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A Technique for Analysis of Globally Unstable Flows: Application
to a Coating System

Cyrus K. Aidun

Engineering Division
Institute of Paper Science and Technology

Atlanta, Georgia 30318

EXECUTIVE SUMMARY

This report outlines a formulation for the analysis of flow instability and transition to
unsteady state in confined flow systems. As an example, it is applied to a lid-driven cavity
simulating the pond of a short-dwell coater. This report was originally prepared and
submitted to the National Science Foundation for time allocation on the Supercomputer
Center. Since the report presents novel mathematical formulations for stability analysis of
fluid flow systems in a number of relevant papermaking and coating processes, the author
was encouraged to publish this information as an IPST Technical Report.

The formulation is generalized such that it applies to a broad class of fluid flow problems in
the industry. In its current form, it applies only to geometries with regular boundaries that

fit an appropriate orthogonal coordinate system. The equations can be modified for other
irregular geometries.

The formulations are presented in abbreviated form; the lengthy derivations and proofs are

not included in the paper. The author will be glad to share this information with interested
individuals. The material in this report is being submitted for additional funding; we,
therefore, request that the member companies do not share this information with individuals

not affiliated with their company until it is published in the open literature.
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I. INTRODUCTION

A. Outline

The mathematical technique presented in this report can be used to explore the stability

properties of the shear-driven confined flow in a lid-driven cavity (LDC). This classical

hydrodynamic system (Fig. 1) has been studied in the past for its simple geometry and

boundary conditions. It provides an ideal system for a) examination and verification of

numerical algorithms for solution of the Navier-Stokes equation; and b) analysis of a

confined "stationary, captive" (Roshko, 1955) primary vortex, secondary corer vortices,

as well as the appearance of Taylor-Gcrtler-like vortices (Koseff and Street, 1984) prior to

transition to turbulence. Despite the tremendous popularity of this hydrodynamic system,

its stability characteristics have remained virtually unexplored.

moving lid
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--- h --
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Fig. 1 Schematic of a lid-driven cavity.

In this research, we focus on the global stability properties of the primary steady state and

its transition to time-periodic flow. The bifurcation diagram for the system will be

constructed and the mutation of the steady states with the cavity span aspect ratio, h, will be

investigated.

In addition to its fundamental importance as a classical hydrodynamic system, the lid-

driven cavity is an idealized representation of a broad class of devices used in surface

treatment and coating of paper, photographic films, and printing devices. In all of these

applications, the desirable flow regime is the primary steady state which is almost two-

dimensional (2-D). In fact, instability of this state and its transition to an unsteady or

secondary multicellular steady state will result in operational difficulties (Aidun and
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Triantafillopoulos, 1990). Therefore, the results from this research, in addition to

providing a better understanding of the fundamental issues, offer a guideline and basis for

the study and improvement of these and other technologically important manufacturing

devices.

We shall solve for the steady state solution branches and pinpoint their bifurcation points

using a global spectral method and a pseudoarclength continuation technique. Previous

experimental studies (Aidun et al., 1990) show that, similar to the finite Taylor-Couette

system, the LDC flow also exhibits multiple stable steady states. If these states are isolated

in the phase space, then it will not be possible to detect and compute them from local

bifurcation analysis of the primary branch. To resolve this, we shall take the following

approach:

1) We will consider an ideal1 LDC which is characterized by free-slip end walls. The 2-D

steady-state solution branch representing the primary2 branch for this ideal three-

dimensional (3-D) system will be computed. The stability of the primary state will be

examined by forming the linearized 3-D stability equations with the 2-D solution as the base

state. In addition to the cavity Reynolds number, R, a second parameter, the span aspect

ratio, h, will enter the stability analysis. Because of the free-slip end walls, the first

bifurcation will be to a solution branch representing a 3-D cellular flow which is spatially

periodic in the spanwise (y) direction. By computing the stability boundary for a 1 -cell

pattern, the entire stability boundary for 0<h<oo will be determined using a simple

mapping procedure explained by Aidun (1987).

