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SUMMARY 

 

 Fluorescence microscopy is an established technique in chemical and biological 

imaging, allowing signal of interest from fluorescent molecules to be detected over 

background. However, autofluorescent background and finite imaging depth limit signal 

to noise in traditional fluorescence imaging. Amplitude modulation is one way to increase 

signal to noise, and by modulation and subsequent demodulation of fluorescent signal, but 

not background, allows for greater signal to noise as well as imaging depth. The properties 

of nonfluorescent dark states allow for application of modulation by controlling 

fluorescence signal intensity. This has been demonstrated previously by work from the 

Dickson Lab using triplet, photoisomer, and electron transfer dark states. In the work 

contained in this thesis commercial and synthesized cyanine molecules were studied in 

depth, investigating dark state photophysics, applying new modulation techniques and 

theoretical insights to better understand the mechanism of modulation and how to improve 

fluorescence modulation utilizing dark state photophysics. 

 First, new pentamethine cyanine derivatives were tested experimentally using 

single and dual laser modulation techniques to determine fluorescence enhancement and 

photophysical dark state kinetics. Application of these techniques showed that derivatives 

with longer alkyl chain substituents had greater fluorescence enhancement (modulation 

depth) as well as longer on and off times (longer lived dark states). Molecules with short 

alkyl chains and halogen substituents on the polymethine bridge exhibited lower 

modulation depth and shorter on and off times. In the case of these cyanine dyes, increased 

fluorescence enhancement is correlated with longer-lived dark states, while cyanines with 
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shorter-lived dark states show less enhancement. Longer dark state lifetimes allow for 

greater dark state buildup leading to greater fluorescence recovery, whereas shorter dark 

state lifetimes yield less fluorescence recovery. Commercial cyanines Cy5.5 and Cy7 show 

less modulation depth than Cy5, while Merocyanine 540 is comparable. 

 By investigating the mechanism of modulation using experimental and theoretical 

methods we can determine energetics of the photoisomer dark states as well the 

photoisomer responsible for the fluorescence modulation. By using dual laser modulation, 

thermal dark state population can be estimated and used to calculate the dark state-ground 

state energy difference via the Boltzmann distribution. This is compared to Density 

Functional Theory calculations of the all trans ground state and various cis photoisomers, 

showing that isomerization about the middle of the polymethine bridge is most likely 

responsible for the modulatable dark state, with other states possibly playing a minor role.  

 Next, new cyanines were synthesized and tested. No improvements in enhancement 

were observed, but different substituents can affect modulation frequency and water 

solubility. In another direction, triplet quenchers and enhancers were found to affect 

modulation depth without a clear relationship with modulation timescales. It appears that 

triplet quenchers increase fluorescence enhancement while triplet enhancers decrease 

modulation depth. It could be that triplet state populations are affected but 

photoisomerization timescales are not. An anomalous red-shifted fluorescence excitation 

effect was observed, and appears to be anti-Stokes fluorescence, which is incapable of 

modulation. Lastly and most importantly, Merocyanine 540 was studied and found to have 

both red-shifted photoisomer and triplet absorptions. Experiments show that photoisomer 

dark states recover the fluorescent ground state upon dark state recovery while triplet dark 
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states transition to the fluorescent excited state and subsequently fluoresce. This effect 

allows for optically activated delayed fluorescence and can be utilized for fluorescence 

recovery by a red-shifted excitation source. The triplet state depends on O2 concentration, 

so removing molecular oxygen using nitrogen gas, an enzymatic oxygen scavenging 

system, or by immobilizing in a polymer film extend triplet lifetimes. 

 Finally, a protein-binding chromophore was studied using fluorescence 

modulation. This molecule is an analog of the green fluorescent protein and binds to human 

serum albumin. Upon binding, the chromophore goes from nonfluorescent in solution to 

brightly fluorescent with ~40% modulation depth upon longer wavelength secondary co-

illumination. Modulation depth increases with increasing concentration, an effect not seen 

in cyanines which can possibly be attributed to binding affecting the modulation. Analysis 

of modulation timescales shows two or more components, which could possibly be 

photoisomerization, binding/unbinding, or photobleaching. Additionally, the fluorescence 

decay is very steep, making dark state behavior strongly apparent and allowing for time or 

frequency domain modulation applications as this decay is modulation or intensity 

dependent. More work needs to be done to completely understand the modulation 

timescales, but overall this protein-binding fluorophore shows promise in binding activated 

modulation applications.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

The observation of structures smaller than the human eye can detect has long 

allowed for the development of new science. Before modern microscopes, people did not 

know what made up matter, if it was smooth and continuous or comprised of discrete 

particles. Experimental and theoretical breakthroughs in this area have revolutionized 

many areas of science, especially fields such as chemistry, physics, biology and materials 

science. By seeing smaller than is possible with the unaided eye, new structures are 

revealed and one learns more about the components that make up the world. Modern 

imaging techniques such as electron microscopy (EM), scanning probe microscopy, optical 

coherence tomography (OCT), magnetic resonance imaging (MRI), 

magnetoencephalography (MEG), and fluorescence microscopy have all enabled 

researchers to visualize previously unresolved physical structures.1-10  

Fluorescence microscopy is an invaluable technique in biology and spectroscopy, 

used in such applications as flow cytometry, medical diagnostics, DNA sequencing, 

forensics, and genetic analysis.1-2, 11-13 By utilizing a strong signal from fluorescent 

molecules of interest, one can detect emitted light and discriminate from nonfluorescent 

background, allowing visualization of fluorescent and fluorescently-labeled objects, 

making it a highly selective and sensitive technique. Fluorescence can also provide 

information regarding molecular properties, such as electronic states, and can be used to 
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probe solvent environment and solution behavior, kinetics, energy transfer, nonlinear 

optics, sensing, and other scientific applications. 

To further improve fluorescence signal strength and selectivity over background, 

optical modulation based on molecular photophysics has been utilized. In bulk samples, 

fluorescence can be controlled to increase or decrease based on whether or not molecules 

are in a bright or dim state. Specifically certain molecules, such as cyanine or xanthene 

dyes, in addition to absorbing light and emitting fluorescence they can undergo 

photoisomerization or intersystem crossing to yield a non-fluorescent dark state with a red-

shifted transient absorption, which can be reverted back to the fluorescent bright state by 

secondary laser co-illumination. This secondary laser can be modulated, causing 

modulated fluorescence signal to be detected, allowing for greater image recovery due to 

enhanced signal to noise (SNR) ratio and imaging depth. By varying laser power and 

modulation frequencies and observing changing modulation depth one can determine the 

photophysical rates of the process. With this information, one obtains insight into how this 

process works and the effects of structural and environmental changes. 

This work focuses on applying previous research, in particular Cy5 modulation,14 

to new cyanine dyes, and looking closely at certain structural modifications to see how they 

affect dark state kinetics and energetics. Initially, high modulation depth was considered 

most desirable, but other characteristics such as modulation frequency and optically 

delayed fluorescence have emerged as potential improvements to imaging. Single and dual 

laser modulation experiments were combined with density functional theory (DFT) 

calculations to elucidate photophysical kinetics and mechanism. From there, these 

techniques can be applied to other systems such as small molecule protein-binding 
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chromophores, additives can be applied to modulatable systems to affect photophysics, and 

new techniques introduced in the literature (particularly phase advance modulation) can be 

applied to systems we have already studied and understand in order to offer new imaging 

modalities. 

 

1.2 Fluorescence Microscopy 

 Fluorescence occurs when a molecule absorbs and then re-emits light. After 

excitation, some of the energy from the initial photon is lost to vibrational relaxation or 

other processes, causing the emitted light to be longer in wavelength than the initially 

absorbed light. To explain this mechanism further, a molecule is most often in (or near) its 

ground state, the lowest electronic energy level. From there it can be excited to higher 

rotational, vibrational, or electronic levels. In the case of visible light fluorescence 

microscopy, transitions mainly occur between electronic levels, which are spaced several 

electron volts apart. Between these energy levels lie smaller spaced rotational and 

vibrational energy levels. As depicted in Figure 1.1, upon absorption of light, a molecule 

is excited to a higher electronic state as well as a higher vibrational and/or rotational state. 

Vibrational and/or rotational relaxation occurs, and an electronic transition back to the 

ground state can occur by radiative emission. Furthermore, transitions to different 

electronic manifolds or other states can occur, such as intersystem crossing to a triplet state, 

photoisomerization, or charge transfer. The characteristics of these processes are illustrated 

in the figure below. 
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Figure 1.1. a) Jablonski diagram showing the different types of energy levels present in a 
typical molecule. b) Jablonski diagram showing the visible transitions between electronic 
and vibrational states corresponding to different absorption and emission wavelengths. 
Large energy differences correspond to lower wavelength radiation, and vice versa.11 

 

With two separate wavelength ranges for molecular absorption and emission, 

fluorescence can be utilized in a microscope by using a dichroic mirror to reflect the 

excitation light to the sample with fluorescence being transmitted through to an eyepiece 

or detector. A schematic is shown in the figure below. 
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Figure 1.2. A fluorescence microscope diagram. In this case a light source is filtered for 
green light, which is used to excite the sample and subsequent red fluorescence transmitted 
for detection.11 
  

A lamp or laser is often used as an excitation source. A lamp (often a mercury or 

xenon arc lamp) offers white light illumination which often is filtered with a dichroic for 

the wavelength range of interest. A laser delivers intense, coherent, typically 

monochromatic radiation which is focused into the microscope. From there, light is 

reflected by the dichroic filter and focused onto the sample with an objective, which also 

collects and magnifies the red-shifted fluorescence and transmits it back through the 

dichroic filter to the detector. The detector is typically a charge-coupled device (CCD) 

camera which can be used to obtain an image, or a photomultiplier tube (PMT) or avalanche 

photodiode (APD) which can be used for fast time resolution when dealing with 
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fluorescence lifetime measurements of high modulation frequency experiments. The 

resolution for a microscope image is typically about half the wavelength used, but 

advancements have been made in the field of super-resolution microscopy, allowing one 

to achieve a ~10-fold improved spatial resolution.15-19 

 

1.3 Fluorescent labels 

 Good fluorescent labels exhibit high oscillator strengths and emit brightly 

(moderate to high fluorescence quantum yield). Other characteristics such as solubility, 

small size, and membrane permeability factor in as well. Chemical conjugation is also 

important, as probes must also be able to be attached to species of interest. For fluorophores 

to be useful in biological applications dyes must also not be harmful in biological 

environments. Many different types of molecules have been utilized for this purpose 

ranging from metal nanoclusters, inorganic quantum dots, fluorescent proteins, and organic 

dyes. These classes of molecules have very different properties ranging from molecular 

structure, brightness, photostability, and cytotoxicity. 

 Metal nanoclusters, in particular gold and silver, have been explored as 

fluorophores.20-25 Metal clusters behave similarly to multielectron atoms with discrete 

transitions that can be tuned through the visible and near infrared with cluster size. Metal 

nanoclusters must be prepared within a scaffold when in solution, otherwise the clusters 

will aggregate to form larger, non-emissive nanoparticles. Gold nanoclusters have been 

prepared with poly(amidoamine) (PAMAM) dendrimers21 while silver nanoclusters are 

encapsulated within DNA scaffolds.24 Metal nanoclusters generally have high 

luminescence, good photostability, and significant two photon absorption.26  
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 Quantum dots are fluorescent, inorganic semiconductor nanoparticles that have also 

been utilized in biomedical imaging.27-29 Similar to metal nanoclusters, quantum dots are 

nanoparticle chromophores with size-dependent physical and chemical properties. QDs are 

often made of semiconductor materials such as CdSe, CdTe, or PbS and can range in size 

from 1 to 30 nm. At small radii, properties deviate from bulk to molecular behavior due to 

quantum confinement. As semiconductor materials can be toxic, QDs used in biological 

imaging often have outer shells such as ZnS to prevent cytotoxic material such as cadmium 

from harming biological environments. The advantageous properties of QDs include 

photostability, broad absorption (increasing at short wavelength), narrow fluorescence 

emission, large extinction coefficients (100,000 to 1,000,000 M-1 cm-1), and significant 

luminescent quantum yields (0.1-0.9).28 Disadvantages include large, bulky size, potential 

toxicity in biological systems, aggregation, multivalency, and long-lived fluorescence and 

multiexponential decay behavior that obscures time-resolved fluorescence measurements. 

Fluorescent proteins (FPs) have long been utilized in cellular imaging. FPs most 

often consist of a visible light absorbing chromophore contained within a β-barrel protein 

structure.30-31 They are generally bio-compatible, can be expressed in cells, and are 

optimized for optical properties such as brightness and photoswitching.32-36 FPs extend 

through the entire visible wavelength range, from blue through red. FPs have shown to be 

also capable of photoswitching, possibly due to photoisomerization or excited state 

intramolecular proton transfer.1, 34-38 The green fluorescent protein (GFP) was discovered 

by Shimomura and colleagues when studying the Aequorea jellyfish, noticing that after 

purification the protein in solution fluoresced green under sunlight illumination.39 Since 

then, GFP, its chromophore, and structural variants have been studied experimentally and 
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theoretically, focusing on photochemistry and structural dynamics. GFP is stable up to 65◦ 

C with a broad pH range of 5.5 to 12, and its chromophore is easily synthesized, making it 

an ideal choice to image in biological systems.30 GFP consists of a p-hydroxybenzylidene-

imidazolidinone chromophore hydrogen bonded within a beta-barrel structure, has 

absorption maxima around 398 and 483 nm, and emits fluorescence at 508 nm.40 Other 

GFP variants have been developed, including analogs with improved brightness and 

improved pH resistance, as well as blue,34 cyan, and yellow fluorescent proteins.41 Further 

efforts with proteins from coral reefs gave rise to red fluorescent proteins such as “DsRed” 

from the Discosoma species.42 

Organic dyes also show promise in biomedical imaging, due to their small size, 

high molecular brightness, chemically tunable properties, and ease of synthesis. Organic 

dyes are also a good choice for biological imaging due to low toxicity, as compared to 

many inorganic fluorophores. The optical transitions of organic dyes typically originate 

from electronic transitions which are delocalized over the molecule (π-conjugation), or 

from intramolecular charge transfer.28 The optical properties of organic dyes can also be 

fine-tuned using design strategies. For example, a cyanine dye with a longer polymethine 

chain will typically have a longer wavelength absorption. A small π-conjugated organic 

molecule such as benzene absorbs in the UV, while a longer cyanine dye such as 

indocyanine green (a heptamethine cyanine) absorbs in the NIR. NIR fluorescence from 

approximately 650-900 nm is critically important because in that optical range there is 

minimal scattering and autofluorescence as well as maximum light penetration of organ 

tissue, making NIR fluorophores highly desirable in biomedical imaging applications.2, 4, 

13, 43-47 Figure 1.3 below illustrates fluorescence imaging by wavelength, showing that the 
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NIR range has the greatest photon penetration and the least absorption, scattering, and 

autofluorescence. Smaller chromophore organic dyes absorb and emit at lower 

wavelengths, while larger chromophores fluoresce in the NIR. 

 

 

Figure 1.3. An illustration of fluorescence imaging by wavelength from UV to visible to 
NIR. At short UV wavelengths, light does not travel as deeply due to absorption and 
scattering, and high autofluorescence occurs, obscuring any fluorophore signal. However 
at longer wavelengths absorption, scattering, and autofluorescence is diminished.47 
 

Generally, four types of dyes used for NIR fluorescence imaging include cyanines, 

phthalocyanines and porphyrins, Squaraines, and BODIPY dyes.13, 28-29, 45 Cyanine dyes 

are small organic molecules consisting of two aromatic heterocycles linked by a 
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polymethine bridge. Cyanines utilize electronic π-conjugation and absorb and emit light in 

the visible and near-infrared range.13, 45, 48 Cyanines have high extinction coefficients, 

moderate fluorescent quantum yields, allow for conjugation in biological systems, and due 

to the π bonding in the central polymethine bridge, can photoisomerize.14, 20, 49-57  Since 

they are of significant importance in this thesis, cyanines will be discussed in extensive 

detail in the following section. Phthalocyanines and porphyrins are cyclic aromatic 

compounds consisting of four bridged pyrrole subunits linked by their nitrogen atoms. The 

π electrons are delocalized throughout the molecule.45 In addition to visible and NIR 

fluorescence imaging, porphyrins have proven useful in photodynamic therapy (PDT) 

applications since they can be taken up in tumors and effectively generate singlet oxygen 

(toxic to cells) when excited by light.58-60 Photochemically, this occurs when the singlet 

excited state of the fluorophore undergoes intersystem crossing to the triplet state and then 

the triplet state reacts with ground state (triplet) molecular oxygen to generate singlet 

oxygen. Singlet oxygen can then generate reactive oxygen species, which cause DNA and 

cell damage. Squaraine dyes have a unique four-membered central ring and exhibit intense 

NIR fluorescence. They have been conjugated to bovine serum albumin (BSA) and are 

soluble in aqueous environments.61 Lastly, BODIPY (borondipyrromethane) dyes are 

another class of organic fluorophores which absorb and fluoresce in the visible range (or 

NIR with appropriate substituents). They offer strong absorption and fluorescence as well 

as excellent photostability and tunable wavelengths.62 
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1.4 Cyanine Dyes 

 As mentioned in the previous section, cyanine dyes are popular in optical 

applications including lasers, photovoltaics, and solar cells, nonlinear optics, and biological 

imaging. Cyanines generally consist of two nitrogen containing side groups linked by a π-

conjugated polymethine bridge, which typically ranges from three to seven carbon atoms. 

Although typically drawn with different possible resonance structures (with one terminal 

nitrogen having a positive charge), cyanines have symmetric electronic states. The π 

conjugation allows for a one-dimensional metallic state model to describe the electronic 

properties. The most common side groups include indole, quinoline, benzoxazole, and 

benzothiazole.48, 54, 63 These heterocyclic side groups are needed for stability, while other 

modifications such as sulfonate groups, for example, are added when solubility in water is 

required.48 An example of this structure is shown below. 

 

 

Figure 1.4. Example of pentamethine cyanine with indole side groups. 

