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SUMMARY

In the past several decades, research across many disciplines has devoted consid-

erable attention to the multichannel blind deconvolution problem. The multichan-

nel sensing framework is ubiquitous and arises in many applications such as digital

communication, medical imaging, ocean tomography and acoustic imaging. Blind

deconvolution methods usually rely on the exploitation of either channel structures,

input source properties, or both. Meanwhile, using sources of opportunity (e.g., radi-

ating ships at known locations) in acoustic imaging applications has become an active

research area recently. In these specific applications of multichannel blind deconvo-

lution, using sources of opportunity means that the input source signal is unknown,

so exploiting the channel structure as a priori information is critical.

This thesis develops new techniques for solving the multichannel blind decon-

volution problem and implements these techniques in acoustic waveguide multiple

environment. Based on the channel structures in the underwater acoustic applica-

tions, we solve the problem using two approaches. In the first approach, we formulate

the problem as solving a system of bilinear equations, which in turn can be recast

as recovering a low-rank matrix from a set of linear observations. In the second ap-

proach, we form a cross-correlation matrix from the channel outputs and solve the

problem by minimizing a quadratic function over a non-convex set.

For the underwater acoustic channel applications, we developed a systematic way

to build an efficient and accurate linear channel model incorporating a priori informa-

tion about the expected Channel Impulse Responses’ (CIRs) arrival-time structure.

The linear model of the CIRs in underwater acoustic channels can be readily used

in both approaches. Furthermore, we develop a more constrained bilinear channel

model, which is motivated by the arrival-times structure across channels of a vertical

line array. We solve the problem with the bilinear model assumption using the sec-

xv



ond approach. This second approach also furthers our theoretical knowledge in the

classical subspace method for blind deconvolution. We develop efficient and stable

algorithms that can be applied in real world applications.

We implement both multichannel deconvolution methods on realistic acoustic

channels in an ocean waveguide and experimentally validate the methods using at-sea

data recorded in shallow water from short vertical line arrays. The two sets of experi-

mental data we tested are collected from Coronado Bank (water depth ≈ 150 m) and

Santa Barbara shipping channel (water depth ≈ 580 m). We also present numerical

results demonstrating that the empirical performance is consistent with our theories.

We also logically extend our method to a Multiple Input Multiple Output (MIMO)

system and present a blind source separation technique for convolutive measurements.

In the end, we investigate methods to learn the subspace of CIRs directly from multi-

ple snapshots in the context of solving multichannel blind deconvolution. Numerical

results demonstrate the effectiveness of these methods.
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CHAPTER 1

INTRODUCTION

The main purpose of this thesis is to develop new techniques for solving the multichan-

nel blind deconvolution problem and to implement these techniques in an acoustic

waveguide environment. In the past several decades, research across many disciplines

has devoted considerable attention to the multichannel blind deconvolution problem

because the multichannel sensing framework is ubiquitous.

In digital communication applications, blind methods are very attractive because

they do not require the transmission of a training sequence, and they are adaptive to

varying channels [1, 2, 3]. The multiple-channel framework can be implemented by

either multiple sensors or oversampling the received signal. In image deconvolution

[4], multichannel images are typically acquired using an imaging system with multiple

sensors, multiple time instants, or multiple frequency bands. Important examples in

image restoration are image denoising, image deblurring, compressed images decod-

ing, and medical image reconstruction [5], all of which focus on recovering the image

(source). In image restoration, ambiguities in channel responses usually arise from

uncertainties produced by noisy convolutions with multiple unknown finite impulse

response (FIR) filters, and many reports have reviewed classical image restoration

methods [6, 7]. Multichannel deconvolution has also attracted interest in applications

such as seismology [8] and geoacoustic imaging [9]. Last but not least, in underwater

acoustic channels, many blind methods [10, 11, 12, 13] have also been studied ex-

tensively. In this thesis, our main applications of multichannel blind deconvolution

methods are for underwater acoustic channels.

Acoustic remote sensing has become an essential tool for the development of mod-
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ern health-care devices, the investigation of the interior of the ocean and the seafloor,

the non-destructive inspection of structures, and the exploration of natural resources

embedded in the Earth’s crust. We focus our discussion on underwater acoustic sens-

ing where acoustic waves travel through an ocean waveguide. Acoustic waves carry

information about their source and collect information about the environment as they

propagate. In ocean tomography and environmental inversion, acoustic remote sens-

ing typically relies on a controlled active acoustic source to probe the environment

[14, 15]. In the active case, the Channel Impulse Response (CIR), which is Green’s

function for a given ocean environment, can readily be obtained from recorded signals.

Although active sensing is highly reliable, the ocean already contains enough prop-

agating acoustic energy, so using the noninvasive, low-resolution streaming sensing

data to directly develop a high-resolution image of the ocean environment in a passive

way is a promising alternative to active sensing. A fully passive approach can also be

advantageous when regulations forbid the use of sound sources to prevent environ-

mental disruption or when no active sources are available for the band of interests.

Using sources of opportunity (e.g., radiating ships) instead of deploying and operating

controlled sources emerges as a potent passive acoustic remote sensing approach [16,

17, 18]. In passive approaches, using sources of opportunity means that the broad-

cast source signal is unknown, and then this problem becomes a blind deconvolution

problem. Estimating both the CIRs and the actual source signal using only recorded

signals is generally an ill-posed problem without any additional a priori information

or assumptions, especially for propagating sound through an ocean waveguide as it is

distorted by multipath effects.

Blind deconvolution methods usually rely on the exploitation of either channel

structures, input source properties, or both. A number of studies have introduced mul-

tichannel blind deconvolution techniques motivated by various applications. These

classical techniques can be categorized into two main approaches: deterministic meth-
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ods and statistical methods. Deterministic methods [3, 19, 20] typically reduce the

blind deconvolution problem to a regularized least squares problem without assum-

ing statistical properties on either the source or channels. These methods are usually

critically dependent on an accurate estimate of the duration of the CIR (i.e., the

channel length) to deconvolve the CIR and then to recover the source. These de-

terministic methods are also highly sensitivity to noise. Statistical methods, on the

other hand, using second-order-statistics [21, 22] or higher-order-statistics [23] rely on

statistical information about an unknown source signal, which, in practice, requires

long recording duration to build up statistical information or a priori knowledge of

statistic distributions. The multichannel deconvolution methods presented in this

thesis are aiming to overcome the challenges in these classical methods and solve the

problem from short snapshot measurements with a stable robustness performance.

The blind deconvolution problem in acoustic remote-sensing applications can be

solved in various ways. One is to implement approaches that are based on both in-

coherent [24] and coherent noise processing. These approaches provide a foundation

for passive sensing and imaging using only ambient noise sources without any active

transmitter. For the coherent processing of noise recordings, some spatial coherence

between sensors that receive sound from the same individual noise source, and the

CIRs between two receivers can be estimated by cross-correlating long-duration am-

bient noise recordings from each channel [25]. Another approach, the Ray-Based

Blind (RBD) deconvolution method, has been developed based on the beamforming

technique using a receiver array [11]. However, a primary limitation of these acoustic

imaging methods is their dependence on acoustic propagation effects and the long

coherence emerging time for noise correlation techniques. Therefore, these methods

sometimes cannot provide high resolution and fast recovery results. In our study of

the thesis, we aim to use the estimated results obtained from the ray-based blind de-

convolution technique as a priori information for building the CIR model in a varying
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acoustic environment and develop a method that can quickly deconvolve and track

the system within a short recording time. Furthermore, we develop a subspace learn-

ing method that can obtain the channel model directly from multiple snapshots of

the convolutive measurements.

1.1 Notations

Unless specified otherwise, we use uppercase bold, lowercase bold, and not bold letters

for matrices, vectors, and scalars, respectively. For example, X denotes a matrix, x

represents a vector, and x refers to a scalar. We use X[i, j] to specify the (i, j)th entry

of a matrix X, and x[i] to signify the ith entry of a vector x. Calligraphic letters

such as A specify linear operators. The symbol C or c refers to a constant number.

The matrix X∗, and the row vector x∗ are obtained by taking conjugate transpose

of X, and column vector x, respectively; The matrix X>, and the row vector x> are

obtained by taking transpose of X, and column vector x, respectively. A∗ denotes

the adjoint of a linear operator A. The notations ‖ · ‖, ‖ · ‖∗, and ‖ · ‖F denote the

operator, nuclear, and Frobenius norms of the matrices, respectively. Furthermore,

we will use ‖ · ‖2, and ‖ · ‖1 to represent the vector `2, and `1 norms.

1.2 The Multichannel Blind Deconvolution Problem

This thesis examines a general sensing scenario under the single-input-multiple-channel

framework as depicted in Fig. 1.1a, in which the output of each channel is the convo-

lutive measurements of a common source s(t) and CIR hm(t). In underwater acoustic

channels, this framework can be interpreted as a network of distributed sensors (e.g.,

a vertical line array) listens to the same ship signal as indicated in Fig. 1.1b.
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h1(t)

h2(t)

hM (t)

s(t)

yM (t) = s(t) ⇤ hM (t)

y2(t) = s(t) ⇤ h2(t)

y1(t) = s(t) ⇤ h1(t)

...
...

(a) Problem formulation. (b) Underwater acoustic channel model.

Figure 1.1: Multichannel deconvolution problem. From measurements of M channel
outputs, we want to estimate both the source s(t) and channel responses hm(t) (m =
1, . . . ,M).

As depicted in Fig. 1.1a, the common source signal s(t) drives M individual

channels with the CIRs h1(t), h2(t), . . . , hm(t). Over a period of time, we observe

samples of convolution outputs y1(t), . . . , yM(t), where ym(t) = s(t) ∗ hm(t). From

these observations alone, we wish to estimate both hm(t) (m = 1, . . . ,M) and s(t).

A typical example of multipath CIRs in underwater acoustic waveguide is illustrated

in Fig. 1.2.
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Figure 1.2: A typical example of multipath CIRs in underwater acoustic channels. Each
CIR consists of several pulses at different arrival-times.

This problem does not have a unique solution if we known nothing about the source
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signal s(t) or the CIR hm(t). However, if we make some structural assumptions about

the channels, namely that they live in a subspace of some known lower dimension,

then the problem, which becomes well posed, can be solved by fast and scalable

algorithms. Even though many methods for solving this classical signal processing

problem have been reported in various applications in the past, we are revisiting this

problem by investigating both channel models and recovery methods. We show how

to use a priori information about channels to build appropriate channel models that,

in turn, can be incorporated into efficient algorithms.

We solve the multichannel blind deconvolution in two approaches and investigate

systematic ways to form both linear and bilinear channel models. In the first ap-

proach, we formulate the problem as solving a system of bilinear equations, and in

turn can be recast as recovering a low-rank matrix from a set of linear observations.

In the second approach, we form a cross-correlation matrix from the channel outputs

and solve the problem by minimizing a quadratic function over a non-convex set. A

linear model of the CIRs in underwater acoustic channel is developed and can be

readily use in both approaches. Furthermore, we develop a more confined bilinear

channel model, which is motivated by the arrival-times structure across channels of

a vertical line array. We solve the problem with the bilinear model assumption using

the second approach. This second approach also furthers our theoretical knowledge in

the classical subspace method for blind deconvolution. We develop efficient and stable

algorithms that can be applied in real world applications. Moreover, we develop a

novel framework for blind source separation, which is based on our low-rank recovery

method in a multiple-input-multiple-output convolutive measurements scenario.

1.3 Deconvolution via Low-rank Recovery

Under the general framework in Fig. 1.1a), we formulate the multichannel decon-

volution problem as a bilinear system of equations that can be recast as a system
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of linear equations whose solution has a rank-1 structural constraint. Similar for-

mulations via the low-rank recovery of the blind deconvolution problem for a single

channel have recently been presented [26, 27]. The multichannel blind deconvolution

method, which lifts the source signal and the concatenation of CIRs to their outer

product, reconstructs a rank-1 matrix from a set of linear measurements.

Let’s denote the common source as a vector s ∈ RL and the mth CIR as a vector

hm ∈ RK . Then we can arrange a large L×MK matrix X as:

X0 =



s




[
h>1 h>2 · · · h>M

]
=



sh>1 sh>2 · · · sh>M



.

Each sample of the observation ym[`] as shown in Fig. 1.1a, is now a linear

combination of entries in X0. Concatenating the observations from each channel into

a single vector y ∈ RML, we form a linear system of equations

y = A(X0),

where the linear operator A takes sums over skew diagonals of submatrices sh>m.

We can now treat the recovery of the CIR hm and the source s as a matrix

recovery problem. By construction, the underlying matrix X0 can be written as the

outer product of two vectors, it has a rank-1 structure. To recover X0 from y, we

might search for a feasible solution X̃ that is a L×MK matrix that satisfies

min
X

rank(X) subject to A(X) = y.

This optimization problem can then be solved using low-rank matrix recovery

tools developed in recent years, such as nuclear norm minimization, low-rank approx-

imation, iterative hard thresholding and alternating methods [28]. Results of prior
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studies in the area of low-rank matrix recovery have identified effective convex relax-

ations [29, 30] for problems of this type and efficient, scalable heuristic solvers that

enable these techniques to work with thousands of unknown variables. We implement

our solver, based on the low-rank factorization method that is efficient in memory,

while its formulation becomes non-convex [31, 32]. This Burer-Monteiro heuristic has

assurances that the local minima of the non-convex problem are also global minima

if the rank of the true solution is small [33].

The benefits of the low-rank recovery method is that a priori information about

the CIRs can be directly incorporated by adding constraints and requires only short

recording duration (e.g., a single snapshot). The single-channel blind deconvolution

technique [26] requires certain low-dimensional subspace structures on the source sig-

nal and channels in order to reach a well-posed condition. However, the multichannel

deconvolution method exploits the spatial diversity of CIRs across channels to solve

the blind deconvolution problem without assuming any structure of the source signal.

A logical extension of the multichannel blind deconvolution method via low-rank

recovery is to apply the same problem formulation in multiple-input-multiple-output

(MIMO) deconvolution problem. In the single source system, we solved the problem

by recovering a rank-1 matrix and estimated both the source CIRs simultaneously.

In the MIMO system, the measurements can be written as:

y = A(X1) +A(X2) + · · ·+A(XR) = A(X).

where A is the same linear operation as the single source case, which takes sums over

skew diagonals of submatrices of Xr. Here the rank of each matrix Xr is 1 and the

rank of their sum X = X1 + · · · +XR is at most R. Therefore, our deconvolution

method via the low-rank matrix recovery formulation still holds and we are searching
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for a feasible solution X has the rank no greater than R.

min
X

rank(X) subject to A(X) = y.

The deconvolution of the MIMO system turns convolutive mixing of multiple

sources into a linear mixing of multiple sources. When we want to perform a blind

source separation of these convolutive mixing of multiple sources, we can then directly

implement a linear source separation technique such as Independent Component Anal-

ysis to separate the multiple sources. The novelty of this method is that we separate

convolutive mixtures of multiple sources through two independent steps.

1.4 Deconvolution Using a Bilinear Channel Model

In an ocean acoustic array sensing scenario, receivers of the vertical line array with

equal distance (see Fig. 1.1b) spacing listen to the same source near the ocean surface

in a distance. The array receives sound that propagates in separate paths (see Fig.

1.2), which have been well modeled using the image method [34]. Distances through

which sound travels along the same path to each receiver, such as the direct path,

are dependent on the source-receiver configuration. Meanwhile, sound traveling along

the same path will experience almost the same media (speed of sound and loss) and

environmental parameters. Any environmental change or disturbance of the media

will result in the same fluctuation of arrival-times of sound pulses across channels.

Therefore, arrival-times of the same path for each receiver are linked. We develop a

bilinear channel model that is motivated by exploring this relation of arrival-times

across acoustic channels.

The bilinear channel model approximates all CIR vectors jointly with two inde-

pendent vectors as variables, which correspond to the structure of amplitudes and

arrival-times. If all CIR vectors are concatenated as following, the bilinear channel

9



model can be written as 


h1

h2

...

hM




=




a1Φ1

a2Φ2

...

aMΦM



u,

where (Φm)Mm=1 ∈ RK×D are the subspace bases for the M channels, u ∈ RD is

the coefficient vector that determines the pulse arrival-times for one path across all

channels, and each element of the vector a = [a1, . . . , aM ]> ∈ RM with am > 0 is the

amplitude of channel m.

Let h ∈ RMK denote the concatenation of the CIR coefficients for all channels,

i.e.,

h = [h>1 , . . . ,h
>
M ]>.

The bilinear channel model equation above can then be equivalently rewritten as a

more concise form using Kronecker product as below

h = Φ(a⊗ u),

where

Φ :=




0

...

0

Φ1

0

...

Φ2

0

. . .

. . .

. . .

. . .

ΦM

...

0

0




and a⊗ u =




a1u

a2u

...

aMu



.

As a conceptual example of how such bilinear model might arise, we illustrate the

following stylized problem for acoustic array processing. Fig. 1.3.
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Figure 1.3: Illustration of construction of a joint linear subspace model from a parametric
model. (a) A uniform array of M sensors. (b) Examples of {gr} rearranged as M -by-K
matrices. (c) Sorted eigenvalues of HR in a logarithmic scale. (d) First few dominant
eigenvectors of HR rearranged as M -by-K matrices.

Figure 1.3a shows a vertical line array. Suppose we know that a source is at

location r, and the concatenation of the received pulses that travel from the source

location to the array elements is pr ∈ CMK . These pulse profiles are the same to one

another with the same amplitude, but shifted version of each other (See Fig. 1.3b).

The delays are induced by the differences in sensor locations relative to the source,

while pulse profile can be determined by the filter design. Pulse profiles can also be

different from element to element.

Suppose the source location varies in a small region and we denote as r ∈ R,

where R is some region in space. As we vary r over the set R, the responses pr trace

out a portion on a manifold in CMK . We can approximately embed this manifold

onto a linear subspace of dimension D by using the D principal eigenvectors of the

matrix

HR =

∫

r∈R
prp

∗
rdr.

The dimension D that allows an accurate embedding depends on the size of R and

smoothness properties of the mapping from r to pr. In this case, we are building Φ

above by taking the MK ×D matrix that has the principal eigenvectors as columns

and apportioning the first K rows to Φ1, the next K rows to Φ2, etc.
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Under this more confined bilinear channel model, CIRs estimates can be found

by minimizing a quadratic function over a non-convex set. We develop algorithms

for multichannel blind deconvolution in this case by modifying the classical cross-

convolution method. The classical method for treating the multichannel blind de-

convolution problem is to recast it as an eigenvalue problem: we create a correlation

matrix using the measured data {ym}, and estimate the CIRs from the smallest

eigenvector of this matrix. These methods were pioneered in the mid-1990s [1, 3, 35].

We develop our methods based on the same basic principles, but explicitly enforce

structural constraints on the solution and provide performance guarantees.

The cross-convolution method for multichannel blind deconvolution [1] follows

directly from the commutivity of the convolution operator. If there is no noise in the

observations, then

ym1
~ hm2 − ym2

~ hm1 = 0, for all m1,m2 = 1, . . . ,M.

Using T ym as the matrix whose action is a convolution of ym with a signal of length K,

then the channel responses hm1 and hm2 must obey the linear constraints T ym1
hm2−

T ym2
hm1 = 0. We then collect all pairs of these linear constraints into a large system,

and the vector h ∈ RMK , which corresponds to the concatenation of all CIRs vectors,

is determined by

Y h = 0M(M−1)L/2×1,

where Y ∈ RM(M−1)L/2×MK is defined by
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Y =




Y (1)

Y (2)

...

Y (M−1)



, Y (i) =




0L,K . . . 0L,K
...

...

0L,K . . . 0L,K
︸ ︷︷ ︸

(i− 1) blocks

Tyi+1
−Tyi

...
. . .

TyM −Tyi︸ ︷︷ ︸
(M − i+ 1) blocks



.

Then wen estimate h as the minimum eigenvector of Y ∗Y

ĥ = arg min
‖g‖2=1

g∗Y ∗Y g.

Our proposed framework is to solve an optimization program above but with the

additional constraint that h can be represented by a bilinear model. We then need to

solve an optimization program with a Kronecker product constraint on the expansion

coefficients as follow:

minimize
v

v∗Φ∗Y ∗Y Φv subject to ‖v‖2 = 1, v = a⊗ u.

1.5 Subspace Learning for Multichannel Deconvolution

Our multichannel blind deconvolution methods are based on the fact we have a pri-

ori knowledge about the CIRs, and a low-dimensional subspace where CIRs can be

represented by a linear model or a bilinear model. However, we are encountered

with situations that such a priori information of an accurate channel model is not

readily available. Meanwhile, we are sometimes presented with multiple snapshots of

convolutive measurements where both source signals and CIRs are changing for each

snapshots. These measurements can be written as

ym(p) = hm(p) ~ s(p) +wm(p), m = 1, . . . ,M,
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where p is the index for multiple snapshots p = 1, . . . , P .

The structural assumption we make here for channels is that CIRs of each snapshot

hm(p) (m = 1, . . . ,M and p = 1, . . . , P ) can be modeled by a fixed subspace. We

assume all CIRs lie in a linear subspace with a known low-dimensional size D. Then

the CIR for each channel in each snapshot can be written as

hm(p) = Φmum(p), ∀m = 1, . . . ,M,

where Φm ∈ RK×D.

In underwater acoustic channels, receivers on a Vertical Line Array (VLA) can

keep measuring all sources of opportunity (e.g. ship noise) in a region. We can have

multiple snapshots of measurements when a ship passes by the region, and the CIRs

in each snapshot vary slightly because the ship travels a short distance against the

VLA in each snapshot. As we studied in previous chapters, when the region is small,

the arrival times of the pulses among all snapshots are close to each other and the

CIRs are highly correlated. Therefore, a low-dimensional subspace exists for the CIRs

of all snapshots.

Under this assumption of a shared subspace for CIRs in all snapshots, let’s take

another look at the classical cross-convolution method. In each snapshot, we can

estimate the expansion coefficients u(p) = [u1(p)>, . . . ,uM(p)>]> by solving

minimize
u(p)

u(p)∗Φ∗Y (p)∗Y (p)Φu(p) subject to ‖u(p)‖2 = 1.

where Y (p) is the same large Y matrix introduced in the previous section and it is
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construncted from the pth measurements y(p), and

Φ =




0

...

0

Φ1

0

...

Φ2

0

. . .

. . .

. . .

. . .

ΦM

...

0

0




, Φm ∈ RK×D.

The core idea of our subspace learning method is to use diverse information col-

lected through multiple snapshots and to learn the subspace jointly. In each snapshot,

the solution is to find the smallest eigenvector. Therefore, if we treat multiple snap-

shots jointly, the subspace which span all CIRs in P snapshots can be found as the

following optimization problem.

minimize
{Qm}Mm=1

P∑

p=1

λmin(Q>Y (p)>Y (p)Q)

subject to Q>mQm = ID, ∀m = 1, . . . ,M,

where

Q =




0

...

0

Q1

0

...

Q2

0

. . .

. . .

. . .

. . .

QM

...

0

0




, Qm ∈ RK×D

Another interesting approach to investigate this subspace learning problem is

via low-rank matrix recovery. From our linear channel model assumption hm(p) =

Φmum(p), this also means that a matrix constructed by stacking all hm(p) for a fixed

m as column vectors has rank-D structure. Let’s define a matrix H ∈ RMK×P and a
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matrix Hm ∈ RK×P as below,

H =



hM(1)

...

h2(1)

h1(1)

hM(2)

...

h2(2)

h1(2)

. . .

. . .

. . .

. . .

hM(P )

...

h2(P )

h1(P )




, h(p) =




h1(p)

h2(p)

. . .

hM(p)



,

and Hm =

[
hm(1),hm(2), . . . ,hm(P )

]
.

We estimate h(p) for all snapshots jointly using the basic idea of cross-convolution

while enforcing the low-rank structure of Hm.

minimize
{h(p)}Pp=1

P∑

p=1

h(p)∗Y (p)∗Y (p)h(p)

subject to rank(Hm) ≤ D, ‖Hm‖F = 1, ∀m = 1, . . . ,M,

1.6 Contributions and Organization of the Thesis

This thesis develops new techniques for solving the multichannel blind deconvolution

problem and implements these techniques in acoustic waveguide multiple environ-

ment. The main contributions are stated as blow:

• For underwater acoustic channel applications, a systematic way to build an

efficient and accurate linear channel model incorporating a priori information

about the expected CIRs’ arrival-times structure is developed.

• A more constrained bilinear model that embeds a parametric model for all

channels jointly into a linear space while modulates each channel’s amplitude

independently is developed.

• Formulates the multichannel blind deconvolution problem as solving a system
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of bilinear equations, which in turn is recast as recovering a low-rank matrix

from a set of linear observations.

• Using bilinear channel models, the problem is solved by minimizing a quadratic

function over a non-convex set, which is formed by a cross-correlation matrix

from channel outputs.

• The methods presented in the thesis are robust in the presence of additive

measurement noises and model errors in the CIR parameterization.

• Performance guarantees of our methods is analyzed and demonstrated when

low-dimensional subspace is generic.

• A series of numerical results demonstrate that the empirical performance is

consistent with the presented theories.

• We implement both multichannel deconvolution methods on realistic acoustic

channels in an ocean waveguide and experimentally validate the methods using

at-sea data recorded in shallow water from short vertical line arrays at Coronado

Bank and Santa Barbara shipping channel.

• A technique for blind source separation in a multiple-input-multiple-output con-

volutive system is presented and demonstrated.

• Subspace learning methods that can estimate the channel subspace directly

from multiple snapshots of the convolutive measurements are presented.

The remainder of the thesis is organized as follows. Chapter 2 presents the multi-

channel blind deconvolution method via a low-rank matrix recovery formulation. We

show how a priori information about the channels can be used to build a linear model

systematically, which in turn makes solving these systems of equations well-posed.

Chapter 2 also presents results that demonstrate our method is reliable in estimating
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real underwater acoustic channels from experimental data measured at-sea. In the

end of Chapter 2, an extension of our method for the MIMO deconvolution and source

separation problem is presented and demonstrated numerically.