2) We will extend the results for the ideal case to the real 3-D cavity flow (no-slip end

walls) by applying Schaeffer's homotopy (Schaeffer, 1980) between the two flow
systems. The homotopy parameter, X = 0, represents the ideal LDC (periodic) flow, where

t =1 represents the flow in a real LDC system.

The advantage of the stepwise approach outlined above is that it allows for a smooth

decoupling of the nongeneric bifurcation diagram of the ideal LDC flow to the generic

solution structure of the real system. This gives access to solution branches which emanate
from the primary branch when X = 0, but decouple and become isolated when t : 0.

1 We refer to a lid-driven cavity with free-slip end walls as an ideal LDC.
2 A primary solution or state is one that forms at R=--O+.
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In summary, we will compute the nongeneric (perfect) bifurcation diagram for the ideal

LDC flow using a global spectral method with a pseudoarclength continuation technique.

The bifurcation diagram will then be decoupled using a homotopy to perturb and gradually

transform the ideal system to the real LDC flow. With this scheme, the state diagram of the

3-D cavity flow will be constructed revealing its global stability properties. Results from

the proposed research will establish a frame of reference and a guideline for analysis of a

large class of engineering and manufacturing devices that exhibit similar hydrodynamic

characteristics.

B. Rationale and Objectives

The local and global stability of the primary steady-state flow in a driven cavity and its

transition to a time-dependent state have remained unexplored despite their technological

and fundamental significance. A driven cavity represents a simplified version of a class of

surface treatment and coating devices used widely in the paper, photographic film, printing,

and other industries. In these applications, the fluid (e.g., coating color, photosensitive

chemicals, ink, lubrication oil) is applied uniformly on the surface of the substrate (e.g.,

paper, photographic film, printing plate, thrust bearings with grooves), which drives the

flow inside the cavity.

As an example, Fig. 2 illustrates a coating head widely used for high-speed precision

coating of paper. This device, known as a "short-dwell coater," is used to apply a thin

uniform film on the surface of the substrate. As the roll speed increases beyond a critical

limit, however, the film thickness becomes nonuniform and streaks develop in the machine

direction (Fig. 3). Triantafillopoulos and Aidun (1990) showed that these streaks are

caused by the instability of the roll-shaped primary state (Fig. 4a) and appearance of 3-D

multicellular patterns (Fig. 4b) in the reservoir of these coaters. Recent experiments by

Aidun et al. (1991) show that the primary steady state loses stability to finite-amplitude

disturbances and competes with 3-D multicellular steady state flow patterns, similar to the

one presented in Fig. 4b, before it becomes locally (linearly) unstable to a time-periodic

state at R=800. Therefore, it is the global stability properties of the primary state that are of

practical interest. These observations have motivated the proposed analysis for better

understanding the global stability properties of the primary state, the ideal flow for these

coating systems.
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Similarly, the instability of the primary steady state in this device gives rise to "metering

nonuniformities" when used in other applications such as size presses or Flexographic

printing machines. Since problems of this kind cannot be tolerated in manufacturing, these

instabilities impose an upper limit on the operational speed, and therefore production

capacity, in the industry.

\Coated
Paper

Dynamic
Contact

Line

Fig. 2 Schematic of a short-dwell coater.
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Fig. 3 Schematic of the streaks on paper coated with a short-dwell coater.

a)

- N-

Fig. 4 Two competing steady states in a lid-driven cavity simulating the pond of a short-dwell
coater; (a) primary steady state is almost 2-D and results in a uniform coating thickness
(b) the 3-D multicellular steady state results in streaks illustrated in Fig. 3; both pictures
are viewed from the ABCD plane of Fig. 1 (from Aidun et al., 1991).
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It is extremely difficult and inefficient to analyze the stability characteristics of these

complicated devices without knowing the stability properties of their ideal version

represented by a LDC. The proposed research characterizes the fundamental aspects of the

flow behavior in a driven cavity and provides a basis upon which these technologically

important systems can be analyzed.

