In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to zopy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Divisior. when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under-
stood that any copying from, or publication of, this dis-
sertation which involves potential financisl gain will not
be aliowed without written permission.

B SO d

3/17/65
b

:
T

! .

{ .

3 ! . i
g -

it o 50 S Y S T i T S T TR R S i




PHYSICAL CONCEPTS ASSOCIATED WITH TWO INFINITE

DIFFERENTIAL SYSTEMS AND THEIR TRUNCATED FORMS

A THESIS
Presented to
The Faculty of the Graduate Division
by

Harry Waldemar Gatzke

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Applied Mathematics

Georgia Institute of Technology

April, 1968




|
!
|
B
i
i
-
:
[
|
L
L

PHYSICAL CONCEPTS ASSOCIATED WITH TWO INFINITE

DIFFERENTIAL SYSTEMS AND THEIR TRUNCATED FORMS

Approved:

T DR et r——

Chairman =~ . - .}
B A I S V)

e v 5 4

] l

R .

“Date approved by Chalrman: /e /5 /1968
S s g




Er R

k.

by

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. M. B. Sledd
for his invaluable aid in the preparation of this thesis. 1 wish also
to thank the other members of the committee, Dr. T. L. Weatherly and Dr.

H. K, Wilson.




iii

TABLE OF CONTENTS
Page
ACKNOWLEDWEN TS . - - - - L] » - Ll - - L] » - L] L L] Ll - - - - . - - ii

LIST OF TABLES: v o o o o o o o o o o o o o o o s o o o o o s o s v
LIST OF ILLUSTRATIONS +v 4 ¢ o o ¢ ¢ & o o ¢« 8 s a 2 o = s s s o« = v
SUMMARY ¢ « o o o o o o o » s o s s & s o s s s s s s s « s s o o vi
Chapter

I, INTRODUCTION ¢ o ¢ o o « o o o 2 o o 2 s s o s 2 ¢ o o + 1

Physical Prototypes of the Infinite Systems
Method Used to Obtain Solutions of the Infinite Systems
Questions to be Considered

II. VELOCITY OF PROPAGATION OF A DISTURBANCE THROUGH THE
INFINITE SPRING-MASS CHAIN « & & ¢ 4 o 2 o o o ¢ « o o o & 10

IITI. EXPRESSIONS FOR KINETIC ENERGIES IN THE SPRING-MASS
CHAINS o . L - - o L4 L] 9 L4 . L ] - - - L] L] L] L ] [ ] - - » [ * - 17

The Solution of the Differential System (A')
Kinetic Energies in the Finite Spring-Mass Chain
Kinetic Energies in the Infinite Spring-Mass Chain

IV, ALMOST PERIODIC FUNCTIONS: « ¢ ¢ & o« o o s o o s s o ¢ o o 31

Definitions and Stated Theorems
A Proof of Kromecker's Theorem

V. PROPERTIES OF THE KINETIC ENERGIES IN THE SPRING-MASS
CHA I NS L L L Ll L] . . L] - . L] L] - ° . Ll - . Ll . L L] L4 - . - 43

Limits of the Kinetic Energies of Individual Masses

Least Upper Bounds of the Kinetic Energies of Individual
Masses

Greatest Lower Bounds of the Kinetic Energies of Individual
Masses

Limits of the Total Kinetic Energies

Bounds of the Total Kinetic Energies

V1. RATES OF TRANSFER OF ENERGY IN THE INFINITE SPRING-MASS
Cl‘lAIND a v L L L] - L L L + - L L L) L - - » - L - ] . L] L ] L] 59




iv

TABLE OF CONTENTS (Continued)

Page
VII. EXPRESSIONS FOR KINETIC ENERGIES IN THE STACKS OF
SLIDING pLATES L] L] L] L] L] L] L L] » - - . L] - L] » L] L] » - - - 63
Kinetic Energies in the Finite Stack
Kinetic Energies in the Infinite Stack
VIII. PROPERTIES OF THE KINETIC ENERGIES IN THE STACKS
OF PLATES L] T L) - L] - - - - - L - - - L L] L] L] . . - L L] L] » 67
Limits of Kinetic Energies
Limits of Ratios of Kinetic Energies
APPENDIX A. DERIVATION OF CERTAIN INTEGRAL RELATIONS « « o & o & 72
APPENDIX B. PERTINENT RELATIONS INVOLVING BESSEL FUNCTIONS . . . 75
APPENDIX C. PROOF OF THEOREM EIGHT v « o & + o « o » s s s e s 80

BIBLIOGRAPHY. L] . * 8 LI T N ] . = » . L] « s 0w . ® 9 .+ 9 = 85




Figure
1.

20

LIST OF TABLES

dN,j/lbl (j = O, l, 2, n-‘o,'N"'l)’ L e N T T T T T

LIST OF ILLUSTRATIONS

Physical Prototype of System (A) . « ¢ v ¢« o v v v 4o o 4 &

Physical Prototype of System (B) + + & ¢« v ¢ ¢ o« o ¢ = » =

Page

47

Page




vi

SUMMARY

A study is made of some éhysicai concepts associated with two in-
finite_and two finite differeﬁfialusystems, One of the infinite differ-
ential systemg is the mathematical mpde; of an infinite chain (one end
accessible) of identical masses coupled by identical, massless, linear
springs. The masses move in one direction with no friction. At time

t = 0, all springs are unstressed except the first, which is compressed

a unitss and all masses are stationary except the first, which has veloc-

ity b. The second iﬁfinite differential system is the mathematical model
of an infinite stack (the top accessible) of identical flat plates sliding
in one dimension with viscous friction between each plate and the one be-
neath it. At time t = 0, each plate is stationary except the top one,
which has velocity b. The finite systems are mathematical models of the
finite chain (stack) obtained by considering the motion of only the first
N masses {plates) while supposing that all of the masses (plates) at and

beyond the (N + 1)%P

are held stationary.

In Chapter I the differential systems and their solutions are pre-
sented. For the infinite spring-mass chain with a = 0 and a constant
distance between reference positions of successive masses, éhapter II
discusses a phenomenom similar to the propagation of a wave through a long,
homogeneous, elastic bar of constant cross section. In Chapter III, ex-
pressions for the kinetic energies of individual masses and the total

kinetic energy of both the finite and infinite spring-mass chains are

found. Chapter IV outlines some results for almost periodic functions
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which are used in Chapter V to consider the limits as t—> o, the least
upper bounds, and tHe greatest lower bounds of the quantities found in
Chapter III. In Chapter VI, the rate of transfer of energy from the

(3 + l)th mass to the (j + l)th spring in the infinite spring-mass chain

with a = 0 is considered. In Chapter VII, expressions for the kinetic

energies of the individual plates and the total kinetic energy of both

the infinite and finite stacks of plates are found. In Chapter VIII, the
limits as t = + « of the quantities found in Chapter VII are shown to be
zero, and the limit as t > + « of the ratio of each of these quantities
for the finite stack to its counterpart in the infinite stack is deter-
mined.

Some of the more interesting results are:

1) The occurrence of the first extremum of displacement for each
mass in the infinite spring-mass chain with a = 0 and a constant distance
between reference positions of adjacent masses can be viewed as a distur-
bance passing through the chain with a velocity that approaches a limit.

2) The limit as t > + = of the total kinetic energy in the in-
finite spring-mass chain (a not necessarily zero) is one half of the total
energy in the chain.

3) 1In the finite spring-mass chain with a = 0 and 2N + 1 a prime,
the kinetic energy of the first mass has a least upper bound equal to the

total energy of the chainj the kinetic energy of any other mass is less

than the total energy of the chain. These facts are also true in the in

finite chain with a = 0.

4) The ratio of the total kinetic energy in the finite stack of

plates to the total kinetic ehérgy in the infinite stack of plates has

a limit of zeroc as t > + w.



CHAPTER I
INTRODUCT ION

In the doctoral dissertation of Mr. A. G. Law [1], which is now
in preparation in the School of Mathematics, solutions are given for vari-
ous infinite systems of linear ordinary differential equations with initial

Included among the systems solved are the following:

conditions.
.ﬁ¥o(t) = k[x,(¢) - xo(t)] » )
ﬁij(t) = k(X (1) - 2, (0 + X (0], 57,2,
? (A)
XO(O) = a, io(O) =b,
xj(O) = ).(j(O) =0, J71,250.0, -

where m and k are positive constants and a dot (+) indicates differentia-

tion with respect to t, ‘and

mb_(¢) = o[V, (£) - v (8)]

(B)

ey

mﬁj(t) = p[ijl(t) - 2v,(t) f Vi (01 571,20,

VO(O) = b, Vj(O) = 0, j=l,2,’ o'e..a‘y J

where m and p are positive constants. Systems (A) and (B) may be regarded

as mathematical models, respectively, of an infinite chain of identical
masses connected by identical, linear, massless springs and of an infinite

stack of identical plates sliding in one dimension with viscous friction



(p) between them, The purpose of the present study is to iﬁ@estigate some

of the physical implications of the solutioens of (A) and (B) obtained by

Mr. Law and, where appropriate, to compare the resdlts with those which
are obtained for finite differential systems similar to {A) and {B). More
purely mathematical questions, such as the uniqueness of the solutions of
(A) and (B), are not considered.

The study is organized in the following way. In the remainder of
the Introduction, the physical systems corresponding to (A) and (B) are
described more fully; the method used to obtain solutions of (A) and (B)
is outlined; and a Iigt is made of thelquéstions to be consideéred in sub-
sequent chap{er;. Which questions are coﬁsidered'in each chapter may be

inferred from the Table of Coﬁtents.

Physical Prototypes of the Infinite Svstems

Tﬁe differential system (A) can be thought of as a mathematical
model of the infinite chain of identical masses and identical linear
springs pictured in Figure 1. When the system is in what will be called
its reference position, the masses are so placed that each spring is
unstressed; and the position which each mass occupies under these circum-
stances is called the reference position of that mass. At anyrtime t (3 0),
Xj(t) (; = 0,1,2,...) measures the réghtward displacement of the (j+l)th
mass from its reference position (n;tice, for example, that the . mass at
the left end of the chain is called the first mass, but its displacement
is Xo(t)). The system is set in motion at t=0 with each mass except the

first stationary at its reference position. The first mass is a units

to the right of its reference position and has a rightward velocity of b.
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Figure 1. Physical Prototype of System (A).
(The system is shown in the reference
position. Friction is neglected. The
masses are numbered as indicated
beneath them.)




In order to compare the results for .the infinite system (A) with
those for a similar but finite differential system, one may suppose that
in Figure 1 the (N+1)th mass and all masses to the right of it are held

stationary. The appropriate differential system is then obtained from

M

(A) by setting Xj(t) 0 (j > N-1). Thus,

rn-’im,o(t)
mhy, 5¢8)

.

miy -1 () = KUy o0 - 2%y, (0]

KXy ) (8) _ Xy o0,

kM 5 (8) = 2y s(0) + Xy 10 (8)),551,2, 000,82,

XN’O(O) = a, iN,O(o) =b,

XN,O(O) = XN,O(O) =0, j=1,2,...,N-1,

where the first subscript N in xN,j(t) has been introduced to emphasize
that a finite system of N masses is being considered.

The differential system (B) can be thought of as a mathematical
model for an infinite stack of ide#tical flat plates sliding in one
dimension with viscous friction acting between any plate and the one
below it (see Figure 2). Vj(t) is the rightward velocity of the (j+1)th
plate. The system is set in motion at t=0 with each plate except the
first stationary. The first plate ic given a rightward velocity b.

To compare the results for the infinite system (B) with those for
a similar finite system, one may suppose that in Figure 2 all the plates

jth

at and below the (N+1 are heldtstationary. ‘Byiﬁétting Vj(t) = 0

(j > N-1) in system (B), the appropriate differential system for the
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Figure 2. Physical :Prototype of System (B).
(The plates ate numbered as indicated
to the left of each plate. The
coefficient of viscous friction between
any plate and the one below it is p.)




finite case is obtained. Thus,

o - _ ' P\
mVN,O(t) p[VN’l(t) VN,O(t)] s
mVN,j(t) = p[VN’j~l(t) - 2VN’j(t) + VN’j+l(t)], 3=1,2,..4,N-2,

_ \(8)
mvN,N'l(t) = p[vN,N_2(t) - 2VN’N_l(t)] ’
sto(o) = by VN,J.(O) =0, =21,2,.0.,N-1 . )

It should be noted that the physical systems associated with the

differential systems are not unique. The physical prototypes proposed

could equally well have been electrical ladder networks, for example.