Chapter 3 presents a bilinear model for CIRs, which is motivated by the arrival-

times’ structure of sensor array channels. Methods of solving multichannel blind

deconvolution under such bilinear channel model are introduced in this chapter. We

provide main results in this chapter to show guarantee of our methods under a certain

subspace assumption. Numerical results in this chapter shows the robustness of our

method. A new set of at-sea experimental data from the Santa Barbara Channel is

incorporated in estimating the CIRs in the simulations.

Chapter 4 investigates subspace learning methods for multichannel deconvolution

problem. We presents two methods in this chapter, and both of which are demon-

strated through numerical simulations. The robustness performance is demonstrated

with a comparison to classical method in this chapter. Finally, Chapter 5 concludes

the thesis and discuss future works.
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CHAPTER 2

MULTICHANNEL DECONVOLUTION VIA LOW-RANK RECOVERY

2.1 Introduction

Acoustic remote sensing, such as ocean tomography and geoacoustic inversion, typ-

ically relies on a controlled active source to probe the environment [14, 15]. In this

case, the channel impulse response (CIR), which is the Green’s function for a given

ocean environment, can readily be obtained from recorded signals since the broad-

cast source signal is known. A potential alternative for performing acoustic remote

sensing is to use sources of opportunity (e.g., radiating ships) instead of deploying

and operating controlled sources. However, using sources of opportunity means that

the broadcast source signal is then unknown; thus, estimating both the CIR and the

actual source signal using only recorded signals, a process commonly referred to as

blind deconvolution, is generally an ill-posed problem without any additional a pri-

ori information or assumptions, especially for propagating sound through an ocean

waveguide as it is distorted by multipath effects. This chapter develops a scalable

methodology that solves the multichannel deconvolution problem for a source of op-

portunity radiating in an ocean waveguide using a priori information about CIRs

between the source and the array of receiver elements.

The essence of blind deconvolution rests on the exploitation of either channel

structures [36] or input source properties, or both. In the underwater acoustic com-

munity, the blind deconvolution problem has been studied by many researchers and

several algorithms have been proposed [37, 38, 39, 40]. Traditional multichannel

blind deconvolution methods can usually be categorized into two main approaches:
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deterministic methods and statistical methods [19]. Deterministic methods, such as

Kailath methods [1] and subspace methods [3], usually reduce the blind deconvolution

problem to a regularized least squares problem, hence critically depend on an accu-

rate estimate of the duration of the CIR (i.e., channel length). These methods also

encounter challenges of highly sensitivity to noise when measurement length is not

infinity and have no non-asymptotic guarantee. Statistical methods [23, 41] typically

rely on statistical information about an unknown source signal, which, in practice,

require long recording duration to build up the statistical information.

In underwater acoustic channels, multichannel blind deconvolution methods also

encounter challenges. For the coherent processing of noise recordings, the CIRs be-

tween two receivers can be estimated by cross-correlating long-duration ambient noise

recordings from each channel [25]. Another approach, the Ray-Based Blind (RBD)

deconvolution method, has been developed based on the beamforming technique us-

ing a receiver array [11]. However, a primary limitation of these acoustic imaging

methods is their dependence on acoustic propagation effects and the long coherence

emerging time for noise correlation techniques. Therefore, these methods sometimes

cannot provide high resolution and fast recovery results. In our study, we aim to

develop a method that can quickly deconvolve and track the system within a short

recording time.

This chapter examines a sensing scenario under the multiple-channel framework

(Fig. 1.1a), in which a network of distributed sensors (e.g., a vertical line array)

listens to the same source (Fig. 1.1b). Compared to traditional multichannel blind

deconvolution approaches, the proposed blind deconvolution approach does not rely

on an accurate channel length estimation or any statistical information about the

input source, so it can be used with short recording duration (e.g., a single snapshot).

Instead, the proposed approach investigates the multichannel deconvolution problem

as a low-rank matrix recovery problem, which significantly differs from the problem
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formulation of the aforementioned blind deconvolution approaches. Compared to

the recently developed single-channel blind deconvolution method using a similar

formulation [26], the multichannel deconvolution method exploits the spatial diversity

of CIRs across channels to solve the blind deconvolution problem without assume a

generic model for the source.

Under the general deconvolution framework (Fig. 1.1a), the multichannel decon-

volution problem is typically posed as a bilinear system of equations that can be

recast as a system of linear equations whose solution has a rank-1 structural con-

straint. This system of linear equations is solved using the low-rank matrix recovery

tools developed in recent years [31, 32]. The proposed approach estimates CIRs and

source by solving an optimization program. This formulation has the advantage that

a priori information about CIRs can be incorporated by adding constraints. Further-

more, this also allows us to use standard numerical techniques to solve the problem

on a relatively large scale. The numerical experiments in Section 2.4 demonstrate re-

covery of 100 channels with 200 taps each from a source of length 1000. Additionally,

when the dimension length of the subspace containing the admissible CIRs is consis-

tent with the available a priori information, and it is small compared to the length

of measurements, the blind deconvolution can be achieved using a small number of

receivers.

The remainder of this chapter is organized as follows. Section 2.2 presents the

theoretical formulation of the proposed blind deconvolution method based on recast-

ing the multichannel deconvolution problem as a low-rank matrix recovery problem.

A general formulation of the method based on the assumption that CIRs are time-

limited is first introduced, and the formulation is then extended to CIRs that can

be represented by a general linear model. Section 2.3 introduces a linear model

for parameterizing multipath CIRs in ocean waveguides in order to incorporate a

priori knowledge of the arrival-time structure of the CIR in the low-rank matrix re-
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covery problem. Section 2.4 first investigates the performance and the robustness

of the proposed deconvolution method using numerical simulations of general styl-

ized channels such as time-limited channels and pulse-like channels. This section

then presents numerical simulation results on realistic acoustic channels in an ocean

waveguide and deconvolution result using at-sea data recorded in shallow water us-

ing bottom-mounted short vertical line arrays. Section 2.5 extends our multichannel

blind deconvolution method to multiple-input-multiple-output system, and presents

simulation results of blind source separation from convolutive measurements. Finally,

Section 2.6 summarizes the findings of this chapter.

2.2 Multichannel Deconvolution

2.2.1 The sensing scenario

The multichannel deconvolution problem is illustrated in Fig. 1.1a. A common source

signal s(t) drives M different channels with the CIR h1(t), h2(t), . . . , hM(t). Over a

period of time, we observe samples of convolution outputs y1(t), . . . , yM(t), where

ym(t) = s(t) ∗ hm(t). From these observations alone, we wish to estimate both hm(t)

(m = 1, . . . ,M) and s(t). This problem has direct application in ocean underwater

acoustic passive sensing as shown in Fig. 1.1b: for instance, assuming sound from a

shipping source that propagates towards each hydrophone based on each CIR hm(t).

So under this model, each hydrophone from a vertical line array (forming multiple

channels) listens to the same ship noise. The goal is to deconvolve the CIRs and the

source by measuring only the outputs of a hydrophone array. This problem does not

have a unique solution if we known nothing about the source signal s(t) or the CIR

hm(t). However, if we make some structural assumptions about the channels, namely

that they live in a subspace of some known lower dimension, then the problem, which

becomes well posed, can be solved by a fast and scalable algorithm.
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If we treat both the source s(t) and the CIR hm(t) as unknowns, and our ob-

servations consist of linear combinations of entries of s(t) and the hm(t) multiplied

by one another, multichannel blind deconvolution is challenging since it is equivalent

to solving a system of bilinear equations. To precisely state the problem, an inverse

problem is written down using the language of linear algebra. We assume that both

the s(t) and the hm(t) are bandlimited, so recovering discretized samples hm[k] of

hm(t) and s[k] of s(t), spaced at the corresponding Nyquist rate or closer, is the same

as recovering the CIRs themselves and the source (limited to this frequency band).

We define the general convolution model as

ym[`] =
∞∑

n=−∞

hm[k]s[`− k], for ` = 0, 1, . . . , L− 1. (2.1)

This problem does not have a unique solution if we assume s[k] and hm[k] have no

structure, because many signals and CIRs can produce the same observations ym[`].

Even if we were to observe an infinite number of samples {ym[`], ` ∈ Z} over an

infinite amount of time and treat the channels jointly, the hm[k] and s[k] would still

not be identifiable.

2.2.2 Finite impulse response (FIR) channels

The story does improve, however, if we make structural assumptions about the CIR

hm[k]. For example, we might assume that the hm[k] are time-limited (i.e., FIR

channels) such that hm[k] can be nonzero only for 0 ≤ k ≤ K − 1. Then we can limit

the index summation in the convolution model (2.1):

ym[`] =
K−1∑

n=0

hm[k]s[`− k], for ` = 0, 1, . . . , L− 1. (2.2)

Eq. (2.2) has K + (L + K − 1) = L + 2K − 1 unknowns, and L bilinear equa-

tions that combine these unknowns in different ways: each sample of ym involves a
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sum over products of various combinations of {hm[0], . . . , hm[K − 1]} and {s[−K +

1], . . . , s[0], . . . , s[L−1]}. Treating the channels jointly adds more equations and more

unknowns. However, since the channels are all being driven by a common source, the

number of unknowns is smaller than the number of equations. The system of equa-

tions corresponding to the observations {ym[`], ` = 0, . . . , L− 1; m = 1, . . . ,M} has

ML equations and MK + (L+K − 1) = (M + 1)K + L− 1 unknowns. Thus, when

the number of channels M is large and L > K, the number of equations in fact are

much larger than the number of unknowns.

Only comparing the number of equations to the number of unknowns does not

tell the whole story, especially since the equations are non-linear (bilinear in the

unknowns of s,h1,h2, . . . ,hM). The observations above reveal in some loose sense

that as the number of observations grows, so does the ratio of the information we

have (equations) versus the information we do not (variables). We take another step

towards formalizing this trade-off by recasting the bilinear equations in (2.2) as a

system of linear equations with a rank constraint. The common source s ∈ RL+K−1

used in (2.2) and the CIR hm can be defined as a vector as below:

s =




s[−K + 1]

...

s[−1]

s[0]

s[1]

...

s[L− 1]




, hm =




hm[0]

hm[1]

...

hm[K − 1]



. (2.3)

Then we can arrange all pairs of variables appearing in the sum in (2.2) in a large
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(L+K − 1)×KM matrix X0:

X0 =



s




[
h>1 h>2 · · · h>M

]
=



sh>1 sh>2 · · · sh>M



. (2.4)

Each observation ym[`], an example of which is shown graphically in Fig. 2.1, is

now a linear combination of entries in X0. Concatenating the observations from each

channel into a single vector y ∈ RML, we form a linear system of equations

y = A(X0), (2.5)

where A takes sums over skew diagonals of submatrices sh>m. We can write out this

linear operator A in the form of inner products against the rank-1 matrix X0 = sh>,

where h = [h>1 ,h
>
1 , · · · ,h>M ]>. Am` is the skew-diagonal sum measurement matrix

yielding observation ym[`], and we can write ym[`] as below (an example of Am` is

given in Eq. (2.14)).

ym[`] =
∑

i,j

Am`[i, j]X0[i, j] = trace(X>0Am`) = 〈Am`,X0〉. (2.6)

Then for all measurements across channels, we form the following expression

y =




y1[0]

y1[1]

...

yM [L− 1]




= A(X0) =




〈A10,X0〉

〈A11,X0〉
...

〈AM(L−1),X0〉



. (2.7)

We can now treat the recovery of the CIR hm and the source s as a matrix

recovery problem. The vector y contains ML different linear combinations of entries
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Figure 2.1: To illustrate the proposed approach, the matrix X0 defined in Eq. (2.4) is
explicitly written with a number of measurements per channel of L = 9, channel length
K = 3, and a number of channels M = 3. Each observation ym[`] is a sum along one of the
skew diagonals of the a submatrix of X0, as illustrated by the red lines above. Recovering
an L + K − 1 × KM matrix from measurements of this type is virtually impossible, but
explicitly incorporating the fact that X0 has rank-1 structure into the recovery makes the
recovery possible for appropriate values of L,K,M .

of an (L+K−1)×KM matrix. Regardless of the values of L,K, and M , the number

of equations will always be less than the entries in the unknown matrix, indicating

that the system of linear equations in Eq. (2.5) is underdetermined. However, because

the underlying matrix X0 can be written as the outer product of two vectors (as in

Eq. (2.4)), it has a special structure, whose rank is 1. To recover X0 from y, we

might search for a (L+K − 1)×KM matrix that satisfies

A(X) = y, rank(X) = 1. (2.8)

For an arbitrary y, a solution X̃ that satisfies the constraints above exactly may or

may not exist. Given y, we might search instead for such a feasible solution X̃ by

solving

min
X

rank(X) subject to A(X) = y. (2.9)
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2.2.3 The heuristic solver

The deconvolution problem is now recast as a low-rank matrix recovery problem,

which can then be solved using low-rank matrix recovery tools developed in recent

years, such as nuclear norm minimization, low-rank approximation, iterative hard

thresholding and alternating methods [28]. Results of prior studies in the area of low-

rank matrix recovery have identified effective convex relaxations [29, 30] for problems

of this type and efficient, scalable heuristic solvers that enable these techniques to

work with thousands of unknown variables. A description of the heuristic solver

used in this chapter is discussed below. The Burer-Monteiro heuristic solver is based

on the low-rank factorization method and notably efficient in memory. Numerical

simulations using this solver are presented in Section 2.4 .

The multichannel deconvolution problem via recovery a low-rank matrix becomes

computationally intractable as the number of channels increases. To recover X0, we

are searching over a matrix of size (L + K − 1) × KM that minimizes the nuclear

norm which satisfies the linear constrains. If we want to recover M = 100 channels

with each channel of length K = 500, and a source of length L + K − 1 = 1000,

then the rank-1 matrix X0 is of size 1000 × 50000, which the storage becomes an

issue in computation. However, the nonlinear programming algorithm developed by

Burer and Monteiro [32], using low-rank factorization can greatly reduce the number

of variables, and in the meanwhile, provides reliable performance adapted in our

application.

By construction, we know that the target matrix X0 is rank-1, so instead of

iterating matrix X of size (L+K − 1)×KM to minimize its nuclear norm, we can

reformulate the problem to optimize over vectors Z ∈ R(L+K−1)×1 and H ∈ RKM×1,

where X = ZH> (Note that Z and H correspond to the source signal vector s and

CIR vectors h in Eq. (4) respectively). Hence we only need to store two vectors Z

and H in the memory for each iteration. This reformulation is driven by the fact
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that the nuclear norm is equal to the minimum Frobenius norm factorization:

‖X‖∗ = min
Z,H

1

2
(‖Z‖2

F + ‖H‖2
F ) subject to X = ZH>. (2.10)

We can then minimize the following augmented Lagrange term:

||Z||2F + ||H||2F − 2〈λ,A(ZH>)− y〉+ σ||A(ZH>)− y||22. (2.11)

This new formulation of the problem is non-convex because A(ZH>) is a lin-

ear combination of the product of two unknowns. But the Burer-Monteiro heuristic

shows that under certain conditions, the local minima in Eq. (2.11) are also the

global minima [33]. This Burer-Monteiro heuristic solver is used in state-of-the-art

large scale implementations of matrix recovery problems. To minimize the augmented

Lagrangian term in Eq. (2.11), the inner operation is executed using Limited-memory

Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS) with Matlab solver ‘minfunc’

developed by Recht,Fazel and Parrilo [31]. The parameters of the augmented La-

grangian are updated according to the schedule proposed by Burer and Monteiro

[32]. The parameter λ determines the trade-off between the fidelity of the solution

to the measurements y and its conformance to the model. The term involving σ

measures the Euclidean norm of the infeasibility, and σ is a penalty parameter. We

update both parameters for each LBFGS minimization.

We also use a gradient-based algorithm because the function and the gradient

evaluations of the augmented Lagrange term Eq. (2.11) with respect to vectors Z,H

can be performed very quickly. We can write out how we compute the gradient of the

augmented Lagrange term as below. We denote the objective function as f(Z,H),

where

f(Z,H) = ‖Z‖2
F + ‖H‖2

F − 2〈λ,∆〉+ σ‖∆‖2
2
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where ∆ = A(ZH>)− y. It then can be calculated that

∇Zf(Z,H) = 2 (Z − [A∗(λ− σ∆)]H)

and

∇Hf(Z,H) = 2 (H − [A∗(λ− σ∆)]∗Z)

where A∗ is the adjoint of A and also can be implemented through Fast Fourier

Transform.

2.2.4 A general linear model for the CIR

The linear operator A in the previous section was derived from the assumption that

the CIR is time-limited, so the length of each CIR is K. More generally, we can

incorporate a priori information about the CIR (e.g., expected arrival-time structure

in a multipath environment) into a general linear model, that is, we can assume each

CIR hm can be written as

hm = Cmum, m = 1, . . . ,M, (2.12)

where Cm ∈ RK×D, um ∈ RD is the coefficient vector, K is the length of the vector

hm, and D is the number of columns of the matrix Cm. Therefore, the CIR hm

lives in a subspace that is the linear span of the columns of the matrix Cm. The

time-limited CIR example in the previous section is a special case, which corresponds

to Cm = IK×K . We shall note here the length of the channel K no longer needs to

satisfy the constraint L > K, but we require that the length of the channel coefficient

vector D satisfies L > D, since the number of unknowns of the CIR per channel is

now D instead of K.

Let us concatenate all the CIR vectors {hm} together, as well as the coefficient
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vectors {um}, we write the linear model for multiple channels in a concise way:

h = Cu, (2.13)

where

C :=




0

...

0

C1

0

...

C2

0

. . .

. . .

. . .

. . .

CM

...

0

0




, h =




h1

h2

...

hM



, and u =




u1

u2

...

uM



.

With the subspace model in place, the goal is now to recover the source s and

the channel subspace coefficients u1,u2, . . . ,uM . As before, we recast this problem

as recovering the rank-1 matrix X0 = [su>1 su>2 · · · su>M ]. Each observation

ym[`] is again a linear combination of the entries in X0. Here the new linear operator

A is implemented with the channel model embedded. For example, we can write out

explicitly how to calculate ym[0] using linear algebra with K = 4:

ym[0] =

[
s>

]




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

...
...

...
...

0 0 0 0






hm




= 〈Am1, su
>
m〉, Am1 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

...
...

...
...

0 0 0 0




Cm.

(2.14)

In this case, each measurement matrix is the corresponding skew diagonal sum matrix

times the channel subspace matrix. We still keep the general notation y = A(X0)

the same.
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2.3 Linear Models for Multipath CIR in Ocean Waveguides

In the previous section, the multichannel deconvolution problem has been recast as

a low-rank matrix recovery problem, and we require the ambient dimension of the

measurements to be bigger than the dimension of the CIR to solve the problem.

Because a priori knowledge of the CIR is usually available, dimension reduction of

the CIR using a linear model is possible. For instance, in an ocean waveguide, an

accurate linear model for CIRs can be fit using a priori knowledge of the environmental

parameters (expected variations of the sound-speed profile) and the source-receiver

configuration [34]. Incorporating a linear model for CIRs reduces the dimension of the

subspace spanned by the admissible CIRs such that the deconvolution becomes more

tractable numerically. Two types of linear models for the CIR in ocean waveguides

are discussed below.

2.3.1 The multipath CIR with known arrival-times and unknown ampli-

tudes

Our first CIR model, based on the ray approximation, assumes that the CIR consists

of multiple pulses that arrive at different time delays with different amplitudes. This

model can be interpreted as the same pulse emitted from a common source but taking

multiple paths to reach the receivers, as illustrated in Fig. 1.1b. The CIR hm(t) can

be written as a sum of pulse function p(t) with different delays t1, t2, . . . , tD and

different amplitudes um[1], um[2], . . . , um[D]:

hm(t) = um[1]p(t− t1) + um[2]p(t− t2) + · · ·+ um[D]p(t− tD). (2.15)

In this CIR linear model, we know the pulse profile p(t) (as an example, we assume

the pulse is a band-limited Gaussian-windowed sinusoid p(t) = u · sin(2πfct)e
−( t

τ
)2 ,

and the decay parameter τ is determined by the effective bandwidth of the pulse)
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and pulse time delays t1, t2, . . . , tD as the a priori information, and the unknowns

are the amplitude coefficients um[1], um[2], . . . , um[D] of each ray-like arrivals. hm(t)

and p(t − td) can be discretized in vector forms as hm ∈ RK and ptd ∈ RK . In

terms of linear algebra, Eq.(2.15) implies that the CIR hm lies in D-dimension sub-

space spanned by vectors pt1 ,pt2 , . . . ,ptD instead of the K-dimension vector length

(D < K). The subspace matrix Cm ∈ RK×D for the CIR hm, which is explained

in Eq.(2.12), is simply constructed by stacking D time-domain pulse basis vectors

column-wise. Therefore, Cm can be written as

Cm =

[
pt1 pt2 . . . ptD

]
. (2.16)

2.3.2 The multipath CIR with uncertain arrival-times and unknown am-

plitudes

In practice, the arrival-time structure of the CIR in ocean waveguides is never known

exactly as a result of environmental fluctuations (e.g., sound speed variations). How-

ever, assuming that the range of expected sound-speed variations can be estimated,

using for instance an oceanographic model, we can assume that the arrival-times ti

(i = 1 . . . D) for each ray arrival lies within a known time-interval ∆ti, that is, each

ray arrival might occur within the time window ti ± ∆ti. Examining all possible

pulses that arrive within one time interval ti ±∆ti shows that they form a collection

of shifted pulses that lie on a certain region of a manifold. Depending on the range

of the time interval, the region of the manifold differs. Now the model for pulses on

the manifold in terms of the arrival-time is nonlinear. The manifold needs to be em-

bedded into a linear model that can approximate the CIR by a linear subspace with

preferably a low dimension so that the deconvolution method can be implemented.

Since all the pulses that lie on the manifold are highly correlated, principal compo-

nent analysis (PCA) is performed here to build a low dimension linear subspace for
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all shifted pulses.

A systematic way to construct the lower dimension subspace based on PCA is

introduced in this section. An over-complete subspace matrix, denoted by B1o, is

first formed by column-wise stacking vectors that represent all pulses arriving within

the time interval ti±∆ti. Using the same notation as the previous section for shifted

pulse basis vectors, we form the matrix B1o as

B1o =

[
pt1+∆ti

pt1+∆ti−δt . . . pt1−∆ti+δt
pt1−∆ti

]
,

where δt is a tiny shifting grid for each pulse. However, all those time-shifted pulses

(i.e., Fig. 2.2a is an example of those shifted pulses) are highly correlated. We then

perform a principal component analysis using a singular value decomposition of this

collection of shifted pulse basis vectors to reduce its dimension, resulting in a low-

dimension linear model for approximating any pulse arriving in this time region. The

matrix B1o can be written as B1o = USV >. Because the singular value spectrum of

this matrix decays to near zero quickly as shown in Fig. 2.2b, we only need the first

R (R is a small number in this typical example) singular values of B1o to capture

nearly all energy (more than 99.999% in simulation) of the singular values. Then

the R corresponding singular vectors (i.e., Fig. 2.2c is an example of the first R = 6

singular vectors) form the basis of the low dimension subspace. Column-wise stacking

of these R singular vectors generates a matrix B1 that can accurately represent any

pulse that arrives within the time region t1 ±∆t. The matrix B1 is written as

B1 = [U(:, 1), . . . ,U(:, R)]. (2.17)

The same procedure is performed for each path of the CIR and generates correspond-

ing B2, . . . ,BD for each time region. Finally, the subspace matrix Cm, introduced
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Figure 2.2: (a) An illustration of the small time shifts of a band-limited basis pulse (400−
600 Hz). All shifted pulses form an over-complete subspace matrix B1o for any ray-like
pulse that arrives within an uncertainty window of duration ∆t = 3 ms. (b) The singular
value spectrum of the corresponding over-complete matrix B1o. The plot contains the first
20 of 600 singular values. The first R = 6 singular values capture more than 99% of the total
energy. (c) The pulse subspace matrix B1, consisting of the R = 6 principal components of
B1o.

in Eq.(2.12) for the CIR hm is then formed by

Cm = [B1,B2, . . . ,BD]. (2.18)

Because of the uncertainty of the paths’ arrival-time, the CIR hm is approximated

by a subspace with the dimension R × D compared to a subspace of the dimension

D in Eq.(2.16).

We need to point out that PCA is not the only method of finding the low dimension

subspace for pulses that arrive within a known time region. Based on the a priori

information of the CIR structure, other efficient subspaces that can approximate

hm with a linear model also exist. For example, the discrete prolate spheroidal

sequences [42] can form a highly efficient basis that represents band-limited and time

concentrated pulses, which can also be an adequate linear model for the current

application.
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2.4 Numerical Results

In this section, the multichannel blind deconvolution method is implemented on vari-

ous types of channel structures and the effectiveness and robustness of the deconvolu-

tion algorithm are demonstrated for both stylized and realistic CIRs. In simulations,

the common driving source signal, s ∈ RL+K−1, where L+K−1 = 1000, is Gaussian

white noise filtered in an arbitrary bandwidth representative of shipping noise spectra

(400− 600 Hz) with a sampling frequency fs = 2000 Hz.

2.4.1 Stylized simulations

Stylized channel structures introduced in Section 2.2 and 2.3 are simulated in this sec-

tion as direct implementations of the proposed deconvolution method. These general

CIR assumptions do not directly represent any specific underwater acoustic chan-

nels but more general type of channel models. Realistic underwater acoustic channel

simulations will be discussed later in Section 2.4.3.

1. Time-limited channels

The first simulation investigates the time-limited channel model that corresponds

to the scenario illustrated in Fig. 2.1. For time-limited channels, CIR vectors

h1, . . . ,hM ∈ RK have finite length, which means that elements of the CIR vec-

tor hm[k] are nonzero only for 0 ≤ k ≤ K − 1 and they are normally distributed

random variables (i.e., FIR channels). Fig. 2.3 illustrates a typical recovery result

for parameters K = 200 (the CIR vector length) and M = 100 (number of recording

channels). In this case, both the source signal and all of the CIRs (21000 variables)

are recovered with relatively small errors from 100 observed outputs (100, 000 total

samples). The blind deconvolution method here benefits from having totally unstruc-

tured CIRs, which efficiently increases the mixing of the source signal and CIRs and

thus the diversity of observations in the M = 100 recording signals.
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Figure 2.3: Examples of recovery for finite-duration CIRs (K = 200 taps) using M = 100
channels. (a) Comparison of the original source signal (solid line) and the recovered source
signal (dashed line). The relative error is 3 × 10−5 (only the first 300 samples out of 1000
samples are plotted). (b) Comparison of the true underlying CIRs (plotting only first 50
taps out of K = 200 for the first 3 channels) and the recovered CIRs. The average relative
error across all 100 channels is 10−4.