In addition to these practical considerations, several fundamental issues shall be

investigated in this project. Amon and Patera (1989) demonstrated that, in general, the

bifurcation in the initial transition process has a critical role in the transition to turbulence.

In plane Poiseuille flow, a subcritical primary bifurcation gives rise to a broad band

secondary instability and consequently an abrupt transition, while a supercritical primary

bifurcation in Taylor-Couette-like systems results in a very different narrow band transition

near criticality. By pinpointing the first transition of the primary state to a time-dependent

state and analyzing the destabilizing disturbance structure, the initial dynamics leading the

system en route to turbulence will be determined.

The objectives of this research are twofold: 1) to determine the global stability of the

primary state by computing the critical Reynolds number for the onset of secondary locally

stable states competing with the primary solution; this involves construction of a homotopy

between the spatially periodic solution of the ideal LDC and the real system as described in

Section D, and 2) to compute the primary steady state branch up to the transition to time-

dependent flow and to construct the destabilizing disturbance structure and subsequently

determine the physical mechanism responsible for the transition to time-periodic flow;

specifically, to determine whether the primary bifurcation is due to the instability of the

concave shear layer formed between the primary and the downstream secondary eddies

(Gortler instability) or is caused by the centrifugal instability of the individual eddies

(Taylor instability).

C. Background

The two-dimensional LDC flow was initially studied in detail by Burggraf (1966) who

solved the two-dimensional Navier-Stokes equations for R=0 to 400. Pan and Acrivos

(1967) used this system to examine Prandtl (1904) and Batchelor's (1956) theorem

regarding the inviscid core that forms in a flow with closed streamlines surrounded by a

thin shear layer at the boundary at high Reynolds number. They conclude that in the limit
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as R-->oo, the flow in a LDC with a finite aspect ratio consists of a single inviscid core of

uniform vorticity with an infinitesimally thin viscous layer along the solid boundary. The

two-dimensional cavity flow has been computed accurately for large Reynolds numbers by

several investigators (for example see Ghia et al., 1982). These studies, however, do not

consider the three-dimensional features of this system.

In a series of informative experiments, Koseff and Street (1984) studied the three-

dimensional aspects of flow in a cavity. In their experiments, the flow starts impulsively

by a sudden acceleration of the top surface to speeds corresponding to the cavity Reynolds

number ranging from 1000 to 10000. Their flow visualization studies reveal several

interesting features including the appearance of local Taylor cells during the initial transients

and the Taylor-G6rtler-like (TGL) vortices. Kim and Moin (1985) captured these TGL

vortices by numerically solving for the flow in an ideal LDC (free-slip end walls) at

R=1000. A number of other three-dimensional numerical simulations solve the cavity flow

at higher R values. For example, Freitas and Street (1988) and Perg and Street (1989)

consider a cavity with span:depth:width aspect ratio 3:1:1 at R=3200. At this Reynolds

number they show the dynamics of unsteady TGL vortices. Iwatsu et al. (1989) computed

a 3-D steady flow at R=2000 and unsteady flow at R=3000 for a cubic cavity giving a

range for the critical R.

Our flow visualization studies (Aidun et al., 1991) of a LDC (aspect ratio 3:1:1) with a

small amount of through-flow show that a) the primary steady state becomes linearly

unstable to a time-periodic flow at R=800, and b) the primary steady state becomes globally

unstable and competes with at least three other secondary steady states with multicellular

flow patterns before it destabilizes locally. These experiments show that the magnitude of

the mass flow rate through the cavity does not change the qualitative behavior of the

multiple stable states. Based on these observations, we have suggested that the primary

steady state in a confined LDC also becomes globally unstable at a finite Reynolds number

before destabilizing locally. Furthermore, we have suggested that the secondary steady

states, similar to the Taylor-Couette system, are the decoupled secondary supercritical

bifurcation branches of the ideal LDC (see Fig. 5). In this research project, we rigorously

examines these conjectures.
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Fig. 5 Illustration of the decoupling of a perfect bifurcation (a) for an ideal LDC
to a generic solution structure (b) for a real LDC.

