
SEMANTIC REPRESENTATION LEARNING FOR
DISCOURSE PROCESSING

A Thesis Proposal
Presented to

The Academic Faculty

by

Yangfeng Ji

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology
August 2016

Copyright © 2016 by Yangfeng Ji

SEMANTIC REPRESENTATION LEARNING FOR
DISCOURSE PROCESSING

Approved by:

Professor Jacob Eisenstein, Advisor
School of Interactive Computing
Georgia Institute of Technology

Professor Noah Smith
Department of Computer Science &
Engineering
University of Washington

Professor Mark Riedl
School of Interactive Computing
Georgia Institute of Technology

Professor Chris Dyer
School of Computer Science
Carnegie Mellon University

Professor Byron Boots
School of Interactive Computing
Georgia Institute of Technology

Date Approved: April 27, 2016

ACKNOWLEDGEMENTS

First, I would like to thank Jacob Eisenstein for being a fantastic and insightful

advisor. He gave an opportunity to continue my dream of being a computer scientist,

helped me to find my research interests and my thesis topic. Working with him is a

joyful and fruitful experience. He basically teached everything about research, even

including how to debug my MATLAB code (unfortunately, only in my first semester).

Thank my thesis committee members: Byron Boots, Chris Dyer, Mark Riedl and

Noah Smith for their feedback and suggestions on my work, and for helping polishing

my dissertation. Special thank to Noah for reading my dissertation word by word. I

feel more confident about my writing after revising with his comments.

The School of Interactive Computing at Georgia Tech has been a great place to

study and work for the last 4 years. As a student transfered from another school, I

am lucky to have lots of friends for consistent support on my work. I want to thank

the student members and alumni in the Computational Linguistics Group (Yi Yang,

Umashanthi Pavalanathan, Sandeep Soni, Ian Stewart, Naman Goyal, Akanksha,

Rahul Goel, Yijie Wang, Ana Smith, Vinodh Krishnan, Gongbo Zhang and Caglar

Tirkaz) for their consistent support of my research. Also I would like to thank my

friends from not only Georgia Tech but some other places (Boyang Li, Hongliang Li,

Lei Liu, Lu Lu, Yun Wei, Liang Wu, Bo Xie, Cong Xiong, Richard Rutledge, Yi Yang,

Zhaoming Yin, Hong Yu, Xueyun Zhu) for their help in the past several years.

I must also thank the entire machine translation team in the JSALT workshop

2015 at University of Washington. It gave me a chance to experience a different style

of research and also got to know lots of excellent researchers in NLP and machine

learning. While at Seattle, I worked with many terrific collaborators and friends:

iii

Trevor Cohn, Chris Dyer, Kevin Duh, Reza Haffari, Lingpeng Kong, Yi Luan and

(of course) Jacob Eisenstein. Some of them have became my long-term collaborators,

and I am still enjoying work with them. The visiting to University of Washington

also made me realize that it has excellent community on both Linguistics and NLP.

So I decided to find myself a position there — thank Noah for providing me a job.

I spent two summers at Microsoft Research as research interns. MSR is not just

a place where I can get endless free StarBucks coffee, but also a place where I can

explore some new research interests, like conversational modeling. I want to thank

my mentors Dilek Hakkani-Tur (summer 2013) and Michel Galley (summer 2014),

and my collaborators at Speech group and NLP group: Asli Celikyilmaz, Larry Heck,

Gokhan Tur, Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Meg

Mitchell, Jianfeng Gao and Bill Dolan.

Finally, my deep thanks for the love and support from my family. To my dad and

mom for their unconditional love on whatever I want to do. To my grandfather — I

miss you! To my lovely wife Linejie for always being with me and going through all

the troubles together. To my little angel Sophie!

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

1.1 The Problem of Surface-form Representation 4

1.2 Distributed Representation of Words 7

1.3 Distributed Representation Functions for Texts 8

1.3.1 Representation functions with rich linguistic features 10

1.3.2 Representation functions with rich generation power 12

1.4 Representation Learning with Distant Supervision 14

1.5 Applications of Discourse Processing 16

1.5.1 Sentiment Analysis with Discourse Information 16

1.5.2 Discourse-aware Machine Translation 17

1.6 Contributions . 17

II BACKGROUND . 20

2.1 Discourse Structure . 20

2.1.1 Rhetorical Structure Theory 21

2.1.2 Lexicalized Tree Adjoining Grammar for Discourse 23

2.2 Computational Models for Discourse Processing 25

2.2.1 RST-style discourse processing 25

2.2.2 PDTB-style Parsing . 27

2.3 Machine Learning Models of Discourse Processing 29

2.3.1 Discourse processing as classification 29

2.4 Representation for Discourse Processing 31

2.4.1 Surface-form Representations 31

v

2.4.2 Distributed Representation 34

2.4.3 Distributed Representation for Sentences 35

III DISCOURSE PARSING WITH SUPERVISED REPRESENTA-
TION LEARNING . 37

3.1 Distributed Representation Learning for RST Parsing 38

3.1.1 Model . 39

3.1.2 Large-Margin Learning Framework 43

3.1.3 Evaluation . 48

3.2 Distributed Semantic Composition for Implicit Discourse Relation
Identification . 54

3.2.1 Entity augmented distributed semantics 57

3.2.2 Large-margin learning framework 60

3.2.3 Evaluation . 65

3.3 Discussion . 73

IV DISCOURSE-DRIVEN LANGUAGE MODELING 75

4.1 Prior Work on Language Modeling 77

4.2 Language modeling with document context 78

4.2.1 Recurrent Neural Network Language Models 79

4.2.2 Document Context Language Models 79

4.2.3 Evaluation . 83

4.3 Language Modeling with Discourse Relations 89

4.3.1 Shallow Discourse Relations 91

4.3.2 Discourse Relation Language Models 92

4.3.3 Inference . 94

4.3.4 Learning . 95

4.3.5 Evaluation . 96

4.4 Discussion . 102

V SEMANTIC REPRESENTATION LEARNING WITH DISTANT
SUPERVISION . 103

vi

5.1 Prior Work . 104

5.2 Domain Adaptation for Implicit Relation Identification 105

5.2.1 Learning feature representation 105

5.2.2 Resampling with minimal supervision 106

5.2.3 Evaluation . 107

5.3 Discussion . 111

VI APPLICATIONS OF DISCOURSE INFORMATION 112

6.1 Discourse Information for Sentiment Analysis 112

6.1.1 Prior Work on Discourse Information for Sentiment Analysis 114

6.1.2 Discourse depth reweighting 115

6.1.3 Rhetorical Recursive Neural Networks 117

6.1.4 Conclusion . 119

6.2 Discourse Information of Document-level MT 120

6.2.1 Prior work . 120

6.2.2 Greedy decoding . 121

6.2.3 Data and Sentence-level translation system 124

6.2.4 Preliminary results . 125

VII CONCLUSION . 128

REFERENCES . 130

vii

LIST OF TABLES

1 Additional features for RST parsing 47

2 Parsing results of different models on the RST-DT test set. The results
of TSP and HILDA are reprinted from prior work [90, 66]. 48

3 Proportion of relations with coreferent entities, according to automatic
coreference resolution and gold coreference annotation. 64

4 Experimental results on multiclass classification of level-2 discourse
relations. The results of Lin et al. (2009) [118] are shown in line 3. We
reimplemented this system and added the Brown cluster features from
Rutherford and Xue (2014) [170], with results shown in line 4. 68

5 Evaluation on the first-level discourse relation identification. The re-
sults of the competitive systems are reprinted. 72

6 Basic statistics of the Penn Treebank (PTB) and North American News
Text (NANT) data sets . 84

7 Perplexities of the Penn Treebank (PTB) and North American News
Text (NANT) data sets. 86

8 Coherence evaluation on the PTB test set. The reported accuracies
are calculated from 1,000 bootstrapping test sets (as explained in text). 89

9 Multiclass relation identification on the first-level PDTB relations. . . 100

10 The results of dialogue act tagging. 101

11 Language model perplexities (pplx), lower is better. The model di-
mensions K and H that gave best performance on the dev set are also
shown. 102

12 Performance of cross-domain learning for implicit discourse relation
identification. 110

13 Sentiment classification accuracies on two movie review datasets [153,
179]. 117

14 TED Talks data statistics and reference 1-best/oracle BLEU scores for
k-best reranKing (k=50) using a phrase-based MT system. 124

15 BLEU scores of greedy decoding with different document context lan-
guage models on four translation datasets. 126

viii

LIST OF FIGURES

1 Two examples about using discourse information in NLP applications.
More detail about discourse structure will be discussed in chapter 2. . 3

2 Three frameworks on discourse processing 5

3 A surface-form representation of some example words. Every word is
represented as a sparse numeric vector based the vocabulary. 7

4 An illustration of the distributed representation of words in a 2-D space. 8

5 The syntactic structure (constituent parse) of the example sentence
“Bob gave Tina the burger”. 10

6 The representation functions with rich linguistic features. 11

7 A RNNLM on a sentence from example 4. 13

8 A language model incorporating with discourse relation and contextual
information from previous sentence. 14

9 An example of RST from the RST-DT (adapted from the RST-DT
wsj 0639). 22

10 Examples from the article wsj 0639 in the PDTB. 24

11 The system pipeline of RST-style discourse processing. 26

12 The system pipeline of automatic RST-style discourse processing. . . 27

13 Decision problem with different representation functions 41

14 The performance of our parser over different latent dimension K. Re-
sults for Dplp include the additional features from Table 13 51

15 t-SNE Visualization on latent representations of words. 53

16 The distributed representations of “burger” and “hungry” are propa-
gated up the parse tree, clarifying the implicit discourse relation be-
tween u

(`)
0 and u

(r)
0 . 55

17 Distributed representations for the coreferent mentions “Tina” and
“she” are computed from the parent and sibling nodes. 55

18 t-SNE visualization [197] of word representations in the PDTB corpus.
The pronouns “she” and “he” are close to each other in the latent
space, so it will be nearly impossible for a distributional method to
distinguish the meaning of examples. 57

ix

19 The performance of disco2 (full model), over different latent dimen-
sions K. 69

20 A fragment of document-level recurrent neural network language model
(dRnnlm). It is also an extension of sentence-level RNNLM to the
document level by ignoring sentence boundaries. 76

21 Context-to-context and context-to-output DCLMs 81

22 Effect of length thresholds on predictive log-likelihood on the PDTB
development set. 87

23 The relation distributions of training examples from the source domain
(explicitly-marked relations) and target domain (implicit relations) in
the PDTB. 107

24 A Example of the RST structure for document-level sentiment analysis
(adapted from (Voll and Taboada, 2007) [198]). 113

25 Dependency-based discourse tree representation of the discourse in Fig-
ure 24 . 115

26 Every hypothesis pair (Hi−1,j, Hi,k) is used to compated a score for
greedy decoding. 122

27 An illustration of the greedy decoding procedure. 123

x

SUMMARY

Discourse processing is to identify coherent relations, such as contrast and causal

relation, from well-organized texts. The outcomes from discourse processing can bene-

fit both research and applications in natural language processing, such as recognizing

the major opinion from a product review, or evaluating the coherence of student

writings. Identifying discourse relations from texts is an essential task of discourse

processing. Relation identification requires intensive semantic understanding of texts,

especially when no word (e.g., but) can signal the relations. Most prior work relies on

sparse representation constructed from surface-form features (including, word pairs,

POS tags, etc.), which fails to encode enough semantic information. As an alterna-

tive, I propose to use distributed representations of texts, which are dense vectors

and flexible enough to share information efficiently.

The goal of my work is to develop new models with representation learning for

discourse processing. Specifically, I present a unified framework in this thesis to be

able to learn both distributed representation and discourse models jointly. The joint

training not only learns the discourse models, but also helps to shape the distributed

representation for the discourse models. Such that, the learned representation could

encode necessary semantic information to facilitate the processing tasks. The evalua-

tion shows that our systems outperform prior work with only surface-form represen-

tations. In this thesis, I also discuss the possibility of extending the representation

learning framework into some other problems in discourse processing. The problems

studied include (1) How to use representation learning to build a discourse model

with only distant supervision? The investigation of this problem will help to reduce

xi

the dependency of discourse processing on the annotated data; (2) How to combine

discourse processing with other NLP tasks, such as language modeling? The explo-

ration of this problem is expected to show the value of discourse information, and

draw more attention to the research of discourse processing. As the end of this thesis,

it also demonstrates the benefit of using discourse information for document-level

machine translation and sentiment analysis.

xii

CHAPTER I

INTRODUCTION

A natural language text does not normally consist of isolated sentences, but of sen-

tences in a coherent order. We call a coherent text as a discourse, in order to em-

phasize that the information conveyed by a discourse is usually larger than the sum

of information from individual sentences. Typically, the coherence of discourse is

characterized by several intrinsic features, such as the position of sentences, the order

of sentences, the connection of adjacent sentences and the context from surrounding

text [205]. These intrinsic features together imply a simple fact that “discourse has

structure” [71].

In natural language processing (NLP), we need discourse structure to help com-

puters capture the structural organization of a text, understand the main content of a

document, and generate a new coherent text. For example, the information embedded

in discourse structure can help sentiment analysis to get accurate results on product

reviews (Figure 1(a)), or it can make translated texts more fluent (Figure 1(b)).

Some other applications of discourse information include document coherence evalu-

ation [78, 143, 21], text generation [75], document summarization [121] and question

answering [51, 77]1.

Discourse processing is the language technology to extract discourse structures

from documents automatically. The research in discourse processing covers segment-

ing documents based on topic structures (topic segmentation), identifying anaphoric

structures of documents (anaphora/coreference resolution), and analyzing coherence

structures of documents (discourse parsing) [185]. In this thesis, I mainly focus on

1For more applications about discourse information, refer to [205, 189] and chapter 6.

1

discourse parsing, since this research topic is more close to semantic understand of

texts than the others.

There was only limited published work compared to other research areas in NLP

several years ago. The research progress on discourse processing has been dragged

down for more than a decade because of the semantic representation issue. To iden-

tify the discourse structure of a text, especially the discourse relations (e.g.; Cause,

Contrast or Temporal), requires a discourse processing system to capture the

semantic information between text units. However, the representation methods from

previous work are not flexible enough to encode sufficient semantic information. Con-

sider the example 1, in order to identify the discourse relation from the two sentences,

a human reader can easily understand that

(i) “She” refers to “Tina”;

(ii) “Burger” is a food which can relieve hunger, and

(iii) the reason Bob gave the burger to Tina is that “Tina” was hungry.

Therefore, the relation between these two sentences is: sentence (2) provides a Cause

for the action described in sentence (1).

Example 1.

What is the discourse relation between two sentences:

(1) Bob gave Tina the burger.

(2) She was hungry.

Theoretically, human reasoning can be simulated by a computer with logical rep-

resentations of sentences and an inference engine with logical power, as shown in

Figure 2(a). Prior work [70] argues that discourse relations can be inferred based on

the logical representations of sentences and a large set of inference rules with some

2

Macbook Pro seems to be
incompatible with everything

else.

But the machine is
awesome

CONTRAST

Sentiment Words incompatible awesome

Sentiment Score negative positive

Discourse satellite nucleus

Overall score Positive. In RST, nucleus text is more important than satellite text

Sentence 1 Sentence 2

(a) Discourse structure could identify which part of a text is more important then others
with respect to the content. In this example, the second sentence is more central than
the first sentence. Therefore, the overall sentiment score is positive, instead of neutral.

Google translation:
Amazon will significantly reduce its transportation costs, if you can
use the UAV delivery

Original text:
亚马逊将会大大降低它的运输成本，如果可以使用无人机送货。

Discourse-ware translation:

Discourse information:
(1) First clause – CONDITION – Second clause
(2) A subject is missing from the second clause

Discourse-aware decoding:
(1) The second clause has the same subject as the first

Final translation:
Amazon will significantly reduce its transportation costs, if it can
use the UAV delivery

(b) Discourse information could be used to eliminate translation errors with respect to
context. In this example, the second clause as the condition of the first, it should also
have the same subject as the first clause.

Figure 1: Two examples about using discourse information in NLP applications. More
detail about discourse structure will be discussed in chapter 2.

3

world knowledge. However, to implement this system, we will need a high-precision

semantic parser for getting logical representations [172], and a robust knowledge base

for constructing enough inference rules. Semantic parsing [146] and reasoning with

knowledge base [61] are two fruitful research areas. Combining them together for

automatic discourse processing will be an attractive research topic in the future, but

it is not feasible for now.

To get around the difficulty of building logical representations, researchers propose

an alternative way to represent texts for discourse processing, called surface-form rep-

resentation [185]. This representation utilizes the surface features including words,

phrases or other components extracted from a text and its syntactic parses. For

instance, simple features for the discourse in Example 1 are the word pairs from

the sentences, like 〈the, was〉, 〈burger, hungry〉 and 〈Tina, She〉, etc. These features

are easily converted into numeric vectors with a manually-designed feature vocabu-

lary [86]. Then, discourse processing is performed by some machine learning models

with numeric operations. The advantage is that these machine learning models are

learned from annotated corpora, without any extra world knowledge2. This represen-

tation methodology has facilitated discourse processing for many years. Figure 2(b)

illustrates the typical framework of a discourse processing system with machine learn-

ing models and surface-form representation.

1.1 The Problem of Surface-form Representation

However, representation with surface features has its fundamental limitations from

the perspective of machine learning and linguistics. Consider the example 1. If we

replace the word “burger” with “donut”, or “hungry” with “starving”, the relation

between these two sentences is still the same. An ideal representation on semantics

2Though it should be noted that annotating discourse information on texts definitely needs the
annotators’ world knowledge and even professional training.

4

Discourse processing
model

Semantic parserTexts

Discourse
structure

Logical
representation

(a) Discourse processing with logical representations
from semantic parser

Discourse processing
model

Feature extractorTexts

Surface-feature
vector

Discourse
structure

(b) Discourse processing with surface features

Discourse processing
model

Distributed
representation function

Proposed framework

Prediction procedure
Learning procedure

Texts

Distributed
Representation

Discourse
structure

(c) The proposed framework for distributed semantic
representation and discourse processing.

Figure 2: Three frameworks on discourse processing

5

should reflect the semantic similarity between these words. Unfortunately, surface-

form representation is limited by the amount of semantic information it can represent.

To make it clear, consider a simple surface-form representation in NLP called

the bag-of-words representation. To build a bag-of-words representation, we first

need a vocabulary constructed on a training corpus. Then, every text is represented

as a sparse numeric vector, which has the same size of the vocabulary. Figure 3

shows the surface-form representation of some example words. Every word in this

representation has a single non-zero element, and all the rest elements are zeros. An

immediate problem of this representation is the amount of semantic information. For

example, if we use a numeric distance between two word vectors as the metric of the

semantic (dis-)similarity, then we have

dist(wburger,wdonut) = dist(wburger,wgave) (1)

where dist(·, ·) can be any distance function defined in mathematics, e.g., `1 norm or

`2 norm. On the other hand, we all understand that the meaning of word “donut”

should be close to “burger” then “gave”. The example in Equation 1 demonstrates

the limitation of a surface-form representation from the linguistic perspective.

Another critical limitation of a surface-form representation is that the information

learned on a linguistic term cannot be transferred to a similar term. Recall that the

discourse processing models combined with surface-form representation (as shown in

2(b)) are essentially some machine learning models. A better machine learning model

is expected to be able to generalize what it learned from the training data onto some

unobserved test data, which is called the generalization power [15]. However, general-

ization with surface-form representation is not straightforward. Consider wburger and

wdonut, because they have different non-zero elements, the information learned about

“burger” cannot be transferred to “donut”. To obtain a model that can handle the

word “donut”, we need to make sure that this word is also contained in the training

corpus explicitly. In practice, it requires us to collect a huge amount of training data

6

Vocabulary: · · · donut gave hungry starving burger · · ·

wburger [· · · 0 0 0 0 1 · · ·]
wdonut [· · · 1 0 0 0 0 · · ·]
wgave [· · · 0 1 0 0 0 · · ·]

Figure 3: A surface-form representation of some example words. Every word is rep-
resented as a sparse numeric vector based the vocabulary.

in order to cover every possible cases, which is usually infeasible.

Besides these two major issues, there are some other limitations of surface-form

representation. For example, surface features depend heavily on the design of a feature

extractor, as shown in Figure 2(b). In practice, a manually-designed feature extractor

is not easily adaptable across different tasks. Surface features extracted from one task

may not be representative of another.

In the above example, I only discuss with words to demonstrate the problem of

surface-form representation. But the conclusions are also applied to the surface-form

representation of texts.

1.2 Distributed Representation of Words

Distributed representation [68] denotes linguistic terms (e.g., words, phrases, sen-

tences) in dense numeric vectors. Figure 4 illustrates the distributed representation of

five words in an example space, where every word is represented by a two-dimensional

numeric vector. Distributed representation here means (1) every word is represented

with multiple dimensions, and (2) every dimension is used to represent multiple words.

The flexibility of distributed representation provides the possibility of represent sim-

ilar words with similar vectors. As shown in Figure 4, if we still use the distance

between vectors as the metric of dissimilarity between words, it is intuitive that

words “burger” and “donut” are similar to each other comparing to “gave”.

Researchers in NLP propose a number of methods to construct the distributed

representation of words. A wide range of representation methods fall into a category

7

x

y

vburger

vdonut
vhungry

vstarving

vgave

Figure 4: An illustration of the distributed representation of words in a 2-D space.

called distributional representation, which is in general a special case of distributed

representation. It refers to any representation constructed from a method based on

the distributional hypothesis [64]. The hypothesis says that words that occur in the

same contexts tend to have similar meanings. In distributional representation, words

that have the similar contexts will be represented by the similar numeric vectors.

1.3 Distributed Representation Functions for Texts

Example 2.

Consider the representation of the following two sentences with a linear repre-

sentation function

(1) Bob gave Tina the burger.

(2) Tina gave Bob the burger.

For discourse processing, having a representation of words is not the end of the

story, since the smallest unit in discourse processing is a piece of text including at

least several words. The first question of applying distributed representation for

discourse processing is how to construct the distributed representation of texts, given

the representation of words? Consider the example sentence “She was hungry”, the

8

problem is how to construct the vector v{She was hungry} given vShe,vwas,vhungry,

v{She was hungry} = f(vShe,vwas,vhungry) (2)

where f(·) is a mathematical function mapping the word representations to the sen-

tence representation.

A special case is a linear representation function with addition as the composition

operation. For example, the representation of the sentence “She was hungry” is

v{She was hungry} = f(vShe,vwas,vhungry) = vShe + vwas + vhungry (3)

This simple representation function f(·) is useful in modeling phrases and short sen-

tences in prior work [144, 16]. Prior work also demonstrates that word representation

constructed with the distributional hypothesis [64] could encode semantic informa-

tion [139] (Figure 4). In this thesis, I propose to learn word representation in the

additional form, driven by the supervision information from discourse annotation.

The simplicity of this representation function is crucial for a successful modeling

when the annotated data is scarce.

However, the simplicity sacrifices the word order information in constructing sen-

tence representation. Consider the two sentences in Example 2. The numeric repre-

sentations with f(·) are same, even though the meanings of them are totally different.

The situation could be even worse for long sentences, because different composition

orders of a long sentence may also end up with different meanings. To solve this

problem, I propose to use artificial neural networks (ANNs) [14] to build the repre-

sentation function. There are two advantages of using ANNs: (i) the nonlinearity

of ANNs allows that a neural network based representation function is sensitive to

word orders, therefore different sentences consisting of the same words (like the sen-

tence (1) and (2) in Example 2) will eventually have different representations; (ii)

with a neural network based representation function, we are able to develop a unified

learning framework for both discourse processing and text representation.

9

S

NP

NNP

Bob

VP

VBD

gave

VP\VBD

NP

Tina

NP

DT

the

NN

burger

Figure 5: The syntactic structure (constituent parse) of the example sentence “Bob
gave Tina the burger”.

Figure 2(c) illustrates this new framework. Compare to Figure 2(b), I replace

the feature extractor with a distributed representation function. Correspondingly,

the outputs of this component will be the distributed representations of texts. More

important, during learning, the supervision information from discourse annotation can

backpropagate to the representation function, which allows the learning procedure to

tune the the representation function together with discourse models.

In this thesis, I present two categories of the neural network based representation

functions: the first category provides the possibility of incorporating rich linguistic

features into a representation function; and the second category focuses more on

modeling discourse information with a procedure of word generation. I will explain the

linguistic intuitions behind these two model categories. To simplify the description,

I assume each representation function is built on the sentence level. Extending these

functions to a text including multiple sentences will be discussed in other chapters of

this thesis.

1.3.1 Representation functions with rich linguistic features

The first idea of constructing a representation function is inspired by the principle of

compositionality from formal semantics [157]: the meaning of a sentence is a function

10

f{Bob ... burger}

vBob f{gave ... burger}

vgave f{Tina ... burger}

vTina f{the burger}

vthe fburger

(a) The representation function based
the syntactic structure in Figure 5.

g{Bob ... burger}

g{Bob gave}

vBob vgave

f{the burger}

vthe vburger

(b) The representation function of the
same sentence but from Tina’s perspec-
tive.

Figure 6: The representation functions with rich linguistic features.

of the meanings of the words within this sentence and of the way they are syntacti-

cally combined. Figure 5 shows the syntactic structure of combining words to form

phrases and the entire example sentence. Starting from the bottom of this structure,

it shows that combining the word “the” and “burger” to form the noun phrase “the

burger”. To build a representation function, the similar idea is employed to compose

the distributed representations of word vthe and vburger to obtain the distributed rep-

resentation of phrase f{the burger}. The mathematical function f simulates a simplified

semantic composition in formal semantics. As shown in Figure 6(a), the same func-

tion is used recursively to get the distributed representation of the example sentence.

The neural network model in Figure 6(a) is called recursive neural network. Recently,

it has been used for some NLP tasks relevant to either single sentence [175] or entire

document [115]. In my work, I use it as a base model to represent texts with more

linguistic features.

Example 3. Consider the discourse relation between these two sentences

(1) Bob gave Tina the burger.

(2) He was hungry.

11

To motivate which linguistic feature is also important for discourse processing, I

make a little modification on the second sentence of Example 1. The new sentence is

“he was hungry” (as in example 3). The difference is that the subject of the second

sentence now refers to “Bob” not “Tina”. In other words, the entity shared between

two sentences is changed from Tine to Bob. The change on the entity reference

also influences the discourse relation between two sentences. Instead of serving as a

reason as in example 1, the modified second sentence provides a contrastive situation.

This example illustrates that the discourse relation is not only about the semantic

understanding of each sentence, but also about the entity coreference relation between

sentences. To incorporate this linguistic phenomenon into distributed representation

of sentences, I propose an additional recursive neural network structure to reflect the

coreference relation between sentences. This additional structure (shown in Figure

6(b)) is an entity-oriented representation based on the syntactic structure in Figure

5. In this figure, g is another function to compose a node’s parent node and its sibling

node. Intuitively, it can be viewed as a representation of the sentence from an entity’s

perspective. The detail will be discussed in chapter 3.

1.3.2 Representation functions with rich generation power

The representation function category discussed in previous section directly targets

on discourse processing. In this section, I would like to propose another category of

representation functions from a different perspective: how the discourse information

could effect the word choice in language generation?

Consider the example 4, the problem is to choose a word to complete the sec-

ond sentence. The first sentence in this example provides the necessary contextual

information for the second. Specifically, we know from the first sentence that “the

machine” refers to “MacBook Pro”. The first sentence also indicates the writer’s

negative opinion about MacBook Pro. However, the word “But” suggests the second

12

h0 h1 h2 h3 h4 h5

START but the machine is

Figure 7: A RNNLM on a sentence from example 4.

sentence should describe something positive about this machine, in order to maintain

the constrastive situation indicated by the word “But”. This example shows the intu-

ition on how discourse information could constrain the word choice to guarantee the

coherence. In this section, I will briefly discuss how to formulate this intuition into

a neural network model, and eventually get a representation function for discourse

modeling.

Example 4. Choose a word to complete the following text:

Macbook Pro seems to be incompatible with everything else. But the machine is

.

The starting point of the mathematical formulation is a sentence-level language

model called recurrent neural network language model (RNNLM) [137]. RNNLM

is a probability distribution of words given the contextual information within the

same sentence. Based on the probability distribution, RNNLM is able to predict the

next most possible word. Figure 7 demonstrates the RNNLM on the second sentence

of Example 4, where the solid arrows indicate the information flow and the dashed

arrows indicate the word prediction. In each step, RNNLM makes a prediction of the

next word based on the current state h·.

To introduce the discourse information into language modeling, we first need a

context vector to summarize the contextual information from the preceding text. To

simplify the model formulation, we only consider the contextual information from

the previous sentence, and take last hidden states from the RNNLM of the previous

13

· · · h13 h14 h15 c z h20 h21 h22 h23

with everything else START but the machine · · ·

Figure 8: A language model incorporating with discourse relation and contextual
information from previous sentence.

sentence as the context vector. For example, in Figure 8, we take h15 as the summa-

rization of the contextual information for the first sentence in example 4, and rename

it as c. In the next step, context vector c is used to guess the possible discourse

relation z with the following sentence. Then, both z and c are used to constrain the

word choice, as shown by the dashed arrows in Figure 8.

The whole model is formulated in a generative procedure, where we start from the

previous sentence to predict the discourse relation, then use the predicted discourse

relation to help generate the words in the next sentence. For discourse modeling,

the generative procedure can be reversed using Bayes’ rule [15] to predict discourse

relation z with the information from both sentences. In addition, the generative

procedure can be directly applied to language modeling with discourse information.

More detail about this model will be discussed in chapter 4.

1.4 Representation Learning with Distant Supervision

The proposed models in section 1.2 all assume that supervision information is avail-

able for discourse processing. However, the assumption is not always valid for some

tasks. There are only a few corpora with human annotated discourse information.

Most of them are news articles from the Wall Street Journal in the 1980s. For some

discourse-relevant tasks, like discourse processing on academic writing, we may not

have any annotated data. Therefore, it is imperative to explore the possibility of

discourse processing with distant supervision.

14

Fortunately, discourse processing in some cases is much easier than in others.

Consider the example 5, the discourse relation in both sentence (a) and (b) is Con-

trast. Because of the word “but” in example (a), it is easy to recognize the relation.

In example (2), though, more semantic understanding on the sentence is required to

identify the relation. The words like “but”, which signal discourse relations explicitly,

are called discourse connectives. Discourse connectives facilitate the relation identi-

fication task for the cases including them (called explicit cases). Is it possible to use

supervision information from explicit cases to help predict the relations in the cases

without any discourse connective (called implicit cases)? The idea of using explicit

cases to help predict implicit cases is called learning with distant supervision.

