he performs a truncation error analysis and 

numerical experiments in a shock tube problem to indicate the best 

method. The methods compared and their truncation errors are shown 

in Table 2. In the numerical experiments, Moretti determined the error 

at one location of a shock tube for a time span including the arrival 

of the shock at the point of interest. Moretti also writes all methods 

in the non-conservation and conservation form. Although previous 

investigators [ Richtmyer 41, 42, Lax 24] had argued that the conservative 

forms were better, Moretti proceeds to prove that the conservation forms 

actually have greater error than the non-conservative forms. Moretti 

also shows that his scheme, which is a Lax-Wendroff One Step method 
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Table 2. Truncation Errors From Moretti 

Method Truncation Error for f, = Alf 
t z 

Euler - i A X 

Lax F i r s t Order - * ( f
z z

 + * 2 f t t > ^ 

Lax-Wendroff Two Step 1/6 (a2Al2 - 1)CTA1AZ
3 

Moretti and Lax-Wendroff 
One Step 

V 6 < A l f
z z z

 + Att^3 
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with non-conservation form of the equations has the least error for 

the time span investigated in his numerical experiments. 

The Moretti scheme was chosen to be studied since it was 

shown to have less error than the other available schemes. Difficulties 

in the subsonic region prompted more study and surveys by Tyler [5*0? 

Taylor, et al. [53]? and Hirt [17] were found which compare the per

formance and stability of many different methods across shocks, 

contact discontinuities, and expansion waves. 

Taylor, et al., compared the Rusanov and Godunov first order 

schemes, MacCormack and Richtmyer second order two step schemes and 

Rusanov's third order scheme. Of this group the Godunov scheme 

performed with least error across shocks, contact discontinuities, 

and expansion waves. The first order Rusanov was the second most 

desirable scheme. The second and third order scheme all exhibited 

overshoots and undershoots near the discontinuities. 
•all 

Because the Godunov first order method is very complex to 

program?the Rusonov first order scheme was chosen for further 

examination. In addition, the Rusanov first order scheme is more 

flexible in use as well as simpler to program. 
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CHAPTER IV 

STABILITY ANALYSIS METHODS ; 

Since the most common problems in numerical'solutions, of 

time dependent differential equations are the local and global 

stabilites, a search was made to find a method of predicting 

instabilities. 

The first stability conditions which must be satisfied is 

the well-known Courant-Fre&richs-Lewy condition which says that the 

distance traveled by a sound wave relative to the fluid must not 

exceed the distance between neighboring grid points. The exact form 

of the CFL condition is derived for a constant coefficient form of 

the time integration scheme. The applicability of the CFL derived 

for a constant coefficient to a problem with nonconstant coefficients 

has been proven only by experience for both the Moretti and Rusanov 

method. 

Moretti [30] shows that the CFL condition for his scheme is 

^ f e a « s i ^ « 
Kentzer [19] shows by an error propagation analysis that 

a = l//2 is the optimum condition to minimize the growth of both 

large and small wave length error disturbances. 

Rusanov [U6] shows that the CFL condition, his first order 
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method by using the Fourier method i s 

At = -~gU&%L ( 2 ) 

(&K + £y )(HX + a) 

and 

o- <;ci) < 1/q (3) 

However, the CFL stability condition alone is not sufficient 

to predict all the instabilities that impede the application of the 

time dependent numerical solution. The study of the truncation 

error supplies the cause of these additional instabilities. 

Richtmyer [41] defined truncation error as the difference 

between the differential equation and the actual differential represented 

by the finite difference equation. To find the differential equation 

represented by the finite difference equation each term in the time 

integrator scheme is expanded by a Taylor Series as in equation (k) 

and (5) 

f.n + i«f.n + f.At + fff 4~+fv„ 4-+w 4l+— w 
l i t tt 2 ttt 6 tttt 24 

f? . . - f.m ± f As + f d- ±f ^ - + f *£r+.- (5) 
i ± l i x xx 2 xxx 6 xxxx 24 



For example 

f.n = f.U + f,At 
1 1 t 

is the time integration scheme for the Euler method. The time 

derivative of f is replaced -with 

f.. = -Alf 
t x 

or 

The space derivatives are replaced "by finite difference 

approximations and each term in equation (9) is expanded toy 

equation (h) or (5). This results in equation (10). 

f.n+1 = f.n -AlAt(f - f . )/20c 
1 1 1+1 1-1 

2 3 1+ 
*> n J. -P A+ 4. -P tit 4. -P At , r, At 
fi + ftAt + ftt T" + fttt IT + f t t t t ~2K 

3 5 
(2f Ax + 2f ££- + 2f #o)/2Ax: 

x xxx o xxxxx 120" 
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ftAt + ftt 4-+ fttt •*£ + ftttt % - -AI $ <̂ > 

(f ^+t ^. + f gL) 
x xxx 6 xxxxx 120 

Each time derivative is expanded by differentiation of equation 

(7) with respect to time. Equation (7). can be differentiated with 

respect to x to yield terms which when substituted into the time 

differentiations of equation (h) yield expressions for f , , f̂  ', and 
tt ttt 

f in terms of space derivatives only. Rewriting equation (11): 
"CUTJU 

ft + Alfx •• "<ftt T. + *ttt 4 + ftttt ̂  •-:. ..b) 