D. Formulation

The tasks in this research project are: 1) to compute the critical Reynolds number as a

function of the span aspect ratio for local stability of the 2-D steady state flow to 3-D

disturbances in an ideal LDC with periodic or free-slip boundary conditions at the end

walls, 2) to perturb the ideal system and decouple the spatially periodic solution branches

to obtain the potentially isolated secondary steady state in a real LDC with a homotopy
parameter, T, ranging from 0 (ideal) to 1 (real); and 3) to trace the primary branch up to the

first bifurcation point (which we have shown experimentally to be a time-periodic flow)

and construct the destabilizing disturbance structure; this will determine the physical

mechanism responsible for the initial transition, which leads the system to turbulence

through a sequence of higher order transitions.

From the first two tasks of the proposed research, we shall determine the local as well as

global stability properties of the steady state flow by constructing the perfect and imperfect

bifurcation diagrams of the ideal and real systems, respectively. In previous computational

analyses of the LDC, an initial-value problem is solved via finite-difference, finite-element,

or pseudospectral methods. Recent experiments (Aidun et al., 1991) suggest the existence

of multi-stable steady state solution branches which may be isolated from the primary state.

The limited three-dimensional solutions available do not provide information regarding the

stability of the flow. In contrast to the previous studies, the proposed research solves the

governing equations as a bifurcation problem with the Reynolds number, the span aspect

ratio, and the homotopy factor as the relevant parameters.

The final task provides a better understanding of the primary transition leading the system

to turbulent flow. The physics of this instability is yet unresolved.
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There are at least two mechanisms by which the 2-D primary steady state in a cavity with

infinite span can destabilize and be replaced by a steady spatially periodic 3-D state. The

first mechanism involves the Gortler-type instability of the concave viscous layer that forms

between the primary and the downstream secondary eddies. The Taylor-Gortler-like

vortices observed in the unsteady regime are attributed to this mechanism (Koseff & Street,

1984). In contrast to the Gortler vortices, which appear in a concave boundary layer

having a length scale in the order of the boundary layer thickness (Peerhossaini and

Wesfreid, 1988), the TGL vortices observed experimentally by Koseff & Street (1984) and

computed numerically by a number of investigators (Freitas and Street, 1988; Pemg and

Street, 1989; Iwatsu et al., 1989), occupy the whole region of the downstream secondary

eddy. It has yet to be established whether the concave viscous layer instability between the

primary and the downstream secondary eddies or a different mechanism gives rise to these

vortices. Flow visualization experiments (Aidun et al., 1991) show that at onset of the

time-periodic state, a weak toroidal vortex superimposes on the downstream secondary

eddy. This could be caused by Taylor-type centrifugal instability of the secondary eddy.

The proposed decomposition and construction of the destabilizing disturbance structure will

result in understanding the physical mechanism of this transition.

The solution procedure is similar to Steen and Aidun's (1988) analysis of Rayleigh-

Benard-like convection in porous media. The dependent variables are projected onto a set

of orthogonal basis functions; using Galerkin's method, the governing equations are

reduced to a set of ordinary differential equations (ODE). The ODE system is treated as a

bifurcation problem, and an arclength continuation technique is used to trace the solution

branches to the point of bifurcation. In contrast to the convection-in-porous-media

problem, where the governing equations can be reduced to a single scalar integrodifferential

equation (Steen, 1986), the full Navier-Stokes (N-S) equation has to be solved for the

problem at hand. This requires an efficient numerical scheme.

Our approach combines several new features with a global spectral expansion of the 3-D

domain to increase its numerical efficiency and facilitate branch tracing and stability

analysis. The first feature is the application of a divergence-free basis vector which

inherently satisfies the continuity constraint and allows expansion of the three-dimensional

velocity field in terms of only two scalar functions, eliminating one of the dependent

variables (see Appendix A for details). Furthermore, the Galerkin method proposed in this

research projects the governing equations on a set of divergence-free basis vectors,
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explicitly eliminating the pressure terms from the momentum equations and thereby

eliminating another dependent variable (Appendix A). The two components of the

momentum equation are then expanded in terms of two scalar basis functions.