Example 5.

Consider the discourse relations in the following two examples:

(1) Macbook Pro seems to be incompatible with everything else. But the ma-

chine is awesome.

(2) The key bindings of Macbook may take you a long time to get used to.

Other parts of it are easy to use.

Prior attempts on discourse processing with distant supervision constantly present

some negative results. For example, Sporleder and Lascarides (2008) [183] show that

the discourse model learned from explicitly cases works poorly on the implicit cases.

We argue that the major problem is representation method used in this work. Just

like prior work on discourse processing, it used a surface-form representation with

some manually-designed features. As discussed in section 1.1, it is not surprise about

the inferior performance presented in [183].

To deal with this issue, I utilize a representation learning method to map the

15

surface-form representations of both explicit and implicit cases into a common low-

dimensional space. This is just another way to construct the distributed representa-

tion. It share the same merit of other distributed representation forms — information

learned from some cases can be easily transferred into other cases. More detail of this

work will be discussed in chapter 5.

1.5 Applications of Discourse Processing

In this section, I will introduce how discourse information can be used to improve

the performance of some NLP tasks, including document-level sentiment analysis and

document-level machine translation. More detail is included in chapter 6.

1.5.1 Sentiment Analysis with Discourse Information

Sentiment analysis [155, 194] is a research area which analyzes the attitude or sub-

jectivity of a text. The output of sentiment analysis is usually positive, negative or

neutral. Most of existing work on sentiment analysis mainly focuses on the sentence

level. A simple method of sentence-level sentiment analysis is counting the number of

positive and negative words. If, for example, the positive words are more numerous

than the negative words, the text has positive polarity. However, it will be problem-

atic to directly apply a sentence-level sentiment model to long texts. As shown in

Figure 1(a), the simple method considers the user review a neutral text.

Discourse structures of this review can help this simple method to give a more

accurate result. Figure 1(a) illustrates how discourse structure can help to predict

sentiment polarity. First of all, a simple sentence-level sentiment classifier is employed

to justify the sentiment polarity of each sentence. Instead of treating every sentence

as equally important, the discourse information identifies which sentences are more

important with respect to the writer’s intention. Then, the important sentences are

assigned with a higher weight in computing the overall sentiment score of this review.

In addition, the weight of each sentence can also be learned given the overall sentiment

16

score of a review and its discourse structure. Both ideas will be discussed in more

detail in section 6.1.

1.5.2 Discourse-aware Machine Translation

Similar to sentiment analysis, state-of-the-art machine translation (MT) systems [99]

also works on the sentence level only. Directly translating a text with multiple sen-

tences is limited by its feasibility. For a given text in the source language (for example,

Chinese), the set of translation candidates in the target language (for example, En-

glish) can be exponentially large with the number of tokens. Therefore searching for

the optimal translation candidate (called decoding in MT) can be difficult or even

impossible in a long text. However, translating a text sentence-by-sentence will defi-

nitely lose context information, which can be useful for decoding words in the current

sentence. As shown in Figure 1(b), without context information, the translation for

the second sentence looks inappropriate.

In this thesis, I present preliminary work on discourse for machine translation

based on the joint models on discourse and word generation. Instead of running into

the difficulty of decoding words from a long text directly, I assume that each sentence

in the source language has been translated into the target language with up to n

candidates. (In MT, the list of n candidates is often called a n-best list.) The task of

document-level machine translation is to perform an additional decoding procedure

on the n-best list given contextual information as additional features for decoding.

1.6 Contributions

As a summary of contributions, I explore the utility of representation learning for

automatic discourse processing. The goal is to show the value of learning distributed

representation in discourse modeling with supervision and distant supervision infor-

mation. More specific, the benefit is demonstrated from three aspects: (1) supervised

representation learning for discourse parsing; (2) context representation learning for

17

joint discourse and language modeling; (3) unsupervised feature representation learn-

ing for discourse processing with distant supervision. Each aspect represents a di-

mension of research on how representation learning can be used to help analyzing

discourse automatically. The contributions of this thesis also include two application

examples on how discourse information can be used to improve the performance on

document-level NLP tasks. Detailed contributions consist of the following:

• with task-specific supervision, learning distributed representation is valuable for

discourse processing (chapter 3). The work presents two possible ways to learn-

ing distributed representation for discourse units: (1) learning word embedding

with simple composition operation, and (2) learning semantic composition with

fixed word embedding. Particularly, the work on learning word embedding for

RST parsing [81] is the first work introducing representation learning to dis-

course processing.

• show the way of incorporating discourse information into language modeling

(chapter 4). The idea is based on the linguistic intuition that the context infor-

mation from preceding text constrains the word choices in the current sentence.

In this work, a recurrent neural network (RNN) language models concatenated

with discourse relations is proposed to incorporate discourse information. This

is the first work on combining discourse information for language modeling.

• demonstrate the possibility of discourse processing with distant supervision

(chapter 5). The aim of using distant supervision in discourse processing is to

utilize discourse relation pairs with discourse connectives (explicit cases) to help

predicting those without discourse connectives (implicit cases). The proposed

idea is using unsupervised feature representation learning to map all cases into

a common latent space. Then, the discourse model learned in the explicit cases

can be transferred into the implicit cases. The hope is to reduce the dependency

18

of discourse processing on annotated corpora. This work demonstrates that the

idea of unsupervised representation learning makes the performance of distant

supervision close to its fully-supervised counterpart. This was claimed to be

impossible in prior work without representation learning [183].

• contribute to other relevant NLP tasks by utilizing discourse information (chap-

ter 6). In this work, I present two methods of using discourse structures to help

document-level sentiment analysis. Empirical evaluation shows that discourse

information is critical for the document level, if we are only able to have a sim-

ple sentence-level sentiment classifier. I will also discuss the possibility to make

use of context language models for document-level machine translation.

19

CHAPTER II

BACKGROUND

This chapter summarizes some relevant topics serving as the background informa-

tion for the rest of the thesis. Starting from the discussion on discourse structure, it

continues to include the basic information about discourse processing and the repre-

sentation issue in discourse processing.

2.1 Discourse Structure

Researchers in computational linguistics share the opinion that discourse has struc-

ture [71]. Recognizing discourse structure is crucial for comprehending the dis-

course [87], interpreting coreferent mentions (e.g., pronouns) [70], identifying the

temporal order of events [107], and understanding the main opinion from an argu-

ment. In addition, research on text generation also shows that organizing sentences

with certain discourse structure guarantees the coherence of a generated text [209].

There has been a long-time debate about what the discourse structures should look

like and how to characterize them. Each theory proposes to explain the coherence of

discourse from a specific perspective. In general, there are five ways to characterize

discourse structure in computational linguistics [147]. In this section, we would like

to shed light on three (Intentional structure, Attentional structure and Rhetorical

structure) that are closely relevant to the recent progress of discourse processing, and

leave the Information structure and Informational structure for a further reading [147].

Intentional structure focuses on describing a writer communicative plan with a

coherent text. Intentions encode what the writer was trying to accomplish with dis-

course. The intuitive explanation of the intentional structure is that every discourse

20

has its purpose. This purpose plays a fundamental role in characterizing the dis-

course structure [59]. On the other hand, attentional structure characterizes discourse

structure from a reader’s perspective. Instead of reflecting the writer’s mental state,

attentional state contains information about the objects, properties, relations, and

discourse intentions that are most salient at any given point in discourse [59]. To un-

derstand a discourse, a reader usually focuses the attention on a small set of entities

and shifts the attention to new entities along with the reading or conversation.

Rhetorical structure is used by many researchers in computational linguistics

to explain a wide range of discourse phenomena. The basic idea of a rhetorical struc-

ture is that discourse structure is characterized by a set of rhetorical relations (or

discourse relations, or coherent relations). Researchers in interpretation have argued

that recognizing these relationships is crucial for explaining discourse coherence, re-

solving anaphora, and computing conversational implicature [72].

Many theories on rhetorical structure have been proposed in the past thirty years

on discourse research. Each is accompanied by a set of pre-defined rhetorical relations

associated with the theory. In the rest of this section, I briefly introduce two theories

of rhetorical structures, which have dominated computational discourse processing for

more than a decade. In addition, for each theory, I will discuss the benchmark datasets

for computational study — the availability of these datasets helps to popularize the

corresponding theory in computational linguistics.

2.1.1 Rhetorical Structure Theory

Rhetorical Structure Theory (RST) is a descriptive linguistic approach to a range of

phenomena in the organization of discourse. The theory is based on a few assumptions

about how written text functions, and how it involves words, phrases, grammatical

structure, or other linguistic entities [125]. RST addresses text organization by means

of relations that hold between parts of a text. It explain coherence by postulating a

21

Elaboration

Attribution

A Purpose

B C

Elaboration

Temporal

D Attribution

E F

G

[Shearson Lehman Hutton Inc. said]A [it applied to Taiwanese securities officials for permission]B [to

open brokerage offices in Taipei.]C [Shearson’s application is the first]D [since the Taiwan Securities and

Exchange Commission announced June 21]E [that it would allow foreign brokerage firms to do business

in that country.]F [Taiwan officials are expected to review the Shearson application later this year.]G

Figure 9: An example of RST from the RST-DT (adapted from the RST-DT
wsj 0639).

hierarchical, connected structure of texts, in which each part of a text has a role, a

function to play, with respect to other parts of the text. The notion of text coherence

through text relations is widely accepted, and these relations have also been called

coherence relations [70], discourse relations [98] or rhetorical relations [1].

An example RST tree is illustrated in Figure 9. The whole text in this tree

structure is divided into seven text units, {A,B, . . . , F,G}. In RST, they are called

elementary discourse units (or EDUs). The tree is built by connecting two adjacent

text units using discourse relations in a bottom-up fashion. Consider the relation

between discourse unit B and C. The arrow from unit C to B indicates that B

is the nucleus and C the satellite within this discourse connection. In RST, the

nucleus is considered to be more important than the satellite. In other words, B is

more essential to the writer’s intention, and C is to supportive information that is

22

often incomprehensible without its nucleus. The discourse relation between B and

C is Purpose, which is a relation type defined in the classical RST paper by Mann

and Thompson [124]. According to Mann and Thompson [124], the satellite in the

Purpose relation (C in this case) presents a situation to be realized through the

activity in the nucleus (B in this case).

RST Discourse Treebank (RST-DT) [23] is a corpus annotated with the RST

framework. It includes 385 documents from the Wall Street Journal (WSJ) corpus

annotated with RST structures similar to Figure 9. The discourse relations in the

RST-DT are extended to 78 fine-grained discourse relations within 18 coarse-grained

relation classes. Annotating the RST-DT was not an easy task. Even though ev-

ery human annotator is a well-trained linguistic expert on RST, the inter-annotator

agreement on the RST-DT is still very low. For example, the agreement on the 18

coarse-grained relation classes is less than 66%.

2.1.2 Lexicalized Tree Adjoining Grammar for Discourse

Unlike RST, which builds a high-level discourse structure on a text, Lexicalized Tree

Adjoining Grammar for Discourse (D-LTAG) [204, 52] provides an intermediate level

of discourse structure on the clauses within a text. It is motivated by the observation

that discourse connectives function syntactically and semantically in the discourse

akin to the way verbs function in the clause. For example, in LTAG, verbs are viewed

as predicates, which supply relations between entity interpretations of noun phrases

or clauses. D-LTAG borrows the similar structure from LTAG and applies it to

the discourse level. In D-LTAG, a predicate is a discourse connective. It can be a

subordinating conjunction (e.g.; “because”, “when”, etc.), coordinating conjunction

(e.g.; “and”, “or”, etc.), and discourse adverbial (e.g.; “for example”, “instead”,

etc.). It also includes modified and conjoined forms of discourse connectives; such as

only because, if and then. An argument of the predicate can be individual clauses or

23

Explicit Relation : Shearson’s application is the first since the Taiwan
Securities and Exchange Commission announced June 21 that it would allow
foreign brokerage firms to do business in that country

Implicit Relation : the brokerage service will be directed at individual
investors who want to buy foreign and domestic stocks [also] It’s an
attractive market with good growth opportunities

Figure 10: Examples from the article wsj 0639 in the PDTB.

complex units composed of clauses and sentences.

The Penn Discourse Treebank (PDTB) [165] is the corpus annotated with the

D-LTAG. In the PDTB, several categories of discourse relations are distinguished by

how they are realized in text. In Example 10, two major categories — explicit and

implicit categories — are demonstrated. The explicit category refers to the cases

where relations of argument pairs are signaled by discourse connectives explicitly.

For instance, the relation between the two clauses in the first example in Figure 10

is signaled by the discourse connective “since”. On the contrary, the implicit cate-

gory refers to cases without any discourse connective. For implicit cases, discourse

connectives are inferred from the text, as shown in the second example in Figure 10.

Some other categories, including AltLex, EntRel and NoRel, are used for cases where

neither explicit nor implicit categories are applicable.

In the PDTB, discourse relations are assumed to hold between two and only two

arguments. The two arguments of a connective are simply labeled as Arg1 and Arg2,

because there are no generally accepted abstract semantic categories for classifying

the arguments (like; agent or patient suggested by verbs in semantic role labeling),

For explicit type, Arg2 is the argument syntactically bounded with the connective,

while Arg1 is the other argument. In addition, arguments of an explicit relation

are not constrained to be single clauses or sentences. As shown in the PDTB, an

argument could range from a clause to a sentence, or even multiple sentences.

24

For both explicit and implicit categories of relations, the PDTB provides a three-

level hierarchy of discourse relations. The first level consists of four major relation

classes: Temporal, Contingency, Comparison and Expansion. For each

class, a second level of types is defined to provide finer semantic or pragmatic dis-

tinctions; there are sixteen such relation types. A third level of subtypes is defined

for only some types, specifying the semantic contribution of each argument. More

information about the PDTB is provided by Prasad et al. [165].

2.2 Computational Models for Discourse Processing

This section introduces basic information of computational models for discourse pro-

cessing. Those models are either machine learning models or use machine learning

models as essential components. In this section, I informally treat a machine learning

model as a black-box system which makes predictions based on its inputs. More detail

about learning will be provided in section 2.3.

2.2.1 RST-style discourse processing

The pipeline of RST-style discourse processing is illustrated in Figure 11 Automatic

processing on the RST-DT involves two steps: (i) discourse segmentation and

(ii) discourse parsing. Given a document, discourse segmentation is to divide the

document into a set of EDUs. The basic formulation of discourse segmentation is,

given a token, to determine whether it is an EDU boundary. This decision problem

can be solved with a binary classifier by taking this token and its surrounding as

input [171] (more detail about classification models will be discussed in section 2.3).

Hernault et al.obtained even better results with a sequential labeling model [66].

Based on sequential modeling, Bach et al.[2] were able to get a further improvement

up to 95% F1 measure with a re-ranking trick. (Compare to the 98% F1 measure on

human annotation agreement of discourse segmentation.) I would like to focus on the

most challenging part of RST-style discourse processing — discourse parsing.

25

Document
Discourse
segmenter

Discourse
parser

RST parse
EDUs

Figure 11: The system pipeline of RST-style discourse processing.

The basic parsing procedure includes two tasks: given adjacent text units, a parser

needs to (1) identify whether these two units have a discourse relation; (2) if the

answer is positive, then identify the discourse relation and label each unit as either

nucleus or satellite1. Prior work on discourse parsing shows three ways to build a

RST tree:

Two-step classification is proposed by Hernaultet al. [66]. The first step is to

scan the whole set of discourse units sequentially, and find two most relevant

adjacent units; the second step is to determine the discourse relation between

these two units and connect them with the predicted relation to form a larger

discourse unit. Then, continue these two steps until the whole set of EDUs are

all connected as a single discourse span. The complexity of this algorithm is

O(N2), where N is the number of EDUs.

Shift-reduce parsing is linear parsing algorithm with respect to N . The parsing

procedure consists of a sequence of either shift or reduce parsing actions. A shift-

reduce parser maintains a stack and a queue to keep record of parsing status.

Initially, all discourse units (in this case, EDUs) are in the queue. A shift

action fetches a unit from the head of the queue and pushes it into the stack. A

reduce action pops two discourse units from the stack, combines them together

with a discourse relation, and then pushes the larger unit back to the stack.

Given certain parsing status, the next parsing action usually is determined by

a multiclass classifier [129, 171]. Each parsing action is the optimal decision

1In RST-DT, all text units can be nuclei.

26

Document
Connective
detection

Argument
position classifier

Argument
extractor

Explicit relation
identification

Non-explicit
relation iden-

tification

PDTB parse

yes

no

Figure 12: The system pipeline of automatic RST-style discourse processing.

based on the current status, so it is a local optimal algorithm. The algorithm

will end with only a discourse unit in the stack. In total, there are 2N − 1

parsing actions.

Cocke-Younger-Kasami parsing is first proposed by Joty et al.[89, 90] for sentence-

level and document-level discourse parsing. The motivation of using CKY pars-

ing algorithm is to obtain a global optimal parse. For each possible RST tree

constituent, a Conditional Random Field (CRF) model [104] is used to com-

pute the probability. Given the probability of all possible constituents, the

CKY parsing algorithm finds the most possible candidate using a bottom-up

fashion [91]. The complexity of this algorithm is O(N3).

2.2.2 PDTB-style Parsing

The system pipeline of an end-to-end PDTB parsing is shown in Figure 12. This

pipeline is adopted from [119] with a little modification for illustration purpose. In

practice, a PDTB parsing system usually employs two-pass processing for parsing:

for a given document, the first pass is to detect all existing discourse connectives for

explicit cases; then the second pass processes the rest of the document for non-explicit

cases.

27

If a discourse connector is detected, the system will continue to identify the po-

sitions of two arguments and then extract both arguments. As discussed in the

previous section, the argument (especially Arg1) position of an explicit relation can

be arbitrary, so it is necessary to identify the position before argument extraction.

Extraction of Arg1 for a discourse connective is also not trivial, as it can be either

a clause or multiple clauses. Actually, argument labeler (including position identi-

fication and argument extraction) turns out to be the difficult part of PDTB-style

parsing in explicit relation cases [119]. The last step of explicit relation identification

is relatively easy [163]. As reported by Pitler [163], the classification accuracy on the

first-level PDTB relations is 93.09%.

The situation is totally different for non-explicit cases, in which no discourse

connective is detected between two adjacent sentences. Non-explicit types include

EntRel, NoRel, AltLex and Implicit. Of interest is the implicit type, where two ad-

jacent sentences have a semantic/pragmatic connection, but no discourse connective

is used explicitly. As in implicit cases, Arg2 always follows Arg1, which makes argu-

ment labeling and extraction a straightforward task. The major difficulty is implicit

discourse relation identification, due to the missing discourse connective between ar-

guments [118, 162]. Without any discourse connective, identifying a discourse relation

requires more semantic understanding of texts.

Although inferring discourse connectives first may help relation prediction as a

final task [213], most of the prior work on implicit relation identification tries to

predict discourse relations directly without the inference of discourse connectives [118,

156, 105, 13]. Discourse relation prediction is usually a straightforward classification

problem (section 2.3). The basic classification setup is, given an argument pair,

a classifier is employed to predict the discourse relation holding between them. A

critical issue in relation prediction is to represent arguments in an appropriate way,

so the representation could encode some semantic information for classification. We

28

will discuss the representation issue and some relevant work in section 2.4.

There are two approaches to perform a prediction task on implicit discourse rela-

tion identification. The first approach is multiclass classification [118], which requires

identifying the discourse relation from all possible choices. More recent work has

emphasized binary classification, where the goal is to build and evaluate separate

“one-versus-all” classifiers for each discourse relation [162, 156, 13]. Multiclass clas-

sification is more relevant to the practical purpose, for example, to build a discourse

processing system. In this thesis, I consider both of them as evaluation for my dis-

course processing systems.

2.3 Machine Learning Models of Discourse Processing

To make the thesis self-contained, this section will introduce some basic information

about machine learning particularly relevant to discourse processing. Some text-

books [15, 148] and notes [46] are good resources for further reading.

2.3.1 Discourse processing as classification

As discussed in section 2.2, most of the discourse processing tasks can be solved

directly as a classification problem, or else use classification models as an essential

component. Here are some typical examples:

• Discourse segmentation in RST-style processing: A binary classifier [171] is

employed to determine whether a token is on an EDU boundary.

• RST-style parsing with shift-reduce algorithm: A multiclass classifier [81] is used

to select the optimal parsing action (e.g., shift, reduce with a certain nucleus-

satellite structure and relation type), based on the status of parsing queue and

stack.

• PDTB-style parsing [119]: A multiclass classifier is used to identify discourse

relations holding in argument pairs.

29

Once a task is expressed as a classification problem, the next step is building a

classification model to solve this problem.

A classification model can be formulated with the following form either explicitly

or implicitly2,

yc = w>c f(x), (4)

where x is the input that depends task we would like to solve, f(x) is the feature

representation function based on input3, wc is the classification weight associated

with the class label c, and yc as the dot product of w and f(x) is called decision

value. . Consider the relation identification task in the PDTB, where x will be an

argument pair and c is a specific discourse relation defined in the PDTB. To make

a decision based the classification model, we pick the label c which has the maximal

decision value, ĉ = arg maxc yc.

Feature representation function f(x) maps the input x into a numeric vector.

For the relation identification task, a simple f(x) could just be the bag-of-words

representation of x, and a complicated f(x) could be a feedforward neural network

with multiple layers. How to represent texts is an important issue of applying machine

learning for discourse processing [8], since we always need to reduce the gap between

what we have (plain texts) and what we want (discourse relations in texts). Section

2.4 of this chapter discusses the representation issue for discourse processing.

Training a classification model involves learning the weight vector w defined in

Equation 4. Given a training example (x, c), training a model is equivalent to op-

timizing a pre-selected objective function (e.g., cross entropy [148] or max-margin

loss [168]) defined on the decision function. There are many ways to optimize the ob-

jective functions. A simple but effective method is stochastic gradient decent (SGD),

which iteratively computes the gradient of the loss function ` as ∂`
∂w

, then update w

2For example, a nonlinear SVM [15] is formulated in this way implicitly with a kernel function.
3Another way to formulate the decision function in NLP is yc = w>f(x, c) [46], while in this

way f should not be called as a representation function.

30

with the gradient as

w ← w − η ∂`
∂w

(5)

where η is the learning rate. More discussion about training with SGD can be found

in [20].

Besides learning the weight w, we can also learn the representation function f(x)

by formulating it as a mathematical function with parameters, for example, a neural

network model. The idea of learning feature representation function is called repre-

sentation learning [8] in the machine learning community. The motivation of using

representation learning is to reduce the dependence of a machine learning model on

feature engineering, and to extract the task-relevant information from data effectively.

In section 2.4, I will discuss the importance of representation learning from linguistic

perspective.

2.4 Representation for Discourse Processing

All representations for discourse processing can be classified into three categories:

logical representations, surface-feature representations, and distributed representa-

tions. A classical work on the logical representation for discourse processing is from

Hobbs [70]. In his work, each sentence is represented as a set of logical propositions,

and inference on discourse relations relies on a huge knowledge base [152]. In the

rest of this section, I will summarize two other representation methods on discourse

processing: surface-form representation and distributed representation.

2.4.1 Surface-form Representations

Due to the difficulty of using logical representations, most recent work on represen-

tation for discourse processing falls into this section. As shown in Figure 2(b), the

unified framework is a learning based discourse model on top of a feature extrac-

tor. Different tasks may need different learning models. In this section, I summarize

the important surface features in discourse processing into several categories. I use

31

sentences as the minimal processing units for the convenience of description in this

section, which should be replaced by EDUs in the RST-DT, and by arguments in the

PDTB.

Lexical features The category includes the features extracted from lexical level,

for example, n-gram features [90], words in the beginning or end of sentences [171],

or even cue phrases from a given list [129, 97]. Lin et al. [118] found that for implicit

related identification on the PDTB, word tuples extracted from the sentence pairs

(such as 〈burger, hungry〉) are also useful. In discourse processing, lexical features

are usually used as baseline features. They can be useful — observing some lexical

features (e.g., discourse connectives) could make relation prediction a relatively easy

task.

Syntactic features This category contains the features extracted from the syn-

tactic structures of sentences, such as production rules from constituent parses and

dependency pairs from dependency parses [118]. In addition, dominance sets [182, 66]

are also claimed to be effective features for intra-sentential parsing in the RST-DT.

Semantic features Surface features can also represent certain semantic informa-

tion with help from external resources. WordNet is one of the most popular resource

for measuring semantic similarity between words. It has been used for constructing

features from the 1990s [129]. Levin verb class [113] is widely used in the implicit

relation identification on the PDTB [162, 156, 13, 105]. The intuition of using Levin

verb class is that the relation between arguments is more like to be Expansion if

the verbs from two arguments are from the same verb class, e.g., the verb “lend”

and “loan” belong to the Give verb class. Recently, Rutherford and Xue [170] show

that using word Brown cluster pairs instead of word pairs directly could also improve

the performance on predicting implicit relations on the PDTB. There are also some

32

other lexical semantic resources. For example, Multi-perspective Question Answering

(MPQA) subjectivity lexicon [206] can help to capture the sentiment polarity of ar-

guments [156, 162], which is useful for the discourse relations like Contrast. Even

so, it is worth to understand the limitations of using surface-form semantic features.

First, these features heavily depend on the existence of external resources. Second,

like other surface features, feature representation cannot be refined with learning

signals.

Contextual features These are used to indicate the interaction with local context.

Lin et al. [118] believes that the overlap of arguments could benefit implicit relation

identification. The same idea is shared by Feng and Hirst [50] in their work on RST-

based discourse parsing. Furthermore, Ghosh et al. [53] extend a similar idea into a

more broad scope, where each time five sentences are considered as context for feature

extraction.

Structural features Most of structural features are used in RST parsing. The

purpose is to indicate position of a text span with respect to the entire document.

These features include the distance between an EDU and the beginning (or end) of

the document [90], etc. The category also includes some features denoting structures

indirectly. For example, given an EDU from a document, what are the last several

parsing operations performed on the document [129].

Entity-based features For implicit relation identification on the PDTB, Louis

et al. [122] attempt to predict the relations using some entity-based features, such as

grammatical role, syntactic realization etc. Though the results are preliminary, they

conjecture that some other aspects of entity based features may be useful. Recently,

Rutherford and Xue [170] illustrate that, on the same problem, some simple coreferent

pairs of entities can be used as additional features. Entity-based features are also

33

used for RST-based discourse parsing. An example is the entity-transition features

constructed on the document level [50].

All the features explained in this section fall into the category of surface-form

feature representation. The problems of using surface-form have been explained in

section 1.1.

2.4.2 Distributed Representation

Distributed representation was first proposed by Hinton et al.[68] in the classical

monograph of artificial neural networks (ANNs): Parallel Distributed Processing. In

the language of ANNs, it refers that each entity is represented by a pattern of activity

distributed over many computing elements, and each computing element is involved in

representing many different entities. It was proposed to overcome the computational

limitation of local representation [68], where each entity is represented by a specific

computing element. The benefit of using distributed representation, compared to local

representation, is that “it leads to automatic generalization” (Hinton, 1986) [67].

Conceptually, both local representation and distributed representation have their

counterparts in NLP. In the scenario of representing words as numeric vectors, a

popularly-used local representation in NLP is called the one-hot representation, where

every word is represented by a long and sparse vector, with only a single non-zero

element. An example is the representations of words in Figure 3. A special case of

distributed representation in NLP is distributional representation. The term distri-

butional emphasizes that the representation is constructed based on Distributional

Hypothesis [64]. The realizations of distributional representation include Latent Se-

mantic Analysis (LSA) [44]) and its extensions, such as Latent Dirichlet Allocation

(LDA) [17].

Distributed representation learning is to customize distributed representation based

on context [44, 138] or driven by a specific task [123, 94]. Our work (Ji and Eisenstein,

34

2014) [81] is the first published work on representation learning for discourse pars-

ing. Driven by the task of RST-style parsing, the distributed representation of words

does encode certain amount of semantic information for relation identification. More

technical detail on different representation functions will be explained in chapter 3.

2.4.3 Distributed Representation for Sentences

Although distributed representation has only been exploited in discourse processing

very recently, the idea of distributed representation has been introduced into the NLP

community for more than a decade. In 1991, Berg [11] put forward an idea of learning

a representation through the linguistic structures. The intuition is based on the fact

that the linguistic structure (e.g., syntactic structures) helps constrain the seman-

tics or meaning of the sentence. Four years later, Goller and Kuchler [57] present a

learning algorithm, called backpropagation through structure (BPTS). This algorithm

makes it possible learning with structures. Starting from 2010, Socher and his col-

leagues introduce several variants of recursive neural networks. For applications, they

apply these models to different sentence-level NLP tasks [178, 177, 175, 174, 175, 176].

All these works illustrate that composition through syntactic structures is a powerful

method on modeling sentences. My work [82] extends this idea to the task on the

cross-sentence level and also investigate the possibility of incorporating more linguistic

features (section 3.2).

As discussed in chapter 1, I propose an additional composition pass to build the

sentence representation from the entities’ perspective (section 3.2). The idea of two-

pass composition is also useful on some sentence-level tasks. Consider sentiment

analysis on Example 6 [159]: the sentiment polarity on “Android” is definitely dif-

ferent with “iOS”. Noticing this, Paulus et al. [159] introduce global belief recursive

neural networks (GB-RNNs) to generate two distributed representations on every

word. One representation is from the forward propagation step, the other is from

35

the backward propagation step. For every word, the forward representation is the

distributed representation of word itself, and the backward representation includes

the information propagated back from the sentence (root node of the parse tree). For

sentiment analysis, both representations are used to predict the sentiment score.

Example 6. Android beats iOS

In addition, inspired by bi-directional recurrent neural networks, Irsoy and Cardie [76]

present a bi-directional architecture on recursive neural networks. For their task of

opinion expression extraction, two representations on the same node contain the infor-

mation from the subtree with it as root and the information from the rest of the parse

tree. Even the intuition is similar, Paulus et al. [159] have different methodologies on

composing information.

The last relevant work is the inside-outside recursive neural networks from Le and

Zuidema [109]. Their model shares the same composition procedure as my proposed

representation functions. But the motivation and the applications are different. In

their work, the goal is to support an infinite-order generative model of dependency

parsing. In my case, the purpose is to induce the representations of the entities shared

between two adjacent sentences.