2. Channels with known arrival-times and unknown amplitudes

To examine the method proposed in Section 2.3.1, we implement a general linear

model for CIRs with finite number of discrete arrivals with a priori known arrival-

times but unknown amplitudes. This linear model is realized for multipath channels

in an ocean waveguide as introduced in Section 2.3. In this simulation scenario, each

CIR consisted of three different individual pulse arrivals that correspond to D = 3,

defined in Section 2.3.1. The basis pulse p(t) throughout the rest of simulations is

defined as a Gaussian window pulse in the frequency band of 400 − 600 Hz. The

length of the CIR vector is K = 500, and the number of channels is M = 50. Because

accurate time delays t1m, t2m, t3m for each pulse are assumed to be known, we only

need to estimate the amplitudes of each pulse, which are um[1], um[2], um[3].

Simulation results presented in Fig. 2.4a demonstrate the exact deconvolution

of the first 5 CIRs (The common source signal is also exactly recovered as in Fig.

36



Figure 2.4: (a) Comparison of the actual CIR and recovered CIR for 5 channels assuming
known arrival-times and unknown amplitudes for the 3 pulse-like arrivals of each CIR. The
average relative error across all M = 50 channels is 2×10−10. (b) Same as (a) but assuming
uncertain arrival-times (∆t = 1.5 ms) and unknown amplitudes. The average relative error
across all M = 50 channels is 3× 10−5.

2.3a, but not plotted in Fig. 2.4). The method proposed in this chapter yields

accurate performance if the CIR linear channel model is precise and the dimension

of the subspace representing the model is small. The multipath CIR model is only

one special example commonly applied in the ocean waveguide. Another typical

channel model in other applications is sparse channel, that is, each CIR has D non-

zero components at known sparse locations, but we do not know the corresponding

amplitudes at each location [43].

3. Channels with uncertain arrival-times and unknown amplitudes

The channel model introduced in Section 2.3.2 assuming uncertain arrival-times

and unknown amplitudes is examined hereafter. Parameters of the simulation are

similar to those used in the previous section except that the arrival-times of each

pulse-like arrival of each CIR can lay anywhere within the time interval ti ± ∆t

(i = 1 . . . D), assuming the same uncertainty window ∆t = 1.5 ms for all arrivals for
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the sake of simplicity. The uncertainty of the arrival-time increases the dimension of

the subspace that represents the CIR, and yields a small model error in representing

CIRs because of truncating insignificant singular values. The results in Fig. 2.4b

demonstrate that the method still accurately estimated the CIR.

2.4.2 Robustness analysis

1. The effect of additive measurement noise

The recovery performance in the presence of additive measurement noises is ex-

amined in this section. Gaussian measurement noise em(t) is added on each channel’s

convolution measurements y1(t), . . . , yM(t). In this simulation, the CIR model is the

same as in the previous section. The recovery error and measurement noise are plot-

ted in a log-log scale in Fig. 2.5. The measurement signal-to-noise ratio (SNR) is

defined as SNR = 20log10(‖ym‖2/‖em‖2), and the CIR recovery relative error is de-

fined as 20log10(‖hm‖2/‖hm − hmApprox
‖2). The result shows that our algorithm is

robust to additive noise: as the noise level increases, no catastrophic failure occurs,

and the recovery error grows linearly. Hence, the proposed deconvolution method

recovers the CIR and the source accurately, and the performance is robust to noise

when a linear model represented by Eq. (2.12) exists.

2. The effect of model errors

In the real environment, we usually encounter not only the measurement noise,

but also model errors that are caused by lack of accurate a priori information to

build an exact linear model for the CIR. The model error incurred in representing

the CIR by the subspace matrix can be defined as hm = Cmum + em. In the

simulation, the channel model error is generated under the assumption that we do

not have information about the later and weaker arrival pulses: in typical shallow

water environments, those later arrivals have significantly weaker amplitudes and

more randomly distributed arrival-times, when compared to the earlier arrivals, as
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Figure 2.5: Variations of the recovery error (in logarithmic scale) for the deconvolution
method (averaged over 100 independent realizations) vs. SNR of the recorded measure-
ments.

they correspond to ray paths cumulating more reflections from the absorbing ocean

bottom and the fluctuating ocean surface. For example, the true CIR shown in Fig.

2.6a consists of 5 pulses that arrive at time t1, t2, t3, t4, t5, but the a priori information

only provides the knowledge of the first 3 pulses that arrive at time t1, t2, t3. The linear

model that is generated by only incorporating stronger ray arrivals at time t1, t2, t3

would introduce model error in approximating the true CIR. The best approximation

for the CIR is also depicted in Fig. 2.6a. Channel model error is defined as the

normalized euclidean distance between the true CIR and CIR approximation using

the linear model, which is 20log10(‖hm‖2/‖em‖2). Figure. 2.6b illustrates the method

is also robust to this type of channel model error if the model error (averaged here

over 100 independent realizations) is within an upper bound of ≈ 10dB. It is worth

noting that the model error em can be generated and measured by other variables

as well. For example, the model error can be caused by a tilted array other than a

perfect vertical array, therefore, the accuracy of a priori information will depend on

a variable that measures the overall array tilt or individual receiver locations more
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Figure 2.6: (a) Example of channel model error caused by lack of accurate a priori infor-
mation on the arrival-time structure of the actual CIR (upper plot) containing 5 arrivals.
Lower plot shows the approximated CIR assuming only 3 arrivals are present. (b) Varia-
tions of the recovery error (in logarithmic scale) for the deconvolution method (averaged
over 100 independent realizations) vs. channel model error.

generally.

2.4.3 Numerical simulations in an ocean waveguide

In this section numerical simulations are conducted in a generic shallow water envi-

ronment to assess the performance of the blind deconvolution method for the case of

a surface source arbitrarily set at depth of 5 m, which represents a shipping source.

This source is assumed to broadcast Gaussian white noise filtered in the frequency

band 400 − 600 Hz as a simple model for shipping noise [44]. Figure 2.7a describes

the shallow water environment used for the simulations. All environmental parame-

ters including the sound speed profile (Fig. 2.7)b were selected to be representative

of the experimental scenario and the actual environment introduced in the next sec-

tion. Additionally, as implemented in the actual at-sea experiment, only a very

short bottom-mounted vertical linear array (VLA) with 16 elements and 1-m spac-
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Figure 2.7: (a) Computational shallow water waveguide. (b) Experimentally-measured
sound speed profile. (c) A priori information of the ray arrival-time structure of the CIRs
for M = 16 channels. For each ray arrival, the width of the black shaded area indicates the
duration of the corresponding uncertainty time-window 2∆t for the shallow source shown
in (a). (d) Comparison of the actual CIRs (blue solid line) obtained from normal-mode
simulations and the recovered CIRs (red dashed line) across all M = 16 channels using the
deconvolution method for the shallow source shown in (a). The average relative error across
all M = 16 channels is ≈ 10−1.

ing located from 128 m to 143 m deep were simulated here. The range between the

source and the VLA elements was arbitrarily set to 2 km and the corresponding CIR

waveforms were computed using the normal-mode formulation implemented with the

software KRAKEN (Fig. 2.7c, blue line) [45].

A priori information of the ray arrival-time structure of the CIRs was obtained

independently from a simple ray tracing simulation, using the standard BELLHOP

model, and used for the CIR parametrization discussed in Section 2.3 (Fig. 2.7b)

(note that no amplitude information for the various paths was used and that the

ray simulations do not account for any dispersive effects presented in the actual
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CIR waveforms computed from normal-mode simulations). A classic shallow-water

multipath structure can be observed where for instance the first wavefront corresponds

to the direct and first surface-bounced arriving nearly simultaneously for this very

shallow source. The uncertainty time window of each simulated ray arrival (of up

to ∆t = 7 ms) corresponds to variations of the sound-speed profile of ±3 m/s which

are representative of the expected variations of the environmental parameters at the

experimental site described in the next section. The ray arrival-time intervals are

then further combined if their corresponding uncertainty windows overlaps. The

resulting ray arrival-time uncertainty windows are then used to construct the CIR

subspace using the same method described in Section 2.3.2. Figure 2.7d shows that

a small relative error of more than −20dB is achieved with the CIRs estimated from

blind deconvolution (red dashed line) when compared to the original CIRs computed

from normal-mode simulations (blue solid line) even though the a priori information

we have about the CIRs is not very accurate in this shallow-ocean acoustic channel

application (i.e., resulting in fairly large uncertainty time window of up to ∆t = 7

ms.

Furthermore, Fig. 2.8 demonstrates that similar performance can be achieved

even when we reduce the number of recording channels to only 8 and 4 channels.

These simulation results indicate that the proposed deconvolution method can be

used with a very limited number of receivers, provided that fairly accurate a priori

information of the arrival-time structure of the CIR is available. This means that

our blind deconvolution method doesn’t require a dense array to perform well, which

is advantageous in comparison to some traditional deconvolution methods such as

ray-based deconvolution (RBD) method [11] which not only it needs a long aperture,

but the array should also be relatively dense with appropriate element spacing for

beamforming to work.
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Figure 2.8: Using only the simulated-received waveforms on (a) M = 8 channels or (b)
M = 4 channels for the blind deconvolution method. The relative error across all channels
for both cases is ≈ 10−1.

2.4.4 Deconvolution of experimentally measured shipping noise record-

ings

The blind deconvolution method is applied here to shipping noise recorded on a short

bottom-mounted vertical line array which was moored in a shallow and nearly range-

independent section of the Coronado Bank (water depth ≈ 150 m), approximately 20

km offshore of San Diego, CA. Based on prior studies, the environmental parameters

for the test site were estimated to be similar to those shown in Fig. 2.7a. The VLA

had 16 elements uniformly spaced by 1 m; with the first element approximately 7

m above the seafloor. Other technical features of the hydrophone array deployment

and the electronic system have been described previously [46, 47, 16]. The research

vessel (R/V) New Horizon was used as a surface source of opportunity to test the

blind deconvolution method using the recorded shipping noise data on the VLA. Since

no ground truth was available for the actual CIR between the R/V and the VLA,

estimated CIRs from the blind deconvolution were compared to the estimated CIRs
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independently obtained using a previously described RBD method.

To do so, M = 16 CIRs between the R/V and the VLA were first estimated

using RBD for an arbitrarily selected location of the R/V ≈ 600 m away from the

VLA, referred to hereafter as the “library” location. Based on visual inspection of

spectrograms of the recorded shipping noise [47, 16] from the R/V at this distance, its

dominant frequency band was found to be 300− 800 Hz and the 10− s long snapshot

of recorded data was filtered in this frequency band. These M = 16 estimated CIRs

with RBD (see Fig. 2.9a) were then used to infer a priori arrival-time structure

of the CIRs (in the vicinity of this selected library location) as input to the blind

deconvolution method. In order to estimate the arrival-time uncertainty for each ray-

path of the CIRs, we used historical sound-speed profiles measurements from CTD

casts collected in the area and representative of the ocean sound speed fluctuations (≈

3 m/s) occurring during the time period of the experiments. By running multiple ray

simulations using the software BellHop for a source-array separation distance of 2km,

through this collection of sound-speed profiles we obtained a maximum uncertainty

window of ∆t = 3 ms for all considered ray arrivals. An arrival-time window of ∆t = 3

ms was used here for each ray-like arrival.

The blind deconvolution method was then applied to another set of shipping

noise data (referred to as “event” data) recorded from the same R/V when it passed

again across the library location a day later to estimate the corresponding CIRs

(referred to as recovered CIRs) between the R/V and the VLA (see Fig. 2.9c). As

a validation, the CIRs were also estimated independently using the RBD method

for the same event data which closely compared to the recovered CIRs from the

blind deconvolution method (see Fig. 2.9b and Fig. 2.9c) with an average correlation

coefficient across the 16 channels of 0.85. It can also be noted that the CIRs estimated

from RBD using the library data (i.e., used only as a priori information for the blind

deconvolution method) and the event data (which matched the CIRs obtained from

44



the blind deconvolution method) did significantly differ -as expected- due to variations

of the environmental parameters across the selected two days at this shallow water

test site: the average correlation coefficient across the 16 channels was only 0.58.

Finally, Fig. 2.10 shows that the blind deconvolution method can also be implemented

successfully using only a smaller number of receiver elements (respectively 8 and 4

elements), provided that sufficiently accurate a priori information of the arrival-time

structure of the CIRs is available (e.g., using simulated data for the selected test

site). If such a priori information is available, this may be a significant advantage

of the blind deconvolution method over the RBD method which requires an array

with sufficiently long aperture to beamform individually the different ray arrivals

composing the CIR wavefronts [11].
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Figure 2.9: Experimental results using shipping noise. (a) Estimated CIRs using the library
data set from the RBD method when the R/V was ≈ 600 m from the VLA. (b) Same as (a)
but using a different data set (the “event” set) when the R/V was within the same location
on a different day. (c) Comparison of the estimated CIRs from either the RBD (red line) or
the blind deconvolution method (green line) using the same event data set. (d) Comparison
of the estimated CIRs with RBD using either the event data set (red line, same as shown
in (b)) or the library data set. (blue line, same as shown in (a))
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Figure 2.10: (a) and (b): Same as Fig. 2.9 (c) and (d) but using only M = 8 channels for
the blind deconvolution method. (c) and (d): Same as Fig. 2.9 (c) and (d) but using only
M = 4 channels for the blind deconvolution method.

2.5 An Extension to Blind Source Separation

Blind source separation (BSS) has wide applications in diverse areas such as audio

processing [48], finance [49], geophysics [50], and neural science [51]. In instantaneous

mixing scenarios, each measurement consists of a sum of differently weighted source

signals, and therefore, these types of systems are memoryless. However, in many real-

world applications, such as in acoustics, the measurements are convolutive mixtures

because the mixtures are both weighted and delayed. Each source contributes to the
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sum with multiple delays and weights corresponding to multiple paths.

Traditionally, in order to solve the BSS problem in specific areas, we need to ex-

ploit some statistical assumptions and priors about sources. A tremendous number

of BSS algorithms have been reported so far, and one of the most important is Inde-

pendent Component Analysis [52] (ICA), which exploits the higher-order statistical

independence of non-Gaussian signals. More recently, the incorporation of additional

source structural priors such as sparsity establishes many connections between BSS

and sparse representation, machine learning and compressive sensing [53]. Techniques

for separating the sums of structured signals fall into two categories: convex and

greedy methods. Convex methods pose BSS as an optimization problem while greedy

methods build up signals piece-wise in iterative procedures. Convex optimization

also provides a general framework for efficiently solving numerous structural source

separation problems that are not discussed in traditional BSS techniques.

We focus on the problem of separating convolutive acoustic mixtures. Many algo-

rithms have been reported for BSS in both time and frequency domains [54]. Using

time domain methods for convolutive mixtures, we attempt to estimate an compli-

cated unmixing system, which often generates a large problem with many parameters,

so it is very computational costly. However, frequency domain methods transform

convolutive mixture into instantaneous mixture problems for each frequency band,

so they gain computational efficiency and faster convergence while creating complex-

valued computation [55]. But the performance of the frequency methods are funda-

mentally limited because too few samples may be used in each frequency band, which

will cause the independence assumption to fail. Moreover, in each frequency band, a

permutation and a scaling ambiguity need to be addressed [56]. Thus, a number of

researchers have also developed methods that combine the time-domain criteria with

frequency-domain implementations [57, 58] and methods using filter bank [59].

Even though many convolutive algorithms have shown reliable performance when
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the mixing process is stationary, few methods work in real-world, time-varying en-

vironments. We examine this BSS problem using a different approach via low-rank

recovery to treat the convolutive mixtures and develop a general framework for solving

blind-source separation and deconvolution. The novelty of our proposed method is

that we separate convolutive mixtures through two independent steps. This two-step

BSS framework for convoluted mixtures first turns a “memory” mixing system into

a “memoryless” system in step one, and then carries out an appropriate demixing

techniques in step two.

H
s1(t)

s2(t)

sR(t)

y1(t) = s1(t) ⇤ h11 + s2(t) ⇤ h12 + · · · + sR(t) ⇤ h1R

y2(t) = s1(t) ⇤ h21 + s2(t) ⇤ h22 + · · · + sR(t) ⇤ h2R

yM (t) = s1(t) ⇤ hM1 + s2(t) ⇤ hM2 + · · · + sR(t) ⇤ hMR

...

... ...

...

Figure 2.11: Multiple inputs multiple outputs (MIMO) system of equations.

In the single source case, we solved the problem by recovering a rank-1 matrix

and estimated both the source CIRs simultaneously. The multiple-input and multiple-

output (MIMO) system equations are illustrated in Fig. 2.11. We use the same prob-

lem formulation for each source across channels, and measurements can be written

as:

y = A(X1) +A(X2) + · · ·+A(XR) = A(X).

where A is the same linear operation as the single source case, which takes sums over

skew diagonals of submatrices of Xr. The matrix Xr is the same lifting form of

source vector sr and concatenated channel vectors h(r). Here the rank of each matrix

Xr is 1 and the rank of their sum X = X1 + · · · + XR is smaller than R, so our

deconvolution method via the low-rank matrix recovery formulation still holds. We
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are still searching for a feasible solution X has rank no greater than R.

min
X

rank(X) subject to A(X) = y.

The same low-rank recovery techniques can be applied and the system can be

deconvolved using our heuristic solver. However, in the MIMO case, the multiple

sources cannot directly be separated from the deconvolution process and the decon-

volution is just the first step of our BSS technique. After the first step, we generate

linear combinations of the R sources. Therefore, for step two, we implement linear

mixing source separation techniques that are efficient for the nature of our sources.

In our implementation, we use the classical Independent Component Analysis (ICA)

to perform the demix in the second step.

We simulated a scenario that four speech signals that have traveled through multi-

path channels and were observed by 30 channels. This scenario can well approximate

the situation that receivers on a VLA measure four ship sources in a known region

indicated in Fig. 2.12. We used simulated multipath CIRs for each source, which are

plotted in Fig. 2.13.

K receivers
.
.
.

Figure 2.12: Multiple Inputs Multiple Outputs blind source separation problem scenario
in underwater acoustic channels. Four ships signal are measured by the receivers on a VLA.
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Figure 2.13: CIRs for four ships. From the measurements of M = 30 channel outputs, we
want to estimate the four source signal up to ordering ambiguities.

Only from convolution measurements and a priori information of CIRs, we are

able to estimate the original four speech signals (the order of which is different). The

source separation results are shown in Fig. 2.14.
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Figure 2.14: Four input source signals and the separation results from convolutive mea-
surements. The separation results are accurate other than the ordering ambiguity.

2.6 Conclusion

This chapter introduced a method for solving the deconvolution problem using acous-

tic sources of opportunity and a priori information about the CIR via the low-rank

recovery problem formulation. For the shallow-water acoustic channel application,

we developed a systematic way to build an efficient and accurate linear model incor-

porating a priori information about the expected CIRs’ arrival-time structure so that

the low-rank recovery method can be implemented for the proposed blind deconvolu-

tion method. Stylized numerical simulations demonstrated that the proposed method

perfectly deconvolved both the noise source signal and CIRs simultaneously. The pro-

posed method was also shown to be robust in the presence of additive measurement

noises and model errors in the CIR parameterization. Furthermore the applicability of

the proposed blind deconvolution method for estimated CIRs in shallow water using

shipping noise and short bottom-mounted VLAs was demonstrated both numerically

and experimentally. This method is likely to be applicable to other environments

supporting waveguide-like propagation (e.g., seismic or structural waveguides). The
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proposed blind deconvolution method then naturally extends to the multiple input

multiple output (MIMO) deconvolution problem (i.e., the case of multiple sources of

opportunities) and we showed successfully blind source separation results.
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CHAPTER 3

MULTICHANNEL DECONVOLUTION USING BILINEAR CHANNEL

MODELS

3.1 Introduction

In ocean waveguide environments, the typical ray-like arrival-time structure of the

CIR between a surface source and the element of a vertical line array (VLA) provides

us a priori information about the CIRs, which turns the multichannel blind decon-

volution problem feasible (see Fig. 1.1). In many situations, a known, active source

signal is not available for use because of environmental or physical constrains (e.g.,

nature reserve habitat), while sources of opportunity present themselves. Therefore,

using sources of opportunity in acoustic imaging applications is increasingly active.

This chapter presents further investigation that exploit the structure of CIRs jointly

and algorithms for solving multichannel blind deconvolution with a more confined

model.

In the application of acoustic imaging using elements of a VLA, the blind de-

convolution problem under the multiple-channel framework provides diversification

of observations, and various studies have addressed this multichannel blind decon-

volution problem. In Chapter 2, we have previously developed a fast multichannel

myopic deconvolution method via low-rank recovery technique [60]. The deconvo-

lution method via low-rank recovery does not take account of the linking among

arrival-times of the CIRs across all channels, which is a further constraint of the

channel model as a result of the VLA sensing configuration. This chapter utilizes

the linking among arrival-times of the CIRs across all channels by introducing a bi-
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linear channel model for CIRs, which further reduces the dimension of the channel

parametric model compared to the linear model. We will demonstrate later in this

chapter that using the bilinear channel model, the deconvolution method is more ro-

bust to measurement noise and can estimate the CIRs more accurately because the

additional constraint imposed on the channel model. We also can incorporate larger

uncertainty arrival-times into our model than the linear model we introduced in the

previous chapter.

We show that this problem is well-posed if the channels follow a bilinear model

where the ensemble of CIRs is modeled as lying in a low-dimensional subspace but

with each channel modulated by an independent gain. Under this model, we show

how the CIRs estimates can be found by minimizing a quadratic function over a

non-convex set.

Algorithms for solving non-convex quadratic and bilinear problems have recently

been introduced for solving problems closely related to blind deconvolution. A non-

convex optimization over matrix manifolds provides a guaranteed solution for matrix

completion [61]. Alternating minimization is another non-convex optimization algo-

rithm for matrix completion that provides a provable performance guarantee [62, 63,

64]. Phase retrieval is cast as a non-convex optimization because of the nonlinearity

in generating the observation. Wirtinger flow algorithms [65, 66, 67, 68] and alter-

nating minimization [69, 70] are non-convex optimization algorithms for the phase

retrieval problem.

While algorithms based on heuristics for particular applications have existed for

decades, it is not until recently that a rich mathematical theory has developed around

this problem. The fundamental identifiability of solutions to this problem has been

studied from an information theoretic perspective [71, 72, 73, 74, 75, 76, 77]. Practical

algorithms with provable performance guarantees that make the problem well-posed

by imposing structural constraints on the signals have arisen based on ideas from
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compressive sensing and low-rank matrix recovery. These include methods based on

convex programming [26, 78, 79], alternating minimization [80], and gradient descent

[81].

We propose two methods for solving this non-convex program, and provide per-

formance guarantees for each under a generic bilinear channel model. The first is

a method of alternating eigenvectors that breaks the program down into a series of

eigenvalue problems. The second is a truncated power iteration, which can roughly

be interpreted as a method for finding the largest eigenvector of a symmetric matrix

with the additional constraint that it adheres to our bilinear model. As with most

non-convex optimization algorithms, the performance of both of these algorithms is

highly dependent on having a good starting point. We show how such a starting point

can be constructed from the channel measurements.

We also implement the truncated power iteration method on underwater acoustic

channels and show effectiveness in simulations based on Santa Barbara Channel at-sea

experiments data. Our method is also verified by the Noise09 data that we discussed

in the previous chapter. Our method is shown robust to both the measurement noise

and specific modeling errors.

The remainder of this chapter is organized as follows. Section 3.2 presents the

establishment of the bilinear channel model motivated by the VLA sensing scenario.

Section 3.3 formulate of the blind deconvolution problem using cross convolution

method under the bilinear channel representation. Section 3.4 presents two iterative

algorithms for multichannel blind deconvolution under the bilinear channel model,

which are obtained by modifying the classical cross-convolution method. Our main

results on non-asymptotic stable recovery are presented in Section 3.5. Section 3.6

then presents numerical simulation results on realistic acoustic channels and sim-

ulations that support the theories developed in this chapter. Finally, Section 3.7

summarizes the findings of this chapter.

56



3.2 Bilinear Channel Models

In an ocean acoustic array sensing scenario, receivers of the vertical line array with

equal distance spacing listen to the same source near the ocean surface in a dis-

tance. The array receives sound that propagates in separate paths, which have been

well modeled using the image method [34]. Distances through which sound travels

along the same path to each receiver, such as the direct path, are dependent on the

source-receiver configuration. Meanwhile, sound traveling along the same path will

experience almost the same media (speed of sound and loss) and environmental pa-

rameters. Any environmental change or disturbance of the media will result in the

same fluctuation of arrival-times of sound pulses across channels. Therefore, arrival-

times of the same path for each receiver are linked, and their relation is determined

by the source-receiver configuration and environmental parameters. In this section,

we develop a bilinear channel model that is motivated by exploring the relation of

arrival-times across channels.

A typical example of CIRs with only the direct path for all receivers along a VLA

is demonstrated as in Fig. 3.1d. The CIRs can be written as a function in terms of

pulse arrival-times and pulse amplitudes as parameters:

hm(t) = am · p(t− tm), (3.1)

where tm (illustrated in Fig. 3.1c) and am (illustrated in Fig. 3.1b) are the arrival-time

and amplitude of the direct path pulse for channel m respectively, and the function

p(t) (illustrated in Fig. 3.1a) is the pulse profile which corresponds to the filter choice

of the receivers. Assuming that the arrival-times across channels can be linked by a

function tm = f(m), where m is the channel number and the function f explains the

relation of the arrival-times across channels, we want to build a parametric model for

the CIRs using this relation. When the distance between the source and receivers
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Figure 3.1: (a) A known pulse profile p(t). (b) Amplitudes for each CIRs. (c) Arrival-times
for pulses across channels. (d) Pulses across channels for a single path case.
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are far compared to the length of the array, we can assume that arrival-time of each

receiver falls along a line in terms of the depth of each receiver. When receivers are

equally vertically spaced, the depths of receivers can be indicated by the channel

number m. The linear relation of arrival-times and receiver depths can be illustrated

by

tm = t1 + (m− 1)k, (3.2)

where t1 is the arrival-time for the first channel, and k is the slope of the line. The

slope k will depend on fixed parameters such as VLA geometry, environmental pa-

rameters such as source and receiver range, local sound speed and so on. In our

example of arrival-times shown in Fig. 3.1c, the linear relation for all arrival-times is

plotted.