Method Used to Obtain Solutions of the Infinite Systems

Mr. Law obtains & solution of the system (A) by first considering

the truncated system (A®), for which he finds that

N
4 2,2p-1 b . .
KN,O(t) = 3NET E: cos (§§;T %) {Q COSLw(N@P)t]‘+aTﬁ:;T sin[u(ng)t]},

p=1
(1)

where (N,p) = 2./ sin(%ﬁf% %) and B = ga By consideration of a Riemann

sum for the integral

1
zfo cosz("—;)Ea cos[2,B t sin()] + y: :in(% sin([2, t sin(%)]}dx,
(2)

with partition points Xj = & (7 = 0,1,...,N) and with the integrand eval-

e o 23=1 . .
uated at xj T (3 =1,2,0..,N), it follows that Nlimm XN,O(t) exists



and is the integral (2), which is equal to

t
alJ (2,5 t) + J,(2,8 £)]+ b‘fo [3,(2,/) +3,(2/8 ) 1ds,

where Jn(z) is the Bessel function of the first kind of order n. By

assuming that lim Xy O(t) = Xo(t) -- that is, that the first component
3

N+ o
of a solution of (A) is the limit as N approaches infinity of the first
component of the solution of (A') -- and by using the equations of (A)

recursively, a candidate for the jth component of a solution of {(A) is

obtained:

Xj(t) = a[J2j(24€-t)+ J2j+2(246-t)] o
3

t
+b fo [sz(2¢§'5)+ J2j+2(246's)]ds, 3=0,1,2,000

Direct substitution of {3) into (A) then shows that Xj(t) as given by (3)

is in fact a solution of (A).

Similarly, Mr. Law finds a solution of the system (B) by first-
solving the truncated system (B'), then taking the limit as N %, and

showing directly that the limit is a solution of (B). The solution of

(B) so found is

1 _ -
V() = b [ {oosl(s81)x] + cosl mxljela(L ¥eos xt g
. |

B J = O,_l,-;Q',',.., . (4)

where ¢ = ﬁ? . The solution of (B') is



N
t
. 4b ¢ * 2p~l ® ; TN,p
VN’j(t) e cos( N+1 5) cos[ (5557 5) (2341) Je ,
p=1
j=0,1,2’|o|’N-1 ’ (5)
where YN,p 2u[cos(2N+1 x) - 1] .

The solutions XN (t) and’ Vg (t) (i=0,1,...,N-1} of the finite
systems {(A*) and (B') are unique. Xj(tj'anq Vj(t) (5=0,1,2,...), as
given by (3) and (4), are-known to be solutions of (A) and (B); but in

the present study, the quéstion of their uniqueness is ignored,

Questions to be Considered

1) Consider the infinite spring-mass chain with a = 0 and a con-
stant distance bet@een reference points of adjacent masses. Associated
with this system, is there any phenomenon that is similar to the propaga-
tion of a wave through a long, homogenecus, elasti¢ bar of constant cross-
section?

2) Consider the kinetic energies of the individual masses and
the total kinetic energy in both the infinite and finite Spring-méss&

chains. For these quantities, what are the limits as t ® (if they

exist), the least upper bounds for t > 0, and the greatest lower bounds

for t > 07

3) Consider the infinite spring-mass chain with a = 0. What can

be said about the rate of transfer of energy from the (j+1)t mass to

the (j+l)th spring for large values of t?

4) Consider the kinetic energies of the individual plates and the

total kinetic energy in both the infinite and finite stacks of plates.



Do these quantities have limit zerc as t -»®? For each of the kinetic

energies in the finite stack and its counterpart in the infinite stack,

what is the limit of their ratio as t = =7
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CHAPTER II

VELOCITY OF PROPAGATION OF A DISTURBANCE

THROUGH THE INFINITE SPRING-MASS CHAIN

If a longitudinal displacement is initiated at one end of a long

homogeneous, elastic bar of constant cross section, a wave of displace-

ment travels down the bar with constant velocity,/ﬁ/p ; Where E and p are,
respectively, the modulus of elasticity and the density of the material of

which the bar is made [2]. It seems plausible to conjecture that a similar

phenomenon occurs in the infinife chain of springs and masses. The object
of this chapter is to examine this conjecture for one special case.

Immediately ene notices that in the physical prototype shown in
Figure 1 no distance between the reference positions of successive masses
is assigned. In order to discuss the velocity of propagation of a distur-
bance in the spring-mass chain some convention about these distances must
be adopted. Since the chain is being compared with a uniform bar, let
these distances have a common constant value c.

Suppose that there is some common occurrence in the displacement
of each mass and that this occurrence has the following twe properties:
1} it happens only once for each mass; and 2) if tn is the time at which
it happens for the (n+1)th mass, then tn—l < tn. The occurrence for each
mass can be associated with the reference position of the mass, rather than

with the mass itself. These occurrences can then be visualized as a dis-

turbance which at time tn is at the reference position of the (n+l)th mass,
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Between times tn-l and tn there is-actual;y no disturbance. The distance
between the two reference positions where the disturbance appears at
times tn-l and tn is c. . The disturbance is conéiaered to have a constant
hypothetical veldcity of c/(tn -tn_l) between these two positions during
this time peri?d. Notice that at .each time tn there may be a discontinuity
of the hypothetical velocity of the disturbance.

Now considering the infinite spring-mass chain, suppose that all
the masses are initially at their reference positions, that all masses
except the first are statlonary, and that the first mass has a rightward
velocity b. For a particular occurrence -- namely, the first extremum
of displacement after t = O -- the following questions will be answered:

1) Is c/(tn -t ) (n=1,2,...) independent of n? 2} If it is not

n~1
independent of n, does it have a limit as n ~»®, and if it has a limit,
what is the value of the limit?

The displacement of the (n+1) " mass in the infinite spring-mass

chain with initial conditions as specified in the preceding paragraph is

given by (3) with a = 0. Differentiating (3) with a = 0 gives

X (t) =5(J, (248 ¢) +3, (245 ©)]. (6)

The use of the recurrence relation Jr-l(z) + Jr+l(z) = 2rJr(z)/z [3, p. 100]

in equation {6) leads to ‘the equation

X (t) = 2b(2n41) I, (248 t)/24B t. (7)

n

For v and p positive integers, let jv " be the uth positive zero of
: b

Jv(z). Since Jv(z) has a sequence of isolated positive zeros [3, p. 127],
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j, , is well defined. Each positive zero of Jv(z) is a simple zero [3, p.

3

127]3 thus Xn(t) changes sign at t = 32n+l,u/2”@— . Hence, Xn(t) has

extrema at t = 32n+l,u/2ﬂﬁr for all positive integers “j and furthermore,

these are the only positive values of t for which Xn(t) has an extremum.
Consider the first extremum of Xn(t) after t = 0. The existence

of this extremum is an occurrence common to all the masses. Clearly there

is only one first extremum for each mass. The time of occurrence tn of

the first extremum is 32n+1,1/2“4;' Since 3,1 < Jy1,1 [4, p. 370],

tn-l < tn. Hence the occurrence of the first extremum can be visualized

as a disturbance with hypothetical velocity

o/ (ty = ta) = 28 o/ Ugpey ) = dgaor ) (8)

between time t and t .
n-1 n

1) Is c/(tn - tn—l) independent of n? Since to nine significant

figures,
jl,l = 3.83170 597,
33’1 = 6.38016 190,
35,1 = 8.77148 382,

and 37,1 =11.08637 002, [5, pp. 2-8],

. . -5
33,1 - 3y, = 254845 £ 107,

35,1 = Jg,y T 2391322 107,
-5

and j?,l - 35’1 = 2.31488 + 10 .

Hence by equation (8), q/(tn - tn_l) is not independent of n.
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2) Does 1lim c/(tn -t
n ¥

n-l) exist, and if it does what is its

value?

From equation (8), lim c/(tn - tn-l) exists if l1im (3

n® Ay 2Ptl,l

- j2n-l 1) exists and is nonzero. The asymptotic series for the first
’ +
positive zero of Jv(z) is

1/3
1,17 T %2,

+ c v'l/s e el ,

mvtec 3,1
b

Jv,l

where c, ,, ¢ are constants [4, p. 371].
, N . -

2,1, CS’]_’o”

= [ - _ /3
Let D{v) = [Jv,l - (v + ¢,y Y )] .
Then 1im [vl/aD(v)] =cy
vy ?
Consequently, lim {[2n+1]l/3 D(2n+lj} = ¢y (9)
nro ’
and lim {LG-l]l/3 D(2n-1)} = €y q (10)
n=>~ ’

From equation (10) and the fact that 1lim [(2n+1)1/3/(2n-1)1/3] =1, it
n-owx

follows that

n->oo
Considering the difference of equations (9) and (11) leads to

lim {[2n+1]1/3[D(2n+1) -D(zn-l)j} = 0. (12)
n> o

If there is a subsequence of {D(2n+1) - D(2n-1)} which is bounded away

from zero, then the same subsequence of {[2n+1]1/3[0(2n+1) - D(2n-1)]}

lim {[2n+1]1/3 D(zn-l)} =cy, - (11}
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is unbounded. This fact would contradict equation (12). Hence

lim [D(2n+1) - D(2n-1)] = 0 . (13}
n- o

Since 1lim [(2n+1)l/3 - (2n-1);/3] = 0, it follows from equation (13)
n->®

that

1im - [B(2n+1) - D(2n-1) + ¢ l(zhﬂ)l/s’ ~e; L(2n-1)Y3] =0, (4)

N oo
But
D(2n+1) - D{2n-1) = j - (2nt1) -¢. L (2nt1)3/3 15 +(2n-1) (15)
2n+l,1 1,1 2n-1,1
1/3 2ec. (a)Y34¢. (2n-1)Y3,
1,1 1,1

*op (-7 = 5o 1 " dona,n T

Equations (14) and (15) imply that

lim [ - -2] =0
e [32n+1,1 Jon-1,1 ] ’

and thus lim j - ] = 2.,
e L3gat1,1 = J2ne1,1]

Hence by equation (8), 1lim c/(tn - tn-l) = ¢,B , which is the limit
n-»co

of the hypothetical velocity of the first extremum of displacement.
The second guestion could be answered for the pth extremum of

displacement of each mass after t = 0. There is clearly only one uth

extremum of displacement for the (n+1)th mass. It occurs when’

t = 32n+1,u/é /8 . Since Su,m < etl [4, p. 370], this occurrence

can be visualized as a disturbance with a hypothetical velocity between
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each reference position in the chain. The asymptotic series for the
pth positive zero of Jv(z) is

1/3 -1/3 -1

+c, v +c, v t oeee,

j ~v+c, v
J 2,4

Vi 1,0

where ¢ are constants [5, p. XXX]. Hence by the

L “2,p 3
same reasoning as for the first extremum, the limit of the hypothetical
. th . _ ’
velocity of the p extremum of displacement after t = 0 is ¢ Mﬁ_. How-
ever it should be noted that as p increases the asymptotic series for
3, s becomes progressively weaker [5, p. XXX].
y

The limit ¢ /8 of the hypothetical velocity of the first extremum
of displacement after t = 0 has an interesting relation to the velocity,
J§7E ;, of a disturbance in a uniform bar. Let A be the cross-sectional
area of the bar; let y be the distance from one end to a point on the bar

when the bar is unstressed; let u{y,t) be the displacement of that point

as a function of time. If Y is the stress in the bar, then

and AY is the force acting in the positive direction on the cross section

of the bar:

F =AY = AE &Y,

dy
%$ is the axial strain in the bar (recall that strain is a measure of
change in length per unit of original length). The counterpart of qu in

By
the (n+1)th spring of the chain is [Xn+1(t) - Xn(t)]/c, and the tensile

force in the (n+1)th spring in the chain is




e
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F = k[x t) - X (t)] kc'[_xnﬂ('t) - Xn(t)]/c .

k¢ may then be thought of as the counterpart in the chain of AE in the
uniform bar. Ap for the bar is the mass per unit length of the bar.

Its counterpart in the chain is m/c. The velocity of a disturbance in

the bar may be written as JEE?Ap . Replating AE and Ap by their coun-

terparts in the chain, JAE?Ap becomes

Vie/tn/c) = vke cf/m =c .