 

These molecules are most often thermodynamically stable in an all-trans ground state, but 

can undergo photoisomerization from an excited state to a metastable nonfluorescent cis-

isomer state. Unless water-soluble modifications are made to the aromatic side groups, 

cyanines undergo aggregation in aqueous and biological environments to form dimers or 
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more complex H- and J-aggregates due to strong intermolecular forces. This effect can 

cause spectral and photophysical changes, and has biological application when dimers 

intercalate in DNA or bind to proteins.48 

 Cyanines have been in use since photographic applications in the mid-nineteenth 

century, and recently have become popular as the fields of single molecule spectroscopy 

and super resolution microscopy have emerged.15-16, 18, 64-65 Applications involving cyanine 

dyes include semiconductor materials, optical disks, solar energy, laser materials, 

photosynthesis, nonlinear optics, as well as biological imaging.63, 66-69  

In addition to high molecular absorption coefficients and fluorescence quantum 

yields, cyanines can transition to other states from electronically singlet excited states. One 

important transient state is the triplet, which limits the photostability of cyanines in imaging 

applications. This limitation is due the susceptibility of the triplet state to photobleaching 

or other photochemical transitions. Researchers can inhibit and exploit this effect, for 

example by removing oxygen with an oxygen scavenging system.65, 70-74 The triplet state 

has been characterized by transient absorption53 and phosphorescence experiments.75 

Photoisomerization is another possible transition from a singlet excited state. Since the 

polymethine bridge contains a chain of carbon atoms connected by alternating single and 

double bonds (π conjugation), rotations about those bonds are possible. After excitation to 

a higher electronic state, π conjugation disruption, followed by bond twisting to a 

metastable photoisomer state can occur. 
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Figure 1.5. Potential energy diagram representing cyanine photoisomerization. The all 
trans ground state is the lowest energy level and from there excitation to a higher electronic 
state can occur, followed by either decay to the ground state by internal conversion or 
fluorescence or photoisomerization to a cis-photoisomer state, where it can reverse 
photoisomerize to the all trans ground state.48 
 

Cyanine photoisomerization has been studied by many experimental and theoretical 

techniques including FCS, transient absorption, DFT, and INDO (Intermediate Neglect of 

Differential Overlap).48, 53-55, 57, 76-82 It has been shown that Cy3 and Cy7 have short-lived 

photoisomer states, on the range of several microseconds, while Cy5 and Merocyanine 540 

have longer lived photoisomer states, on the order of 100 µs.54, 83-86 As triplet state yields 

and lifetimes are affected by the presence of heavy atoms or triplet quenchers, photoisomer 

photophysics can be affected by changing solution viscosity or environment (solution vs 

immobilized). One strategy to study this phenomenon in cyanines is to relate kinetics to 

energetics. Ground state energies can be determined for all possible isomers and then 

compared to experimentally determined energies and timescales. 
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1.5 Fluorescent protein chromophore 

 The chromophore of GFP itself, p-hydroxybenzylidene-imidazolidinone (p-HBDI), 

has been studied for other potential applications, including protein binding,33 fluorescence 

imaging,87 light-emitting diodes,88 and the study of excited state intramolecular proton 

transfer (ESIPT).38, 89 The p-HBDI structure is shown below. 

 

Figure 1.6. Structure of GFP chromophore.  

 

The interesting properties are due in part to the chromophore structure and how it is 

affected by its structure and environment. For example, when the chromophore is inside 

the beta barrel structure of GFP, non-radiative relaxation is suppressed due to inhibition of 

torsional motion.88 Conversely, in solution nonradiative pathways are more kinetically 

favored, and as a result the quantum yield is much lower. One way to increase the quantum 

yield of this structure is to lock the chromophore, as has been done by Baranov et al.89 This 

is detailed in the figure below. The original p-HOBDI structure has a quantum yield of ~10-

4 while the p-HOBDI-BF2 structure improves the quantum yield to 0.73. 

 



 

15 

 

 

Figure 1.7. Locked GFP chromophore variants.89 

 

Another way to partially lock this structure is to move the hydroxy group to the 

ortho position on the aryl ring. By doing this, a hydrogen bond can form between the 

oxygen, hydrogen, and nitrogen which stabilizes the structure and improves quantum 

yield.37 This ortho-hydroxy structure allows the study of a proton transfer cycle of the 

protein chromophore. After absorption in the UV (~385 nm), the chromophore undergoes 

a rapid ESIPT process (<25 fs), then emits 605 nm fluorescence or undergoes internal 

conversion before returning to the ground state (deprotonation and recombination can 

occur as well).38 
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Figure 1.8. Schematic of photophysical processes of ortho-hydroxy fluorescent protein 
chromophore.38 
 

Other structural variations were shown to affect absorption wavelength, molar 

absorptivity, pKa, and fluorescence lifetime.87 In addition, external influences affect 

chromophore behavior. GFP chromophore variants can bind to different proteins such as 

human serum albumin (HSA) and beta-lactoglobulin, increasing the fluorescence quantum 

yield in a “fluorescence turn on” effect, and different analogs can be used as RNA and pH 

sensors.90 Bile salts, such as sodium cholate, also have this effect which could be useful for 

studying trafficking of fat-soluble transport in biological systems.91   

 

1.6 Optical Modulation 

By varying light intensity, or by switching lasers on and off, one can utilize 

transient dark state kinetics for improving imaging methodology, particularly increasing 

signal to noise to diminish background. The most common transient state is the triplet, 

populated when molecules undergo intersystem crossing from the singlet to triplet 

manifold from the excited singlet state. The molecule will stay in the triplet state for a short 
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(typically µs) time and then return to the ground state singlet state by reverse intersystem 

crossing, phosphorescence, or other methods of relaxation. If the triplet state is sufficiently 

populated and long-lived, detected fluorescence will decrease due to increased population 

in the nonfluorescent triplet state. This effect can be used with modulation techniques, one 

example being single laser modulation.92-93 Due to the effects of triplet states in generating 

singlet oxygen, this is especially useful in PDT applications in biological systems.94-95 

Details of this photophysical process and experimental implementation are shown in Figure 

1.9. 

 

 

 

Figure 1.9. Top: Jablonski diagram describing a typical three electronic state system. 
Bottom: Schematic fractional populations of S0, S1, and T1 as a function of time.92  
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At room temperature most molecules populate S0, the ground singlet state, and upon 

laser excitation ground state molecules transition up to the excited singlet state, S1. From 

there they can relax radiatively (fluorescence) or non-radiatively (internal conversion) back 

to S0. This S1 → S0 transition occurs on the nanosecond timescale. From S1, molecules can 

also intersystem cross to the lowest triplet state, T1. Depending on the molecular triplet 

lifetime and environment, molecules can stay in T1 for the order of microseconds to 

milliseconds after which they will decay to S0. While in T1 molecules cannot fluoresce, 

and this will manifest as a decrease in fluorescence. The kinetics of this process are 

governed equation 1.1 below. 

 

Equation 1.1 

 

This equation can be solved numerically,57 which will be explained in Appendix E. The 

behavior of the S0, S1, and T1 populations is shown graphically in Figure 1.9 for square 

wave amplitude modulated single laser excitation. For the duration of the excitation pulse, 

a fluorescence decay is observed due to dark state population build up. From Figure 1.9, 

the S1 population is used as a surrogate for the fluorescence. After an off period the sample 

is excited again and fluorescence again begins at a higher level before decaying. The reason 

for the initial increase is that the molecules in the triplet state have relaxed during the laser 

off period. When the sample is excited, the population of the S0 state starts at unity and 

then decreases as the T1 population builds up. When the laser is off, the dark state decays 
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so the S0 population begins to recover while the T1 population decreases. This model can 

be generalized to other systems with dark states, such as the photoisomerized states in 

cyanine dyes. 

Similar to transient state imaging, Synchronously Amplified Fluorescence Image 

Recovery (SAFIRe) also utilizes triplet (or other dark) states in molecules but uses a 

constant intensity primary laser with a modulated secondary laser. In a study of the 

xanthene dyes Rose Bengal, Eosin Y, and Erythrosin B, 96 the fluorescence inducing 

primary laser was constant in intensity while the secondary laser, which optically 

depopulates the triplet dark state by exciting a T1 → Tn transition, was modulated leading 

to modulated fluorescence. These fluorophores are all similar in structure to fluorescein 

except that they have the heavy atoms present on the π conjugated rings, which increases 

the yield of the triplet states (up to 98% in the case of Rose Bengal). 

 

Figure 1.10. Fluorescence time trace of a rose bengal solution modulated at 10 Hz.96 
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In this modulation scheme, the secondary laser is typically longer in wavelength and lower 

in energy than is the primary laser. Lower energy secondary co-illumination allows for 

minimal secondary interference since longer wavelength light produces no additional 

background fluorescence in the higher energy fluorescence window. Shorter wavelength 

(higher energy) modulated secondary laser schemes are also possible in optical switching 

applications, but can potentially induce additional autofluorescence. In either case, the 

criteria for successful modulation are a naturally decaying dark state, dark state absorption 

sufficiently shifted away from the primary absorption and fluorescence, and large forward 

and reverse action cross sections which enable efficient switching between bright and dark 

states. The maximum relative enhancement factor is determined by τo
off/τon, or the dark 

state lifetime divided by the bright state lifetime, a factor that can potentially increase the 

fluorescence many times.20, 96  

 Many of the fluorophores discussed earlier in this chapter can be optically 

modulated. Silver nanoclusters encapsulated in single-stranded DNA have been shown to 

exhibit visible to NIR fluorescence, which is modulatable by longer wavelength secondary 

co-illumination. The ssDNA sequence determines the photophysical properties such as 

emission wavelength, lifetime, quantum yield, and absorbance. Transient absorption and 

fluorescence correlation spectroscopy studies, along with other Ag nanocluster research, 

lead researchers to believe that a charge-separated dark state is the modulatable state.20 

Fluorescence Resonance Energy Transfer (FRET) pairs can also be used by using a 

secondary laser to saturate the acceptor, allowing one to manipulate and modulate higher 

energy donor fluorescence. Fluorescein and tetramethylrhodamine (TMR), as well as Cy3 

and Cy5 are FRET pairs that have been utilized for this effect.97 Organic fluorophores have 



 

21 

 

also exhibited modulation, generally through triplet or photoisomer effects. Fluorescein 

and rhodamine derivatives with heavy atom modifications, such as Rose Bengal, have high 

triplet yields which allow for significant dark state population. When the dark state has a 

red-shifted transient absorption, fluorescence can be modulated. Another type of 

modulatable organic fluorophore is the cyanine dye. As mentioned above, π-conjugated 

carbon chains lead to photoisomerization possibilities and if the state is sufficiently well-

populated and long-lived it can offer >50% modulation depth in the case of pentamethine 

derivatives.98 Cy5 in particular has been studied thoroughly and demonstrated to be capable 

of long wavelength modulation due to its red-shifted photoisomer transient absorption.14 

By scanning secondary modulation frequency and fitting to a frequency domain lifetime 

equation (method described in detail in chapter 3), the characteristic modulation frequency 

was measured to be ~10-20 kHz, dependent on primary excitation intensity. By using 

SAFIRe imaging with Cy5 one can discriminate signal from background fluorescence. Cy5 

fluorescence modulation was shown to be recoverable from a Texas Red background, since 

Texas Red exhibits fluorescence from 594 nm excitation but does not have a dark state that 

can be excited at 710 nm. 
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Figure 1.11. Demonstration of Cy5 modulation. When Cy5, which is capable of secondary 
modulation at 710 nm, is paired with Texas Red (not modulatable), only the Cy5 signal is 
recovered upon demodulation.14 

 

Cy5 modulation offers the potential to be used in medical imaging applications where 

fluorescence modulation allows for higher signal to noise and greater imaging depth. One 

example is tissue mimicking phantoms.56 With conventional fluorescence imaging, signal 

can only be recovered from 1-2 mm imaging depths, mostly limited by scattering and 

absorption of signal. Tissue mimicking phantoms were constructed from polystyrene 

beads, talc-France perfume powder, and Texas red fluorophores embedded in sodium 

alginate, which was cross-linked in calcium chloride aqueous solution. These tissue 

mimicking phantoms had optical properties closely matching human skin tissue. 

Experimentally, low intensity of light is desirable to prevent tissue burns and low 
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fluorophore concentration is necessary to avoid toxicity. In this work, using ~140 nM Cy5 

and primary and secondary lasers at 0.29 kW/cm2 and 5.9 kW/cm2, respectively, signal was 

recovered up to 6 mm, with a possibility of eventually achieving 1 cm.  

 

 

Figure 1.12. After embedding Cy5 into a tissue mimicking phantom, secondary 
modulation allows for modulated fluorescence recovery, which allows for stronger signal 
and greater imaging depth. 

 

Fluorescent proteins have also been shown to exhibit fluorescence modulation 

across the full range of the visible spectrum.34,36 Fluorescent proteins offer excellent 

biological compatibility, making them ideal for cellular imaging. The fluorescent proteins 

studied so far typically utilize a photoisomerized dark state, though an excited-state proton 

transfer could also be involved. Also, the fluorescent protein chromophore environment 

influences the photophysical properties which can alter modulation wavelength and 

increase fluorescence enhancement. By expressing these fluorescent proteins capable of 

long wavelength modulation in cells, one obtains a greater signal to noise image after 

demodulation. This is depicted in Figure 1.13. 
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Figure 1.13. (A) Fluorescence modulation of blue fluorescent protein (modBFP/H148K) 
where the primary laser is held constant while the secondary laser is modulated by an 
external square waveform. The dark state population is at a minimum at the fluorescence 
maximum and at a maximum at the fluorescence minimum. (B) Fluorescence time trace of 
modBFP/H148K modulated at 13 Hz with the inset showing the fast Fourier Transform 
with corresponding peaks at the appropriate frequencies. (C) Analysis of fluorescence 
modulation with a charge-coupled device (CCD) camera detector. Upon demodulation, the 
image becomes more clear as there is less interference by background fluorescence.20 

 

 

 



 

25 

 

1.7 Organization of Thesis 

 The research in this thesis builds on seminal work in the Dickson Lab studying 

optical modulation of fluorescence, based on transitions into and out of nonfluorescent 

(dark) photophysical states. The dark states used for this technique include triplet, 

photoisomer, and charge-transfer states, among other possibilities.20 Chapter 2 explains all 

of the experimental methods used in this work, including modulation techniques and time-

resolved fluorescence microscopy, as well as computational density functional theory 

methods. In chapter 3, newly synthesized Cy5 analogues were tested to explore the 

question of how molecular structural variants affect fluorescence enhancement and 

modulation timescales by performing fluorescence modulation experiments. To probe 

more deeply into the mechanistic details to study isomer energetics and back-isomerization 

kinetics, in chapter 4 experimental and theoretical methods were utilized to study cyanine 

photoisomerization in depth, focusing on the fluorescence modulation application. Chapter 

5 explores a modulation scheme, optically activated delayed fluorescence. It is possible 

that with the appropriate dark state, the secondary laser can induce delayed, background 

free fluorescence. In OADF a triplet dark state is used to generate delayed fluorescence 

due to reverse intersystem crossing back to the fluorescent excited state. Finally, in chapter 

6 a fluorescent protein-binding chromophore is studied to characterize fluorescence 

modulation in relation to binding as well as photoisomerization. Different timescales and 

a different process, along with biological relevance, make this system intriguing for future 

study.  
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CHAPTER 2 

EXPERIMENTAL AND THEORETICAL METHODOLOGY 

 

2.1 Sample preparation 

Cyanine dye fluorescence experiments were conducted in solution, while HSA-

bound chromophores were studied in immobilized environments. Cyanine dyes were either 

purchased commercially (Lumiprobe and GE Biosciences) or synthesized by our 

collaborators in the Maged Henary lab at Georgia State University. The details are 

explained in the supporting information in our publication,98 but the general scheme 

utilized by the Henary lab is depicted in the figure below. 

 

 

Figure 2.1. The synthesis of cyanine compounds used.98 

 

Cyanines consisting of a polymethine bridge with indole side groups are not water soluble 

and need to be dissolved in a less polar solvent such as DMSO to prevent aggregation. 

However, cyanine dyes can become soluble in water when functional groups such as 

sulfonate and carboxylic acid are added. For absorbance and fluorescence measurements, 

micromolar concentrations were used, while for time correlated single photon counting 

fluorescence measurements nanomolar concentrations were used. 
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 The HSA-binding chromophores were provided by the Tolbert lab, as described in 

their publication.33 Samples were prepared by first dissolving the chromophore in ethanol, 

then adding to a stock solution of HSA (Sigma-Aldrich) in PBS buffer. Since long 

timescales were observed for photophysical modulation, immobilization in a low gelling 

temperature agarose gel (Sigma-Aldrich) was needed to limit diffusion out of the focal 

volume. Thus the HSA-chromophore complex was added to a 1% w/v agarose solution. 

 

2.2 Bulk characterization 

To characterize the bulk properties of the fluorophores studied, such as molar 

absorptivity or extinction coefficient (ε), concentration, and fluorescence quantum yield 

(ϕ), the experimental techniques used involved Ultraviolet-visible (UV-vis) spectroscopy 

and fluorimetry to determine molecular absorption (extinction coefficient) and 

fluorescence emission (quantum yield). To determine molar absorptivity and 

concentration, measurements were conducted with a Shimadzu UV-2401 PC 

spectrophotometer. Samples were contained in a glass or quartz cuvette. Beer’s law was 

utilized to characterize absorption, stating that A = εbc, where A is the absorbance 

measured, ε is the extinction coefficient, b is the cell path length (typically 1 cm), and c is 

the concentration (units of M or moles/liter). Absorbance is related to the amount of light 

that passes through the sample A = -log10(T) where T (transmittance) is the fraction of light 

passing through the sample. The extinction coefficient is a fixed molecular parameter that 

relates to the transition probability of the molecule and typically has units of M-1 cm-1. In 

this sort of experiment, one measures absorbance and knows the cell path length, leaving 

ε and c as the two possible unknown variables. In this work, ε is either known from 
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published work, allowing one to solve for c, or if ε is unknown then concentration can be 

determined by dissolving a known amount of sample into solution (typically molecular 

weight is known) or by doing a Fluorescence Correlation Spectroscopy (FCS) 

measurement which determines the average number of molecules in the focal volume. 

To measure fluorescence properties, in particular fluorescence quantum yield, 

fluorimetry is the desirable measurement. Fluorescence measurements were conducted 

with a Photon Technology International (PTI) Quanta Master 40, equipped with a xenon 

arc lamp as excitation source and a photomultiplier tube as detector. The most basic 

fluorimetry experiments are emission scans, which are performed by selecting an excitation 

wavelength and emission wavelength range and then exciting the sample and detecting 

fluorescence emission. Other setups are possible, such as excitation scans where the 

emission wavelength is constant and the excitation wavelength range is scanned. 

Fluorimetry experiments are useful to determine excitation and emission wavelength 

maxima, and can also be used to determine molecular properties such as fluorescence 

quantum yield, the fraction of photons emitted compared to photons absorbed. To calculate 

this, one measures the absorbance and fluorescence emission of a known reference and 

unknown sample and uses the formula12 

   Equation 2.1 

Where Q is the fluorescence quantum yield of the unknown, I is the integrated fluorescence 

emission, OD is the absorbance, and n is the solvent index of refraction. R denotes a 

property of the reference, compared to the unknown. 
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2.3 Fluorescence Microscopy 

All fluorescence based microscopy experiments were performed using Olympus 

IX-70 or IX-71 inverted fluorescence microscopes in which a certain excitation wavelength 

illuminates the sample while only the fluorescence wavelength is collected and observed 

by the detector. Excitation sources were most often lasers, although mercury lamps 

(Olympus U-LH100G, 100 W) were occasionally used. Lasers are particularly useful 

because they are coherent radiation that can be focused to a tight spot with the capability 

of power attenuation by neutral density (ND) filters. This allows for manipulation of 

excitation intensity, which is important for controlling molecular photophysics such as 

fluorescence emission and dark state transition frequency. With either lamp or laser 

excitation, dichroic filters were used to select a specific wavelength range and filter out 

any undesirable excitation wavelengths. Many different types of lasers were used including 

Argon ion, He-Ne, diode, and Ti:sapphire lasers. These wavelengths spanned the visible 

and NIR and were operated in continuous wave (CW) or pulsed modes. In CW mode the 

intensity is constant while in pulsed mode ns to fs width pulses are used at repetition rates 

in the kHz to MHz range. Laser pulses are useful in lifetime measurements, where a pulse 

excites a sample and fluorescence is collected afterward allowing a fluorescence decay to 

be constructed and a fluorescence lifetime can be measured. Pulsed mode can also be used 

when constant excitation of the fluorophore is undesirable, for instance if the laser also 

depletes the dark state, or if a higher peak intensity is needed. In two-photon absorption, 

for example, a very high intensity is needed to maximize transition probability. Repetition 

rate can also controlled, and when very high (MHz) allows for a pseudo-CW effect (relative 

to molecular dark state photophysics). When the rep rate is considerably lower, a large 
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temporal spacing between pulses occurs so that the molecule is excited and then can relax 

before subsequent excitation. A low rep rate is also useful in photoacoustic applications 

since that system needs to be repeatedly excited and relaxed to generate photoacoustic 

waves.99-101 With pulsed diodes the rep rate is controlled by the laser driver (internally or 

externally), but when using the Ti:Sapphire or optical parametric oscillator (OPO) the rep 

rate is determined by cavity length, so a “pulse-picking” setup is used involving an EOM 

and synchronous countdown system to modulate down to a certain rep rate. 