Incorporating the pulse arrival-times structure into a parametric channel model

and matching a low-dimensional subspace for CIRs which consists of such pulses for

the same path require us to model channels jointly. However, each CIR still has an

independent amplitude modulating the pulse, so we need to separate the amplitude

variables from the arrival-time variables in the model. The model now is a bilinear

model, where one variable vector defines the amplitudes and one variable vector

defines the linked arrival-times of all pulse on the same path. This bilinear model

differs from the linear channel model studied in previous research [60], and further

reduces the dimension of the subspace for all CIRs and constrains the model compared

to the linear model. However, new deconvolution algorithms are needed to recover

the CIRs under this channel model, which will be addressed later in this chapter.

The Principal Component Analysis technique is applied to solve the subspace

matching problem for pulses whose arrival-times are linked by a known relation. We

discretize the CIR hm(t) to a vector hm ∈ RN and the pulse pm(t) to pm ∈ RN (note

that each CIR hm has an independent amplitude am of the pulse pm). Because we

are treating the channels jointly, the signal to which we want to match a subspace is
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the concatenated pulse basis vector

p = [p>1 , . . . ,p
>
M ]>, where p ∈ RMK . (3.3)

Suppose we obtain a collection of pi in a set R because the source range is varying

and the environment of the source-receiver configuration is changing over time. As

we vary pi over the set R, the responses pi trace out a portion of a manifold in CMK .

We can (approximately) embed this manifold in a linear subspace of dimension D by

looking at the D principal eigenvectors of the matrix

HR =
∑

i

pipi
∗
.

The dimension D that provides an accurate embedding will depend on the size of R

and smoothness properties of the varying process in pi.

This technique of embedding a parametric model into a linear space has been

explored for source localization and channel estimation in underwater acoustics in

[82, 60], and some analysis in the context of compressed sensing is provided in [82].

However, in order to treat CIRs jointly, the amplitudes of the CIRs vary between

receivers in the array, and this variation compromises the subspace embedding de-

scribed above. The bilinear model discussed in this chapter explicitly accounts for

these channel-to-channel variations.

Let’s then discuss in details how this bilinear model can be generated in the

application of ocean acoustic array sensing. Fixing the source-receiver configuration

provides the arrival-time relationship function tm = f(m) in a stable environment.

Meantime, the function f varies because of environmental variations or the source

is moving. Each possible environment variation or a different location of the source

(indexed by i) leads to a different function tim = f i(m). From historical data of the

environment, the environmental variation range can be estimated, and the range of
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source is known, so we are able to generate or observe a collection of ti = [t1, . . . , tM ]i

within the range limits.

As an example, when the distance between the source and receivers are far com-

pared to the length of the array and the arrival-times for the same path fall along a

line, the range of the environmental variation can be indicated by one arrival time ti

and slope k. The range of all possible arrival-times which satisfy the linear relation

in a certain environment can be plot as in Fig. 3.2, where the black region indicates

the collection of all possible arrival-times.
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Figure 3.2: Arrival-times range across channels. Black shaded region indicates all possible
arrival-times.

Then, from each possible ti, a collection of pi are generated. Even though the

number of pi are large, they lie on a manifold which can be approximated by a linear

subspace using PCA, which is closely related to the area of manifold embeddings. We

denote the basis matrix of the subspace to be Φ ∈ RMK×D, which is constructed by
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PCA, and for a certain p, we can write it as

p = Φu, (3.4)

where u ∈ RD is the coefficient vector which fully describes the corresponding real-

ization of arrival-times t.

In particular, we can estimate the parameter t1 and k up to a range in the linear

relation of all arrival-times as in Eq. (3.2). Within the range, we alter the value of t1

and k in fine increments to generate a collection of pi which overpopulate all possible

pulses in this scenario. Stacking all pi as column vectors generate an over-complete

matrix which spans the subspace. We can visualize such collection of CIRs as in Fig.

3.3a

(a)
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Figure 3.3: Illustration of the collection of CIRs and the eigenvalues of the space spanned
by all CIRs. (a) Examples of pi rearranged as M-by-N matrices. (b) Sorted eigenvalues of
HR in a logarithmic scale.

Because each realization of pi is highly correlated, performing a PCA on the

over-complete matrix generates a low-dimensional linear subspace bases matrix Φ.

A rapid decaying of the eigenvalues in a typical PCA operation on the collection of

{pi} is shown in Fig. 3.3b. Here Φ corresponds to the definition in Eq. (3.4) and
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can represent all possible pulses whose arrival-times are on the ’lines’ in Fig. 3.2.

Vectors of the subspace basis are interpreted as in Fig. 3.4 (the first 6 basis vectors

are plotted).
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Figure 3.4: First 6 basis of a linear subspace that are generated from a parametric embed-
ding of all pulses across channels.

Let h ∈ RMK denote the concatenation of the CIR coefficients for all channels,

i.e.,

h = [h>1 , . . . ,h
>
M ]>.

With a linear subspace for the pulse vectors p in place, h can be then modeled by

a bilinear channel model. The bilinear channel model approximate all CIR vectors

63



jointly with two independent vectors as variables, which correspond to amplitudes

and the structure of arrival-times (i.e. we can interpret it as a vector to define the

slope of arrival-times when they are linearly linked). We can explicitly write out the

the bilinear channel model for each CIR as




h1

h2

...

hM




=




a1Φ1

a2Φ2

...

aMΦM



u, (3.5)

where (Φm)Mm=1 ∈ RK×D are the mth row-blocks of the subspace matrix Φ defined

in Eq. (3.4), u ∈ RD is the coefficient vector that determines the structure arrival-

times on one particular path across all channels, and each element of the vector

a = [a1, . . . , aM ]> ∈ RM with am > 0 is the amplitude of channel m.

Equation (3.5) can then be equivalently rewritten as a more concise form using

Kronecker product as below

h = Φ(a⊗ u), (3.6)

where

Φ :=




0

...

0

Φ1

0

...

Φ2

0

. . .

. . .

. . .

. . .

ΦM

...

0

0




and a⊗ u =




a1u

a2u

...

aMu



.

Note here that we change the definition of Φ, which is different from Eq. (3.4). From

here to the end of the chaper, we use the definition of Φ as in Eq. (3.6).

The formulation above only represents a single path case. For more general multi-

path channels (number of paths is N), the bilinear channel model still holds, and the
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concatenation of CIR vectors h can be written as

h = Φ̃[(a1⊗u1)>, . . . , (aN ⊗uN)>]>, (3.7)

where

Φ̃ :=




Φ11 0 . . . 0 . . . . . . ΦN1 0 . . . 0

0 Φ12 . . . 0 . . . . . . 0 Φ22 . . . 0

...
...

. . .
...

. . .
...

...
. . .

...

0 0 . . . Φ1M . . . . . . 0 0 . . . ΦNM



. (3.8)

A general bilinear channel model that exploits the pulse arrival-times relation

across channels are introduced based on the application of underwater acoustic chan-

nels. This bilinear channel model can also be found in many multiple-channel systems

where a linear subspace embedding exists to approximate certain structure of CIRs

(i.e. parametric estimation) jointly while another parameter of the CIR has to be

modified independently (i.e. gains of each channel) for each channel. We will then in-

vestigate the formulation and algorithms for solving multichannel blind deconvolution

problem when such bilinear channel models can be applied.

3.3 Spectral Methods for Multichannel Deconvolution

In this section, we revisit a classical method of treating the multichannel blind decon-

volution problem and adapt this method with bilinear channel models. The classical

method recast the problem as an eigenvalue problem: we create a correlation matrix

using the measured data {ym}, and estimate the channels from the eigenvector corre-

sponding to the smallest eigenvalue (the smallest eigenvector) of this matrix. These

methods were pioneered in the mid-1990s in [1, 3, 35], and we briefly review the es-

sential ideas in this section. The methods we present in the next section operate on
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the same basic principles, but explicitly enforce structural constraints on the solution

based on the bilinear channel model.

The cross-convolution method for multichannel blind deconvolution [1] follows

directly from the commutivity of the convolution operator. Given the noisy measure-

ments

ym = hm ~ x+wm, m = 1, . . . ,M, (3.9)

If there is no noise in the observations, then we can have the following equation

ym1
~ hm2 − ym2

~ hm1 = 0, for all m1,m2 = 1, . . . ,M.

Using T ym as the matrix whose action is convolution with ym with a signal of length

K, we see that the channel responses hm1 and hm2 must obey the linear constraints

T ym1
hm2 − T ym2

hm1 = 0. We can collect all pairs of these linear constraints into

a large system, and the vector h ∈ RMK defined in (3.2), which corresponds to the

concatenation of all CIRs vectors, is determined by

Y h = 0M(M−1)L/2×1, (3.10)

where Y ∈ RM(M−1)L/2×MK is defined by

Y =




Y (1)

Y (2)

...

Y (M−1)



, Y (i) =




0L,K . . . 0L,K
...

...

0L,K . . . 0L,K
︸ ︷︷ ︸

(i− 1) blocks

Tyi+1
−Tyi

...
. . .

TyM −Tyi︸ ︷︷ ︸
(M − i+ 1) blocks



. (3.11)

We can further write out explicitly what matrix Y looks like:
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Y =




Ty2 − Ty1 0 0 · · · 0 0

Ty3 0 − Ty1 0 · · · 0 0

Ty4 0 0 − Ty1 · · · 0 0

...
...

...
...

. . .
...

...

TyM 0 0 0 · · · 0 −Ty1
0 Ty3 − Ty2 0 · · · 0 0

0 Ty4 0 − Ty2 · · · 0 0

...
...

...
...

. . .
...

...

0 TyM 0 0 · · · 0 −Ty2
...

...
...

...
. . .

...
...

0 0 0 0 · · · TyM −TyM−1




.

In other words, h is determined as the null vector of Y . It was shown that h

is uniquely determined up to scaling ambiguity by (3.10) (i.e. Y has a null space

that is exactly 1 dimensional) under a mild algebraic condition that the polynomials

generated by {hm}Mm=1 have no common zero. Furthermore, under a certain statistical

noise model, this estimate is also consistent because the problem reduces to the noise-

free case as the measurement length L goes to infinity. In the presence of noise, h is

estimated as the minimum eigenvector of Y ∗Y

ĥ = arg min
‖g‖2=1

g∗Y ∗Y g. (3.12)

Note that Y ∗Y is computed cross-correlating the outputs. Therefore, Y ∗Y is com-

puted at a low computational cost using the fast Fourier transform. Furthermore, the

size of Y ∗Y , which is MK ×MK, does not grow with as the length of observation

increases. When there is white additive noise, this cross-correlation matrix will in

expectation be the noise-free version plus a scaled identity. These means that as the

sample size gets large, the noisy and noise-free measurements cross-correlations will
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have the same eigenvectors, and the estimate (3.12) is consistent.

A similar technique can be used if we have a linear model for the channel responses

as we discussed in Eq. (2.13) of chapter 2. We can estimate the expansion coefficients

v by solving

minimize
v

v∗C∗ (Y ∗Y − %I)Cv subject to ‖v‖2 = 1, (3.13)

where % is a scalar that depends on the variance of the additive noise (this correction

is made so that eigenstructure more closely matches that of C∗Y ∗Y C for noise-

free Y ). The classical method in Eq.(3.12) is sensitive to noise when working with

finite number of measurements samples. In [83], it was shown that a linear model

can significantly improve the stability of the estimate of h in the presence of noise,

and a rigorous non-asymptotic analysis of the estimation error for generic bases C is

presented.

When the CIRs have a bilinear channel model, we formulate our optimization

problem to solve the multichannel deconvolution by adding an additional constraint

to optimization program which is similar to (3.12) and (3.13) above. The additional

constraint require h can be represented by a bilinear model as in (3.6).

We create the matrix

A = Φ∗(Y ∗Y − σ̂2
w(M − 1)LIMK)Φ,

where σ̂2
w is an estimate of the noise variance σ2

w, and Y is formed as in (3.11) in the

previous section. We then solve a program that is similar to the eigenvalue problems

above, but with a Kronecker product constraint on the expansion coefficients:

minimize
v,a,u

v∗Av subject to ‖v‖2 = 1, v = a⊗ u. (3.14)
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For multipath channels, CIRs are the sum of multiple path pulses with a certain

arrival-time structure. We use Ã to denote the multipath case, which can be written

as

Ã = Φ̃
∗
(Y ∗Y − σ̂2

w(M − 1)LIMK)Φ̃,

where Φ̃ is define in Eq. (3.8). So the optimization problem can be rewritten as

minimize
ṽ

ṽ∗Ãṽ subject to ‖v‖2 = 1, v = [(a1⊗u1)>, . . . , (aN ⊗uN)>]>.

(3.15)

A more straightforward statement of the optimization problem for multipath chan-

nels can be written as

min
u,a

‖Y Φ̃[(a1⊗u1)>, . . . , (aN ⊗uN)>]>‖2
2

s.t. ‖Φ̃[(a1⊗u1)>, . . . , (aN ⊗uN)>]>‖2 = 1

am ≥ 0, ∀m = 1, . . . ,M,

(3.16)

which is equivalent to the problem defined in Eq. (3.15).

3.4 Non-convex Optimization Algorithms

The norm and bilinear constraints on our formulations (as in Eq. (3.14) and Eq.

(3.16)) of both single path and multipath (linear sum of multiple bilinear model)

make this a non-convex optimization program, and unlike the spectral methods for

linear channel models, no (known) computationally efficient algorithm to compute

its solution is available to our knowledge. The problem can no longer be solved by

finding the least dominant eigenvector of a given matrix. Note that v has a rank-1

structure by construction and this structure induces a logical alternating minimization

approach.

We propose and analyze two non-convex optimization algorithms for solving (3.14).
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The first is an alternating eigenvalue method, which iterates between minimizing for

a in (3.14) with u fixed, then u with a fixed. The second is a variation on the trun-

cated power method [84], whose iterations consist of applications of the matrix A

(just like the standard power method) followed by a projection to enforce the struc-

tural constraints: low-rank structure as in (3.14) or block-wise low-rank structure in

the multipath case as in (3.16).

3.4.1 An alternating eigenvectors method

While the problem in (3.14) is non-convex, it becomes tractable if either of the terms

in the tensor constraint are held constant. If we have an estimate û for u, and fix

u = û, then we can solve for the optimal a with

minimize
a

a∗Aûa subject to ‖a‖2 = 1,

where

Aû = (IM ⊗ û)∗A(IM ⊗ û), IM ⊗ û =




0

...

0

û

0

...

û

0

. . .

. . .

. . .

. . .

û

...

0

0




.

The solution is the eigenvector corresponding to the smallest eigenvalue of Aû. Sim-

ilarly, with an estimate â = [â1, . . . , âM ]> fixed in for a for the next step, we solve

minimize
u

u∗Aâu subject to ‖u‖2 = 1,
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where

Aâ = (â⊗ ID)∗A(â⊗ ID), â⊗ ID =




â1I

â2I

...

âMI



,

which again can be solved by founding the smallest eigenvector of Aâ.

We summarize this method of “alternating eigenvectors” in Algorithm 1. The

function MinEigVector returns the eigenvector of the input matrix corresponding to

its smallest eigenvalue.

Algorithm 1: Alternating Eigenvectors

input : A, u0

output: ĥ
1 û ← u0;
2 while stop condition not satisfied do
3 â ← MinEigVector((IM ⊗ û∗)A(IM ⊗ û));
4 û ← MinEigVector((â∗ ⊗ ID)A(â⊗ ID));

5 end

6 ĥ ← Φ(â⊗ û);

3.4.2 A truncated power method

A standard tool from numerical linear algebra to compute the largest eigenvector

of a symmetric matrix is the power method, where the matrix is iteratively applied

to a starting vector, with renormalization at each step. The same method can be

used to compute the smallest eigenvector simply by subtracting the matrix from an

appropriate scalar multiple of the identity. In [84], a variation on this algorithm was

introduced to force the iterates to be sparse. This was done by hard thresholding

after each application of the matrix.

Our rank-1 truncated power method follows the same template. We create a

matrix B by subtracting A above from a multiple of the identity. For multipath
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bilinear channel models, our method is a slightly different block-wise rank-1 truncated

power method, which we denote by Ã and B̃.

B = γIMD −A,

We then iteratively apply B starting with an initial vector u0. After each application

of B, we project the result onto the set of rank-1 matrices by computing the singular

vector corresponding to the largest singular value, and then renormalize.

The “iterative truncated power method” is summarized in Algorithm 2, to find

an approximate solution to (3.16).

Algorithm 2: Iterative Truncated Power Method

input : Y ∗Y , Φ̃, û1,. . . , ûN , â1, . . . , âN
output: ĥ

1 X0 ← [(â1⊗ û1)>, . . . , (âN ⊗ ûN)>]>;

2 Ã ← Φ̃>(Y >Y )Φ̃;

3 γ ← ‖Ã‖∗;
4 while stop condition not satisfied do

5 X ← γX0 − ÃX0;
6 û1,. . . , ûN , â1, . . . , âN ← BlockRank1Approx(X);
7 X0 ← [(â1⊗ û1)>, . . . , (âN ⊗ ûN)>]>;

8 X0 ← X0

‖X0‖2 ;

9 end

10 ĥ ← Φ̃[(a1⊗u1)>, . . . , (aN ⊗uN)>]>;

In this algorithm, the nonnegative constraint on the elements of a is not explicitly

enforced. Some care must be taken in choosing the value of γ. We want to ensure

that the smallest eigenvalue of A gets mapped to the largest (in magnitude) eigen-

value of B, but we also want the relative gap between the largest and second largest

eigenvalues of B to be as large as possible. In our algorithm, we use γ = ‖Ã‖∗; in

our analysis below, we use a conservative value of γ = E[‖A‖].
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3.4.3 Spectral initialization.

Both the alternating eigenvectors method and the rank-1 truncated power method

require an initial estimate of the channel gains a and the basis coefficients u. Because

the program they are trying to solve is non-convex, this starting point is important.

The performance of the method relies critically on constructing a feasible starting

point. Designing a good initialization scheme is critical so that the alternating mini-

mization won’t get stuck in local minimum.

Our spectral initialization is inspired from the lifting reformulation (e.g., see [26]

for the lifting in blind deconvolution). The measurements equations ym = hm ~ x+

wm, can be recast as a linear operator acting on a L × D ×M tensor formed from

the Kronecker products of the unknowns x,u,a. Let A : CLDM → CML be a linear

map such that1

A(x⊗ u⊗ a) =




x~ a1S
∗Φ1u

...

x~ aMS
∗ΦMu



, where S :=

[
IK 0K,L−K

]
. (3.17)

Concatenating the {ym} and {wm} into single vectors of length ML, we can rewrite

measurements equations as

y = A(X ) +w,

where X = x⊗ u⊗ a.

A natural initialization scheme is to apply the adjoint of A to y, then project

the result onto the feasible set of vectors that can be arranged as rank-1 tensors

(this technique is often used to initialize non-convex programs for recovering rank-1

matrices from linear measurements [85, 86]). However, there is no known algorithm

1We have defined how A operates on length LDM vectors that can be arranged as rank-1 tensors.
Its action on a general vector in CLDM can be derived by applying the expression in (3.17) to a
series of LDM vectors that form a separable basis for tensors in CL × CD × CM .
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for computing the projection onto the set of rank-1 tensors that has strong optimality

guarantees.

We avoid this by exploiting the structure on the factor a = [a1, . . . , aM ]> that

enforces am ≥ 0 for all m = 1, . . . ,M . The action of the operator (ILD ⊗ 11,M) has

the effect of summing down the third mode of the tensor; in particular

(ILD ⊗ 11,M)(x⊗ u⊗ a) =
( M∑

m=1

am

)
(x⊗ u).

When the factor
∑M

m=1 am has a sufficiently large magnitude, we can get an estimate

of x ⊗ u by applying this operator to A∗y. This is the case if the channel gains

are positive. However, without the positivity constraint on a, the factor can be

arbitrary small in magnitude, which may turn the initialization vulnerable to noise.

The positivity constraint on a can be weakened if estimates of the phases of a1, . . . , aM

are available as prior information. In this scenario, the known phase information is

absorbed into the basis Φ and one can focus on estimating only the gains.

The first step of our initialization, then, is to compute

Γ = mat ((ILD ⊗ 11,M)A∗y) , (3.18)

where the operator mat(·) takes a vector in CLD and produces a D × L matrix by

column-major ordering.

Once corrected for noise, the leading eigenvector of ΓΓ∗ gives us a rough estimate

of the channel coefficients u. In Appendix B, we show that the random matrix

ΓΓ∗ − σ2
wL
∑M

m=1 Φ∗mΦm concentrates around a scalar multiple of uu∗.

Finally, we note that there is a closed-form expression for computing Γ from

the measurements {ym}. This is given in the following lemma that is proved in

Appendix C.3.
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Lemma 3.4.1. The matrix Γ in (3.18) can be written as

Γ =
M∑

m=1

Φ∗mSCymJ, (3.19)

where Cym ∈ CL×L is the matrix whose action is the circular convolution with ym ∈

CL, J is the “flip operator” modulo L:

J :=

[
e1 eL eL−1 · · · e2

]
, (3.20)

and e1, . . . , eL are the standard basis vectors for RL.

We summarize our spectral initialization technique in Algorithm 3.

Algorithm 3: Spectral Initialization

input : {ym}Mm=1, {Φm}Mm=1, L, and an estimate of noise variance σ̂2
w

output: u0

1 Γ←∑M
m=1 Φ∗mSCymJ;

2 u0 ← MaxEigVector(ΓΓ∗ − σ̂2
wL
∑M

m=1 Φ∗mΦm);

3.5 Main Results

Our main results give non-asymptotic performance guarantees for both Algorithm 1

and Algorithm 2 when their iterations start from the initial estimate by Algorithm 3

under the following two assumptions:

(A1) Generic subspaces. The random matrices Φ1, . . . ,ΦM are independent copies

of a K-by-D complex Gaussian matrix whose entries are independent and iden-

tically distributed (iid) as CN (0, 1). Our theorems below hold with high prob-

ability with respect to (Φm)Mm=1.

(A2) Random noise. The perturbations to the measurements w1, . . . ,wM ∈ CL

are independent subgaussian vectors with E[wm] = 0 and E[wmw
∗
m] = σ2

wIL,
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and are independent of the bases (Φm)Mm=1.

We present main theorems in two different scenarios. In the first scenario, we

assume that the input source is a white subgaussian random process. In the sec-

ond scenario, we assume that the input source satisfies an incoherence condition that

essentially ensures that it is not too concentrated in the frequency domain (a char-

acteristic that a random source has with high probability). The error bound for

the deterministic model is more general but is also slightly weaker than the random

model.

The theorems provide sufficient conditions on the observation length L implying

that the estimation error will fall below a certain threshold. The number of samples

in these sufficient conditions will depend on the length of the CIR K, their intrinsic

dimensions D, the number of channels M , and the signal-to-noise-ratio (SNR) defined

as

η :=
Eφ[
∑M

m=1 ‖hm ~ x‖2
2]

Ew[
∑M

m=1 ‖wm‖2
2]

. (3.21)

Under (A1) and (A2), it follows from the commutativity of convolution and expecta-

tion of structured random matrices derived in [83] that η simplifies to

η =
K‖x‖2

2‖u‖2
2

MLσ2
w

. (3.22)

In addition, the bounds will depend on the spread of the channel gains. We measure

this disparity using the two flatness parameters

µ := max
1≤m≤M

√
Mam
‖a‖2

(3.23)

and

ν := min
1≤m≤M

√
Mam
‖a‖2

. (3.24)

Our results are most interesting when there are not too many weak channels, meaning
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µ = O(1) and ν = Ω(1). To simplify the theorem statements below, we will assume

these conditions on µ and ν.

We now present our first main result. Theorem 3.5.1 below assumes a random

common source signal x. We present guarantees for Algorithms 1 and 2 simultane-

ously, with ht = Φvt as the channel estimate after iteration t (for the alternating

eigenvectors method, take vt = ât ⊗ ût).

Theorem 3.5.1 (Random Source). We observe noisy channel outputs {ym} as in

(3.9), with SNR η as in (3.21), and form a sequence of estimates (ht)t∈N of the

channel responses by either Algorithm 1 or Algorithm 2 from the initial estimate by

Algorithm 3. Suppose assumptions (A1) and (A2) above hold. Let x be a sequence

of zero-mean iid subgaussian random variables with variance σ2
x, η ≥ 1, µ = O(1),

and L ≥ 3K.2 Then for any β ∈ N, there exist absolute constants C > 0, α ∈ N and

constants C1(β), C2(β) such that if there are a sufficient number of channels,

M ≥ C1(β) logα(MKL), (3.25)

that are sufficiently long (relative to the dimension D of the subspace prior),

K ≥ C1(β)D logα(MKL), (3.26)

and we have observed the a sufficient number of samples at the output of each channel,

L ≥ C1(β) logα(MKL)

η

( K
M2

+
D

D ∧M
)
, (3.27)

2Without the subspace prior, L > K is necessary to claim that Y ∗Y has nullity 1 in the noiseless
case. We used L ≥ 3K in the proof in order to use the identity that the circular convolutions of
three vectors of length K modulo L indeed coincide with their linear convolution.
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then with probability exceeding 1− CK−β, we can bound the approximation error as

sin∠(ht,h) ≤

2−t∠(h0,h) + C2(β) logα(MKL)
( 1√

ηL

(√K
M

+

√
D

D ∧M
)

+

√
D

η
√
ML

)
,

∀t ∈ N.