Thus there is a natural pafaliel between the velocity JE;p of a disturb-

ance in the uniform bar and the limit ¢ ,/B of the hypothetical velocity

in the infinite spring-mass chain.
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CHAPTER III

EXPRESSIONS FOR KINETIC ENERGIES IN

THE SPRING-MASS CHAINS

This chapter and Chapter IV are preliminaries to some comparisons

made in Chapter V of the kinetic energies in finite and infinite spring-

mass chains subjected to similar initial conditions. In the present chap-

ter, the following quantities are calculated:
1) the displacement of the (j+l)th mass, X j(t) (j=0,1,2,0..,N-1),

]

in a finite chain of N masses for which the differential system (A*) is the

mathematical model,
)th mass (j=0,1,...,N-1) in such

2) the kinetic energy of the (j+l

a chain,

3) the total kinetic energy of the chain,

4) the kinetic energy of the (j+1)th mass (j=0,1,2,...) in an
infinite spring-mass chain for which the differential system (A) is the

mathematical model,

5) the total kinetic energy of this infinite chain.

The Solution of the Differential System (A'}

The first component, X 0(t) of the solution of (A') is given by
»

From this expression, the general component XN 3

equation (1).
3

found by using the differential equations of system {A').

Assume that

{t) can be
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N
X, .(t) = Z N,p,3) G(N,p,t), 3=0,1,...,N=1, (16)

where
G(N,p,t) = {a cos[u(N,p)t] + mﬁg sin [w(N,p)t]}

and C(N,p,j) is to be determined (recall that w(N,p) is 2,/B sin (2N+l 2))n

Choose

C(Npppo) = 0052 (gﬂ:']é E’) a (17)

Then equation (16) for j=0 agrees with equation (1).

Differentiating equation (16) twice with respect to t gives

N 2 :
RNyj(t) = Z C(N ,p,J) [G(N,,ps 1] §=0,1,2,4..,N=1 .
p=1 ot

But from the definition of G(N,p,t), it follows that

2
a‘.‘"g’ [G(Nspyt)] = - [U(Nsp)]QIG(N;pyt)
At

Hence
N
o 4 . 2 :
%y 58 = sy ), CLp.3) {HLuli,p)I?} G(N,p,t). (18)
p=l
The first differential equation of the system (A') (recall that

= k/m) is equivalent to

Y ’iNsoct) tB Xy o(t) -8 X (1) =0, (19)
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Substituting equations (16) and {18) in equation (19) and simplifying

gives

s ) {- wP(N,p)C(N,p,0) + 8C(N,p,0) BC(N,p,1)} G(N,p,t) =0.

Hence, choosing

2
C(N,p,l) = {1 - U_'(’g”"e’l’}c(Nypﬁo)
= {1 - 4 sin’ (%ﬁf% %)} C(N,p,0) {20)

will guarantee that the first differential equation of system (A') is
satisfied. Using the identity 2 sin® = 1 - cos 26 and equation (17) in

(20) leads to

C(N;p,1)

{i -~ 242 c°5(2N+1 ni} cosz(%ﬁi% %)

5

n) cos($Rsl Iy _ cos(2B=L E)} (R 1y

{2 °°5(2N+1 INF1 2 N+l 2 ONFL 2

The identity 2 cos(A) cos(B) = cos{A + B) + cos(A-B)} gives

. 3 E-*l "y _ __Q__"t _E__
C(N,p,1) {°°s[(2n+1) 51+ cos(Gyry 3) - coslGym 2)} cos(Nt1 3

cos LCQEZL ] cos (=L

N (21)

2N+l 2)

Next, to find C{N,p,j) (3j=2,3,...,N-1), consider the general equa-

tion of the system (A'), which is equivalent to

G)EN,j(t) + 2BXN9J(t) = BXN,jwl(t) - BXN9j+l(t) =0 ., (22)
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Substituting equations (16) and (18) in equation (22) and simplifying gives

ol Z:{'[w N,p) C(N,p,3) + 28C(N,p,3) -BC(N,p, 3-1)

p=1
- ﬂC(N,p,J+l.} G(N,p,t) = 0 .

Choosing C(N,p,j) (j=2,3,...,N) such that

C(N,p,j+1} + C(N,p,j-1) = { L"’-‘i;-‘-’)—]—} N,p,J)
= {2 - 4 sinz(gﬁi% %)} C(N,p,3) (23)

guarantees that X j(t) given by equation (16) satisfies
¥
me’j(t) = k(xN,j_l(t) - 2stj(t) + xNyj+1(t)), 3=1,2,0.0,N-1 .

Except for the equation with j=N-1, these are the general equations of

the differential system (A°). For the moment this discrepancy will be

ignored.

The identity 1 - 2 sin’® = cos 28 and equation (23) imply

C(N,p,541) + C(N,p,j-1) = 2 cos(aﬁxf 1)C(N,p,3), 351,2,...,N. (24)

Standard difference-equation techniques [6, p. 241] applied to equation

(24) with constraints (17) and (21) yield

- Z2p-1 T
C{N,p,3) cos(2N+l 2) £OS L2N+1 3 (25+1)] , (25)
J=0,1,2,...,N .
Now consider the discrepancy mentioned before. With C(N,p,j)

defined by (25}, X, j(t) given by (16) is known to satisfy all the
2
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differential equations of system (A') except

me - 3 ¢ k(X N-2 (t) - QXNpN_l(t))

However, (16) is known to satisfy

m-X..N,N__l(t) = Xy o (8) = 2 () + %y (1)

- 2p-1 4 ) -
But C(N,p,N) cos(2N+1 5) co 5[2N+1 5 (2N+1)] = 0, and hence XN,N(t) = 0.

Therefore (16) satisfies all the differential equations of (A').

One might now ask if X j(t) with C(N,p,j) given by (25) satisfies

¥
the initial conditions of (A'), XN,O(O) =a’xN,O(O) =b,XN’j(0) =XN j(0) =0

?

(j=1,2,...,N-1). From (16) it follows that

N
4 . ® _4b . )
xN’j(o) = 2Nil C(N,p,j) and xNgj(o sl c{N,p,j) . (26a,b)

p=1

Whether the initial conditions are satisfied depends on the value of

N
C(N;p,J) = Zcos(é‘ﬁﬁ 2) €os L(2N+1 (25+1)] . (27)
1 p=l

[~z

P

Because it will be useful later, consider the more general problem

of finding the value of

N
S(g,r) = E:cosL(EEIT) (2g+1) JCOSL(2N+1 % (2r+1)] , (28)
p=l
4,r =0,1,...,N-1 .

Using the identity cos(A) cos(B) = % [ cos(A+B) + cos(A-B)], one finds that



N
=Ll i 2p-1
S(qg,r) = 5 E: cos | ( 2N+1)1t(q+r+l ]+ 5 z:cos[(2N+l
p:l p:l
N
Since cos[(2p-1)8] = gin NO provided that sin @ # 0 [7, p. 366], it
2 sin 8
p=1

follows that if sin (2N+1) # 0 , then

N ; v
§: 2N+1)] _ sinfvr - 2N+1]
cos[ vn] =
2N+1 2 sin (=2t-) 2 sin (
p=1 2N+1 1 N+l

. K . VT
sin{vx) cos(2N+l) cos{vm) s1n(2N+1)

2 sin (2N+1 2 sin (2N+1

If in addition v is an integer,

N
{(2p-1)vm 1 _ 1 v
Z:cosL ] = - 5cos (vn) = - 5(-1)
p=1
Now if q # r (q,r = 0,1,...,N= [ngﬁz%lg] # 0, and sin[

Therefore from equation (29) it follows that
= Lo Lyttt ool Ly et
Stay) = 3 {(- PE0TT 4 (- P1ITY

= (- Ly oyt op L) -
(- (-1) {( 1T+ (_1)r} 0

From (29) with g =1r ,

S(g,r) = 2 E:COS[2N+1 n (2q+1)]+ %’ z: (1)

)2 (gq-r)]. (29)
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+ .
and since sin[Eéﬁgfll] #0(q= 0,1;...,N-1),

+ N+
S(a,0) = 3 {- D02+ 4} L2
Hence
0 » iqu#r
s(g,r) = (30)
ON+1
=, ifg=r

gs;T = 0;1,2;:..N=1 .

Considering 5(0,j) and equations (24a), (24b), and (27) leads to the
conclusion that xn,j(t) (3=0,1,...,N-1) given by (16) with C{(N,p,j) given
by (25) satisfies the initial conditions of (A°). '

It is no accident that xN (t) (§=0,1,...,N-1) satisfies the ini-
tial conditions of (A’). It is a consequence of the fact that xN,O(t)

given by (1) is actually the first component of the solution of (A').

Kinetic Energies in the Finite Spring-Mass Chain

Let E?(t) be the kinetic energy of the (j'l-l).th mass in a finite
Springumass chain for which the system (A') is the mathematical model.
Then ; =2 [XN t)] where X j(t) is given by (16) with C(N,p, i)

given by (25). Consequently,

N N

N, m 2 a :
Ej (t) = 5 2N+l Z Z C(N,p,3)C(N ,ChJ [G(N,p, )]E[G(Nscht)]°
p=l anl (31)
Let EN(t) be the total kinetic energy of the finite chain., Then
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N-1
N = E?(t)
j=o
N N
2 .
-2 ) Z Z ZC N,p, 3)C(N,q; ) th spst)]L[G(N,q,t)]
j=0o p=1 g=1
N N : 1 N"l
2 . )
= % 2N+l) Z z at [G(N,p,t)] %’{ (G(N,q,t)] ZC(N,p,J)C(N,q,J) .
l C|"l j=o
But
N-1 o ‘
z C(N,p,j) C(qu?j) =
j=o
_E__'K .. T 1_'[_ _
C°5(2N+1 2P 2N+1 2 E: 2N+1 5 (2p-1 1009[(2N+1 5 (29-1)]
N
_ 2p-lm 2v-1 2v-l Tn~_137-
cos (371 Peos (2N+12)§: cosl (Gy) 5(20-1) Jeosl (5 5(2a-1)):
v=l
’ - 2p-lmy  _(2g-d e o
cos (2N+1 2) ("éﬁer)S(p 1, q-1) ,
Pyd = 1,2,.00,N,
where S(. , -) It follows from {30) that

EN(t

Now 2 & 7 [G(N;p,t

is defined by equation (28).

) = (£l x
2N+l 2

2N+1) Z cos ){at G(N’p’t)}z

|\>|5"

{-am(N,p) sinfw(N,p)t] + b cos[w(N,p)t]} 3

)] =

1
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hence,

eN(y) = 2 2N+1) Zcos (51%;}% %) {-au(N,p) sinfw(N,p)t]+b COSEU(N,p)t]}Q.

(32)

Kinetic Energies in the Infipite Spring-Mass Chain
Let Ej(t) be the kinetic energy of the (j+1)th mass in an infinite
spring-mass chain for which the differential system (A) is the mathematical
model, Then Ej(t) = % [i,(t)]2, where Xj(t) is given by equation (3). Dif-

ferentiating (3) with respect to t gives

x (t) = 2a f[J' (2,/" 1) + T35 +2(2,/-t)] +bLJ (2,Bt) +7 Tp; 4o (2 BT,

where a prime (') indicates differeatiation with respect to the argument

of the function. Use of the identity J;(z) = % (J_ ., {z) - Jr+1(z)) leads

r-1 ﬁ
to . "
f(j(t) = adf [y, (24B) - (2P 0]+ o[ J,,(2 Bty
402 VNP
Therefore,
Ei(t) = 5 {aQB[Jéj_l(Q B t) - Jp543(2 01

+

2ab ,st_[J'zj_l(z JBt) - J5 5452 ./E't)][sz(z- B t) 355402 O]

+

b3, (2.8 1) + 9, +2(2 B )] } (33)

Let E(t) be the total kinetic energy of this chain. Then
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o]

E(t) = Z: E,(t) (34)

j=o

It is not immediately evident that this series converges, To find a
simplified expression for the series and to prove convergence, a method

which is similar to that outlined in the Introduction for finding solutions

of the infinite differential systems is used., The total kinetic energy
EN(t) of the truncated chain of N masses has already been found. Next

1im EN(t) is found. Then this limit is shown to be the same as the
N —»>

infinite series (34), which is the total kinetic energy.