2 • ii-

-r- + f &-"xxx 6 xxxxx 120' Al (f £- +. f _ ^ ) 

From the CFL condition of stability 

At = a- Ax/a 

2 2 3 3 
f + Alf = - (f s ^ +• f £-j££S_ + f c A?c fio) 
t x VItt 2a ttt 6 2

 Itttt ^ T i 5 ) 

A 2 ^ 

-Al (f ^ - + f ^ r ) 
xxx O XXXXX 120 
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The terms on the left when set to zero give exactly the 

differential equation for -which a solution is desired. The terms on 

the right are the truncation error (T). 

Hirt [17] suggests that the terms of T that contain even order 

derivatives of the function being integrated in time be considered as 

diffusion-like terms. The sign of these "numerical diffusion" terms 

can indicate instabilities. If the coefficient of the lowest even 

order term is negative, then "nonlinear instabilities" can occur in some 

area of the flow such as a contact discontinuity, shock, or expansion 

wave. Nonlinear instabilities are characterized by sharp spikes 

that grow with time and do not flip-flop with each time step. If due 

to some perturbation a sharp gradient is built up, the negative 

diffusion coefficient produces the diffusion of error in the direction 

of the gradient rather than away from the gradient (up-hill rather 

than down-hill). Thus the perturbation continues to build. 

The analysis of the truncation error magnitude can show any 

areas where the error is a significant percent of the function. This 

type of analysis can show that the application of a method to a 

particular problem is feasible. 
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CHAPTER V 

EXPERIMENTAL STUDIES 

Back, Cuffel and Massier [3,6J summarized their own and 

previous investigator's data. Their summary contained nozzles with 

convergent half angles of 30 to 75 degrees throat contour radii of 

0.25 to 2.0, and shoulder contour radii of 1.0 to 1.5. Comparing the 

thrust, specific impulse, and flow coefficient values with values 

calculated from a one dimensional nozzle of the same area ratio 

provides a measure of a nozzles performance. Back, et al., show that 

for a 75 degree nozzle the loss in thrust is between 6 and 7 percent 

but the loss in specific impulse is only 1 percent. The loss in 

thrust and specific impulse for a 45 degree nozzle is only 3 percent 

and 1 percent, respectively. 

Back, Massier and Cuffel. [2] experimentally investigated the 

convective heat transfer in nozzles of 10, 30, and 45 degrees 

throat contour radii of 2.25, 2.0, and .625, and shoulder radii of 

2.0, 1.5 and 1.0, respectively. Back has shown that the reduction in 

convective heat transfer at the throat of a 45 degree nozzle compared 

to a 10 degree nozzle can be as much sis 50 percent. The high 

acceleration of the boundary, layer appears to delay the transition 

from laminar to turbulent at the throat which causes a lower heat 

transfer. . 

Back and Cuffel [5] investigated the shock formation aft of 



the throat in the k5 degree nozzle. They pointed out that such a 
r 

shock can disrupt the boundary layer and thus could increase the heat 

transfer at the wall, Avoidance of such a shock is possible by 

properly designing the transition from circular arc throat contour to 

conical divergent section. 
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CHAPTER VI 

ANALYTICAL DEVELOPMENT 

Boundary Conditions 

The choice of the method of treating the boundary conditions 

can be as important as the choice of the time integration scheme as 

Prozan [37] points out. 

Subsonic Entrance 

Early investigators [22 ,23] utilized an inlet plane a finite 

distance from the throat., Moretti [33] shows that such treatment 

produces an ill posed or incorrect boundary condition. Numerical 

experiments by this and other investigators show that if the inlet 

plane is not at infinity and there are not enough points between the 

inlet and throat, disturbances will propagate upstream to the inlet 

and be reflected back down stream., thereby being tra.pped within the 

boundaries. Large errors can be built up by these trapped disturbances. 

By placing the inlet at infinity only half the problem is solved as 

shown below. Also., if a uniform grid spacing is used an infinite 

number of points are required. 

If a nonsingular space transformation is used, Lapidus [22] 

shows that the transform does not adversely affect the solution or the 

problem. A transform of the form below has been used by Sheppard [52] 

which is a simplified version of the transform used by Laval [23]. 
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z = 1 + expQgAlV , ̂  
" 1 + exp(>2x/Al) U ; 

Where X is the physical axial coordinate, Z the transformed 

coordinate, and Al is a stretching parameter controlling the transform. 

This transform was used by this investigator and was found to produce 

the same errors as those produced by an inlet plane at a finite 

location. It was determined that at values of Al which provided a 

sufficient number of grid points in the throat to provide an accurate 

solution in that region, the second point is too far from the inlet 

that it acts like an inlet plane and reflects disturbances back 

downstream. 

Prozan [39] utilized a transform of the form 

. . X .= Al tan (TTZ/2)' • (15) 

A slightly modified form was found to work satisfactorily. 