36

CHAPTER III

DISCOURSE PARSING WITH SUPERVISED

REPRESENTATION LEARNING

Work described in this chapter was undertaken in collaboration with Jacob Eisenstein,

and published at ACL 2014 [81] and TACL 2015 [82]

In section 1.2, I explain the motivation of supervised representation learning for

discourse processing. In this chapter, I will discuss the more detail three methods

proposed for representation learning with supervision. The high-level idea is inspired

by the success of my work on paraphrase detection (Ji and Eisenstein, 2013) [80].

In that work, a weighted matrix factorization [60] is employed on the bag-of-feature

matrix to construct distributed representations of sentences. The feature weights are

computed with a information-theoretical metric (KL-divergence) to measure whether

the features are informative on detecting paraphrase. Therefore, learning weights

requires the supervision information from an annotated corpus, for example the Mi-

crosoft Research Paraphrase Corpus (MSRPC) [42]. With the representation learned

with supervision information, the model was able to obtain the state-of-the-art per-

formance on the MSRPC. The success of this work points out a promising way of

incorporating supervision information in learning distributed representation. The

idea is further extended in this chapter for discourse processing. Instead of using

the supervision information independently with learning distributed representation,

a unified framework (as illustrated in 2(c)) is utilized to learn representation together

with final tasks.

The rest of this chapter is outlined as follow: section 3.1 discusses the model of

learning word embeddings for RST parsing. The semantic composition operation used

37

in this model is just simple addition. Then, section 3.2 moves to a deep discussion on

distributed representation with semantic composition. In this section, recursive neural

networks are considered for semantic composition, and also an additional composition

operation for capturing the semantic connection across sentences. Section 3.3 presents

a discussion based on the models in this chapter.

3.1 Distributed Representation Learning for RST Parsing

Discourse relation identification is a major task in discourse parsing. While recent

work has introduced increasingly powerful features [49] and inference techniques [90],

discourse relations remain hard to detect. Prior work on feature engineering with

surface and syntactic features (as discussed in subsection 2.4.1) are not capable of

capturing what are fundamentally semantic distinctions, particularly in the face of

relatively small annotated training sets, like the RST Discourse Treebank [23].

In this section, I discuss the representation learning with linear functions for RST-

style discourse parsing. The core idea of this work is to learn a transformation from a

bag-of-words surface representation into a latent space in which discourse relations are

easily identifiable. The latent representation for each discourse unit can be viewed as

a discriminatively-trained vector-space representation of its meaning. Several alter-

native representation function are considered for transforming the original features,

corresponding to different ideas of the meaning and role of the latent representa-

tion. Alternatively, this approach can be seen as a non-linear learning algorithm for

incremental structure prediction, which overcomes feature sparsity through effective

parameter tying.

The parsing model is implemented with the shift-reduce parsing algorithm [129,

171]. This model is learned with a large-margin transition-based structure predic-

tion [191]. At the same time, a linear representation function is learned jointly to

project the surface representation into latent space. The resulting system strongly

38

outperforms the prior state-of-the-art at labeled F-measure, obtaining raw improve-

ments of roughly 6% on relation labels and 2.5% on nuclearity. In addition, visual-

ization on 2-D space also shows that the distributed representation coheres well with

the characterization of discourse connectives in the Penn Discourse Treebank [165].

3.1.1 Model

Recall that, the core idea is to project lexical features into a latent space that facil-

itates discourse parsing. In this way, the parsing model can capture the meaning of

each discourse unit, without suffering from the very high dimensionality of a surface

representation. While such representation learning approaches have been proven to

increase robustness for parsing, POS tagging, and NER [142, 101, 193], they would

seem to have an especially promising role for discourse, where training data is rel-

atively sparse and ambiguity is considerable. Prasad et al.[166] show that there is

a long tail of alternative lexicalizations for discourse relations in the Penn Discourse

Treebank, posing obvious challenges for approaches based on directly matching lexical

features observed in the training data.

Based on this observation, the goal is to learn a function that transforms lexical

features into a much lower-dimensional latent representation, while simultaneously

learning to predict discourse structure based on this latent representation. Specifi-

cally, a simple transformation function, linear projection, is considered in this work.

Thus, the proposed approach is named Dplp: Discourse Parsing from Linear Projec-

tion.

Shift-reduce discourse parsing As mentioned before, the shift-reduce parsing

algorithm, as first proposed by [129], is used for discourse parsing. At each point in

the parsing process, the algorithm maintains a stack and a queue; initially the stack is

empty and the first elementary discourse unit (EDU) in the document is at the front

of the queue. The parser can then choose either to shift the front of the queue onto

39

the top of the stack, or to reduce the top two elements on the stack in a discourse

relation. The reduction operation must choose both the type of relation and which

element will be the nucleus. Therefore, there are multiple reduce operations with

specific relation types and nucleus positions. Shift-reduce parsing can be learned as a

classification task, where the classifier uses features of the elements in the stack and

queue to decide what move to take. Previous work has employed decision trees [129]

and the averaged perceptron [33, 171] for this purpose. Instead, this work employs a

large-margin classifier, because it allows to compute derivatives of the margin-based

objective function with respect to both the classifier weights as well as the projection

matrix.

Let V denotes the surface feature vocabulary, and v ∈ NV represents each EDU

as the numeric vector, where V = #|V| and the n-th element of v is the count of the

n-th surface feature in this EDU. During shift-reduce parsing, we consider features

of three EDUs: the top two elements on the stack (v1 and v2), and the front of the

queue (v3). The vertical concatenation of these vectors is denoted v = [v1; v2; v3].

The decision function based on the concatenated vector is formulated as

m̂ = arg max
m∈{1,...,C}

w>mf(v; A) (6)

where wm is the weight for the m-th class and f(v; A) is the representation function

parameterized by A. The score for class m (in this case, the value of taking the m-th

shift-reduce operation) is computed by the inner product w>mf(v; A). The specific

shift-reduce operation is chosen by maximizing the decision value in Equation 19.

Note that, after applying a reduce operation, the stack will include a span that

contains multiple EDUs. This works follows the strong compositionality criterion of

[128] and considers only the nuclear EDU of the span.

The representation function f(v; A) can be defined in any form; for example, it

could be a nonlinear function defined by a neural network model parameterized by

40

A

W

y

v1 from stack v 2 from stack v 3 from queue

(a) General form

A

W

y

v1 from stack v 2 from stack v 3 from queue

(b) Concatenation form

A

W

y

v1 from stack v 2 from stack v 3 from queue

(c) Difference form

Figure 13: Decision problem with different representation functions

A. Instead, this work focuses on the linear projection,

f(v; A) = Av, (7)

where A ∈ RK×3V is projects the surface representation v of three EDUs into a latent

space of size K � V .

Note that by setting w̃>m = w>mA, the decision function can be rewritten as

w̃>mv, which is linear in the original surface features. Therefore, the expressiveness

of Dplp is identical to a linear separator in the original feature space. However,

the learning problem is considerably different. If there are C total classes (pos-

sible shift-reduce operations), then a linear classifier must learn 3V C parameters,

while Dplp must learn (3V + C)K parameters, which will be smaller under the as-

sumption that K < C � V . This can be seen as a form of parameter tying on

the linear weights w̃m, which allows statistical strength to be shared across training

instances.

Three different constructions are considered for the projection matrix A.

41

• General form: The general case places no special constraint on the form of A.

f(v; A) = A


v1

v2

v3

 (8)

This form is shown in Figure 13(a).

• Concatenation form: The concatenation form chooses a block structure for A,

in which a single projection matrix B is applied to each EDU:

f(v; A) =


B 0 0

0 B 0

0 0 B




v1

v2

v3

 (9)

This form transforms the representation of each EDU separately, and does not

attempt to represent interrelationships between the EDUs in the latent space.

The number of parameters in A is 1
3
KV . Then, the total number of parameters,

including the decision weights {wm}, in this form is (V
3

+ C)K.

• Difference form. The difference form explicitly represents the differences be-

tween adjacent EDUs, by constructing A as a block difference matrix,

f(v; A) =


C −C 0

C 0 −C

0 0 0




v1

v2

v3

 , (10)

The result of this projection is that the latent representation has the form

[C(v1−v2); C(v1−v3)], representing the difference between the top two EDUs

on the stack, and between the top EDU on the stack and the first EDU in the

queue. This is intended to capture semantic similarity, so that reductions be-

tween related EDUs will be preferred. Similarly, the total number of parameters

to estimate in this form is (V + 2C)K
3

.

42

3.1.2 Large-Margin Learning Framework

A large-margin prediction approach is applied to train the model. There are two

parameters that need to be learned: the classification weights {wm}, and the projec-

tion matrix A. It is possible to learn {wm} using standard support vector machine

(SVM) training (holding A fixed), and then make a simple gradient-based update to

A (holding {wm} fixed). By interleaving these two operations, a learning procedure

arrives at a saddle point of the objective function.

Mathematically, the learning objective can be formulated as the following con-

strained optimization problem,

min
{w1:C ,ξ1:l,A}

λ

2

C∑
m=1

‖wm‖22+
l∑

i=1

ξi +
τ

2
‖A‖2F

s.t. (wyi−wm)>f(vi;A) ≥ 1− δyi=m − ξi,

∀ i,m

(11)

where m ∈ {1, . . . , C} is the index of the shift-reduce decision taken by the classifier

(e.g., Shift, Reduce-Contrast-right, etc), i ∈ {1, · · · , l} is the index of the

training sample, and wm is the vector of classification weights for class m. The slack

variables ξi permit the margin constraint to be violated in exchange for a penalty,

and the delta function δyi=m is unity if yi = m, and zero otherwise.

As is standard in the multi-class linear SVM [35], the problem defined in Equa-

tion 11 can be solved via Lagrangian optimization:

L({w1:C , ξ1:l,A, η1:l,1:C}) =

λ

2

C∑
m=1

‖wm‖2
2+

l∑
i=1

ξi +
τ

2
‖A‖2

F

+
∑
i,m

ηi,m

{
(w>m −w>yi)f(vi; A) + 1− δyi=m − ξi

}
s.t. ηi,m ≥ 0 ∀i,m

(12)

Then, optimizing L need to find a saddle point, which would be the minimum for the

43

variables {w1:C , ξ1:l} and the projection matrix A, and the maximum for the dual

variables {η1:l,1:C}.

If A is fixed, then the optimization problem is equivalent to a standard multi-class

SVM, in the transformed feature space f(vi; A). In this work, the weights {w1:C}

and dual variables {η1:l,1:C} is learned from a standard dual-form SVM solver. Then,

the learning procedure then updates A, recomputes {w1:C , η1:l,1:C}, and iterates until

convergence. This iterative procedure is similar to the latent variable structural

SVM [210], although the specific details are different.

Specifically, updating A while holding fixed the weights and dual variables. The

derivative of L with respect to A is

∂L
∂A

= τA +
∑
i,m

ηi,m(w>m −w>yi)
∂f(vi;A)

∂A

= τA +
∑
i,m

ηi,m(wm −wyi)v
>
i

(13)

Setting ∂L
∂A

= 0, the closed-form solution of A can be obtained as,

A =
1

τ

∑
i,m

ηi,m(wm −wyi)v
>
i

=
1

τ

∑
i,j

(wyi −
∑
m

ηi,mwm)v>i ,

(14)

because the dual variables for each instance must sum to one,
∑

m ηi,m = 1.

Note that for a given i, the matrix (wyi −
∑

m ηi,mwm)v>i is of (at most) rank-1.

Therefore, the solution of A can be viewed as the linear combination of a sequence of

rank-1 matrices, where each rank-1 matrix is defined by distributional representation

vi and the weight difference between the weight of true label wyi and the “expected”

weight
∑

m ηi,mwm.

A property of the dual variables is that f(vi; A) is a support vector only if the

dual variable ηi,yi < 1. The dual variables for each instance are guaranteed to sum to

one, therefore wyi−
∑

m ηi,mwm = 0 if ηi,yi = 1. In other words, the contribution from

non support vectors to the projection matrix A is 0. Then, the updating equation

44

can be further simplified as

A =
1

τ

∑
vi∈SV

(wyi −
∑
m

ηi,mwm)v>i (15)

This is computationally advantageous since many instances are not support vectors,

and it shows that the discriminatively-trained projection matrix only incorporates

information from each instance to the extent that the correct classification receives

low confidence.

Solving the quadratic programming defined by the dual form of the SVM is time-

consuming, especially on a large-scale dataset. But on learning the projection matrix

A, a speed-up learning can be employed by sampling only a small proportion of the

training data to compute an approximate optimum for {w1:C , η1:l,1:C}, before each

update of A. This idea is similar to the mini-batch learning, which has been used in

large-scale SVM problem [149] and deep learning models [150].

Specifically, in iteration t, the algorithm randomly chooses a subset of training

samples Dt to train the model. There is no closed-form update to A based on this

small sample, therefore an approximate gradient step is needed,

At = (1− αtτ)At−1 + αt

{ ∑
vi∈SV(Dt)

(
w(t)
yi
−
∑
m

η
(t)
i,mw(t)

m

)
v>i

}
, (16)

where αt is a learning rate. In iteration t, αt is updated with αt = 1
t
. After con-

vergence, the weights w is obtained by applying the SVM over the entire dataset

with the final A. The algorithm is summarized in Algorithm 1. While mini-batch

learning requires more iterations, the SVM training is much faster in each batch, and

the overall algorithm is several times faster than using the entire training set for each

update.

The learning algorithm is applied in a shift-reduce parser, where the training data

consists of the (unique) list of shift and reduce operations required to produce the

gold RST parses. On test data, parsing operations are chosen in an online fashion

45

Algorithm 1 Mini-batch learning algorithm

Input: Training set D, Regularization parameters λ and τ , Number of iteration
T , Initialization matrix A0, and Threshold ε
while t = 1, . . . , T do

Randomly choose a subset of training samples Dt from D
Train SVM with At−1 to obtain {w(t)

m } and {η(t)
i,m}

Update At using Equation 16 with αt = 1
t

if ‖At−At−1‖F
‖A2−A1‖F

< ε then
Return

end if
end while
Re-train SVM with D and the final A
Output: Projection matrix A, SVM classifier with weights w

— at each step, the parsing algorithm changes the status of the stack and the queue

according the selected transition, then creates the next sample with the updated

status.

There are three free parameters in our approach: the latent dimension K, and

regularization parameters λ and τ . We consider the values K ∈ {30, 60, 90, 150},

λ ∈ {1, 10, 50, 100} and τ ∈ {1.0, 0.1, 0.01, 0.001}, and search over this space using a

development set of thirty document randomly selected from within the RST Treebank

training data. Each element of A0 is initialized with a uniform random value in the

range [0, 1]. For mini-batch learning, the batch size is fixed to be 500 training samples

(shift-reduce operations) in each iteration.

Additional features This work mainly considers the distributed representation

of each EDU in its parsing decisions. But prior work has shown that other, struc-

tural features can provide useful information [90]. Therefore, Dplp can be further

augmented with a set of simple feature templates. These templates are applied to

individual EDUs, as well as pairs of EDUs: (1) the two EDUs on top of the stack,

and (2) the EDU on top of the stack and the EDU in front of the queue. The fea-

tures are shown in Table 1. In computing these features, all tokens are downcased,

46

Table 1: Additional features for RST parsing

Feature Examples

Words at beginning and end of the EDU

〈Begin-word-Stack1 =

Example 7. but〉
〈Begin-word-Stack1-Queue1 =

Example 8. but, the〉

POS tag at beginning and end of the
EDU

〈Begin-tag-Stack1 = CC〉
〈Begin-tag-Stack1-Queue1 = CC,
DT〉

Head word set from each EDU. The set
includes words whose parent in the de-
penency graph is ROOT or is not within
the EDU [171].

〈Head-words-Stack2 =

Example 9. working〉

Length of EDU in tokens 〈Len-Stack1-Stack2 = 〈7, 8〉〉
Distance between EDUs 〈Dist-Stack1-Queue1 = 2〉
Distance from the EDU to the beginning
of the document

〈Dist-from-start-Queue1 = 3〉

Distance from the EDU to the end of the
document

〈Dist-from-end-Stack1 = 1〉

Whether two EDUs are in the same sen-
tence

〈Same-sent-Stack1-Queue1 = True〉

47

Table 2: Parsing results of different models on the RST-DT test set. The results of
TSP and HILDA are reprinted from prior work [90, 66].

Method Matrix Form +Features K Span Nuclearity Relation

Prior work
1. HILDA [66] 83.0 68.4 54.8
2. TSP 1-1 [90] 82.47 68.43 55.73
3. TSP SW [90] 82.74 68.40 55.71

Our work
4. Basic features A = 0 Yes 79.43 67.98 52.96
5. Word embeddings Concatenation No 75 75.28 67.14 53.79
6. NMF Concatenation No 150 78.57 67.66 54.80
7. Bag-of-words A = I Yes 79.85 69.01 60.21

8. Dplp Concatenation No 60 80.91 69.39 58.96
9. Dplp Difference No 60 80.47 68.61 58.27

10. Dplp Concatenation Yes 60 82.08 71.13 61.63
11. Dplp General Yes 30 81.60 70.95 61.75

Human annotation 88.70 77.72 65.75

and numerical features are not binned. The dependency structure and POS tags are

obtained from MaltParser [151].

3.1.3 Evaluation

Dplp is evaluated on the RST Discourse Treebank [23], comparing against state-of-

the-art results. A further investigation on the information encoded by the projection

function is also presented here.

The RST Discourse Treebank (RST-DT) consists of 385 documents, with 347 for

training and 38 for testing in the standard split. As this work focuses on relational

discourse parsing, it follows prior work [49, 90], and use gold EDU segmentations. The

strongest automated RST segmentation methods currently attain 95% accuracy [2].

In the RST-DT, most nodes have exactly two children, one nucleus and one satel-

lite. For non-binary relations, right branching is used to binarize the tree structure.

For multi-nuclear relations, the left EDU is chosen as “head” EDU. The vocabulary

V includes all unigrams after down-casing. No other preprocessing is performed. In

total, there are 16,250 unique unigrams in V .

48

Instead of learning from data, a simple way to obtain a projection matrix is to use

matrix factorization. Recent work has demonstrated the effectiveness of non-negative

matrix factorization (NMF) for measuring distributional similarity [41, 196]. Bnmf

can be constructed in the concatenation form of the projection matrix by applying

NMF to the EDU-feature matrix, M ≈ WH. As a result, W describes each EDU

with aK-dimensional vector, and H describes each word with aK-dimensional vector.

Bnmf is calculated by the pseudo-inverse of H, which then projects from word-count

vectors into the latent space.

Another way to construct B is to use neural word embeddings [34]. In this case,

the product Bv is viewed as a composition of the word embeddings, using the simple

additive composition model proposed by [144]. This work simply uses word embed-

dings from [34] with dimension {25, 50, 100}. Grid search over heldout training data

was used to select the optimum latent dimension for both the NMF and word em-

bedding baselines. Note that the size K of the resulting projection matrix is three

times the size of the embedding (or NMF representation) due to the concatenate

construction. The special case A = I is also considered as baseline.

Our approach is compared with HILDA [66] and TSP [90]. Joty et al.[90] proposed

two different approaches to combine sentence-level parsing models: sliding windows

(TSP SW) and 1 sentence-1 subtree (TSP 1-1). In the comparison, the results are

reported on both approaches. All results are based on the same gold standard EDU

segmentation. However, the results cannot directly compare with the results of [49],

because they do not evaluate on the overall discourse structure, but rather treat each

relation as an individual classification problem.

To evaluate the parsing performance, this work uses the three standard ways to

measure the performance: unlabeled (i.e., hierarchical spans) and labeled (i.e., nucle-

arity and relation) F-score. This evaluation approach to RST parsing is described by

49

[130]. I implemented the evaluation metrics and make it available with the Dplp sys-

tem1. To compare with prior work of discourse parsing on the RST-DT, this work

employed the 18 coarse-grained relations defined in [22].

Table 13 presents RST parsing results for Dplp and some alternative systems.

All versions of Dplp outperform the prior state-of-the-art on nuclearity and rela-

tion detection. This includes relatively simple systems whose features are simply a

projection of the word count vectors for each EDU (lines 7 and 8). The addition of

the features from Table 1 improves performance further, leading to absolute F-score

improvement of around 2.5% in nuclearity and 6% in relation prediction (lines 9 and

10).

On span detection, Dplp performs slightly worse than the prior state-of-the-

art. These systems employ richer syntactic and contextual features, which might be

especially helpful for span identification. As shown by line 4 of the results table, the

basic features from Table 1 provide most of the predictive power for spans; however,

these features are inadequate at the more semantically-oriented tasks of nuclearity

and relation prediction, which benefit substantially from the projected features. Since

correctly identifying spans is a precondition for nuclearity and relation prediction,

better results might be obtained by combining features from HILDA and TSP with

the representation learning approach described here.

Lines 5 and 6 show that discriminative learning of the projection matrix is crucial,

as fixed projections obtained from NMF or neural word embeddings perform substan-

tially worse. Line 7 shows that the original bag-of-words representation together with

basic features could give us some benefit on discourse parsing, but still not as good

as results from Dplp. As shown in lines 8 and 9, the concatenation construction is

superior to the difference construction, but the comparison between lines 10 and 11

is inconclusive on the merits of the general form of A. This suggests that using the

1https://github.com/jiyfeng/DPLP

50

https://github.com/jiyfeng/DPLP

30 60 90 150
K

76

77

78

79

80

81

82

83

84

F-
sc

o
re

Concatenation DPLP

General DPLP

TSP 1-1 (Joty, et al., 2013)

HILDA (Hernault, et al., 2010)

(a) Span

30 60 90 150
K

65

66

67

68

69

70

71

72

F-
sc

o
re

Concatenation DPLP

General DPLP

TSP 1-1 (Joty, et al., 2013)

HILDA (Hernault, et al., 2010)

(b) Nuclearity

30 60 90 150
K

50

52

54

56

58

60

62

F-
sc

o
re

Concatenation DPLP

General DPLP

TSP 1-1 (Joty, et al., 2013)

HILDA (Hernault, et al., 2010)

(c) Relation

Figure 14: The performance of our parser over different latent dimension K. Results
for Dplp include the additional features from Table 13

51

projection matrix to model interrelationships between EDUs does not substantially

improve performance, and the simpler concatenation construction may be preferred.

Figure 14 shows how performance changes for different latent dimensions K. At

each value of K, grid search was used over a development set to identify the optimal

regularizers λ and τ . For the concatenation construction, performance is not overly

sensitive to K. For the general form of A, performance decreases with large K. Recall

that this construction has nine times as many parameters as the concatenation form;

with large values of K, it is likely to overfit.

Why does projection of the surface features improve discourse parsing? To answer

this question, I would like to test what information the projection matrix is learning

to encoded. First, the projection matrix is token from the concatenation construction

and K = 60 as an example for case study. Recalling the definition in equation 9, the

projection matrix A will be composed of three identical sub-matrices B ∈ R20×V . The

columns of the B matrix can be viewed as 20-dimensional descriptors of the words in

the vocabulary.

For the purpose of visualization, the dimension of latent representation is reduced

from K = 20 to 2 dimensions using t-SNE [197]. One further simplification for

visualization is to consider only the top 1000 frequent unigrams in the RST-DT

training set. For comparison, I also apply t-SNE to the projection matrix Bnmf

recovered from non-negative matrix factorization.

Figure 15 highlights words that are related to discourse analysis. Among the top

1000 words, the words are highlighted from 5 major discourse connective categories

provided in Appendix B of the PDTB annotation manual [165]: Conjunction,

Contrast, Precedence, Result, and Succession. In addition, I also highlighted

two verb categories from the top 1000 words: modal verbs and reporting verbs, with

their inflections [102].

From the figure, it is clear Dplp has learned a projection matrix that successfully

52

although until

however

also

though

but

thus

later

can

could
would

should

and

when
after so

once
will

might
may

before
then

says
say

reportedsaid
saying

believe
think

must
asked

report

(a) Latent representation of words from projection learning
with K = 20.

but
would

when

also may
can

then
must

might
once

however

so
though

thus

although

should

later
until

will

before
after

could

and

says
said

say

asked
saying

think

believe

report

Conjunction
Contrast
Precedence
Result
Succession
Modal verb
Reporting verb

(b) Latent representation of words from non-negative ma-
trix factorization with K = 20.

Figure 15: t-SNE Visualization on latent representations of words.

53

groups several major discourse-related word classes: particularly modal and reporting

verbs; it has also grouped succession and precedence connectives with some success.

In contrast, while NMF does obtain compact clusters of words, these clusters appear

to be completely unrelated to discourse function of the words that they include. This

demonstrates the value of using discriminative training to obtain the transformed

representation of the discourse units.

3.2 Distributed Semantic Composition for Implicit Discourse
Relation Identification

As demonstrated in the RST-style parsing, most of improvement from representa-

tion learning is on relation identification. Considering that relation identification is

closely relevant to the semantic understanding of text, this improvement is consistent

with the expectation on representation learning. However, the model employed in

section 3.1 has a limitation, as discussed on Equation 3 in chapter 1. The distributed

representation of a discourse unit is the summarization of distributed representations

of words within this unit. This simple composition idea is not enough to capture

sufficient semantic information for the relation identification in discourse processing.

This section still focuses on idea of representation learning but extends the idea to

include more sophisticated ways for sentence-level distributed representation.

As discussed in chapter 1, discourse relations are rooted in semantics [52], which

can be difficult to recover from surface level features. Consider again the following

example

Example 10. Bob gave Tina the burger.

She was hungry.

While a connector like “because” seems appropriate here, there is little surface

information to signal this relationship, unless the model has managed to learn a

bilexical relationship between “burger” and “hungry”. Learning all such relationships

54

u
(`)
0

Bob u
(`)
1

gave u
(`)
2

Tina u
(`)
3

the burger

u
(r)
0

She u
(r)
1

was hungry

Figure 16: The distributed representations of “burger” and “hungry” are propagated
up the parse tree, clarifying the implicit discourse relation between u

(`)
0 and u

(r)
0 .

d
(`)
0

Bob d
(`)
1

gave d
(`)
2

Tina u
(`)
3

the burger

d
(r)
0

She u
(r)
1

was hungry

Figure 17: Distributed representations for the coreferent mentions “Tina” and “she”
are computed from the parent and sibling nodes.

from annotated data — including the relationship of “hungry” to “knish”, “pierogie”,

“pupusa” etc — would require far more data than can possibly be annotated.

In this section, I present a new way to address this problem based on composi-

tional distributed representation [179, 4]. The meaning of each discourse argument is

represented as a vector [195], which is computed through a series of bottom-up com-

positional operations over the syntactic parse tree. The discourse relation can then be

predicted as a bilinear combination of these vector representations. Both the predic-

tion matrix and the compositional operator are trained in a supervised large-margin

framework [177], ensuring that the learned compositional operation produces seman-

tic representations that are useful for discourse. Experiments on the PDTB show

that this approach outperforms prior work on the classification of implicit discourse

55

relations, when combined with a small number of surface features.

Despite these positive results, a bottom-up vector-based representations of dis-

course arguments can be augmented to be insufficient to capture their relations, as

discussed in section 1.2. Recall that the tiny modification on the example (10) dra-

matically changes the discourse relation.

Example 11. Bob gave Tina the burger.

He was hungry.

After changing the subject of the second sentence to Bob, the connective ““be-

cause”” no longer seems appropriate; a contrastive connector like “although” is pre-

ferred. But despite the radical difference in meaning, the bottom-up distributed rep-

resentation of the second sentence will be almost unchanged: the syntactic structure

remains identical, and the words “he” and “she” have very similar word representa-

tions (see Figure 18). If each discourse argument span is reduced into a single vector,

built from the elements in the argument itself, a model cannot possibly capture the

ways that discourse relations are signaled by entities and their roles [36, 122].

This issue is addressed here by computing vector representations not only for each

discourse argument, but also for each coreferent entity mention with an additional

composition procedure. These representations are meant to capture the role played

by the entity in the text, and so they must take the entire span of text into account.

The additional procedure computes entity-role representations using a feed-forward

compositional model, which combines “upward” and “downward” passes through the

syntactic structure, shown in Figure 17. In the example, the downward representa-

tions for “Tina” and “she” are computed from a combination of the parent and sibling

nodes in the binarized parse tree. Representations for these coreferent mentions are

then combined in a bilinear product, and help to predict the implicit discourse rela-

tion.

56

hungry

burger

Bob Tina

gave

she
was

the
he

Figure 18: t-SNE visualization [197] of word representations in the PDTB corpus.
The pronouns “she” and “he” are close to each other in the latent space, so it will be
nearly impossible for a distributional method to distinguish the meaning of examples.

3.2.1 Entity augmented distributed semantics

Let us define the approach to entity-augmented distributed semantics now. For clarity

of exposition, the definition focuses on discourse relations between pairs of sentences.

The extension to non-sentence arguments is discussed later in this section.

Distributed representations for discourse arguments are computed in a feed-forward

“upward” pass: each non-terminal in the binarized syntactic parse tree has a K-

dimensional vector representation that is computed from the representations of its

children, bottoming out in pre-trained representations of individual words. This

work follows the prior work on Recursive Neural Network (RNN) models proposed

by Socher et al.[177]. For a given parent node i, let `(i) denotes the left child, and

r(i) the right child. The representation of node i is given by

ui = tanh
(
U[u`(i);ur(i)]

)
, (17)

where tanh (·) is the element-wise hyperbolic tangent function [158], and U ∈ RK×2K

57

is the upward composition matrix. This compositional procedure is applied recur-

sively from the bottom up, to obtain the sentence-level representation u0. The base

case of recursion is the leaf nodes of this composition tree, which are set equal to

pre-trained word vector representations. For example, in the second sentence of Fig-

ure 16, the word representations of “was” and “hungry” are combined to obtain u
(r)
1 ,

and then combined with u
(r)
1 to obtain the word representation of “she” u

(r)
0 . Note

that the upward pass is feedforward, meaning that there are no cycles and all nodes

can be computed in linear time.

As discussed before, a model using only bottom-up representations would find

little to distinguish between “she was hungry” and “he was hungry”. It would almost

certainly fail to identify the correct discourse relation for at least one of these cases,

which requires tracking the roles played by the entities that are coreferent in each pair

of sentences. This issue is addressed here with additional composition procedure to

represent the semantics of the role played by each coreferent entity in each argument.