The Riemann sum for

1
“‘J‘ cosQ(%g) {-a,JE—sin(%f) sin(2 /B t sin(%%)]

0

+b cos[2 B t sin(%f)]}z dx (35)
with partition points Xp = % , p=0,1,...,N, and with the integrand

evaluated at Xé = %ﬁi% in each interval is

N
m E-l n T
i E: co 2N+1 5) {-a 2 yr—sin (2N+1 5) sin[2 /B ¢ s1n(2N+1 2)]

+ b ces [2 Jﬁ_tasin 2N+1 2)]}

The limit of this sum as N % is the integral (35). EN(t) given in

W equation (32) is 2;21 times this sum; hence, 1lim EN(t) is the integral.
N =»co
|

By letting y = sin &X' in (35), 1t follows that
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1
lim EN(t) = %‘“I v 1-y2 {- a 28 y sin[2/f ty] +b cos[2J[3_ty]}2d
0

N>

2 1
2
- BB 72 0 y? ean®2 it ylay |
o]

1
) Bmab“VE- I v _y2 sin [2 B ty] cos[2,B tyldy
0

+ gi“;tﬁ"'ol 1 :Yz 0092[2 \/p_ty] dy . (36)
One can show (see Appendix A) that
I:' y2 ] _yé sin (zy) dy = 55 - _‘f (1l 2)3/ rcos(22y) dy
; Lg%%—‘r (1 - cos(?zy);y , (37a)

1 1
f‘ yJl - y2 sin(zy) cos(zy)dy = L%fl.r (1-3;2)3/2 cos(2zy)dy, (37b)
0 0

and
oy T, 1 2\1/2
I 1 -y° cos (zy)dy 815 f {1 -y9) cos(2zy)dy . (37¢)
Since
1
3
Jv(2z) = f (1- cos(2zy)dy

[3, p. 114], it follows when v is a positive integer that
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J (2z) 1 v-i
v 1 -yY) 2
(22)"  [1-3-++(2v-1)] I -y cosl2zy) oy . 39

A

Using equation (38) in (37a), (37b}, and (37¢) leads to

Jr-*—~ ( ) J2(2z) . J3(2z) ( )
1- sin"{zy)dy = .l 4L ’ 39a
(22)2 4 "{2z)
. J2(22)
I ﬂ/1 - sin (zy) cos (zy) dy = i (39b)
and
1 J. (22)
/ 2 2 I S D |
fo 1 -y° cos” (zy)dy = 5 + 2 (22 {39¢)
Using the recurrence relation
I (22) + 3, (22) _ J_(22)
2r 2z

[3, p. 100] in equation {39a) gives

Letting z = 2 Jﬁ-t and substituting this result, together with equations

(39b) and (3%9¢c), in (36) yields

lim EN(;) _opa® _mpe® hU /B t) ) 31,(4 /B t)

N> 4 2 4 Bt 4Bt
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J,(4 JB t) b2 2 J1(4,/p_ t) -

-~ 2Zmab /B + +
a a. Bt 4 2 a4t

By using the recurrence relation several times, one finds that

2
lim E(t) =& [1 - 5 (a 1) + (4,8 t)]
4 0 4

Now

.ubfE [3,(a /1) + 33(a JF )]

2
+ )+ J(aBt) + 3,0, 0)] . (40)

It remains to be shown that this limit is actually the total kinetic
energy of the infinite chain. Using results (Appendix B, equations (B.1),
(B.2) and (B.3)) obtained from Neumann's addition theorem for Bessel
functions [4, p. 363), one can prove that

[1 - 3 (22) + 3,(22)] =2 Z [sz_l(z) - J25+3(Z)]2 ’ (41a)

J=0

L3, (22) + 3,(22)] = 2‘_2 [355.0(2) = 355,4(2) 03, ,(2) +7,5,5(2)], (41b)
j=o

and

[1+ 3 (22) + 3,(22)] = 2 Z[J2j(z) + J2j+2(z)]2 . (alc)
j=o

These equations when considered together with equations (33), (34), and

(40) imply that 1lim EN(t) is the total kinetic energy of the infinite
N

chain. Hence
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2
() =28 [0 -5 (afe) +54B0]- ’%@ [3,(a B t)

2
+ J3(4 AB )]+ @2— [1+ J°(4 B t) + J2(4./§3_t)]. (42)
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CHAPTER 1V
ALMOST PERIODIC FUNCTIONS

This chapter contains two sections. In the first section some.
definitions are made and theorems stated without proof. 1In the second
section a proof of Kronecker's Theorem based on the theory of almost
periodic functions is given. These results will be used in Chapter V
to compare the kinetic energies in finite and infinite spring-mass chains

subject to similar initial conditions.

Definitions and Stated Theorems

In order to give the usual definition of an almost periedic func-

tion two preliminary definitions are made.

Defimition 1: A subset X of the real numbers is relatively dense

if and only if there exists a real number L such that for any real number
a there is an element x in the set X with the property that ¢ < x < a + L.

Definition 2. Let f be a complex-valued function defined on the

set of all real numbers. Let ¢ be a positive number. Then T is a trans-

lation number of f corresponding to ¢ if and only if

l£(t) - £t + )| < ¢

for all real t. The set of all transiation numbers of a function f cor-
responding to a positive number ¢ will be denoted by E[f; el

Definition 3. Let f be a continuous complex-valued function defined

on the set of all real numbers. f is almost periodic (a.p.) if and only if
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for any positive number e, E[f; €] is rélatively dense.

It follows from this definition that any continuous periedic func~
tion is almost periodic.

The following theorems can be proved with this definition of an

almost periodic functiowm.

Theorem 1. If f(t) and g(t) are a.p. functions, then
i) f(t) + g(t) is an a.p. function,
and i1) [f(t)J[g(t)] is an a.p. function.

Proof: See [8, pp. 36-38].

Nt '
Since Ape P "1s almost periodic if Kp is real, it follows from
| | L
Theorém 1 that if A,, A ,...,A_ are real, then A e is almost
17 72 P P
p=l

periodic.

Theorem 2. If f{t) is an a.p. function, then
LT
lim [ f.r f(t)dt] exists .
To> 0
Proof: See [8, pp. 39-42]. This limit is denoted by M{f(t)} and

is called the mean of f.

Theorem 3. If f(t) and g(t) are a.p. functions and ¢, and c, are

constants, then

M {c £(t) + c29(t)} = o M {£(1)} + e p {a(0)} .
Proof: clf(t) + czg(t) is an a.,p. function by Theorem 1. The

proof of Theorem 3 follows from the definition of the mean of an a.p. function.
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Theorem 4. If Kl and Kz'are;;eal, then

" {-fikl‘t --nzt]_ _ 0. 1f X ;lxz
e e = R
1 if A =X,

Proof: See [8, p. 48].

Theorem 5. If hl,'k2,...,kN are distinct real numbers, and if

N At
f(t) = Z Ae P | then
p
p=l

0 if N # M Xpseeey mOT Ay

M {e-ikt f(t)} =
Ap 1f A = lp for some p {1 < p < N).

Proof: The proof is a consequence of Theorems 3 and 4.

Theorem 6. If f(t) is a real a.p. function, then the least upper
bound (l.u.b.) of f{t) for all real t is equal to l.u.b. f(t) for positive
t, and the greatest lower bound {g.l.b.) of f(t) for all real t is equal
to g.l.b. f(t) for positive t.

Proof. The proof of this theorem follows from the fact that there
are arbitrarily large translation numbers of f(t) for any positive num-

ber e.

A Proof of Kronecker's Theorem

Theorem 7. (Kronecker's Theorem). Let € be an arbitrary positive
number; let ®19Pos e sPy be arbitrary real numbers. If Nl,x2,...,kN are
real numbers such that for every set of rational numbers T sToseeesTy

which are not all zero
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rlxl + r2x2 + ...+ rNxN'f 0 --

that is, if the set {KI,K2,...,AN} is linearly independent over the
rational numbers --, then there exists a number t and integers Ny aNgy e ey Ny

such that

lxpt +:pp - np_l <eg, p=1,2,..., N .

Proof: First, two lemmas are proved.

Lemma 1. If f(t) and g(t) are two a.p. functions such that
[£{t)] < u for all t (where u is a constant) and g{t) is real and non-

negative, then

I {£()a(0)} | < wn {g(v)} .

n

T
Proof: |M {f(t) g(t)}l | 1im [%-In f(t)g(t)dt]|
0

To®
y ol
= um |3 [ #0glt)at] .
T > 0
Hence
) ol
M {£(t)g(t)} | < lim ff |£(t) | ]g(t) |dt
T 0
T
< 1im %f g(t) .
T o)
Therefore

CIm{(t)g(0)} [< um{gl)} .

Lemma 2. If hl,kz,...kN are real numbers such that for every set
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of rational numbers TysTnyeeey Ty which are not all zero
rhy trp, t ot O,

and if
it
- P
f(t) = A + Z Age ’

where Ao’Al’AZ"°"AN are complex numbers, then the l.u.b. |f(t)| for

all real t is

N

| z :'Apl )

p=o
Proof: It suffices to assume ‘that the constant term Ao of f(t) is

real and non-negative, since if A Fo,

A,
[£(t)| = |5 f(t)
o]
la,l .
for all real t, and the constant term of A £f(t) is real and non-nega-
[}

tive (Ao is the unique constant term of f(t) since if xp = 0 for any p,

the Kp's are not linearly independent over the rational numbers). Let
N
U be the l.u.b. |[f(t)]. E:lAp[ is clearly an upper bound of |f{(t)][;

p=o
hence

N
v ) Al . (43)
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Now consider the qth-order Fejér kernel  defined by

g
ot
K(t) = § (- Lely et
[0 =) -
=9
It can be shown [8; p. 24] that
2
sin(L)
_1 2
K(t)-a——t— ’
9 sin(Z)

2

and thus Kq(t) is real and nen-negative. Let Vl’vz""’vN be real num-
bers such that
iv

Ap = lAple p, P=1,2,..,N.

Define

. N
K(t) = 1
gt ;

KOt+Vv).
o qQ'p p

1

It follows from the properties of Kq(t) that Rq(t) is real and non-negative;

hence by Lemma 1
I {50k (0} | < m{R ()} . (44)

By multiplying out the expression for Eq(t) one cbtains

~ - -iR t -iv
Kq(t)=1+gq'—1- e P o Pu4R(y), (45)

3 ~1=

1

in ot
where R(t) is a sum of the form = ae 5" with none of the A equal
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to 0, -A,,*A,..., nor -k because of the linear independence of
1 2 N

Kl’K2""’KN over the rational numbers. From Theorem 5 and equation

(45) it follows that
e "‘Ot"
MKt}=Melxt}=1.
{k (0] =m{ o(t)
This fact together with inequality (44) implies that

M {f(t)ﬁq(t)} | <u. (46)

From equation (45) and Theorem 3 it follows that

N .
w {sR o) = wfe}+ 2 T e Pl P ew))
p=l

int
S
+ZaM {e f(t)}

Use of Theorem 5, the definition of f(t), and the fact that the fss's are
not 0,—k1,-h2,...,-KN reduces this equation to

-iVv
Ae P,

p
1

+ =L
o q

M {f(t)iq(t)}r = A

% [~1=

iv

Since A is assumed to be real and non-negative and Ap = ]Ap] e P,

»

‘ N
M {f(t)iq(t)} = |a| + Qé_l ) Al
p=1

Hence from inequality (46) it follows that
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N
g-1
lagl + 92 ) At < U
p=1

Since g is an arbitrary positive integer, taking the limit as q > gives

Z |Ap| <u, (47)

Together, inequalities (43) and (47) prove the lemma.

To prove Kronecker's Theorem suppose that ¢ is an arbitrary posi-

tive number and Pis Ppy-ee,Py aTe arbitrary real numbers, Consider the

function
E N \
: - i2mpp 12m>\pt
£(t) =1+ Z e e
p=1
TN o
: ‘ e
14 ) o iFRpttep)
p=1
If kl,k2,.;.,XN are real numbers such that for every set of rational
numbers Tys¥pyeessTy which are not all zero

R LY PR AT W £0,

then 2m\ 2nk2,...,2nkN are real numbers which also possess this property.

l’
Hence by Lemma 2, l,u.b.{f(t}| is N+1. The function f(t) equals one plus
a sum of variable complex terms which is always less than or equal to N

in absolute value -- that is, f(t) =1 + r(t) ei¢t, r{t) <N. |£(t)] can

be near N+ only if f(t) is near N+l. Since l.u.b. |f(t}| is N+1, there
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is a sequence tj such that

Lm [£(t;) - (NH)] = 0. (48)
jr=
However,
' If(tj)'- (N+1)| > |Re[N+1 - f(tj)]l ’
and
.. N
Re (N1 - £(t)] = ) {1 - cos [2x(nt; + q,p)]] .
p=1

Since the terms of this sum are all non-negative,
.) = (N+ - t.+
|f(tJ) (NH1) | > {1 cos[2n(1p ; ¢p)]} .
P=1,2,...,N .