(3.28)

We make the following remarks about the assumption (3.25) – (3.27) in Theo-

rem 3.5.1. The lower bound on the number of channels in (3.25) is very mild, M has

to be only a logarithmic factor of the number of parameters involved in the prob-

lem. The condition (3.26) allows a low-dimensional subspace, the dimension of which

scales proportional to the length of filter K up to a logarithmic factor. For a fixed

SNR and a large number of channels (M = Ω(
√
K/D)), the condition in (3.27) says

that the length of observation can grow proportional to
√
KD — this is suboptimal

when compared to the degrees of freedom (M +D)/(M − 1) per channel. (The total

number of unknowns is L + M + D and we have ML equations.) In fact, if L < K,

then the circular convolution modulo L of two vectors respectively of length K and

L introduces aliasing due to the wrapping around of the vector of length K. This

renders the deconvolution problem into a demixing problem that separates a mix-

ture of convolutions. While it might be still possible to uniquely identify a solution

in this blind demixing problem, the deconvolution approach in this paper does not

apply. In other words, the requirement L ≥ K is the fundamental limitation of the

linearization that leverages on the cross-convolution. However, this still marks a sig-

nificant improvement over an earlier analysis of this problem [87], which depended on

the concentration of subgaussian polynomial [88] and union bound arguments. The

scaling laws of parameters have been sharpened significantly, and as we will see in the

next section, its prediction is consistent with the empirical results by Monte Carlo

simulations in Section 3.6. Compared to the analysis for the other spectral method
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under the linear subspace model [83], Theorem 3.5.1 shows that the estimation error

becomes smaller by factor
√
D.

To prove Theorem 3.5.1, we establish an intermediate result for the case where

the input signal x is deterministic. In this case, our bounds depend on the spectral

norm ρx of the (appropriately restricted) autocorrelation matrix of x,

ρx := ‖S̃C∗xCxS̃
∗‖,

where

S̃ =




[
0K−1,L−K+1 IK−1

]

[
I2K−1 02K−1,L−2K+1

]


 . (3.29)

Then the deterministic version of our recovery result is:

Theorem 3.5.2 (Deterministic Source). Suppose that the same assumptions hold as

in Theorem 3.5.1, only with x as a fixed sequence of numbers obeying

ρx ≤ C3‖x‖2
2. (3.30)

If (3.26) and (3.25) hold, and

L ≥ C1(β) logα(MKL)

η

(K2

M2
+

KD

D ∧M
)
, (3.31)

then with probability exceeding 1− CK−β, we can bound the approximation error as

sin∠(ht,h) ≤ 2−t∠(h0,h)+
C2(β) logα(MKL)√

ηL

(K
M

+

√
KD

D ∧M
)
, ∀t ∈ N. (3.32)

The condition (3.30) can be interpreted as a kind of incoherence condition on the

input signal x. Since

ρx ≤ ‖Cx‖2 = L‖x̂‖2
∞,
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where x̂ ∈ CL is the normalized discrete Fourier transform of x, it is sufficient that x̂

is approximately flat for (3.30) to hold. This is a milder assumption than imposing an

explicit stochastic model on x as in Theorem 3.5.1. For the price of this relaxed con-

dition, the requirement on L in (3.31) that activates Theorem 3.5.2 is more stringent

compared to the analogous condition (3.27) in Theorem 3.5.1.

3.6 Numerical Simulation Results

In this section, we present empirical performance of the alternating eigenvectors

method (AltEig) in Algorithm 1 and the iterative rank-1 truncated power method

(RTPM) in Algorithm 2, both initialized by the spectral initialization in Algorithm 3.

First, we implement the RTPM method to solve the multichannel blind deconvo-

lution problem using the bilinear channel model for the underwater acoustic channels.

In underwater acoustic channel numerical simulations in Section 3.6.1, 3.6.2 and 3.6.3,

the common driving source signal, s ∈ RL, is Gaussian white noise filtered in an ar-

bitrary bandwidth representative of shipping noise spectra (400 − 600 Hz). In this

particular underwater channel bilinear model, AltEig does not provide stable recovery,

therefore, we report the simulation results using RTPM method. The effectiveness

and robustness of the RTPM algorithm are demonstrated by realistic CIRs using two

sets of experimental data.

In the end of this section, we further compare the performance of our methods

both in Algorithm 1 and Algorithm 2 using a generic subspace for the bilinear channel

model. This also demonstrates that the empirical performance of our methods agrees

with the main results in this chapter.

3.6.1 NC09 noise data simulations

In this section, CIRs of receivers on an equally-spaced vertical line array are modeled

as in Section 3.2 using the fact that the arrival-times of the same path for each
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receiver fall along a line when the distance between the source and receivers is large.

The subspace basis matrix Φ is generated by the method described in Section 3.2,

and variation limits are learned through experimental data will be specified in each

following sections. We need to point out here that the linear relation for arrival-times

across channels is not a necessary assumption in order for the method to work. The

relation for arrival-times can be any parametric function that we know as a priori.

Even when a explicit function is not available, the method only requires a collection

of realizations of arrival-times to build up a library, which represents a certain source-

receiver configuration and environment.

In this simulation scenario, arrival-times and amplitudes for each pulse are col-

lected from experimental results, as well as their variation range. In this experiment,

a short bottom-mounted vertical line array was moored in a shallow and nearly range-

independent section of the Coronado Bank (water depth ≈ 150 m), approximately 20

km offshore of San Diego, CA. Based on prior studies, the environmental parameters

for the test site were estimated ahead of time. The VLA had 16 elements uniformly

spaced by 1 m; with the first element approximately 7 m above the sea-floor. The

research vessel (R/V) New Horizon was used as a surface source of opportunity.

Since no ground truth was available for the actual CIRs between the R/V and the

VLA, estimated CIRs from Ray-Based Deconvolution method were used as a priori

for arrival-times and amplitudes information. In order to estimate the arrival-time

uncertainty for each ray-path of the CIRs, we used historical sound-speed profiles

measurements from CTD casts collected in the area and representative of the ocean

sound speed fluctuations (≈ 3 m/s) occurring during the time period of the exper-

iments. By running multiple ray simulations using the software BELLHOP for a

source-array separation distance of 2 km, through this collection of sound-speed pro-

files we obtained a maximum uncertainty window of ∆t = 3 ms for all considered ray

arrivals. An arrival-time window of ∆t = 5 ms was used here for t1, and the corre-
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sponding range of k is calculated with the assumption that arrival-times fall along a

line. In this environmental scenario, the CIRs have 2 separate paths and the range

of arrival-times for each path can be indicated by the black region in the following

figure.
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Figure 3.5: A priori information of the ray arrival-time structure of M = 16 channels for
NC09 data CIRs. The black shaded region indicated the possible arrivel-times of 2 separate
rays. Arrival-times for each ray fall along a line.

The measurements for each channel were convolution of a unknown common source

s ∈ RL, where L = 5000, and the unknown CIR hm ∈ RK , where K = 400 samples

and m = 1, . . . , 16. The sampling frequency is chosen to be fs = 4000 Hz. The span of

the subspace for channel bilinear model was known as Φ. The amplitudes of pulses for

the same path are unknown, but they are positive valued and have a known flatness

property which is described by a parameter µ. Implementing the RTPM method,

the CIRs are perfectly recovered when no measurement noise is added. The true and

recovered CIRs are plotted on top of each other in Fig. 3.6a. The algorithm also

maintains stable convergence performance as shown in Fig. 3.6b.
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Figure 3.6: Recovery for 16 CIRs and the convergence performance for NC09 channels.
(a) M = 16 multipath channels are recovery exactly using a bilinear channel model. The
original CIRs and estimated CIRs are plotted on top of each other. (b) The residual in each
power method iteration, and our method shows a stable convergence.

3.6.2 Santa Barbara Channel experimental data simulations

In this section, we present results using bilinear channel models derived from Santa

Barbara Channel experiment. Whereas in Section 3.6.1, the subspace basis Φ is

generated through varying parameters of lines, where arrival-times fall along , here we

generate Φ from a collection of realizations of arrival-times extracted by the ray-based

method. A priori arrival-time information is extracted from acoustic measurements

gathered during an experiment performed mid-September, 2016 in the Santa Barbara

shipping channel (depth ≈ 580 m). The Santa Barbara Channel (SBC) operation

areas and the VLA locations are plotted in Fig. 3.7. In this experiment, four 32-

element VLAs were deployed in the Santa Barbara shipping channel and recorded

ocean noise continuously for a week. Each array consisted of two sub-arrays of large

aperture (≈ 56m) and small aperture (≈ 15 m) with uniform 1 m and 3.75 m element

spacing respectively. The arrays were moored between the north and south band

shipping lanes where commercial vessels would be common sources of opportunity.
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In addition to collecting acoustic data, the Santa Barbara experiment utilized CTD

casts and bottom-profilers to obtain supplementary details of the environment, such

as sound speed profiles and bathymetry information.

Figure 3.7: Illustration of the Santa Barbara Channel Experiment. Four 32-elements are
deployed in the Santa Barbara shipping channel. In our simulation, we used data collected
from VLA3 from the source of opportunity, which is the passing container ship Anna Maersk
passed by the blue line track.

The Anna Maersk, a passing container ship, was used as a source of opportunity.

The ray-based blind deconvolution (RBD) algorithm was first performed to extract

arrival-times of CIRs. In our simulation, we used data collected from VLA3 when

the Anna Maersk was passing on the blue track in Fig. 3.7. The RBD method

was performed to deconvolve the CIRs of 500 snapshots, which are linearly spaced

throughout the course of one minute (12:15:18 12:16:18) and covering ranges from

1.71 km to 1.94 km as the vessel Anna Maersk cruises further away from VLA3.

Arrival-times of the direct path in all 500 snapshots are plotted in Fig. 3.8a. The

arrival-time of the first receiver in all the snapshots are aligned at time t0 = 20

ms. The CIR vectors have K = 500 samples, and throughout the simulation in this

section, the sampling frequency is fs = 10000 Hz. Using the method described in

Section III, we used 500 snapshots as a collection of realizations of CIRs and built
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the subspace basis matrix Φ, where Φ has a dimension of 42. The multichannel blind

deconvolution algorithm is then performed when the subspace basis Φ is known. The

CIRs we wish to recover is randomly chosen from the snapshots, and the recovery

results is perfect with a signal-to-noise ratio 25.83 dB as shown in Fig. 3.8b.
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Figure 3.8: Recovery of M = 31 CIRs using bilinear channel model. (Discarded one
channel from the VLA because of hardware problem) (a) 500 snapshots of arrival-times for
CIRs when the ship is cruising away from VLA3 at range 1.71 km to 1.94 km. (b) The
estimated CIRs (red) plot on top of the original CIRs, and the recovery SNR is 25dB.

Building the subspace basis matrix Φ directly from all snapshots CIRs as above

can accuatly approximate any realization of CIRs within the range of measurements.

However, the pre-calculation of all 500 snapshots using RBD method is expensive.

Since the distance between the source (Anna Maersk) and VLA3 (≈ 1800 m) are

larger than the total aperture of VLA3 (≈ 70 m), we can well model the arrival-times

of each receiver has a linear relationship with its depth. Under this assumption, if we

can estimate one snapshot within the range and linearize arrival-times on a known

line, the subspace basis matrix Φ can then be build by varying the the slope of the

line with a fixed point (the arrival-time of the first channel). The Φ built here by the

linear assumption of all arrival-times are not as accurate as by using all snapshots,
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but the dimension of the basis is much smaller. Approximating CIRs of one snapshot

in this subspace will generate a model error, which is approximately 12 dB in terms

of SNR. However, the multichannel blind deconvolution method introduced in section

IV is robust enough and still can successfully recover the CIRs of one snapshot using

only the convolution measurements and a priori information Φ. The arrival-times on

various lines are illustrated in Fig. 3.9a and the subspace basis matrix Φ is generated

from them. The CIRs recovery results are plotted in Fig. 3.9b, where the recovery

SNR is 11.65 dB.
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(b) CIRs recovery

Figure 3.9: Recovery of M = 31 CIRs using bilinear channel model. (Discarded one channel
from the VLA because of hardware problem) (a) Line approximations of arrival-times for
CIRs when the ship is ≈ 1.8 km away from VLA3, the line approximations are a rough
estimation of the 500 snapshots shown in Fig. 3.8a. (b) The estimated CIRs (red) plot on
top of the original CIRs, and the recovery SNR is ≈ 12 dB.

The simulation above shows that the RTPM blind deconvolution method is robust

towards model error which is generated by arrival-time off-line non-linearity. In the

next section, the robustness performance is studied carefully both in terms of model

error and measurement noise.
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3.6.3 Robustness performance in underwater acoustic channels

Robustness performance of the RTPM method for solving the multichannel blind

deconvolution problem using the bilinear channel model is studied in this section.

The robustness of bilinear channel model errors is first studied. In both NC09 noise

data and SBC experiment data, the subspace basis matrix Φ is build by treating all

channels jointly, which is based on the linear relation of all arrival-times. However, it is

very likely that arrival-times are not exactly on a line because of the disturbance in the

environment. The arrival-times off-line model errors are inherited from the bilinear

channel model assumption, and therefore, the robustness performance towards such

error is critical in realistic applications.

The Monte-Carlo simulations are performed to estimate the robustness perfor-

mance of the arrival-times off-line model error. We first used the same subspace basis

matrix Φ, which is built from all the arrival-times on various lines within the range,

shown in Fig. 3.9a. The off-line model error is controlled by adding a small ran-

dom perturbation that is proportional with a variable σ. The model approximation

SNR is defined as 10log10(‖hk‖2/‖hk − hkApprox
‖2), where hkApprox

is an approxima-

tion of CIRs using the subspace basis Φ. The CIR estimation SNR is defined as

10log10(‖hk‖2/‖hk − hkEstimation
‖2), where hkEstimation

is estimated CIRs using RTPM

method. Figure 3.10 shows that with the increase of the arrival-times off-line er-

ror, the model approximation SNR decreases. However, the SNR of estimated CIRs

demonstrated that the deconvolution is successful as long as the bilinear model still

can well approximate the CIRs, roughly speaking above 8 dB in terms of model

approximation SNR.
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Figure 3.10: The algorithm robustness performance when arrival-times are not exactly on a
line while the bilinear model is formed with the assumption that all arrival-times fall along a
line. The red dots indicate the approximation error when using such channel model, and the
blue dots are the estimation error using such channel model to perform blind deconvolution.
The model error are measured by a off-line coefficient which indicates the ratio between the
off-line time and the arrival-time differences among channels.

The RTPM blind deconvolution method using bilinear channel model is also able

to cope with CIRs in a larger range. Figure. 3.11a indicates a larger range of possible

arrival-times, and another subspace basis matrix Φ is constructed using the same

technique as before. As the range of the arrival-times increases, so does the dimension

of the basis. The following Monte-Carlo simulations shown in Fig. 3.11b demonstrates

that the method is still robust towards the arrival-times off-line model errors. The

simulations are run identically as the previous Monte-Carlo simulation except the

choice of Φ as a priori information. We observed that the SNRs of estimated CIRs

are slightly worse than the results in Fig. 3.10.
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(b) Off-line model error robustness

Figure 3.11: (a) Compared to Fig. 3.9a, a subspace with a larger dimension is used in this
simulation, which is generated from a wider range of lines. (b)The red dots indicate the
approximation error when using such channel model, and the blue dots are the estimation
error using such channel model to perform blind deconvolution. The model error are mea-
sured by a off-line coefficient which indicates the ratio between the off-line time and the
arrival-time differences among channels.

The robustness performance towards the measurement noise is then studied using

SBC arrival-times information. White gaussian noises are added to the measurements

of each channel. The noise level SNR is defined as SNR = 10log10(‖yk‖2/‖ek‖2), and

the CIR recovery SNR is defined as 10log10(‖hk‖2/‖hk − hkApprox
‖2). In this trial of

simulations, the model error is not included. A Monte Carlo simulation with T = 100

trials for each noise level is conducted and a stable robustness performance against

the measurement noise is demonstrated in Fig. 3.12.
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Figure 3.12: Monte Carlo simulation for recovery performance with noisy measurements.

3.6.4 Robustness performance using generic subspaces

In this section, we provide observation on empirical performance of the alternat-

ing eigenvectors method (AltEig) in Algorithm 1 and the rank-1 truncated power

method (RTPM) in Algorithm 2, both initialized by the spectral initialization in Al-

gorithm 3. We compare the two iterative algorithms to the classical cross-convolution

method (CC) by Xu et al. [1], which only imposes the time-limited model on impulse

responses, and to the subspace-constrained cross-convolution method (SCCC) [83],

which imposes a linear subspace model on impulse responses. This comparison will

demonstrate how the estimation error improves progressively as we impose a stronger

prior model (bilinear channel model) on impulse responses.

In our first experiment, we tested the algorithms on generic data where the basis

Φ is an i.i.d. Gaussian matrix. The input source signal x, subspace coefficient vector

b, and additive noise are i.i.d. Gaussian too. The channel gain vector is generated

by adding random perturbation to all-one vector so that a = 1M,1 +αξ/‖ξ‖∞, where
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ξ = [ξ1, . . . , ξM ]> and ξ1, . . . , ξM are independent copies of a uniform random variable

on [−1, 1). We use a performance metric given as the 95th percentile of the estimation

error in the sine of the principal angle between the estimate and the ground truth

out of 1,000 trials. This amounts to the error for the worst-case except 5% of the

instances. In other words, the estimation error is less than this threshold with high

probability no less than 0.95.
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Figure 3.13: Comparison of cross-convolution (CC), subspace-constrained cross-
convolution (SCCC), alternating eigenvectors method (AltEig), and rank-1 truncated power
method (RTPM). Default parameter setting: M = 8, K = 256, D = 32, L = 20K, SNR
= 20 dB. The 95th percentile estimation error is plotted in a logarithmic scale as we vary
each parameter as follows: (a) L, (b) D, (c) M , (d) SNR.
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Figure 3.14: Convergence of alternating eigenvectors method (AltEig) and rank-1
truncated power method (RTPM) for a random instance. x-axis: iteration index,
y-axis: log of the estimation error. M = 8, K = 256, D = 32, L = 20K, SNR = 20
dB.

Figure 3.13 compares the estimation error by the four algorithms as we vary the

problem parameters. Figure 3.13a shows that the error as a function of the oversam-

pling factor L/K, which is the ratio of the length of observation L to the number

of nonzero coefficients in each impulse response. SCCC provides smaller estimation

error than CC in order of magnitude by exploiting the additional linear subspace

prior. Then AltEig and RTPM provide further reduced estimation error again in or-

der of magnitude compared to SCCC by exploiting the bilinear prior that imposes the

separability structure in addition to the linear subspace prior. As expected, longer

observation provides smaller estimation error for all methods. Furthermore, as shown

in Figure 3.13b, the estimation error increases as a function of the ratio D/K, which

accounts for the relative dimension of the subspace. More interestingly, as our main

theorems imply, the performance difference between SCCC and AltEig/RTPM be-

comes more significant as we add more channels (Figure 3.13c). The estimation error

by these method scales proportionally as a function of SNR (Figure 3.13d). More-
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over, when the two iterative algorithms (AltEig and RTPM) provide stable estimate,

they converge fast. Figure 3.14 illustrate the convergence of the two algorithms for

a random instance. The estimation error decays progressively for RTPM, whereas

AltEig converges faster within less than 5 iterations. However AltEig is not as stable

as RTPM working with our acoustic channel subspace.
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Figure 3.15: Empirical phase transition in the 95th percentile of the log of the estimation
error. x-axis: D/K. y-axis: L/K. K = 256, M = 8, SNR = 20 dB. (a) cross-convolution
method [1]. (2) subspace-constrained cross-convolution method [83]. (c) alternating eigen-
vectors method (σ̂2

w = σ2
w). (d) rank-1 truncated power method (σ̂2

w = σ2
w).

To better visualize the overall trend, we performed a Monte Carlo simulation for

the empirical phase transition, which is illustrated in Figure 3.15 with a color coding
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that uses a logarithmic scale with blue denoting the smallest and red the largest

error within the regime of (D/K,L/K). The error in the estimate by CC is large

(≥ 0.1) regardless of D/K for the entire regime (Figure 3.15a). SCCC provides

accurate estimates for small D/K and for large enough L/K (Figure 3.15b). On

the other hand, it totally fails unless the dimension D of subspace is not less than

a certain threshold. Finally, AltEig and RTPM show almost the same empirical

phase transitions, which imply robust recovery for larger D/K and for smaller L/K

(Figures 3.15c and 3.15d).

3.7 Conclusion

We studied two iterative algorithms and their performances for a multichannel blind

deconvolution that imposes a bilinear model on CIRs and implemented our method

on real world underwater acoustic channels. Such a bilinear model is obtained, for

example, by embedding a parametric model for the shapes of pulses jointly into a

low-dimensional subspace through manifold embedding, while the channel gains are

treated as independent variables. Under the bilinear model, we modified classical

cross-convolution method based on the commutativity of the convolution to over-

come its critical weakness of sensitivity to noise. The bilinear system model imposes

a strong prior on the unknown channel impulse responses, which enables us to recover

the system with short observation. The constraint enforced by the bilinear model,

on the other hand, makes the recovery no longer a simple eigenvalue decomposition

problem. We propose two iterative algorithms along with a simple spectral initial-

ization. We have shown that the proposed algorithms converge linearly to a stable

estimate of the unknown channel parameters when the basis in the bilinear model is

generic. In the end, our methods are validated by series of experimentally derived

simulations using at-sea data recorded in shallow water from short vertical line arrays

at Coronado Bank and Santa Barbara shipping channel.
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CHAPTER 4

SUBSPACE LEARNING FOR MULTICHANNEL DECONVOLUTION

4.1 Introduction

The multichannel blind deconvolution methods presented in Chapter 2 and Chapter

3 rely on the exploitation of the channel structure to solve the multichannel blind

deconvolution problem. In Chapter 2 and Chapter 3, we have examined two types

of channel models: the linear model and bilinear model. Our deconvolution methods

are based on the fact that we have a priori knowledge about the channel impulse

responses, namely that it lies in a low-dimensional subspace, and that we can estimate

this subspace beforehand.

In this chapter, we investigate how to estimate the low-dimensional subspace that

can represent the CIRs of all snapshots from indirect measurements of the CIRs.

The technique to build the subspace for underwater acoustic channels in previous

chapters relies on performing a ray-based method to learn all possible arrival-times,

and then we can construct the subspace for the CIRs using Principal Component

Analysis (PCA). However, ray-based methods usually require a long observation time

for each measurement and we need many measurements to learn all possible arrival-

times, which is time-consuming to perform. Moreover, the subspace we built using

a priori knowledge might not be accurate, and our previous deconvolution methods

would break down from a large subspace model error. Therefore, we investigate

subspace learning methods by using multiple snapshots of convolutive measurements,

which we can use to learn the subspace without using PCA and increase the accuracy

and robustness of the channel model. We will introduce two algorithms to solve the
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subspace learning problem and provide brief descriptions in a later section.

Subspace learning is a dimensionality reduction technique that has a wide variety

of applications such as image compression [89], face recognition [90] and computer

vision [91], etc. Many of current subspace learning algorithms are based on least

squares estimation techniques and using “full” data, such as principal component

analysis (PCA), linear discriminant analysis (LDA), and locality preserving projec-

tion. Our approach to address the problem is to learn the subspace from indirect

nonlinear measurements by solving optimization problems. In our approach, we learn

the subspace and perform the multichannel blind deconvolution simultaneously. We

mathematically formulate the problem in a later section, taking advantage of the

multiple snapshots of the convolutive measurements between CIRs and the unknown

source signals.

The problem scenario is motivated by the fact that in many real world applica-

tions of the multichannel deconvolution problem we can observe multiple snapshots

of convolutions between time-variant CIRs and source signals. In each snapshot, the

source signal is time-invariant and uncorrelated from other snapshots, and the CIRs

are time-invariant and vary slightly from other snapshots. Therefore, the CIRs of

all snapshots are highly correlated, and the CIRs can be well modeled by a fixed

subspace. For example, in underwater acoustic channels, receivers on a Vertical Line

Array (VLA) can keep measuring all sources of opportunity (e.g. ship noise) in a

region. We can have multiple snapshots of measurements when a ship passes by the

region, and the CIRs in each snapshot vary slightly because the ship travels a short

distance against the VLA in each snapshot. As we studied in previous chapters, when

the region is small, the arrival times of the pulses among all snapshots are close to

each other and the CIRs are highly correlated. Therefore, a low-dimensional sub-

space exists for the CIRs of all snapshots. We can further populate the collection

of snapshots when other ships pass the same region. Knowing the existence of a
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low-dimensional subspace for all CIRs of multiple snapshots, we want to learn the

subspace and deconvolve the CIRs.

Applications of subspace learning for multichannel deconvolution are not only

found in our study of underwater acoustic channels. We can apply our methods to

any multichannel deconvolution problems where the CIRs of all snapshots lie in a

low-dimensional subspace and learn the subspace model from multiple snapshots of

convolutive measurements. For example, the subspace learning method can also be

applied in the auto-calibration process of the multi-coil dynamic MRI and sensor

array networks, where the CIRs are correlated in each snapshot.

The rest of the chapter is organized as follows. Section 4.2 presents the mathemat-

ical formulations of the subspace learning for multichannel blind deconvolution from

multiple snapshots. Section 4.3 discusses our algorithms and necessary calculation

details in solving the problem by optimizing over a Grassmannian manifold and using

low-rank matrix recovery. Section 4.4 presents the numeric results of our methods

and demonstrates the effectiveness and robustness performance of our methods.

4.2 Subspace Learning Problem Formulation

We first recall the multichannel measurements scenario in Fig. 1.1a: A common

source signal s drives M different channels with the CIRs h1,h2, . . . ,hM , and we

observe samples of convolution outputs y1, . . . ,yM , where ym = s ~ hm +wm. We

further collect P snapshots of such convolution measurements, and for each snapshot,

the channels are time-invariant with the CIRs belonging to the same subspace. The

measurements can be written as

ym(p) = hm(p) ~ s(p) +wm(p), m = 1, . . . ,M, (4.1)
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where the index for snapshots p = 1, . . . , P , and for all p and m, hm(p) = Φmum(p).