In this additional composition, the role of constituent i can be viewed as a com-

bination of information from two neighboring nodes in the parse tree: its parent ρ(i),

and its sibling s(i). In other words, a downward pass is used to compute the down-

ward vector di from the downward vector of the parent dρ(i), and the upward vector

of the sibling us(i):

di = tanh
(
V[dρ(i);us(i)]

)
, (18)

where V ∈ RK×2K is the downward composition matrix. The base case of this

recursive procedure occurs at the root of the parse tree, which is set equal to the

upward representation, d0 , u0. This procedure is illustrated in Figure 17: for

“Tina”, the parent node is d
(`)
2 , and the sibling is u

(`)
3 .

This up-down compositional algorithm propagates sentence-level distributed se-

mantics back to entity mentions. The representation of each mention’s role in the

sentence is based on the corresponding role of the parent node in the parse tree,

58

and on the internal meaning representation of the sibling node, which is computed

by upward composition. Note that this algorithm is designed to maintain the feed-

forward nature of the neural network, so that we can efficiently compute all nodes

without iterating. Each downward node di influences only other downward nodes dj

where j > i, meaning that the downward pass is feedforward. The upward node is

also feedforward: each upward node ui influences only other upward nodes uj where

j < i. Since the upward and downward passes are each feedforward, and the down-

ward nodes do not influence any upward nodes, the combined up-down network is also

feedforward. This ensures that all computation of ui and di is linear in the length of

the input.

To predict the discourse relation between an argument pair (m,n), the decision

function is a sum of bilinear products,

ψ(y) = (u
(m)
0)>Ayu

(n)
0 +

∑
i,j∈A(m,n)

(d
(m)
i)>Byd

(n)
j + by, (19)

where Ay ∈ RK×K and By ∈ RK×K are the classification parameters for relation y.

A scalar by is used as the bias term for relation y, and A(m,n) is the set of coreferent

entity mentions shared by the argument pair (m,n). The decision value ψ(y) of

relation y is therefore based on the upward vectors at the root, u
(m)
0 and u

(n)
0 , as well

as on the downward vectors for each pair of aligned entity mentions. For the cases

where there are no coreferent entity mentions between two sentences, A(m,n) = ∅,

the classification model considers only the upward vectors at the root.

To avoid overfitting, I propose a low-dimensional approximation to each Ay,

Ay = ay,1a
>
y,2 + diag(ay,3). (20)

The same approximation is also applied to each By, reducing the number of classifi-

cation parameters from 2×#|Y|×K2 to 2×#|Y|×3K.

Prior work has identified a number of useful surface-level features [118], and the

classification model can easily be extended to include them. Defining φ(m,n) as the

59

vector of surface features extracted from the argument pair (m,n), the corresponding

decision function is modified as,

ψ(y) = (u
(m)
0)>Ayu

(n)
0 +

∑
i,j∈A(m,n)

(d
(m)
i)>Byd

(n)
j + β>y φ(m,n) + by, (21)

where βy is the classification weight on surface features for relation y. The detail

information of these features will be described later.

Connection to the inside-outside algorithm In the inside-outside algorithm

for computing marginal probabilities in a probabilistic context-free grammar [106],

the inside scores are constructed in a bottom-up fashion, like our upward nodes;

the outside score for node i is constructed from a product of the outside score of

the parent ρ(i) and the inside score of the sibling s(i), like our downward nodes.

The standard inside-outside algorithm sums over all possible parse trees, but since

the parse tree is observed in our case, a closer analogy would be to the constrained

version of the inside-outside algorithm for latent variable grammars [161]. Cohen

et al.[32] describe a tensor formulation of the constrained inside-outside algorithm.

Similarly, the downward vectors could be computed by a tensor contraction of the

parent and sibling vectors [173, 174]. However, this would involve K3 parameters,

rather than the K2 parameters as in the matrix-vector composition.

3.2.2 Large-margin learning framework

There are two sets of parameters to be learned: the classification parameters θclass =

{Ay,By,βy, by}y∈Y , and the composition parameters θcomp = {U,V}. For leaf nodes,

the model uses pre-trained word representations, and do not update them. While

my prior work shows that it can be advantageous to retrain word representations

for discourse analysis [81], preliminary experiments found that updating the word

representations led to serious overfitting in this model.

Following [177], backpropagation with a large margin framework is used to learn

60

all parameters of the network jointly [57]. Learning is performed using stochastic

gradient descent [19]. In the following, the learning procedure is formulated on a single

argument pair (m,n) with the gold discourse relation y∗. The objective function for

this training example is a regularized hinge loss,

L(θ) =
∑

y′:y′ 6=y∗
max

(
0, 1− ψ(y∗) + ψ(y′)

)
+ λ||θ||22 (22)

where θ = θclass ∪ θcomp is the set of learning parameters. The regularization term

λ||θ||22 indicates that the squared values of all parameters are penalized by λ; this

corresponds to penalizing the squared Frobenius norm for the matrix parameters, and

the squared Euclidean norm for the vector parameters.

In Equation 51, L(θ) = 0, if for every y′ 6= y∗, ψ(y∗)−ψ(y′) ≥ 1 holds. Otherwise,

the loss will be caused by any y′, where y′ 6= y∗ and ψ(y∗)− ψ(y′) < 1. The gradient

for the classification parameters therefore depends on the margin value between gold

label and all other labels. Specifically, taking one component of Ay, ay,1, as an

example, the derivative of the objective for y = y∗ is

∂L(θ)

∂ay∗,1
= −

∑
y′:y′ 6=y∗

δ(ψ(y∗)−ψ(y′)<1) · u(m)
0 , (23)

where δ(·) is the delta function. The derivative for y′ 6= y∗ is

∂L(θ)

∂ay′,1
= δ(ψ(y∗)−ψ(y′)<1) · u(m)

0 (24)

During learning, the updating rule for Ay is

Ay ← Ay − η(
∂L(θ)

∂Ay

+ λAy) (25)

where η is the learning rate. The gradient information can be obtained in a similar

way to update parameters {By,βy, by}y∈Y .

There are two composition matrices U and V, corresponding to the upward and

61

downward composition procedures respectively. Taking the upward composition pa-

rameter U as an example, the derivative of L(θ) with respect to U is

∂L(θ)

∂U
=

∑
y′:y′ 6=y∗

δ(ψ(y∗)−ψ(y′)<1) ·
(∂ψ(y′)

∂U
− ∂ψ(y∗)

∂U

)
(26)

As with the classification parameters, the derivative depends on the margin between

y′ and y∗.

For every y ∈ Y , the unified derivative form exists,

∂ψ(y)

∂U
=
∂ψ(y)

∂u
(m)
0

∂u
(m)
0

∂U
+
∂ψ(y)

∂u
(n)
0

∂u
(n)
0

∂U
+

∑
i,j∈A(m,n)

∂ψ(y)

∂d
(m)
i

∂d
(m)
i

∂U
+

∑
i,j∈A(m,n)

∂ψ(y)

∂d
(n)
j

∂d
(n)
j

∂U
,

(27)

The gradient of U also depends on the gradient of ψ(y) with respect to every down-

ward vector d, as shown in the last two terms in Equation 27. This is because the

computation of each downward vector di includes the upward vector of the sibling

node, us(i), as shown in Equation 18. For an example, see the construction of the

downward vectors for “Tina” and “she” in Figure 17.

The partial derivatives of the decision function in Equation 27 are computed as,

∂ψ(y)

∂u
(m)
0

= Ayu
(n)
0 ,

∂ψ(y)

∂u
(n)
0

= A>y u
(m)
0 ,

∂ψ(y)

∂d
(m)
i

= Byd
(n)
j ,

∂ψ(y)

∂d
(n)
i

= B>y d
(m)
j , 〈i, j〉 ∈ A.

(28)

The partial derivatives of the upward and downward vectors with respect to the

upward compositional operator are computed as,

∂u
(m)
i

∂U
=

∑
u
(m)
k ∈T (u

(m)
i)

∂u
(m)
i

∂u
(m)
k

(u
(m)
k)> (29)

and

∂d
(m)
i

∂U
=

∑
u
(m)
k ∈T (d

(m)
i)

∂d
(m)
i

∂u
(m)
k

(u
(m)
k)>, (30)

where T (um) is the set of all nodes in the upward composition model that help to

generate um. For example, in Figure 16, the set T (u
(`)
2) includes u

(`)
3 and the word

62

representations for “Tina”, “the”, and “burger”. The set T (dm,i) includes all the

upward nodes involved in the downward composition model generating d
(m)
i . For

example, in Figure 17, the set T (d
(r)
she) includes u

(r)
1 and the word representations for

“was” and “hungry”.

The derivative of the objective with respect to the downward compositional oper-

ator V is computed in a similar fashion, but it depends only on the downward nodes,

d
(m)
i .

During learning, we used AdaGrad [43] to tune the learning rate in each iteration.

To avoid the exploding gradient problem [10], the norm clipping trick proposed in

[158] is used in the learning procedure with a fixed norm threshold τ = 5.0.

This model includes three tunable hyperparameters: the latent dimension K for

the distributed representation, the regularization parameter λ, and the initial learning

rate η. All hyperparameters are tuned by randomly selecting a development set of

20% of the training data. In our experiments, the grid search was performed with

K ∈ {20, 30, 40, 50, 60} for the latent dimensionality, λ ∈ {0.0002, 0.002, 0.02, 0.2}

for the regularization (on each training instance), and η ∈ {0.01, 0.03, 0.05, 0.09}

for the learning rate. Separate regularizers and learning rates were assigned to the

upward composition model, downward composition model, feature model and the

classification model with composition vectors.

All the classification parameters are initialized to 0. For the composition param-

eters, the initialization follows [7] and sets U and V with uniform random values

drawn from the range [−
√

6/2K,
√

6/2K]. Training on the PDTB takes roughly

three hours to converge, on an Intel(R) Xeon(R) CPU 2.20GHz without parallel com-

puting. Convergence is faster if the surface feature weights β are trained separately

first.

For word representations, a word2vec model [139] was trained on the PDTB cor-

pus. Then, the representation was standardized to zero-mean, unit-variance [112].

63

Table 3: Proportion of relations with coreferent entities, according to automatic
coreference resolution and gold coreference annotation.

Dataset Annotation Training (%) Test (%)

1. PDTB Automatic 27.4 29.1
2. PDTB∩Onto Automatic 26.2 32.3
3. PDTB∩Onto Gold 40.9 49.3

Experiments with pre-trained GloVe word vector representations [160] gave broadly

similar results.

In addition, the model also requires that the syntactic structure for each argument

is represented as a binary tree. All parses of arguments are obtained by running the

Stanford parser [95], and binarizing all resulting parse trees. Argument spans in the

Penn Discourse Treebank need not be sentences or syntactic constituents: they can

include non-constituent spans, and even discontinuous spans [165]. In all cases, all

syntactic subtrees for an argument span was identified, and then unified in a right

branching superstructure.

The impact of entity semantics on discourse relation detection is inherently limited

by two factors: (1) the frequency with which the arguments of a discourse relation

share coreferent entity mentions, and (2) the ability of automated coreference res-

olution systems to detect these coreferent mentions. To extract entities and their

mentions from the PDTB, I ran the Berkeley coreference system [45] on each docu-

ment. For each argument pair, ignore the non-corefential entity mentions. Line 1 in

Table 3 shows the proportion of the instances with shared entities in the PDTB train-

ing and test data, as detected by the Berkeley system. As the system does not detect

coreferent mentions in more than 70% of the cases, the performance improvements

offered by distributed entity semantics are therefore limited. To determine whether

this low rate of coreference is an intrinsic property of the data, or whether it is due to

the quality of state-of-the-art coreference resolution, it is interesting to also consider

64

the gold coreference annotations in the OntoNotes corpus [164], a portion of which in-

tersects with the PDTB (597 documents). Lines 2 and 3 of Table 3 give the statistics

for automatic and gold coreference on this intersection. These results indicate that

with perfect coreference resolution, the applicability of distributed entity semantics

would reach 40% of the training set and nearly 50% of the test set. Thus, improve-

ments in coreference resolution can be expected to yield further improvements in the

effectiveness of distributed entity semantics for discourse relation detection.

In experiments, the model was supplemented using additional surface features

proposed in [118]. These include four categories: word pair features, constituent

parse features, dependency parse features, and contextual features. As done in this

prior work [118], a criterion based on mutual information to select features in the first

three categories, obtaining 500 word pair features, 100 constituent features, and 100

dependency features. In addition, Rutherford and Xue [170] discovered that replacing

word pair with their Brown cluster assignments could give further improvements. In

the implementation, I used the Brown word clusters provided by [193], in which

words from the Reuters Corpus (RCV1) are grouped into 3,200 clusters. The feature

selection method of [118] was then used to obtain a set of 600 Brown cluster features.

3.2.3 Evaluation

The model is evaluated on the Penn Discourse Treebank [165], which provides a dis-

course level annotation over the Wall Street Journal corpus. In the PDTB, each

discourse relation is annotated between two argument spans. Identifying the argu-

ment spans of discourse relations is a challenging task [119], which we do not attempt

here; instead, I used gold argument spans, as in most of the relevant prior work. The

evaluation performed here focuses on classifying implicit discourse relations.

There are two main approaches to evaluating implicit discourse relation classi-

fication, as discussed in chapter 2. Multiclass classification requires identifying the

65

discourse relation from all possible choices. This task was first explored in [118], with

the focus on second-level discourse relations. More recent work has emphasized bi-

nary classification, where the goal is to build and evaluate separate “one-versus-all”

classifiers for each discourse relation [162, 156, 13].

3.2.3.1 Multiclass classification

The training and test set construction for the multiclass classification follows [118]

with a few changes:

• Sections 2-20 of the PDTB was used as a training set, sections 0-1 as a devel-

opment set for parameter tuning, and sections 21-22 for testing.

• Five relation types have a combined total of only nine instances in the training

set, and are therefore excluded by [118]: Condition, Pragmatic Condition,

Pragmatic Contrast, Pragmatic Concession and Exception. None

of these relations appear in the test or development data. I tried training with

and without these relation types in the training data, and found no difference

in the overall results.

• In the main multiclass experiment, I considered only the problem of distinguish-

ing between implicit relations. I also performed an additional experiment that

distinguishes implicit relations from entity-based coherence relations, labeled

EntRel.

• Roughly 2% of the implicit relations in the PDTB are annotated with more than

one type. During training, each argument pair that is annotated with two rela-

tion types is considered as two training instances, each with one relation type.

During testing, if the classifier assigns either of the two types, it is considered

to be correct.

The following baseline and competitive systems were adopted for comparison

66

Most common class The most common class is Cause, accounting for 26.03% of

the implicit discourse relations in the PDTB test set.

Additive word representations [16] show that simply adding word vectors can

perform surprisingly well at assessing the meaning of short phrases. In this

baseline, each argument was represented as a sum of its word representations,

and estimated with a bilinear prediction matrix.

Lin et al., (2009) [118] This is the then-best published accuracy on multiclass clas-

sification of second-level implicit discourse relations is from [118], which applies

feature selection to obtain a set of lexical and syntactic features over the argu-

ments.

Surface features + Brown clusters To get a more precise comparison, I reimple-

mented the system of [118]. The major differences are (1) I used the online

learning framework as proposed in the model part, rather than batch classifi-

cation, and (2) I also included the Brown cluster features described before and

originally proposed by [170].

Compositional Finally, the results for the compositional methods. Since it is a

distributional compositional approach to discourse relations, it is named as

disco2.

Table 4 presents results for multiclass identification of second-level PDTB rela-

tions. As shown in lines 7 and 8, disco2 outperforms both baseline systems and the

prior state-of-the-art (line 3). The strongest performance is obtained by including the

entity distributed semantics, with a 4.4% improvement over the accuracy reported by

[118] (p < .05 by a binomial test). A significant improvement is obtained over the

Surface Feature + Brown Cluster model. Because I have the implementation of this

system, therefore can use the sign test for statistical significance. Again, disco2 is

67

Table 4: Experimental results on multiclass classification of level-2 discourse relations.
The results of Lin et al. (2009) [118] are shown in line 3. We reimplemented this
system and added the Brown cluster features from Rutherford and Xue (2014) [170],
with results shown in line 4.

Model +Entity semantics +Surface features K Accuracy(%)

Baseline models
1. Most common class 26.03
2. Additive word representations 50 28.73

Prior work
3. Lin et al. (2010) [118] X 40.2

Our work
4. Surface features + Brown clusters X 40.66

5. disco2 50 36.98
6. disco2 X 50 37.63

7. disco2 X 50 43.75∗

8. disco2 X X 50 44.59∗

∗ signficantly better than lines 3 and 4 with p < 0.05

significantly better the baseline system (p < .05). However, the surface features

remain important, as the performance of disco2 is substantially worse when only

the distributed representation is included. The latent dimension K is chosen from a

development set, as shown in Figure 19.

Another question is whether it is possible to identify entity-based coherence, anno-

tated in the PDTB as EntRel, which is when a shared entity is the only meaningful

relation that holds between two sentences [165]. To answer this question, I added

EntRel to the set of possible relations, and performed an additional evaluation.

Since this setting has not previously been considered, it cannot be evaluated against

published results; instead, I retrained and evaluated the following models:

• the surface feature baseline with Brown clusters, corresponding to line 4 of

Table 4;

• disco2 with surface features but without entity semantics, corresponding to

line 7 of Table 4;

• disco2 with surface features and entity semantics, corresponding to line 8 of

68

20 30 40 50 60
K

41.5

42.0

42.5

43.0

43.5

44.0

Ac
cu

ra
cy

 (%
)

Figure 19: The performance of disco2 (full model), over different latent dimensions
K.

Table 4.

As before, all parameters are tuned on a development set. In this evaluation, a larger

improvements is obtained from disco2: the full model (with entity semantics) gives

47.27% accuracy, as compared to 44.96% without entity semantics; the result for the

surface feature baseline is 41.48%.

The contribution of entity semantics is shown in Table 4 by the accuracy differ-

ences between lines 5 and 6, and between lines 7 and 8. On the subset of relations in

which the arguments share at least one coreferent entity, the difference is substantially

larger: the accuracy of disco2 is 45.7% with entity mention semantics, and 43.1%

without. Considering that only 29.1% of the relations in the PDTB test set include

shared entities, it therefore seems likely that a more sensitive coreference system could

yield further improvements for the entity-semantics model. Indeed, gold coreference

annotation on the intersection between the PDTB and the OntoNotes corpus shows

that 40-50% of discourse relations involve coreferent entities (Table 3). Evaluating on

just this intersection, the inclusion of entity semantics yields an improvement in ac-

curacy from 37.5% to 39.1%. Thus, while the overall improvements offered by entity

mention semantics are relatively small, this is due in part to the poor recall of the

state-of-the-art coreference resolution system; if coreference improved, the impact of

69

the entity mention semantics would increase correspondingly.

A question about whether it was necessary to have the correct coreference align-

ment, or whether similar improvements could be obtained by computing bilinear

products between all pairs of noun phrases in the two discourse arguments. In fact,

this strategy of aligning all entity mentions resulted in a decrease in accuracy, from

44.59 to 42.14%. This is below the performance of disco2 without entity semantics.

Examples The following examples help highlight how entity semantics can improve

the accuracy of discourse relation classification. In example 12, the entity-augmented

model correctly identifies the relation as restatement, due in part to the detected

coreference between “The Wall Street Journal” and “the Journal”: in both argu-

ments, the entity experiences a drop in profits. Without this information, disco2 in-

correctly labels this relation as Cause. In example 13, the entity-augmented model

correctly identifies the relation as contrast, which is reasonable given the very dif-

ferent role of the shared entity “Mr. Greenberg” in the two arguments; without entity

semantics, it is classified as Conjunction. Example 14 is more complex because it

involves two entities, but again, the contrast relation is correctly detected, in part

because of the differing experiences of the two entities in the two arguments; without

entity semantics, this example is again incorrectly classified as Conjunction.

70

Example 12.

Arg1: The drop in profit reflected, in part, continued softness in financial ad-

vertising at The Wall Street Journal and Barron’s magazine.

Arg2: Ad linage at the Journal fell 6.1% in the third quarter.

Example 13.

Arg1: Mr. Greenberg got out just before the 1987 crash and, to his regret, never

went back even as the market soared.

Arg2: This time he’s ready to buy in “when the panic wears off.”

Example 14.

Arg1: Half of them1 are really scared and want to sell but I2’m trying to talk

them out of it.

Arg2: If they1 all were bullish, I2’d really be upset.

3.2.3.2 Binary classification

Much of the recent work in PDTB relation detection has focused on binary classi-

fication, building and evaluating separate one-versus-all classifiers for each relation

type [162, 156, 13]. This work has focused on recognition of the four first-level re-

lations, grouping EntRel with the Expansion relation. We follow this evaluation

approach as closely as possible, using sections 2-20 of the PDTB as a training set,

sections 0-1 as a development set for parameter tuning, and sections 21-22 for testing.

The evaluation was performed with the full system. However, instead of a single

multiclass classifier for all four relations, four binary classifiers were trained, one

for each first-level discourse relation. The hyperparameters K,λ, η were optimized

separately for each classifier, by performing a grid search to optimize the F-measure

on the development data. Following the work in [162], a balanced training set was

constructed by resampling training instances in each class until the number of positive

71

Table 5: Evaluation on the first-level discourse relation identification. The results of
the competitive systems are reprinted.

Comparison Contingency Expansion Temporal
F1 Acc F1 Acc F1 Acc F1 Acc

Competitive systems
1. Pitler et al. (2009) [162] 21.96 56.59 47.13 67.30 76.42 63.62 16.76 63.49
2. Zhou et al. (2010) [213] 31.79 58.22 47.16 48.96 70.11 54.54 20.30 55.48
3. Park and Cardie (2012) [156] 31.32 74.66 49.82 72.09 79.22 69.14 26.57 79.32
4. Biran and McKeown (2013) [13] 25.40 63.36 46.94 68.09 75.87 62.84 20.23 68.35

Our work
5. disco2 35.93 70.27 52.78 76.95 80.02 69.80 27.63 87.11

and negative instances are equal.

The performance is compared against the published results from several compet-

itive systems, including

Pitler et al.(2009) [162] present a classification model using linguistically-informed

features, such as polarity tags and Levin verb classes.

Zhou et al.(2010) [213] predict discourse connective words, and then use these pre-

dicted connectives as features in a downstream model to predict relations.

Park and Cardie (2012) [156] show that the performance on each relation can be

improved by selecting a locally-optimal feature set.

Biran and McKeown (2013) [13] reweight word pair features using distributional

statistics from the Gigaword corpus, obtaining denser aggregated score features.

Table 5 presents the performance of the disco2 model and the published results

of competitive systems. disco2 achieves the best results on most metrics, achieving

F-measure improvements of 4.14% on Comparison, 2.96% on Contingency, 0.8%

on Expansion, and 1.06% on Temporal. These results are obtained without per-

forming per-relation feature selection, as in prior work. While computing significance

over F-measures is challenging, I computed statistical significance on the accuracy re-

sults by using the binomial test. disco2 is significantly more accurate than all other

72

systems on the Contingency and Temporal relations p� .001, not significantly

more accurate on the Expansion relation, and significantly less accurate than the

[156] system on the Comparison relation at p� .001.

3.3 Discussion

Discourse relations are determined by the meaning of their arguments, and progress

on discourse parsing therefore requires computing representations of the argument

semantics. This chapter presents a set of representation learning models with su-

pervision information. The work in section 3.1 demonstrates the power of word

representation learning with a simple composition function. Given the limited anno-

tated documents in the RST Treebank, the simple composition function is a trade-off

between the availability of data and complexity of models. By adding some addi-

tional surface features, the RST parser is further improved the parsing performance,

especially relation identification, on the RST Treebank. The low dimensional rep-

resentation also captures basic intuitions about discourse connectives and verbs, as

shown in 15(a).

Section 3.2 further presents a compositional method for inducing distributed rep-

resentations not only of discourse arguments, but also of the entities that thread

through the discourse. In this approach, semantic composition is applied up the

syntactic parse tree to induce the argument-level representation, and then down the

parse tree to induce representations of entity spans. Discourse arguments can then

be compared in terms of their overall distributed representation, as well as by the

representations of coreferent entity mentions. This enables the compositional oper-

ators to be learned by backpropagation from discourse annotations. In combination

with traditional surface features, this approach outperforms previous work on clas-

sification of implicit discourse relations in the Penn Discourse Treebank. While the

entity mention representations offer only a small improvement in overall performance,

73

this is limited by the recall of the coreference resolution system: when evaluated on

argument pairs for which coreference is detected, the raw improvement from entity

semantics is more than 2%.

74

CHAPTER IV

DISCOURSE-DRIVEN LANGUAGE MODELING

Work described in this chapter was undertaken in collaboration with Trevor Cohn,

Chris Dyer, Jacob Eisenstein, Gholamreza Haffari and Lingpeng Kong, published at

ICLR 2016 (Workshop track) [79] and NAACL 2016 [83].

Statistical language models are essential components of natural language process-

ing systems, such as machine translation [99], automatic speech recognition [91], text

generation [181] and information retrieval [126]. Language models estimate the prob-

ability of a word for a given context. In conventional language models, context is

represented by n-grams, so these models condition on a fixed number of preceding

words. Recurrent Neural Network Language Models (RNNLMs) [137] use a dense

vector representation to summarize context across all preceding words within the

same sentence. Context operates on multiple levels of detail: on the syntactic level, a

word’s immediate neighbors are most predictive; on the level of discourse and topic,

all words in the document lend contextual information.

Recent research has developed a variety of ways to incorporate document-level

contextual information. For example, topic information extracted from the entire

document is used [140, 110] to help predict words in each sentence; the bag-of-words

representation of the previous sentence is also proposed to construct contextual in-

formation with a separate model [117]; a similar bag-of-words context is used in [202]

to integrate contextual information into a LSTM for generating the current sentence.

These models are all hybrid architectures in that they are recurrent at the sentence

level, but use a different architecture to summarize the context outside the sentence.

75

y t−1,1

x t−1,1

y t−1,2

x t−1,2

y t−1, M−1

x t−1, M−1

y t−1, M

x t−1, M x t , 1

y t ,1

x t , 2 x t , N−1 x t , N

y t ,2 y t , N−1 y t , N

Figure 20: A fragment of document-level recurrent neural network language model
(dRnnlm). It is also an extension of sentence-level RNNLM to the document level
by ignoring sentence boundaries.

The simplest such model would be to train a single RNN, ignoring sentence bound-

aries: as shown in Figure 20, the last hidden state from the previous sentence t − 1

is used to initialize the first hidden state in sentence t. In such an architecture, the

length of the RNN is equal to the number of tokens in the document; in typical gen-

res such as news texts, this means training RNNs from sequences of several hundred

tokens, which introduces two problems:

Information decay In a sentence with thirty tokens (not unusual in news text), the

contextual information from the previous sentence must be propagated through

the recurrent dynamics thirty times before it can reach the last token of the

current sentence. Meaningful document-level information is unlikely to survive

such a long pipeline.

Learning It is notoriously difficult to train recurrent architectures that involve many

time steps [10]. In the case of an RNN trained on an entire document, back-

propagation would have to run over hundreds of steps, posing severe numerical

challenges.

In this chapter, I explore recurrent architectures for combining discourse informa-

tion in language modeling. section 4.2 presents a set of document context language

models (DCLMs) with contextual information summarized from preceding text in

document. Each DCLM in section 4.2 represent a possible way of utilizing contextual

76

information for word generation. Based on the success of DCLMs on language mod-

eling, a further extension of one DCLM (coDCLM) is to include discourse relations

between adjacent sentences, named DrLM. section 4.3 includes the detail discussion

on DrLM, and demonstrates its capacity on discourse driven language models and

discourse relation prediction.

4.1 Prior Work on Language Modeling

Neural language models (NLMs) learn the distributed representations of words to-

gether with the probability function of word sequences. In the NLM proposed in [9],

a feed-forward neural network with a single hidden layer was used to calculate the

language model probabilities. One limitation of this model is only fixed-length con-

text can be used. Recurrent neural network language models (RNNLMs) avoid this

problem by recurrently updating a hidden state [137], thus enabling them to condi-

tion on arbitrarily long histories. In this work, a sentence-level RNNLM is extend to

include more context with a recurrent architecture, by allowing multiple pathways for

historical information to affect the current word. A comprehensive review of recurrent

neural networks language models is offered in [39].

Conventional language models, including the models with recurrent structures [137],

limit the context scope within a sentence. This ignores potentially important infor-

mation from preceding text, for example, the previous sentence. Targeting speech

recognition, where contextual information may be especially important, [140] intro-

duce the topic-conditioned Rnnlm, which incorporates a separately-trained latent

Dirichlet allocation topic model to capture the broad themes of the preceding text.

This chapter focuses on discriminatively-trained end-to-end models.

Lin et al.[117] recently introduced a document-level language model, called hierar-

chical recurrent neural network language model (hRnnlm). There are two channels of

information: a RNN for modeling words in a sentence, and another recurrent model

77

for modeling sentences, based on a bag-of-words representation of each sentence.

Contemporaneously to our model, Want and Cho [202] construct a bag-of-words rep-

resentation of previous sentences, which they then insert into a sentence-level LSTM.

The modeling approach proposed in language modeling with contextual information

is more unified and compact — employing a single recurrent neural network architec-

ture, but with multiple channels for information to feed forward into the prediction

of each word.

Except the document-level language modeling, there are also some approaches to

directly model document content. Li et al.[114] propose to use a convolution kernel

to summarize sentence-level representations for modeling a document. The model is

for coherence evaluation, in which the parameters are learned via supervised training.

Related convolutional architectures for document modeling are considered in [40, 190].

Encoder-decoder architectures provide an alternative perspective, compressing all the

information in a sequence into a single vector, and then attempting to decode the

target information from this vector; while this idea has notably applied in machine

translation [29], it can also be employed for coherence modeling [116]. The hierarchical

sequence-to-sequence model of [116] conditions the start word of each sentence on

contextual information provided by the encoder, but does not apply this idea to

language modeling. Different from the models with hierarchical structures, paragraph

vector [110] encodes a document to a numeric vector by discarding document structure

and only retaining topic information.

4.2 Language modeling with document context

This section presents a set of language models to integrate contextual information

from previous sentences. Each of them has either some practical or theoretical merits.

78

4.2.1 Recurrent Neural Network Language Models

To describe the document context language models, I start with a recurrent neural

network language model (Rnnlm) to explain some necessary terms. Given a sentence

{xn}Nn=1, a recurrent neural network language model is defined as

hn =g (hn−1,xn)

yn =softmax (Wohn + b) ,

(31)

where xn ∈ RK is the distributed representation of the n-th word, hn ∈ RH is the

corresponding hidden state computed from the word representation and the previous

hidden state hn−1, and b is the bias term. K and H are the input and hidden

dimension respectively. As in the original RNNLM [137], yn is a prediction of the

(n+ 1)-th word in the sequence.