A unique feature of the LDC system is the discontinuity at the common edge of the moving

lid and the stationary side walls. To remove this discontinuity, we reduce the velocity

field, v, with respect to a basic flow field, U, which must satisfy the boundary conditions

as well as the continuity equation. The reduced velocity field,

u =v - U (1)

then has homogeneous boundary conditions

u=0 on aQ (2)

where af is the entire boundary of the LDC. Using the 2-D Stokes flow for the basis

velocity field is preferred since it preserves higher order regularity and also reduces the

number of viscous terms in the final equation of motion, given by

.u + u.Vu + u.VU + U.Vu + U.VU = -Vp' - vV2 . (3)

Here p' is the pressure reduced by the Stokes-flow pressure field, and the Stokes terms in

the RHS have canceled each other. The reduced velocity field in the ideal system vanishes

on the entire boundary, aQ, and the homogeneous boundary condition greatly simplifies

the expansion of the dependent variables. However, the Stokes solution, U, and its

derivatives appear explicitly in (3) and need to be evaluated. In contrast to the Rayleigh-

Benard systems (Steen and Aidun, 1988) or the rotating disk-and-cylinder system (Hort,

1920; Chiao and Chang, 1990) where an analytical form of the basic flow solution is

available, the LDC system's unique combination of geometry and boundary conditions, as

Burggraf (1966) remarked, precludes an analytical Stokes solution. Analytical Stokes

solutions exist only in asymptotic limits of infinitesimal height (Pan and Acrivos, 1967)

and at corner regions (Moffatt, 1964), neither of which can be used in this analysis. A

numerical solution of the Stokes flow by finite difference or finite element, although it can

easily provide accurate results, is not an attractive option when considering the inaccuracy
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and inefficiency of numerical differentiation and integration of the terms that appear in the

equations. To resolve this difficulty, we have applied a Biharmonic Boundary Integral

Formulation (BBIF) to this problem to solve the 2-D Stokes field in a series form (see

Appendix B for details). This feature of our approach has several advantages. The series

solution in terms of a small number of boundary nodes can be differentiated analytically

with no loss of accuracy or addition of computational time. Also, this allows an analytical

integration of the terms in the global spectral formulation containing U and its derivatives,

eliminating a need for numerical differentiation or integrations altogether.

In summary, we shall expand the reduced velocity field in terms of a divergence-free basis

vector

N

u = a i (t) i(x) (4)
i=l

where V-0. = 0 in Q
and O.- O on an.

I

Substituting this expansion into the reduced N-S equation (3) and applying Galerkin's

method, we transform the equations of motion to a set of ODE given by

A 9 6ci = Bi aaj o k + C.~ aj + D i i N (5)Aa=B~aa+C..a.+D i=1,.....N (5)

These coefficient matrices have several symmetry conditions which shall be used to

optimize the computational procedure. Also, the combination of Chebyshev polynomials

used to construct Oi is carefully selected to reduce the bandwidth of the coefficient

matrices. The odd and even form of these basis functions decouples Aij into four small

independent partitions, which significantly reduces the computational time required for its

solution.

We shall first investigate the stability of the primary steady state branch (2-D flow) in an

ideal LDC (i.e., free-slip end walls). Here, the 2-D velocity components of the base flow

are expanded by Chebyshev polynomials, and the third dimension, that is, the disturbance

velocity component in the spanwise direction, is expanded in terms of Fourier series. Note

that in this problem free-slip boundary conditions are identical to spatially periodic

boundary conditions. We expect that, similar to a Taylor-Couette system, the first
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bifurcating branch from the primary state will be a spatially periodic cellular structure. The

stability boundary for this transition shall be computed using parametric continuation in the

spanwise aspect ratio, h. The mapping procedure used by Aidun (1987) in the case of the

Rayleigh-Benard convection in porous media will be applied here to determine the stability

boundary in the range 0< h <oo .