We note here that, throughout this chapter, the subscript m denotes the mth channel

and (p) in the parentheses denotes the pth snapshot.

The essential structural assumption we make is that each CIR snapshot hm(p)

(m = 1, . . . ,M and p = 1, . . . , P ) lies in a common subspace and each source signal

s(p) is uncorrelated. If we define h(p) = [h1(p)>, . . . ,hM(p)>]>, the CIRs in the pth

snapshot can be written as

h(p) = Φu(p), (4.2)

where as before

Φ =




0

...

0

Φ1

0

...

Φ2

0

. . .

. . .

. . .

. . .

ΦM

...

0

0




, Φm ∈ RK×D.

In Section 3.3, we saw that the classical cross-convolution method for multichannel

blind deconvolution [1] originated from the idea using the convolution commutivity

property. If we rewrite the classical cross-convolution method in our multiple snap-

shots measurements scenario, we want to solve the following problem in each snapshot

to deconvolve h(p):

Y (p)h(p) = 0. (4.3)

The block Toeplitz matrix Y (p) for the pth snapshot is the same as Eq. 3.11. We

need to note that there are P such block Toeplitz matrices and we denote the pth
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matrix corresponding to the pth snapshot.

Y (p) =




Y (1)(p)

Y (2)(p)

...

Y (M−1)(p)



, Y (i)(p) =




0L,K . . . 0L,K
...

...

0L,K . . . 0L,K
︸ ︷︷ ︸

(i− 1) blocks

Tyi+1(p) −Tyi(p)
...

. . .

TyM (p) −Tyi(p)︸ ︷︷ ︸
(M − i+ 1) blocks



,

(4.4)

where T ym(p) is the matrix whose action is convoluting ym(p) with a signal of length

K. We plug in the linear model in Eq. (4.2) so that the problem we want to solve

for each snapshot can be written as:

minimize
u(p)

u(p)∗Φ∗Y (p)∗Y (p)Φu(p) subject to ‖u(p)‖2 = 1. (4.5)

Our objective in this chapter is to learn the subspaces spanned by the columns of

the matrices Φm ∈ RK×D for m = 1, . . . ,M given P snapshots of multiple channel

outputs {ym(p) | 1 ≤ m ≤ M, 1 ≤ p ≤ P}. In Eq. (4.5), the matrix Φm is the mth

diagonal block of the matrix Φ, and Φ is shared for all snapshots.

4.2.1 Optimization over a Grassmannian manifold

The Grassmannian manifold is a space which parametrizes all K-dimensional lin-

ear subspaces of the D-dimensional vector space. The subspace of the mth channel,

which is spanned by the column vectors of Φm, is an element of the Grassmannian

manifold Grass(K,D). We formulate the subspace learning problem as an optimiza-

tion problem over a Grassmannian manifold, jointly using all the snapshots in the

objective function. If we solve the problem defined in Eq. (4.5) jointly, we are min-

imizing the term of
∑P

p=1 u(p)∗Φ∗Y (p)∗Y (p)Φu(p). Since we require ‖u(p)‖2 = 1,

the summation term is equivalent to
∑P

p=1 λmin(Φ∗Y (p)∗Y (p)Φ). Therefore, we form

the optimization problem by enforcing the shared-subspace channel structure across
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snapshots by optimizing over the subspaces denoted by {Qm}Mm=1. The optimization

problem we want to solve can be written as below:

minimize
{Qm}Mm=1

P∑

p=1

λmin(Q∗Y (p)∗Y (p)Q)

subject to Q∗mQm = ID, ∀m = 1, . . . ,M,

(4.6)

where

Q =




0

...

0

Q1

0

...

Q2

0

. . .

. . .

. . .

. . .

QM

...

0

0




, Qm ∈ RK×D.

We need to note here that we are only interested in estimating the subspace

spanned by columns of Qm. Therefore, the subspace {Qm}Mm=1 is a collection of M

vector subspaces live on a point of the Grassmannian manifold given as Grass(K,D)M ,

where K is the length of each CIR, D is the dimension of the subspace. In the noiseless

case,
∑P

p=1 λmin(Φ∗Y (p)∗Y (p)Φ) is zero, and Φ is the solution to (4.6). In the

problem formulation (4.6), by minimizing the summation of the least eigenvalues, we

are enforcing the cross-convolution method to solve the blind deconvolution problem

jointly across all snapshots. Therefore, the solution to (4.6) is the common subspace

where the CIRs for all snapshots lie in.

Our method treats this problem as an optimization problem over a Grassmannian

manifold, and we adapted a gradient-based method from [92] to solve it. We need to

note here that such algorithm is not the only method to solve the problem defined in

(4.6), but we use it to demonstrate the efficiency and robustness performance of our

subspace learning method.
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4.2.2 Subspace learning via low-rank recovery

We also formulate the subspace learning problem via low-rank matrix recovery and

introduce another algorithm to solve the problem, which interprets the problem from

another perspective. From our linear channel model assumption hm(p) = Φmum(p),

this also means that a matrix constructed by stacking all hm(p) for a fixed m as

column vectors has rank-D structure. Let’s define a matrix H ∈ RMK×P and a

matrix Hm ∈ RK×P as below,

H =



hM(1)

...

h2(1)

h1(1)

hM(2)

...

h2(2)

h1(2)

. . .

. . .

. . .

. . .

hM(P )

...

h2(P )

h1(P )




, h(p) =




h1(p)

h2(p)

...

hM(p)



, (4.7)

and Hm =

[
hm(1),hm(2), . . . ,hm(P )

]
.

We estimate h(p) for all snapshots jointly using the basic idea of cross-convolution

while enforcing the low-rank structure of Hm. The subspace that spans all CIRs

hm(p) is just a rank-D projection of Hm once the following optimization problem is

solved:

minimize
{h(p)}Pp=1

P∑

p=1

h(p)∗Y (p)∗Y (p)h(p)

subject to rank(Hm) ≤ D, ‖Hm‖F = 1, ∀m = 1, . . . ,M,

(4.8)

We first briefly discuss the robustness of the above two subspace learning meth-

ods. If P < D, that is the number of snapshot is smaller than the dimension of the

subspace, we cannot learn a subspace by solving the optimization problem above.

However, if P � D, then the joint optimization is feasible and increases the ro-

bustness performance against noise as the number of snapshots increases. In the
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cross-convolution method, the concatenation of the true CIRs h(p) is obtained as

the least dominant eigenvector of Y (p)∗Y (p). In single snapshot estimation, the

gap between two smallest eigenvalues can be tiny, which results in the energy of the

CIRs vector “leaking” into other invariant subspaces. Let n(p) be an eigenvector

of Y (p)∗Y (p) corresponding to the second smallest eigenvalues (different from the

smallest eigenvector h(p)). In the pth snapshot, n(p)∗Y (p)∗Y (p)n(p) is equal to the

second smallest eigenvalue of Y (p)∗Y (p), and therefore is very small. However, in

the p′ snapshot (p′ 6= p), because the source s(p′) and the random noise wm(p′) have

changed, n(p) is no longer the second smallest eigenvector of Y (p′)∗Y (p′), and the

value of n(p)∗Y (p′)∗Y (p′)n(p) is not necessarily small. Therefore, minimizing the

summation in (4.8) and (4.6) can provide a robust estimation of the subspace model.

In Section 4.4, we show that the robustness performance of our methods increases as

the number of snapshots P increases.

4.3 Optimization Algorithms

We have formulated the subspace learning problem in (4.6) and (4.8) and both for-

mulations require us to solve non-convex problems. For the first formulation in (4.6),

we implement a gradient-based algorithm for optimization over the Grassmannian

manifold. We present the details of the calculation of the gradient in a later section

for implementation. For the second method, we again use a truncated power iteration

method.

4.3.1 Optimization over a Grassmannian manifold

Our solver requires inputs of the objective function in (4.6) and the gradient of the

objective function in terms of Qm. Let f denote the objective function as below

f(Q1, . . . ,QM) =
P∑

p=1

λmin(Q∗Y (p)∗Y (p)Q). (4.9)
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One computational advantage of our formulation with a subspace basis matrix Q is

that the size of the problem scales with MD×MD instead of MK×MK for classical

cross-convolution method. We implement a fast way of calculating Q∗Y (p)∗Y (p)Q

using the Fast Fourier Transform. In terms of computational cost, the increase of

the number of snapshots P is just a linear increase of the summation operations of

the objective functions and their gradients. This linear scaling makes the calculation

scalable to large number of snapshots P . The cost function is straightforward to

calculate, and we present the details of how to calculate the gradient of the objective

function as below.

To simplify notations in deriving the gradient, we first denote the (m,m′)th block

of matrix Y (p)∗Y (p) to be

Bm,m′(p) = (e∗m ⊗ IK)Y (p)∗Y (p)(em ⊗ IK), Bm,m′(p) ∈ RK×K .

We remind that em is a standard basis vector and ⊗ denotes the Kronecker prod-

uct, which is first explained in Eq. (3.6). Let ξ(p) ∈ RMD×1 be the eigenvector of

Q∗Y (p)∗Y (p)Q corresponding to the smallest eigenvalue. We assume that the mul-

tiplicity of the smallest eigenvalue is 1, which is generally the case. Otherwise the

expression of the partial derivative becomes more complicated. The derivative of the

smallest eigenvalues of a matrix has been derived by Overton et al [93]. The partial

derivatives of the eigenvalue with respect to the (i, j)th element of the matrix Qm

can be written as:

∂λmin(Q∗Y (p)∗Y (p)Q)

∂(Qm)ij
=
〈
ξ(p)ξ(p)∗,

∂Q∗Y (p)∗Y (p)Q

∂(Qm)ij

〉
.
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We can then write the gradient in terms of the matrix Qm as

∂λmin(Q∗Y (p)∗Y (p)Q)

∂Qm

= 2Bm,m(p)Qm(e∗m ⊗ ID)ξ(p)ξ(p)∗(em ⊗ ID)

+ 2
M∑

m′=1
m′ 6=m

Bm,m′(p)Qm′(e
∗
m′ ⊗ ID)ξ(p)ξ(p)∗(em ⊗ ID).

Then the gradient of the objective function f with respect to Qm in the geodesic

distance in the Grassmannian manifold is written as

(gradf(Q1, . . . ,QM))Qm =
(

grad
P∑

p=1

λmin(Q∗Y (p)∗Y (p)Q
)
Qm

= 2
P∑

p=1

(IK −QmQ
∗
m)Bm,m(p)Qm(e∗m ⊗ ID)ξ(p)ξ(p)∗(em ⊗ ID)

+ 2
P∑

p=1

M∑

m′=1
m′ 6=m

(IK −QmQ
∗
m)Bm,m′(p)Qm′(e

∗
m′ ⊗ ID)ξ(p)ξ(p)∗(em ⊗ ID).

With the objective function and gradient of the objective function calculated, we then

use a trust-region method because the standard gradient decent method is slow in

convergence and the Newton’s method does not distinguish all critical points that are

asymptotically stable. Trust-region methods form an alternative class of algorithms

that combine desirable global convergence properties with a local superlinear rate of

convergence. More details of the trust-region methods on the Grassmannian manifold

can be found at the monograph by Absil et al. [92]. In our simulation, we use a

standard Matlab toolbox Manopt [94] to implement the trust-region method and we

only need to provide the objective function and its gradient as inputs.

4.3.2 Subspace learning via low-rank recovery

In order to solve the problem in (4.8), we want to solve multiple snapshots of blind

deconvolution jointly with a low-rank structural constraint. We implement an iter-
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ative method to enforce the low-rank constraint and solve the blind deconvolution

problem by finding the smallest eigenvector of A. We first define A = Γ∗Γ in this

multiple snapshots case, where Γ is defined as

Γ =




0

...

0

Y (1)

0

...

Y (2)

0

. . .

. . .

. . .

. . .

Y (P )

...

0

0




, Y (p) ∈ RMK×MK

A standard tool from numerical linear algebra to compute the largest eigenvector

of a symmetric matrix is the power method. Similarly as we explained in Section

3.4.2, we define B = γIMKP −A, and γ = ‖A‖. Applying a standard power method

on matrix B to find the largest eigenvector of B is equivalent to find the smallest

eigenvector of A.

We summarize the subspace learning low-rank recovery method in Algorithm 4

Algorithm 4: Subspace learning via low-rank recovery

input : B, v0

output: vt, a vectorized block-wise rank-D matrix H
1 t← 1;
2 while stop condition not satisfied do
3 ṽt ← Bvt−1;

4 V̂ t ← BlockRankDApprox (mat(ṽt)) ;

5 vt ← vec(V̂ t)/‖ vec(V̂ t)‖2 ;
6 t← t+ 1;

7 end

We note here that the BlockRankDApprox operation in Algorithm 4 means that

we take the vector ṽ and arrange it to the matrix Ṽ ∈ RMK×P as H we have

defined in Eq. (4.7). We then perform a rank-D approximation on the submatrix

Ṽ m ∈ RK×P , where Ṽ m is the mth row block of Ṽ . After M rank-D approximations

on M submatrices, we generate the matrix V̂ .
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4.4 Numeric Results

In this section, our subspace learning methods are implemented and the effectiveness

and robustness of the algorithms are demonstrated for generic and stylized realistic

CIRs. In simulations, the common driving source signal, s(p) ∈ RL, is a Gaussian

white noise signal, which differs for each snapshot.

4.4.1 Generic channels

In this section, the two subspace learning methods are implemented with additive

noise measurements in simulated generic channels. Since our methods are based on

the classical cross-convolution method, the deconvolution of CIRs using the classical

method for each snapshots will be exact in the noise-free measurements when the

length of measurements L is bigger than the channel length K. In order to compare

the performance of subspace learning method with the single snapshot blind deconvo-

lution method, we compare the average SNR for the estimated CIRs for all snapshots.

We corrupted all measurements with 20dB SNR noise level. Even though these generic

CIR assumptions do not directly represent any specific underwater acoustic channels,

we can demonstrate the efficiency of our method and simulations on underwater

acoustic channels will be discussed later in this section.

We first compare the classical cross-convolution method with our subspace learn-

ing method for solving blind deconvolution estimation. In our simulation, we assume

the number of channels M = 5, the length of channels K = 64, the dimension of

the subspace D = 5, the length of measurements L = 80, the number of snapshots

P = 50, and the measurement error SNR = 10 dB. A classical cross-convolution

method is performed on all snapshots individually. Figure 4.1a shows that the es-

timation is a failure for each snapshots. Figure 4.1b shows that if we use subspace

learning method in (4.6), the estimation is accurate. In this simulation, we initialize
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our starting point for Qm by collecting the eigenvectors of
∑P

p=1Bm,m(p) correspond-

ing to the D-smallest eigenvalues, where Bm,m(p) = (e>m⊗ IK)Y (p)>Y (p)(em⊗ IK).
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Figure 4.1: (a) Estimated CIRs from the cross-convolution method by solving each snap-
shot separately. Blue stems are elements of the original CIRs, and the red stems are the
estimation samples. The estimation SNR ≈ 1 dB (b) Estimated CIRs from subspace learn-
ing method. Blue stems are elements of the original CIRs, and the red stems are the
estimation samples. The estimation is accurate with a SNR = ≈ 30 dB.

In order to compare the robustness performance, we design two simulations and

assume the number of channels M = 3, the length of channels K = 64, the dimen-

sion of the subspace D = 5 and the number of snapshots P = 50. We vary the

length of the measurement L from K to 3K. For the classical blind deconvolution

method, which solves each snapshots independently, Fig. 4.2a shows that when the

measurement length L is relatively short and the classical method is not stable when

the measurement noise level is at 20 dB. However, our subspace learning method

estimates the CIRs accurately from an initialization of 10 dB SNR.

In Fig. 4.2b, we set the length of the measurements to L = 128, vary the number

of snapshots P from 10 to 50, and the rest of parameters are the same. We can see

that for classical method adding more snapshots does not affect the overall recovery

accuracy. However, through subspace learning methods, we can observe a noticeable
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decrease of estimation error as P gets larger.
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Figure 4.2: Comparison of average CIRs estimation error between the classical cross-
convolution method (red line) and the subspace learning method (blue line). (a) The
number of snapshots for each method is P = 50 and the length of measurements L from K
to 3K. x-axis: the length of measurement length L, y-axis: log of the estimation error when
the measurements SNR = 20 dB. (b) The length of measurements L = 128 and the number
of snapshots for each method P varies from 10 to 50. x-axis: the number of snapshots L,
y-axis: log of the estimation error when the measurements SNR = 20 dB.

We also perform a Monte Carlo simulation with 100 trials to demonstrate how sta-

ble the method performs as the number of snapshots P and the length of measurement

L vary.
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L: length of measurement per channel
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Figure 4.3: Phase transition in estimation error for the subspace learning method from
Monte Carlo simulation. x-axis: P : the length of measurement, y-axis: P : number of
snapshots.

Figure 4.3 shows that for a fixed length of measurements, as we make more snap-

shots of measurements, we have more diverse indirect sensing samples of the channel

subspace, and therefore the estimation of subspace and CIRs of each snapshot is more

accurate.

4.4.2 Acoustic channels

In this section, we implement our method on stylized acoustic channels which cor-

respond to single path CIRs on a vertical line array. In the simulation, we assume

a scenario that an accurate estimation of the channel model is not available, so the

multichannel blind deconvolution methods we have discussed in previous chapters

cannot provide us an accurate estimation of the CIRs. However, we are presented

with multiple snapshots of the measurements. We show that using the subspace

learning method we can learn a more accurate subspace of the CIRs and deconvolve

the CIRs accurately.

In the simulation of Fig. 4.4, we assume the number of channels M = 5, the

length of channels K = 64, the length of measurements L = 200, and the number of

snapshots P = 50. We assume that the pulses of CIRs are band-limited in (400−600)
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Hz and concentrated in a time window, and the width of the arrival-time uncertainty

window is 20ts, where ts is the sampling time. Using the discrete prolate spheroidal

(slepian) sequences, we can form an subspace basis matrix Φ̂m ∈ RK×D to approxi-

mate the mth CIRs roughly. Let us further assume the dimension of the subspace D

is 12.

The problems we formed in (4.6) and (4.8) are non-convex, so we need to have

a starting point within a small neighborhood to the true solution. Let’s denote the

true subspace matrix is Φ for all CIRs and Φm for the mth CIRs as in (4.2). The

distance between Φ and Φ̂ is defined as d =
∑M

m=1 ‖ΦmΦ∗m−Φ̂mΦ̂
∗
m‖F/D/M . In this

simulation, the distance between the true subspace basis and our rough estimation

Φ̂ is d = 0.1064, which empirically can reach the global minimum. If we project

the true CIRs h(p) onto Φ̂, we actually have a good approximation of h(p) with an

approximation SNR ≈ 25 dB.

We now compare the CIR estimation results from the blind deconvolution method

using linear model Φ̂ and from the subspace learning method using linear model Φ̂

as an initialization for the subspace learning. The measurements for all snapshots are

corrupted with noise at a level SNR = 30 dB. The single snapshot multichannel blind

deconvolution using the linear channel model Φ̂ didn’t provide a stable performance,

and the estimations of the CIRs are not successful as shown in Fig. 4.4a. We define

the estimation error as

e =

√√√√ 1

MP

M,P∑

m,p=1

∥∥∥hm(p)hm(p)∗

‖hm(p)‖2
− ĥm(p)ĥm(p)∗

‖ĥm(p)‖2

∥∥∥
2

F
.

The estimation error of CIRs for all snapshots using linear model Φ̂ is esccc = 0.7054

or SNR ≈ 3 dB.
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Figure 4.4: (a) The estimations of CIRs (red) using the multichannel blind method from
single snapshot with an inaccurate subspace model. The estimation SNR ≈ 3 dB. (b)
Estimated CIRs (red) from subspace learning method. The starting point are the same
inaccurate subspace estimations we used in from Fig. 4.4a. The estimation is accurate with
a SNR ≈ 28 dB.

In contrast, using the linear model Φ̂ as a starting point for our subspace learning

method in (4.6), we actually can exactly recover the CIRs for all snapshots. The

distance between the estimated subspace Φ̃ and the true subspace Φ is d = 0.03220.

The estimation error of CIRs for all snapshots using the learned subspace Φ̃ is espl =

0.0.05850 or SNR ≈ 28 dB which is much smaller than e1. The estimation results are

plotted in Fig. 4.4b, which match exactly as the original CIRs plotted in blue.

4.5 Conclusion and Future Work

We investigated two methods to learn the subspace model for CIRs from indirect

measurements given as multiple snapshots in the context of solving multichannel blind

deconvolution. We proposed two algorithms to solve this subspace learning problem.

We first formed the subspace learning problem as an optimization problem over a

Grassmannian manifold, which can be solved using a gradient-based method. The

second problem formulation stated that the subspace learning problem could be solved
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via a low-rank matrix recovery. Two algorithms solved the problem by optimization

over the Grassmannian manifold and low-rank matrix recovery respectively. Numeric

results of our methods were presented both for generic and under water acoustic

channel models. We demonstrated that the subspace learning methods are robust

in the presence of noise and can accurately estimate the CIRs by using multiple

snapshots jointly when single-snapshot methods failed. Performance guarantees of

the methods will be further investigated in future work.
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CHAPTER 5

CONCLUSIONS

The multichannel sensing framework arises in many applications such as digital com-

munication, medical imaging, ocean tomography and acoustic imaging. The multi-

channel deconvolution problem wants to estimate both unknown input signals and

channel impulse responses from observations of their convolution. This thesis ad-

dresses this ubiquitous inverse problem using sources of opportunity in underwater

acoustic channels.

We first introduced a method for solving this multichannel deconvolution problem

using a priori information about the CIR via the low-rank recovery formulation. We

developed a systematic way to build an efficient and accurate linear model incorpo-

rating a priori information about the structure of expected CIR’s arrival-times so that

the low-rank recovery method can be implemented. An fast and scalable heuristic

solver was developed, which can work with large-scale problems with efficient usage

of memory during computation. Stylized numerical simulations demonstrated that

the proposed method perfectly deconvolved both the source signal and CIRs simulta-

neously. In the presence of additive measurement noises and model errors in the CIR

parameterization, the method was also robust and stable. The effectiveness of the

method was demonstrated both numerically and experimentally for estimating mul-

tipath CIRs in shallow water using shipping noise and short bottom-mounted VLAs.

This method is likely to be applicable to other environments supporting waveguide-

like propagation (e.g., seismic or structural waveguides).

A blind source separation technique was developed in the multiple-input-multiple-

output (MIMO) system. A multichannel deconvolution step based on low-rank re-
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covery and a linear source separation step was perform to separate multiple sources

from their convolutive mixing measurements.

Two non-convex iterative algorithms and their performances for the multichannel

blind deconvolution problem was also studied theoretically and demonstrated numer-

ically. A bilinear model , which is obtained by embedding a parametric model for the

shapes of pulse jointly into a low-dimensional subspace through manifold embedding

while the channel gains are treated as independent variables, was presented. The bilin-

ear system model imposed a strong prior on the unknown channel impulse responses,

which enabled us to recover the system more robustly. Performance guarantees of our

methods was analyzed and demonstrated when low-dimensional subspace was generic

and a series of numerical results demonstrated that the empirical performance was

consistent with the presented theories. Our methods were also validated by series

of experimentally derived simulations. Subspace learning methods that can estimate

the channel models directly from multiple snapshots of the convolutive measurements

were presented in the end.
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APPENDIX A

PROOF OF THE MAIN RESULTS

The main results in Theorems 3.5.1 and 3.5.2 are obtained by the following proposi-

tion, the proof of which is deferred to Section A.1.

Proposition A.0.1. Suppose the assumptions in (A1) and (A2) hold, ρx satisfies

(3.30), L ≥ 3K, µ = O(1), and ν = Ω(1). For any β ∈ N, there exist absolute

constants C > 0, α ∈ N and constants C1, C2 that only depend on β, for which the

following holds: If

K ≥ C1D logα(MKL), (A.1)

M ≥ C1 logα(MKL), (A.2)

and

L ≥ C1 logα(MKL)
[ ρ2

x,w

ηKσ2
w‖x‖2

2

( D

K ∧M +
K

M2
+ 1
)

+
D

η2

]
(A.3)

then

sin∠(ht,h) ≤ 2−t sin∠(h0,h) + κ, ∀t ∈ N (A.4)

with probability 1− CK−β, where κ satisfies (A.13).

Then the proofs for Theorems 3.5.1 and 3.5.2 are given by combining Proposi-

tion A.0.1 with the following lemmas, taken from [83], which provide tail estimates

on the signal autocorrelation and the signal-noise cross correlation.

Lemma A.0.2 ([83, Lemma 3.9]). Suppose (A2) holds and let x be a fixed sequence

of numbers obeying (3.30). For any β ∈ N, there exists an absolute constant C such
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that

ρx,w ≤ CKσw
√
ρx
√

1 + logM + β logK

holds with probability 1−K−β.

Lemma A.0.3 ([83, Lemma 3.10]). Suppose (A2) holds and let x be a sequence of

zero-mean iid subgaussian random variables with variance σ2
x. Then

ρx
‖x‖2

2

≤ L+ CβK log3/2 L
√

logK

L−√2Lβ logK

and

ρx,w
σw‖x‖2

≤ CβK log5(MKL)√
L−√2Lβ logK

hold with probability 1− 3K−β.

A.1 Proof of Proposition A.0.1

The proof of Proposition A.0.1 is given by a set of propositions, which provide guaran-

tees for Algorithms 3, Algorithms 1 and Algorithm 2. The first proposition provides

a performance guarantee for the initialization by Algorithm 3. The proof of Proposi-

tion A.1.1 is given in Section B.