 

Table 2.1. Summary of lasers and their characteristics used in this research.  

Laser & type Wavelength (nm) 

Diode (Thorlabs, fiber-coupled CW) 405, 450, 515, 637, 705, 800, 830 

Diode (Picoquant, pulsed ps) 372, 467, 647 

Argon ion (Coherent, CW) 457, 476, 488, 496, 515 

He-Ne (Melles-Griot, JDS Uniphase, CW) 543, 594, 633 

Solid-state Sapphire (Coherent, CW) 561 

Ti:Sapphire (Coherent Mira 900, CW or 
pulsed ps or fs, 80 MHz) 

Tunable 700-1000 

Optical Parametric Oscillator (APE 
Berlin, pumped by mode-locked 

Ti:Sapphire in ps or fs, frequency 
doubled) 

~515-690 

 

For two-laser experiments, primary and secondary excitation beams were spatially 

overlapped in x, y, and z dimensions in the microscope after combining on a dichroic 

mirror. Collimation of lasers was utilized with magnifying lens pairs as needed. 

Appropriate band-pass filters blocked the primary and secondary excitation wavelengths 

to only let the desired fluorescence signals reach the detector. When necessary to 
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distinguish timescales comparable to those of diffusion (~µs), a defocusing lens was used 

to increase the laser spot size, shifting diffusion-based fluctuations to much longer 

timescales (~ms). Excitation light was directed toward the sample using a dichroic having 

a nearly complete reflectance of the excitation light (at both primary and secondary 

excitation) while being transparent to fluorescence emission. A water immersion objective 

(Olympus 60x, NA 1.20) was used to focus light onto the sample, contained in solution 

and prepared on 22.5 mm x 22.5 mm glass coverslips (Fisher) with thicknesses of .15 mm. 

All solution data were acquired by focusing ~30 µm into solution. When testing 

immobilized samples an oil objective (Olympus 60x, NA 1.45) was used due to the higher 

numerical aperture which allowed for a wider field of view. Emission from the sample was 

collected with the same objective and directed to either a CCD camera (Andor iXon) 

attached to a trinocular head or to the side port of the microscope. The CCD camera is used 

for beam alignment since it is sensitive and allows for visualization of the beam in the x, 

y, and z dimensions. This is also safer than using the eyepiece, which in the case of high 

intensity light could harm an observer’s eyes.  

 

 

Figure 2.2. Fluorescence microscope setup with dual laser excitation. In this diagram a 
blue primary laser and red secondary laser are aligned and used to excite a sample which 
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fluoresces green. A dichroic filter is used to reflect blue and red light while allowing green 
to pass through. A bandpass filter is used to further ensure that only fluorescence transmits 
through to the detector. 
 

Most often, the CCD is mounted on a trinocular head on the top of the microscope 

so that the side port can be used with an APD or PMT for single photon counting detection. 

In this setup, fluorescence signal sent to the side port was collected in a confocal 

arrangement with a 100 µm multimode fiber serving as the pinhole and directing the 

emission to a photon-counting avalanche photodiode (APD, Perkin-Elmer). Intensity 

trajectories were recorded using a Becker-Hickl SPC-630 or Time Harp single photon 

counting board to time-stamp individual photon arrival times.  

 

2.4 Time Correlated Single Photon Counting 

Time Correlated Single Photon Counting (TCSPC) is a technique used to record 

the timing of individual photons with high precision and picosecond resolution, making it 

useful in many fluorescence applications including time-resolved spectroscopy and single 

molecule methods.102-104 This is typically accomplished with a detector capable of highly 

sensitive (low light level) detection and picosecond time response, typically an avalanche 

photodiode (APD) or photomultiplier tube (PMT). Upon detection of a photon, an 

electronic signal is generated and sent to a photon counting module (Becker-Hickl SP630 

or Time Harp counting board) which uses an external sync source as a mechanism to time 

stamp individual photon arrival. The start signal is initiated by the detection of the incident 

photon and the stop signal is caused by the next sync pulse. From there, a histogram can 

be built up of the timing between the sync and the photon with resolution on a picosecond 

time scale, allowing for a fluorescence decay measurement to determine fluorescence 
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lifetime. This is referred to as the microtime and is shown schematically in the figure 

below. 

 

 

Figure 2.3. Schematic of TCSPC.105 

 

A macrotime also exists in which the photon timing from the beginning to the end of the 

experimental data set is recorded giving rise to a time trace where each photon is stamped 

with the total elapsed experimental time. This can be useful when looking at bulk properties 

or when performing slower modulation frequency experiments. When utilizing the 

instrument response function (IRF) for deconvolution of the detected fluorescence signal, 

one can detect a signal down to the APD or PMT resolution limit (~300 ps). 

Additionally, TCSPC can be performed using an Edinburgh Instruments Lifespec-

ps system equipped with a Hamamatsu multi-channel photomultiplier tube detector, 

allowing resolution down to ~25 ps. In this setup a sample is contained within a cuvette, 
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and a monochromator is used to filter out all wavelengths except for the fluorescence. 

Picoquant laser diodes (repetition rate ~2-40 MHz) were used as excitation sources, driven 

by a Sepia II laser driver system. 

 

2.5 Fluorescence Correlation Spectroscopy 

Fluorescence Correlation Spectroscopy (FCS) is a microscopy technique which 

utilizes fluorescence fluctuations to determine molecular properties and dynamics such as 

diffusion into and out of the focal volume, average concentration, chemical reaction rates, 

and singlet-triplet dynamics.12, 106-110 The experimental setup is straightforward: a laser 

excitation source is used with a fluorescent microscope, a low concentration (nM to pM) 

fluorescent sample is used so that only a few molecules are in the focal volume at a time 

(although up to µM samples have been demonstrated as well111), and fluorescence is 

collected by an APD,  PMT, or CCD and read using a counting board installed in a 

computer. From there a fluorescence time trace is recorded and an autocorrelation is 

performed to determine fluorescence fluctuations in the signal. Fluorescence fluctuations 

can be due to diffusion, triplet or other dark state processes, chemical reactions, or other 

transient processes. In this research, diffusion and dark state processes were studied so the 

resulting autocorrelation was fitted to the formula below.12 

 Equation 2.2 

 

In this equation τ represents the delay time, G(0) is the correlation amplitude at time zero, 

F is the dark state fraction, τT represents the dark state (often triplet) timescale, τD is the 

diffusion time, and a is the ratio of axial to radial e-2 radius of the measurement volume. 
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Figure 2.4. Illustration of FCS process. (a) A fluorescent molecule diffusing through the 
focal volume, (b) an increase in fluorescence is observed as the molecule passes through 
the focal volume, (c) the FCS autocorrelation function, (d) schematic of the fluorescence 
as the time lag (τ) in the autocorrelation is applied, (e) the overlap after time lag τ between 
the original fluorescence fluctuation and the time lagged fluctuation. The overlap decreases 
as the time lag increases.106   
 

In this work, FCS is used to observe single molecule behavior in solution, looking 

in particular at diffusion times and dark state times. It is useful to determine those two 

different fluctuation timescales and if they affect each other. For example, in the case of 

cyanines the dark state fluctuation time is close to the diffusion time and FCS is able to 

show this. FCS also calculates dark state fraction, which is useful in determining how 
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primary laser intensity affects the dark state population and how the presence of a 

secondary laser depletes the dark state.   

 

2.6 Optical Modulation 

In this work many modulation techniques were used, typically involving electro-

optic modulators (EOMs) with one or two lasers. The EOMs used in this research were 

typically Conoptics model 350 series with a Potassium Dideuterium Phosphate (KD*P) 

crystal as the electro-optic media (wavelength 240 to 1100 nm). These types of EOMs are 

intensity modulators with a polarizer aligned to the crystal axis. To use an EOM, light is 

first passed through an alignment tube which is adjusted in position (horizontal, vertical, 

diagonal) until >90% of laser power is transmitted through. Then the EOM is placed in the 

holder and connected to a driver which provides a voltage to control the electro-optic 

switching. A function generator provides the voltage waveform that drives the EOM driver. 

Square and sine waves are commonly used, and in the case of square waves it is possibly 

to modify the pulse length and the time between pulses. The EOMs used in this work can 

typically modulate up to 30 MHz. As mentioned earlier in the fluorescence microscopy 

section, when paired with a synchronous countdown the EOM can also act as a pulse 

selection system to control the rep rate of a pulsed laser, for example a Ti:Sapphire laser. 

The EOM and driver are shown in the figure below. 
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Figure 2.5. EOM devices: Conoptics model 350 EOM driven by model 25D driver.112 

 

The EOM modulated the intensity of the secondary laser in dual laser experiments, 

or primary laser in the case of single laser experiments. Fluorescence time traces were 

recorded on CCD cameras or counting boards utilizing the TCSPC method and time binned 

at least 2.2 times faster than the highest modulation frequency. Data were processed by 

Fast Fourier Transform (FFT) of each time correlated single photon counting fluorescence 

intensity time trace. The corresponding FFT peak amplitude at each modulation frequency 

was divided by the DC peak amplitude and corrected as necessary for the proper adjustment 

(4/π term needed for square wave) to calculate modulation depth. An illustration of this 

process is shown in the figure below. 
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Figure 2.6. Basic optical modulation setup in the case of dual laser excitation with 
secondary modulation. Primary and secondary lasers are aligned into an inverted 
microscope. The secondary laser is modulated with an EOM and a function generator 
applies an external waveform which controls the modulation. The lasers are directed 
through an objective and are focused into the sample. Fluorescence from the sample is 
collected via the objective and directed through the microscope to the detector, where it is 
recorded by a counting board and analyzed by computer software. 
 

 There are several modulation schemes applied to fluorescence microscopy in this 

research. The first one used was a two laser setup where the primary laser is constant and 

the secondary is modulated with a square (or sine) waveform at 50% duty cycle. The 

modulation begins at a low frequency (generally 1 Hz) and continues until the modulation 

depth has reached near zero. In this work this method is often referred to as a frequency 
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scan because the modulation depth is recorded at each modulation frequency over a range 

of modulation frequencies and fit to the frequency domain lifetime equation to get τ, the 

lifetime of the dark state.12 m refers to modulation depth, A is the modulation amplitude at 

zero modulation frequency, and ν refers to modulation frequency. 

                                                 2)2(1/ πυτ+= Am                                  Equation 2.3 

 

 

Figure 2.7. Plot of modulation depth vs modulation frequency governed by the equation 
2)2(1/ πυτ+= Am where A = 0.5 and τ = 300 µs. The modulation depth is at a maximum 

at low modulation frequency and decays to near zero by 100 kHz. 
 

The dark state lifetime is dependent on the rate of entering the dark state and the decay out 

of the dark state. The rate into the dark state is primary laser dependent, so varying the 

power of that laser can be used to uncouple the dark state dynamics. This is explained in 

specific detail in chapter 3. 

 Another modulation scheme is one laser modulation. Using this method one 

modulates with a square wave pulse and varies the time between pulses. When there is a 

large temporal distance between pulses, a significant fluorescence decay is observed 
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corresponding to a noticeable dark state population buildup. When the time between pulses 

is decreased, the dark state does not have enough time to fully decay between excitation 

pulses so the decay begins to disappear and the fluorescence pulses appear more flat. One 

can measure the drop off from the initial to final pulse values and fit to  

                                                                    Equation 2.4 

in order to fit for the natural dark state lifetime, τooff. In equation 2.4, nB represents the 

number of molecules in the bright state, while ntot is the total number of molecules. τon and 

τoff
o represent the photophysical on and off times, and Toff is the off period between primary 

laser pulses. 

 One laser modulation can be modeled by a numerical simulation. This is explained 

in Appendix E, in which a first order differential equation is solved by matrix 

exponentiation with given photophysical kinetic rates. This allows one to monitor 

fluorescence (S1 population) over time, taking into account modulation effects. 
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Figure 2.8. Simulation of photophysics using Cy5 parameters with square wave 
modulation. On top: modulation at 2 kHz, on bottom: modulation at 15 kHz. At 2 kHz 
modulation a clear decay is observed while at 15 kHz it is comparatively flattened out 
because the dark state does not have time to adequately recovery with such a short period 
between excitation pulses. 
 

 It is also possible to use a dual laser modulation scheme to probe dark state thermal 

population. Similar to one laser modulation, the primary laser is modulated with a square 

wave pulse, but in this experiment a square wave secondary laser pulse illuminates the 

sample while the primary laser is off. This is used to completely depopulate the dark state. 

By comparing the initial fluorescence values with and without secondary pre-illumination 

one can determine the dark state population by using a Boltzmann distribution. 
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Figure 2.9. Top: Cy5 photophysics simulation with primary only square wave modulation 
at 4 kHz. Bottom: Simulation with primary on, then primary off and secondary on, then 
primary on again with secondary off. The initial fluorescence is higher when there is 
secondary laser pre-illumination, this can be used to estimate the dark state thermal 
population. 

 

2.7 Density Functional Theory 

Density functional theory (DFT) is an electronic structure method that is based on 

electron density rather than the wave function. For many years it was used in solid-state 

physics but is more recently popular in theoretical chemistry.113-114 DFT is unique in its 

approach since the other widely used methods, including Hartree-Fock, perturbation 
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theory, coupled cluster, and configuration interaction, all use the many electron wave 

function as opposed to the density. The basis of DFT comes from the Hohenberg-Kohn 

theorems,115 the first of which shows that the ground state electronic energy only depend 

on electron density, reducing the many body problem from 3N spatial coordinates to 3 

spatial coordinates by using electron density functionals. From there, the Kohn-Sham 

equations116 introduce orbitals to the system making it a problem of non-interacting 

electrons moving in an effective potential. That leaves the electron exchange and 

correlation interactions as the difficulty in solving by this method. The local-density 

approximations (LDA) are used to estimate that the functional depends only on the value 

of electronic density at each point in space, but since they assume that the density is the 

same everywhere, generalized gradient approximations (GGA) are used which add an 

exchange functional with a term depending on the gradient to the LDA energies. Hybrid 

functionals such as B3LYP (Becke, three-parameter, Lee-Yang-Parr)117 utilize LDA and 

GGA to develop an exchange-correlation functional by mixing Hartree-Fock exchange into 

the DFT functional. DFT has become widely popular in the fields of chemistry and 

materials science to model molecular and solid-state properties. It can give fairly accurate 

results without being too computationally expensive. 

In this work, DFT calculations were used to optimize ground state energies and 

calculate ground state and excited energies. In this case of this research, commercially 

available cyanine dyes as well as cyanines with structural modifications synthesized by our 

collaborators were modeled using DFT. Molecules not yet synthesized were also able to 

be modeled this way. By doing this, any theoretical molecules that showed promising DFT 

results we could encourage our collaborators to synthesize. In addition, different 
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isomerization possibilities were explored by manually rotating around different bonds in 

the polymethine bridge in the ball and stick model in Avogadro. By comparing these results 

to experimental calculations, one gains insight into mechanistic possibilities of the 

photoisomerization observed responsible for dark state behavior.  

To perform electronic structure calculations, molecules were first drawn in the 

program Avogadro118 using a ball and stick model for atoms and chemical bonds. Then a 

classical force field optimization can be done to optimize the geometry prior to the 

electronic structure calculation. After molecule design in Avogadro, a script is created and 

exported which can be read by Gaussian. This script specifies the job name, memory and 

processors needed, type of calculation to be performed, molecular charge and spin, and the 

molecular geometry in three-dimensional atomic coordinates. When the computational job 

is submitted to a cluster for calculation, it is performed using Gaussian 09.119 Most 

commonly, DFT calculations performed in this work used Becke's three-parameter hybrid 

density function in combination with the Lee-Yang-Parr correlation functional (B3LYP) 

and the effective core potential (ECP) basis set Los Alamos ECP plus double zeta 

(LanL2DZ). Ground state geometries of Cy5 and its synthesized derivatives were 

optimized and the energy levels calculated, and frequencies were calculated to ensure that 

the geometry was at a minimum point in energy. Next, time-dependent density functional 

theory (TDDFT) was used to calculate transition energies for the geometry optimized 

ground states. The polarizable continuum model (PCM) was applied for ground state 

geometry optimizations and excited state absorption spectra calculations to determine the 

solvation effects of DMSO, as applied in experimental conditions.51-52, 55, 120-121 
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CHAPTER 3 

CYANINE DYE MODULATION EXPERIMENTS 

 

3.1 Introduction 

Previously, Cy5 was studied using SAFIRe.14 As mentioned in the first chapter (section 

1.6: Optical Modulation), Cy5 fluorescence modulation had been successfully applied in 

imaging applications such as discrimination from fluorescent background with Texas Red 

and fluorescent signal recovery from tissue mimicking phantoms that absorb and scatter 

light.56  Cy5 is a red/NIR fluorophore with a red-shifted transient absorption, and in these 

experiments it is excited by a 594 or 633 nm He-Ne laser. Fluorescence was collected from 

660-690 nm, and a 710 nm laser was used as a secondary laser to excite the dark state and 

recover fluorescence. Modulation depths up to ~50% were achieved, and modulation drops 

off to near zero by 100 kHz modulation frequency. An illustration of this characterization 

method is depicted below. 

 

 

Figure 3.1. Modulation frequency scans of Cy5 with 633 nm primary excitation and 710 
nm secondary excitation. In A) the primary laser intensity is 1.8 kW/cm2 while in B) it is 
7.7 kW/cm2. The secondary is held constant at 12 kW/cm2. In this example, going from 
lower to higher primary intensity the modulation depth decreases, the characteristic 
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frequency (kon + koff
o) increases, and both the on and off times decrease. What this suggests 

is that at higher primary intensity Cy5 photoisomerizes more quickly but is also excited 
out of the dark state, leading to higher characteristic frequency but lower modulation depth. 
It is therefore possible to control modulation depth and frequency with laser intensity based 
on molecular photophysics. 
 