The next step is the application of Schaeffer's (1980) homotopy to this problem. At the

two end walls we prescribe a two-parameter family of boundary conditions with a

homotopy parameter, r, and the span aspect ratio, h. These are

v.n = 0 (6)

and rv+ (1-(l ) n Vv=0 at the end walls. (7)
h

where, v is the velocity vector and n is unit vector normal to the end walls. A two-

parameter family of solenoidal (divergence-free) basis functions, which inherently satisfies

the boundary conditions (6) and (7), is constructed in Appendix C. Starting from the

periodic steady solution of the ideal LDC, we shall compute the primary and secondary

modes of the real LDC represented by the decoupled bifurcation branches (Fig. 5). Then

we use this real LDC solution point on each branch to trace out the bifurcation diagram of

the potentially multi-stable solution branches using a pseudoarclength continuation

technique.

E. Relevance to Other Research

Burggraf (1966) and Pan and Acrivos (1967) chose a lid-driven cavity system to examine

the behavior of a confined recirculating flow. The two-dimensional driven cavity flow is

considered in many other investigations, including numerous computational simulations

which treat the system as a benchmark, to examine numerical algorithms. Koseff and

Street (1984) were the first to extensively examine the three-dimensional driven cavity flow

as it becomes turbulent at Reynolds number above 6000. Their work motivated a number

of numerical studies (see Section C) which confirmed the appearance of Taylor-Gortler-like

vortices observed in their experiments. These vortices occur at high Reynolds number

where the flow is already unsteady.
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The stability properties of the equilibrium solutions (states) of this system have remained

virtually unexplored, however. The proposed research investigates the stability properties

of the steady state flow in this system.

Previous computational studies solve an initial-value problem, and march in time to

asymptotically approach an equilibrium solution. These studies have not examined the

stability of their solution to finite-amplitude disturbances. Our experiments (Aidun et al.,

1991) suggest that at some range of Reynolds number, multiple locally stable steady states

coexist. The proposed global spectral technique with the pseudoarclength continuation of

the equilibrium solutions and the decoupling of the perfect bifurcation system using

Schaeffer's homotopy make it possible to examine the global stability characteristics of the

LDC steady state flows.

It is shown (Koseff and Street, 1984, and Prasad and Koseff, 1989) that existence of the

Taylor-Gortler-like vortices is important in generating turbulence. The appearance of these

vortices is attributed to the instability of the viscous layer between the primary and

downstream secondary eddies. Our study will rigorously examine this conjecture through

construction of the destabilizing disturbance structure at the onset of time-periodic flow.

This scheme has proved to be very effective in detecting the secondary traveling waves

responsible for the transition to time-periodic flow in a Rayleigh-Benard system (see Steen

and Aidun, 1988).
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Appendix A

The velocity vector u of an incompressible flow can be written in terms of two scalar

functions [Chandrasekar (1981)]

u = Vx( i) + V x (j) (Al)

where i and j are the unit vectors in the x- and y-directions, respectively (see Fig. 1). In

matrix form, (Al) reduces to

U= = N + 0

- w J][ z [r. (A2)

Therefore, a divergence-free function, such as the basis function in (4), can be decomposed

as

{i = l i} { i} (A3)

This formulation inherently satisfies the continuity equation and eliminates one of the

dependent variables. If the function u satisfies homogeneous boundary conditions, then

(Al), as shown first by Leonard and Wray (1982), has the further advantage of explicitly

eliminating the pressure term from the governing equations.

J Vp'. i = f p' ci. n- lp' (V. I ) =0
anR~ an a~n ~(A4)

Here p' is the pressure reduced by the Stokes flow pressure field, and the divergence-free

basic function Oi expands the reduced velocity vector u as shown by Eq. (4).
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Appendix B

The biharmonic equation describing Stokes flow in a two-dimensional region Q can be

written in terms of the stream function, A, and vorticity, Co, as

V 2 =wo and V2 o = 0 on f (B1)