The transition function g (·) could be any nonlinear function used in neural net-

works, such as the element-wise sigmoid function, or more complex recurrent func-

tions such as the LSTM [73] or GRU [30]. This work uses LSTM, as it consistently

gives the best performance in evaluation. By stacking two LSTM together, the new

model is able to obtain a even more powerful transition function, called multi-layer

LSTM [187]. In a multi-layer LSTM, the hidden state from a lower-layer LSTM cell

is used as the input to the upper-layer, and the hidden state from the final-layer is

used for prediction. In the following description, the number of layers is fixed as two.

4.2.2 Document Context Language Models

The underlying assumption of this work is that contextual information from previ-

ous sentences needs to be able to “short-circuit” the standard RNN, so as to more

directly impact the generation of words across longer spans of text. First, the contex-

tual information is represented by the final hidden representation from the previous

sentence t− 1,

ct−1 = ht−1,M (32)

79

where M is the length of sentence t − 1. Then additional paths are created for this

information to impact each hidden representation in the current sentence t. Let xt,n

to be the word representation of the n-th word in the t-th sentence, then

ht,n = gθ (ht,n−1, s (xt,n, ct−1)) (33)

where gθ (·) is the activation function parameterized by θ and s (·) is a function that

combines the context vector with the input xt,n for the hidden state. The function

s () is simply realized by concatenating two representations xt,n and ct−1,

s (xt,n, ct−1) = [xt,n, ct−1]. (34)

More sophisticated form can be considered later. The emission probability for yt,n is

then computed from ht,n as in the standard RNNLM (Equation 31). The underlying

assumption of this model is that contextual information should impact the generation

of each word in the current sentence. The model therefore introduces computational

“short-circuits” for cross-sentence information, as illustrated in Figure 21(a). Because

information flows from one hidden vector to another, this model is called the context-

to-context Document Context Language Model, abbreviated as ccDCLM.

With this specific architecture, the number of parameters is H(16H + 3K + 6) +

V (H +K + 1), where H is the size of the hidden representation, K is the size of the

word representation, and V is the vocabulary size. The constant factors come with

the weight matrices within a two-layer LSTM unit. This is in the same complexity

class as the standard RNNLM. Special handling is necessary for the first sentence of

the document. In this case, a dummy contextual representation c0 is introduced as a

Start symbol for a document, just like the START token in sentence-level language

modeling. This is another parameter to be learned jointly with the other parameters

in this model. The training procedure of ccDCLM is similar to a conventional

RNNLM: the model moves from left to right through the document and compute a

80

y t−1,1

x t−1,1

y t−1,2

x t−1,2

y t−1, M−1

x t−1, M−1

y t−1, M

x t−1, M

x t , 1

y t ,1

x t , 2 x t , N−1 x t , N

y t ,2 y t , N−1 y t , N

(a) ccDCLM

y t−1,1

x t−1,1

y t−1,2

x t−1,2

y t−1, M−1

x t−1, M−1

y t−1, M

x t−1, M x t , 1

y t ,1

x t , 2 x t , N−1 x t , N

y t ,2 y t , N−1 y t , N

(b) coDCLM

Figure 21: Context-to-context and context-to-output DCLMs

softmax loss on each output yt,n. The loss then is backpropagated through the entire

sequences.

Rather than incorporated into the recurrent definition of the hidden state, the

document context can also be added directly to the output, as illustrated in Fig-

ure 21(b). Let ht,n be the hidden state from a conventional RNNLM of sentence t,

ht,n = gθ (ht,n−1,xt,n) . (35)

Then, the context vector ct−1 is directly used in the output layer as

yt,n ∼ softmax (Whht,n + Wcct−1 + b) (36)

where ct−1 is defined in Equation 32. Because the document context impacts the

output directly, this model is named as the context-to-output DCLM (coDCLM).

The modification on the model architecture from ccDCLM to coDCLM leads to

a notable change on the number of parameters. The total number of parameters of

81

coDCLM is H(13H + 3K + 6) + V (2H + K + 1). The difference of the parameter

numbers between these coDCLM and ccDCLM is V H− 3H2. Recall that V is the

vocabulary size and H is the size of latent representation, in most cases V ≥ 104 and

H ≈ 102. Therefore V � H in all reasonable cases, and coDCLM includes more

parameters than ccDCLM in general.

While the coDCLM has more parameters that must be learned, it has a po-

tentially important computational advantage. By shifting ct−1 from hidden layer to

output layer, the relationship of any two hidden vectors ht and ht′ from different sen-

tences is decoupled, so that each can be computed in isolation. In a guided language

generation scenario such as machine translation or speech recognition — the most

common use case of neural language models — this means that decoding decisions

are only pairwise dependent across sentences. This is in contrast with the ccDCLM,

where the tying between each ht and ht+1 means that decoding decisions are jointly

dependent across the entire document. This joint dependence may have important

advantages, as it propagates contextual information further across the document; the

ccDCLM and coDCLM thereby offer two points on a tradeoff between accuracy

and decoding complexity.

One potential shortcoming of ccDCLM and coDCLM is the limited capacity of

the context vector, ct−1, which is a fixed dimensional representation of the context.

While this might suffice for short sentences, as sentences grow longer, the amount of

information needing to be carried forward will also grow, and therefore a fixed size

embedding may be insufficient. For this reason, it may be necessary to consider an

attentional mechanism, based on conditional language models for translation [3, 187]

which allows for a dynamic capacity representation of the context.

82

Central to the attentional mechanism is the context representation, which is de-

fined separately for each word position in the output sentence,

ct−1,n =
M∑
m=1

αn,mht−1,m (37)

αn = softmax (an) (38)

an,m = w>a tanh (Wa1ht,n + Wa2ht−1,m) (39)

where ct−1,n is formulated as a weighted linear combination of all the hidden states

in the previous sentence, with weights α constrained to lie on the simplex using the

softmax transformation. Each weight αn,m encodes the importance of the context

at position m for generating the current word at n, defined as a neural network

with a hidden layer and a single scalar output. Consequently each position in the

generated output can “attend” to different elements of the context sentence, which

would arguably be useful to shift the focus to make best use of the context vector

during generation.

The revised definition of the context in Equation 37 requires some minor changes

in the generating components. This is included as an additional input to both the

recurrent function (similar to ccDCLM), and output generating function (akin to

coDCLM), as follows

ht,n = gθ

(
ht,n−1,

[
c>t−1,n,x

>
t,n

]>)
(40)

yt,n ∼ softmax (Wo tanh (Whht,n + Wcct−1,n + b)) (41)

where the output uses a single hidden layer network to merge the local state and

context, before expanding the dimensionality to the size of the output vocabulary,

using Wo. The extended model is named as attentional DCLM (aDCLM).

4.2.3 Evaluation

The models were evaluated with perplexity and document-level coherence assessment.

The first data set used for evaluation is the Penn Treebank (PTB) corpus [133],

83

Table 6: Basic statistics of the Penn Treebank (PTB) and North American News
Text (NANT) data sets

Average Document Length

Documents # Tokens # Sentences

PTB Training 2,000 502 21
Development 155 516 22
Test 155 577 24

NANT Training 26,462 783 32
Development 148 799 33
Test 2,753 778 32

which is a standard data set used for evaluating language models [137]. I used the

standard split proposed by Mikolov et al. [137]: sections 0-20 for training, 21-22 for

development, and 23-24 for test. For preprocessing, top 10,000 words were kept to

construct the vocabulary, and lower frequency words were replaced with the special

token Unknown. The vocabulary also includes two special tokens Start and Stop

to indicate the beginning and end of a sentence. In total, the vocabulary size is

10, 003.

To investigate the capacity of modeling documents with larger context, a subset

of the North American News Text (NANT) corpus [134] was also used to construct

another evaluation data set. As shown in Table 6, the average length of the training

documents is more than 30 sentences. The same preprocessing procedure was used

on this dataset, and the top 15,000 words from the training set were kept in the

vocabulary. Some basic statistics of both data sets are listed in Table 6.

All models are implemented in the cnn package (https://github.com/clab/

cnn) with a two-layer LSTM. which is available online at https://github.com/

jiyfeng/dclm.

All parameters are initialized with random values drawn from the range

[−
√

6/(d1 + d2),
√

6/(d1 + d2)],

84

https://github.com/clab/cnn
https://github.com/clab/cnn
https://github.com/jiyfeng/dclm
https://github.com/jiyfeng/dclm

where d1 and d2 are the input and output dimensions of the parameter matrix re-

spectively, as suggested by [54]. Online learning was performed using AdaGrad [43]

with the initial learning λ = 0.1. To avoid the exploding gradient problem, the norm

clipping trick proposed in [158] was used with a fixed norm threshold as τ = 5.0.

All models include two tunable hyper-parameters: the dimension of word repre-

sentation K and the hidden dimension of LSTM unit H. I considered the values

{32, 48, 64, 96, 128, 256} for both K and H. The best combination of K and H for

each model was selected by the development sets via grid search. In all experiments,

the hidden dimension of the attentional component in aDCLM is fixed as 48.

As shown in Table 6, the average length of documents is more than 500 tokens,

with extreme cases having over 1,000 tokens. In practice, training on long documents

leads to a very slow convergence rate. Therefore, each long document was segmented

into several non-overlapping shorter documents with at most L sentences and the

original sentence order. The value of L used in most experiments is 5, although a

comparison with L = 10 is included in evaluation.

All three DCLM-style models (ccDCLM, coDCLM, aDCLM) are compared

with the following competitive alternatives:

Recurrent neural network language model (Rnnlm) The model is trained on

individual sentences without any contextual information [137]. The compar-

ison between DCLMs and this baseline system highlights the contribution of

contextual information.

RNNLM w/o sentence boundary (dRnnlm) This is a straightforward exten-

sion of sentence-level RNNLM to document-level, as illustrated in Figure 20. It

can also be viewed a conventional RNNLM without considering sentence bound-

aries. The difference between Rnnlm and dRnnlm is that dRnnlm is able to

consider (a limited amount of) extra-sentential context.

85

Table 7: Perplexities of the Penn Treebank (PTB) and North American News Text
(NANT) data sets.

PTB NANT

Model Dev Test Dev Test

Baselines
1. RNNLM [137] 69.24 71.88 109.48 194.43
2. RNNLM w/o sentence boundary (dRnnlm) 65.27 69.37 101.42 181.62
3. Hierarchical RNNLM (hRnnlm) [117] 66.32 70.62 103.90 175.92

Our models
4. Attentional DCLM (aDCLM) 64.31 68.32 96.47 170.99
5. Context-to-output DCLM (coDCLM) 64.37 68.49 95.10 173.52
6. Context-to-context DCLM (ccDCLM) 62.34 66.42 96.77 172.88

Hierarchical RNNLM (hRnnlm) To compare with other context model, the ar-

chitecture of HRNNLM [117] is also adopted as another baseline system, and

reimplemented with several modifications for a fair comparison. First, the sig-

moid recurrence function in the original implementation was replaced with a

long short-term memory (LSTM) as in DCLMs. Furthermore, instead of using

pretrained word embedding, the word representation in this new implementa-

tion was also updated during training. Finally, the model was jointly trained on

both sentence-level and document-level, which is also different from the original

implementation. These changes resulted in substantial improvements over the

original version of the hRnnlm; they allow the comparison to isolate the most

substantive difference between the DCLM and this modeling approach — how

contextual information is identified and exploited.

4.2.3.1 Language modeling

Table 7 presents the results on language modeling perplexity. The best perplexities

are given by the context-to-context DCLM on the PTB data set (line 6 in Table 7),

and attentional DCLM on the NANT data set (line 4 in Table 7). All DCLM-based

models achieve better perplexity than the prior work. While the improvements on the

PTB dataset are small in an absolute sense, they consistently point to the value of

86

0 20 40 60 80 100 120 140
Updates (× 50)

6.5

6.0

5.5

5.0

4.5

4.0

No
rm

al
ize

d
Lo

g-
lik

el
ih

oo
d

Length Threshold = 5
Length Threshold = 10

Figure 22: Effect of length thresholds on predictive log-likelihood on the PDTB de-
velopment set.

including multi-level context information in language modeling. The value of context

information is further verified by the model performance on the NANT dataset.

Of interest is the failure of the attentional DCLM to improve performance; while

this model is considerably more expressive than the coDCLM and ccDCLM, it is

considerably more complex to learn. Manual investigation showed that the attentional

state was fairly static in most cases, indicating that the model had not learned sharp

preferences for where to attend (typically proper nouns, quantities, the central verb).

It may also be the case that in an RNN, the best summary of each sentence is

found at the end of the sentence (after all words have been considered), so there is

little advantage to the variable-attention mechanism, particularly if in most cases it

amounts to averaging over the latent representations at each word in the sentence.

In all the results reported in Table 7, the document length threshold was fixed as

L = 5, meaning that documents were partitioned into subsequences of five sentences.

It would be interesting to know whether the results depended on this parameter.

Taking L = 1 would be identical to the standard RNNLM, run separately on each

sentence. To test the effect of increasing L, an empirical comparison was performed

between L = 5 and L = 10 with ccDCLM. Figure 22 shows the two curves on the

PTB development set. The x-axis is the number of updates on ccDCLM with the

87

PTB training set. The y-axis is the mean per-token log-likelihood given by Equa-

tion 31 on the development set. As shown in this figure, L = 10 seems to learn

more quickly per iteration in the beginning, although each iteration is more time-

consuming, due to the need to backpropagate over longer documents. However, after

a sufficient number of updates, the final performance results are nearly identical, with

a slight advantage to the L = 5 setting. This suggests a tradeoff between the amount

of contextual information and the ease of learning.

4.2.3.2 Local Coherence Evaluation

The long-term goal of coherence evaluation is to predict which texts are more coherent,

and then to optimize for this criterion in multi-sentence generation tasks such as

summarization and machine translation. A well-known proxy to this task is to try

to automatically distinguish an original document from an alternative form in which

the sentences are scrambled [5, 114]. Multi-sentence language models can be applied

to this task directly, by determining whether the original document has a higher

likelihood; no supervised training is necessary.

The specific experimental setup follows the same idea proposed by [5]. Considering

limited number of documents in the PTB test set, I used bootstrapping [37] to give

a robust model comparison. First, a new test set D(`) is generated by sampling the

documents from the original test set with replacement. Then, the sentences in each

document d ∈ D(`) of this new set was shuffled to get a pseudo-document d′. The

combination of d and d′ forms a single test example. Repeating the same procedure

to produce 1,000 test sets, where each test set includes 155 document pairs. Since

each test instance is a pairwise choice, a random baseline will have expected accuracy

of 50%.

To evaluate the models proposed on this task, I used the configuration with the

best development set perplexity, as shown in Table 11. The results of accuracy and

88

Table 8: Coherence evaluation on the PTB test set. The reported accuracies are
calculated from 1,000 bootstrapping test sets (as explained in text).

Accuracy

Model Mean (%) Standard deviation (%)

Baselines
1. RNNLM w/o sentence boundary (dRnnlm) 72.54 8.46
2. Hierarchical RNNLM (hRnnlm) [117] 75.32 4.42

Our models
3. Attentional DCLM (aDCLM)† 75.51 4.12
4. Context-to-output DCLM (coDCLM)†∗ 81.72 3.81
5. Context-to-context DCLM (ccDCLM)†∗ 83.26 3.77
† significantly better than dRnnlm with p-value < 0.01
∗ significantly better than hRnnlm with p-value < 0.01

standard deviation are calculated over 1,000 resampled test sets. As shown in Ta-

ble 8, the best accuracy is 83.26% given by ccDCLM, which also gives the smallest

standard deviation 3.77%. Furthermore, all DCLM-based models significantly out-

perform the RNNLM with p < 0.01 given by a two-sample one-side z-test on the

bootstrap samples. In addition, the ccDCLM and coDCLM are outperform the

hRnnlm with p < 0.01 with statistic z = 36.55 and 31.26 respectively.

Unlike some prior work on coherence evaluation [114, 116, 117], this coherence

evaluation approach does not require training on supervised data. Even though su-

pervised training might therefore improve performance further, I would like to em-

phasize that the goal of this work is to make automatically-generated translations

and summaries more coherent. Therefore, it is reasonable to avoid overfitting on this

artificial proxy task.

4.3 Language Modeling with Discourse Relations

In last section, the DCLMs demonstrate the contribution of contextual information

for word generation. The section will move one step further to consider the influence

of discourse relations on generation. In general, discourse relations can be viewed as

89

the expectation of content in following sentences. The example discussed in subsec-

tion 1.3.2 illustrates that discourse relations further constrain the choice of words in

generation.

This section provides a continuous work on word generation driven by discourse

information. The new model utilizes a hybrid architecture that combines a RNNLM

with a latent variable model over shallow discourse structure. The model learns

a discriminatively-trained distributed representation of the local contextual features

that drive word choice at the intra-sentence level, using techniques that are now state-

of-the-art in language modeling [137]. However, the model treats shallow discourse

structure — specifically, the relationships between pairs of adjacent sentences — as

a latent variable. As a result, it can act as a discourse relation classifier besides a

language model. Specifically:

• If trained to maximize the conditional likelihood of the discourse relations, it

outperforms state-of-the-art methods for both implicit discourse relation clas-

sification in the Penn Discourse Treebank [169] and dialog act classification in

Switchboard [93]. The model learns from both the discourse annotations as well

as the language modeling objective, unlike previous recursive neural architec-

tures that learn only from annotated discourse relations [82].

• If trained to maximize the joint likelihood of the discourse relations and the

text, it can marginalize over discourse relations at test time, outperforming

language models that do not account for discourse structure.

In contrast to recent work on continuous latent variables in recurrent neural net-

works [31], which require complex variational autoencoders to represent uncertainty

over the latent variables, this model is simple to implement and train, requiring only

minimal modifications to existing recurrent neural network architectures that are

90

implemented in commonly-used toolkits such as Theano, Torch, and CNN1.

4.3.1 Shallow Discourse Relations

This work focuses on a class of shallow discourse relations, which hold between pairs

of adjacent sentences (or utterances). These relations describe how the adjacent

sentences are related: for example, they may be in contrast, or the latter sentence

may offer an answer to a question posed by the previous sentence. The assumption of

this simple discourse structure is that discourse relations only hold between adjacent

text units. An example is unit1-discourse-unit2, where unit1 and unit2 are two

basic text units of this structure, and discourse represents the discourse information

connecting these two text units. The discourse information can either be signaled by

some lexical terms or inferred from semantics. Even it is simple, this structure still

partially or even fully represents the typical discourse structure in some discourse

theories on monologue and dialogue.

The first example of its connections is Lexicalized TAG theory for discourse (D-

LTAG) proposed in [204] and her colleagues. D-LTAG employs a predicate-argument

structure to model low-level discourse, where two arguments Arg1 and Arg2 are con-

nected by a predicate explicitly or implicitly. A predicate in D-LTAG is a word or

phrase called discourse marker. Discourse relations signaled by discourse markers

explicitly are called explicit relations; otherwise, they are implicit relations. One

argument is usually a clause or sentence. In minor cases, one argument can be sev-

eral sentences or even a paragraph. Using the language of D-LTAG, the proposed

simple discourse structure can be formulated as Arg1-Marker-Arg2. Based on the

annotation scheme on explicit and implicit relations in the Penn Discourse Treebank

(PDTB) [165], it covers all implicit cases and some explicit cases.

The similar connection to dialogue discourse theory is the Switchboard DAMSL

1https://github.com/clab/cnn

91

https://github.com/clab/cnn

annotation scheme [92] on dialogue acts. A dialogue act (e.g., Acknowledge) in-

dicates the expectation of from one utterance utter1 to the next utter2 during a

conversation. Based on the annotation scheme in the Switchboard dialogue act corpus,

the simplified discourse structure basically covers all the cases with the realization

Utter1-Act-Utter2.

4.3.2 Discourse Relation Language Models

This section presents the probabilistic neural model over sequences of words and

shallow discourse relations. Discourse relations zt are treated as latent variables,

which are linked with a recurrent neural network over words in a latent variable

recurrent neural network [31]. The model is formulated as a two-step generative

story. In the first step, context information from the sentence (t − 1) is used to

generate the discourse relation between sentences (t− 1) and t,

p(zt | yt−1) = softmax (Uct−1 + b) , (42)

where zt is a random variable capturing the discourse relation between the two sen-

tences, and ct−1 is a vector summary of the contextual information from sentence

(t− 1), just as in the DCLM (section 4.2).

p(yt,n+1 | zt, yt,<n, yt−1) = g
(

W(zt)
o ht,n︸ ︷︷ ︸

relation-specific

intra-sentential context

+ W(zt)
c ct−1︸ ︷︷ ︸

relation-specific

inter-sentential context

+ b(zt)
o︸︷︷︸

relation-specific

bias

)

(43)

In the second step, the sentence yt is generated, conditioning on the preceding

sentence yt−1 and the discourse relation zt:

p(yt | zt,yt−1) =
Nt∏
n

p(yt,n | yt,<n,yt−1, zt), (44)

92

The generative probability for the sentence yt decomposes across tokens as usual

(Equation 44). The per-token probabilities are shown in Equation 43. Discourse

relations are incorporated by parameterizing the output matrices W
(zt)
o and W

(zt)
c ;

depending on the discourse relation that holds between (t−1) and t, these matrices will

favor different parts of the embedding space. The bias term b
(zt)
o is also parameterized

by the discourse relation, so that each relation can favor specific words.

Overall, the joint probability of the text and discourse relations is,

p(y1:T , z1:T) =
T∏
t

{p(zt | yt−1)p(yt | zt,yt−1)}. (45)

If the discourse relations zt are not observed, then this model is equivalent to a

latent variable recurrent neural network (LVRNN). Connections to recent work on

LVRNNs are discussed in section 4.1; the key difference is that the latent variables

here correspond to linguistically meaningful elements, which are used to predict or

marginalize, depending on the situation.

As proposed, the Discourse Relation Language Model has a large number of pa-

rameters. Let K, H and V be the input dimension, hidden dimension and the size of

vocabulary in language modeling. The size of each prediction matrix W
(z)
o and W

(z)
c

is V ×H; there are two such matrices for each possible discourse relation. The number

of parameters is reduced by factoring each of these matrices into two components:

W(z)
o = Wo ·V(z), W(z)

c = Wc ·M(z), (46)

where V(z) and M(z) are relation-specific components for intra-sentential and inter-

sentential contexts; the size of these matrices is H × H, with H � V . The larger

V ×H matrices Wo and Wc are shared across all relations.

The discourse relation language model is carefully designed to decouple the dis-

course relations from each other, after conditioning on the words. It is clear that

text documents and spoken dialogues have sequential discourse structures, and it

93

seems likely that modeling this structure could improve performance. In a tradi-

tional hidden Markov model (HMM) generative approach [186], modeling sequential

dependencies is not difficult, because training reduces to relative frequency estima-

tion. However, in the hybrid probabilistic-neural architecture proposed here, training

is already expensive, due to the large number of parameters that must be estimated.

Adding probabilistic couplings between adjacent discourse relations 〈zt−1, zt〉 would

require the use of dynamic programming for both training and inference, increasing

time complexity by a factor that is quadratic in the number of discourse relations.

Previous section also includes an alternative form of the document context lan-

guage model called ccDCLM, in which the contextual information ct impacts the

hidden state ht+1, rather than going directly to the outputs yt+1. They obtain slightly

better perplexity with this approach, which has fewer trainable parameters. However,

this model would couple zt with all subsequent sentences y>t, making prediction

and marginalization of discourse relations considerably more challenging. Sequential

Monte Carlo algorithms offer a possible solution [38], which may be considered in

future work.

4.3.3 Inference

There are two possible inference scenarios: inference over discourse relations, condi-

tioning on words; and inference over words, marginalizing over discourse relations.

Inference over Discourse Relations The probability of discourse relations given

the sentences p(z1:T | y1:T) is decomposed into the product of probabilities of indi-

vidual discourse relations conditioned on the adjacent sentences
∏

t p(zt | yt,yt−1).

These probabilities are computed by Bayes’ rule:

p(zt | yt,yt−1) =
p(yt | zt,yt−1)p(zt | yt−1)∑
z′ p(yt | z′,yt−1)p(z′ | yt−1)

. (47)

94

The terms in each product are given in Equations 42 and 44. Normalizing involves

only a sum over a small finite number of discourse relations. Note that inference is

easy in our case because all words are observed and there is no probabilistic coupling

of the discourse relations.

Inference over Words In discourse-informed language modeling, inference needs

to marginalize over discourse relations to compute the probability of a sequence of

sentence y1:T , which can be written as,

p(y1:T) =
T∏
t

∑
zt

p(zt | yt−1)p(yt | zt,yt−1), (48)

because the word sequences are observed, decoupling each zt from its neighbors zt+1

and zt−1. This decoupling ensures that the overall marginal likelihood can be com-

puated as a product over local marginals.

4.3.4 Learning

The model can be trained in two ways: to maximize the joint probability p(y1:T , z1:T),

or to maximize the conditional probability p(z1:T | y1:T). The joint training objective

is more suitable for language modeling scenarios, and the conditional objective is

better for discourse relation prediction.

Joint Likelihood Objective The joint likelihood objective function is directly

adopted from the joint probability defined in Equation 45. The objective function for

a single document with T sentences or utterances is,

`(θ) =
T∑
t

log p(zt | yt−1) +
Nt∑
n

log p(yt,n | yt,<n,yt−1, zt), (49)

where θ represents the collection of all model parameters, including the parameters

in the LSTM units and the word embeddings.

Maximizing the objective function `(θ) will jointly optimize the model on both

language and discourse relation prediction. As such, it can be viewed as a form of

95

multi-task learning [25], where the model learns a shared representation that works

well for discourse relation prediction and for language modeling. However, in practice,

the large vocabulary size and number of tokens means that the language modeling

part of the objective function tends to dominate. Therefore, an alternative objective

is proposed if the model expects to focus more on discourse relation prediction.

Conditional Objective The training objective is specific to the discourse relation

prediction task, and based on Equation 47 can be written as:

`r(θ) =
T∑
t

log p(zt | yt−1) + log p(yt | zt,yt−1)− log
∑
z′

p(z′ | yt−1)× p(yt | z′,yt−1)

(50)

The first line in Equation 50 is the same as `(θ), but the second line reflects the

normalization over all possible values of zt. This forces the objective function to

attend specifically to the problem of maximizing the conditional likelihood of the

discourse relations.

4.3.5 Evaluation

The model was evaluated on two benchmark datasets: (1) the Penn Discourse Tree-

bank [165, PDTB], which is annotated on a corpus of Wall Street Journal articles; (2)

the Switchboard dialogue act corpus [186, SWDA], which is annotated on a collec-

tions of phone conversations. Both corpora contain annotations of discourse relations

and dialogue relations that hold between adjacent spans of text.

The Penn Discourse Treebank (PDTB) provides a low-level discourse annotation

on written texts. As discussed in chapter 2, each discourse relation in the PDTB

is annotated between two argument spans, Arg1 and Arg2. There are two major

types of relations: explicit and implicit. Explicit relations are signaled by discourse

markers (e.g., “however”, “moreover”), and the span of Arg1 is almost totally un-

constrained: it can range from a single clause to an entire paragraph, and need not

96

be adjacent to either Arg2 nor the discourse marker. However, automatically classi-

fying these relations is considered to be relatively easy, due to the constraints from

the discourse marker itself [163]. In contrast, implicit discourse relations are anno-

tated only between adjacent sentences, based on a semantic understanding of the

discourse arguments. Automatically classifying these discourse relations is a chal-

lenging task [118, 162, 169, 82]. The evaluation task on the PDTB focuses on implicit

discourse relations, leaving to the future work the question of how to apply the mod-

eling framework to explicit discourse relations. During training, all relation types

other than implicit (including explicit, EntRel, and NoRel) are collapsed into a

single dummy relation type, which holds between all adjacent sentence pairs that do

not share an implicit relation.

As in the prior work on first-level discourse relation identification (e.g., Park and

Cardie, 2012), the evaluation used sections 2-20 of the PDTB as the training set,

sections 0-1 as the development set for parameter tuning, and sections 21-22 for

testing. Preprocessing includes lower-casing all tokens, and substituting all numbers

with a special token “NUM ”. In addition, the 10,000 most frequent words from the

training set were used to build the vocabulary, leaving low-frequency words replaced

with a special token “UNK ”.

In prior work that focuses on detecting individual relations, balanced training

sets are constructed so that there are an equal number of instances with and without

each relation type [156, 13, 170]. This task targets the more challenging multi-way

classification problem, so this strategy is not applicable; in any case, since the method

deals with entire documents, it is not possible to balance the training set in this way.

The Switchboard Dialog Act Corpus (SWDA) is annotated on the Switchboard

Corpus of human-human conversational telephone speech [56]. The annotations label

each utterance with one of 42 possible speech acts, such as agree, hedge, and wh-

question. Because these speech acts form the structure of the dialogue, most of them

97

pertain to both the preceding and succeeding utterances (e.g., agree). The SWDA

corpus includes 1155 five-minute conversations. Standard split from [186] was adopted

in the experiment, with 1,115 conversations for training and nineteen conversations

for test. For parameter tuning, a randomly selected nineteen conversations from the

training set was used as the development set. After parameter tuning, I retrained

the model on the full training set with the selected configuration. I used the same

preprocessing techniques here as in the PDTB.

A single-layer LSTM is used to build the recurrent architecture of the model, which

is implemented in the cnn package2. Following prior work on RNN initialization [7],

all parameters except the relation prediction parameters U and b are initialized with

random values drawn from the range [−
√

6/(d1 + d2),
√

6/(d1 + d2)], where d1 and

d2 are the input and output dimensions of the parameter matrix respectively. The

matrix U is initialized with random numbers from [−10−5, 10−5] and b is initialized

to 0. Online learning was performed using AdaGrad [43] with initial learning rate

λ = 0.1. Similarly to what I did on training DCLMs, I used norm clipping trick with a

threshold of τ = 5.0 [158] to avoid the exploding gradient problem. In addition, I also

used value dropout [184] with rate 0.5, on the input X, context vector c and hidden

state h, similar to the architecture proposed by [211]. The model includes two tunable

hyper-parameters: the dimension of word representation K, the hidden dimension of

LSTM unit H. In experiments, I considered the values {32, 48, 64, 96, 128} for both K

and H. For each corpus in experiments, the best combination of K and H is selected

via grid search on the development set.

As the model can do discourse relation identification and language modeling.