X = Al tan (TTZ1./2) (l6) 

Zl = [2/TT tan"1(l/Al)+l] Z - 1 (.17) 

Supersonic Exit 

Since disturbances near the exit cannot propagate upstream the 

treatment of the supersonic exit will not effect the upstream solution. 
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The usual method is a simple linear extrapolation from the upstream 

points. 

Centerline 

Due to the symmetry of the problem at the centerline, the 

radial partial derivatives of the flow parameters vanish. Also the 

radial velocity vanishes at the centerline. By using a finite 

difference equation for the first derivative of the axial velocity with 

respect to the radial coordinate, and setting it equal to zero, a 

value of the centerline axial velocity is obtained. The forward finite 

difference equation which has a truncation error of one order less than 

the interior centered difference scheme was found to be the simplest 

equation which would produce a stable solution. A discussion of the 

finite difference techniques and their stability follows below. 

The treatment of the continuity equation by the above 

technique produced instabilities which destroyed the solution. It 

was discovered that due to the transient nature of the problem the 

isentropic relationships for density and velocity are not valid. Also, 

since the flow is inviscid there are no physical reasons for the radial 

derivative for the density to vanish at the centerline. Therefore, a 

reduced form of the continuity equation, where V = V = U = 0, is 

used to integrate the density with respect to time. The term V/r 

in the axisymmetric equations (see equation (31)) is indeterminate 

but can be proven by VHopital's rule to vanish. When the time 

dependent equations reach an asymptotic solution the isentropic 

relationships will be valid and the solution for the density will exhibit 
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the vanishing radial derivatives for the density. 

Wall Boundary 

The physical boundary condition at the wall is satisfied if 

the velocity is parallel to the wall. Some investigators add additional 

constraints to the problem by obtaining the wall values from extrapolat

ing the interior points with a parabolic curve fit requiring the com

ponent of velocity norma,! to the wall vanish. Laval [23] uses this 

technique which incorrectly sets a constraint on the second derivative 

at the wall. 

Serra [̂ +9] uses a reflection technique similar to that used 

on centerlines. Since this technique does not model the physical 

situation, a more appropriate method is preferred. 

Lapidus [22] used a complex system of approximating the flux 

of a flow variable into a cube boardering on the wall to update the 

flow variable. Even though the flow characteristics are considered in 

this approach, success has not yet been achieved. 

Moretti [30, 31? 32, .3*0 indicated that errors generated 

at the wall propagate into the flow and cause instabilities in areas 

of the grid system where small perturbations are poorly defined, i.e., 

near the inlet. To eliminate.the errors Moretti suggests the use of 

a method of characteristic approach. Since the time dependent equations 

are of hyperbolic nature, a characteristic approach with one time and 

one space dimension could be used at the wall to update the wall 

values. The technique involves using a Taylor series approximation 

of the valocity and speed of sound at the wall at time t + At. Using 
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the approximations, a characteristic line is constructed to an 

interior point P* at time t. The flow values at P* are interpolated 

from the surrounding grid points. The flow values at the wall at 

time t + £t are calculated by integrating the compatibility equations 

along the characteristic line; these new values are used to recon

struct another characteristic line. The process is repeated until the 

position of P* stabilizes. Sheppard, [52?j found this method used 

excessive execution time, did not converge in the subsonic region, and 

abandoned it. Since the two-dimensional method of characteristics 

neglects the axial variation of flow parameters- this investigator felt 

this method would not converge in the subsonic region where axial 

variations become large., Utilizing the three-dimensional method of 

characteristics may provide an accurate solution. However, the 

complexity of this approach prompted a search for an alternative 

method. 

The use of backward finite difference approximation for one 

sided derivatives had been used by Moretti [30] and with lack of 

success. However, by using a finite difference scheme with an order of 

accuracy greater than the interior finite difference scheme, a 

stable and accurate scheme can be developed. The use of a less 

accurate scheme can produce a negative numerical diffusion coefficient 

(see section on stability analysis) and therefore, an unstable method. 

The backward difference scheme is used to evaluate the 

partial derivatives for the equations used in the time integration 

scheme as applied to the interior points. 
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Initial Conditions 

Since the solution achieved from the unsteady method is the 

asymptotic one, the choice of initial conditions is arbitrary since 

the transient solutions are of little interest. Since one of the 

primary concerns in computer numerical analysis is the minimization 

of execution time, the initial conditions are chosen to be close to 

the expected solution. This is accomplished by solving the one-

dimensional flow equations for the variables and altering the 

velocities to make the velocity vector parallel to the wall. The 

radial velocity is linearly decreased radially to zero at the center-

line while maintaining the same magnitude of the total velocity vector. 

Figure 1 shows the initial pressure and mach number distribution 

used in this study. 

Coordinate System 

Since the problem is axisymmetric, a cylindrical coordinate 

system with fixed origin at the throat is used. 