Invoking Green's theorem, the solution to (B 1) can be written in the standard boundary

integral form as

TI(P) I(P) = f n o [Y(q)VGi (p,q) - G1 (p,q)V(q)]do(q)
an

+ J f n o [o(q)VG2(p,q) - G2 (p,q)VO(q)] dc(q)
an

rl(p) O(p) = f n [co(q)VGC (p,q) - G1 (p,q)Voo(q)] da(q)
an

pEr=+0QQ, q6E Q. (B2)

Here, n is a unit vector normal to the domain boundary, an, and rl is a geometric factor

given by

-0 , pe n+a3

r(p)= 2 , a

_1 , pEI . (B3)

The principal part of Green's function, G1, and the second fundamental function, G 2, are

given by

G = log Ip-ql (B4
27c (Bna)
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2 P -1]. (B4b)

Discretizing the boundary and assuming piecewise constant function, the solution for T
and so in (B2) can be represented in discretized form by

AT+BTn+Cco+Dw =0 (B5a)

Ac + Bc = (B5b)

where Wn = n * VW; and W, En, o, and )n are the vectorized representation of

Y, n, 0o, and o n values evaluated on the discretized boundary. The coefficient matrices,

A, B, C, and D are defined by

Aij = n o V log|qi - ql do(q) - jdij
.qe aj (B6a)

Bij =- log Iqi- c do(q)

qe i (B6b)

Cj = -| n V{1qi - q12 og q - qi - Iqi - ql2}do(q)

JqE (B6c)

Di - i {qi - ql2 logic q- ql -lqi -ql2} dco(q)

q6E (B6d)

where a'j is the boundary increment between j and j + 1 and node i is at the midpoint of

a i. Two boundary conditions, T and Tn, are used with (B5) to evaluate the other two

dependent variables (t and c%) on the boundary. Then (B5) is used again to compute the

dependent variables in Q.

An advantage of this formulation is that the boundary discretization results in an analytical

expression for the coefficient matrices and their derivatives. Furthermore, an analytical
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solution of the integrals in (B6) is available (Jawson and Symm, 1977; and Kelmanson,

1982) and the singularities arising when q--qi can be removed by application of Cauchy's

principal value theorem. The above formulation, therefore, completely eliminates a need

for numerical differentiation or integration and provides an efficient method for accurate

evaluation of the Stokes velocity field and its derivatives in the global spectral equations.
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Appendix C

The x-component of the boundary condition (7) is

u + (l-x) U =0
h-

at y = h/2
(C1)

where uy = u . Expanding u in terms of uj, the x-component of basis function Oj, and

substituting in (C1) we get:

at y = ±h/2

The basis function uj can be written as:

uj = F1 (x) Gm (z) Hn (y)

where F, G, and H are functions of x, z, and y, respectively.

Substituting (C3) in (C2), we get:

H y)+ (l-T) H' (y)=O, Hn (Y) + I I-~ Hn (y)= 0h
at y = h/2

(C2)

(C3)

(C4)

This boundary condition is satisfied if:

H n (y) = Tn+l (y) - T1 (y) + 8n Cos (nty) (C5)

where = 8 - (- h [(2n+1)2- 1]h, t (C6)

Tn is the Chebyshev polynomial of degree n.

Functions F and G are constructed using Chebyshev polynomials such that they satisfy the

no-slip boundary conditions and minimize the bandwidths of matrices in Eq. 5. When T =

0, (C4) represents a free-slip boundary condition (or a periodic boundary condition in the
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y-axis) and therefore (C3) expands the velocity field of an ideal LDC flow (or a LDC with

infinite span). The base state for this case is simply the 2-D flow solution, which is easy to

obtain. Since the coefficients in (3) have no dependence on y, the first critical mode that

destabilizes the 2-D base state is periodic in y. The spatially periodic branch is then
computed using continuation techniques. We then use x as a small parameter to perturb the

ideal case and obtain the decoupled bifurcation diagram. In the case of a Taylor-Couette
system, Bolstad and Keller (1987) showed that the bifurcation diagram for small T is

qualitatively the same as that for t=1.

The main advantage of this technique is that it allows detection and tracing of solution

branches not connected to the primary branch and otherwise inaccessible.
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