The evaluation here also is two-fold: (1) evaluating discourse relation prediction on

both the PDTB and SWDA corpora, to show how multi-task learning in this model

could help identifying discourse relations; (2) evaluating perplexity on the discourse

2https://github.com/clab/cnn

98

https://github.com/clab/cnn

driven language modeling also on both corpora, to demonstrate whether incorporating

discourse annotations at training time and then marginalizing them at test time can

improve performance.

First, evaluating the model with implicit discourse relation prediction on the

PDTB dataset. Most of the prior work on first-level discourse relation prediction

focuses on the “one-versus-all” binary classification setting, but I would like to attack

the more general four-way classification problem, as performed by [169]. Specifically,

the model is compared against the following methods:

Most common class The most common first level PDTB relation is Expansion.

Rutherford and Xue (2015) [169] build a set of feature-rich classifiers on the

PDTB, and then augment these classifiers with additional automatically-labeled

training instances. I compare against their published results, which are state-

of-the-art.

Ji and Eisenstein (2015) [82] This is the model I discussed in chapter 3. But the

experimental setting is different here, so I rerun the system using same setting

described above.

As shown in Table 9, the conditionally-trained discourse relation language model

(DrLM) outperforms all alternatives, on both metrics. While the jointly-trained

model is at the same level as the previous state-of-the-art, conditional training pro-

vides a significant additional advantage.

For the second discourse relevant evaluation, I use dialog act tagging on the con-

versation data. Dialogue act tagging has been widely studied in both NLP and speech

communities. Here, I follow the setup used in [186] to conduct experiments, and adopt

the following systems for comparison:

Most common class The most common dialog act is Statement-non-opinion.

99

Table 9: Multiclass relation identification on the first-level PDTB relations.

Model Accuracy Macro F1

Baseline
1. Most common class 54.7 —

Prior work
2. Rutherford and Xue (2015) [169] 55.0 38.4
3. Rutherford and Xue (2015) [169] 57.1 40.5

with extra training data
4. Ji and Eisenstein (2015) [82] 56.4 40.0

Our work - DrLM
5. Joint training 57.1 40.5
6. Conditional training 59.5∗ 42.3

∗ significantly better than lines 2 and 4 with p < 0.05

Stolcke et al.(2000) [186] employ a hidden Markov model, with each HMM state

corresponding to a dialogue act.

Kalchbrenner and Blunsom (2013) [93] employ a complex neural architecture,

with a convolutional network at each utterance and a recurrent network over the

length of the dialog. To my best knowledge, this model attains state-of-the-art

accuracy on this task, outperforming other prior work such as [203, 141].

As shown in Table 10, the conditionally-trained discourse relation language model

(DrLM) outperforms all competitive systems on this task. All comparisons are

against published results, and Macro-F1 scores are not available. Accuracy is more

reliable on this evaluation, since no single class dominates, unlike the PDTB task.

As discussed before, since the joint model DrLM is on both discourse and lan-

guage modeling, it can also function as a language model, assigning probabilities

to sequences of words while marginalizing over discourse relations. To determine

whether discourse-aware language modeling can improve performance, I compare it

against the following systems:

RNNLM+LSTM This is the same basic architecture as the RNNLM proposed by

Mikolov et al.[137], which was shown to outperform a Kneser-Ney smoothed

100

Table 10: The results of dialogue act tagging.

1. Model Accuracy

Baseline
2. Most common class 31.5

Prior work
3. Stolcke et al. (2000) [186] 71.0
4. Kalchbrenner and Blunsom (2013) [93] 73.9

Our work - DrLM
5. Joint training 74.0
6. Conditional training 77.0∗

∗ significantly better than line 4 with p < 0.01

5-gram model on modeling Wall Street Journal text. Following the model in

[211], I replaced the Sigmoid nonlinearity with a LSTM.

DCLM The model is also compared against the DCLMs discussed in section 4.2.

More specific, I used the coDCLM, which is identical to the current model-

ing approach, except that it is not parameterized by discourse relations. This

model achieves strong results on language modeling for small and medium-sized

corpora, outperforming RNNLM+LSTM.

The perplexities of language modeling on the PDTB and the SWDA are summa-

rized in Table 11. The comparison between line 1 and line 2 shows the benefit of con-

sidering multi-sentence context information on language modeling. Line 3 shows that

adding discourse relation information yields further improvements for both datasets.

Recall that discourse relations in the test documents are marginalized out, so no anno-

tations are required for the test set; the improvements are due to the disambiguating

power of discourse relations in the training set.

Because training on DrLM and Lvrnn-Soft requires discourse annotations, this

approach does not scale to the large datasets typically used in language modeling. As

a consequence, the results obtained here are somewhat academic, from the perspec-

tive of practical language modeling. Nonetheless, the positive results here motivate

101

Table 11: Language model perplexities (pplx), lower is better. The model dimensions
K and H that gave best performance on the dev set are also shown.

PDTB SWDA

Model K H pplx K H pplx

Baseline
1. RNNLM 96 128 117.8 128 96 56.0
2. DCLM 96 96 112.2 96 96 45.3

Our work
3. DrLM 64 96 108.3 128 64 39.6

the investigation of training procedures that are also capable of marginalizing over

discourse relations.

4.4 Discussion

As shown in this chapter, contextual information beyond the sentence boundary is

essential to document-level text generation and coherence evaluation. The set of

document-context language models (DCLMs; section 4.2) proposed in this chapter

provides various approaches to incorporate contextual information from preceding

texts. Empirical evaluation with perplexity shows that the DCLMs give better word

prediction as language models in comparison with conventional RNNLMs and also

good performance on unsupervised coherence assessment.

In addition, a probabilistic neural model (DrLM) presented in section 4.3 to unite

sequences of words and shallow discourse relations between adjacent sequences into

a framework. This model combines positive aspects of neural network architectures

with probabilistic graphical models: it can learn discriminatively-trained vector rep-

resentations, while maintaining a probabilistic representation of shallow discourse

relations. This method can be applied as a language model, marginalizing over dis-

course relations on the test data. It also outperforms state-of-the-art systems in two

discourse relation detection tasks.

102

CHAPTER V

SEMANTIC REPRESENTATION LEARNING WITH

DISTANT SUPERVISION

Work described in this chapter was undertaken in collaboration with Jacob Eisenstein

and Gongbo Zhang, published at EMNLP 2015 [84]

In chapter 3 and chapter 4, I discuss the possibility of utilizing supervision informa-

tion for representation learning and discourse processing. The idea of representation

learning has significantly improved the performance on several discourse related tasks,

such as RST-style discourse parsing, implicit discourse relation identification and dis-

course driven language modeling. Obviously, the prerequisite of using these models in

practice is the existence of data with discourse annotation. Unfortunately, annotat-

ing discourse information requires some necessary pre-training with annotators, and

therefore may not be possible to employ the crowd-sourcing method. For example,

the largest well-known discourse corpus is the Penn Discourse Treebank [165]. It

took nearly 4 years to annotate the first version, and then 2 more years to get 2,159

documents annotated in the second version [165]. To eliminate the dependency of dis-

course annotation, it is necessary to study the possibility of unsupervised discourse

processing or processing with distant supervision.

Unfortunately, prior work on discourse processing with distant supervision con-

stantly presents some negative results. For example, Sporleder and Lascarides (2008) [183]

show that models trained on explicitly marked examples generalize poorly to implicit

relation identification. They argued that explicit and implicit examples may be lin-

guistically dissimilar, as writers tend to avoid discourse connectives if the discourse

relation could be inferred from context [58]. More prior work will be discussed in

103

section 5.1.

In this chapter, I try to provide a solution to this problem from the perspective of

domain adaptation. Specifically, I argue that the reason that automatically-labeled

examples generalize poorly is due to domain mismatch from the explicit relations

(source domain) to the implicit relations (target domain). To close the gap with in-

domain relation identification, two simple domain adaptation methods are used here:

(1) feature representation learning: mapping the source domain and target domain

to a shared latent feature space; (2) resampling: modifying the relation distribution

in the explicit relations to match the distribution over implicit relations.

5.1 Prior Work

There is a limited prior work on discourse processing with distant supervision. Marcu

and Echihabi [132] train a classifier for implicit intra-sentence discourse relations from

explicitly-marked examples in the RST-DT, where the relations are automatically la-

beled by their discourse connectives: for example, labeling the relation as Contrast

if the connective is but. However, Sporleder and Lascarides [183] later argue that

explicitly marked relations are too different from implicit relations to serve as an

adequate supervision signal, obtaining negative results in segmented discourse repre-

sentation theory (SDRT) relations.

Recently, more relevant work has focused on the Penn Discourse Treebank (PDTB),

using explicitly-marked relations to supplement, rather than replace, a labeled corpus

of implicit relations. For example, Biran and McKeown [13] collect word pairs from

arguments of explicit examples to help the supervised learning on implicit relation

identification. Lan et al.[105] present a multi-task learning framework, using explicit

relation identification as auxiliary tasks to help main task on implicit relation iden-

tification. Rutherford and Xue [169] explore several selection heuristics for adding

automatically-labeled examples from Gigaword to their system for implicit relation

104

detection, obtaining a 2% improvement in Macro-F1. This work differs from these

previous efforts in that we focus exclusively on training from automatically-labeled

explicit instances, rather than supplementing a training set of manually-labeled im-

plicit examples.

Learning good feature representations [6] and reducing mismatched label distribu-

tions [88] are two main ways to make a domain adaptation task successful. Structural

correspondence learning is an early example of representation learning for domain

adaptation [18]. Instead, this work is built on the more computationally tractable

approach of marginalized denoising autoencoders [27]. Another simple domain adap-

tation technique is instance weighting [85], which is used for correcting label distri-

bution mismatch. This work employs a simpler approach of resampling the source

domain according to an estimate of the target domain label distribution.

5.2 Domain Adaptation for Implicit Relation Identification

Two domain adaptation techniques are discussed in this section specifically for the

relation identification problem.

5.2.1 Learning feature representation

The goal of feature representation learning is to obtain dense features that capture fea-

ture correlations between the source and target domains. Denoising autoencoders [55]

do this by first “corrupting” the original data, x1, . . . ,xn into x̃1, . . . , x̃n, either by

adding Gaussian noise (in the case of real-valued data) or by randomly zeroing out

features (in the case of binary data). Then, a function is learned to reconstruct

the original data, thereby capturing feature correlations and improving resilience to

domain shift.

Chen et al.[27] propose a particularly simple and elegant form of denoising aut-

encoder, by marginalizing over the noising process. Their single-layer marginalized

105

denoising autoencoder (mDA) solves the following problem:

min
W

Ex̃i|xi
[‖xi −Wx̃i‖2] (51)

where the parameter W ∈ Rd×d is a projection matrix. After learning the projection

matrix, tanh(Wx) can be used as the representation for our relation identification

task.

Usually, xi ∈ Rd is a sparse vector with more than 105 dimensions. Solving the

optimization problem defined in equation 51 will produce a d×d dense matrix W, and

is prohibitively expensive. This work employs the trick proposed by [18] to select κ

pivot features to be reconstructed, and split all features into non-overlapping subsets

of size ≤ K. Then, a set of projection matrices are learned, so as to transform each

feature subset to the pivot feature set. The final projection matrix W is the stack of

all projection matrices learned from the feature subsets.

5.2.2 Resampling with minimal supervision

There is a notable mismatch between the relation distributions for implicit and

explicitly-marked discourse relations in the Penn Discourse Treebank: as shown in

Figure 23, the expansion and contingency relations comprise a greater share of

the implicit relations, while the temporal and comparison relations comprise a

greater share of the explicitly-marked discourse relations. Such label distribution

mismatches can be a major source of transfer loss across domains, and therefore,

reducing this mismatch can be an easy way to obtain performance gains in domain

adaptation [88]. Specifically, the goal here is to modify the relation distribution in

the source domain (explicitly-marked relations) and make it as similar as possible to

the target domain (implicit relations). Given the label distribution from the target

domain, the training examples are resampled from the source domain with replace-

ment, in order to match the label distribution in the target domain. As this requires

the label distribution from the target domain, it is no longer purely unsupervised

106

Temporal Comparison Expansion Contingency0

0.2

0.4

0.6

R
el

at
io

n
di

st
rib

ut
io

n Explicit
Implicit

Figure 23: The relation distributions of training examples from the source domain
(explicitly-marked relations) and target domain (implicit relations) in the PDTB.

domain adaptation; instead, it is named as resampling with distant supervision.

It may also be desirable to ensure that the source and target training instances

are similar in terms of their observed features; this is the idea behind the instance

weighting approach to domain adaptation [85]. This idea suggests that sampled

instances from the source domain have a cosine similarity of at least τ with at least

one target domain instance [169].

5.2.3 Evaluation

The experiments test the utility of the two domain adaptation methods, using the

Penn Discourse Treebank [165] and some extra-training data collected from a external

resource.

The test examples are implicit relation instances from section 21-22 in the PDTB.

For the domain adaptation setting, the training set consists of the explicitly-marked

examples extracted from sections 02-20 and 23-24, and the development set consists

of the explicit relations from sections 21-22. All relations in the explicit examples are

automatically labeled by using the connective-to-relation mapping from Table 2 in

[167], where only keeping the majority relation type for every connective. For each

identified connective, the evaluation uses its annotated arguments in the PDTB. To

107

give an upper bound, the evaluation employs an in-domain discourse relation classifier,

using the implicit examples in sections 02-20 and 23-24 as the training set, and using

sections 00-01 as the development set. Following prior work [162, 156, 13], relation

identification on the PDTB considered the first-level discourse relations in the PDTB

— Temporal (Temp.), Comparison (Comp.), Expansion (Exp.) and Contingency

(Cont.). In total, four binary classifiers were trained and report F1 score on each

binary classification task.

The true power of learning from automatically labeled examples is that we could

leverage much larger datasets than hand-annotated corpora such as the Penn Dis-

course Treebank. To test this idea, my collaborator collected 1,000 news articles from

CNN.com as extra training data. Explicitly-marked discourse relations from this data

are automatically extracted by matching the PDTB discourse connectives [167]. This

data also needs to extract the arguments of the identified connectives: for every iden-

tified connective, the sentence following this connective is labeled as Arg2 and the

preceding sentence is labeled as Arg1, as suggested in [13]. A pilot study in this work

shows larger amounts of additional training data yielded no further improvements,

which is consistent with the recent results in [169].

For relation identification, a linear support vector machine with a penalty pa-

rameter C [47] is used as the classification model. In addition, the model includes

four tunable parameters: the number of pivot features κ, the size of the feature

subset K, the noise level for the denoising autoencoder q, and the cosine similarity

threshold for resampling τ . I considered κ ∈ {1000, 2000, 3000} for pivot features

and C ∈ {0.001, 0.01, 0.1, 1.0, 10.0} for penalty parameters, q ∈ {0.90, 0.95, 0.99} for

noise levels. To reduce the free parameters, I set K = 5κ and simply fix the cosine

similarity threshold τ = 0.85; Preliminary studies found that results are not sensitive

to the value of τ across a range of values.

108

All features are motivated by prior work on implicit discourse relation classifi-

cation: from each training example with two arguments, I extracted the following

features for representation learning

Lexical features including word pairs, the first and last words from both argu-

ments [162];

Syntactic features including production rules from each argument, and the shared

production rules between two arguments [118];

Other features including modality, Inquirer tags, Levin verb classes, and argument

polarity [156].

I used the Stanford CoreNLP Toolkit to obtain syntactic annotations [127] and reim-

plemented the feature extractor as closely as possible to the cited works.

The Full feature set for domain adaptation is constructed by collecting all fea-

tures from the training set, and then removing features that occur fewer than ten

times. The Pivot feature set includes κ high-frequency features from the Full fea-

ture set. To focus on testing the domain adaptation techniques, I used the same

Full and Pivot set for all four relations, and leave feature set optimization for

each relation as a future work [156]. To obtain the upper bound, the same feature

categories and frequency threshold were used to extract features from the in-domain

data, hand-annotated implicit discourse relations. The representations from mDA

were concatenated with the original surface feature representations of the same ex-

amples as the final feature vectors for relation identification.

The experiment starts with surface feature representations as baselines, then in-

corporates the two domain adaptation techniques incrementally. As shown in line 2

of Table 13, the performance is poor if directly applying a model trained on the ex-

plicit examples with the Full feature set, which is consistent with the observations of

[183]: there is a 10.28% absolute reduction on average F1 score from the upper bound

109

Table 12: Performance of cross-domain learning for implicit discourse relation iden-
tification.

Relations

Surface Features +Rep. Learning +Resampling Temp. Comp. Exp. Cont. Average F1

Implicit → Implicit
1. Full 24.15 28.87 68.84 43.45 41.32

Explicit [PDTB] → Implicit
2. Full No No 17.13 20.54 50.55 36.14 31.04
3. Full No Yes 15.38 23.88 62.04 35.29 34.14
4. Full Yes No 17.53 22.77 50.85 36.43 31.90
5. Full Yes Yes 17.05 22.00 63.51 38.23 35.20

6. Pivot No No 17.33 23.89 53.53 36.22 32.74
7. Pivot No Yes 17.73 25.39 62.65 36.02 35.44
8. Pivot Yes No 18.66 25.86 63.37 38.87 36.69
9. Pivot Yes Yes 19.26 25.74 68.08 41.39 38.62

Explicit [PDTB + CNN] → Implicit
10. Pivot Yes Yes 20.35 26.32 68.92 42.25 39.46

obtained with in-domain supervision (line 1). With mDA, the overall performance

increases by 0.86% (line 4); resampling gives a further 4.16% improvement mainly be-

cause of the performance gain on the Exp. relation (line 5). The resampling method

itself (line 3) also gives a better overall performance then mDA (line 4). However,

the F1 scores on the Temp. and Cont. are even worse than the baseline (line 2).

Surface representations with the Full feature set were found to cause serious

overfitting in the experiments. A possible way to deal with this problem is to only

use κ pivot features. As shown in line 6, it gives a stronger baseline of the cross-

domain relation identification, as shown in line 6. Then, by incorporating resampling

and feature representation learning individually, the average F1 increases from 32.74%

to 35.44% (line 7) and 36.69% (line 8) respectively. The combination of these two

domain adaptation techniques boosts the average F1 further to 38.62% (line 9). The

additional CNN training data further improves performance to 39.46% (line 10). This

represents an 8.42% improvement of average F1 from the original result (line 2), for

more than 80% reduction on the transfer loss incurred by training on explicit discourse

relations.

110

An additional experiment is to use automatic argument extraction in both the

PDTB and the CNN data, which would correspond to more truly unsupervised do-

main adaptation. (Recall that in the CNN data, we used adjacent sentences as

argument spans, while in the PDTB data, we use expert annotations.) When using

adjacent sentences as argument spans in both datasets, the average F1 is 38.52% for

the combination of representation learning and resampling. Compared to line 10, this

is a 0.94% performance drop, indicating the importance of argument identification in

the PDTB data.

5.3 Discussion

This chapter present a preliminary study on discourse processing with distant su-

pervision, mainly focuses on how explicit relation pairs can be used to help predict

relations holding in implicit pairs. The core idea discussed in this chapter is unsuper-

vised feature representation learning with marginalized denoising autoencoder, and

a resampling method built on the top of representation learning. Experiments on

the PDTB show the combination of these two methods eliminates more than 80% of

the transfer loss caused by training on explicit examples, increasing average F1 from

31% to 39.5%, against a supervised upper bound of 41.3%. Honestly, the proposed

method in this chapter did not ultimately solve the problem of unsupervised discourse

processing — there is still performance gap between “in-domain” and “cross-domain”

implicit relation identification. However, the idea representation learning (together

with resampling) does reduces the performance gap notably. Compare to the prior

work, I still consider this work is a success on this research direction.

111

CHAPTER VI

APPLICATIONS OF DISCOURSE INFORMATION

Work described in this chapter was undertaken in collaboration with Parminder Bha-

tia, Kevin Duh, Chris Dyer and Jacob Eisenstein. The work on sentiment analysis

was published at EMNLP 2015 [12].

In this chapter, I discuss two discourse-relevant applications, to illustrate the merit

of discourse information in natural language processing. The work on document-

level sentiment analysis in section 6.1 shows the value of discourse structures on

identifying the major opinion from a coherent text. The machine translation task

in section 6.2 demonstrates the value of contextual information in document-level

machine translation.

6.1 Discourse Information for Sentiment Analysis

Sentiment analysis and opinion mining are among the most widely-used applications

of language technology, impacting both industry and a variety of other academic

disciplines [48, 120, 154]. Research on sentiment analysis is still dominated by bag-of-

words approaches, and attempts to include additional linguistic context typically stop

at the sentence level [179]. Since document-level opinion mining inherently involves

multi-sentence texts, it is a place where discourse structure definitely has a role to

play.

A classic example of the potential relevance of discourse to sentiment analysis

is shown in Figure 24. In this review on the film The Last Samurai, the positive

sentiment words are more than the
::::::::
negative

:::::::::::
sentiment words. But the discourse

structure — indicated with RST — clearly favors the final sentence, whose polarity

is negative. This example is illustrative in more than one way: it was originally

112

Concession

Justify

A

Conjunction

Elaboration

B C

D Justify

E Conjunction

F G

H

[It could have been a great movie]A [It does have beautiful scenery,]B [some of the best since Lord of

the Rings.]C [The acting is well done,]D [and I really liked the son of the leader of the Samurai.]E [He

was a likable chap,]F [and I
::::
hated to see him die.]G [But, other than all that, this movie is

::::::
nothing

more than hidden
::::::
rip-offs.]H

Figure 24: A Example of the RST structure for document-level sentiment analysis
(adapted from (Voll and Taboada, 2007) [198]).

identified by Voll and Taboada [198], who found that manually-annotated RST parse

trees improved lexicon-based sentiment analysis, but that automatically-generated

parses from the SPADE parser [182], which was then state-of-the-art, did not.

Based on the progress of RST parsing presented in chapter 3, it is reasonable to

revisit this topic. Since this time, RST discourse parsing has improved considerably,

with the best systems now yielding 5 − 10% greater raw accuracy than SPADE,

depending on the metric. Therefore it is the time to reconsider the effectiveness

of RST for document-level sentiment analysis. This section presents two ways of

combining RST discourse parses with sentiment analysis.

• Reweighting the contribution of each discourse unit, based on its position in a

dependency-like representation of the discourse structure. Such weights can be

113

defined using a simple function, or learned from a small of data.

• Recursively propagating sentiment up through the RST parse, in an architecture

inspired by recursive neural networks [173, 177].

The methods are both simple and can be used in combination with an off-the-shelf dis-

course parser, for example, combining with either a lexicon-based sentiment analyzer

or a trained classifier.

6.1.1 Prior Work on Discourse Information for Sentiment Analysis

The efforts to incorporate RST into sentiment analysis have often focused on intra-

sentential discourse relations [65, 212, 28], rather than relations over the entire doc-

ument. Wang et al. [201] address sentiment analysis in Chinese. Lacking a discourse

parser, they focus on explicit connectives, using a strategy that is related to the

discourse depth reweighting. Wang and Wu [200] use manually-annotated discourse

parses in combination with a sentiment lexicon, which is automatically updated based

on the discourse structure. Zirn et al. [214] use an RST parser in a Markov Logic Net-

work, with the goal of making polarity predictions at the sub-sentence level, rather

than improving document-level prediction. None of the prior work considers the sort

of recurrent compositional model presented here.

An alternative to RST is to incorporate shallow discourse structures, such as the

relations from the Penn Discourse Treebank (PDTB). PDTB relations were shown to

improve sentence-level sentiment analysis [180], and were incorporated in a model of

sentiment flow [199]. PDTB relations are often signaled with explicit discourse con-

nectives, and these may be used as a feature [192, 108] or as posterior constraints [207].

This prior work on discourse relations within sentences and between adjacent sen-

tences can be viewed as complementary to the focus on higher-level discourse relations

across the entire document.

There are unfortunately few possibilities for direct comparison of the approach

114

1H

1A

1B

1C

1D 1E

1F 1G

Figure 25: Dependency-based discourse tree representation of the discourse in Fig-
ure 24

discussed in this section against prior work. Heerschop et al. [65] and Wachsmuth

et al. [199] also employ the Pang and Lee dataset [153], but neither of their results

are directly comparable: [65] exclude documents that SPADE fails to parse, and

[199] evaluates only on individual sentences rather than entire documents. The only

possible direct comparison is with very recent work from Hogenboom et al. [74], who

employ a weighting scheme that is similar to the approach described in Section 6.1.2.

They evaluate on the Pang and Lee data, and consider only lexicon-based sentiment

analysis, obtaining document-level accuracies between 65% (for the baseline) and 72%

(for their best discourse-augmented system).

6.1.2 Discourse depth reweighting

The first approach to incorporating discourse information into sentiment analysis is

based on quantifying the importance of each EDU in terms of its position in the

discourse structure. Take the example illustrated in Figure 24, EDU H is considered

as the most important text unit of this review. For the rest EDUs, their impor-

tance depends on their distance with H. To compute the distance efficiently, the

dependency-based discourse tree (DEP-DT) formulation from prior work [69] is em-

ployed here. The DEP-DT formalism converts the constituent-like RST tree into a

directed graph over elementary discourse units (EDUs), in a process that is a close

analogue of the transformation of a headed syntactic constituent parse to a syntactic

dependency graph [103].

115

The DEP-DT representation of the discourse in Figure 24 is shown in Figure 25.

The graph is constructed by propagating information up the RST tree; if an EDU ei

is the satellite in a discourse relation headed by ej, then there is a dependency edge

from ej to ei. Thus, the depth of each EDU is the number of times in which it is

embedded in the satellite of a discourse relation. The exact algorithm for constructing

DEP-DTs is given in [69].

Given this representation, a simple linear function is constructed for weighting

the contribution of the EDU at depth di:

λi = max(0.5, 1− di/6). (52)

Thus, at di = 0, λi = 1, and at di ≥ 3, λi = 0.5. This linear truncated weighting func-

tion is manually designed. The intuition behind this function is that the importance

of an EDU linearly decreases with its depth.

Assume each EDU contributes a prediction ψi = θ>wi, where wi is the bag-of-

words vector, and θ is a vector of weights, which may be either learned or specified

by a sentiment lexicon. Then the overall prediction for a document is given by,

Ψ =
∑
i

λi(θ
>wi) = θ>(

∑
i

λiwi). (53)

Evaluation For evaluation, this approach was combined with both lexicon-based

and classification-based sentiment analysis. Specifically, it used the lexicon of [206],

and set θj = 1 for words marked positive, and θj = −1 for words marked negative. For

classification-based analysis, θ is equal to the weights obtained by training a logistic

regression classifier, tuning the regularization coefficient on held-out data.

Results of this method are shown in Table 13. As seen in the comparison between

lines B1 and D1, discourse depth weighting offers substantial improvements over the

bag-of-words approach for lexicon-based sentiment analysis, with raw improvements

of 4− 5%. Given the simplicity of this approach — which requires only a sentiment

116

Table 13: Sentiment classification accuracies on two movie review datasets [153, 179].

Pang & Lee (2004) Socher et al. (2013)

Baselines
B1. Lexicon 68.3 74.9
B2. Classifier 82.4 81.5
Discourse depth weighting
D1. Lexicon 72.6 78.9
D2. Classifier 82.9 82.0
Rhetorical recursive neural network
R1. No relations 83.4 85.5
R2. With relations 84.1 85.6

lexicon and a discourse parser — it is recommended for lexicon-based sentiment anal-

ysis at the document level. However, the improvements for the classification-based

models are considerably smaller, less than 1% in both datasets.

6.1.3 Rhetorical Recursive Neural Networks

Discourse-depth reweighting offers significant improvements for lexicon-based sen-

timent analysis, but the improvements over the more accurate classification-based

method are meager. Therefore it is reasonable have a data-driven approach for com-

bining sentiment analysis with rhetorical structure theory, based on recursive neural

networks [177]. The idea is simple: recursively propagate sentiment scores up the

RST tree, until the root of the document is reached. For nucleus-satellite discourse

relations, it defines

Ψi = tanh(K(ri)
n Ψn(i) +K(ri)

s Ψs(i)), (54)

where i indexes a discourse unit composed from relation ri, n(i) indicates its nucleus,

and s(i) indicates its satellite. Returning to the example in Figure 24, the sentiment

score for the discourse unit obtained by combining 1B and 1C is obtained from

tanh(K
(elaboration)
n Ψ1B +K

(elaboration)
s Ψ1C). Similarly, for multinuclear relations, it has

Ψi = tanh(
∑
j∈n(i)

K(ri)
n Ψj). (55)

117

In the base case, each elementary discourse unit’s sentiment is constructed from its

bag-of-words, Ψi = θ>wi. Because the structure of each document is different,

the network architecture varies in each example; nonetheless, the parameters can

be reused across all instances.

This approach is called a Rhetorical Recursive Neural Network (R2N2). It is remi-

niscent of the compositional model proposed by Socher et al. [179], where composition

is over the constituents of the syntactic parse of a sentence rather than the units of

a discourse. A crucial difference in R2N2s is that the elements Ψ and K are scalars :

it does not attempt to learn a latent distributed representation of the sub-document

units. This is because discourse units typically comprise multiple words, so that ac-

curate analysis of the sentiment for EDUs is not so difficult as accurate analysis of

individual words. The scores for individual discourse units can be computed from a

bag-of-words classifier, or, from a more complex model such as a recursive or recurrent

neural network (as discussed in chapter 3).

While this neural network structure captures the idea of compositionality over the

RST tree, the most deeply embedded discourse units can be heavily down-weighted by

the recursive composition (assuming Ks < Kn). In the most extreme case of a right-

branching or left-branching structure, the recursive operator may be applied N times

to the most deeply embedded EDU. On the contrary, discourse depth reweighting

applies a uniform weight of 0.5 to all discourse units with depth ≥ 3. This approach

adds an additional component to the network architecture, capturing the bag-of-words

for the entire document. Thus, at the root node it has

Ψdoc = γθ>(
∑
i

wi) + Ψrst-root, (56)

with Ψrst-root defined recursively from Equation 54 and Equation 55, θ indicating the

vector of per-word weights, and the scalar γ controlling the tradeoff between these

two components.

118

Learning R2N2 is trained by backpropagating from a hinge loss objective. Assum-

ing yt ∈ {−1, 1} for each document t, the loss is defined as Lt = (1−ytΨdoc,t)+. From

this loss, the gradients on the parameters are obtained via backpropagation through

structure [57]. Training is performed using stochastic gradient descent. For simplicity,

this focuses on the distinction between contrastive and non-contrastive relations [214].