Because the finite difference technique is to be used a 

uniform grid spacing is desirable. It is also desirable to have 

grid points on the wall rather than having to interpolate from 

interior points. By means of a coordinate transformation the 

coordinate system in the physical plane can be mapped into a rectangular 

coordinate system. The radial coordinate transform is 

= r/r 
' n 

(18) 



25 

o 
•H 
+3 
a 
QJ 

PJ 
W 
W 
(D 

PH 

.6, 

.2 

-2.0 
<H- — — — l — • 

-1.0 0.0 

Figure 1. Initial Conditions 

1.0 



26 

To provide a subsonic inlet at infinity and to prevent 

extremely large storage and execution time, the axial coordinate is 

transformed. This transform places most of the axial grid positions 

in the throat region and provides sufficient axial positions between 

the throat and subsonic inlet to prevent too rapid a change in the 

physical coordinate. 

X = Al tan [TT/2((2/TT tan^l/Al) + l) z + l)] ^ (19) 

Figure 2 shows the physical coordinate system. Figure 3 

shows the transformed coordinate system. 

Won-Dimensional! zation Procedure 

To generalize the differential equations the flow parameters 

are non-dimensionalized• The 'pressure' and density are non-dimension

alized by the stagnation values of p r. The velocities should be 

JL 
non-dimensionalized by the speed of sound at the inlet or (yP '/p ' ) 2

3 

JL 
however, in the interest of simplicity (P '/PQ') 2 is used instead. 

The non-dimensionalized parameters are as follows: 

P = P'/P •' (20) 
' o 

P = P 7 P O ' (21) 

U = U'/(P */p ' ) 2 (22) 
' o ro 
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v = V 7 ( P 0 7 P 0
, ) ? (23) 

a = a'/(P07p0')* (2k) 

t = t'r'/(Po'/po')^ (25) 

Differential (Equations 

The two methods of writing the time-dependent, axi symmetric 

differential equations for a compressible fluid dynamics are the con-

servational and non-conservational forms.- The non-conservational 

form was chosen since Moretti [30] shows that this form is preferable 

because of ease of programming and better accuracy. 

The equations necessary to define the system in the non-

conservational form are below. 

Continuity Equation: Dp/Dt + pv«? = 0 (26) 

Momentum Equation: p D^/DT + VP = 0 (27) 

Energy Equation: p Dh/Dt = DP/dt (28) 

The energy equation is used to derive an expression relating 

density and pressure to eliminate pressure from the continuity and 

momentum equations. 



rVp 
G = ( r - ) i s e n t r o p i c (2Q) 

op 

I •G if <»> 

The continuity and momentum, equations are expanded in 

cylindrical coordinates and simplified by using R == lnp as suggested 

by Moretti. 

Continuity equation: R, + UR + VR, + U + V- +. ̂  = 0 . (31) 
u X JL X x x 

Axial momentum equation: U. + VU + UU + GR = 0 (32) 
x> r x x 

Radial momentum equation: V, + UV + VV' + GR = 0 (33) 
u x r r 

The transformation of the coordinate system as discussed 

in the preceeding section is applied to the above equations. Where 

r 
y = rn (3U) 

Z = (taQ"1(x/Al)^Tr/2)/ta;n"1(l/Al)+TT/2) (35) 
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Where 

££ = $L M. 
dr Sr ay 

M i 3? 
at at 

(37) 

(38) 

* - £ (3?) 

n 

D = & = -A (1,!) 
Br r v y 

n 

A = UC + VD (1+2) 

B = UK (1+3) 

E = DG (1+1+) 

F = CG (1+5) 

L a GK (1+6) 

2 2 
G = a = (Sonic Velocity) (I+7) 



H = E/y = r^r (U8) 
rn y 

The transformed equations after simplification with equation 

(3*0 through (kQ) are as follows. 

Transformed continuity equation: 

R^ + BR + AR + KU7 + CIL. + DV + HV = 0 (kg) 
t • z y z y y 

Transformed, axial moment em equation 

U + BU + AU +• LR + FR = 0 '(50) 
t z y z y 

Transformed radial momentum equation 

V. + BV + AV + ER - 0 (51) 
^ z .y J -

Finite Difference Approximation 

The choice of possible difference approximations available 

to the investigator is large. There are three major types of 

approximations, the forward (.A), backward (E) and centered differences 

(5). 

Where t h e form of each i s : 

A (f) = (f± - f i + 1 ) (52! 



Ax(f) = (f.^ - t±) (53) 

61C.f) = (fi+1 ~ fi_i) (5*0 

Further classification of finite difference approximations 

involve the truncation error of the approximation, e. By substituting 

a Taylor series expansion Csee equation Cl) and (2)) for each term in 

the finite difference approximation the order of magnitude of e can 

"be determined. For instance 

'•6_(f) f.A_ - f. , ,2 
f - 1 = 1 + 1 i-l ~ f + f ^ _ , . 
x 2Ax 2Ax x xxx 6 w ; 

xxxxx 120 

A 2 A ^ 

. = f AX + f Ax_ 
'6-, xxx 6 xxxxx 120 

or 

and 

(56) 

€c = Order of fat" (57) 

e- = -• e = Order of Ax (58) 
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To avoid errors being introduced at the boundaries by large 

truncation errors and negative "numerical diffusion," more accurate 

backward and forward difference must be derived. 