 Given the imaging success seen with Cy5, one can wonder whether structurally 

similar molecules will change or alter modulation depth and on and off times. Based on 

previous research, it seems that different structural modifications have an impact on 

photophysics regarding fluorescence quantum yield and photoisomerization.47, 54, 122-124 

Professor Maged Henary’s lab at Georgia State University specializes in organic synthesis 

and works on cyanine dyes, and they were willing to let us borrow compounds to test, with 

future goals being synthetic design for new molecules. Their previous work has shown that 

modifying structure can affect photophysical properties such as absorption wavelength, 

extinction coefficient, and quantum yield. Therefore, it is reasonable to believe that dark 

state photophysics could also affected by structural modifications, particularly those 

affecting isomerization and intersystem crossing and that this could lead to interesting 

advances in SAFIRe. In this section, new cyanine compounds are introduced, experimental 

methods (dual and single laser modulation) used to investigate dark state modulation are 

described, the resulting data is presented, and the next steps in the research are outlined. 

 

3.2 Cyanine photophysics 

The photophysics of Cy5 have been thoroughly studied using fluorescence correlation 

spectroscopy (FCS)57 and transient absorption,53 leading to the observation of multiple dark 

states, including photoisomers and triplet levels. FCS experiments and simulations suggest 

a diffusion time around 170 µs and on and off times of ~70 and ~90 µs, respectively, 
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making it necessary to discriminate photophysics from diffusion. Transient absorption 

spectra show two peaks, one at 625 and another at 690 nm. The peak at 625 nm has a 

lifetime of 35 µs while the 690 nm peak is fit to a bi-exponential with timescales at 150 µs 

and 5.8 µs. To confirm intersystem crossing, one can add ethyl iodide to the solution, which 

increases the triplet yield due to a heavy atom spin-orbit coupling effect. Upon addition of 

ethyl iodide, the 625 nm peak and faster timescale at 690 nm become more pronounced, 

suggesting that they are the triplet peaks in the transient absorption spectrum. The 625 nm 

peak is ascribed the trans-triplet while the shorter-lived 690 peak is ascribed to the cis-

triplet absorption.53 A phosphorescence peak is also observed at 840 nm which has been 

described as cis-phosphorescence.75 For Cy5, the cis-photoisomer absorption is red-shifted 

by ~45 nm, yielding a transient absorption at 690 nm with a lifetime of 150 µs.53 The 

relatively long cis-Cy5 lifetime enables significant buildup of this dark state under even 

low steady-state excitation. Excitation of cis-Cy5 in its absorption band, however, 

photoreverts the Cy5 to the trans state and recovers fluorescence with enhancements of up 

to 50%.14 A schematic of these photphysical processes is show below.  
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Figure 3.2. Illustration of kinetics of cyanine photophysical processes. N
1

0 , N1

1 , and N3

1  

refer to the all trans isomer ground state, singlet excited state, and lowest triplet state, 

respectively. P
1

0 , P1

1 , and P3

1  refer to the photoisomer ground state, singlet excited state, 

and lowest triplet state, respectively. kISC and kT refer to intersystem crossing to triplet and 
decay from triplet rates while kperp represents photoisomerization and kPN back 
photoisomerization. σ signifies absorption cross section and Iexc laser excitation intensity. 
Photoisomerization (possibly over multiple bonds) can occur, along with intersystem 
crossing to triplet states, which occur in both trans and cis photoisomers. All of these 
processes occur on similar timescales, with triplet transitions occurring about ten times 
faster than photoisomerization.84 
 

When all of this is considered, Cy5 can be a difficult molecule to study because many 

timescales are close together. Diffusion often occurs on a ~100 µs timescale, isomerization 

is typically ~10-100 µs, and intersystem crossing is fastest, often around 1 µs or faster. This 

makes it difficult to separate out different photophysical processes, and observed 

modulation could be a result of multiple effects. Based on the modulation timescales, 

coupled with the energetic properties of these dark states, we believe that our approach of 

fluorescence excitation combined with secondary laser co-illumination on-resonance with 
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the transient absorption dynamically modulates the Cy5 fluorescence intensity via optical 

depopulation of primarily the photoisomerized dark state, with other states playing a 

smaller role. 

 

3.3 Cyanine modulation 

Using Synchronously Amplified Fluorescence Intensity Recovery (SAFIRe)96 we 

can modulate the long-wavelength secondary laser to modulate the cis vs. trans-Cy5 ground 

state populations, thereby modulating collected fluorescence and enhancing signal to noise. 

Such fluorescence recovery from high background was demonstrated for the commercially 

available parent Cy5 in solution14 and buried within tissue mimicking phantoms.56 To 

understand and improve detection sensitivity, we studied cyanine structural variants 

(synthesized by the Henary lab) and utilized optical modulation methods as a screening 

tool to assess how variations in cyanine structure affect modulatability and, therefore, 

signal recovery in high background fluorescence experiments. Our specific emphasis is on 

understanding the bright state and dark state photophysics to enhance and tailor optically 

recovered ground state populations. 

Cyanine photophysics and dark state recovery kinetics were investigated under 

single and dual laser excitation. Compounds were dissolved in DMSO to about 1 nM 

concentration for the appropriate signal intensity. At this concentrations the sample was 

dilute enough to exclude aggregation effects. Coexcitation with a 594 nm primary and 710 

nm square-wave-modulated secondary laser was used for synchronously amplified 

fluorescence intensity recovery (SAFIRe). This dual laser method uses the primary 

excitation to produce fluorescence and populate the dark state, while the much lower 
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energy secondary laser depopulates the nonfluorescent dark state, shifting the population 

to the bright state faster than the dark state would naturally decay. By modulating this 

secondary laser, we directly modulate Cy5 fluorescence, shifting its signal to a unique 

detection frequency, where there is little to no background. At sufficiently high modulation 

frequencies, the system has insufficient time to establish steady-state populations, meaning 

that measurements of modulation depth, m, vs modulation frequency, ν, report on the time 

to establish dark and bright manifold steady state populations, and is given by equation 2.3. 

When a specific timescale exists, fitting frequency-dependent modulation depth curves to 

equation 3.1 enables extraction of the characteristic time, τc. When a good fit to a single 

characteristic time, τc, is not possible, one can specify the time at which the modulation 

depth drops by half to extract a characteristic time.14 Changing with primary laser intensity, 

the inverse of τc is the characteristic frequency, or rate kc = kon + k⁰
off, where 

ν

σ

h

I
k

priabs

on

*
=  ΦD  (σabs is the absorption cross section, Ipri is the primary laser intensity, 

and ΦD is the dark state quantum yield) and k⁰
off is the natural dark state decay rate 

constant.34 The parameters kon and k⁰
off (or their inverses τon and τ⁰

off) can be used to 

determine the rates at which molecules enter and exit the dark state, allowing one to 

determine fluorescence enhancement,22  

      Equation 3.1 

in which τoff is the dark state lifetime with the secondary laser on. The data in Figure 3.3A 

demonstrate this process, showing a diminishing modulation depth with increasing 
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modulation frequency, and the fitted characteristic frequencies at varying primary power 

are used to extract on and off times (Figure 3.3B). 

 

 
Figure 3.3. A) Cy5 derivative MHI97 (See Table 3.1) modulation depth as a function of 
modulation frequency and fit to equation 2.2. Data were collected for 1 second at each 
modulation frequency. B) MHI97 characteristic frequency as a function of primary 
intensity and the line to which it fits. 

 

At low modulation depths (<15%), extracting accurate photophysical parameters 

can be difficult from modulation depth vs. frequency curves. Instead, by achieving steady 

state dark state population through extended primary illumination,95 thermal recovery from 

the dark state occurs upon rapidly turning the primary laser off. By varying the primary 

illumination off period, Toff, the fraction of molecules in the bright state, nB/ntot will recover 

to a degree that depends on the natural off time, τoff
o according to equation 2.3. By fitting 

the experimentally determined fraction of molecules in the bright state as a function of the 

laser off period we can determine the natural dark state decay rate. This process is 

illustrated in Figure 3.4 where Figure 3.4A shows a large intensity drop off with 300 µs 

between laser pulses, Figure 3.4B demonstrates less drop off with 100 µs between pulses, 

in Figure 3.4C there is even less decay with 50 µs between pulses, and finally in Figure 

3.4D the intensity drop is the least significant. This shows that the longer the laser off 
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period, the greater the recovery from the dark state, which yields a higher initial 

fluorescence intensity when the primary laser is turned back on. 

 
 
 

 

 
Figure 3.4. Fluorescence traces showing ground state recovery for MHI106 using different 
primary laser off periods, Toff. Using an electro-optic modulator, the primary laser is turned 
on for 500 µs and off for A) 300 µs, B) 100 µs, C) 50 µs, and D) 20 µs.  Laser spot size 

was expanded 300 µm2, to increase diffusion timescales to ~10ms, such that it does not 
interfere with the modulation timescales. For each panel, data were collected for 20 seconds 
and modulation cycle averages are taken and ratios of initial to final intensities within the 
average primary illumination period, Ton, as a function of Toff are fit to equation 2.3. 
 

3.4 Cyanine Enhancement and On & Off times 

The synthesized cyanines studied have the general structure below. 
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Figure 3.5. General structure of Cy5 analogs. Modifications were incorporated as alkyl 
substitutions at the heterocyclic nitrogens (R1) and halogen incorporation on the meso 
position of the polymethine bridge (R2). 

  

Even with the seemingly minor structural changes to Cy5 indicated in Figure 3.5, 

modulation depth and photophysical parameters are strongly affected by slight substituent 

changes. Using modulation frequency dependence and bright state recovery methods 

(Figures 3.3 & 3.4), photophysical on and off times were extracted (Table 3.1). Overall, 

with the Cy5 derivatives, modulation depth increases with alkyl chain length and decreases 

with increasing halogen mass. 

 

Table 3.1. Summary of experimental results including enhancement and on and off times 
for Cy5 derivatives in DMSO at 298 K. Concentrations were approximately 1 nM. R1 and 
R2 positions are as shown in Figure 3.5. For τon and τoff measurements, the primary and 
secondary laser intensities were 350 and 640 W/cm2, respectively.  

Dye R1 R
2 

Mod 

depth 
τoff

o (µs) τoff (µs) τon(µs) φD 

Cy5   50% (±4) 73(±7) 20(±3) 88(±9) .011(±.002) 

MHI84 CH3 H 40% (±2) 87(±4) 25(±2) 130(±8) .0077(±.001) 

LO4 CH2CH3 H 50% (±4) 130(±3) 40(±3) 140(±7) .0072(±.001) 

MHI97 (CH2)3CH3 H 58% (±2) 210(±8) 40(±5) 250(±11) .004(±5*10-

4) 

MHI106 CH3 Cl 28% (±3) 60(±8) 45(±7) 10(±3) .10(±.007) 

E27 CH3 Br 13% (±1) 25(±3) 20(±3) 7(±2) .14(±.01) 

E63 CH2CH2OAc Cl 20% (±1) 50(±5) 37(±4) 25(±3) .040(±.003) 

E65 CH2CH2OAc Br 7% (±2) 12(±3) 10(±2) 7(±2) .14(±.009) 

Cy5.5   12% (±2) 140(±11) 118(±10) 100(±3) .012(±.002) 

Cy7   15% (±3) 16(±3) 13(±3) 6(±2) .21(±.01) 

Merocya-
nine 540 

  40% (±3) 216(±15) 123(±10) 110(±11) .016(±.001) 
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The fluorescence enhancement of Cy5 is due to optical depopulation of a dark state, and 

derivatives’ modulation depth generally increases with increasing alkyl chain length and 

decreases with increasing halogen atomic mass at the central carbon. Despite the added 

bulk to the polymethine chain, halogens seem to shorten the on and off times, while long 

alkyl chains appear to slow the forward and back-isomerization processes. The 

photophysical rates into and out of the dark state control the steady state dark state 

population. The larger the achievable steady-state dark state population, the larger the 

possible enhancement upon complete depopulation through secondary illumination. 

MHI97, for example, exhibits the highest enhancement and is the slowest to 

photoisomerize, but because the dark state is long-lived, a high modulation depth is 

recorded. On the other hand, halogenated E27 and E65 rapidly photoisomerize, but also 

back-photoisomerize very quickly, leading to low dark state buildup and low overall 

modulation depths. All of the Cy5 variants have similar secondary-induced τoff values, 

minimizing its impact with these derivatives. Thus, within this family of Cy5-like 

compounds, structural modifications that increase the ratio of τ⁰
off to τon for a given primary 

excitation intensity have the greatest effect on overall enhancement. Through such optical 

control of emission with tailorable on and off times, applications in super-resolution 

imaging may also become possible at faster timescales,16, 65, 125-128 possibly coupled with 

the improved sensitivity afforded by modulation-based SAFIRe.20 

Interestingly, Cy5.5 has photophysical on and off times similar to the best Cy5 

derivatives, but shows much lower enhancement. While R1 and R2 substitutions showed 

the same trend as with Cy5, the lower modulation depths precluded full photophysical 

characterization, except for commercial Cy5.5. In contrast to Cy5, the low enhancement 
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appears to arise from inefficient dark state depletion – an interpretation corroborated by 

FCS data which show a higher dark state population for Cy5.5 than for Cy5 when both 

primary and secondary lasers are on. 

The ~100 µs natural dark state lifetimes suggest that a ground state process such as 

photoisomerization leads to the modulatable metastable dark state, as suggested previously 

for commercially available Cy5.14 Considering the range of cyanines studied, increased 

conjugation length appears negatively correlated with dark state buildup. Merocyanine 

540, for example, exhibits a relatively high modulation depth due to its long-lived dark 

state and fast forward photoisomerization rate, but its dark state is less efficiently depleted 

by the secondary laser, causing the modulation depth to not be as high as Cy5 and some of 

its related analogues. Cy7 exhibits a short-lived dark state, similar to the brominated Cy5 

derivatives, and therefore does not offer as much fluorescence recovery as the Cy5 

compounds or Merocyanine 540. When Cy7 isomerization is chemically prevented around 

the central double bond as in Fig. 5, however, isomerization is forced to occur around other 

bonds, likely limiting accessible photoisomers to increase photoreversible dark state 

populations and modulation depth. 

FCS experiments were also performed with primary only and dual laser continuous 

excitation to observe dark state timescales. It appears that the dark state lifetimes shorten 

while dark state fractional populations decrease when both lasers illuminate the sample, 

however diffusion, photoisomer, and triplet time scales tend to blend when they are so 

close in magnitude. The autocorrelation data were fit to the equation 3.2 
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where <N> is the average number of particles in the focal volume, F is the fraction of 

molecules in the dark state, τDark is the dark state relaxation time (or inverse characteristic 

frequency), τdiff is the characteristic diffusion residence time, and a = ωz/ωxy is the ratio of 

axial to radial e-2 radii of the measurement volume.12 The FCS data and fits are shown in 

Figure 3.6 and the results are summarized in Table 3.2. 

 In these FCS data the main items of interest are dark state fraction, diffusion time, 

and dark state time. Dark state fraction decreases upon secondary illumination, as expected. 

The secondary laser also seems to decrease the dark state time while increasing the 

diffusion time. The dark state time decreases as expected due to secondary laser depletion 

while the diffusion time becomes more distinguished from the dark state timescale. 

 

Table 3.2. FCS data for Cy5 compounds. Samples were approximately 100 pM, in DMSO 
at 298 K. The first values listed are for primary only and the second are for dual laser 
excitation. The decrease in dark state fraction after secondary laser co-illumination shows 
that the dark state is effectively depleted by the secondary laser. 

Molecule <N> Diffusion time (µs) Dark state fraction Dark state time (µs) 

Cy5 1.65 / 1.42 222 / 284 0.55 / 0.28 13.5 / 6.00 

MHI84 1.73 / 1.60 163 / 213 0.52 / 0.32 11.0 / 6.35 

LO4 1.87 / 1.63 180 / 228 0.58 / 0.33 12.7 / 6.40 

MHI97 1.38 / 1.24 157 / 228 0.54 / 0.32 15.2 / 5.76 

MHI106 3.02 / 1.94 234 / 223 0.61 / 0.47 4.64 / 2.31 

E27 2.84 / 2.14 203 / 240 0.52 / 0.35 6.95 / 4.55 

E63 1.97 / 1.24 259 / 228 0.61 / 0.32 7.36 / 5.76 

E65 2.16 / 1.20 278 / 246 0.48 / 0.26 7.03 / 4.23 

Cy5.5 6.89 / 7.83 2820 / 2350 0.319 / 0.276 183 / 137 
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Figure 3.6. FCS data for cyanine compounds with single and dual laser excitation. The 
autocorrelation data are shown with the fits to the FCS formula overlapped. Exp refers to 
experimental data while Theo signifies fit to the FCS formula (Equation 3.2). 
 

3.5 Conclusions 

Following previous work on Cy5 modulation, single and dual laser techniques were 

extended to synthetic variants of the Cy5 structure and other commercial cyanine dyes. The 

main experiments conducted involved dual laser modulation, with a primary laser on 

resonance with molecular absorption and a red-shifted secondary laser to excite a transient 

dark state. Modulation depth and photophysical on and off times were determined by 

performing square wave modulation with an EOM by varying modulation frequency and 
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primary laser intensity, and also single laser modulation using square wave pulses but 

varying the time between pulses. From these results, it can be inferred that a short on time 

and long off time are desirable for maximum enhancement, though faster characteristic 

frequencies could be desirable in certain applications.   

Among the commercially available cyanines, Cy5 showed the greatest fluorescence 

enhancement. Adding an extra phenyl ring to the indole, as is the case with Cy5.5, 

decreased enhancement. A trimethine bridge (Cy3) showed no enhancement and a 

heptamethine bridge (Cy7) showed less enhancement due to shorter lived dark states. This 

relationship held among the synthetic variants. Those similar to commercial Cy5 

(pentamethine chain with indole side groups) showed the greatest amount of modulation 

depth. Among the Cy5-like dyes, longer alkyl chains on the side group nitrogen atoms 

increased modulation depth, while increasing halogen mass on the polymethine bridge 

decreased modulation depth. Further analysis of timescales revealed that longer alkyl 

chains increased photophysical on and off times, while increasing halogen mass decreased 

on and off times. Longer off times allow for greater dark state buildup, and greater 

fluorescence recovery upon secondary illumination of the transient dark state.  

Going further, it would worth thinking more about the cyanine mechanism of 

modulation, in particular isomerization pathways that could be explored with experimental 

and theoretical investigations. Different modulation experiments can explore the energetics 

of the dark state, and these data can be compared to theoretical calculations, leading to 

insight about which photoisomers play a role. Furthermore, synthetic design parameters 

can be tested to figure out how to modify future fluorophores for use in SAFIRe. 
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CHAPTER 4 

CYANINE MECHANISM OF MODULATION AND SYNTHETIC FEEDBACK 

 

4.1 Introduction 

From experimental modulation data one obtains fluorescence enhancement as well as 

kinetic data from on and off times. Knowing that photoisomerization is likely responsible 

for the fluorescence modulation, more research was needed to understand the energies of 

these photoisomer states. Experiments with alternating primary and secondary lasers were 

used to probe the dark state thermal population, and by using a Boltzmann distribution 

analysis dark state energy levels were obtained. Next, by employing density functional 

theory, energy levels of different cyanine isomers were calculated and compared to 

experimental results. This analysis allowed for determination of which photoisomer was 

likely responsible for modulation. Even further corroboration came in the form of TD-DFT 

calculations of excited state energies, showing which photoisomers have red-shifted 

absorptions. Using these methods, theoretical calculations were carried out for future 

molecules that could potentially be synthesized. This way our synthetic collaborators have 

feedback to create new dyes for testing. 