The set of contrastive relations includes Contrast, Comparison, Antithesis,

Antithesis-e, Consequence-s, Concession, and Problem-Solution.

Evaluation Results for this approach are shown in lines R1 and R2 of Table 13.

Even without distinguishing between discourse relations, an improvement is already

obtained of more than 3% accuracy on the Stanford data, and 0.5% on the smaller

Pang and Lee dataset. Adding sensitivity to discourse relations (distinguishing K(r)

for contrastive and non-contrastive relations) offers further improvements on the Pang

& Lee data, outperforming the baseline classifier (D2) by 1.3%. The accuracy of

discourse relation detection is only 60% for even the best systems [81], which may

help to explain why relations do not offer a more substantial boost. Given the limited

amount of annotated data on both discourse structure and sentiment polarity, it is

almost impossible to evaluate on gold RST parses. For example, the SFU Review

Corpus [188] of 30 review texts offers a starting point, which is probably too small to

train a competitive sentiment analysis system.

6.1.4 Conclusion

Sentiment polarity analysis has typically relied on a “preponderance of evidence”

strategy, hoping that the words or sentences representing the overall polarity will out-

weigh those representing counterpoints or rhetorical concessions. However, with the

availability of off-the-shelf RST discourse parsers, it is now easy to include document-

level structure in sentiment analysis. This work shows that a simple reweighting ap-

proach offers robust advantages in lexicon-based sentiment analysis, and a recursive

119

neural network can substantially outperform a bag-of-words classifier.

6.2 Discourse Information of Document-level MT

Section 4.2 shows that a language model is capable of incorporating contextual in-

formation from preceding text. DCLMs proposed in section 4.2 are tested with a

coherence evaluation task [5] and show the superior performance on that task. In

this section, I would like to investigate a similar coherence-relevant problem in the

machine translation scenario. Specifically, how to combine DCLM features to obtain

better document-level translations? Note that, even at the sentence level, transla-

tion decoding is NP-complete [96]. Translating at the document level is thus certain

to require approximation. To simplify the complexity of direct translation on the

document level, I assume that each sentence in the source language already has a

collection of translated hypotheses in the target language. Then, the document-level

translation problem studied in this section is reduced into a sentence-level decoding

problem: for each sentence, select the best hypothesis such that the whole translated

document has a better coherence.

This section provides a preliminary study on this decoding problem. For the

convenience of implementation, a greedy decoder is used to pick the best hypothesis

based on DCLM features (together with some other features). A better decoding

(e.g.; Viterbi decoding [15]) will be left as future work.

6.2.1 Prior work

The problem of discourse information for machine translation has been investigated

for more than 20 years. For example, a paper by Mitkov [145] in 1993 considers the

problem of how discourse relations can be used for document-level machine transla-

tion. In the same paper, a translation system with discourse relations is described

in a conceptual way. Later, Marcu et al. [131] noticed that the discourse structures

(described in RST) of a single document in the source (Japanese) and target (English)

120

languages are different. Motivated by this observation, they tried to design some rules

to transform a discourse structure between Japanese and English. Unfortunately, the

structure transformation itself is a difficult problem. Therefore, it is impractical to

apply this idea into a real translation system.

On the other hand, most recent work on discourse-based machine translation

has largely focused on solutions to specific discourse phenomena: translating dis-

course connectives [136, 135], assigning appropriate morphology to pronouns [63, 111],

maintaining lexical consistency [24], and employing the correct tense when it is not

marked in the source language [208]. These various approaches are surveyed by Hard-

meier [62], who finds that substantial BLEU score improvements are rare, even when

the targeted phenomenon has been addressed with some success. Therefore, while a

similar range of phenomena will be investigated in this section, a different approach

is used to provide a general framework. In this framework, several issues discussed

above could be addressed with a single model.

The rest of this section starts with a brief introduction of the greedy decoding

idea, and then explains the base system on sentence-level translation. Finally, some

preliminary results are presented with some discussion.

6.2.2 Greedy decoding

The greedy decoding starts with the computation of the hypothesis-pair scores from

two adjacent source sentences. As illustrated in Figure 26, there are four source sen-

tences, and each source sentence Si has three hypotheses. Taking coDCLM as an

example, it only considers the local context from the adjacent sentence pairs of a doc-

ument. In this case, coDCLMis used to compute each hypothesis pair (Hi−1,j, Hi,k).

For each hypothesis Hi,k, there are multiple context hypotheses from the translation

of previous sentence Si−1. Given a specific context Hi−1,j, different hypotheses {Hi,k}k

may have different coDCLM scores. Let d
(i,i−1)
k,j denote the coDCLM score of the

121

S1 S2 S3 S4

H0 H11 H21 H31 H41

H12 H22 H32 H42

H13 H23 H33 H43

Figure 26: Every hypothesis pair (Hi−1,j, Hi,k) is used to compated a score for greedy
decoding.

kth hypothesis of source sentence i conditional on the jth hypothesis of source sen-

tence i− 1. All these scores can be used as additional features for selecting a (local)

optimal path from the trellis. Note that, there is a special case in this trellis — for

the hypotheses of the first source sentence S1, coDCLM assumes the default context

(H0). Then, all coDCLM scores of {H1,k}k are computed conditional on H0.

Figure 27 illustrates the procedure of greedy decoding on the trellis. A greedy

decoder starts with H0 to pick the first local optimal hypothesis of sentence S1.

Specifically, the decoder picks the optimal hypothesis based on the following log-

linear model score

sk|i,i−1,j ∝ exp(
∑
l

wlx
i
k,l + wcd

i,i−1
k,j) (57)

where {xik,l} are the features of the kth hypothesis given by a sentence-level translation

system (Moses, in this case), {wl} are the corresponding Moses feature weights, and

wc is the feature weight of coDCLM score. (Training this log-linear model will

be explained in subsection 6.2.4.) Therefore, the greedy decoding procedure not only

depends on context, but the some additional features about the translated hypothesis

122

S1 S2 S3 S4

H0 H11 H21 H31 H41

H12 H22 H32 H42

H13 H23 H33 H43

Figure 27: An illustration of the greedy decoding procedure.

itself. In Equation 57, the model assumes j in Equation 57 is fixed from the previous

decoding step. Then, the greedy decoder simply pick the k that gives the largest

sk|i,i−1,j

k = arg max
k′

sk′|i,i−1,j (58)

Figure 27 shows the middle of the greedy decoding procedure, where H12 and H21

are picked as the best hypotheses for source sentence S1 and S2 respectively. In next

step, the decoder will use the coDCLM score conditional on H21 to find the optimal

hypothesis for S3. Eventually, an local optimal path is found from the trellis with the

consideration of contextual information.

Two extensions can be considered with respect to this greedy decoding idea. First,

given the trellis illustrated in Figure 26, it could be better to use the Viterbi decoding

for finding the global optimal path. In addition, the second item in the right side

of Equation 57 can be extended to include multiple context-based language model

scores, such as ccDCLM, etc.

123

Table 14: TED Talks data statistics and reference 1-best/oracle BLEU scores for
k-best reranKing (k=50) using a phrase-based MT system.

Data es-en fr-en ja-en zh-en

Training Talks 1,038 1,032 737 997
Sentences 140K 140K 92K 138K
Words (en) 2,839K 2,830K 1,824K 2,781K

Development Talks 20 20 20 20
Sentences 1,478 1,478 1,478 1,478
Words (en) 27K 27K 27K 27K

1best BLEU 36.63 35.27 9.73 15.09
Oracle BLEU 46.62 45.23 14.23 21.13

Test Talks 20 20 20 20
Sentences 1,616 1,616 1,616 1,616
Words (en) 39K 39K 39K 39K

1best BLEU 35.62 33.07 7.90 13.21
Oracle BLEU 43.59 40.87 11.72 17.98

6.2.3 Data and Sentence-level translation system

The method proposed in this section is evaluated on the TED Talks corpus from the

WIT3 project [26]1. TED Talks represent an interesting testbed for document-level

translation because they consist of well-rehearsed monologues that are each coherent

and focused document units. For preprocessing, the WIT3 tools was used to for

bitext extraction and dataset preparation. The TED translation corpus includes four

datasets for translation into English: Spanish (es), French (fr), Japanese (ja), and

Chinese (zh). The development set and test set for all four datasets come from the

same 40 talks. Therefore, the target English side is the same. The data statistics are

shown in Table 14.

For each dataset, a phrase-based machine translation system was trained using

Moses [100]. From the training set, the phrase tables was established with the fol-

lowing features:

1https://wit3.fbk.eu

124

https://wit3.fbk.eu

• GIZA++ word alignment, grow-diag-final and heuristic, and Good-Turing smooth-

ing (5 features)

• lexical reordering tables with msd-bidirectional-fe option (7 features)

• SRILM 3gram language models with interpolated Kneser-Ney smoothing (1

feature)

• Word penalty (1 feature)

Therefore, the translation model has 14 features in total, which are also the Moses

features used in Equation 57. To build a translation system, these feature weights are

learned to optimize BLEU on the dev set. In the final step, the translation system

generated 50-best lists with distinct English hypotheses on the development and test

sets for greedy decoding.

6.2.4 Preliminary results

This preliminary experiment was conducted with the TED translation dataset men-

tioned before. To get an in-domain DCLMs, the training set of the TED data was

used to train a set of language models, including Rnnlm, coDCLM, and ccDCLM.

Considering the size of TED training data, I also use the DCLM models trained the

NANT dataset (refer to section 4.2). The similar model setup, including the input

and hidden dimensions, from section 4.2 was used. The model with the best configu-

ration was determined by the perplexity of the development set in the TED data. For

each model, the score of each adjacent hypothesis pair was computed as the context-

sensitive features for greedy decoding. Note that, the way of computing DCLM scores

is using the coDCLM, since Rnnlmis context-independent and a better way to use

ccDCLM is to use all previous sentences as context.

Recall that, the second item in Equation 57 can be extended to include multiple

DCLM scores. The experiment considers three model variations by adding DCLM

125

Table 15: BLEU scores of greedy decoding with different document context language
models on four translation datasets.

zh-en fr-en es-en ja-en

Dev Test Dev Test Dev Test Dev Test

1best 15.09 13.21 35.27 33.07 36.63 35.62 9.73 7.90

Model 1 15.71 13.55 36.28 33.77 38.00 36.41 10.05 8.18
Model 2 15.70 13.73 36.29 34.03 38.08 36.43 10.00 8.21
Model 3 15.62 13.84 36.28 33.97 38.30 36.59 10.01 8.15

scores in an incremental way.

• Model 1: Rnnlmtrained on the TED data and the NANT data respectively.

Both of them do not include any contextual information. The purpose of using

this model is to further improve the BLEU with better sentence-level language

models.

• Model 2: Besides model 1, also incorporate coDCLM trained on the TED

data and the NANT data respectively. Together, four score features are used

together Moses features for decoding. The performance based on this model

show the BLEU improvement with contextual information.

• Model 3: Besides model 2, also include two ccDCLM features. The expectation

is to show possible further improvement with additional contextual information.

The weights of DCLM features (together with other Moses features weights in Equa-

tion 57) was obtained by applying the Minimum Error Rate Training (MERT) on the

development set.

Table 15 shows the BLEU scores of greedy decoding on four different translation

datasets. Overall, adding DCLM features improves the BLEU score on document-

level translation. The biggest improvement across four source languages is up to

0.9 BLEU score. More important, the BLEU improvement is independent with the

source language and the baseline BLEU score. However, for each source language, if

126

the best is picked with respect to the best performance on the development set, some

results are not consistent or unexpected. For example, in Chinese (zh) to English

(en), the best performance is given by model 1 (13.55 BLEU score), where the BLEU

improvement on the test set is lower than the best BLEU we can obtain on the test

set (model 3, 13.84 BLEU score). Additionally, model 1 does not any contextual

information. Therefore, we cannot draw any conclusion with respect to contextual

information for machine translation.

In future work, the performance is expected to improve with some additional

machine translation techniques. For example, replace greedy decoding with Viterbi

decoding or directly incorporate contextual information into translation.

127

CHAPTER VII

CONCLUSION

Recall that the central thesis of this dissertation is that “semantic representation

learning can help discourse processing”. In this dissertation, I verify this claim from

the following three scenarios:

• With supervision information from discourse annotation, representation learn-

ing can capture the semantic information either from word-level or from sentence-

level. Then, the distributed representation driven by discourse information fur-

ther boost the discourse processing performance on both RST-style and PDTB-

style parsing tasks.

• Semantic representation learning can be performed in the multi-task learning

framework. To be specific, in my work, the model learns the distributed repre-

sentation of sentences together with word embeddings, by given the supervision

information from discourse annotation. Then, a single model can either be used

for discourse processing or for language modeling.

• My work also shows that discourse processing can benefit from representation

learning even without direct supervision information. There exists some ways to

leverage the supervision information from some “easier” cases to the “harder”

cases, as explained in chapter 5.

However, this is not the end of the story. There are lots possible directions we

can go in future to make this thesis even more solid and make the performance of our

discourse processing system even better. For example:

128

Supervised representation learning Future work could consider joint models of

discourse structure and coreference, and consideration of coreference across the entire

document. In the longer term, we hope to induce and exploit representations of other

discourse elements, such as event coreference and shallow semantics.

Discourse-driven language modeling Future work on DCLMs could include

testing the applicability of these models to downstream applications such as sum-

marization and translation. Future work on DrLM will investigate the possibility of

learning from partially-labeled training data, which would have at least two poten-

tial advantages. First, it would enable the model to scale up to the large datasets

needed for competitive language modeling. Second, by training on more data, the

resulting vector representations might support even more accurate discourse relation

prediction.

Discourse processing with distant supervision Future work could explore the

combination of this approach with more sophisticated techniques for instance selec-

tion [169] and feature selection [156, 13], while also tackling the more difficult prob-

lems of multi-class relation classification and fine-grained level-2 discourse relations.

conclusion for reference

129

REFERENCES

[1] Asher, N. and Lascarides, A., Logics of conversation. Cambridge University
Press, 2003. 2.1.1

[2] Bach, N. X., Minh, N. L., and Shimazu, A., “A reranking model for dis-
course segmentation using subtree features,” in Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pp. 160–168,
Association for Computational Linguistics, 2012. 2.2.1, 3.1.3

[3] Bahdanau, D., Cho, K., and Bengio, Y., “Neural machine translation by
jointly learning to align and translate,” in International Conference on Learning
Representations, 2015. 4.2.2

[4] Baroni, M., Bernardi, R., and Zamparelli, R., “Frege in space: A pro-
gram of compositional distributional semantics,” LiLT (Linguistic Issues in
Language Technology), vol. 9, 2014. 3.2

[5] Barzilay, R. and Lapata, M., “Modeling local coherence: An entity-based
approach,” Computational Linguistics, vol. 34, no. 1, pp. 1–34, 2008. 4.2.3.2,
6.2

[6] Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., and others,
“Analysis of representations for domain adaptation,” Advances in neural infor-
mation processing systems, vol. 19, 2007. 5.1

[7] Bengio, Y., “Practical recommendations for gradient-based training of deep
architectures,” in Neural Networks: Tricks of the Trade, pp. 437–478, Springer,
2012. 3.2.2, 4.3.5

[8] Bengio, Y., Courville, A., and Vincent, P., “Representation Learning:
A Review and New Perspectives,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. 2.3.1, 2.3.1

[9] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C., “A neural prob-
abilistic language model,” The Journal of Machine Learning Research, vol. 3,
pp. 1137–1155, 2003. 4.1

[10] Bengio, Y., Simard, P., and Frasconi, P., “Learning long-term dependen-
cies with gradient descent is difficult,” Neural Networks, IEEE Transactions on,
vol. 5, no. 2, pp. 157–166, 1994. 3.2.2, 4

[11] Berg, G., “Learning recursive phrase structure: Combining the strengths of
PDP and X-bar syntax,” tech. rep., State University of New York at Albany,
1991. TR 91-5. 2.4.3

130

[12] Bhatia, P., Ji, Y., and Eisenstein, J., “Better document-level sentiment
analysis from rst discourse parsing,” in EMNLP, 2015. 6

[13] Biran, O. and McKeown, K., “Aggregated word pair features for implicit
discourse relation disambiguation,” in ACL, 2013. 2.2.2, 2.4.1, 3.2.3, 3.2.3.2, 5,
4.3.5, 5.1, 5.2.3, 7

[14] Bishop, C. M., Neural networks for pattern recognition. Oxford university
press, 1995. 1.3

[15] Bishop, C. M., Pattern recognition and machine learning. springer, 2006. 1.1,
1.3.2, 2.3, 2, 6.2

[16] Blacoe, W. and Lapata, M., “A comparison of vector-based representations
for semantic composition,” in Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural
Language Learning, pp. 546–556, Association for Computational Linguistics,
2012. 1.3, 3.2.3.1

[17] Blei, D. M., Ng, A. Y., and Jordan, M. I., “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003. 2.4.2

[18] Blitzer, J., McDonald, R., and Pereira, F., “Domain adaptation with
structural correspondence learning,” in Proceedings of the 2006 conference on
empirical methods in natural language processing, pp. 120–128, Association for
Computational Linguistics, 2006. 5.1, 5.2.1

[19] Bottou, L., “Online Algorithms and Stochastic Approximations,” in Online
Learning and Neural Networks (Saad, D., ed.), Cambridge, UK: Cambridge
University Press, 1998. revised, oct 2012. 3.2.2

[20] Bottou, L., “Stochastic gradient descent tricks,” in Neural Networks: Tricks
of the Trade, pp. 421–436, Springer, 2012. 2.3.1

[21] Burstein, J., Tetreault, J., and Chodorow, M., “Holistic Discourse
Coherence Annotation for Noisy Essay Writing,” Dialogue & Discourse, vol. 4,
no. 2, pp. 34–52, 2013. 1

[22] Carlson, L. and Marcu, D., “Discourse tagging reference manual,” ISI
Technical Report ISI-TR-545, vol. 54, 2001. 3.1.3

[23] Carlson, L., Marcu, D., and Okurowski, M. E., “Building a Discourse-
tagged Corpus in the Framework of Rhetorical Structure Theory,” in Proceed-
ings of Second SIGdial Workshop on Discourse and Dialogue, 2001. 2.1.1, 3.1,
3.1.3

[24] Carpuat, M. and Simard, M., “The trouble with smt consistency,” in Pro-
ceedings of the Seventh Workshop on Statistical Machine Translation, pp. 442–
449, Association for Computational Linguistics, 2012. 6.2.1

131

[25] Caruana, R., “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–
75, 1997. 4.3.4

[26] Cettolo, M. and Girardi, C., “Wit3: Web inventory of transcribed and
translated talks,” in Proceedings of the 16th EAMT Conference, 2012. 6.2.3

[27] Chen, M., Xu, Z., Weinberger, K., and Sha, F., “Marginalized Denoising
Autoencoders for Domain Adaptation,” in Proceedings of the 29th International
Conference on Machine Learning, pp. 767–774, 2012. 5.1, 5.2.1

[28] Chenlo, J. M., Hogenboom, A., and Losada, D. E., “Rhetorical structure
theory for polarity estimation: An experimental study,” Data & Knowledge
Engineering, vol. 94, pp. 135–147, 2014. 6.1.1

[29] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y., “Learning phrase represen-
tations using rnn encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014. 4.1

[30] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y., “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014. 4.2.1

[31] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and
Bengio, Y., “A recurrent latent variable model for sequential data,” in Ad-
vances in neural information processing systems, pp. 2962–2970, 2015. 4.3,
4.3.2

[32] Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L.,
“Spectral learning of latent-variable pcfgs: Algorithms and sample complexity,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 2399–2449, 2014.
3.2.1

[33] Collins, M. and Roark, B., “Incremental parsing with the perceptron algo-
rithm,” in Proceedings of ACL, p. 111, Association for Computational Linguis-
tics, 2004. 3.1.1

[34] Collobert, R. and Weston, J., “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings of the
25th international conference on Machine learning, pp. 160–167, ACM, 2008.
3.1.3

[35] Crammer, K. and Singer, Y., “On the algorithmic implementation of mul-
ticlass kernel-based vector machines,” The Journal of Machine Learning Re-
search, vol. 2, pp. 265–292, 2002. 3.1.2

132

[36] Cristea, D., Ide, N., and Romary, L., “Veins theory: A model of global
discourse cohesion and coherence,” in Proceedings of the 17th international con-
ference on Computational linguistics-Volume 1, pp. 281–285, Association for
Computational Linguistics, 1998. 3.2

[37] Davison, A. C. and Hinkley, D. V., Bootstrap methods and their applica-
tion, vol. 1. Cambridge university press, 1997. 4.2.3.2

[38] de Freitas, J. F., Niranjan, M., Gee, A. H., and Doucet, A., “Sequen-
tial monte carlo methods to train neural network models,” Neural computation,
vol. 12, no. 4, pp. 955–993, 2000. 4.3.2

[39] De Mulder, W., Bethard, S., and Moens, M.-F., “A survey on the appli-
cation of recurrent neural networks to statistical language modeling,” Computer
Speech & Language, vol. 30, no. 1, pp. 61–98, 2015. 4.1

[40] Denil, M., Demiraj, A., Kalchbrenner, N., Blunsom, P., and de Fre-
itas, N., “Modelling, visualising and summarising documents with a single
convolutional neural network,” arXiv preprint arXiv:1406.3830, 2014. 4.1

[41] Dinu, G. and Lapata, M., “Measuring distributional similarity in context,” in
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pp. 1162–1172, Association for Computational Linguistics, 2010.
3.1.3

[42] Dolan, B., Quirk, C., and Brockett, C., “Unsupervised Construction of
Large Paraphrase Corpora: Exploiting Massively Parallel News Sources,” in
COLING, 2004. 3

[43] Duchi, J., Hazan, E., and Singer, Y., “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine Learning
Research, vol. 12, pp. 2121–2159, 2011. 3.2.2, 4.2.3, 4.3.5

[44] Dumais, S. T., “Latent semantic analysis,” Annual review of information sci-
ence and technology, vol. 38, no. 1, pp. 188–230, 2004. 2.4.2

[45] Durrett, G. and Klein, D., “Easy Victories and Uphill Battles in Coref-
erence Resolution,” in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, (Seattle, Washington), Association for Computa-
tional Linguistics, October 2013. 3.2.2

[46] Eisenstein, J., “A technical introduction to statistical natural language pro-
cessing,” 2016. 2.3, 3

[47] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.,
“Liblinear: A library for large linear classification,” The Journal of Machine
Learning Research, vol. 9, pp. 1871–1874, 2008. 5.2.3

133

[48] Feldman, R., “Techniques and applications for sentiment analysis,” Commu-
nications of the ACM, vol. 56, no. 4, pp. 82–89, 2013. 6.1

[49] Feng, V. W. and Hirst, G., “Text-level discourse parsing with rich linguistic
features,” in Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1, pp. 60–68, Association for
Computational Linguistics, 2012. 3.1, 3.1.3, 3.1.3

[50] Feng, V. W. and Hirst, G., “A Linear-Time Bottom-Up Discourse Parser
with Constraints and Post-Editing,” in Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics, (Baltimore, Maryland),
pp. 511–521, Association for Computational Linguistics, June 2014. 2.4.1, 2.4.1

[51] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager,
J., and others, “Building Watson: An overview of the DeepQA project,” AI
magazine, vol. 31, no. 3, pp. 59–79, 2010. 1

[52] Forbes-Riley, K., Webber, B., and Joshi, A., “Computing discourse
semantics: The predicate-argument semantics of discourse connectives in D-
LTAG,” Journal of Semantics, vol. 23, no. 1, pp. 55–106, 2006. 2.1.2, 3.2

[53] Ghosh, S., Riccardi, G., and Johansson, R., “Global features for shallow
discourse parsing,” in Proceedings of the 13th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pp. 150–159, Association for Com-
putational Linguistics, 2012. 2.4.1

[54] Glorot, X. and Bengio, Y., “Understanding the difficulty of training deep
feedforward neural networks,” in International conference on artificial intelli-
gence and statistics, pp. 249–256, 2010. 4.2.3

[55] Glorot, X., Bordes, A., and Bengio, Y., “Domain adaptation for large-
scale sentiment classification: A deep learning approach,” in Proceedings of the
28th International Conference on Machine Learning, pp. 513–520, 2011. 5.2.1

[56] Godfrey, J. J., Holliman, E. C., and McDaniel, J., “Switchboard: Tele-
phone speech corpus for research and development,” in Acoustics, Speech, and
Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on,
vol. 1, pp. 517–520, IEEE, 1992. 4.3.5

[57] Goller, C. and Kuchler, A., “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in Neural Networks, 1996.,
IEEE International Conference on, vol. 1, pp. 347–352, IEEE, 1996. 2.4.3, 3.2.2,
6.1.3

[58] Grice, H. P., “Logic and Conversation,” in Syntax and Semantics Volume 3:
Speech Acts (Cole, P. and Morgan, J. L., eds.), pp. 41–58, Academic Press,
1975. 5

134

[59] Grosz, B. J. and Sidner, C. L., “Attention, intentions, and the structure of
discourse,” Computational linguistics, vol. 12, no. 3, pp. 175–204, 1986. 2.1

[60] Guo, W. and Diab, M., “Modeling sentences in the latent space,” in Pro-
ceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Long Papers-Volume 1, pp. 864–872, Association for Computational
Linguistics, 2012. 3

[61] Halpern, J. Y., “Reasoning about knowledge: an overview,” in Proceedings
of the 1986 Conference on Theoretical aspects of reasoning about knowledge,
pp. 1–17, Morgan Kaufmann Publishers Inc., 1986. 1

[62] Hardmeier, C., Discourse in statistical machine translation. Acta Universi-
tatis Upsaliensis, 2014. 6.2.1

[63] Hardmeier, C., Tiedemann, J., and Nivre, J., “Latent anaphora reso-
lution for cross-lingual pronoun prediction,” in EMNLP 2013; Conference on
Empirical Methods in Natural Language Processing; 18-21 October 2013; Seat-
tle, WA, USA, pp. 380–391, Association for Computational Linguistics, 2013.
6.2.1

[64] Harris, Z. S., “Distributional Structure,” Word, 1954. 1.2, 1.3, 2.4.2

[65] Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak,
U., and de Jong, F., “Polarity analysis of texts using discourse structure,”
in Proceedings of the 20th ACM international conference on Information and
knowledge management, pp. 1061–1070, ACM, 2011. 6.1.1

[66] Hernault, H., Prendinger, H., duVerle, D. A., and Ishizuka, M.,
“HILDA: A Discourse Parser Using Support Vector Machine Classification,”
Dialogue and Discourse, vol. 1, no. 3, pp. 1–33, 2010. (document), 2.2.1, 2.2.1,
2.4.1, 2, 3.1.3

[67] Hinton, G., “Learning distributed representations of concepts,” in Proceedings
of the Eighth Annual Conference of the Cognitive Science Society, pp. 1–12,
2012. 2.4.2

[68] Hinton, G., McClelland, J., and Rumelhart, D., “Distributed represen-
tations,” Parallel Distributed Processing: Explorations in the micro-structure of
cognition, 1984. 1.2, 2.4.2

[69] Hirao, T., Yoshida, Y., Nishino, M., Yasuda, N., and Nagata, M.,
“Single-Document Summarization as a Tree Knapsack Problem.,” in EMNLP,
pp. 1515–1520, 2013. 6.1.2, 6.1.2

[70] Hobbs, J. R., “Coherence and coreference,” Cognitive science, vol. 3, no. 1,
pp. 67–90, 1979. 1, 2.1, 2.1.1, 2.4

[71] Hobbs, J. R., “On the coherence and structure of discourse,” 1985. 1, 2.1

135

[72] Hobbs, J. R., “Intention, information, and structure in discourse: A first
draft,” in Burning Issues in Discourse, NATO Advanced Research Workshop,
pp. 41–66, 1993. 2.1

[73] Hochreiter, S. and Schmidhuber, J., “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997. 4.2.1

[74] Hogenboom, A., Frasincar, F., de Jong, F., and Kaymak, U., “Us-
ing rhetorical structure in sentiment analysis,” Communications of the ACM,
vol. 58, no. 7, pp. 69–77, 2015. 6.1.1

[75] Hovy, E. H., “Automated discourse generation using discourse structure re-
lations,” Artificial intelligence, vol. 63, no. 1, pp. 341–385, 1993. 1

[76] Irsoy, O. and Cardie, C., “Bidirectional recursive neural networks for token-
level labeling with structure,” in NIPS 2013 Workshop on Deep Learning, 2013.
2.4.3

[77] Jansen, P., Surdeanu, M., and Clark, P., “Discourse Complements Lex-
ical Semantics for Non-factoid Answer Reranking,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), (Baltimore, Maryland), pp. 977–986, Association for Computa-
tional Linguistics, June 2014. 1

[78] Ji, Y., Cohn, T., Kong, L., Dyer, C., and Eisenstein, J., “Document
Context Language Models,” in ICLR (Workshop track), 2016. 1

[79] Ji, Y., Cohn, T., Kong, L., Dyer, C., and Eisenstein, J., “Document
Context Language Models,” in ICLR (Workshop track), 2016. 4

[80] Ji, Y. and Eisenstein, J., “Discriminative Improvements to Distributional
Sentence Similarity,” in Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, (Seattle, Washington, USA), pp. 891–896,
Association for Computational Linguistics, October 2013. 3

[81] Ji, Y. and Eisenstein, J., “Representation learning for document-level dis-
course parsing,” in ACL, 2014. 1.6, 2.3.1, 2.4.2, 3, 3.2.2, 6.1.3

[82] Ji, Y. and Eisenstein, J., “One Vector is Not Enough: Entity-Augmented
Distributed Semantics for Discourse Relations,” Transactions of the Association
of Computational Linguistics, vol. 3, pp. 329–344, 2015. 2.4.3, 3, 4.3, 4.3.5, 9

[83] Ji, Y., Haffari, G., and Eisenstein, J., “A latent variable recurrent neural
network for discourse-driven language models,” in NAACL-HLT, 2016. 4

[84] Ji, Y., Zhang, G., and Eisenstein, J., “Closing the Gap: Domain Adapta-
tion from Explicit to Implicit Discourse Relations,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, (Lisbon,
Portugal), pp. 2219–2224, Association for Computational Linguistics, Septem-
ber 2015. 5

136

[85] Jiang, J. and Zhai, C., “Instance Weighting for Domain Adaptation in NLP,”
in Proceedings of ACL, 2007. 5.1, 5.2.2

[86] Joachims, T., Learning to classify text using support vector machines: Meth-
ods, theory and algorithms. Kluwer Academic Publishers, 2002. 1