Let nj b be the integers such that

ST | g
N =
-

< n,

Nt +o -
%o 3P

<At,.t+to +
PJ P P

let

e, =xt,+9 -n,
JsP P J p JsP

Then

)]

If(tj) - (N)] 21 - cos[2n(nj’p + €50

=1‘C°52’!£. *
JspP

Assume with no loss in generality that € < % . Suppose that for each j

there exists an integer p for which lej pl > e. Then, for this integer p
]
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N

e <le, | <
JsP

and hence,

lf(tj) - {N¥1)| > 1 ~ cos 2re > O

for each j. The fact that |N+1 - f(tj)l is bounded away from zero for

all integers j contradicts (48). Hence there is a j for which

| e. | =int, +e -n, |< = 1,2,...,N
| j,pl lpJ q)p j,pl €, P T TN AR

| Thus the theorem is proved,

A corollary will be useful in Chapter IV.
Corollary 1. Assume that Py sPose s Py and Ao’Al""AN are arbitrary
! real numbers., If ll,kz,...,kN are real numbers such that for every set of

rational numbers TisTnser ey Ty which are not all zero

r

; M T TR ety £ O,

272

and if
| N
j £(t) = A+ Z: Ay cos (At +9)
p=l
Hi then

1) 1l.u.b. f(t) for all positive t is

N
A+ Z Ial

p=1

and




4]

i1) g.l.b. f(t) for all positive t is

N
A - E: AL .

Proof: Since the proofs of part i) and part ii) are very similar,

only the proof of part i) is given. By Theorem 6 it suffices to prove that
N
Lou.b. £(t) for all real t is A_ + E:[Apf . Obviously this quantity is
p=l
an upper bound. Let £ be an arbitrary positive number. Next it is shown
N
that there is a real t such that |£(t) - (A + E:rApT)l < e, and thus
p=1
part i) of the corollary is proved. Let

0 ifA >0
5 = P p=1,2,...,N .
P11 if A <O

Then

e )
o
O
o -
th
-~
<
—
"

A cos(X+dm =281
p p p

Ap cos(bpn) cos(X + 6pﬂ)

1]

JApl cos(X + bpn), P = 1,2,...,N . (49)

From the definition of f(t)

N
| E(Ap cos(h t+o ) - A1)

N
£(6) - (&, + ) 1A DI
p=l

o

A A t+ - A
| o cos ( 5 Qp) | pll »

IA
o]
=
Y g
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and from (48)

N N
ZM"M < ) 1allcosh to +8x) -3l (50)

£(t) - (a +
. p=1 p=1

Since cos x is contindous énducps (2nﬁ) =1 if n is an integer, there is
a positive number & such %hét if x is any number with the property that
there is an integer n for whicb ]x - 2nn1 < 6, then
jcos x - 1] < -N—ﬁ——4-r}
) Al
p=l

By Kronecker's Theorem, there is a real number T and integer np such that

L) b
P4+ B - =
1xpr t ot 3 npl <omy P T 1250000,

Letting t = 2nT, one finds that

X + +an - 2n 1| <3
‘ ‘Pp D pl ’

pt
and hence

£

Lo lal

p=1

cos t + + 3 -1 <
|co (xp °, pﬂ) l

It follows from inequality (50) that

N
l£(t) - (o + ) la Dl <e .
p=1
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CHAPTER V

PROPERTIES OF THE KINETIC ENERGIES

IN THE SPRING-MASS CHAINS

This chapter is devoted to a comparison of the kinetic energies in
the infinite and finite spring-mass chains for which the systems (A)Hand
(A') are the respective mathematical models. For the kinetic energy of
the individual masses and the total kinetic energy of each system, the
following questions are considered (though not completely answered in
every case):

1) Does the quantity have a limit as t ¥*=? If it does, what is
the 1imit?

2) What are the least upper bound and greatest lower bound of
the quantity for t > 07

The (j+1)th component xN,j(t) of the solution of (A') found in
Chapter III is defined only for t > O and is therefore not an almost
periodic function as defined in Chapter IV. However the expression for
xN,j(t) given in equation (16) and the expressions for E?(t) in (31)
and EN(t) in (32), if considered for all real t, are almost periodic
functions. Corollary 1 can then be applied to these quantities if it
can be shown that there is no set of rational numbers {rl,r2,...,rN} not

all of which are zero such that

rlu(N,l) + r2w(N,2) + ...+ rNu(N,N) =0.
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Though the non-existence of such rational numbers cannot be proved in
general, by using a method similar to one used by C. Hemmer in L9, pp.

21-22, 68-70] one can prove

Theorem 8. There exist rational numbers TisThsee Ty not all of

which are zero such that

rlu(N,l) + rzw(N,Q) + ... + er(N,N) =0

if and only if Z2N+] is not a prime.
Proof: Several concepts introduced in the proof of this theorem

are not pertinent to the discussion of the spring-mass chains, and there-

fore the proof is given in Appendix C.

Limits of the Kinetic Energy of Individual Masses

The kinetic energy E;q(t) of the (j+1)th mass in the finite chain

is m/2[kN j(t)]Q. It follows from equations (16) and (25) that
3

p=1
+ b cos (m(N,p)t)}

N
_4 2p-1 =® -l o, 2 2 2

p=1

I

where oy b are real numbers such that
’

cos QN’p = q/k/a2m2(N,p) + b2 (52a)

N
Xy, 5) = sar L cos(GRIT B cosl 3BT § (2741)] {-au(¥,p)sin(u(N,p)t)

x cos{w(N,p)t + LN p} s 320,1,2,...,N-1, (51)
y
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and

sin ™,p au(N,p)/a/ézuz(N,p) + b° , (52b)

p = 1,2,.0!,N .

Suppose that iN j(t) is a constant ¢. From (51), by integrating
» .
from O to T, dividing by T, and taking the limit as T » =, one finds that
M{xN’j(tﬂ =0. But M{c} =c. Hence ¢ = 0. Thus if Xy, 5(t) 1s a con-

stant, then X j(t) = 03 and
»
M {cos(u(N,l)t + wN,l)xN,j(ti} =M {cos(u(N,l)t + QN,l)q} =0,

But from (51) it follows that

)cos(2j+1 “)V/a2U2(N,1)+b2

cos oN+] 2

%] Loy

M {cos(w(Nal)t + q’Isls,l);(N,j(t)} ) (2N+1)2

}40, j =0,1,2,0-Q,N-1 [}

Hence by contradiction iN j(t) is not a constant. E;q(t) could be a con-

»
stant only if IiN,j{t)l were constant, Since iN,j(t) is continuous and not
a constant, it follows that E?(t) is not a constant,

A non-constant almost periodic function f cannot have a limit as
t », since it will have at least two distinct values in its range and
there will be arbitrarily large t's for which f(t) is arbitrarily close
to each of these values. Hence the kinetic energy of each individual mass
in the finite chain has no limit as t — o,

For any integer v, ;i? J,(x) =0 (10, p. 170]. It therefore fol-

oo

lows from equation {33) that the kinetic energy of each individual mass in

the infinite chain has a 1imit of zero as t =,
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Least Upper Bounds of the Kinetic Energles of Indiyidual Masses

Let
dy 5 = 11;>u(.)11> 1xN )], 3=0,1,2,...,N-1.
Then
l.u.b, EN(¢) = 2 [dy J.]2 )
t>0 ¢
The value of d, . has not been found for the general case, but

N, j
if 2N+1 is a prime, it follows from equation (51), Theorem 8, and Corollary

1 that
1l;.>uéb. ).('N, (t) = 2N+l Z lCOS(ZN‘H 2)60 [2N+l 2 (2J+1 ]l ‘v/; W (N,p 2
p=l (53a)
and
N
gt1>18 XN 2'51\?71 p_lcos(%ﬁ %)cos[%ﬁ—& %(2j+1)]| an%f(l\l,p)ﬂa2 (53b)

j = 0,1,2,...,N-1 L)

A simplified expression for this sum when a and b are arbitrary has not
been foundj however, a more thorough analysis can be made for the special
case 2N+) a prime and a = 0. In this case the finite chain has all masses
initially at their reference positions and all masses stationary except
the first, which has velocity b. System (A') with a = 0 is the mathe-

matical model of this chain. Then from (53a) and (53b)
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N

d (22 L (2541)]] | (54)

_,E__.
N, j 2N+1 Z | cos (57t ) ©0
. p:l
jo=0,1,2,...,N-1 .

For N = 5,6 dN j/lbl j=0,1,2,...,N-1 are given to four significant
?

figures in Table 1.

Table 1. dy j/lbl (3=0,1,2,...,N-1)
]

N . *
ﬁ\{\\ 0 1 2 3 4 5
5 1.000 0.8412 0.8576 0.8412 0.8576 --
6 1.000 0.8386 0.8301 0.8551 0.8386 | 0.8551

In the table dN’O/lbl =1 and dN,j/lbl <1, j=1,2,...,N=1 -- a fact which,
as will be shown immediately, can be proved in general for this case

(2N+1 prime, a=0).

dN,O/‘bl =1

From (54),

lcos(322 5 cos(R3 D))

1

S
dy, o/ Il = a5

n
S~z

nﬂﬂ
S

_ 4 Z: ( 2p-1
T ONHL L 0% \onm
p=1

= 2N+1 s(o, 0) ,

where S(+, ) is defined by equation (28). 5(0,0) was found to be equal
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to 2N+1/4; hence

dN’O/lb] =1.

dN‘j/lbI <1, §=1,2,...,N-1

For p =1,2,...;,Nand j = 1,2,...,N-1, there exists an integer

g_. . such that
Py J

(2p-1)(2541) 1 _
2N+ 2 " %,;

<=, (55)

<

b ] |

L
2

The possibility of equality on the left is actually excluded since both

2p-1 and 2j+l are less than 2N+tl, and 2N+1 is now assumed to be a prime.

| (2p-1)(25+1) - 2qp j(2N+1)l is an odd integer, and from (55) with equal-
b

ity excluded it follows that
[ (2p-1)(25+1) - qu j(2N+1)| < N+L .
]

Define I{p,q) = |{2p-1)(23+1) - 2qp J.(2N+1)l. Suppose that for some
b

fixed j I(p,3) = I(p',Jj) for 1 < pp' <N, p # p'. If

(2p-1)(23+1) - 2qp,j(2N+1) = (2p'-1(2j+1) - 2qp,j(2N+l) ,

it follows that

(p-p')(2i+1) = (qp. PR j)(2N+1) .

| » ?

-Since the left side of this equation is not zero and 2N+1 is a prime, it
follows that 2N+l must divide either {p-p') or (2i+1). But (p-p")

(1 <py,p" <N;p#p") and (2541) (1 < j < N-1) are both less than 2N+l.
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Thus, this equation is a contradiction. Now if

I(p’j) = I(P',j)
and
(2p-1)(25+1) - 29, (2N+1) # (2p*-1)(25+1) - qu.’j(2N+1)’

it follows that
(2p-1)(2j+1) - 2q_ .(2N+1) = -(2p*-1){2j+1) +2q_, .(2N+1) ,
Pyl P ,J]
from which one can obtain

(ptp*)(2j+1) = (qp.’j +q ) (2N+H1) .

PsJ

By the same reasoning as before, this equation is a contradiction. Hence
I(p,3) # 1(p*,3) if p # p".

Since |cos(8)}|

|cos(® + nx)| for n an integer and since

i x 1
cos 6 > O for - > 8L 5 3
(20-1) (2341) ™ 4| _ (2p-1)(2i+1) =
| cos[ AL 5 1l = |cosl AL > qp’Jn]l
(2p-1)(2541) - 2q J.(21‘1"'1) x
- cos NFI 21

Since cos 8 = cosle[ R

ol SRR 1 o i .

: 2p-1 my) _ 2p-l - .
In addition lcos(2N+l 2)| cos(2N+l 2) (p = 1,2,...,N)3 and therefore

from equation (54) it follows that
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N
b= Locos(BE D cosRRALT) (56)
p=1

5= 1,2,...,N-1,

With j fixed I(p,j), p = 1,2,...,N, are N distinct odd positive integers
less than 2N+l -- that is, the integers 1,3,...,2N-1 (though not in that

order). The sum

N

) cos (_LE;JL 1)

Z °°5(2N+1 2 N+]
p=1

can be regarded as the dot product of two vectors

3_n
[cos(2N+1 2), °°5(2N+l ) e cos(2N+l 2)]

and

[cos(lil*il %), cos(—L-*ll ..,cos(liﬁ4il %)] .