After studying cyanine fluorescence and dark state photophysics by experimental and 

theoretical methods and determining how different photophysical parameters can improve 

or limit fluorescence modulation, one can expand on this method to look at different 

molecules and different sample environments. Given the interesting findings on cyanine 

photophysics (especially Cy5 variants), more dyes were synthesized and more experiments 

planned. While none of the newer dyes have exceeded previously observed modulation 
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depth (~58%), new relationships between molecular structure and photophysics have been 

explored. In addition, it appears that solution additives (triplet quenchers and enhancers) 

affect the modulation depth, with triplet quenchers increasing and triplet enhancers 

decreasing fluorescence enhancement.  

 

4.2 Cyanine theory: electronic energies and photoisomerization  

Since cyanine photoisomerization appears to be largely responsible for the observed 

modulation due to dark states, it is useful to investigate the electronic structure of the 

chromophore. In previous literature, analyses involving semi-empirical and DFT 

theoretical methods and spectroscopic experimental methods provide insight into 

molecular and photoisomer energetics and kinetics.52, 55, 76, 81 Because the cyanine 

chromophore consists of a π-conjugated polymethine bridge, the simplest way to model 

cyanine electronic structure is with the particle in a box model or the Hückel molecular 

orbital method. In a π-conjugated system electrons are considered to be de-localized and 

can travel as if they were in a one-dimensional box.129 Therefore, the electrons can be 

described by the particle in a box wavefunction )(
2

)(
L

xn
Sin

L
x

π
ψ =  and energy levels 

2

22

8mL

hn
E = where L is the length of the box and n is a positive integer quantum number. In 

the case of a pentamethine cyanine with nitrogen atoms at both ends (one positively 

charged and one neutral) there are six π electrons, so in accordance with the Pauli exclusion 

principle only two electrons can populate an energy level, meaning that the bottom three 

are filled. This means that the highest occupied molecular orbital (HOMO) can be 



 

62 

 

described by )
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is described by )
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ψ = . This can help one visualize the wavefunctions. In 

particular, the nodes are useful because they represent regions of zero particle probability 

where bond breaking and isomerization is more likely. In addition, excited state transition 

energy can be approximated by using the formula ∆E = E4 – E3 = (42 – 32)h2/8mL2 where 

h is the Planck constant and m is the mass of an electron. L is approximated as 150 pm for 

each of the six bonds. By plugging in one gets an answer of 3.09 eV, corresponding to a 

401 nm transition wavelength. This is not far from literature TDDFT values.130 

To use the Hückel method to model the polymethine system,131 one can set up and 

solve the appropriate secular determinant, but the general formula for linear polyenes is 

)1(2
sin(4

+
−=∆

n
E

π
β ) where the Hückel parameter β is approximately -70.4 kcal/mol and 

n is the number of π electrons in the molecule. By plugging in n = 6, in the case of the 

pentamethine cyanine considered previously, one gets a transition energy of 2.69 eV which 

corresponds to a wavelength of 461 nm, similar to the result using the particle in a box 

model considering the rough approximations of the method. 

Going further with the same model molecule (two nitrogen atoms with five carbon 

atoms between them and π conjugation consisting of six π electrons), qualitative molecular 

orbital (Hückel) results can be coupled to semi-empirical results, such as those obtained by 

the CS INDO (Conformation Spectra Intermediate Neglect of Differential Overlap) 

technique. CS INDO is used to calculate potential energy surfaces (energy barriers) for S0, 

S1, and T1 energy levels as a function of bond twisting angle. This diagram is shown in the 



 

63 

 

figure below. From these results by Momicchioli et al.,55  one can conclude that upon 

excitation from the all trans ground state the molecule (among other relaxation pathways) 

likely twists perpendicular to an S1 potential minimum and relaxes to the S0 maximum, 

where it can end up either in the cis photoisomer ground state or all trans ground state. One 

can also note that the energy barriers from all trans to 2-3 cis are higher than the energy 

barrier to 3-4 cis in both the S0 (ground) and S1 (excited) states. 

 

 

Figure 4.1. Calculated (CS INDO) potential energy vs twisting coordinate for the 2-3 and 
3-4 cis isomers of a pentamethine cyanine with nitrogen atoms at both ends (structures 
shown in diagram).55 
 

In another study by Baraldi et al.,52 focusing on the pentamethine cyanine 

chromophore, it was concluded that visible irradiation in the visible range gave rise to a 
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planar cis photoisomer at the middle of the polymethine bridge. By measuring fluorescence 

quantum yields and lifetimes while varying temperature and solvent viscosity (using the 

Arrhenius rate equation), they could explore excited state relaxation channels and kinetics 

of thermal back-isomerization of the photoisomerization while coupling these results to 

semi-emprical (CS INDO CI) calculations of trans and cis isomers. The aim in this study 

was to use both experimental and theoretical methods to look at relative energies and 

potential energy barriers describing the trans-cis isomerization energetics and kinetics of 

the process. 

 

 

Figure 4.2. Penthamethine molecule used in the experimental and theoretical study by 
Baraldi et al.52 
 

From the experimental data, the pentamethine isomer around the center of the bridge (3-4 

cis as defined in Figure 4.2) had a larger energy barrier than the isomer around the bond 

furthest from the center (65.7 vs 59.4 kJ/mol). The computational results of the energy 

barriers were 68.1 kJ/mol for 1-2 cis, 93.8 kJ/mol for 2-3 cis, and 82.3 kJ/mol for 3-4 cis. 

This means that the isomer closest to the edge of the bridge had the lowest energy barrier, 

and the center most isomer (3-4) had the second lowest energy barrier, while the 2-3 cis 

had the highest energy barrier. This agrees with the DFT results in our work (discussed 

later this section). 

 It is also necessary to look at energy levels in addition to kinetics and energy barrier 

considerations. In one study81 DFT and time dependent DFT were used to study all of the 

different possible isomers by rotating the C-C bonds of the polymethine chain. The DFT 
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method used in this work was B3LYP/6-31g* and geometries were optimized and ground 

state energies calculated, then the optimized geometries were used to calculate excited state 

transition energies. A pentamethine cyanine with indole side groups, similar to 

commercially available Cy5 was studied and rotations were made around each C-C bond 

systematically to explore all of the different isomerization possibilities. 

 

 

Figure 4.3. Pentamethine cyanine and rotation scheme used in this study.81 

 

When comparing the energetics of the different isomers, there are many different 

possibilities, but since experimentally we expect a metastable dark state with a red-shifted 

transient absorption, we can pay special attention to theoretical data that fit these criteria. 

As it turns out, DFT predicts that the all trans ground state is the most stable state and all 

other isomers are higher in energy. The lowest energy isomer is simply one indole end 

group rotated relative to the other, with the polymethine chain unchanged. However, TD-

DFT does not predict a large red-shift for the excitation of this isomer, meaning that when 

it occurs it is likely re-excited by the primary laser. The next three lowest energy isomers 

are rotations around the b1, b2, and b3 bonds, all of which have energies around .15 eV 
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greater than the ground state, and two of the three have red-shifted excitation energies. All 

other isomers have energies more than .22 eV greater than the ground state. Thus, these 

less stable isomers are likely too short-lived to give rise to the observed >100 µs dark state.  

Armed with all of this information, we now have a simple model of electronic 

structure (particle in a box and Hückel), information on isomerization energy barriers based 

on experimental Arrhenius data and semi-empirical computational methods, and data 

regarding isomer ground and excited state energy levels. Now we can apply this 

information and these methods to study the cyanines in this work. 

 

4.3 Experimental dark state energy 

To probe the ground state energy differences between modulatable dark and bright 

states, we conducted dual laser experiments in which one laser was turned on while the 

other was turned off, and then vice versa. The idea was to pre-illuminate fluorophores with 

the secondary laser to remove molecules from the dark state as much as possible, and 

compare initial fluorescence intensity of molecules with and without secondary pre-

illumination. This method is used to probe dark state thermal population. Figure 4.4 depicts 

the results of this experiment. The relative initial fluorescence intensities with and without 

secondary pre-illumination are used to determine the energy difference between the trans 

and photoreversible cis isomers involved in modulation. Assuming the dark state is 

completely depleted upon secondary laser pre-illumination, a Boltzmann distribution (ni/nj 

= Exp(-∆Eij/kBT)) enables experimental trans-cis energy differences for all cyanine 

derivatives to be determined (Table 4.1). Theoretical energetic degeneracies are ignored, 

but could potentially play a factor. A defocusing lens to expand the laser spot from ~1 µm2 
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to ~300 µm2 was used to prevent diffusion in and out of the focal volume from affecting 

results. The results obtained seem to agree with experiment. The relatively low energy 

difference between bright and dark states further supports the idea that a photoisomer, and 

not the much higher energy triplet level, is the experimentally modulatable dark state. 

 

 
 

Figure 4.4. Optical recovery of thermally populated dark states. Primary-only induced 
fluorescence from MHI97 with (black) and without (red) secondary laser pre-illumination. 
The increased fluorescence with secondary-only pre-illumination relative to no secondary 
pre-illumination generates higher initial fluorescence intensity by optically recovering 
molecules from the thermally populated dark state. 
 

Although the timescales and pre-illumination experiments suggest that 

photoisomerization and back isomerization give rise to optical modulation, 

photoisomerization can potentially occur about any of the bonds along the cyanine 

polymethine chain (Figure 4.5A-D for Cy5, Cy5.5, Cy7 and Merocyanine 540, 

respectively). Because of this, theoretical insight into different photoisomer possibilities 

and their energies could help us understand what is going on at the molecular level. These 

experimental energies are compared to theoretical photoisomer energies in table 4.1 in the 

next section. 
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4.4 Calculated photoisomer ground state energies 

To gain further insight into the isomerization mechanism, density functional 

calculations were employed to compare ground and excited state energies of the different 

possible isomers. The B3LYP functional and LanL2DZ basis set were used, taking into 

account DMSO solvation with the polarizable continuum model (PCM), analogous to 

previous Cy5 calculations.51, 81 The results of these calculations were compared to previous 

literature results, as well as our experimental results to ensure consistency. Exact details of 

this procedure are described in Appendix D. Geometry optimizations and ground state 

energy calculations were performed on the all-trans and each of the various cis-

photoisomers, and TDDFT was used to calculate vertical excitation energies. Experimental 

and calculated cis-trans energy differences are compared in Table 4.1. Arrhenius-extracted 

activation energies for cis to trans regeneration of the bright manifold are also given as 

calculated from the experimentally derived rate constants for dark state decay, koff
o. 
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Figure 4.5. All-trans isomers of A) Cy5, B) Cy5.5, C) Cy7, D) Merocyanine 540 numbered 
to show isomerization possibilities. When cis isomers are described, the numbers refer to 
the bonds between carbon atoms. For example, cis23 refers to the bond between the 2 and 
3 labeled carbon atoms. 
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Table 4.1. Summary of ground state DFT computational results: Cis23-Trans and cis12-
Trans refer to the energy differences between the ground states of the different cis-
photoisomers (as labeled in Figure 4.5) and the all-trans ground states. (Note: Due to short 
lifetimes, E65 and Cy7 exhibited insufficient dark state buildup to determine experimental 
cis-trans values.) Ea is the activation energy obtained by Arrhenius calculations using the 

experimental k⁰
off and setting A = 1012 s-1.77  

 
Cis23-Trans 
(eV) 

Cis12-Trans 
(eV) 

Exp Cis-Trans 
(eV) Ea (eV) 

Cy5 .1345 .3091 .0757(±.01) .465(±.04) 

MHI84 .1366 .3087 .0592(±.008) .470(±.03) 

LO4 .1366 .3157 .0505(±.007) .480(±.01) 

MHI97 .09528 .2758 .0419(±.007) .492(±.04) 

MHI106 .1608 .7520 .0905(±.02) .460(±.05) 

E27 .1621 .8439 .0732(±.008) .438(±.05) 

E63 .1593 .9554 .0762(±.009) .455(±.05) 

E65 .1488 1.212  .419(±.06) 

Cy5.5 .1349 .3033 .110(±.012) .482(±.04) 

Cy7 .2086 .7661  .426(±.07) 

Merocyanine 
540 .2985 .1628 .0540(±.008) .493(±.04) 

 

Comparing the DFT and experimental energy differences between cis and trans, the 

modulatable dark states of all cyanines other than Merocyanine 540 appear to result from 

isomerization around the 2-3 carbon-carbon bond. For Merocyanine, isomerization appears 

to occur about the 1-2 bond. The 2-3 cis isomer (and 1-2 cis for Merocyanine 540) and 

trans isomer energy difference is in fair agreement (~factor of 2) with the experimentally 

obtained values, while the 1-2 isomer (and 2-3 for Merocyanine) is higher in energy, and 

much higher in the halogenated compounds. Cis01 isomers have small energy differences 

compared to trans isomers and do not change much with substituents. When also taking 

into consideration the lack of a red-shifted transition energy, these isomers are less likely 

give rise to fluorescence recovery. Cis isomers other than 01, 12, and 23 are not considered 

for symmetric molecules, but extra data including cis01 isomers and asymmetric 

commercial dyes are included in Appendix B. 
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The combination of ground vs. dark state thermal populations, natural dark state 

lifetimes, and density functional theory calculations enable improved understandings of cis 

and trans photoisomer energy differences. Relative calculated energy differences are 

compared with experimental values to lend insight into which isomers are likely to give 

rise to the modulatable dark states for each cyanine derivative. It appears that the 

halogenated compounds have a larger energy difference between cis and trans isomers, a 

fact that could explain lower the activation barrier and observed higher reverse 

photoisomerization rates. On the other hand, DFT suggests that compounds with longer 

alkyl chains have smaller energy differences separating isomers, corroborating the 

observed larger activation energies and longer τ⁰
off

 values. Cy5.5 does have a higher than 

expected experimental cis-trans energy difference, but thermal reversion is also low, 

suggesting a higher barrier to ground state photoisomerization. For Cy5, its derivatives, 

and Cy5.5, the experimental values are closer in magnitude to the DFT energy differences 

between the cis23 rather than the cis12 isomer, suggesting that cis23 is the photoisomer 

responsible for the dark state. In Merocyanine 540, however, the cis12, rather than the 

cis23, appears to be responsible for the photo-induced dark state, based on similarity of 

calculated isomer energy differences with experimental values.  

 

4.5 Calculated photoisomer excited state energies 

Time-dependent DFT excited state calculations further corroborate this interpretation as 

the calculated cis23 (and cis12 for Merocyanine) vertical transition energies are slightly 

and appropriately50 red-shifted from that of the all-trans isomer absorption. The other 

isomers exhibit little to no red shift. Because of theoretical limitations of time-dependent 
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DFT, cyanine transition energies tend to be blue-shifted relative to the experimental values, 

but can be scaled to appropriate values with a linear correction factor. This has been done 

previously and the results in this work agree with previous literature values at the B3LYP 

level of theory.51, 121 Experimentally, the trans excitation energy is about 0.1 eV greater 

than the cis, which best corresponds to the excitation energy differences between the all 

trans and cis23 isomers. This gives further credence to the notion that the cis23 isomer is 

responsible for the modulatable dark state, especially when considering the theoretical 

ground state energy differences match well with the experimental values. 

Table 4.2. Ground to excited state transition wavelengths calculated by TDDFT. The 
functional used was B3LYP, the basis set LanL2DZ, and DMSO solvent using the 
Gaussian 09 software package. 

 Trans (nm) Cis23 (nm) Cis12 (nm) Cis01 (nm) 

Cy5 537.51 556.60 542.79 537.01 

MHI84 536.20 555.10 541.42 535.83 

LO4 537.18 555.38 542.39 539.33 

MHI97 539.65 557.86 544.44 541.23 

MHI106 536.94 563.55 543.08 536.37 

E27 536.12 564.06 548.18 535.63 

E63 541.08 565.60 583.31 543.28 

E65 540.28 566.54 587.07 542.38 

Cy5.5 578.90 596.89 583.19 575.52 

Cy7 610.62 640.92 613.47 610.51 

Merocyanine 540 491.10 514.15 496.10 495.62 

 

4.6 Theoretical predictions 

 With the ability to calculate cyanine isomer energies, one has the capability of 

predicting the energies of different isomers to try to see if any other substituents might give 

rise to favorable photophysics. Since longer alkyl chain substituents seemed to work well 

in the compounds tested, theoretical structures with longer alkyl chains or sterically bulkier 

structures were tested. By using ground state DFT calculations (as described in section 
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4.4), comparing calculated Cis23-Trans energy differences to the energy differences of the 

already synthesized molecules allows one to hypothesize which theoretical substituents 

might result in improved fluorescence enhancement.  

 

  

Figure 4.6. Theoretical cyanine structures tested using density functional theory. Structure 
A has a cis23-Trans energy of 0.137 eV, structure B has a cis23-Trans energy of 0.134 eV, 
and structure C has a cis23-Trans energy of 1.779 eV. 
 

 From these data, it appears that structures A and B have similar cis-trans energy 

differences to MHI84 and LO4, which exhibited good modulation depth (40-50%). 

However the energy difference is not as small as in the case of MHI97, suggesting that the 

Cis23 isomers of these theoretical structures might not show improvements in modulation 

depth. As the alkyl chains became longer than six carbons, the cis isomers became less 

stable due to steric hindrance. As shown in structure C, even three carbon chains with 

phenyl groups at the ends contain too much steric bulk to form a stable cis isomer. The 

energy difference in that case is greater than an electron volt. Perhaps other substituents to 

the nitrogen atom on the indole side group could provide more stability to the cis isomer, 

but in the case of alkyl chains, it appears that butyl chains provide the maximum stability. 

 Another idea to try was substituents on the indole side chain. In the case of aromatic 

rings, one electron-donating groups like NH2 or OH or withdrawing groups such as CF3 or 

NO2 could have an effect on isomerization due to electronic effects, but no effects are seen 
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in ground state DFT calculations. It appears that bromine or chlorine at the o or m position 

destabilizes the cis23 isomer. 

 

 

Figure 4.7. Cy5-like structure with substituents labeled at “o,” “m,” and “p” positions. 

 

Table 4.3. Calculated energies comparing cis and all trans ground states for structures with 
substituents at “o,” “m,” and “p” positions. All data are in eV units. 