[87] Johnstone, B., Discourse analysis. Blackwell Malden, MA, 2008. 2.1

[88] Joshi, M., Cohen, W. W., Dredze, M., and Rosé, C. P., “Multi-domain
learning: when do domains matter?,” in Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1302–1312, Association for Computational Lin-
guistics, 2012. 5.1, 5.2.2

[89] Joty, S., Carenini, G., and Ng, R., “A Novel Discriminative Framework
for Sentence-Level Discourse Analysis,” in EMNLP-CoNLL, 2012. 2.2.1

[90] Joty, S. R., Carenini, G., Ng, R. T., and Mehdad, Y., “Combining intra-
and multi-sentential rhetorical parsing for document-level discourse analysis.,”
in ACL (1), pp. 486–496, 2013. (document), 2.2.1, 2.4.1, 2.4.1, 3.1, 3.1.2, 2,
3.1.3, 3.1.3

[91] Jurafsky, D. and Martin, J. H., Speech & language processing. Pearson
Education India, 2000. 2.2.1, 4

[92] Jurafsky, D., Shriberg, E., and Biasca, D., “Switchboard SWBD-
DAMSL shallow-discourse-function annotation coders manual,” Institute of
Cognitive Science Technical Report, pp. 97–102, 1997. 4.3.1

[93] Kalchbrenner, N. and Blunsom, P., “Recurrent Convolutional Neural
Networks for Discourse Compositionality,” Proceedings of the 2013 Workshop
on Continuous Vector Space Models and their Compositionality, 2013. 4.3, 4.3.5,
10

[94] Kiela, D., Hill, F., and Clark, S., “Specializing word embeddings for
similarity or relatedness,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, September 2015. 2.4.2

[95] Klein, D. and Manning, C. D., “Accurate unlexicalized parsing,” in Proceed-
ings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pp. 423–430, Association for Computational Linguistics, 2003. 3.2.2

[96] Knight, K., “Decoding complexity in word-replacement translation models,”
Computational Linguistics, vol. 25, no. 4, pp. 607–615, 1999. 6.2

[97] Knott, A. and Dale, R., “Using linguistic phenomena to motivate a set of
coherence relations,” Discourse processes, vol. 18, no. 1, pp. 35–62, 1994. 2.4.1

137

[98] Knott, A., Sanders, T., and Oberlander, J., “Levels of representation
in discourse relations,” Cognitive Linguistics, vol. 12, no. 3, pp. 197–210, 2001.
2.1.1

[99] Koehn, P., Statistical machine translation. Cambridge University Press, 2009.
1.5.2, 4

[100] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M.,
Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., and others,
“Moses: Open source toolkit for statistical machine translation,” in Proceedings
of the 45th annual meeting of the ACL on interactive poster and demonstration
sessions, pp. 177–180, Association for Computational Linguistics, 2007. 6.2.3

[101] Koo, T., Carreras, X., and Collins, M., “Simple Semi-supervised Depen-
dency Parsing,” in Proceedings of ACL-HLT, (Columbus, Ohio), pp. 595–603,
Association for Computational Linguistics, June 2008. 3.1.1

[102] Krestel, R., Bergler, S., Witte, R., and others, “Minding the source:
Automatic tagging of reported speech in newspaper articles,” Reporter, vol. 1,
no. 5, p. 4, 2008. 3.1.3

[103] Kübler, S., McDonald, R., and Nivre, J., Dependency parsing. Morgan
& Claypool Publishers, 2009. 6.1.2

[104] Lafferty, J., McCallum, A., and Pereira, F. C., “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,” in Pro-
ceedings of the 18th International Conference on Machine Learning, 2001. 2.2.1

[105] Lan, M., Xu, Y., and Niu, Z., “Leveraging Synthetic Discourse Data via
Multi-task Learning for Implicit Discourse Relation Recognition,” in Proceed-
ings of ACL, (Sofia, Bulgaria), pp. 476–485, Association for Computational
Linguistics, August 2013. 2.2.2, 2.4.1, 5.1

[106] Lari, K. and Young, S. J., “The estimation of stochastic context-free gram-
mars using the inside-outside algorithm,” Computer speech & language, vol. 4,
no. 1, pp. 35–56, 1990. 3.2.1

[107] Lascarides, A. and Asher, N., “Temporal interpretation, discourse rela-
tions and commonsense entailment,” Linguistics and philosophy, vol. 16, no. 5,
pp. 437–493, 1993. 2.1

[108] Lazaridou, A., Titov, I., and Sporleder, C., “A bayesian model for joint
unsupervised induction of sentiment, aspect and discourse representations.,” in
ACL, pp. 1630–1639, 2013. 6.1.1

[109] Le, P. and Zuidema, W., “The inside-outside recursive neural network model
for dependency parsing,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 729–739, 2014. 2.4.3

138

[110] Le, Q. V. and Mikolov, T., “Distributed representations of sentences and
documents,” arXiv preprint arXiv:1405.4053, 2014. 4, 4.1

[111] Le Nagard, R. and Koehn, P., “Aiding pronoun translation with co-
reference resolution,” in Proceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, pp. 252–261, Association for Compu-
tational Linguistics, 2010. 6.2.1

[112] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R., “Efficient
backprop,” in Neural networks: Tricks of the trade, pp. 9–48, Springer, 2012.
3.2.2

[113] Levin, B., “Aspect, lexical semantic representation, and argument expression,”
in Proceedings of the 26th annual meeting of the Berkeley Linguistics Society,
pp. 413–429, Citeseer, 2000. 2.4.1

[114] Li, J. and Hovy, E. H., “A model of coherence based on distributed sentence
representation.,” in EMNLP, pp. 2039–2048, 2014. 4.1, 4.2.3.2

[115] Li, J., Li, R., and Hovy, E., “Recursive Deep Models for Discourse Parsing,”
in EMNLP, October 2014. 1.3.1

[116] Li, J., Luong, M.-T., and Jurafsky, D., “A hierarchical neural autoencoder
for paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015. 4.1,
4.2.3.2

[117] Lin, R., Liu, S., Yang, M., Li, M., Zhou, M., and Li, S., “Hierarchical
recurrent neural network for document modeling,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 899–907,
2015. 4, 4.1, 7, 4.2.3, 8, 4.2.3.2

[118] Lin, Z., Kan, M.-Y., and Ng, H. T., “Recognizing implicit discourse relations
in the Penn Discourse Treebank,” in EMNLP, 2009. (document), 2.2.2, 2.4.1,
2.4.1, 2.4.1, 3.2.1, 3.2.2, 3.2.3, 3.2.3.1, 4, 4.3.5, 5.2.3

[119] Lin, Z., Ng, H. T., and Kan, M.-Y., “A PDTB-styled end-to-end discourse
parser,” Natural Language Engineering, pp. 1–34, 2014. 2.2.2, 2.2.2, 2.3.1, 3.2.3

[120] Liu, B., “Sentiment analysis and opinion mining,” Synthesis lectures on human
language technologies, vol. 5, no. 1, pp. 1–167, 2012. 6.1

[121] Louis, A., Joshi, A., and Nenkova, A., “Discourse indicators for content
selection in summarization,” in Proceedings of the 11th Annual Meeting of the
Special Interest Group on Discourse and Dialogue, pp. 147–156, Association for
Computational Linguistics, 2010. 1

[122] Louis, A., Joshi, A., Prasad, R., and Nenkova, A., “Using entity features
to classify implicit discourse relations,” in Proceedings of the SIGDIAL, (Tokyo,
Japan), pp. 59–62, Association for Computational Linguistics, September 2010.
2.4.1, 3.2

139

[123] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C., “Learning word vectors for sentiment analysis,” in Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pp. 142–150, Association for Compu-
tational Linguistics, 2011. 2.4.2

[124] Mann, W. and Thompson, S., “Rhetorical Structure Theory: Toward a Func-
tional Theory of Text Organization,” Text, vol. 8, no. 3, pp. 243–281, 1988. 2.1.1

[125] Mann, W. C., “Discourse Structures for Text Generation,” in Proceedings
of the 10th International Conference on Computational Linguistics and 22nd
annual meeting on Association for Computational Linguistics, pp. 367–375, As-
sociation for Computational Linguistics, 1984. 2.1.1

[126] Manning, C. D., Raghavan, P., Schütze, H., and others, Introduction
to information retrieval, vol. 1. Cambridge university press Cambridge, 2008. 4

[127] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard,
S., and McClosky, D., “The stanford corenlp natural language processing
toolkit.,” in ACL (System Demonstrations), pp. 55–60, 2014. 5.2.3

[128] Marcu, D., “Building Up Rhetorical Structure Trees,” in Proceedings of
AAAI, 1996. 3.1.1

[129] Marcu, D., “A Decision-Based Approach to Rhetorical Parsing,” in Proceed-
ings of ACL, (College Park, Maryland, USA), pp. 365–372, Association for
Computational Linguistics, June 1999. 2.2.1, 2.4.1, 2.4.1, 2.4.1, 3.1, 3.1.1

[130] Marcu, D., The Theory and Practice of Discourse Parsing and Summariza-
tion. MIT Press, 2000. 3.1.3

[131] Marcu, D., Carlson, L., and Watanabe, M., “The automatic translation
of discourse structures,” in Proceedings of the 1st North American chapter of
the Association for Computational Linguistics conference, pp. 9–17, Association
for Computational Linguistics, 2000. 6.2.1

[132] Marcu, D. and Echihabi, A., “An unsupervised approach to recognizing dis-
course relations,” in Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pp. 368–375, Association for Computational Lin-
guistics, 2002. 5.1

[133] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B., “Building a
large annotated corpus of english: The penn treebank,” Computational linguis-
tics, vol. 19, no. 2, pp. 313–330, 1993. 4.2.3

[134] McClosky, D., Charniak, E., and Johnson, M., “Bllip north american
news text, complete,” Linguistic Data Consortium, 2008. 4.2.3

140

[135] Meyer, T., Hajlaoui, N., and Popescu-Belis, A., “Disambiguating dis-
course connectives for statistical machine translation,” Audio, Speech, and Lan-
guage Processing, IEEE/ACM Transactions on, vol. 23, no. 7, pp. 1184–1197,
2015. 6.2.1

[136] Meyer, T., Popescu-Belis, A., Hajlaoui, N., and Gesmundo, A., “Ma-
chine translation of labeled discourse connectives,” in Proceedings of the Tenth
Biennial Conference of the Association for Machine Translation in the Ameri-
cas (AMTA), no. EPFL-CONF-192524, 2012. 6.2.1

[137] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khu-
danpur, S., “Recurrent neural network based language model.,” in INTER-
SPEECH 2010, 11th Annual Conference of the International Speech Communi-
cation Association, Makuhari, Chiba, Japan, September 26-30, 2010, pp. 1045–
1048, 2010. 1.3.2, 4, 4.1, 4.2.1, 4.2.3, 4.2.3, 7, 4.3, 4.3.5

[138] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.,
“Distributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems, pp. 3111–3119, 2013.
2.4.2

[139] Mikolov, T., Yih, W.-t., and Zweig, G., “Linguistic Regularities in Con-
tinuous Space Word Representations,” in NAACL-HLT, (Atlanta, Georgia),
pp. 746–751, Association for Computational Linguistics, June 2013. 1.3, 3.2.2

[140] Mikolov, T. and Zweig, G., “Context dependent recurrent neural network
language model.,” in SLT, pp. 234–239, 2012. 4, 4.1

[141] Milajevs, D. and Purver, M., “Investigating the Contribution of Distribu-
tional Semantic Information for Dialogue Act Classification,” in Proceedings of
the 2nd Workshop on Continuous Vector Space Models and their Composition-
ality (CVSC)@ EACL, pp. 40–47, 2014. 4.3.5

[142] Miller, S., Guinness, J., and Zamanian, A., “Name Tagging with Word
Clusters and Discriminative Training,” in HLT-NAACL (Susan Dumais,
D. M. and Roukos, S., eds.), (Boston, Massachusetts, USA), pp. 337–342,
Association for Computational Linguistics, May 2 - May 7 2004. 3.1.1

[143] Miltsakaki, E. and Kukich, K., “Evaluation of text coherence for electronic
essay scoring systems,” Natural Language Engineering, vol. 10, no. 01, pp. 25–
55, 2004. 1

[144] Mitchell, J. and Lapata, M., “Composition in distributional models of
semantics,” Cognitive science, vol. 34, no. 8, pp. 1388–1429, 2010. 1.3, 3.1.3

[145] Mitkov, R., “How could rhetorical relations be used in machine transla-
tion?(And at least two open questions),” in Proceedings of the ACL Workshop
on Intentionality and Structure in Discourse Relations, pp. 86–89, 1993. 6.2.1

141

[146] Mooney, R., “Semantic Parsing: Past, Present, and Future,” 2014. Invited
talk on ACL 2014 workshop on semantic parsing. 1

[147] Moore, J. D. and Wiemer-Hastings, P., “Discourse in computational lin-
guistics and artificial intelligence,” Handbook of discourse processes, pp. 439–
486, 2003. 2.1

[148] Murphy, K. P., Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012. 2.3, 2.3.1

[149] Nelakanti, A. K., Archambeau, C., Mairal, J., Bach, F., and
Bouchard, G., “Structured Penalties for Log-Linear Language Models,” in
EMNLP, (Seattle, Washington, USA), pp. 233–243, Association for Computa-
tional Linguistics, October 2013. 3.1.2

[150] Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V., and Ng,
A. Y., “On optimization methods for deep learning,” in Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pp. 265–272, 2011.
3.1.2

[151] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S.,
Marinov, S., and Marsi, E., “MaltParser: A language-independent system
for data-driven dependency parsing,” Natural Language Engineering, vol. 13,
no. 2, pp. 95–135, 2007. 3.1.2

[152] Ovchinnikova, E., Montazeri, N., Alexandrov, T., Hobbs, J. R., Mc-
Cord, M. C., and Mulkar-Mehta, R., “Abductive reasoning with a large
knowledge base for discourse processing,” in Computing Meaning, pp. 107–127,
Springer, 2014. 2.4

[153] Pang, B. and Lee, L., “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts,” in Proceedings of the 42nd
annual meeting on Association for Computational Linguistics, p. 271, Associa-
tion for Computational Linguistics, 2004. (document), 6.1.1, 13

[154] Pang, B. and Lee, L., “Opinion mining and sentiment analysis,” Foundations
and trends in information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008. 6.1

[155] Pang, B., Lee, L., and Vaithyanathan, S., “Thumbs up?: sentiment clas-
sification using machine learning techniques,” in Proceedings of the ACL-02
conference on Empirical methods in natural language processing-Volume 10,
pp. 79–86, Association for Computational Linguistics, 2002. 1.5.1

[156] Park, J. and Cardie, C., “Improving Implicit Discourse Relation Recognition
Through Feature Set Optimization,” in Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and Dialogue, (Seoul, South Korea),
pp. 108–112, Association for Computational Linguistics, July 2012. 2.2.2, 2.4.1,
3.2.3, 3.2.3.2, 5, 3.2.3.2, 4.3.5, 5.2.3, 7

142

[157] Partee, B., “Lexical semantics and compositionality,” An invitation to cogni-
tive science: Language, vol. 1, pp. 311–360, 1995. 1.3.1

[158] Pascanu, R., Mikolov, T., and Bengio, Y., “On the difficulty of training
recurrent neural networks,” arXiv preprint arXiv:1211.5063, 2012. 3.2.1, 3.2.2,
4.2.3, 4.3.5

[159] Paulus, R., Socher, R., and Manning, C. D., “Global Belief Recur-
sive Neural Networks,” in Advances in Neural Information Processing Systems,
pp. 2888–2896, 2014. 2.4.3, 2.4.3

[160] Pennington, J., Socher, R., and Manning, C. D., “Glove: Global vectors
for word representation,” in EMNLP, 2014. 3.2.2

[161] Petrov, S., Barrett, L., Thibaux, R., and Klein, D., “Learning accu-
rate, compact, and interpretable tree annotation,” in Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pp. 433–440, Associ-
ation for Computational Linguistics, 2006. 3.2.1

[162] Pitler, E., Louis, A., and Nenkova, A., “Automatic Sense Prediction for
Implicit Discourse Relations in Text,” in ACL-IJCNLP, 2009. 2.2.2, 2.4.1, 3.2.3,
3.2.3.2, 5, 4.3.5, 5.2.3

[163] Pitler, E., Raghupathy, M., Mehta, H., Nenkova, A., Lee, A., and
Joshi, A., “Easily Identifiable Discourse Relations,” in CoLING, 2008. 2.2.2,
4.3.5

[164] Pradhan, S. S., Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R., “Ontonotes: A unified relational semantic representation,”
International Journal of Semantic Computing, vol. 1, no. 04, pp. 405–419, 2007.
3.2.2

[165] Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi,
A., and Webber, B., “The Penn Discourse Treebank 2.0,” in LREC, 2008.
2.1.2, 3.1, 3.1.3, 3.2.2, 3.2.3, 3.2.3.1, 4.3.1, 4.3.5, 5, 5.2.3

[166] Prasad, R., Joshi, A., and Webber, B., “Realization of discourse relations
by other means: alternative lexicalizations,” in Proceedings of the 23rd Inter-
national Conference on Computational Linguistics: Posters, pp. 1023–1031,
Association for Computational Linguistics, 2010. 3.1.1

[167] Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi, A., Robaldo,
L., and Webber, B. L., “The penn discourse treebank 2.0 annotation man-
ual.” The PDTB Research Group, 2007. 5.2.3

[168] Roller, B. T. C. G. D., “Max-margin markov networks,” Advances in neural
information processing systems, vol. 16, p. 25, 2004. 2.3.1

143

[169] Rutherford, A. and Xue, N., “Improving the Inference of Implicit Dis-
course Relations via Classifying Explicit Discourse Connectives,” in NAACL-
HLT, 2015. 4.3, 4.3.5, 9, 5.1, 5.2.2, 5.2.3, 7

[170] Rutherford, A. T. and Xue, N., “Discovering implicit discourse relations
through brown cluster pair representation and coreference patterns,” EACL
2014, p. 645, 2014. (document), 2.4.1, 2.4.1, 3.2.2, 3.2.3.1, 4, 4.3.5

[171] Sagae, K., “Analysis of Discourse Structure with Syntactic Dependencies and
Data-Driven Shift-Reduce Parsing,” in Proceedings of the 11th International
Conference on Parsing Technologies (IWPT), 2009. 2.2.1, 2.2.1, 2.3.1, 2.4.1,
3.1, 3.1.1, 1

[172] Shi, L. and Mihalcea, R., “Putting pieces together: Combining FrameNet,
VerbNet and WordNet for robust semantic parsing,” in Computational linguis-
tics and intelligent text processing, pp. 100–111, Springer, 2005. 1

[173] Smolensky, P., “Tensor product variable binding and the representation of
symbolic structures in connectionist systems,” Artificial intelligence, vol. 46,
no. 1, pp. 159–216, 1990. 3.2.1, 6.1

[174] Socher, R., Chen, D., Manning, C. D., and Ng, A., “Reasoning with
neural tensor networks for knowledge base completion,” in Advances in Neural
Information Processing Systems, pp. 926–934, 2013. 2.4.3, 3.2.1

[175] Socher, R., Huval, B., Manning, C. D., and Ng, A. Y., “Semantic
compositionality through recursive matrix-vector spaces,” in Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pp. 1201–1211, Association for
Computational Linguistics, 2012. 1.3.1, 2.4.3

[176] Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng, A. Y.,
“Grounded compositional semantics for finding and describing images with sen-
tences,” Transactions of the Association for Computational Linguistics, vol. 2,
pp. 207–218, 2014. 2.4.3

[177] Socher, R., Lin, C. C., Manning, C., and Ng, A. Y., “Parsing natural
scenes and natural language with recursive neural networks,” in Proceedings
of the 28th International Conference on Machine Learning, pp. 129–136, 2011.
2.4.3, 3.2, 3.2.1, 3.2.2, 6.1, 6.1.3

[178] Socher, R., Manning, C. D., and Ng, A. Y., “Learning continuous phrase
representations and syntactic parsing with recursive neural networks,” in Pro-
ceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning
Workshop, pp. 1–9, 2010. 2.4.3

144

[179] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D.,
Ng, A. Y., and Potts, C., “Recursive deep models for semantic composition-
ality over a sentiment treebank,” in Proceedings of the conference on empirical
methods in natural language processing (EMNLP), 2013. (document), 3.2, 6.1,
13, 6.1.3

[180] Somasundaran, S., Namata, G., Wiebe, J., and Getoor, L., “Super-
vised and unsupervised methods in employing discourse relations for improving
opinion polarity classification,” in Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing, pp. 170–179, Association for
Computational Linguistics, 2009. 6.1.1

[181] Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell,
M., Nie, J.-Y., Gao, J., and Dolan, B., “A Neural Network Approach to
Context-Sensitive Generation of Conversational Responses,” in NAACL, June
2015. 4

[182] Soricut, R. and Marcu, D., “Sentence Level Discourse Parsing using Syn-
tactic and Lexical Information,” in NAACL, 2003. 2.4.1, 6.1

[183] Sporleder, C. and Lascarides, A., “Using automatically labelled examples
to classify rhetorical relations: An assessment,” Natural Language Engineering,
vol. 14, no. 03, pp. 369–416, 2008. 1.4, 1.6, 5, 5.1, 5.2.3

[184] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R., “Dropout: A simple way to prevent neural networks
from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014. 4.3.5

[185] Stede, M., Discourse processing. Morgan & Claypool Publishers, 2011. 1, 1

[186] Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Juraf-
sky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., and Meteer,
M., “Dialogue act modeling for automatic tagging and recognition of conver-
sational speech,” Computational linguistics, vol. 26, no. 3, pp. 339–373, 2000.
4.3.2, 4.3.5, 4.3.5, 10

[187] Sutskever, I., Vinyals, O., and Le, Q. V., “Sequence to sequence learning
with neural networks,” in Advances in neural information processing systems,
pp. 3104–3112, 2014. 4.2.1, 4.2.2

[188] Taboada, M., “SFU Review Corpus,” 2008. http:
//www.sfu.ca/mtaboada/research/SFU Review Corpus.html. 6.1.3

[189] Taboada, M. and Mann, W. C., “Applications of rhetorical structure the-
ory,” Discourse studies, vol. 8, no. 4, pp. 567–588, 2006. 1

145

[190] Tang, D., Qin, B., and Liu, T., “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1422–1432,
2015. 4.1

[191] Taskar, B., Guestrin, C., and Koller, D., “Max-margin Markov net-
works,” in Advances in neural information processing systems, 2004. 3.1

[192] Trivedi, R. and Eisenstein, J., “Discourse Connectors for Latent Subjec-
tivity in Sentiment Analysis,” in Proceedings of the North American Chapter
of the Association for Computational Linguistics (NAACL), (Atlanta, GA),
pp. 808–813, 2013. 6.1.1

[193] Turian, J., Ratinov, L., and Bengio, Y., “Word Representations: A Simple
and General Method for Semi-Supervised Learning,” in Proceedings of ACL,
pp. 384–394, 2010. 3.1.1, 3.2.2

[194] Turney, P. D., “Thumbs up or thumbs down?: semantic orientation applied
to unsupervised classification of reviews,” in Proceedings of the 40th annual
meeting on association for computational linguistics, pp. 417–424, Association
for Computational Linguistics, 2002. 1.5.1

[195] Turney, P. D., Pantel, P., and others, “From frequency to meaning:
Vector space models of semantics,” Journal of artificial intelligence research,
vol. 37, no. 1, pp. 141–188, 2010. 3.2

[196] Van de Cruys, T. and Apidianaki, M., “Latent semantic word sense in-
duction and disambiguation,” in Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics, pp. 1476–1485, Association for
Computational Linguistics, 2011. 3.1.3

[197] Van der Maaten, L. and Hinton, G., “Visualizing data using t-sne,” Jour-
nal of Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008. (docu-
ment), 3.1.3, 18

[198] Voll, K. and Taboada, M., “Not all words are created equal: Extracting
semantic orientation as a function of adjective relevance,” in AI 2007: Advances
in Artificial Intelligence, pp. 337–346, Springer, 2007. (document), 24, 6.1

[199] Wachsmuth, H., Trenkmann, M., Stein, B., and Engels, G., “Modeling
Review Argumentation for Robust Sentiment Analysis,” in Proceedings of the
25th International Conference on Computational Linguistics COLING, 2014.
6.1.1

[200] Wang, F. and Wu, Y., “Exploiting hierarchical discourse structure for re-
view sentiment analysis,” in 2013 International Conference on Asian Language
Processing, 2013. 6.1.1

146

[201] Wang, F., Wu, Y., and Qiu, L., “Exploiting discourse relations for sentiment
analysis.,” in COLING (Posters), pp. 1311–1320, 2012. 6.1.1

[202] Wang, T. and Cho, K., “Larger-Context Language Modelling,” arXiv
preprint arXiv:1511.03729, 2015. 4, 4.1

[203] Webb, N., Hepple, M., and Wilks, Y., “Dialogue act classification based
on intra-utterance features,” in Proceedings of the AAAI Workshop on Spoken
Language Understanding, 2005. 4.3.5

[204] Webber, B., “D-LTAG: Extending lexicalized TAG to discourse,” Cognitive
Science, vol. 28, no. 5, pp. 751–779, 2004. 2.1.2, 4.3.1

[205] Webber, B. and Joshi, A., “Discourse structure and computation: past,
present and future,” in Proceedings of the ACL-2012 Special Workshop on Re-
discovering 50 Years of Discoveries, pp. 42–54, Association for Computational
Linguistics, 2012. 1, 1

[206] Wilson, T., Wiebe, J., and Hoffmann, P., “Recognizing contextual po-
larity in phrase-level sentiment analysis,” in Proceedings of the conference on
human language technology and empirical methods in natural language process-
ing, pp. 347–354, Association for Computational Linguistics, 2005. 2.4.1, 6.1.2

[207] Yang, B. and Cardie, C., “Context-aware learning for sentence-level senti-
ment analysis with posterior regularization.,” in ACL (1), pp. 325–335, 2014.
6.1.1

[208] Ye, Y., Fossum, V. L., and Abney, S., “Latent features in automatic tense
translation between chinese and english,” in Proceedings of the Fifth SIGHAN
Workshop on Chinese Language Processing, pp. 48–55, 2006. 6.2.1

[209] Young, R. M. and Moore, J. D., “Dpocl: A principled approach to discourse
planning,” in Proceedings of the Seventh International Workshop on Natural
Language Generation, pp. 13–20, Association for Computational Linguistics,
1994. 2.1

[210] Yu, C.-N. J. and Joachims, T., “Learning structural SVMs with latent vari-
ables,” in Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 1169–1176, ACM, 2009. 3.1.2

[211] Zaremba, W., Sutskever, I., and Vinyals, O., “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014. 4.3.5, 4.3.5

[212] Zhou, L., Li, B., Gao, W., Wei, Z., and Wong, K.-F., “Unsupervised
discovery of discourse relations for eliminating intra-sentence polarity ambi-
guities,” in Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 162–171, Association for Computational Linguistics,
2011. 6.1.1

147

[213] Zhou, Z.-M., Xu, Y., Niu, Z.-Y., Lan, M., Su, J., and Tan, C. L.,
“Predicting discourse connectives for implicit discourse relation recognition,” in
Proceedings of the 23rd International Conference on Computational Linguistics:
Posters, pp. 1507–1514, Association for Computational Linguistics, 2010. 2.2.2,
5, 3.2.3.2

[214] Zirn, C., Niepert, M., Stuckenschmidt, H., and Strube, M., “Fine-
Grained Sentiment Analysis with Structural Features.,” in IJCNLP, pp. 336–
344, 2011. 6.1.1, 6.1.3

148

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	1.1 The Problem of Surface-form Representation
	1.2 Distributed Representation of Words
	1.3 Distributed Representation Functions for Texts
	1.3.1 Representation functions with rich linguistic features
	1.3.2 Representation functions with rich generation power

	1.4 Representation Learning with Distant Supervision
	1.5 Applications of Discourse Processing
	1.5.1 Sentiment Analysis with Discourse Information
	1.5.2 Discourse-aware Machine Translation

	1.6 Contributions

	Chapter 2 — Background
	2.1 Discourse Structure
	2.1.1 Rhetorical Structure Theory
	2.1.2 Lexicalized Tree Adjoining Grammar for Discourse

	2.2 Computational Models for Discourse Processing
	2.2.1 RST-style discourse processing
	2.2.2 PDTB-style Parsing

	2.3 Machine Learning Models of Discourse Processing
	2.3.1 Discourse processing as classification

	2.4 Representation for Discourse Processing
	2.4.1 Surface-form Representations
	2.4.2 Distributed Representation
	2.4.3 Distributed Representation for Sentences

	Chapter 3 — Discourse Parsing with Supervised Representation Learning
	3.1 Distributed Representation Learning for RST Parsing
	3.1.1 Model
	3.1.2 Large-Margin Learning Framework
	3.1.3 Evaluation

	3.2 Distributed Semantic Composition for Implicit Discourse Relation Identification
	3.2.1 Entity augmented distributed semantics
	3.2.2 Large-margin learning framework
	3.2.3 Evaluation

	3.3 Discussion

	Chapter 4 — Discourse-driven Language Modeling
	4.1 Prior Work on Language Modeling
	4.2 Language modeling with document context
	4.2.1 Recurrent Neural Network Language Models
	4.2.2 Document Context Language Models
	4.2.3 Evaluation

	4.3 Language Modeling with Discourse Relations
	4.3.1 Shallow Discourse Relations
	4.3.2 Discourse Relation Language Models
	4.3.3 Inference
	4.3.4 Learning
	4.3.5 Evaluation

	4.4 Discussion

	Chapter 5 — Semantic Representation Learning with Distant Supervision
	5.1 Prior Work
	5.2 Domain Adaptation for Implicit Relation Identification
	5.2.1 Learning feature representation
	5.2.2 Resampling with minimal supervision
	5.2.3 Evaluation

	5.3 Discussion

	Chapter 6 — Applications of Discourse Information
	6.1 Discourse Information for Sentiment Analysis
	6.1.1 Prior Work on Discourse Information for Sentiment Analysis
	6.1.2 Discourse depth reweighting
	6.1.3 Rhetorical Recursive Neural Networks
	6.1.4 Conclusion

	6.2 Discourse Information of Document-level MT
	6.2.1 Prior work
	6.2.2 Greedy decoding
	6.2.3 Data and Sentence-level translation system
	6.2.4 Preliminary results

	Chapter 7 — Conclusion
	References