Proposition A.1.1 (Initialization). Suppose the assumptions in (A1) and (A2) hold,

ρx satisfies (3.30), and L ≥ 3K. Let µ, ν, η be defined in (3.23), (3.24), (3.22),

respectively. For any β ∈ N, there exist absolute constants C > 0, α ∈ N and constants

C1, C2 that only depend on β, for which the following holds: If

M ≥ C1 logα(MKL) ·
(µ
ν

)2

(A.5)
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and

L ≥ C1 logα(MKL) ·
[ ρ2

x,w

ηKσ2
w‖x‖2

2

·
( µ2K

ν4M2
+

D

ν2M

)
+

D

η2ν4M

]
, (A.6)

then the estimate b̂ by Algorithm 3 satisfies

sin∠(b̂, b) ≤ C2 logα(MKL)
[ µ

ν
√
M

+
ρx,w√

ηKLσw‖x‖2

·
(µ
√
K

ν2M
+

√
D

ν
√
M

)
+

√
D

ην2
√
ML

]

(A.7)

holds with probability 1− CK−β.

The second proposition, proved in Section C.1.2, provides a performance guarantee

for the update of â by Step 3 of Algorithm 1.

Proposition A.1.2 (Update of Channel Gains). Suppose the assumptions in (A1)

and (A2) hold, ρx satisfies (3.30), L ≥ 3K, and the previous estimate b̂ satisfies

∠(b, b̂) ≤ π

4
. (A.8)

For any β ∈ N, there exist absolute constants C > 0, α ∈ N and constants C1, C2 that

only depend on β, for which the following holds: If

K ≥ C1µ
4D logα(MKL), (A.9)

M ≥ C1µ
4 logα(MKL), (A.10)

and

L ≥ C1 logα(MKL)
[ ρ2

x,w

ηKσ2
w‖x‖2

2

(
µ2
( D

K ∧M +
K

M2

)
+ 1
)

+
D

η2

]
(A.11)
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then the updated â by Step 3 of Algorithm 1 satisfies

sin∠(a, â) ≤ 1

2
sin∠(b, b̂) + κ (A.12)

with probability 1− CK−β, where κ satisfies

κ ≤ C2 logα(MKL)
[ ρx,w√

ηKLσw‖x‖2

(
µ
(√K
M

+

√
D

M
+

√
D

K

)
+1
)

+

√
D

η
√
ML

]
. (A.13)

We have a similar result for the update of b̂ by Step 3 of Algorithm 1, which is

stated in the following proposition. The proof of Proposition A.1.3 is provided in

Section C.1.3.

Proposition A.1.3 (Update of Subspace Coefficients). Suppose the assumptions in

(A1) and (A2) hold, ρx satisfies (3.30), L ≥ 3K, and the previous estimate â satisfies

∠(a, â) ≤ π

4
. (A.14)

For any β ∈ N, there exist absolute constants C > 0, α ∈ N and constants C1, C2 that

depend on β, for which the following holds: If (A.9), (A.10), and (A.11) are satisfied,

then the updated b̂ by Step 3 of Algorithm 1 satisfies

sin∠(b, b̂) ≤ 1

2
sin∠(a, â) + κ

with probability 1− CK−β, where κ satisfies (A.13).

The next proposition shows the convergence of the rank-1 truncated power method

from a good initialization. See Section C.2 for the proof.

Proposition A.1.4 (Local Convergence of Rank-1 Truncated Power Method). Sup-

pose the assumptions in (A1) and (A2) hold, ρx satisfies (3.30), and L ≥ 3K. Let
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0 < µ < 1, 0 < τ < 1
3
√

2
, and

c(µ, τ) = min
( 1

µ
√

1− τ 2
,
(1 + µ)τ

1− µ
)
.

For any β ∈ N, there exist absolute constants C > 0, α ∈ N, constants C ′1, C
′
2 that

only depend on β, for which the following holds: If (A.9), (A.10), and (A.11) are

satisfied for C1 = c(µ, τ)C ′1, C2 = c(µ, τ)C ′2 and u0 satisfies

sin∠(u0,u) ≤ τ,

then (ut)t∈N by Algorithm 2 for B = ‖E[A]‖IMD −A with u0 satisfies

sin∠(ut,u) ≤ µt sin∠(u0,u) +
(1 + µ)κ

1− µ , ∀t ∈ N (A.15)

with probability 1− CK−β, where κ satisfies (A.13).

Finally, we derive the proof of Proposition A.0.1 by combining the above propo-

sitions.

Proof of Proposition A.0.1. Similarly to the proof of [83, Proposition 3.3], we show

that

sin∠(ht,h) ≤ σmax(Φ)

σmin(Φ)
·
√

2 sin∠(ut,u) (A.16)

and

sin∠(ut,u) ≤ max
[

sin∠(at,a), sin∠(bt, b)
]
. (A.17)

Furtheremore, as we choose C1 in (A.1) sufficiently large, we can upper bound the

condition number of Φ by a constant (e.g., 3) with high probability. We proceed the

proof under this event. Then the convergence results in Propositions A.1.2, A.1.3,

and A.1.4 imply (A.4).

Since µ = O(1), the conditions in (A.9), (A.10), (A.11) respectively reduce (A.1),
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(A.2), (A.3). Furthermore, since ν = Ω(1), (A.6) is implied by (A.3). By choosing

C1 large enough, we can make the initial error bound in (A.7) small so that the

conditions for previous estimates in Propositions A.1.2, A.1.3, A.1.4 are satisfied and

the assertion is obtained by these propositions.
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APPENDIX B

ANALYSIS OF SPECTRAL INITIALIZATION

We prove Proposition A.1.1 in this section. Recall that Algorithm 3 computes

an initial estimate b̂ of the true parameter vector b as an eigenvector of ΓΓ∗ −
∑M

m=1 σ
2
wLΦ∗mΦm corresponding to the largest eigenvalue in magnitude. Let us de-

compose the matrix Γ in (3.18) as Γ = Γs + Γn, where Γs and Γn respectively

correspond to the noise-free portion and noise portion of Γ. In other words, Γs is

obtained as we replace ym = hm ~ x + wm in the expression of Γ in (3.19) by its

first summand hm ~ x. Similarly, Γn is obtained as we replace ym by wm. Then it

follows that

Ew[ΓnΓ
∗
n] =

M∑

m=1

σ2
wLΦ∗mΦm.

By direct calculation, we obtain that the expectation of Γs is written as

E[Γs] =
M∑

m=1

Kambx
> = K‖a‖1bx

>. (B.1)

Therefore,

E[Γs]E[Γs]
∗ = K2‖x‖2

2‖a‖2
1bb

∗. (B.2)

It is straightforward to check that the rank-1 matrix E[Γs]E[Γs]
∗ has an eigenvector,

which is collinear with b. Thus as we interpret ΓΓ∗−∑M
m=1 σ

2
wLΦ∗mΦm as a perturbed

version of E[Γs]E[Γs]
∗, the error in b̂ is upper bounded by the classical result in linear

algebra known as the Davis-Kahan theorem [95]. Among numerous variations of the

original Davis-Kahan theorem available in the literature, we will use a consequence

of a particular version [96, Theorem 8.1.12], which is stated as the following lemma.
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Lemma B.0.1 (A Special Case of the Davis-Kahan Theorem). Let M ,M ∈ Cn×n be

symmetric matrices and λ denote the largest eigenvalue of M in magnitude. Suppose

that λ > 0 and has multiplicity 1. Let Q = [q1,Q2] ∈ Cn×n be a unitary matrix such

that q1 is an eigenvector of M corresponding to λ. Partition the matrix Q∗MQ as

follows:

Q∗MQ =




λ 01,n−1

0n−1,1 D


 .

If

‖D‖+ ‖M −M‖ ≤ λ

5
, (B.3)

then the largest eigenvalue ofM in magnitude has multiplicity 1 and the corresponding

eigenvector q̃ satisfies

sin∠(q̃, q1) ≤ 4‖(M −M)q1‖2

λ
. (B.4)

Remark B.0.2. In Lemma B.0.1, the rank-1 matrix λq1q
∗
1 is considered as the

ground truth matrix. Then M −M +Q2DQ
∗
2 corresponds to perturbation in M

relative to the ground truth matrix M . Also note that Q2DQ
∗
2q1 = 0.

In the remainder of this section, we obtain an upper bound on the error in b̂ by

applying Lemma B.0.1 to M = E[Γs]E[Γs]
∗, M = ΓΓ∗ −∑M

m=1 σ
2
wLΦ∗mΦm, q1 = b,

and q̂ = b̂.

By (B.2), we have D = 0 and λ = K2‖x‖2
2‖a‖2

1‖b‖2
2. Then we show that the
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spectral norm of the perturbation term, which is rewritten as

ΓΓ∗ − Ew[ΓnΓ
∗
n]− E[Γs]E[Γs]

∗

= ΓsΓ
∗
s − E[Γs]E[Γs]

∗, (B.5a)

+ ΓsΓ
∗
n + ΓnΓ

∗
s , (B.5b)

+ ΓnΓ
∗
n − Ew[ΓnΓ

∗
n], (B.5c)

satisfies (B.3). We will compute an upper estimate of the spectral norm of each

summand, divided by λ, separately. Then we combine these estimates using the

triangle inequality.

Perturbation due to signal term: Note that the first summand ΓsΓ
∗
s−E[Γs]E[Γs]

∗

in (B.5a) has entries, which are fourth-order Gaussian random variables. We decom-

pose it using second-order random variables as

ΓsΓ
∗
s − E[Γs]E[Γs]

∗

= (Γs − E[Γs])(Γs − E[Γs])
∗ + E[Γs](Γs − E[Γs])

∗ + (Γs − E[Γs])E[Γs]
∗.

(B.6)

We have already computed E[Γs] in (B.1). It remains to upper bound the spectral

norm of Γs − E[Γs]. By the definitions of Γs and ρx, we obtain

‖Γs − E[Γs]‖ ≤
∥∥∥

M∑

m=1

am(Φ∗mSCS∗Φmb − Eφ[Φ∗mSCS∗Φmb])S̆
∗
S̆Cx

∥∥∥

≤
∥∥∥

M∑

m=1

am(Φ∗mSCS∗Φmb − Eφ[Φ∗mSCS∗Φmb])S̆
∗
∥∥∥‖S̆Cx‖

≤ √ρx
∥∥∥

M∑

m=1

am(Φ∗mSCS∗Φmb − Eφ[Φ∗mSCS∗Φmb])S̆
∗
∥∥∥, (B.7)
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where S̆ ∈ R(2K−1)×L is defined by

S̆ =




[
0K−1,L−K+1 IK−1

]

[
IK 0K,L−K

]


 .

The right-hand side of (B.7) except the constant factor
√
ρx is upper bounded by

the following lemma.

Lemma B.0.3. Suppose that (A2) holds. For any β ∈ N, there is a constant C(β)

that depends only on β such that

∥∥∥
M∑

m=1

am(Φ∗mSCS∗Φmb − EφΦ∗mSCS∗Φmb)S̆
∗
∥∥∥ ≤ C(β)K

√
M‖a‖∞‖b‖2 logα(MKL)

(B.8)

holds with probability 1−K−β.

By applying (B.1), (B.7), Lemma B.0.3 together with the fact
√
ρx ≤ C0‖x‖2 to

(B.6), we obtain that

‖ΓsΓ
∗
s − E[Γs]E[Γs]

∗‖
λ

≤ C(β)
√
M‖a‖∞ logα(MKL)

‖a‖1

≤ C(β)µ logα(MKL)

ν
√
M

(B.9)

holds with probability 1−K−β.

Perturbation due to signal-noise cross term: Next we consider the second term

in (B.5b). By the triangle inequality, we have

‖ΓsΓ
∗
n + ΓnΓ

∗
s‖ ≤ ‖ΓsΓ

∗
n‖+ ‖ΓnΓ

∗
s‖ ≤ 2‖ΓsΓ

∗
n‖.

Therefore, it suffices to upper estimate ‖ΓsΓ
∗
n‖. To this end, we decompose ΓsΓ

∗
n as

ΓsΓ
∗
n = (Γs − E[Γs])Γ

∗
n + E[Γs]Γ

∗
n. (B.10)
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Note that the first summand in the right-hand-side of (B.10) is written as

(Γs−E[Γs])Γ
∗
n =

( M∑

m=1

amΦ∗mSCS∗ΦmbS̆
∗−Eφ[amΦ∗mSCS∗ΦmbS̆

∗
]
)( M∑

m′=1

S̆CxC
∗
wm′
S∗Φm′

)
,

(B.11)

where the first and second factors of the right-hand-side of (B.11) are upper bounded

in the spectral norm respectively by Lemma B.0.3 and by the following lemma.

Lemma B.0.4. Suppose that (A1) and (A2) hold. For any β ∈ N, there is a constant

C(β) that depends only on β such that

∥∥∥
M∑

m=1

S̆CxC
∗
wmS

∗Φm

∥∥∥ ≤ C(β)ρx,w
√
MK logα(MKL) (B.12)

holds with probability 1−K−β.

By applying Lemmas B.0.3 and (B.0.4) to (B.11), we obtain that

‖(Γs − E[Γs])Γ
∗
n‖ ≤ C(β)ρx,wMK3/2‖a‖∞‖b‖2 logα(MKL) (B.13)

holds with probability 1−K−β.

Next, the second summand in the right-hand-side of (B.10) is written as

E[Γs]Γ
∗
n = K‖a‖1b

( M∑

m′=1

e∗1CxC
∗
wm′
S∗Φm′

)
, (B.14)

whose spectral norm is upper bounded by using the following lemma.

Lemma B.0.5. Suppose that (A1) and (A2) hold. For any β ∈ N, there is a constant

C(β) that depends only on β such that

∥∥∥
M∑

m′=1

e∗1CxC
∗
wm′
S∗Φm′

∥∥∥ ≤ C(β)ρx,w
√
MD logα(MKL)

holds with probability 1−K−β.
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The proof of Lemma B.0.5 is very similar to that of Lemma B.0.4. The proof of

Lemma B.0.4 involves the following optimization formulation:

max
z∈B2K−1

2

max
q∈BD2

M∑

m=1

z∗S̆CxC
∗
wmS

∗Φmq.

Instead of maximizing over z ∈ B2K−1
2 , we fix z to S̆e1. Equivalently, we replace the

unit ball B2K−1
2 by the singleton set {S̆e1}. This replacement simply removes the

entropy integral corresponding to B2K−1
2 . Except this point, the proofs for the two

lemmas are identical. Thus we omit further details.

Applying Lemma B.0.5 to (B.14) implies that

‖E[Γs]Γ
∗
n‖ ≤ C(β)ρx,w

√
MK
√
D‖a‖1‖b‖2 logα(MKL) (B.15)

holds with probability 1−K−β.

By combining (B.13) and (B.15), after plugging in the definitions of η, µ, and ν,

we obtain that

‖ΓsΓ
∗
n + ΓnΓ

∗
s‖

λ
≤ C(β) logα(MKL)√

η
· ρx,w

‖x‖2σw
√
L
·
( µ

ν2M
+

√
D

ν
√
MK

)
(B.16)

holds with probability 1− 2K−β.

Perturbation due to noise term: Finally, we derive an upper bound on the

spectral norm of the last term in (B.5c) using the following lemma.

Lemma B.0.6. Suppose that (A2) holds. For any β ∈ N, there is a constant C(β)

that depends only on β such that

‖ΓnΓ
∗
n − Ew[ΓnΓ

∗
n]‖ ≤ C(β)ρwM

3/2
√
KD logα(MKL)

holds with probability 1−K−β.
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We also a tail bound on ρw given by the following lemma from [83].

Lemma B.0.7 ([83, Lemma 5.9]). Suppose that (A2) holds. For any β ∈ N, there is

a constant C(β) that depends only on β such that

ρw ≤ C(β)σ2
w

√
KL logα(MKL) (B.17)

holds with probability 1−K−β.

By Lemma B.0.7 and (3.22), the corresponding relative perturbation is upper

bounded by

‖ΓnΓ
∗
n − Ew[ΓnΓ

∗
n]‖

K2‖x‖2
2‖a‖2

1‖b‖2
2

≤ C(β) logα(MKL)

η
·
√
D

ν2
√
ML

(B.18)

with probability 1−K−β.

Then it follows from (B.9), (B.16), and (B.18) that the condition in (B.3) is

satisfied by the assumptions in (A.6) and (A.5). Therefore, Lemma B.0.1 provides

the upper bound on the estimation error in (A.7), which is obtained by plugging

(B.9), (B.16), and (B.18) to (B.4). This completes the proof.
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APPENDIX C

CONVERGENCE OF NON-CONVEX OPTIMIZATION

ALGORITHMS

C.1 Convergence of the Alternating Eigenvectors Method

Algorithm 1 iteratively updates the estimates of a, b from a function of the matrix

A = Φ∗(Y ∗Y − σ2
w(M − 1)LIMK)Φ and previous estimates. Propositions A.1.2 and

A.1.3 show the convergence of the iterations in Algorithm 1 that alternately update

the estimates â and b̂ under the randomness assumptions in (A1) and (A2). Similarly

to the analysis of the spectral initialization in Section B, we prove Propositions A.1.2

and A.1.3 by using the Davis-Kahan Theorem in Lemma B.0.1. To this end, we first

compute tail estimates of norms of the deviation of the random matrix A from its

expectation A = E[A] below.

C.1.1 Tail estimates of deviations

Algorithm 1 updates the estimates â as the least dominant eigenvector of (IM ⊗

b̂
∗
)A(IM ⊗ b̂) where b̂ denotes the estimate in the previous step. The other estimate

b̂ is updated similarly from (â∗ ⊗ ID)A(â ⊗ ID). The matrices involved in these

updates are restricted version of A with separable projection operators.

In order to get a tightened perturbation bound for the estimates, we introduce a

new matrix norm with this separability structure. To define the new norm, we need

operators that rearrange an M -by-D matrix into a column vector of length MD and
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vice versa. For V = [v1, . . . ,vM ] ∈ CM×D, define

vec(V ) = [v>1 , . . . ,v
>
M ]>.

Let mat(·) denote the inverse of vec(·) so that

mat(vec(V )) = V , ∀V ∈ CM×D

and

vec(mat(v)) = v, ∀v ∈ CMD.

With these vectorization and matricization operators, we define the matricized Sp-

norm of v ∈ CMD by

|||v |||Sp = ‖mat(v)‖Sp .

Then the matricized operator norm of M ∈ CMD×MD is defined by

|||M |||Sp→Sq := max
|||v |||Sp≤1

|||Mv |||Sq .

For p = 1 and q = ∞, by the Courant-Fischer minimax principle, the matricized

operator norm is written as a variational form

|||M |||S1→S∞ = max
Υ,Υ′∈CM×D

|〈vec(Υ′),Mvec(Υ)〉|

subject to ‖Υ‖S1 ≤ 1, ‖Υ′‖S1 ≤ 1.

Since the unit ball with respect to the S1-norm is given as the convex hull of all
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unit-S2-norm matrices of rank-1, |||M |||S1→S∞ is equivalently rewritten as

|||M |||S1→S∞ = max
Υ,Υ′∈CM×D

|〈vec(Υ′),Mvec(Υ)〉|

subject to ‖Υ‖S2 ≤ 1, ‖Υ′‖S2 ≤ 1

rank(Υ) = rank(Υ′) = 1.

(C.1)

Therefore, by dropping the rank-1 constraints in (C.1), we obtain

|||M |||S1→S∞ ≤ ‖M‖, ∀M ∈ CMD×MD. (C.2)

The following lemma provides a tail estimate of |||E |||S1→S∞ divided byK2‖x‖2
2‖u‖2

2,

which amounts to the spectral gap between the two smallest eigenvalues of A. Com-

pared to the analogous tail estimate for its spectral norm, derived in [83, Section 3.2],

the tail estimate for |||E |||S1→S∞ is smaller in order. This is the reason why we

obtain a better sample complexity by introducing the extra rank-1 structure to the

prior model on impulse responses.

Lemma C.1.1. Let E = A −A. For any β ∈ N, there exist a numerical constant

C and a constant C(β) that depends only on β such that

|||E |||S1→S∞
K2‖x‖2

2‖u‖2
2

≤ C(β) logα(MKL)
[( 1√

M
+

√
D

K

)
µ2

+
ρx,w√

ηKLσw‖x‖2

(
µ
(√K
M

+

√
D

M
+

√
D

K

)
+ 1
)

+

√
D

η
√
L

] (C.3)

holds with probability 1− CK−β.

Proof of Lemma C.1.1. The derivation of (C.3) is similar to that for the analogous

tail estimate for ‖E‖ in [83, Section 3.2]. We use the same decomposition of E, which

is briefly summarized below.

We decompose Y as Y = Y s + Y n, where the noise-free portion Y s (resp. the

noise portion Y n) is obtained as we replace ym = hm ~ x + wm in Y by its first
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summand hm ~ x (resp. by its second summand wm) for all m = 1, . . . ,M . Then

E is written as the sum of three matrices whose entries are given as polynomials of

subgaussian random variables of different order as follows.

E = Φ∗Y ∗sY sΦ− E[Φ∗Y ∗sY sΦ] (C.4)

+ Φ∗Y ∗sY nΦ + Φ∗Y ∗nY sΦ (C.5)

+ Φ∗(Y ∗nY n − σ2
w(M − 1)LIMK)Φ. (C.6)

We first compute tail estimates of the components; the tail estimate in (C.3) is

then obtained by combining these results via the triangle inequality.

For the first summand in (C.4) and the last summand in (C.6), we were not able

to reduce their tail estimates in order compared to the spectral norms. Thus we use

their tail estimates on the spectral norms derived in [83, Section 3.2], which are also

valid tail estimates by (C.2). For the completeness, we provide the corresponding

lemmas below.

Lemma C.1.2 ([83, Lemma 3.5]). Suppose that (A1) holds. For any β ∈ N, there

exist a numerical constant α ∈ N and a constant C(β) that depends only on β such

that

‖Φ∗Y ∗sY sΦ− E[Φ∗Y ∗sY sΦ]‖
K2‖x‖2

2‖u‖2
2

≤ C(β) logα(MKL)
(√ 1

M
+

√
D

K

)
µ2 (C.7)

holds with probability 1− CK−β.

Lemma C.1.3 ([83, Lemma 3.7]). Suppose that (A1) holds. For any β ∈ N, there is

a constant C(β) that depends only on β such that

‖Φ∗(Y ∗nY n − σ2
w(M − 1)LIMK)Φ‖

K2‖x‖2
2‖u‖2

2

≤ C(β) logα(MKL)

η
·
√
D

L
(C.8)
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with probability 1− CK−β.

For the second and third terms in (C.5), we use their tail estimates given in the

following lemma.

Lemma C.1.4. Suppose that (A1) holds. For any β ∈ N, there exists a constant

C(β) that depends only on β such that, conditional on the noise vector w,

|||Φ∗Y ∗sY nΦ |||S1→S∞
K2‖x‖2

2‖u‖2
2

≤ C(β)ρx,w√
ηKLσw‖x‖2

(
µ
(√K
M

+

√
D

M
+

√
D

K

)
+ 1
)

(C.9)

holds with probability 1− CK−β.

Finally, the tail estimate in (C.3) is obtained by combining (C.7), (C.7), and (C.9)

via the triangle inequality. This completes the proof.

We will also make use of a tail estimate of |||Eu |||S∞/‖u‖2, again normalized by

factor K2‖x‖2
2‖u‖2

2. The following lemma, which provides a relevant tail estimate, is

a direct consequence of Lemma C.1.4 and [83, Lemma 3.8].

Lemma C.1.5. Let E = A −A. For any β ∈ N, there exist a numerical constant

C and a constant C(β) that depends only on β such that

|||Eu |||S∞
K2‖x‖2

2‖u‖3
2

≤ C(β) logα(MKL)
[ ρx,w√

ηKLσw‖x‖2

(
µ
(√K
M

+

√
D

M
+

√
D

K

)
+ 1
)

+

√
D

η
√
ML

]

(C.10)

holds with probability 1− CK−β.

C.1.2 Proof of Proposition A.1.2

To simplify notations, let θ = ∠(b, b̂) denote the principal angle between the two

subspaces spanned respectively by b and b̂, i.e., θ ∈ [0, π/2] satisfies

sin θ = ‖P b⊥ b̂‖2, cos θ = ‖P bb̂‖2,
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where P b denotes the orthogonal projection onto the span of b. The assumption in

(A.8) implies θ ≤ π/4.

Recall that Algorithm 1 updates â from a given estimate b̂ in the previous step

as the eigenvector of the matrix (IM ⊗ b̂
∗
)A(IM ⊗ b̂) corresponding to the smallest

eigenvalue. Without loss of generality, we may assume that ‖b̂‖2 = 1.

By direct calculation, we obtain that A = E[A] is rewritten as

A = K2‖x‖2
2‖b‖2

2(‖a‖2
2IM − diag(|a|2))⊗ P b⊥ +K2‖x‖2

2‖b‖2
2(‖a‖2

2IM − aa∗)⊗ P b.

(C.11)

Then

(IM⊗b̂
∗
)A(IM⊗b̂) = K2‖x‖2

2‖b‖2
2(‖a‖2

2IM−cos2 θ aa∗)−K2‖x‖2
2‖b‖2

2 sin2 θ diag(|a|2).

(C.12)

Here |a|2 denotes the vector whose kth entry is the squared magnitude of the kth

entry of a and diag(|a|2) is a diagonal matrix whose diagonal entries are given by

|a|2.

We verify that the matrix ‖a‖2
2IM − cos2 θ aa∗ is positive definite and its smallest

eigenvalue, which has multiplicity 1, is smaller than the next smallest eigenvalue by

‖a‖2
2 cos2 θ. Furthermore, a is collinear with the eigenvector corresponding to the

smallest eigenvalue.

Let us consider the following matrix:

K2‖x‖2
2‖b‖2

2‖a‖2
2IM − (IM ⊗ b̂

∗
)A(IM ⊗ b̂)

= K2‖x‖2
2‖b‖2

2 cos2 θ aa∗

+K2‖x‖2
2‖b‖2

2 sin2 θ diag(|a|2)− (IM ⊗ b̂
∗
)E(IM ⊗ b̂),

which we considered as a perturbed version of K2‖x‖2
2‖b‖2

2 cos2 θ aa∗. Then the
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perturbation, that is the difference of the two matrices, satisfies

∥∥∥K2‖x‖2
2‖b‖2

2‖a‖2
2IM − (IM ⊗ b̂

∗
)A(IM ⊗ b̂)−K2‖x‖2

2‖b‖2
2 cos2 θ aa∗

∥∥∥

≤
∥∥∥K2‖x‖2

2‖b‖2
2 sin2 θ diag(|a|2)

∥∥∥+ ‖(IM ⊗ b̂
∗
)E(IM ⊗ b̂)‖

≤ K2‖x‖2
2‖b‖2

2‖a‖2
∞ sin2 θ + |||E |||S1→S∞ . (C.13)

For sufficiently large C1(β), the conditions in (A.8), (A.9), (A.10), (A.11) imply

K2‖x‖2
2‖b‖2

2‖a‖2
2 cos2 θ > 2(K2‖x‖2

2‖b‖2
2‖a‖2

∞ sin2 θ + |||E |||S1→S∞).