Dye Cis23-

Trans 
Cis12-

Trans 
Cis01-

Trans 
Dye Cis23-

Trans 
Cis12-

Trans 
Cis01-

Trans 

oBr 0.319 0.319 0.058 oNO2 0.141 0.325 0.045 

mBr 0.311 0.311 0.062 mNO2 0.140 0.312 0.060 

pBr 0.137 0.310 0.062 pNO2 0.141 0.319 0.067 

oCl 0.318 0.318 0.064 oNH2 0.135 0.307 0.055 

mCl 0.311 0.311 0.063 mNH2 0.136 0.310 0.064 

pCl 0.136 0.309 0.058 pNH2 0.131 0.298 0.059 

oOH 0.135 0.308 0.072 oCF3 0.139 0.327 0.062 

mOH 0.149 0.312 0.075 mCF3 0.139 0.312 0.061 

pOH 0.130 0.304 0.056 pCF3 0.141 0.316 0.066 

 

 

4.7 Testing properties of new cyanine variants 

With the earlier analysis of the effects of structural modifications on cyanines, 

showing how different substituents can tailor photophysical properties for improved 
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fluorescence modulation, new cyanines were designed by the Henary lab with different 

substituents in order to tailor the photophysical properties. Fluorescence enhancement, 

photophysical on and off times, and DFT calculations were performed to characterize these 

new compounds. Modifications were made to the polymethine bridge and the indole side 

groups, as well as altogether different side groups. Because photoisomerization is so 

important to cyanine fluorescence modulation, substituents in the middle of the 

polymethine bridge are likely to impact modulation parameters. This was seen previously 

with halogen substitution in the middle of the polymethine bridge. In the new compounds 

a phenyl substitution was added that may stabilize or destabilize the photoisomer state. 

Additionally, substituents on the indole side group modify photophysical characteristics. 

Electron-donating and electron-withdrawing groups could affect the electronic properties 

of the polymethine bridge chromophore. Lastly, it is interesting to consider a side group 

other than indole. One common group is benzothiazole, in which a sulfur molecule replaces 

the dimethyl group on the indole ring. These new compounds were tested for modulation 

depth, photophysical on and off times, and DFT Cis23-Trans energy differences.  
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Figure 4.8. New cyanine dyes. MDL-45 contains a phenyl substituent on the polymethine 
bridge, while T-81 and TRC-84 contain substituents on the indole side groups. SP-2-28 
and ZK-311 both contain benzothiazole side groups. 
 

 

Table 4.4. Summary of new cyanine dye photophysical properties. 

Dye Mod depth τoff◦ (µs) DFT Cis23-Trans (eV) 

MDL-45 5% (±2) N/A 0 

T-81 30% (±5) 120 (±50) 0.141 

TRC-84 42% (±5) 600 (±50) 0.156 

SP-2-28 0% N/A 0.132 

ZK-311 0% N/A N/A 

 

 

While overall the new structures do not offer better modulation depth than the previously 

studied compounds, there are still some new insights to be gleaned from the data. MDL-45 

does not have high modulation depth, and the cis23 isomer has similar ground and excited 

state energies to the all trans isomer, making it ineffective as a modulatable dark state. 

What little fluorescence enhancement occurs could be due to some activity in the cis12 

isomer. T-81 is similar to Cy5 and its variants in photophysical properties and timescales, 
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but has less overall enhancement. TRC-84 is water-soluble, unlike most of the other 

synthesized cyanines, has fairly high enhancement, and seems to have a very long-lived 

dark state. Computational efforts were originally inconclusive, suggesting that the red-

shifted cis23 dark state is lower in energy than the all trans state. But after realizing that 

the molecule would be de-protonated in water, hydrogens on the carboxylic group were 

removed and the molecule was assigned a charge of -1 for the calculation, providing a more 

sensible answer. SP-2-28 is very similar to the previously mentioned MHI84 dye, but has 

benzothiazolium side groups with sulfur. This causes the ground state to be red-shifted and 

the cis-photoisomer to be blue-shifted so that they nearly overlap.54 Because there is no 

red-shifted dark state absorption, no fluorescence enhancement is seen upon dual-

excitation, but a fair amount of fluorescence is seen with secondary only excitation. ZK-

311 also has benzothiazolium side groups, but it has a ring in the center of the polymethine 

bridge, preventing isomerization around the cis23 bond. As a consequence, there is no 

fluorescence enhancement or secondary only fluorescence seen. 

 

4.8 Solution additives for manipulation of photophysics 

As cyanine dyes have been utilized as fluorophores for biological imaging, certain 

schemes have been employed to tailor the photophysics in a way that is favorable to the 

application. For example, a thiol such as beta-mercaptoethanol has been used to inhibit 

blinking and allow for lower wavelength photoswitching. There are different theories on 

the mechanism, including covalent attachment to the polymethine chain74 or a redox 

photochemical process.71 Other additives include triplet quenchers such as Trolox and 

glutathione, which stabilize fluorescence by inactivating the triplet state, which is 
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susceptible to blinking and photobleaching.65, 70-71, 74, 132-135 On the other hand, it has been 

shown that adding a triplet enhancer such as ethyl iodide or potassium iodide can increase 

the yield of both cis and trans triplet states.53, 57 Therefore, it is reasonable to assume that 

the alteration of molecular photophysics could affect the fluorescence modulation observed 

in cyanine dyes. To look further into this process, different molecules were added to an 

aqueous Cy5 solution to study how they would affect dark state behavior. Additives were 

included at high concentrations (~100 mM) to ensure interaction with cyanine molecules 

in solution. 

 

Table 4.5. Summary of additive effects on Cy5 modulation depth and photophysics. 

Experiments were conducted in water, Cy5 concentrations were ~1-10 nM while additive 

concentrations were approximately 100 mM. 

Additive Mod depth τoff◦ (µs) ϕD 

None 50±3% 184±20 .0014±2*10-4 

Beta-mercaptoethanol 60±4% 165±25 .0014±2*10-4 

Beta-mercaptoethylamine 50±3% 107±20 .00071±10-4 

L-glutathione, reduced 66±5% 253±30 .0016±2*10-4 

Trolox 56±2% 76±15 .00092±10-4 

Potassium Iodide 43±3% 230±30 .0010±3*10-4 

 

 

Modulation frequency scan experiments with a constant primary and modulated 

secondary laser were performed to determine modulation depth and on and off times. With 

this information, one could potentially gain insight into molecular photophysics as affected 

by solution additives. As mentioned, beta-mercaptoethanol is known to affect single 

molecule photophysics and could potentially impact photoisomer or triplet states. It turns 

out that modulation depth clearly increases, but there is no discernible effect on the 

modulation time scale. Perhaps some other effect such as a triplet state could give rise to 

the increased modulation depth. With beta-mercaptoethylamine, another thiol, the 
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modulation depth is unchanged compared to Cy5 alone. Glutathione, another thiol and 

well-known antioxidant in biological systems, increases enhancement the largest amount 

of any solution additive (50 to 66%). In this case it appears that the dark state lifetime and 

dark state quantum yield both increase, which could cause increased dark state population 

recovered by the secondary laser, improving modulation depth. Trolox, another known 

triplet quencher and antioxidant but not a thiol, increases fluorescence enhancement despite 

appearing to decrease dark state lifetime and quantum yield. Lastly, potassium iodide is 

known to increase triplet yield due to a heavy atom effect which increases the intersystem 

crossing rate. Adding potassium iodide to Cy5 in solution decreases fluorescence 

enhancement relative to Cy5 while seeming to lengthen the dark state lifetime. Overall, it 

appears that adding a triplet state quenching molecule to solution increases enhancement, 

while adding a triplet enhancing molecule decreases enhancement. This may be due to 

increased population in either the cis or trans triplet state, so experiments exploring the 

faster timescale dark states may be revealing.  

Further experiments were performed using FCS to see if diffusion, triplet, and 

photoisomer timescales could be resolved and if conclusions could be drawn. A fast time 

resolution (100 ns) setup with two APD detectors was used to observe any sub-

microsecond triplet timescales. However, the results were inconclusive. With three 

timescales close together in time, it was not possible to resolve using FCS. Increasing 

primary and secondary laser intensity decreased the triplet timescale in the FCS fit while 

increasing diffusion time, similar to standard Cy5 FCS experiments. Future experiments 

could be conducted in which diffusion and photoisomer timescales are better separated 
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from the triplet, such as immobilization, and then the photoisomer studied by itself, perhaps 

by quenching the triplet state. 

 

4.9 Conclusions 

By looking into cyanine electronic structure, one can develop simple models for 

energy levels based on the particle in a box or Hückel MO models, allowing one to 

approximate wave functions and energy levels. Previous research has determined 

isomerization barrier heights and energy levels by experimental and theoretical techniques. 

We have built on these results by comparing our modulation data and extracted 

photophysical times, which agree with previous research and our theoretical framework. 

Based on our experimental and theoretical data, it appears that the central bond in the 

pentamethine chain (called cis23 in this work) is most likely the modulatable dark state, as 

it is a metastable state that is slightly higher in energy than the all trans ground state, and 

its absorption to a higher electronic level is red-shifted relative to the all trans excitation 

wavelength. The cis12 state could play a smaller role, though it is higher in energy and has 

a less red-shifted absorption. In the molecules with higher modulation depths the cis12 

could be more involved in the fluorescence recovery. Although modulation depth 

improvements were seen with longer alkyl chains, increasing chain length or adding bulkier 

substitutions did not alter the cis-trans energy difference. Perhaps there could be other ways 

to stabilize the cis23 isomer to further improve modulation depth. 

New cyanines and solution additives were also explored. So far newer synthetic 

cyanine variants have not shown greater modulation depth than Cy5 or MHI97, but other 

technical improvements are possible, such as longer or shorter modulation timescales and 
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triplet dark states. It has been observed that solution additives such as triplet quencher or 

enhancers can affect modulation depth, with triplet quenchers such as beta-

mercaptoethanol and l-glutathione increasing modulation depth while enhancing the triplet 

state with potassium iodide decreasing fluorescence enhancement. At this moment it is 

unclear why this occurs because there was not a clear trend in the modulation or FCS 

timescales. Further experiments which isolate the variables (triplet, photoisomer, diffusion) 

better may elucidate this effect. 
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CHAPTER 5 

OPTICALLY ACTIVATED DELAYED FLUORESCENCE 

 

5.1 Introduction 

 Fluorescence modulation techniques advance fluorescence imaging by controlling 

molecular photophysics. Whether through stochastic or deterministic control of dark state 

residence, transitions to nonfluorescent “dark” states can diminish net fluorescence, but 

can be optically reversed either thermally, or by co-illumination at a different wavelength 

that specifically excites the dark state. Such fluorescence modulation offers greater 

imaging depth and sensitivity by rejecting (non-modulatable) obscuring background 

emission.20, 36, 56, 96-97, 136 Because fluorescence enhancement and modulation result from 

optically induced rates into and out of photoaccessable dark states, molecular structure and 

chromophore environment can alter modulation depth and timescales.34, 98 

Different dark states appear to offer different mechanisms of modulation, 

particularly in the cases photoisomer and triplet states. Merocyanine 540 has both 

photoisomer and triplet dark states that absorb red-shifted relative to the excited state, 

allowing one to probe the differences between these states. It turns out that upon secondary 

co-illumination the photoisomer dark state returns to the all trans ground state, while the 

triplet recovers the singlet excited state, allowing for an optically activated delayed 

fluorescence effect. The characterization of this state is consistent with a triplet state, and 

by decreasing the oxygen concentration in the sample environment by purging with 

nitrogen gas one can lengthen the triplet state ~25-fold. These structural modifications, 
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solution/environment additives, and different dark states all allow the potential for 

improved fluorescence modulation. 

To further investigate the mechanism of secondary modulation, one can consider 

whether the secondary laser returns dark state molecules to the ground or excited state of 

the fluorescence manifold. This has fluorescence imaging implications; it is potentially 

useful to be able to recover fluorescence with only the secondary laser after primary 

excitation and turn off. To test this, one can do experiments to “pump” the dark state 

population and then see the effects when only the secondary laser illuminates the sample. 

The main experiment performed was pulsed primary excitation with constant (not 

modulated) secondary excitation. In this scheme one is able to quickly build up the dark 

state population while looking for any potential secondary effects.  

The work in chapter 4 of this thesis, both experimental and theoretical, supports a 

low-lying photoisomer state, approximately 0.1 eV above the all trans ground state. 

Conversely, triplet states are known to be much higher in energy (>1 eV), close to the 

excited singlet state. In fact, much research effort has been devoted to thermally activated 

delayed fluorescence and triplet harvesting,137-139 effects that couple the triplet and singlet 

excited states. This allows S1 ↔ T1 transitions, causing delayed fluorescence when a 

molecules undergoes intersystem crossing, reverse intersystem crossing, and eventual 

fluorescence. This also has been used to increase the efficiency of organic LEDs. 

Therefore, one could presume that these different dark states could allow for different types 

of modulation. Based on experiments performed in this work, it appears that upon 

secondary laser illumination a photoisomer dark state will photoisomerize to the all trans 

isomer ground state, available for subsequent excitation, while a triplet dark state will 
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reverse intersystem cross back to the singlet excited state and fluoresce on a delayed 

timescale. 

 

 

Figure 5.1. Jablonski diagrams illustrating fluorescence recovery pathways via dark state 
recovery. In the case of a photoisomer, both thermal relaxation and secondary excitation 
return the dark state to the fluorescent ground state, but in the case of a triplet dark state 
the excited fluorescence state is recovered, allowing for subsequent fluorescence. 
 

The two molecules studied and compared for triplet vs photoisomer behavior were 

Cy5 and Merocyanine 540, both of which were studied in chapters 3 and 4. Cy5 and 

Merocyanine 540 both exhibit fluorescence modulation (40-50%) due to a photoisomer 

dark state but have different triplet absorptions. Cy5 is known to have a blue-shifted triplet 

absorption at 625 nm (relative to the ~645 nm singlet absorption) with a 35 µs lifetime.53 

Merocyanine 540, on the other hand, has a red-shifted triplet absorption (~600-650 nm) 

relative to the singlet absorption (560 nm), with a ~1 µs lifetime.50, 84, 140-141 From this 

information, one can reason that the triplet absorption in Merocyanine 540 should be 

susceptible to secondary laser co-illumination, at the same secondary wavelength as used 

for the photoisomer dark state. 
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5.2 Cy5 experimental results 

In chapter 4, section 4.3 (illustrated in Figure 4.4), primary and secondary 

modulated cw experiments are used to characterize the energetics photoisomer dark states. 

The proof of a thermal population helps characterize the cis photoisomer as slightly higher 

in energy than the all trans ground state. It is also useful to know how the recovery path 

from the dark state to the fluorescent state, particularly if upon secondary illumination the 

dark state goes to the fluorescent ground or excited state. If the excited state is recovered, 

subsequent fluorescence would be expected, whereas in the ground state fluorescence 

enhancement would be seen upon primary illumination only. 

To investigate this, it is useful to excite with a pulsed primary laser and constant 

secondary laser. With this setup, the primary laser pulse populates the dark state then is 

shut off, allowing only secondary effects on the populated dark state to be observed. These 

results can be used to determine the fluorescence recovery pathway from the dark state. 

 

 

Figure 5.2. Cy5 fluorescence with pulsed primary (647 nm) excitation with and without 
constant secondary (710 nm) excitation. Left: Pulsed primary with no secondary laser. 
The peak height is 1680 counts, and the decay is 1 ns. Right: Pulsed primary excitation 
with constant secondary excitation. In this case the peak height is 2085 counts and the 
decay is also 1 ns. 
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From the figure above, one can see that by turning on the secondary laser there is no 

change in the fluorescence decay, which matches the 1 ns typical Cy5 lifetime, but the 

primary laser peak height increases by ~24%. This is the same amount of fluorescence 

enhancement seen with the bulk signal, that is the increase of fluorescence intensity on a 

CCD or APD detector when the secondary is turned on. From this behavior it appears that 

the secondary laser will increase the intensity of primary laser fluorescence, but not cause 

any additional fluorescence upconversion effects. In terms of photophysical mechanism, 

the secondary laser causes the dark state to recover the fluorescent ground state, not the 

fluorescent excited state. 

 

5.3 Merocyanine 540 experimental results 

Upon primary excitation an exponential fluorescence decay is observed, but this 

decay disappears with secondary co-illumination due to depopulation of the dark state. 

However, when the secondary is turned on only in between the primary laser pulses, the 

primary induced fluorescence decay becomes steeper as a result of a greater initial dark 

state population. These properties are characteristic of the relatively low energy difference 

between different isomers. When the energy difference is small enough, the dark state is 

non-negligibly populated at room temperature. 
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Figure 5.3. Fluorescence of Merocyanine 540 in water. A) modulated primary excitation 
(543 nm, 600 W/cm2), B) modulated primary plus constant secondary co-illumination (637 
nm, 10 kW/cm2), showing elimination of fluorescence decay due to lack of dark state build 
up. C) modulated primary excitation (5 kW/cm2), D) Alternating modulated primary and 
secondary (14 kW/cm2) excitation, causing greater fluorescence decay due to photoisomer 
depopulation to the ground state. 

 

 Next, Merocyanine 540 was studied with the pulsed-CW setup. With 1 µs time 

resolution, a small shoulder is observed, hinting at fluorescence upconversion due to triplet 

effects. Faster time resolution reveals a sub-microsecond time scale consistent with triplet 

state data from the literature, and a dependence on secondary power. By integrating the 

primary and secondary fluorescence, one finds that the secondary fluorescence to primary 

fluorescence is .005, or .5%. Since this is much lower than the 40-50% bulk fluorescence 
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enhancement, one can reason that most of the enhancement observed comes from the 

photoisomer dark state rather than the triplet dark state. 

 

 

Figure 5.4. Merocyanine 540 fluorescence in aqueous solution using 532 nm pulsed 
excitation (rep rate 10 kHz) with and without secondary (637 nm) co-illumination. 
Optically activated delayed fluorescence is observed when the secondary laser is present, 
presumably due to a repumping of the excited bright state. A) Pulsed primary with and 
without secondary illumination. With the addition of the secondary laser a slight 
upconversion tail is observed at the end of the pulse. B) Pulsed primary plus secondary 
with ~1 ns time resolution, showing OADF more clearly. C) Secondary power dependence 
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of fluorescence decay. Higher power (or intensity due to constant spot size) shortens the 
observed timescale due to faster depletion of dark state. 
 

The figure above illustrates the ~100 ns timescale fluorescence upconversion observed 

with Merocyanine 540 which is not observed with Cy5. There is a clear power dependence, 

with higher power shortening the dark state lifetime. This can be attributed to a power 

dependence on rate, so that 
υ

σ
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sec+=  where ko
off  represents the natural dark 

state decay without secondary while the latter term characterizes the secondary intensity 

dependence (σbiso is the action cross section for reverse intersystem crossing back to the 

singlet manifold22). By plotting the decay rate at different secondary powers (or intensities 

as the area is constant), one can obtain the y-intercept which is the natural off rate. The 

timescale obtained matches the ~1 µs triplet timescale from the literature.50  

  

5.4 Triplet state lifetime modifications 

Triplet states are readily quenched by molecular oxygen, hastening their 

nonradiative decay,59-60 and as a consequence are environment dependent. By purging 

solutions with N2 gas, one can decrease O2 content of the sample, extending triplet lifetime. 

Another way to decrease O2 content is by introducing an enzymatic oxygen scavenging 

system consisting of glucose, glucose oxidase, and catalase.70-71 Glucose oxidase and 

catalase enzymes catalyze the reaction of glucose and oxygen to gluconic acid and water, 

thus decreasing molecular oxygen concentration. Lastly, immobilizing in polyvinyl alcohol 

(PVA) films significantly extends the secondary laser-excited emission (triplet) lifetime.  