2N+1 2N+1 )5 N+1

In the first vector, each component is larger than all the components

following it. From the definition of I(p,j), I(1,j) = 2j+1, and hence

i+
the first component of the second vector is cos(%ﬁ;% % . One of the

I{p,j)yp = 2,3,...,N,must be 1; hence there is a component of the second
vector which is greater than its first component. Therefore neither of

these vectors can be a constant multiple of the other. Using the Cauchy-

Schwarz inequality with equality excluded yields

N 2

N N
2p-1 % I{p, i) = _9__ 3 1(p,j) n
Zws(mﬂ 5 cos(S53= 3 < Zcos 2N 3 Z 2N+1 2) .

p:l p:l
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Since {1e,3)Ip = 1,200 0N} = {1,3,5,..., -1} ,

N N
ZCOSQ(M 3y = z cosz(%ﬁi-f)- 1-;-) .

2N+l 2
p=l p=1
Hence
; _12;11 :
n - 2/2p-1 T
Zws(mﬂ 2) cos (5 Z cos” (5NTT 2
p=1 p=l
But

N
2,2p-1 my _ _ 2N+

p=l

and therefore

2N+l 2 2N+1

. |
-4—205(-2-"—1)c05[—(3"1)- 5] < 1.
p=

From this equation and (56), it follows that
dN,j/lbI <1 3=1,2,...,N-1 .,

A physical interpretation of these facts for the special case
under consideration is as follows. At t = O the total kinetic energy in
the chain is the kinetic energy mb2/2 of the first mass. dN,O/lbl = 1
and dN’j/IbI <1, j =1,2,...,N-1, mean, respectively, that the kinetic
energy of the first mass for some t > O is arbitrarily close to the total
kinetic energy of the chain, and that the kinetic energy of any other mass

is bounded away from the total kinetic energy for all t > O.
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Now consider the kinetic energy of the (j+1)th mass ip the infinite
chain for which the system (A) is the mathematical model. An expression

for l.u.b. E_(t) has not been found. However since Ej(t) > 0, it follows

t>o0
that l.u.b. E_(t) > 0. Furthermore since lim E.(t) = 0 and E_{t) is
t>o 3 tre .
continuous, l.u.b. Ej(t) is attained by Ej(t) at some finite t.
t>o

As in the finite chain a more thorough analysis can be made for the
infinite chain if a = 0. For this case it follows from the initial condi-
tions that the total energy of the chain is mb2/2. Since EO(O) = mb2/2

and Eo(t) is continuous, l.u.b. Eo(t) = mb2/2. Now suppose that for some
t> o

3> 0 1l.u.b, Ej(t) = mb2/2. From the preceding paragraph it follows that
t>o
there is some t  such that Ej(t ) = mb2/2. Since E,(0) =0, t, > o.

Hence at some positive to, all the energy in the chain is kinetic energy.

Thus no spring is stretched at t0 --
Xn(to) - xn_l(to) =0, n=1,2,... .

But from equation (3) with a = 0, it follows that

t
x (t) -x_ (1) = bjo [, (2vB &) + 3, (2 s} - 3, (245 5)
- J2n(2~@rs)] ds.

From the relation 2Jr'(z)= (Jr_l(z) -Jr+1(z)) [3, p. 100] it follows that

t
x () = X (t) = -2 j;[Jén_l(Q,Jﬁ_s)-+Jén+l (2 /F s))ds

b
-\{ﬁ—_ [J2n-1'(2 ﬁ_t) + J2n+1(2 Bl .
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Hence if Ej(to) = =,

J2n_1(2,/p' t) + J2n+l(2/p't°) =0, n=l,2,... .

Then

q
Y CUPLI,  (2F ) + 3, (2F £ )] = 0
p=n

= (-1, (2 ft) + (-1, (28,

for any positive integers n and gq. Since lim Jv(x) = 0 (10, p. 176],
Ve '

taking the limit as g = = yields
n .
(-1) Jzn_1(24/ﬁ t) =0

for any positive integer n. - But two Bessel functions of different integer
order cannot have a common positive zero [11, p. 484]. Thus by contra-

diction,
E.(t) £ mb2/2
] o]

for any j > 0 and any t_ 3 and hence l.u.b. Ej(t) < mb2/2. As in the finite
t>o '

chain with a = 0 and 2N+l a prime, the least upper bound of the kinetic

energy of the first mass in the infinite chain is the total energy of the

chain, and the least upper bound of the kinetic energy of any other mass

is less than the total energy.

Greatest Lower Bounds of the Kinetic Enerqies of Individual Masses

It was shown previously in this chapter that M {iN j(t)} = 0,
bl

j=0,1,2,...,N-1. Now suppose that liN j(t)[ is bounded away from zero --
L]
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that is, suppose that there exists an e > O such that liN j(t)l > e for
’
all t > 0. Since XN .{t) is continuous, RN .(t) must then be positive
»J 2

for all t > 0 or negative for all t > 0. If X 5(8) s positive, it
b

follows that

t)} >e .

CIf kN .(t) is negative, it follows that
sJ

M-{' (4 } < - .

XN,J(t) £

But either of these conditions is a contradiction, since M-{iN j(ti} = Q.
]

‘Hence liN j(t)l is not bounded away from zero, and consequently
2

g.1.b. E N(t) = 0.

t>o0

Since E;(t) > O and lim E(t) =0, it follows that
t»oo

g.1.b. E_(t) =0 .
t>o0 J

Thus in both the finite and infinite chains the greatest lower bound of

the kinetic energy of each individual mass is zero.

Limits of the Total Kinetic Energies

From equation (32} it follows that the total kinetic energy of

the finite chain of N masses is

N
EN(t) = g Z:cos 2N+1 2) { 2 2(N,p)+b } cos>((N ,p)t+mN ),
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where N,p? P = 1,2,...,N, satisfy (52a) and (52b). Using the identity

cos28 = LQL%2§-2§ , one finds that

N
N, \.® _4 2}
E(t) =3 ot z 2N+1 2 { (N,p +Db°} +

N
%._4__ zcos (2N+l z { 20°(N,p) +b} cos(2m(N,p)t*2wN ).
p=1 (57)

By reasoning similar to that used in the first of this chapter to show that

Xy j(t) has no limit as t %, it follows that the non-constant part of
3

EV(t),

B3

N
-1 n 22 2}
E: cos (§§1T > {a w (N,p) +b cos(ZM(N,p)t+2¢N,p) ’
has no limit as t =, Hence EN(t) has no limit as t = =,

Although lim EN(t) does not exist, it is interesting to note
t >

the value of the mean of EN(t). By integrating (57) from O to T, dividing

by T, and taking the limit as T >, one finds that

N
N _m _4 2/2p 3 22 2
M{E (t)} = 7 AT z cos (2N+1 5 {a w (N,p) + b } .
p=1

N
N m_4 2 2,20-1 1 26-1 7
M {E (t)} = 2 N1 Z a’p 4cos” (57 3) st (2N+1 2)
p=l
4 2




where S(-, *) is defined by equation (28).
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Using the identity

2 cos € sin 6 = sin 20 and the value of S{0, 0) given by (30), one finds

that
N m 4a%p S 2p-1 mb-~
M { (t)} =2 NE1 z sin (2N+1 n) + - (58)
p=l
Since
N
sinze = lJ;%Qé—gg and Z:cos((Qp-l)e) = %ifgﬁﬂg
p=1
if sin © # 0 [7, p. 366) ,
N N | coe(2e-l
} stnd(@d oy =V 1 - cos{Gyy 2n)
10 ASN+T 2
p:l p:l
. S2N2$2n!
oy Sin [ N+ ]
2 2n
4 Sin(2N+1)
. 21
N sin(2xn - -+1)
2 21
sin(2N+l)
_ON+L
T4

From this identity and equation (58),

m V()

But B = k/m, and hence




At t = 0, all masses in the finite chain except the first are at rest; the

first has velocity b, Consequently the total kinetic energy at that time

is mb2/2. Also at t = 0 all springs except the first are unstressed; the |
first is stretched or compressed lal units. Therefore the total potential !
energy at that time is ka2/2. Hence the total energy in the finite !
spring-mass chain is ka2/2 + mb2/2. Thus, the mean of the total kinetic |
energy of the finite chain, which can be regarded as the average of the |
total kinetic energy with respect to time, is one half the total energy of .

the chain.

Now consider the infinite chain. From the fact that 1im Jv(X) =0
X =¥ w

for any integer v [10, p. 170] and from equation (42), it follows that

maQB + mb2 - k32 + mb2
4 4 4 4 °

lim E(t) =
tP>w

Examining the initial conditions of the infinite chain, one finds that it,
like the finite chain, has a total energy of ka2/2 + mb2/2 at t = 0.
Hence the 1imit of the total kinetic energy of the infinite chain is one

half of its total energy.

Bounds of the Total Kinetic Energies

Trivial upper and lower bounds of the total kinetic energy for the
finite and infinite chains are the total energy, mb2/2 + ka2/2, and zero,
respectively. Expressions for the least upper bound and greatest lower
bound of these kinetic energies have not been found in the general case.
However for the finite chain of N masses if 2ZN+]l is a prime, it follows

from Theorem 8, Corollary 1, and equation (%6) that




!
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. N ‘
N _m_4 2,2p-1 7 22
l.u.b. EN(t) = 7 5037 Z|cos (St ) { (N,p) + b }l
t>o0 N
p=1
N
m 22
* 7 AL z cos? 2N+1 2 { (N,p)+b}|
. m _4 Q-l T 22 2}
T2 4L z |co 5 Z\H'l 2) {a wN, p) + b | (59)

and

g,1.b. EN(t) = % 4 210052 gE--l 5 a2m2(N,p) + b2}|

+ +
Ao 2N NFT 2)
N
m_4 _p_-LT_t, 2
4 NI Z |cos™( NTL D { “(N,p) +b7} |
p=1
= 0, (60)

In the previous section of this chapter, it was shown that

N

2
m_4_ 2} _ak ,mb_
42N+IZ°°5 2N+12){ (N’p)+b}‘4+4°
p=1

Hence from equation (59) it follows that the least upper bound of the
total kinetic energy in the finite chain of N masses with 2N+l a prime
is the total energy. Equation (60) states that the greatest lower bound

of the total kinetic energy in this chain is zero.
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CHAPTER VI

RATES OF TRANSFER OF ENERGY IN THE

INFINITE SPRING-MASS CHAIN

In Chapter V it was shown fhat the kinetic energy of each mass in

the infinite chain has a limit of zero as t >, Next consider the

potential energy of the (j+1)'! spring of this chain, 2

] N

(x,(8) - X, (1))

From equation (3) it follows that

Xj(t) - Xj+1(t) = a[JQj(z Bty - J2j+4(2 VB )]

t
+ b fo [,,(20B7) = 3,50,(20F8) + 3y, (24Fs)

- J2j+4(2,\/B_s)] ds .

Using the relation J__

q 1(2) - J . (z) = 2J&(z) [3, p. 100] and routine

qtl

integration, one finds that
X (8) - X, (0) = ald, (2488) - Iy, (20F1)]

+ (b/ﬁ)[J2j+l(2 St) + Jos4a(2 B t)]. (61)

Since 1lim Jv()() = 0 if v is an integer [10, p. 170], it follows that the
X

limit as t == of the potential energy of any spring in the infinite chain
is also zero. Thus the limit as t %= of the total energy in any finite
portion of the chain is zero.

Consider now the infinite chain in which initially all masses are
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at their reference positions, all masses except the first are stationary,
and the first mass has velocity b. At t = O the total energy mb2/2 of
this chain is kinetic energy located in the first mass. As t increases
the energy dissipates into the chain. As t 2 the amount of energy
which has passed from the (j+1)th mass to the (j+1)th spring approaches
mb2/2.