Hildebrand [15] contains the general method of derivation of 

higher order approximations of A and A» Defining the shifter operator 

(E) and the derivative operator (D) enab3.es the derivation of a 

series expansion of D in terms of A or A* This series can be 

utilized to derive higher order approximations and approximations 

for higher order derivatives as shown in Table 3. 

E f. = fi+1 (59) 

E " l f i = f i - 1 (60) 

D *< = (IS) i ' W (61) 
x=x. 

I 

A = E - 1 or E = 1 + A (62) 

A = 1 - E _ i (63) 

6 = E* - E" * (6k) 

E k = (1 + A)
k = 1 + kA + ±&f& A2 + . . . (65) 

enab3.es


Table 3 . Summary of Difference Approximations I n v e s t i g a t e d . 

Appr ox ima t i on 

A-* 

1s t f = (f. - f . - l ) / A Z z 1 1 ' zz 2 zzz 6 

f z z - ( i \ - 2f + fm w 1 l i - 2 ' ' 

. C5 
"A71 - 9 - 2 

•f AZ + frr r AZ zzz 12 zzzz 

2nd f = (3f. - Uf. _ + f. 0)/2AZ z l l - l 1-2 
2 2 ^ 

" | f AZ + f AZ"3 

3 zzz zzzz 

f = (2f. - 5f. _ + 4f. . - f. j / A Z £ 

zz v I l - l i - 2 i - 3 / / L i ^ 
. f £Z_ + f AZ 

zzzz 2 zzzzz 10 

3rd fz = < T fi - 3fi-l + I fi-2 - k W ^ 2 AZJ 3 
zzzz T " " 10 zzzz 

-f ^ - + ̂ r f Lfk 

f = (35f. - lOUf. _ + llUf. 0 - 56f. n zz i i-l i-2 1-3 
5 ^ ? U 

- f- f AZ° + £ f - AZ 
12 zzzzz 3 zzzzzz 

+ llfi_l|_)/2^ 

For A replace all i+n with i-n and AZ = -AZ in the above equations. The same truncation 
errors apply except g = -e- . 

A A 



Table 3. (Continued) 

Approximati on 

6: 

1st f = (f - f. J/2AZ 
z l + l l - l ' 

2 k 
f J f i g l + f A * -

zzz o zzzz 120 

f = ( f \ n - 2f. + f. ')AAZ' 
ZZ v 1 + 1 1 l - l ' ' 

,2 k 
AZ' f'- ^ L - + f zzzz 12 zzzzzz 720 

2nd fz = [ 8 < f i + l " f i - l ^ f i + 2 " f l-2)Vl2Z . i 4 ^ - i ^ AZ6 

3 0 ?l7,5 2 5 ' »7 . ' 

fzz - £l6(f i + 1
 + f i - l ) - ( f i + 2 + f 1 ^)"3« 1 ] / l24Z ' 

•i^P li ^ - P £ 

-.013 '¥%• AZ4 - .00^1 £-£. AZ a? 5? 



37 

or 

From the Taylor s e r i e s expansion 

2 
f . . = f. + f £x + f %- + l + l l x xx 2 

2 3 
= f. + AxDf. + £L- D2f. + % D3f. i i 2 ! I 3 ! i 

- (i , KvT) + L^EP)2 +' + (&»)* , 
- (A + flxD + —5 + , . . + — r y — + . . . ) f 

= e ^ f . (66) 

E f. = f/ AA \ = f . ^ n = eDf. (67) 
1 (x+Ax) i+l . 1 v 

E = e ^ (68) 

AxD = InE (69) 

.2 .3 k k . k 
InE = ln(l+A) = A - %~ + ^ - - £ - + . • . + ( - l ) k £ - (70) 

Thus 

3 ]4 

AxD^ = (A = I A2 + 3 - \ + • . .) t± (71) 
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or 

Df. = (A - f - + Ai-£- + . . .(-l)
k^) *| (72) 

also 

D2
fi =D(D(f.)) = (A - f - +^-)(A - f- + A_) t± (73) 

Thus the finite difference approximation can be derived for A 

and A to any desired order of accuracy by including more terms in the 

series in equation (72).,.: 

In order,to derive higher order centered difference approximations, 

the Taylor series expansion for points adjacent to the point of interest 

must be algebraically manipulated to obtain the scheme with the 

required accuracy. 

Two dimensional problems require the approximation of cross 

derivatives or derivatives with respect to two space variables. 