PVA likely extends the triplet lifetime through rigidification, inhibition of collisional 

quenching, and low oxygen content/mobility. These environmental effects are illustrated 
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in Figure 5.5, showing a clear extension of the secondary fluorescence upconversion 

timescale when compared to merocyanine in water (Figure 5.4). N2 gas purging and the 

oxygen scavenging system increase the timescale ~15-fold, while PVA immobilization 

most dramatically extends repumped fluorescence lifetime, up to ~45 µs. These data are 

summarized in Table 5.1. 

 

 
Figure 5.5. A) Pulsed-CW data for Merocyanine 540 in water after nitrogen purging. The 
secondary fluorescence is much longer lived. B) Secondary power dependence with N2 
gas. The dark state lifetime is 16.1 µs. C) Pulsed-CW data for Merocyanine 540 in PVA. 
D) Secondary power dependence in PVA. The dark state lifetime is 45.5 µs. 
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Table 5.1. Photophysical OADF properties of Merocyanine 540. 

Fluorescence lifetime 775±25 ps 

Triplet lifetime in water 1.18±0.175 µs 

Triplet lifetime in water, N2 purging 16.1±0.49 µs 

Triplet lifetime in oxygen scavenging system 14.5±2.5 µs 

Triplet lifetime in PVA 45.5±7.3 µs 

 

In previous work utilizing fluorescence modulation in cyanines, with CW primary 

and secondary lasers, a photoisomer dark state was responsible, but triplet dark states can 

work as well, as seen in xanthene dyes.96 By performing experiments to distinguish 

between photoisomer and triplet behavior, one can understand the properties of these dark 

states. Photoisomer dark states are close in energy to the ground state, on the order of .1 

eV, which allows for a small amount of thermal population at room temperature. By pre-

illuminating with a secondary laser to deplete this thermal population, a greater 

fluorescence decay can be seen upon primary laser excitation. This effect has been 

observed in both Cy5 and Merocyanine 540, confirming the presence of photoisomer dark 

states. However, no fluorescence is observed by shining a secondary laser without a 

primary laser, suggesting that photoisomer dark state molecules simply return to the 

emissive manifold bright state, ready for subsequent fluorescence excitation. This 

hypothesis is confirmed by the pulsed-CW experiments with Cy5 (Figure 5.2). By 

distinguishing between primary and secondary effects (the primary laser is on briefly while 

the secondary is always on) it turns out that the secondary laser increases primary 

fluorescence intensity without causing any other fluorescence. Ultimately this strongly 
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suggests that photoisomer dark state, upon secondary laser excitation, returns to the ground 

state as opposed to the excited state. 

 Alternatively, a triplet dark state offers different properties than the photoisomer. 

Because it is higher in energy (>1 eV) it couples to the excited state in the emissive 

manifold, and experimentally results in optically activated delayed fluorescence, as seen in 

the pulsed-CW experiments (Figures 5.4 & 5.5). In terms of applicability, this is 

advantageous because it allows for an upconversion process in which dark state molecules 

can be repumped as subsequent fluorescence. The red-shifted nature of this secondary 

excitation allows for detection of fluorescence signal over very little background. The 

timescales for this process are dependent on the sample environment, primarily O2 

concentration, ranging from very short in aqueous solution in normal air (~1 µs), to longer 

in a nitrogen environment (~16 µs) or oxygen scavenging system (~15 µs), and even longer 

in PVA (~45 µs). The ability to control triplet lifetime as well as the longer wavelength 

fluorescence upconversion properties of the modulation of a triplet state promise much use 

in applications. 

 The only dark state capable of fluorescence modulation in Cy5 is the cis 

photoisomer. The triplet state in Cy5 absorbs slightly blue-shifted relative to the singlet 

ground state. There is also a cis photoisomer triplet state with a red-shifted absorption,53 

but no fluorescence was observed with the pulsed-CW experiment, meaning that there is 

likely a non-radiative relaxation pathway. In the case of Merocyanine 540, both the 

photoisomer and triplet state have red-shifted absorptions relative to the ground state 

absorption so the secondary laser can activate both dark states, as seen in the CW 

modulation experiments compared to the pulsed-CW results. Therefore, Merocyanine 



 

93 

 

offers the unique property of having two possible dark states with distinct fluorescence 

modulation properties. 

 

5.5 Conclusions 

 Photoisomer and triplet dark states in fluorescent molecules offer different 

modulation properties due to their bright state recovery pathways. This has been studied in 

Cy5 and Merocyanine 540 by different fluorescence modulation techniques. In the 

modulation scheme where a primary laser induces fluorescence and a red-shifted secondary 

laser excites a dark state, it has been shown that the photoisomer dark state molecules return 

to the emissive manifold ground state while the triplet dark state molecules return to the 

excited state. This means that after secondary illumination, fluorescent is observed in triplet 

dark state molecules, but not in photoisomer dark state molecules. Cy5 only has a 

photoisomer dark state capable of modulation, but Merocyanine 540 has both photoisomer 

and triplet dark states, making it capable of both ground and excited state recovery. 

Furthermore, in Merocyanine 540 the dark states can be controlled by sample environment; 

eliminating oxygen or immobilizing in PVA increases the triplet dark state lifetime. With 

this insight, other fluorescent molecules with similar photophysical properties can be tested 

in a similar protocol, and the fluorescence upconversion observed could be useful in 

imaging studies to offer background free fluorescence with greater signal sensitivity. 
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CHAPTER 6 

PROTEIN-CHROMOPHORE BINDING MODULATION 

 

 6.1 Introduction 

Fluorescent proteins are particularly useful due to their biological applications. 

They can be expressed in cells, and the ability to be modulated allows for acquisition of 

data with greater signal to background ratio. Photoswitching behavior in FPs was 

discovered about twenty years ago, when green fluorescent protein (GFP) mutants were 

studied in single molecule environments. It turned out that upon continuous irradiation with 

488 nm excitation, these particular GFP mutants would transition to a nonfluorescent state, 

from which fluorescence could be recovered by a 405 nm secondary illumination.35 More 

recently, different types of fluorescent proteins exhibit modulated fluorescence, spanning 

the visible spectrum from blue to green, cyan, yellow, and red. Both long wavelength 

fluorescence recovery (SAFIRe) as well as shorter wavelength secondary laser 

photoswitching mechanisms have been applied to improve fluorescence imaging over 

biological background.34, 36, 136 The protein and chromophore structural dependence of 

modulation and environmental factors were tested to determine the effects on fluorescence 

wavelength, modulation depth and characteristic frequencies.  

By themselves, FP chromophores (and their structural variants) do not fluoresce 

brightly in solution when unbound. The fluorescence increases greatly when bound by a 

protein or aptamer, primarily due to inhibition of the torsional motion of the 

chromophore.33, 90-91, 142-145 As detailed in section 1.5, fluorescent protein chromophore 

photophysics has been studied by time-resolved spectroscopy, and two processes that are 
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likely involved in fluorescence modulation are photoisomerization and intramolecular 

proton transfer.37-38, 89 Of particular interest to this research are the human serum albumin 

(HSA) binding compounds, which have shown to be capable of fluorescence modulation. 

This process is shown schematically in the figure below, in which a non-emissive 

chromophore becomes fluorescent upon binding to HSA.  

 

 
Figure 6.1. Fluorescence activation by binding to HSA.33 The protein-binding molecule is 
by itself weakly fluorescent, but becomes much brighter upon encapsulation by the binding 
pocket of the protein. 
 

 This fluorescence “turn-on” effect depends on the molecular structure of the 

chromophore. As depicted in Figure 6.2, the chromophore has a diethyl amine group at the 

para position of the aryl ring, and a hydrogen or hydroxy group at the ortho position (R1), 

as well as an R2 substituent--an alkyl chain or butyrate. The optimal substituents turn out 

to be hydroxy at R1 and heptyl at R2, which, upon binding, increases the fluorescence about 

seventy times the unbound value. Fluorescence titration of the chromophore with 

increasing HSA concentration follows a two-site binding model (binding to Sudlow’s sites 

I and II) with dissociation constants of 240 and 450 nM.33 
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Figure 6.2. Different GFP chromophore derivatives and their fluorescence increase upon 
binding to HSA.33 
  

GFP chromophore variants that bind to RNA aptamers with a similar fluorescence 

“turn-on” effect have been analyzed for binding and photoconversion kinetics.142 Unlike 

GFP, the RNA aptamer “Spinach” did not exhibit photobleaching but exhibited a 

recoverable fluorescence decay when primary excitation was turned on and off using 

square wave modulation. The fluorescence decay was intensity and concentration 

dependent, and binding kinetics were measured to be kbind = (6.2 ± 0.1) * 104 M-1 s-1 and 

kunbind = (2.4 ± 0.1) * 10-2 s-1 with KD = 390 nM. Most likely, there are concurrent binding 

and photoconversion effects and it could be that bound chromophores photoconvert to a 

dark state prior to unbinding. 

Different molecules are capable of binding and fluorescing with different 

properties. The HSA-binding chromophore can also bind to β-lactoglobulin, Bovine Serum 
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Albumin (BSA), and Rat Serum Albumin (RSA), although the fluorescence is weaker than 

with HSA. Additionally, different chromophores can bind to cholate aggregates, RNA, or 

can be used as pH sensors.33, 90-91, 142, 145 The RNA aptamer binding chromophores were 

expressed in E. coli and modulated based on the binding/unbinding kinetics to recover 

signal over background. Thus, the fluorescence “turn on” effect has been to shown to have 

several real world applications, particularly in sensing and fluorescence imaging. 

One other fluorescence modulation application for the HSA-binding chromophore 

is phase advance. Phase advance modulation is based on dark state decay behavior. In the 

case of modulated sinusoidal excitation, A phase lag can exist due to transitions out of and 

back into the fluorescent state,146-147 but a more unexpected phase advance was first 

discovered in molecules with a triplet dark state,148-149 and later applied to photoswitchable 

fluorescent proteins.150-151 The main concept is that over the course of fluorescence 

emission, intensity is initially high but then decays as molecules transition into the dark 

state. In the case of sine wave modulation this appears as a pseudo-phase advance in which 

sine wave fluorescence appears phase advanced relative to an instrument response function 

or fluorescence from a fluorophore without a dark state. In addition to single and dual laser 

modulation schemes, phase advance modulation offers another application in which one 

could discriminate signal from background.  

 

6.2 Fluorescence modulation of protein-binding chromophores 

Because different fluorescent proteins have shown long wavelength secondary laser 

modulation capability, it is reasonable to believe that these photophysics also apply to the 

structurally similar protein-binding chromophores. Photoisomerization along the middle of 
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the chomophore is likely to allow the protein binding chromophore to work similar to 

modulatable fluorescent proteins. Additionally the binding-unbinding processes affect 

fluorescence intensity and modulation. Compound 10 (described in Figure 6.2) when 

bound to HSA absorbs around 475 nm and emits around 510 nm. For fluorescence 

modulation, an experimental setup similar to green fluorescent protein mutant AcGFP36 

with a 476 nm primary laser (Argon Ion, Coherent Innova 90) and 561 nm (Sapphire, 

Coherent) secondary laser works well. After primary illumination, secondary modulation 

at 561 nm yields fluorescence recovery up to 40%. This result and the corresponding 

photophysical effects have been studied by experimental methods to elucidate the 

photophysical mechanism and determine which effects are due to photoswitching 

compared to binding. 

First, the HSA-binding chromophore fluorescence modulation was studied by dual 

laser (476/561 nm) modulation. Chromophores can be studied on their own in DMSO, 

though the fluorescence and modulation are minimal (~70-fold less fluorescence and ~4% 

fluorescence enhancement with >5 kHz modulation frequency). When the chromophores 

bind to proteins, torsional motions are inhibited and consequently fluorescence brightness 

and modulation depth increase greatly, while modulation frequency decreases. For this 

experiment, samples were prepared by combining chromophores and HSA in PBS (pH 

7.4). Modulation depth and frequency scans were recorded for various chromophores 

bound and unbound to HSA, these data are summarized in the table below. 
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Table 6.1 Summary of HSA binding compounds fluorescence modulation. Modulation 
depth generally increases while characteristic frequency decreases upon binding. kdark was 
obtained by fitting to the frequency domain lifetime equation and extrapolating to zero 
primary intensity (explained in section 3.3). 

 

Name R Mod depth (unbound) Mod depth (bound) kdark (Hz) 

AB113 Heptyl 6% 37% 140 

AB120 Octyl 4% 17% 200 

AB116 Hexyl 4% 12% 100 

AB114 Propyl 4% 10% 375 

AB178 Phenyl 3% 4% n/a 

AB177 3-pentyl 5% 0% n/a 

 

As mentioned, modulation depth increases and characteristic frequency decreases 

upon binding. Based on the data in table 6.1, it appears that a heptyl R group is optimal for 

binding and enhancement. Octyl and hexyl, which both differ from heptyl by one carbon 

atom, have slightly less enhancement while other substituents did not fare as well. 

Because modulation timescales observed appear to be fairly slow (>1 ms), it is 

desirable to eliminate diffusion in and out of the focal volume to ensure molecules don’t 

diffuse before photoconversion between bright and dark states can occur. To achieve this, 

samples were prepared by adding the protein-binding small molecule to HSA in a PBS 

solution and combining in a 1% w/v agarose solution to heat and gel. The agarose gel 

significantly slows diffusion processes. 

To analyze modulation timescales, dual laser modulation was first applied using a 

secondary laser frequency scan as well as a time trace analysis. It appears the modulation 
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timescales are very slow compared to cyanines, with characteristic frequencies in the 10-

100 Hz range. The data for two laser modulation is shown in the figure below. 

 

 
Figure 6.3. Two laser data for the HSA-chromophore complex in which the primary laser 
is constant and secondary laser is modulated. In the image on the left the modulation depth 
is recorded over many modulation frequencies while in the image on the right a 
fluorescence intensity time trace is take over the modulation cycle. 
 

The frequency dependence appears to be less clear than in the case of cyanines, 

likely due to multiple timescales being involved (potentially photoisomerization, binding, 

photobleaching), so obtaining clear timescales and a power dependence was very difficult. 

To complement this approach, a time trace average was taken in which 10 Hz modulation 

cycles were recorded and fitted with exponential functions. The modulation frequency scan 

data suggests a timescale in the region of ~20 ms, but the power dependence trend isn’t 

definitive. Analysis of the microtime data shows a clearer trend, with timescales also 

around 10-20 ms. Higher protein concentration may increase koff frequencies (shorten off 

times). 

Interestingly, and unlike other modulatable fluorophores such as cyanines, the 

HSA-chromophore complex modulation depth depends on HSA concentration, suggesting 
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that protein-chromophore binding effects play a role the fluorescence modulation 

observed. These data are summarized in the table below.  

 

Table 6.2. Concentration dependence of HSA on fluorescence modulation. HSA 
concentration varies while chromophore concentration stays constant at approximately 5 

μM. Laser intensities were approximately 1.4 kW/cm2 and 5 kW/cm2 for 476 nm primary 
and 561 nm secondary excitation, respectively. 

HSA concentration Mod depth 

500 nM 13% 

750 nM 15% 

1 μM 17% 

5 μM 27% 

 

 

For a non-binding fluorophore, fluorescence modulation is concentration-independent 

because the modulation and DC components are proportional to molecular concentration. 

However, in the case of binding molecules where only the bound complex is capable of 

modulation, having a greater number of bound complexes will lead to greater fluorescence 

recovery and modulation. Therefore, when concentration is within a few orders of 

magnitude of the binding constant, by increasing the relative protein (or chromophore) 

concentration modulation depth will increase. 

 

6.3 Time trace analysis of HSA-complex photophysics 

One laser experiments in which the sample was illuminated by square wave 

excitation pulses were also analyzed for fluorescence decay, and the data fit best to a bi-

exponential fit, suggesting a fast and slow timescale. The fast timescale is in the range of 

10-50 ms, while the slower timescale is around 150-250 ms. It is likely that one timescale 

applies to a photophysical dark state, and another to chromophore-protein binding. Since 

the observed modulation timescales for the HSA-complex are in the millisecond range, one 
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can record the fluorescence time trace and watch the modulation effects in real time by 

turning the primary and secondary lasers on and off. When the primary laser (476 nm) is 

turned on, there is a sharp initial decay, followed by a slower decay. The count rate will 

also continue to drop long term, indicating photobleaching. Thus, there are at least three 

processes occurring simultaneously: dark state photoconversion, binding/unbinding, and 

photobleaching. Upon secondary laser (561 nm) illumination some 476 nm-excited 

fluorescence is recovered, which allows for modulation. Interestingly, the fluorescence 

recovered by the secondary laser appears to remain relatively constant independent of 

primary power and as a result the relative fluorescence enhancement decreases with 

increasing primary intensity. This is an unusual phenomenon; when primary intensity 

increases, the dark state population typically increases due to a decreased “on time” (the 

time fluorophores spends in the bright state before transitioning to dark). It is possible that 

the dark state absorbs the primary laser wavelength, shortening the “off time,” but in that 

case the fluorescence decay would be less pronounced (less steep), which is not what is 

seen here. It appears that the binding qualities of the protein-chromophore complex cause 

a less straightforward path than just bright state → dark state → bright state, with binding 

and unbinding states playing a role. 
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Figure 6.4. Top: Fluorescence time trace of HSA-chromophore complex with only primary 
illumination modulated at 0.5 Hz showing bi-exponential decay behavior (476 nm, ~340 
W/cm2). Bottom: Time traces of HSA-chromophore complex beginning with primary only 
excitation and later a constant fluorescence bump due to secondary laser turn on. Bottom 
left: Lower primary intensity (100 W/cm2), Bottom right: Higher primary intensity (600 
W/cm2). 
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6.4 Fluorescence phase advance 

As mentioned in the chapter introduction, an “anomalous phase advance” exists 

when over the course of fluorescence emission, intensity is initially high but then decays 

as molecules transition into the dark state. This appears as an exponential decay during 

square wave modulation but for of sine wave modulation appears as a pseudo-phase 

advance compared to non-modulatable fluorescence. This allows one to detect fluorescence 

modulation by using a lock-in amplifier or time trace analysis. A schematic is shown 

below. 

 

 
Figure 6.5. HSA-chromophore complex fluorescence with square wave (left) and 
sinusoidal (right) excitation. With square wave excitation a decay due to dark state 
behavior is clearly seen, and with sinusoidal excitation a slight phase advance can be 
observed. 
 

Since this phase advance is due to dark state behavior, the phase advance effect is most 

pronounced at the conditions for greatest fluorescence decay upon primary excitation, 

which are low primary intensity and low modulation frequency. The phase advance 

diminishes or goes away with higher primary power or higher modulation frequency. These 

characteristics allow for improved signal sensitivity and selectivity if used in fluorescence 
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imaging, as only fluorophores with the appropriate dark state characteristics will be 

detected upon demodulation. 

 

 

   

Figure 6.6. Comparison of phase advance with different laser intensity and modulation 
conditions. A) 1 Hz sine wave modulated primary at 1 kW/cm2. B) 100 Hz sine wave 
modulated primary at 1 kW/cm2. C) 1 Hz sine wave modulated primary at 1 kW/cm2, plus 
constant secondary at 100 kW/cm2. D) 1 Hz sine wave modulated primary at 13 kW/cm2. 
 