Let Rj(t) be the rate of transfer of energy from the (j+l)th mass

‘tO the (‘Il) Spring in this chainu Ihen
R- t - k x. t) - X. t i, t (‘)2

where Xj(t) is given by equation (3) with a = 0. This expression is the

th ass on the (j+l)th spring

product of the force exerted by the {(j+1)
and the velocity of the (5+1) " mass. From equations (62), (61) with

a =0, and (6), it follows that

2

- kb~ :
Rj(t) = . [J2j+1(2 JBt) + Ty 1452 Vﬁ_t)][J2j(2yﬁ_t)
+ J2j+2(2 B )] .
_ 2qJ (z)
Using the recurrence relation Jq—l(z) + Jq+1(z) = ——;9——— [3, p. 100],

one finds that

2
_ rkb i .
R,(t) = [B—/-—-3 5,3 (2542) (2541} )13, 4, (2VB ) 10355, (248 )] . (63)

Now since the positive zeros of Jq(z) for any integer q form a

sequence which converges to ® and each positive zero is simple [ 3, p. 127,

and since J {z) and J2j+1(z) have no common positive zeros [11, p. 484],

2342
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it follows from (60) that the positive zeros of Rj(t) form a sequence
which converges to ® and each positive zero of Rj(t) is simple. Thus
there are arbitrarily large t for which Rj(t) is negative. Although the
total energy in the finite portion of the chain preceding the (j+1)th
spring has a limit of zero as t »> , there are arbitrarily large values
of t for which energy is returning into the finite portion of the chain
from the infinite portion,
Now consider the amount of energy which passes from the (j’+1)th

mass to the (j+1)th épring between times O and T, This quantity can be

written as

\J“. ]\( ) .
v t dt
o]

As T »> the amount of energy which has passed from the (j+1)th mass to

the (j+l)th spring approaches mb2/2; hence it should be the case that

= b2
[ R.(t)at = 22,
i 2
o
From equation (63),
o 2 o] A (2,88)T,. . (2,/B¢)
. kb . . 2j+2 2jt]
j Rj(t)dt —375 (23+2) (23+1) J > dt ,
o B 0 t
if these improper integrals actually exist. Since
r” 7 (et) I, (et) (M1 pn) p(eRhi,
dt =
-t eyt
° 2 T(L%ﬂ)p(m;ﬂﬂ)p(’ﬂ%i)




62

provided that the real part of ptv+l is greater than the real part of A

and that the real part of X is positive [4, p. 403],it follows that

o 2
Kb .. i 24) !
j R (t)dt = =75 (23+2) (2541) “@ (é?i')z)_

o p
2
Kb
_Z_B— PR 0,1,25...
® mb2
Since B = K/m, I Rj(t)dt ==
' (v}

which is the desired result.
In Chapter II, a spring-mass chain like the one now being considered
was studied under the assumption that the distance between reference posi-
tions of adjacent masses is a constant ¢. The occurrence of the first
extremum of displacement for each mass was regarded as a disturbance pass-
ing through the chain; the disturbance was assigned a hypothetical velocity
between adjacent masses; and this hypothetical velocity was shown to
have a 1imit of chﬂfn as t . Now the occurrence of the first maximum
of the energy transferred from the (j+l)th mass to the (j+l)th spring dan
also be considered as a disturbance passing through the chain. This max-
imum occurs at the first positive zero of Rj(t). Since the first positive
zero of J2j+1(z) precedes the first positive zero of J2j+2(z) [4, p. 3707,
)th

the first maximum of the energy transferred from the (j+i mass to the

(j+1)th spring occurs when 24/p:t equals the first zero of J2j+l(z)°
Thus by the same reasoning as used in Chapter II, it can be shown that
the hypothetical velocity of this disturbance also approaches ¢ d@_ as

t =™,
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CHAPTER VII

EXPRESSIONS FOR KINETIC ENERGIES 1IN

THE STACKS OF SLIDING PLATES

In Chapter I the infinite differential system (B) and its truncated
form (B*) are presented. Solutions of these systems are given by equations
(4) and (5), respectively. A physical prototype of the system (B) is an
infinite stack of identical flat plates sliding in one dimension with vis-
tous friction acting between any plate and the one below it (see Figure 2).
V.(£), 5 = 0,1,2,... is the rightward velocity of the (1) 7 plate. At
t = 0 each plate except the first is stationmary, and the first plate has
a rightward velocity b. A physical prototype of the finite system (B') is
obtained by considering the motion of only the first N plates while sup-
posing that all the plates at and below the (N+l)th are held stationary.

This chapter is preliminary to some comparisons made in Chapter
VIII of the kinetic energies in the finite and infinite stacks of plates.
In the presemt chapter the following quantities are calculated for both
the finite and infinite stacks of plates:

1) the kinetic energy of each individual plate in the stackj

2) the total kinetic energy of the stack.

Kinetic Energies in the Finite Stack

VN j(t) given by equation (5) is the rightward .velocity of the
¥

(j+l)th plate in the stack of N plates. Let ??(t) be the kinetic energy

of this plate; that is
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N m 2
E. == |V, .(t
5 (t) =351 N,J( )]
5 5 N N
o mb 4 (gl @ 29-1 ©
=7 (G cos( SRy B)eos(Say B eosl Sar 5(2541))
p-l a= 1
2q-1 ® /. (Y Ty )t
cos[zN+1 > (2541)] e Nop »9
(64)
where
= 2p-1 My
YN,p 2(cos(5T 3 - 11 -

Let EN(t) be the total kinetic energy in the finite stack.

N-1
N N
E =
(t) z ES(t)
j=o
2q-1
- %3 G 2: X:C°5(2N+l eosqiiy 2)5(p1,9-1)

p=l g=1
+ t
e(YN,p YNgq)

where S(p-1,q-1) is defined by equation (28). From the value of S(-, -}

given by equation (30}, it follows that

N

2 x t

N, \ _mb> 4 2,20-1 1y 2N,p
EN(t) = 5 g L, cos Gy 3)e - (65)

p=1

Kinetic Energies in the Infinite Stack

Vj(t) given by equation (4) is the rightward velocity of the (j+l)th

plate in the infinite stack. From equation (4} and the identity
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1
f cos{vrx)e? 9% ™Xgy = Iv(z) R (66)

o]

where Iv(z) is the modified Bessel function of order v and v is an

integer [4, p. 376], it follows that
- -2at
Vj(t) = be [Ij+l(2ut) + Ij(2at)] . (67)

Let Ej(t) be the kinetic energy of the (j+1)th plate in the infinite

stack; that is,

E (1) =5 [Vj(t)]2

mb”
2

n

e‘4°t[1j+l(2ut) + Ij(2nt)]2 . (68)

Let E{t) be the total kinetic energy of the infinite stack. Then

E(t) = ) Ey(t)
J=0
2 o
= m%— e 0t z:[1j+l(2at) + Ij(2at)]2 s (69)
j=o

if this series converges. To find a simplified expression for E(t) and
to prove convergence, a procedure like that employed in Chapter IIl to
find an expression for the total kinetic energy of the infinite chain is

used., As a candidate for the simplified expression consider the integral
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EN(t),the total energy of the finite stack of plates,is the product of
E%ET and the Riemann sum of this integral with partition points
Xp =p/N (p = 0,1,2,..,.,N) and integrand evaluated at Xé = %ﬁi% (p=1,2,...,N).

Hence

1
1im EN(t) mbzf cos2(%)e%(‘1+cos“x)tdx

N>

1

2 1
E%,J' (1 + cosnx)e4ﬂ('l'+cos“x)tdx .
o

From equation (66) it follows that

2
lim EV(t) = B "Y1 (dat) + I,(4at)] .
N °
One can show (see Appendix B) that
= -}
[1,(22) + 1,2)] = ) [1,,,(2) + 1,(2)]° (70)
-] 1 i+l 3 '
j=o
Hence it follows that
b2 -dat
E(t) = %2 eI _(4at) +1,(4at)] . (71)
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CHAPTER VIII

PROPERTIES OF THE KINETIC ENERGIES

IN THE STACKS OF PLATES

In this chapter the kinetic energies in the infinite and finite
stacks of sliding plates are compared. First it is shown that for the
kinetic energies of the individual plates and for the total kinetic energy,
in both the finite and infinite stacks, the limit as t ® = is zero, Then

the following limits are considered:
1) the limit as t =™ of the ratio of the kinetic energy of the

(j+1)th plate in the finite stack to the kinetic energy of the (j+1)th

plate in the infinite stack (3=0,1,...,N-1);

2) the limit as t > of the ratio of the total kinetic energy in

the finite stack to the total kinetic energy in the infinite stack.

Limits of Kinetic Energies

The numbers

- 2p-1 _y _ -
YN,p = 2u(cos(2N+l )} - 1) p=1,2,...,N ,

are all negative; hence from equation (5), it follows that (since t 2 0)

lim V

(t) = 0.
t>e T2J

N,

Therefore

1im EN(t) = 1lim %[VN ()% =o0.
t>e I t> o™ 3]
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That is, the limit as t-—> = of the kinetic energy of each plate in the
finite stack is zeroj consequently the limit as t > of the total energy
in the finite stack is also zero.

Now in order to show that the limits as t~** of the kinetic
energies in the infinite stack are zero, consider the asymptotic expan-

sion of Iv(z). For v a fixed integer and for z positive

av2-1 + (av2-1) (4v2-9) } (4v2-1) (4v2-9) (av2-25) + :}
- voa

z
I(z) ~ = {} -
ve V2nz 8 2. (82)2 3! (82)3

as z += {4, p, 377]. Thus for z > O

lim /2xz e Z Iv(z) =] 3 (72)

zZ > oo
and consequently for z 2 O

lim e 2 I (z) =o0. (73)
zZy oo

Since a > 0 it follows from equations (67) and (73) that 1lim V_.(t) =0
t>oo

and hence that

lim E.(t) = 0.
t >

From equations (71) and (73) it follows that

lim E{t) =0 .
t>

‘Thus the kinetic energy of each plate in the infinite stack and the total

kinetic energy of the infinite stack have the limit zero as t + =,
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Limits of Ratios of Kinetic Energies

In order to find the limit of the ratios
N(t)/Ej(t), (5= 0,1,2,0.0,N-1)
consider the ratioes

VN’j(t)/Vj(t) (j=0,1,2,...,N-1) .

From equations (5) and (67) it follows that

N

4ab 2p-1l ¢
2N+1 zc 5(2N+1 2)co os[ 1

p=1
-2at
be [Ij+1(2at) +Ij(2ut)]

Yy ot
22-1 2 (2541)%e 7P

0]

t)/Vj(t)

N

t

5 2p-1 . YN,p
N1 Z cos(ZaT 3 C""’[2N+1 5 (2341)]/4ent e

p=1

Vaant e~ 2at Ij+1(2ut) + /gt e~20t Ij(2e.t)

Considering equation (72), one finds that

N
. D B
lim VN’j(t_)/Vj(t) =35 lim z cos[2N+1 > (25+1)]

t=> > t >
t
& dant éYN,p 3
and since

t

lim ,f4amt éYN,p = 0

t>m

(t 20 and Y o < 0), it follows that
’
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lim vy AV (t) =0, 31=0,1,2,.0.,N-1 .
t_,m ,J J

Hence
Dy (6)72
1im EN(t)/E.(t) = 1lim 2m N,Jj —=0.
tdew J J too 2 [V.(t)]
j
Next consider the ratie "

EN(4) /E(t)

From equations (65) and (71) it follows that

N
2 R t
mb- _4 z 0052(2%_1 E)QQYN,p
N 2 ON#1 ool 22N+] 2
E'(t)/E(t) = >
b -4qt
EE_ e @ [Io(4ut) + Il(4at)J
L i 0052(.‘?.3:.]; 1'[.) /aﬂﬂt eer’pt
ZN+1 ON+1 2
- p=1

A/Batt e-4ut10(4qt) + ,/Bant e-4ﬂt11(4ut)

Again by considering equation (72) and the fact that

2y ot
lim VBart ¢ P =0 (p = 1,2,...,N),
t > oo

it follows that

lim EN(t)/E(t)
t >

n
@]
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A physical interpretation of the value of these limits is as fol-
lows, As t — « the kinetic energy of any individual plate and the total
kinetic energy in the finite stack of plates and the counterparts of
these quantities in the infinite stack all approach zerc. However they
do so in a manner such that the quantity in the finite stack is less than
an arbitrary positive multiple of its counterpart in the infinite stack

for sufficiently large t.
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APPENDIX A
DERIVATION OF CERTAIN INTEGRAL RELATIONS

In order to derive equations (37a) and (37b), the well-known

formula for integration by parts

b dv b du
Ia u(aj;)dy = u(b)}v(b) - u(a)'v(q} - fh V(E;r-)dy
is used. A sufficient condition for its validity is that u and v have

continuous derivatives on [a,b] |7, pp. 195-198].