Again, reverting to operator notation these approximations to any order 

can be derived. 

f(x,y)=fi,d ™ 

\(f) - (f0,l " V l } (75) 

6x<f> = <fi,o " f-l,o> ( 7 6 ) 
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f = af(»,y? =JE^!l (77) 
x 3x 2Ax w ' ; 

f . S£f(x> y) = i j _ ( 5f (x ,y ) } =
 6 y ( 6 x ( f ) )

 ( 7 8 ) 

xy Sxdy 2^y v dx ' 4AxAy w ; 

or 

fxy = ^ ^ = < f i , i - f - ! , i " f + i , - l + * - i , - i ) A ^ (79) 

At the wall and centerline the cross derivatives can be 

derived by the application of 6 and A or A- The order of application 

makes no difference to the finite difference equations or 

6(S(d)) = SC6(f» (80) 

The operator A "behaves in the" 'same^manner. 

6(A(D) = (^ (f - f_1>(p - 3 ( ^ 1 " f.,—) (81) 

+ |<fl,^-f-lf-2> " |(
fl,-3 " f - l , - 3 ) / 2 ^ 

e*7 = I f Ay2 + | f • Az2 (82) 
6 A 3 yyyz 9 zzzzy v J 

For determination of the simplest scheme to use the stability 

analysis for the problem must be performed. The choice of higher 

order approximation can sometime improve both the stability and 
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truncation error of a scheme. 

Numerical Techniques 

The two numerical techniques compared in this study are the 

first order Rusanov and the second order Moretti method. These two 

schemes were chosen because of their proven superiority in references 

[30] and [53]• The Moretti method was examined since it was hoped 

that the higher order of Taylor series utilized would produce less 

error. 

The Moretti method utilizes a second order Taylor series 

time integration scheme as shown below. 

*l?s = f L + f tA t + ht 4- w 

The equation (83) is applied to R, U, and V where 

R = In p (8*0 

The first time derivatives of R, U, and V are evaluated from 

equations (89)5 (90)> and (91)• These equations for the first 

derivative become equations (92) through (105). When differentiated 

again with respect with time or either space coordinate. These 

equations can be algebraically combined and substituted into the time 

integration scheme equation (83) to produce equations for the advance 

time flow parameters in terms of spatial derivatives only. 



The f i r s t order Rusanov method r e q u i r e s only the f i r s t time 

d e r i v a t i v e s as shown below. 

^ = ^ + f t ^ <85> 

f» . = f» . + d- ^ (a. .t) + *L- L . (p. . f ) (86) 
1,3 1,3 2 dz i , j z ' 2 dy V H i 5 j y ' v '. 

a, , 2 2 

. 2 (Iff. + a) 
otuAy i , 3 

l 3 ° (Ay + AZ ) (HX + a) max 
(87) 

, 2 (HX + a ) . . 
p i , 0 = ° f Z

 a ^ (88) 
(Ay + Az ) (HX + a)max 

R, = - (BR + AR + KU + CU + DV + HV) (89) 
t z y z y y 

U^ = - (BU + AU + LR + F R ) (90) 
t z y z y 

V^ = - (BV + AV + E R ) (Ql> 
t z y Y 

R t t - - [ B V z t + Bt\ + mzt + A t R y + ro
Zt + C U y t + D V 4 H V t ^ ( 9 2 ) 

utt = - &\t+ D tu
z
 + A V + A t V L R

z t + W FV FtV (93) 



1+2 

-[BV . + BXV + AV . + A^V + ER . + E^R ] 
z t t z y t t y y t t y J Oh) 

-[BR + B R + A R + A R +KU + K U +CU + zz z z yz z y zz z z yz (95) 

+ C U + D B + H V + H VI z y z y z z J 

-[BR + ByR + AR + A R + KV + CU + C U + (96) 
zy z yy y y zy yy y y v;7 ' 

+ DV + HV + H V] 
yy y y J 

•[BU ••+ B U ' + AU . + A U + LR . + L R + FR + F R 1 (97) zz z z yz z y zz z z yz z y 

•[BU + B U + AU + A U + LR + L R .+ FR + F R ] (98) 
zy y z yy y y zy y z yy y y . 

•[BV + B V +AV + A V +ER + E R ] 
zy y z yy y y yy y y J (99) 

At = [UtC + YD] 

Bt = Ut K 

Et = DGt 

(100) 

(101) 

(102) 
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F t = CGt (103) 

Gt = y (y - l ) Rt (101+) 

L t = KGt (1Q5) 

Stability Analysis 

The expressions for the truncation error of the R time 

integration scheme of both the Moretti and Rusanov methods folio-wing 

the analysis of Hirt [17] and Tyler [5^] are presented in equations 

(106) and (110). 

For the Moretti method. 

T_ = - •£§- [B R + KU + Tl2 (AR + CU + DV )] (106) 
R 6 zzz zzz ' v yyy yyy yyy J v ' 

2 2 3 3 
- c H Rttt - aV H 

- £§r- [BR + KU rt + -n4 (AR + CU + DV )] 
120 L zzzzz zzzzz 'I v yyyyy vyyvy vywv ' J yyyyy yyyyy yyyyy 

k k . 5 
- a N Rttttt •+ Order of ^ 

Where 
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Qa *£js£iigjup± (108) 
ZtFtfritef + Ay") 

H = Ay/Az (109) 

Also, AF is the difference between radial grid points at N 
max 

and AX the difference between axial grid points at N 
* max 

For Rusanov method 

TT, = R [o)Q(HX + a) - aNK2(U2'+ a2)] + (no) 
JA ZZ 

+ R [«)Q(HX + a) - <jN.(A2 + C2a + D2a)T + 
yy J 

+ R [UJQ(HX + a) - aN(BA - A. - B. + HE + AA + KF + 
y y z "C Xi y z 

+ CF + DE ) ] + 
y y ' J 

- R [ouQ(HZ + a) - aN(BB + AB + KL + L c ) l -
z z v z y z y 

- aN[R (2BA + KF + CL) + U (2BK) + U (2AC) + V (2AD) +.. 