Interpreting the figure above, there is a clear phase advance at 1 Hz with low primary, and 

this phase advance disappears at higher modulation frequency. The addition of a secondary 

laser or increase of primary laser intensity does not greatly affect the phase advance. This 

is because all that is needed to observe a phase advance is a primary laser induced 
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fluorescence decay. The secondary laser does not get rid of this, it only diminishes the 

decay slightly. Furthermore, increasing the primary laser intensity does not get rid of the 

phase advance because higher intensity increases the fluorescence decay. Therefore, it 

appears that the phase advance effect observed in the HSA-chromophore complexes is 

photophysics dependent, but only modulation frequency affects the degree of phase 

advance, because at higher modulation frequency the fluorescence is turned on and off 

faster than the dark state can respond. This could be used in imaging applications: 

fluorophores with a phase advance could be detected over fluorophores without, and the 

phase advance can be controlled by laser intensity and modulation frequency.  

 

6.5 Conclusions & Future Work 

 Protein-binding chromophores, which are known to be susceptible to 

photoconversion (isomerization, deprotonation, etc.) as well as binding processes, have 

proven applicability in single and dual laser modulation schemes. In the case of HSA-

binding chromophores, GFP structural variants were synthesized and shown to increase 

fluorescence as well as exhibit modulation. Fluorescence recovery of up to 40% occurs 

with secondary laser co-illumination, as well as significant dark state decay with square 

wave primary only illumination. This fluorescence decay property also allows for a pseudo-

phase advance, which is dependent on modulation frequency. Analysis of modulation has 

proven difficult, without a clear intensity or concentration dependence, but seems to yield 

two timescales, which are presumably due to photoconversion and binding processes, 

although photobleaching may also play a role. 
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 Moving forward, there may be other ways to isolate and analyze timescales. For 

example, when studying a RNA aptamer-chromophore binding complex, researchers 

added low concentrations of chromophore and aptamer and shined a low-intensity lamp on 

the solution, allowing for the binding to occur slowly so that one could monitor the 

kinetics.142 There are also ways to combat photobleaching, such as addition of an oxygen 

scavenging system. By experimentally isolating single timescales one could be able to tell 

the different photoconversion processes apart. Also, the addition of dual laser modulation 

could improve fluorescence imaging applications in which binding and fluorescence turn 

on are utilized. GFP chromophore structural variants plus binding substrates such as protein 

binding pockets and RNA aptamers have shown fluorescence turn on and binding activated 

modulation which could be extended to other molecules and sample environments. 
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CHAPTER 7 

CONCLUSIONS AND OUTLOOK 

 

Various types of fluorescence modulation based on dark state photophysics have 

been studied in cyanine dyes and protein-binding molecules. Single and dual laser 

modulation were applied to determine fluorescence enhancement and photophysical on and 

off times. In Cy5 derivatives it has been shown that dyes with longer alkyl chains on the 

side groups have higher modulation depth, while dyes with halogens on the polymethine 

bridge have lower modulation depth. Experimentally high modulation depth is associated 

with longer modulation timescales and low modulation depth is associated with shorter 

timescales. Additionally, modulation experiments as well as density functional theory was 

applied to calculate energetic differences between cyanine isomers. It has been shown 

experimentally and theoretically that a lower energy dark state photoisomer is associated 

with higher modulation depth, and a higher energy dark state is associated with lower 

modulation depth. Furthermore, new cyanine modulation applications have been explored 

including new dyes, and also certain solution additives can affect modulation depth. More 

importantly, with a triplet dark state, fluorescence upconversion has been observed in 

which a red-shifted secondary laser can generate optically activated delayed fluorescence 

by exciting the triplet state back to the singlet excited state. Lastly, protein-binding 

fluorophores have been studied and also show fluorescence modulation. Unlike cyanines 

this modulation depth is concentration dependent (on the protein), and seems to have two 

timescales associated with it, presumable due to photoisomerization and binding.  
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Moving forward, these new cyanine modulation and protein-binding modulation 

applications continue to be studied. New cyanines have been and continue to be 

synthesized with different properties, and perhaps new cyanines with greater fluorescence 

enhancement, tunable modulation frequencies, and triplet state fluorescence upconversion 

will be discovered. On the other hand, different types of binding fluorophores such as RNA 

aptamer binding GFP derivatives and DNA binding cyanines offer fluorescence turn on 

effects and new ways to study binding and unbinding effects in concert with fluorescence 

modulation. The ability to discern between different dark states, their properties and 

timescales would be useful for future fluorophore design and application. 
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APPENDIX A 

EXTRA MODULATION DATA 

 

SAFIRe modulation depths for other cyanine compounds 

Like Cy5.5, its derivatives did not exhibit much modulation depth, and at these low levels 

of enhancement it was not possible to extract on and off times. But based on this data it 

appears that compounds with short alkyl chains and no halogen or chlorine on the 

polymethine bridge result in the highest fluorescence enhancement. Cy5-like compounds 

with trimethyl amine groups were synthesized in order make the compounds water soluble, 

but this diminished modulation depth. 

Table A1. SAFIRe fluorescence enhancement data for other cyanine derivatives. 

Molecule Mod 
depth 

Molecule Mod depth 

 

9.1% 

 

4.3% 

 

7.3% 

 

2.9% 

 

7.4% 

 

9.4% 

 

5.8% 

 

10.5% 
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Table A1 (continued). 

 

4.5% 

 

8.5% 

 

1.9% 

 

3.5% 

 

6.1% 

 

5.3% 

 

20% 

 

14% 

 

18%   
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APPENDIX B 

SECONDARY INDUCED FLUORESCENCE 

 

Another interesting observation during these experiments has been secondary 

induced (red-shifted excitation) fluorescence in cyanine dyes. Sometimes when running 

experiments in our lab we noticed fluorescence detected at approximately 660 nm when 

exciting at 710 nm. This effect seems to occur despite using the appropriate dichroic filters 

to eliminate radiation bleed through from the excitation source and only allow emission 

wavelength radiation to pass, confirming that it is indeed fluorescence emitted from lower 

energy excitation. One possible explanation for this strange effect that seems to violate 

energy conservation is that there is a non-negligible thermal population of the cis-

photoisomer dark state. The compounds with greater modulation depth and greater thermal 

dark state population appear to have stronger fluorescence from red-shifted excitation. 

 

 

Figure B1. Comparison of secondary fluorescence between MHI-97 (left) and MHI-106 
(right). With excitation laser intensity and concentration held constant, MHI-97 has much 
greater secondary fluorescence. 
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The difference in energy between 660 and 710 nm light is about .1 eV, close to the 

experimental and theoretical trans-cis energy differences, perhaps making up the energy 

deficit. Additionally, vibrational levels have energy spacings of this magnitude. These 

states could play a role if a higher energy vibrational states of the lowest electronic state 

are thermally populated. There are also other possibilities, including charge separation 

states152 and solvent effects.12 

To investigate this further, we conducted experiments with pulsed primary and 

secondary lasers. Fluorescence decays with a 1 ns lifetime characteristic of Cy5 were 

observed upon both primary and secondary illumination, though the primary-induced 

fluorescence was much more intense. Upon co-illumination with both lasers, the primary 

peak increases commensurate to the bulk fluorescence signal while the secondary-only 

fluorescence is unaffected. This effect is summarized in the figure below. 
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Figure B2. A) Cy5 fluorescence decay with pulsed primary excitation. B) Fluorescence 
decay with pulsed primary and secondary excitation. C) Fluorescence decay peaks with 
secondary only excitation. D) Concurrent primary and secondary excitation, zoomed into 
secondary fluorescence peaks. Upon dual excitation the primary fluorescence peak 
increases by ~15%, the same as the bulk fluorescence enhancement, while the secondary 
fluorescence peaks are unchanged. 
 

Thus it appears that a small amount of fluorescence is emitted upon red-shifted excitation 

with the same fluorescent lifetime as the primary fluorescence, but it appears that this 

mechanism is independent of fluorescence modulation involving cis-trans 

photoisomerization. To investigate the possibility of dark state photoisomer thermal 

population, dye ZK-311 (see section 5.2) with a ring in the middle of the polymethine chain 

(preventing the possibility of isomerization about the 2-3 bond) was tested for secondary 
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fluorescence, and fluorescence was observed at 710 nm excitation. This confirms that the 

secondary fluorescence observed is not due to thermal population of the cis23 isomer. The 

cis12 isomer is higher in energy so less populated according to the Boltzmann distribution, 

while the cis01 isomer, according to TD-DFT, does not have a longer wavelength 

excitation. Because of the lack of dark state modulatability, it appears that this fluorescence 

from a red-shifted excitation has the same characteristics as standard primary laser induced 

fluorescence. 

 Now one has to consider why higher modulation depth molecules exhibit stronger 

secondary fluorescence. To look beyond isomer thermal population effects, UV-vis spectra 

were obtained to look for differences in absorption among different cyanines. 

 

 

Figure B3. UV-vis absorption spectrum in visible-NIR region. There is a red-shift in the 
fluorescence from E27 to MHI97, from low to high modulation depth compounds. 
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There appears to be a clear trend, with lower modulation depth compounds having a blue-

shifted absorption maxima compared to higher modulation depth compounds. Therefore it 

appears that greater secondary fluorescence could simply be due to increased absorbance 

in the >700 nm region. Perhaps a thermally populated higher level vibrational state 

accounts for the 0.1 eV energy difference between excitation and emission light, as an 

“Anti-Stokes” fluorescence effect. A solvent dependence effect was also observed, with 

solvent refractive index increasing secondary fluorescence. 

 

 

Figure B4. MHI-97 secondary fluorescence (670 nm emission and 710 nm excitation) with 
varying solvent refractive index, from ethanol (1.36), to propanol (1.39), dichloromethane 
(1.44), and pyridine (1.51). Increasing refractive index correlates with increasing 
secondary fluorescence. 
 

If there is greater fluorescence with higher refractive index, this could be due to greater 

absorption in the >700 nm range. When UV-vis spectra of MHI-97 in different solvents 

are taken, this does seem to be the case.  
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Figure B5. UV-vis absorption of MHI-97 with varying solvent. With increasing refractive 
index: ethanol (1.36), propanol (1.39), DMSO (1.48), and quinoline (1.63) the maximum 
absorption appears to shift to higher wavelength. 
 

 Curiously, the absorption beyond 700 nm is negligible for most molecules in 

different solvents, despite the fluorescence detected when excited at that wavelength. 

However in an excitation scan from 690 – 800 nm where emission is held constant at 665 

nm, fluorescence intensity corresponding to the emission scan is observed. 
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Figure B6. Left: MHI-97 Fluorescence excitation scan from 690-800 nm with emission 
held constant at 665 nm. Right: Fluorescence emission from 600-700 nm with 710 and 730 
nm excitation, the maxima of which correspond to the excitation scan value observed on 
the left. 
 

There appears to be some degree of fluorescence excitation at wavelengths greater than 

700 nm, despite minimal absorbance observed in the UV-vis spectrum. To look into this 

further, a higher concentration cyanine sample was used to increase 710 nm absorption and 

compare to 590 nm absorption, the same as the primary laser used in experiments. Then 

fluorescence emission spectra were compared to see if the absorption and emission data 

add up. 
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Figure B7. Left: UV-vis absorption of MHI-97 at high concentration (~100 µM). Zoomed 
in, one can observe that the absorbance at 710 nm is 0.02, while the absorbance at 590 nm 
is 1.04. Right: The fluorescence emission of the same sample at 590 and 710 nm excitation. 
 

At higher concentration, the absorbance at 710 nm is roughly 2% of the absorbance at 590 

nm while the ratio of integrated fluorescence from 600-700 nm of 710 to 590 nm is 

approximately 7%. Although there is a slight discrepancy, one can reason that the 

fluorescence observed is likely due to anti-Stokes fluorescence,153 possibly from a higher 

vibrational state. Thermal population from a photoisomer state is less likely, and the 

secondary fluorescence observed behaves similar to primary fluorescence. 

 

In summary, pentamethine cyanine variants that typically absorb at ~640 nm and 

emit fluorescence at ~665 nm also exhibit red-shifted (secondary) fluorescence at >700 nm 

excitation. Initially, it was observed that higher modulation depth compounds had greater 

secondary fluorescence, and that this could be due to greater dark state thermal population. 

When studied using our modulation and time-resolved techniques, we determined that this 

fluorescence has the same characteristic lifetime (1 ns) as typical cyanine fluorescence, and 
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does not appear to be capable of any form of modulation. To eliminate the dark state 

thermal population origin hypothesis, the presence of red-shifted fluorescence with 

molecule ZK-311, with its ring-locked structure, rules out the possibility of cis 

isomerization about the middle bond where modulation is most likely to occur. After UV-

vis analysis, it seems that the higher modulation depth compounds have a red-shifted 

absorption maximum which could lead to an increased absorption in the >700 nm region. 

Although the UV-vis absorption in the >700 nm range is almost negligible, corresponding 

excitation fluorescence is seen in the excitation scan when emission is collected at 665 nm 

and excitation occurs beyond 700 nm. 
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APPENDIX C 

ADDITIONAL DENSITY FUNCTIONAL THEORY CALCULATIONS 

 

In addition to the Cis23 and Cis12 isomer calculations, computations were performed on 

the Cis01 isomers and the results are presented in Table S1. The results indicate that (except 

for E63 and E65) there is a comparatively small energy difference between the Cis01 and 

all trans ground states when judged against the energy differences of the other 

photoisomers. In the cases of E63 and E65 the energy differences were comparatively 

large, perhaps due to steric effects of the bulky side groups. There is also little variation in 

energy differences among the different dyes, as compared to the other cis photoisomers. 

Table C1. Energy differences between the Cis01 isomer and all trans ground states. 

Molecule Cis01-Trans (eV) 

MHI84 0.06222 

LO4 0.08009 

MHI97 0.07670 

MHI106 0.06518 

E27 0.06695 

E63 0.4418 

E65 0.4346 

 

Additional computations were run on the Cis01, Cis34, Cis45, Cis56, Cis67, and Cis78 

isomers for the commercial dyes, which were asymmetric. For the most part, the 

asymmetric dye calculations did not differ greatly from the symmetric dyes, except for the 

Cy5.5 Cis34 and the Cy7 Cis56, which had the same energies as the all trans ground states.   
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Table C2. Energy differences for asymmetric molecules. 

 Cis01-
Trans 
(eV) 

Cis34-
Trans 
(eV) 

Cis45-
Trans 
(eV) 

Cis56-
Trans 
(eV) 

Cis67-
Trans 
(eV) 

Cis78-
Trans (eV) 

Cy5 0.09895 0.1345 0.3182 0.08836 N/A N/A 

Cy5.5 0.05018 0 0.3091 0.07516 N/A N/A 

Cy7 0.1463 N/A N/A 0 0.7242 0.08190 

Merocyanine 
540 

0.2327 0.3242 N/A N/A N/A N/A 
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APPENDIX D 

DENSITY FUNCTIONAL THEORY CALCULATION INPUT 

 

To use Gaussian for electronic structure theory calculations, one needs a great 

amount of CPU power, beyond what a standard desktop computer can supply. The way 

this was achieved in this research was by utilizing the Partnership for an Advanced 

Computing Environment (PACE) at Georgia Tech, which provides a high performance 

computing infrastructure. In order to perform an electronic structure calculation, one must 

first input the atomic coordinates of the molecule, along with the molecular charge and 

multiplicity, and the processors and memory required for the job. An easy way to obtain 

the molecular coordinates is to draw the desired molecule using a program such as 

Avogadro, then export the coordinates to a “.com” file which can be ready by Gaussian. 

From there, one needs to write a PBS (Portable batch system) script to submit the job. 

Below is the PBS script used to execute jobs to be submitted for calculation by the program 

Gaussian in this work. For reference, line 3 contains the job name, line 5 requests the nodes 

and processors per node, line 7 the memory, line 9 the time to complete job, line 11 the 

cluster name. Additionally, line 17 can be used to email when the job is complete and line 

33 contains the file with the atomic coordinates and job specifications.  

  1 #!/bin/bash 
  2 
  3 #PBS -N MHI84pNO2cis23exc 
  4 
  5 #PBS -l nodes=2:ppn=1 
  6 
  7 #PBS -l pmem=2000mb 
  8 
  9 #PBS -l walltime=50:00:00 
 10 
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 11 #PBS -q force-6 
 12 
 13 #------------------------------------- 
 14 
 15 #PBS -j oe 
 16 
 17 #PBS -M dmahoney3@gatech.edu 
 18 
 19 #PBS -m ae 
 20 
 21 #------------------------------------- 
 22 
 23 module purge 
 24 module load gaussian/G09A02 
 25 
 26 export GAUSS_SCRDIR=~/scratch/$(echo $PBS_JOBID | cut -d. -f1); 
 27 mkdir $GAUSS_SCRDIR 
 28 
 29 #PBS -V 
 30 
 31 cd $PBS_O_WORKDIR 
 32 
 33 g09 MHI84pNO2cis23exc.com 
 34 
 35 rm -rf $GAUSS_SCRDIR   
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APPENDIX E 

NUMERICAL SIMULATION OF PHOTOPHYSICS 

 

As explained at the end of the first chapter, the kinetics of three state systems cannot 

be solved analytically, only numerically, so numerical computer simulations are helpful to 

see how population dynamics change over time with laser modulation. To model this 

system, the following parameters are used based on Cy5 photophysics (this simulation 

written in Mathematica): 
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In the output graph the top line refers to the ground state population while the bottom line 

refers to the dark state population. The graph shows modulation at 1 kHz, which allows for 
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significant dark state buildup since the decay of the ground state (or increase of dark state) 

begins to flatten out, signaling steady state kinetics, before the next secondary laser pulse. 

At higher modulation depths this isn’t the case since the dark state hasn’t become fully 

populated before the next modulation cycle when the secondary turns on and depletes the 

dark state. At 13 kHz modulation frequency the modulation depth has greatly diminished 

as shown in the figure below. 

 

 

The plots above only show the populations for the ground state and the dark state. 

It is also possible to observe the fluorescence directly by monitoring the excited state 

population. To do this, simply zoom in on the y-axis. The excited state (S1) population is 

very small because it is so short lived (nanosecond) compared to the ground and dark 

state. 
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The figure on the top corresponds to 1 kHz modulation while the figure on the bottom 

corresponds to 13 kHz. The modulation depth drops significantly from 1 kHz to 13 kHz. 

The fluorescence waveform looks similar to the ground state population dynamics, albeit 

a much smaller population, and is opposite from the dark state population dynamics. 

Another simpler way to model the photophysics of this type of system is by 

designating only two states instead of three: on and off instead of S0, S1 and T1. In this 

system “on” represents S0 and S1 (the fluorescent manifold) while “off” represents T1 or 

the dark state. The on time is effectively the time spent in the bright state before 

transitioning to the dark state (kexc *ϕD or the excitation rate times the dark state quantum 

yield), while the off time is just the dark state lifetime. This model of kinetics has been 
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used in single molecule studies,154 but can be easily applied to bulk samples. The input 

for this simulation is shown below:  

 

 

While leads to an output similar to that above for 1 kHz modulation. 
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