From the identity sin26 = {1 - cos 28)/2, one obtains

1
f v2 /1 -y2 sin(2 JB tydy=

0

1 1

ir .2 2 1 2 2

gfo Yy N1-y" dy - §f0 y“ /1 -y cos(4 /B t y)dy
1

2 / 2

=§“§-%J‘ y /1l -y cos(4,/ﬁ_ty)dy. (A.1)

)
Using the integration-by-parts formula with V = - % (1 -y2)3/2 and

u=y cos (4 Vg_t v} yields

1
j Y2(l - Y2)1/2 cos(4 ME t‘y)dy =

)
f 1

1

1
(1 -y)¥? cos(a e y)dy 'Ls@f vy Y2 stn(a/Ft oy,
[¢]
(A.2)
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2)5/2,

since v(1) = u(0) = 0. Next choosing u = sin{4 /g ty) and v = - %(l-y
one finds that
1 . 1
4
f y(1 -yD¥? sin(a Fty) dy - —%B:-t-f (1 -y) ¥ 2c0s(44f ty)dy,
0 o
(A.3)

since v(1) = u(0) = 0. From equations (A.1), (A.2), and (A.3) follows the

equation

1 :
I y2,/1 -y2 sin2(2 VB ty)dy =
0

1 2.1
x4 (1 -y2)3/2cos(4,JE-t y)dy + Li—a"/%)—-f (1 —y2)5/2
(o]

cos(4 B tydy,

which is equation (37a).

By the identity sin 8 cos & = % sin 28,

1
y 1 -y2 sin(2 Jf ty) cos(2 4/f ty)dy =

o]

1

1 2 _.

§|f y/1 -y sin{4 4p ty)dy .
o)

Using the integration-by-parts formula with u = sin(4 Jﬁbt y) and
V= - % (1 - y2)3/2 in the right hand side of this last equation, one

obtains, since V(1) = u{0) = 0,

1
J Ya/ 1 'Y2 sin{2 /B ty)cos(2/F ty)dy =
o
1
%@f (1 -y2)3/2 cos(4 ¥B ty)dy,
0




which is equation (37b).

From the identity cos?6 = (1+ cos 2)/2 follows the equation

jl /1 -y? 0052(2/ﬁ_t y) dy
o
LIS ay + L] U2 coste it ) ay
0 Q

1
'-85’+ %—f (1 - y2)l/2 cos{4 »/ﬁ_t y)dy ,

which is equation (37c).

74




75

APPENDIX B
PERTINENT RELATIONS INVOLVING BESSEL FUNCTIONS

Equations (41a), (41b), and (4lc) can be derived from the relations

n o0
3(22) = ) a2y (@) +2 ) (D) (@), (B.1)
j=o j=1
2n ' oo
0= 3 (-0 3y, () +2 ) I35, (), n21 (B.2)
j=o j=1
and
1= g 2(2) + 2 E: 2(z) (B.3)

b j=1

[4, p. 363].

Subtracting (B.1) with n = O from (8.3)‘yie1ds

1 -7, (22) ii z) + 2 EZJ (z), (B.4)

j=1

where the identical series are not combined for reasons that will be

evident shortly. Subtracting (B.2) with n = 2 from (B.1) with n = 4 yields

3,(22) = 43, (2)35(2) - 4 ) 3y (2)0p002) (8.5)
2

Adding (B.4) with a change of index in the second series and (B.5), one

obtains

,k
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[1 - JO(QZ) + J,(22)] =

oo ® o
2 2
43, (2)J,(2) + 2 Zsz_l(z) -4 Zsz_l(z)J2j+3(z) + 2 Z J2j+3(z)
3=1 j=1 j=-1

= 2J12(z) + 4J1(z)J3(z) + 2J32(z)

T2 Z[Jgj-l(Z) - 20551 (2) g 55(2) J§j+3(z)] :
j=1

Since Jl(z) =-J_1(z) (4, p. 358], equation (4la) follows from this equa-

tion.

From equation (B.l) with n = 3,

J3(22) = 2J°(z)J3(z) + 2Jl(z)J2(z) + 2 Z (-1)jJJ.(z)J3+j(z)
=1

x

= 23, (2)3,(2) +23,(2)3,(2) - 2 ) [35,  (2)3,5,5(2) - J,(2) 3, (D).

i=1
(B.6)

From equation (B.1) with n =1,

J1(22) = 2Jo(z)J1(2) + 2 2(-1)ij(z)Jl+j(z) 3
5=1

and by a moderately complicated but justifiable rearrangement

Jl(22) = 2Jo(z)J1(z) + 2J2(z)J3(z)

+ Z[J2J._1(z)J2j(z) - Jo543(2) 5545020 ] (B.7)
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for z real. Adding (B.6) and {B.7), one obtains

[J,(22) + 35(22)] = 23,(2)J (2] +27,(2),(2) +27,(2) 3 (2} +23,(2)J,(2)

om

-2 Z:[ 23 l(z)J Az) + j-1(z)J2j+2(z) Io3 +3(z)J (z)
51

SEANO AR

Since Jl(z) = -J_l(z) [4, p. 358], equation (41b) follows from this equa-
tion.

Adding (B.1) with n = 0O and (B.3) yields

1+ Jo(zz) = 2J02(z) + 2 ZJgj(z) + 2 ZJgj(z) . {B.8)
j=1 j=1

Adding (B.1) with n = 2 and {B.2) with n = 1 yields

Dvaé

J2(2z) = 4Jo(z)J2(z) + 4 (z)J2 +2( z) . (B.9)

I
fn)

3

Adding (B.8) with a change of index in the second series and (B.9), one

obtains

1+ J (22) + J,(22) = 2.302(2) + 4.7 (2)3,(2)

T2 2
+ 2 Z sz(z) + 4 ZJgj(z)J2+2j(z) + 2 ZJ2j+2(z)
j=1 j=1 j=0b

= 232 (2) + 43 (2)3,(2) + 212 (2)

+2 ) [05(2) + 20,,(2)0,,,(2) + 55 ()],




which is equation (4lc).
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Equation (70) can be derived from (B.1) and the definition of Ij(z),

I.(z) =
J( )
From (B.1) with n = 0 and z replaced by iz ,

1(22) = J (212) = 2J02('12) +2 Z (-1)5'.13.2 (1z) .

But (-1)7 = i*QJ; hence

10(22) = Iog(z) + ZIJ.Q(Z) +

j=1
From (B.1) with n =1,

=1
i J2

11(22) (2iz2) =

17tey (12)3) (12) + 270 ) (-1)0i(i2) 3, (ha)

-2j-1

Since 17Y(-1)J = g , it follows that

oo

ij(Z)

j=1

~18

J

1

Ij2 {(z) .

1,(22) = 21 (2)1,(2) + 2 Z'Ij(z)ljﬂ(z) )

j=1

(B.10)

L

(B.11)

Adding (B.10) with a change of index in the second series and (B.1ll),

one obtains




1(22) + 1,(22) = 1°(2) + 21_(2)1, (2)

1

==}

+ ijz(z) + 2 ZIj(Z)Ij+l(Z) + ZI‘J?ﬂ(z) .
j=1 j=0

j=1

o

Y12 + 21 (a1, () + 15, ()],

j=o

which is equation (70).
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APPENDIX C
PROOF OF THEOREM EIGHT

There exist rational numbers T 7 Ty (not all zero) such

2’.'
that

rlu(N,l) + rulN,2) + ...+ nulN,N) =0

if and only if there exist integers n Moyessshy (not all zero) such

l’
that

so(2pzl my o
o sm(2N+1 2) 0. (c.1)

o
" =
s J

im

Let A = e212N+1E .

Equation (C.1) is equivalent to

np(k2p-1 ATty oo (C.2)

1

% ~1=

Assuming that there are integers LTI YRERFIY not all zero for which
(C.2) holds, let h be the integer such that nh-# 0 and n, = 0 if
h < p < N. Multiplying by Nalat (# 0) and neglecting the terms for

which p > h in equation (C.2), one obtains

h
z:np(xz(h+p'1) a2hp)y g (C.3)

p=1

It is easily shown that conversely if there are integers N sfgpeesshy
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such that h < N, n, # 0, and (C.3) holds, then there are integers
Ny sMyyeee My not all of which are zero such that (C.1) holds.

A polynomial P{X) of degree n is a reciprocal polynomial of the

first or second class when it satisfies

+ P(X)
an(iy = or

-P(X)

respectively [9, p. 21]. It follows readily that a polynomial G(x) of

degree 2h-1 is a reciprocal polynomial of the second class if and only if

h
_ (ntp-1)"  (h-p)
G(x) = zch(x ntp - XOTPOYy
p=1

Thus from equation (C.3) it follows that one can prove Theorem 8 by
proving that 2N+l not being a prime is a necessary and sufficient con-
dition for the existence of a polynomial G(x) with these properties:
(1) G(x) has integer coefficients;
(11) the degree of G{x) is 2h-1 < 2N-1;
(111} G(xz) = 03 and
(iv) G(x) is a reciprocal polynomial of the second class.
The remainder of this Appendix relies heavily on the theory of
numbers. A basic knowledge is assumed; pertinent definltions are made;
and theorems are stated without proof.

The cyclotomic polynomial of index n is defined by

F_(X) =g (x -uP),
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i2n
where p = ¢ " and p ranges over all positive integers less than n and
prime relative to n. It can be shown that Fn(x) has integer coefficients
and that among all such polynomials, it (or an integer multiple of it)
is the one of least degree for which |, is a zero [12, ppP- 158-164].*
Clearly the degree of Fn(X) is p(n), where o{(n) is the number of posi-
tive integers less than n which are prime relative to n. It can be shown

that

_ 1 .4 oL
o(n) = n(1 - o ) (1 s Y... Q1 5 ), (C.4)

where PysPyse-+ )P, 8TE all the distinct prime factors of n [14, p. 34].
Another property of Fn(X) is that it is a reciprocal polynomial of the
first class [9, p. 68].

Now assume that a polynomial G(X) satisfying properties (i)

2 _ i2n/2(2N+1)

through (iv)} exists. Since G(k2) =0 and A° = , the degree

2h-1 of G(x) must be greater than or equal to the degree of F )(X),

2( N+
which is @ (2{2N+1)). Now suppose in addition that 2N+l is a prime. By

equation (C.4)

2A(m+1) (1 - 11 - =)

o(2(241)) 0 -

p I

But by property (ii) 2h-1 < 2N-13 hence by contradiction 2N+l is not

prime,

#
The proof of Lemma 1 on page 161 of this reference is incorrect,
However the lemma is provable and is given as an exercise in DQ,]:. 97].
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Next assume that 2N+] is not a prime. The polynomial

satisfies properties (i) through (iv).

Property (i}. Clearly G(x) has integer coefficients since

F2(2N+1)(x) has integer coefficients.

Property (ii}. The degree of G(x) is @(2(2N+1)) + 1. Let

PysPy se =0 5P be all the distinct prime factors of 2N+l. Then from equa-

tion (C.4)

- by oL L
pl2(2+1)) = 2(2n01)(1 - 5) (1 pl)...(1 pr)

since 2 is not a prime factor of 2N+1. Hence,

= AL L
p(2(2N+1)) = (2N+1)(1 pl) e (1 .

p(2N+1) .

Since P)sPysre--,p, are odd integers

pl-l pr-l
) aa )
p1 Pr

o(2N+1) = (2N+1)(

is an even integer. From the definition of ¢(n), since 2N+l is assumed

not to be a prime, it follows that

p(2N+1) <

A
ke

Since ® (2N+1) is even,

p(2M+1) < 2N -2, and
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@(2N+1) + 1 is odd. Hence the degree of G{x),
e{2N+1) + 1 = 2h-1 < 2N-1 ,

and property (ii) is satisfied.

Property (iii). From the definitions of Fn(x) it follows that
2 2 2 ‘s s .
G(A%) = (\° - l)F2(2N+1)(h ) = 0. Hence property {i1ii) is satisfied.

Property (iv). The product of two reciprocal polynomials of dif-

ferent classes is easily shown to be a reciprocal polynomial of the second
class. Since X - 1 is a reciprocal polynomial of the second class and
F2(2N+1)(x) is a reciprocal polynomial of the first class, property (iv)
is satisfied. Thus if 2N+l is not a prime, there exists a polynomial sat-

isfying properties (i) through (iv).
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