+ V (2BD) + U (2BC + 2AK) + U (ED + AC + CA + yz yz yv z y y 

+ KA + DA ) + 
z y ' 
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+ U (BK + KB + CB ) + V (BD + 2HA + DA ) + 
z z z • y ' y v z y ' 

+ V (2KB + DB ) + V(BH + AH ) ] -z y z y J 

2 
- "^Z- [BR + KU + n^(AR + CU + DV ) ] - c j ^ \ i t + 

6 u zzz zizz yyy yyy y y y / J t t t 

R 
+ « f AZ2 [ ( H X * ) Z R z z z + (HX + a ) z z z H + (fflWa) - ^ ] + 

o h R 
+ f Q*n ^ [(HX+a) R + (HX+a) R + (HX+a) -2220L ] + 

6 '• "^ LX yy yyy a 'yyy y 2 J 

3 .^ 
- 2^ N3 R^. . + £§*• [BR + KU + 6 tttt 120 L zzzzz zzzzz 

+ 71 (AR + CU + DV ) + 
yyyyy yyyyy yyyyy 

I27T Rttttt + 0rder of ^ 

Similar expressions for U and V can be derived and used in 

the complete stability analysis. These equations ha,ve the same form 

and have been omitted for simplicity, 

The Rusanov method is a first order method, therefore, the 

truncation error for this method has some additional lower order terms 

when compared to the second order Moretti method. However, the 

numerical diffusion terms for the Rusanov method are contained in the 



lower order terms. Thus, the Rusanov method has a numerical diffusion 

of larger magnitude than the Moretti method and positive where the 

Moretti diffusion is negative. The R and R terms for the Rusanov 
zz yy 

and R and R terms for the Moretti are the diffusion-like terms 
zzzz yyyy 

under discussion. The R and R terms come from the R, , , , term. 

zzzz yyyy' tttt 

Since both methods in this study made use of the same centered 

differences portions of the truncation error terms are identical 

for both methods. The most important of these terms is the first 

set of terms in the Moretti truncation error or the triple spatial 

derivatives which come from the truncation error, e, of the centered 

difference. 
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CHAPTER VII. 

RESULTS AND CONCLUSIONS -

To evaluate the performance of both the Moretti and Rusanov 

methods this investigator performed the analysis of a rapidly con

verging nozzle. The nozzle consisted of a small angle conical con

vergent inlet section, which extended to infinity upstream, a shoulder 

radius, a large angle conical convergent seption, a circular arc 

throat contour, and a moderate angle conical divergent section. Back, 

et al. [l,2,3j^j5?6] have performed experimental studies on this and 

similar nozzles. Figure 1 contains a sketch of the nozzle investi

gated and Figures k and 5 contain a summary of Back's data. 

In applying the Moretti method to the nozzle in Figure 1, it 

was found that a finite difference approximation in the radial 

direction of one order of accuracy higher than the centered difference 

approximation (i. e„, /L in Table 3) 'was required to maintain stable 

computations. If the truncation errors for the Moretti method using 

the centered difference 6-, (see equation (106)) L or A are compared, 
1 ' 2 3 

the instabilities experienced, that rapidly destroy the solution, can 

be predicted. 
In equation (106), the group of terms containing the triple 

2 
spatial derivatives and multiplied by A.Z are the results of the 

finite approximation and thus are the terms that will change with the 

use of a different finite difference approximation. Using 6-, in the 



axial and Ap or A^ in the radial direction results in equation (ill) 

for ^2 and (112) for /L. 

AZ_ r„R + KU j ^ _ 
zzz zzz ' yyy yyy yyy' 

"g- [BR_ + K U _ -kj\ (AR_ + C U _ + DV_r)] (ill) 

2 3 3 
-%r- [BR + KU ] + ^ 3 [AR + CU + DV 1 (112) 6 L zzz zzzJ 4 L yyyy yyyy yyyyJ v ' 

The instahiliti.es that destroyed the solution at the start 

were exhibited in the shoulder radius region, where the triple 

radial derivatives (i. e., R and U ) are of the same order of 
yyy yyy 

magnitude as the triple axial derivatives (R ) . T| was equal to 
zzz 

five for the grid system determined most accurate by numerical experi

ments. Thus, the R and like derivatives are the most important 
yyy 

terms for "both 6n and A . The factor of minus four in equation (ill) 1 < _ 
is sufficiently large to cause the computational instabilities found. 