Therefore, â is a unique dominant eigenvector ofK2‖x‖2
2‖b‖2

2‖a‖2
2IM−(IM⊗b̂

∗
)A(IM⊗

b̂).

Next we apply Lemma B.0.1 for

M = K2‖x‖2
2‖b‖2

2 cos2 θ aa∗,

M = K2‖x‖2
2‖b‖2

2‖a‖2
2IM − (IM ⊗ b̂

∗
)A(IM ⊗ b̂),

q1 =
a

‖a‖2

, q̃ = â.

Then λ and D in Lemma B.0.1 are given as λ = K2‖x‖2
2‖b‖2

2‖a‖2
2 cos2 θ and D = 0.

By (C.13), we have

‖M −M‖
λ

≤ ‖a‖
2
∞ sin2 θ

‖a‖2
2 cos2 θ

+
|||E |||S1→S∞

K2‖x‖2
2‖b‖2

2‖a‖2
2 cos2 θ

≤ µ2

M
+

2|||E |||S1→S∞
K2‖x‖2

2‖b‖2
2‖a‖2

2

,

where the last step follows from (A.8). Therefore, for sufficiently large C1(β), the

conditions in (A.9), (A.10), (A.11) combined with Lemma C.1.1 satisfy (B.3) in

Lemma B.0.1 and we obtain the error bound in (B.4).
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It remains to compute ‖(N −M )q1‖2/λ. The `2-norm of (M −M )q1 satisfies

‖(M −M )q1‖2 ≤
K2‖x‖2

2‖b‖2
2 sin2 θ‖diag(|a|2)a‖2

‖a‖2

+
‖(IM ⊗ b̂

∗
)E(a⊗ b̂)‖2

‖a‖2

≤ K2‖x‖2
2‖b‖2

2‖a‖2
∞ sin2 θ + 3 sin θ |||E |||S1→S∞ +

cos2 θ |||E(a⊗ b) |||S∞
‖a‖2‖b‖2

,

(C.14)

where the second step follow from the decomposition of b̂ given by

b̂ = P bb̂+ P b⊥ b̂.

which satisfies ‖P bb̂‖2 = cos θ and ‖P b⊥ b̂‖2 = sin θ. By dividing the right-hand side

of (C.14) by λ, we obtain

4‖(M −M)q1‖2

λ
≤ 4‖a‖2

∞ sin2 θ

‖a‖2
2 cos2 θ

+
12 sin2 θ |||E |||S1→S∞
K2‖x‖2

2‖b‖2
2‖a‖2

2 cos2 θ
+

4|||Eu |||S∞
K2‖x‖2

2‖u‖3
2

≤
(8µ2

M
+

24|||E |||S1→S∞
K2‖x‖2

2‖u‖2
2

)
sin θ +

4|||Eu |||S∞
K2‖x‖2

2‖u‖3
2

, (C.15)

where the second step follows from (A.8).

By Lemma C.1.1, the constant factor for sin θ in (C.15) becomes less than 1/2 as

we choose C1(β) in (A.9), (A.10), (A.11) sufficiently large. This gives (A.12), where

the expression for κ follows from Lemma C.1.5. This completes the proof.

C.1.3 Proof of Proposition A.1.3

The proof of Proposition A.1.3 is similar to that of Proposition A.1.2. Thus we will

only highlight the differences between the two proofs.

Without loss of generality, we assume that ‖â‖2 = 1. Let θ̆ = ∠(a, â). The

assumption in (A.14) implies θ̆ ≤ π/4. This time, we compute the least dominant
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eigenvector of (â∗ ⊗ ID)A(â⊗ ID). From (C.11), we obtain

(â∗⊗ID)A(â⊗ID) = K2‖x‖2
2‖a‖2

2(‖b‖2
2ID−cos2 θ̆ bb∗)−K2‖x‖2

2‖b‖2
2‖|a|� â‖2

2P b⊥ .

(C.16)

We consider the matrix

K2‖x‖2
2‖b‖2

2‖a‖2
2ID − (â∗ ⊗ ID)A(â⊗ ID)

= K2‖x‖2
2‖a‖2

2 cos2 θ̆ bb∗

+K2‖x‖2
2‖b‖2

2‖|a| � â‖2
2P b⊥ − (â∗ ⊗ ID)E(â⊗ ID)

as a perturbed version of K2‖x‖2
2‖a‖2

2 cos2 θ̆ bb∗. The difference of the two matrices

satisfies

∥∥∥K2‖x‖2
2‖b‖2

2‖a‖2
2ID − (â∗ ⊗ ID)A(â⊗ ID)−K2‖x‖2

2‖b‖2
2‖a‖2

2 cos2 θ̆P b

∥∥∥

≤
∥∥∥K2‖x‖2

2‖b‖2
2‖|a| � â‖2

2P b⊥

∥∥∥+ ‖(â∗ ⊗ ID)E(â⊗ ID)‖

≤ K2‖x‖2
2‖b‖2

2‖a‖2
∞ + |||E |||S1→S∞ .

For sufficiently large C1(β), the conditions in (A.8), (A.9), (A.10), (A.11) imply

K2‖x‖2
2‖b‖2

2‖a‖2
2 cos2 θ > 2(K2‖x‖2

2‖b‖2
2‖a‖2

∞ sin2 θ + |||E |||S1→S∞).

Therefore, b̂ is also a unique dominant eigenvector of K2‖x‖2
2‖b‖2

2‖a‖2
2ID − (â∗ ⊗

ID)A(â⊗ ID).
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Next we apply Lemma B.0.1 for

M = K2‖x‖2
2‖a‖2

2 cos2 θ̆ bb∗,

M = K2‖x‖2
2‖b‖2

2‖a‖2
2ID − (â∗ ⊗ ID)A(â⊗ ID),

q1 =
b

‖b‖2

, q̃ = b̂.

Then λ and D in Lemma B.0.1 are given as λ = K2‖x‖2
2‖b‖2

2‖a‖2
2 cos2 θ̆ and D = 0.

Similarly to the proof of Proposition A.1.2, we show

‖M −M‖
λ

≤ 2µ2

M
+

2|||E |||S1→S∞
K2‖x‖2

2‖b‖2
2‖a‖2

2

and

4‖(M −M )q1‖2

λ
≤ 24|||E |||S1→S∞

K2‖x‖2
2‖u‖2

2

sin θ +
4|||Eu |||S∞
K2‖x‖2

2‖u‖3
2

.

Here we used the decomposition of â given by

â = P aâ+ P a⊥â.

which satisfies ‖P aâ‖2 = cos θ̆ and ‖P a⊥â‖2 = sin θ̆.

The remaining steps are identical to those in the proof of Proposition A.1.2 and

we omit further details.

C.2 Convergence of the Rank-1 Truncated Power Iteration Method

In this section, we prove Proposition A.1.4. First we present a theorem that shows

local convergence of the rank-1 truncated power method for general matrix input B.

Then we will show the proof of Proposition A.1.4 as its corollary.

The separability structure in (1.5) corresponds to the rank-1 structure when the
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eigenvector is rearranged as a matrix. We introduce a collection of structured sub-

spaces, where their Minkowski sum is analogous to the support in the sparsity model.

For (a, b) ∈ CM × CD, we define

T (a, b) := {a⊗ ξ + q ⊗ b | ξ ∈ CD, q ∈ CM}.

Then

mat(T (a, b)) = {mat(v) | v ∈ T (a, b)}

is equivalent to the tangent space of the rank-1 matrix U = ab>.

Now we state a local convergence result for the rank-1 truncated power method

in the following theorem, the proof of which is postponed to Section C.2.1.

Theorem C.2.1. Let u = a⊗ b be a unique dominant eigenvector of B. Define

λ̃2(B) := sup
v,(â,b̂),(ã,b̃)

{
v∗Bv | ‖v‖2 ≤ 1, v ∈ u⊥ ∩ [T (a, b) + T (â, b̂) + T (ã, b̃)]

}
.

Suppose that

√
5(λ̃2(B) + 6|||B −B |||S1→S∞)√

1− τ 2 λ1(B)− τ λ̃2(B)− 6(
√

1− τ 2 + τ)|||B −B |||S1→S∞
< µ, (C.17)

4
√

6|||B −B |||S1→S∞
λ1(B)

≤ min
[ 1

3
√

2
,
(1− µ)τ

1 + µ

]
, (C.18)

and

λ̃2(B) + 6|||B −B |||S1→S∞ ≤
λ1(B)

5
(C.19)

hold for some 0 < µ < 1 and 0 < τ < 1
3
√

2
. If sin∠(u0,u) ≤ τ , then (ut)t∈N produced

by Algorithm 2 satisfies

sin∠(ut,u) ≤ µ sin∠(ut−1,u) +
(1 + µ)4

√
6|||(B −B)u |||S∞
λ1(B)

, ∀t ∈ N. (C.20)
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Proposition A.1.4 is a direct consequence of Theorem C.2.1 for the case where the

input matrix B is given as B = ‖E[A]‖ IMD −A. We provide the proof below.

Proof of Proposition A.1.4. Given B = ‖E[A]‖ IMD − A, we apply Theorem C.2.1

for

B = K2‖x‖2
2uu

∗.

Then the difference between B and B is given by

B −B = (‖E[A]‖ −K2‖x‖2
2‖u‖2

2)IMD +K2‖x‖2
2Υ−E. (C.21)

In Section C.1.2, we have computed A = E[A] in (C.11), which is rewritten as

A = K2‖x‖2
2(‖u‖2

2P u⊥ −Υ) (C.22)

with

Υ = diag(|a|2)⊗ ‖b‖2
2P b⊥ ,

where u = a⊗ b.

Therefore, it follows from (C.22) that

|‖A‖ −K2‖x‖2
2‖u‖2

2| ≤ K2‖x‖2
2‖Υ‖ ≤ K2‖x‖2

2‖b‖2
2‖a‖2

∞. (C.23)

Then by plugging in (C.23) to (C.21), we obtain

|||B −B |||S1→S∞ ≤ 2K2‖x‖2
2‖b‖2

2‖a‖2
∞ + |||E |||S1→S∞ . (C.24)

On the other hand, B is a rank-1 matrix whose eigenvector is collinear with u

141



and the largest eigenvalue is given by

λ1(B) = K2‖x‖2
2‖b‖2

2‖a‖2
2. (C.25)

Therefore, B also satisfies

λ̃2(B) = 0.

Since λ̃2(B) = 0, (C.17) and (C.18) are implied by

|||B −B |||S1→S∞
λ1(B)

≤ C0 min
[
µ
√

1− τ 2,
(1− µ)τ

1 + µ

]
, (C.26)

for a numerical constant C0.

By applying (C.25) and the tail estimate of |||E |||S1→S∞ given in Lemma C.1.1 to

(C.24), we verify that the sufficient condition in (C.26) is implied by (A.9), (A.10),

and (A.11) for C1 = c(µ, τ)C ′1, C2 = c(µ, τ)C ′2 where C ′1 and C ′2 are constants that

only depend on β.

Since the conditions in (C.17) and (C.18) are satisfied, Theorem C.2.1 provides

the error bound in (A.15). This completes the proof.

C.2.1 Proof of Theorem C.2.1

In order to prove Theorem C.2.1, we first provide lemmas, which show upper bounds

on the estimation error, given in terms of the principal angle, in the corresponding

steps of Algorithm 2.

The first lemma provides upper bounds on norms of a matrix and a vector when

they are restricted with a projection operator onto a subspace with the separability

structure.

Lemma C.2.2. Let

T̆ =
r∑

k=1

T (ak, bk)
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for {(ak, bk)}rk=1 ⊂ CM × CD, M ∈ CMD×MD, and u ∈ CMD. Then

‖P T̆MP T̆‖ ≤ 2r|||M |||S1→S∞

and

‖P T̆Mu‖2 ≤
√

2r|||Mu |||S∞ .

Proof. Let v ∈ T̆ . Then rank(mat(v)) ≤ 2r. Let

mat(v) =
2r∑

l=1

σlqlξ
>
l

denotes the singular value decomposition of mat(v), where ‖ql‖2 = ‖ξl‖2 = 1 and

σl ≥ 0 for k = 1, . . . , 2r. Then

v =
2r∑

l=1

σlql ⊗ ξl.

Similarly, we can represent v′ ∈ T̆ as

v′ =
2r∑

j=1

σ′jq
′
j ⊗ ξ′j.

Then

|〈v′,Mv〉| ≤
2r∑

j,l=1

σlσ
′
j|〈(q′j ⊗ ξ′j),M (ql ⊗ ξl)〉|

≤
2r∑

l=1

σl

2r∑

j=1

σ′j|||M |||S1→S∞

≤ 2r‖v‖2‖v′‖2|||M |||S1→S∞ .
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Therefore,

‖P T̆MP T̆‖ = sup
v,v′∈T̆

{〈v′,Mv〉 | ‖v‖2 = ‖v′‖2 = 1} ≤ 2r|||M |||S1→S∞ .

This proves the first assertion. The second assertion is obtained in a similar way by

fixing v = u.

The following lemma is a direct consequence of the Davis-Kahan Theorem together

with Lemma C.2.2.

Lemma C.2.3 (Perturbation). Let {(ak, bk)}rk=1 ⊂ CM × CD satisfy

T (a, b) ⊂
r∑

k=1

T (ak, bk) =: T̆ .

Let v (resp. u) be a unique most dominant eigenvector of P T̆M 1P T̆ (resp. P T̆M 2P T̆ ).

If

λ2(P T̆M 2P T̆ ) + 2r |||M 1 −M 2 |||S1→S∞ ≤
λ1(P T̆M 2P T̆ )

5
, (C.27)

then

sin∠(v,u) ≤ 4
√

2r|||(M 1 −M 2)u |||S∞
λ1(P T̆M 2P T̆ )

.

The following lemma shows how the conventional power method converges de-

pending on the largest and second largest eigenvalues.

Lemma C.2.4 (A Single Iteration of Power Method [97, Theorem 1.1]). Let M have

a unique dominant eigenvector v. Then

sin∠(Mv̂,v) ≤ λ2(M ) sin∠(v̂,v)

λ1(M ) cos∠(v̂,v)− λ2(M ) sin∠(v̂,v)

for any v̂ such that 〈v̂,v〉 6= 0.

The following lemma is a modification of [84, Lemma 12] and shows that the
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correlation is partially preserved after the rank-1 truncation. Unlike the canonical

sparsity model, where the atoms are mutually orthogonal, in the low-rank atomic

model, atoms in an atomic decomposition may have correlation. Our proof addresses

this general case and the argument here also applies to an abstract atomic model.

Lemma C.2.5 (Correlation after the Rank-1 Truncation). Let v̆ ∈ CMD satisfy

‖v̆‖2 = 1 and rank(mat(v̆)) = 1. For v ∈ CMD such that ‖v‖2 = 1, let V̂ ∈ CM×D

denote the best rank-1 approximation of V = mat(v) and v̂ = vec(V̂ ). Then

|〈v̂, v̆〉| ≥ |〈v, v̆〉| −min
(√

1− |〈v, v̆〉|2, 2(1− |〈v, v̆〉|2)
)
. (C.28)

Proof of Lemma C.2.5. There exist ă ∈ CM and b̆ ∈ CD such that

U = mat(v̆) = ăb̆
>
.

Let â ∈ CD and b̂ ∈ CD respectively denote the left and right singular vectors of

the rank-1 matrix V̂ . Define T1 = T ({(ă, b̆)}), T2 = T ({(â, b̂)}), and T3 = T1 ∩ T2.

Then T1 + T2 is rewritten as

T1 + T2 = P T⊥2
T1 ⊕ T2 = P T⊥2

T1 ⊕ T3 ⊕ P T⊥3
T2. (C.29)

Similarly, we also have

T1 + T2 = T1 ⊕ P T⊥1
T2 = P T⊥3

T1 ⊕ T3 ⊕ P T⊥1
T2. (C.30)

By the definition of T2, we have

‖P T2v‖2 ≥ ‖P T1v‖2.
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Therefore,

‖P P
T⊥3

T2v‖2 ≥ ‖P P
T⊥3

T1v‖2.

Then by (C.29) and (C.30) it follows that

‖P P
T⊥1

T2v‖2 ≥ ‖P P
T⊥2

T1v‖2. (C.31)

By the Cauchy-Schwartz inequality and the Pythagorean identity, we have

|〈v, v̆〉|2 = |〈P T1v, v̆〉|2 ≤ ‖P T1v‖2
2 ≤ 1− ‖P T⊥1

v‖2
2 ≤ 1− ‖P P

T⊥1
T2v‖2

2 ≤ 1− ‖P P
T⊥2

T1v‖2
2,

where the last step follow from (C.31). The above inequality is rearranged as

‖P P
T⊥2

T1v‖2 ≤
√

1− |〈v, v̆〉|2. (C.32)

We may assume that |〈v, v̆〉| > 2−1/2. Otherwise, the right-hand side of (C.28)

becomes negative and the inequality holds trivially. Then by (C.32) we have

‖P P
T⊥2

T1v‖2 < |〈v, v̆〉|,

which also implies

‖P P
T⊥2

T1v‖2‖P P
T⊥2

T1v̆‖2 < |〈v, v̆〉|. (C.33)
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Since P T1+T2v̆ = v̆, we have

|〈v, v̆〉| = |〈P T1+T2v, v̆〉|

= |〈(P P
T⊥2

T1 + P T2)v, v̆〉|

= |〈P P
T⊥2

T1v, v̆〉|+ |〈P T2v, v̆〉|

≤ ‖P P
T⊥2

T1v‖2‖P P
T⊥2

T1v̆‖2 + ‖P T2v‖2‖P T2v̆‖2

≤ ‖P P
T⊥2

T1v‖2‖P P
T⊥2

T1v̆‖2 +
√

1− ‖P P
T⊥2

T1v‖2
2

√
1− ‖P P

T⊥2
T1v̆‖2

2

By solving the above inequality for ‖P P
T⊥2

T1v̆‖2 under the condition in (C.33),

we obtain

‖P P
T⊥2

T1v̆‖2 ≤ ‖P P
T⊥2

T1v‖2|〈v, v̆〉|+
√

1− ‖P P
T⊥2

T1v‖2
2

√
1− |〈v, v̆〉|2

≤ min(1, 2
√

1− |〈v, v̆〉|2). (C.34)

Since P T2(v − v̂) = 0, we have

|〈v, v̆〉| − |〈v̂, v̆〉| ≤ |〈v − v̂, v̆〉|

= |〈P P
T⊥2

T1(v − v̂), v̆〉|

= |〈P P
T⊥2

T1v, v̆〉|

≤ ‖P P
T⊥2

T1v‖2‖P P
T⊥2

T1v̆‖2

≤ min
(√

1− |〈v, v̆〉|2, 2(1− |〈v, v̆〉|2)
)
,

where the last step follows from (C.32) and (C.34). The assertion is obtained by a

rearrangement.

Proof of Theorem C.2.1. We use the mathematical induction and it suffices to show

sin∠(vt,u) ≤ τ and (C.20) hold provided that sin∠(vt−1,u) ≤ τ for fixed t.
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Since rank(mat(vt)) = 1, there exist at ∈ CM and bt ∈ CD such that vt = at⊗bt.

Similarly, there exist at−1 ∈ CM and bt−1 ∈ CD that satisfy vt−1 = at−1 ⊗ bt−1. Let

T̆ = T (at−1, bt−1) + T (at, bt) + T (a, b).

Then define

ṽ′t =
P T̆BP T̆vt−1

‖P T̆BP T̆vt−1‖2

.

Note that Algorithm 2 produces the same result even when ṽt is replaced by ṽ′t.

Indeed, since P T̆vt−1 = vt−1, it follows that mat(Bvt−1) and mat(BP T̆vt−1) are

collinear, so are their rank-1 approximations. Moreover, by vt is obtained normalizing

as the normalized rearrangement of the rank-1 approximation of mat(Bvt−1), by the

construction of T̆ , it follows that mat(P T̆BP T̆vt−1) is also collinear with mat(Bvt−1).

Let V̂
′
t denote the rank-1 approximation of mat(ṽ′t) and û′t = vec(V̂

′
t). Then we

have

vt = û′t/‖û′t‖2.

Let v(T̆ ) denote a unique most dominant eigenvector of P T̆BP T̆ . Since ‖ṽ′t‖2 = 1,

we have ‖û′t‖2 ≤ 1. Therefore,

sin∠(vt,v(T̆ )) =

√
1− |〈vt,v(T̆ )〉|2 ≤

√
1− |〈û′t,v(T̆ )〉|2.

We apply Lemma C.2.5 with v̆ = v(T̆ ) and v = ṽ′t. By Lemma C.2.5, we have

|〈û′t,v(T̆ )〉| ≥ |〈ṽ′t,v(T̆ )〉| −min
(√

1− |〈ṽ′t,v(T̆ )〉|2, 2(1− |〈ṽ′t,v(T̆ )〉|2)
)
,

which implies

√
1− |〈û′t,v(T̆ )〉|2 ≤

√
5

√
1− |〈ṽ′t,u(T̆ )〉|2 =

√
5 sin∠(ṽ′t,v(T̆ )).
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We apply Lemma C.2.4 with M = P T̆BP T̆ , v = v(T̆ ), and v̂ = vt−1. Then

sin∠(ṽ′t,v(T̆ )) ≤ λ2(M) sin∠(vt−1,v(T̆ ))

λ1(M) cos∠(vt−1,v(T̆ ))− λ2(M) sin∠(vt−1,v(T̆ ))

≤ λ2(M)

λ1(M)
√

1− τ 2 − λ2(M) τ
· sin∠(vt−1,v(T̆ )), (C.35)

where the last step follows from sin∠(vt−1,v(T̆ )) ≤ τ ′.

Next we compute the two largest eigenvalues of P T̆BP T̆ . Since u is a unique

dominant eigenvector of B and P T̆u = u, we have λ1(P T̆BP T̆ ) = λ1(B). Therefore,

by the triangle inequality,

λ1(P T̆BP T̆ ) ≥ λ1(P T̆BP T̆ )− ‖P T̆ (B −B)P T̆‖

≥ λ1(B)− 6 |||B −B |||S1→S∞ . (C.36)

By the variational characterization of eigenvalues, we have

λ2(P T̆BP T̆ ) = sup
v
{v∗Bv | ‖v‖2 ≤ 1, v ∈ u⊥ ∩ T̆} ≤ λ̃2(B).

Therefore,

λ2(P T̆BP T̆ ) ≤ λ2(P T̆BP T̆ ) + ‖P T̆ (B −B)P T̆‖

≤ λ̃2(B) + 6 |||B −B |||S1→S∞ . (C.37)

By plugging in (C.36) and (C.37) into (C.35), we obtain that (C.17) implies

sin∠(vt,v(T̆ )) ≤ µ sin∠(vt−1,v(T̆ )). (C.38)
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Moreover, by the transitivity of the angle function [98], we also have

∠(vt−1,v(T̆ )) ≤ ∠(vt−1,u) + ∠(u,v(T̆ )). (C.39)

Next we apply Lemma C.2.3 for M 1 = B, M 2 = B, and v = v(T̆ ). Since (C.19)

implies (C.27), it follows from Lemma C.2.3 that

sin∠(u,v(T̆ )) ≤ 4
√

6|||(B −B)u |||S∞
λ1(B)

.

Then (C.18) implies

sin∠(vt,v(T̆ )) <
1

3
√

2
.

Since sin∠(vt−1,u) ≤ τ < 1
3
√

2
, it follows that (C.39) implies

sin∠(vt−1,v(T̆ )) ≤ sin∠(vt−1,u) + sin∠(u,v(T̆ )). (C.40)

By (C.18), (C.38), and (C.40),

sin∠(vt,v(T̆ )) <
1

3
√

2
.

Similarly to the previous case, the transitivity of the angle function implies

∠(vt,u) ≤ ∠(vt,v(T̆ )) + ∠(v(T̆ ),u).

Then it follows that

sin∠(vt,u) ≤ sin∠(vt,v(T̆ )) + sin∠(v(T̆ ),u).
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By collecting the above inequalities, we obtain

sin∠(vt,u) ≤ µ sin∠(vt,v(T̆ )) + (1 + µ) sin∠(v(T̆ ),u). (C.41)

Finally, we verify that (C.41) and (C.18) imply sin∠(vt,u) ≤ τ .

This completes the proof.

C.3 Proof of Lemma 3.4.1

Let x′ ∈ CL and b′ ∈ CD. By the definition of an adjoint operator, we have

〈x′ ⊗ b′ ⊗ 1M,1,A∗(y)〉 = 〈A(x′ ⊗ b′ ⊗ 1M,1),y〉.

Then by the definition of A, we continue as

〈A(x′ ⊗ b′ ⊗ 1M,1),y〉 =
M∑

m=1

〈CS∗Φmb
′x′,ym〉 =

M∑

m=1

x′∗C∗S∗Φmb
′ym

=
M∑

m=1

x′∗(JS∗Φmb
′ ~ ym) =

M∑

m=1

x′∗J(S∗Φmb
′ ~ Jym)

=
M∑

m=1

x′∗JC>ymS
∗Φmb

′.

Here we used the fact that the transpose of Ch satisfies C>h = CJh.

Finally, by tensorizing the last term, we obtain

M∑

m=1

x′∗JC>ymS
∗Φmb

′ =
M∑

m=1

x′∗((b′)∗ ⊗ IL)vec(JC>ymS
∗Φm)

=
M∑

m=1

(b′ ⊗ x′)∗vec(JC>ymS
∗Φm) =

M∑

m=1

(x′ ⊗ b′)∗vec(Φ∗mSCymJ).

The assertion follows since x′ and b′ were arbitrary.
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