By using a A~ approximation in the radial direction, the third 

order radial derivative terms, are reduced to fourth order derivatives 

and their multiplier to AZ (see equation (112)). The magnitude of 

the terms changes by using A~ are less than or equal to the third 

order derivative terms in equation (106). Thus, the instabilities 

found earlier were avoided. 

Using the Ao approximation for the radial derivatives at the 

wall and centerline, the Moretti method provided very good results 

for the transonic and supersonic regions of the flow. Large errors 

instahiliti.es
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developed in the shoulder radius area and could grow in such a manner 

as to destroy the sblutipn for the whole flow field after long com

putational times. Figures 6 and 7 Show the growth of this error as 

time progresses. Figures 8, and 9 show the results qf the Moretti 

method compared to the experimental results after the throat com

putations have stabilized (see Figure 3,6) and before the long term 

errors can destroy the solution. 

These errors in the shoulder radius were found to be the 

results of the large axial variations in the flow parameters. In the 

initial conditions, these axial variations were largest in the 

shoulder radius area. 

Because of the flexibility and the positive diffusion of the 

Rusanov method, this method was also applied to the nozzle in Figure 1. 

Figures 11 and 12 show the growth of errors in the Rusanov solution as 

time progresses. The Rusanov method did not perform as well as the 

Moretti method as shown by the lack of agreement with experimental 

data in Figures 13 and lU. 

A truncation error order of magnitude calculation was performed 

for both methods to investigate the cause of errors in the solutions. 

The analysis was performed by calculating the terms of the truncation 

3 
error expressions which were of the order of the Ziy term or lower. The 

major portion of the truncation error was retained by this approximation. 

Figures 10 and 15 present the percent error of R per time step caused 

by the truncation error at the initial conditions. The truncation 

error per time step of the Rusanov method (Figure 15) shows the 

reason for this method's lack of agreement with experimental data. 
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Because the Rusanov is a first order method, not only is this error 

much larger for the Rusanov method but it also remains large over 

most of the flow field while the Moretti method's error, which is a 

second order method, is large in only the shoulder radius area. The 

lack of agreement of the Moretti method in the shoulder radius section 

only, is predicted by the truncation error analysis very neatly. 

The artificial diffusion or viscosity of the Rusanov method did 

not appear to help in this problem. If the Rusanov and Courant 

variables are adjusted to yield a lower truncation error for the Rusanov 

method, the coefficients of the numerical diffusion terms become very 

small or negative. The solution is then destroyed by the resultant 

constantly growing errors in the shoulder radius area. Thus, the 

flexibility of the Rusanov method is for nought. 

The most general method of reducing the truncation error is to 

reduce the grid size. Since the truncation error of the Moretti method 

2 
is proportional to AZ , reducing the truncation error to 1 percent 

of the present value requires the reduction of &Z to,one-tenth. If AZ 

were reduced the time step size must also be reduced in order to remain 

within the CFL stability condition. Thus, to calculate the time 

dependent solution to the same physical time as present, ten times as 

many time steps must be taken and ten times as many points must be 

considered. From numerical experiments, both the Rusanov and Moretti 

methods require approximately one second per each time step with 556 

points. With the present methods approximately 300 time steps are 

required for the calculations to converge. Thus, a reduction of AZ 
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by ten would require 3 x 10 seconds for convergence. Most computing 

facilities will not even consider this amount of time or one case. 

Another possible method of reducing the truncation error would 

be to use a more accurate centered finite difference. The resulting 

form of the Moretti method should reduce the truncation error by one 

order of magnitude without increasing the execution time significantly. 

However, numerical experiments with the higher order centered differ

ences were destroyed by instabilities of an undetermined cause. 

Moretti [30] also reported similar problems and discarded this 

approach. 

After much evaluationj neither the Rusanov or the Moretti 

method in the present form was capable of providing an adequate solution 

to the subsonic portion of the nozzle flow field. Previous 

investigators also show good results for the transonic region but 

present very little data about the subsonic region, 

It was felt thatj since the Moretti method was, in general, 

more accurate, some modified form might provide a good solution for 

the subsonic as well as transonic and supersonic regions. Isolating 

the cuase of the errors of the higher order schemes could show the 

direction future investigators should follow. 

In addition, it was noted that the point of maximum truncation 

error for both methods corresponded to points at which the second 

derivative of the nozzle wall radius with respect to the axial 

coordinate was discontinuous. Therefore, some form of modified nozzle 

wall or some method of smoothing the second derivative may help to 

reduce the truncation error in the shoulder radius area. A more 
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accurate finite difference approximation (i.e. a five point finite 

difference), a stretching function optimized to minimize the truncation 

error throughout the flow field, and utilization of wall contours with 

continuous derivatives might enable the Moretti method to provide an 

adaquate solution. 

Many finite difference studies fail to include a truncation 

error and stability analysis and failures of the techniques are contri

buted to non-linear instabilities which cannot be analyzed. This study 

concludes that many of these failures can be predicted by stability and 

truncation error analysis. The author strongly recommends this be 

carried out before attempting to obtain numerical solutions. 
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