
IEEE Robotics & Automation MagazineMARCH 2008 1070-9932/08/$25.00ª2008 IEEE 87

A Software Tool for
Hybrid Control

From Empirical Data to Control Programs

BY FLORENT DELMOTTE, TEJAS R. MEHTA, AND MAGNUS EGERSTEDT

W
hen humans instruct each other on how to

solve complex navigation tasks, they typi-
cally use statements like ‘‘Do A until B, then

go toward C until you see D,’’ and so on.
Such statements contain only high-level de-

scriptions of the task at hand, whereas lower-level issues con-
cerning the exact path to follow or what muscle groups to use
are implicitly assumed. This situation is in contrast with the
classic control theoretic idea of prescribing the exact inputs or
actuation signals that are needed for solving the task.

In this article, we present a software tool that bridges this
gap by providing a framework in which robots and other
dynamic systems can be controlled using automatically gener-
ated, high-level, symbolic control programs. In particular, the
automated tools extract high-level control programs from
observed behaviors (possibly biological) and then produce
symbolic control laws that can be executed on mobile robots
to mimic the observed behavior (Figure 1).

The main question investigated here can be summarized as
follows: given the assumptions about what features and
measurements are relevant to the original system, can we
produce hybrid control strategies that mimic the observed
behavior? The resulting hybrid strategies would, for example,
allow us to generate control laws for teams of mobile robots
that behave similarly to groups of ants or schooling fish. In
other words, can we produce multimodal control strategies in
an automated fashion from observed empirical data? These
empirical data can be generated by nature (as in the group of
ants) or from human-operated robots. From the standpoint of

naturally occurring data, the short-term aim of such a research
agenda would be to learn from nature, but a more lofty, long-
term goal would be to understand naturally occurring control
mechanisms based on hybrid control theory. From the human-
operator standpoint, the goal would be to learn effective con-
trol strategies from examples.

Similar ideas have been pursued in [3] and [10], which are
based on presegmented data or predefined collections of poten-
tial control laws. Alternative approaches can also be found in
literature on motion captioning [17] or in the hybrid systems
identification area [12]. However, these research programs are
focused mainly on fitting piecewise linear, autonomous systems
to the data. In this article, we take a different view, wherein the
dynamics are given and the problem is to find control laws,
together with the conditions for transitions between them,
defined with respect to the system dynamics. At this point, it
should be noted that some of the technical results presented
here have appeared in [6] and [7], but in this article, we com-
bine these results with new work and unify them into a tool for
automating the process of extracting executable control strat-
egies from empirical data. The tool is mode optimization and
data extraction (MODEbox), which is available as a MATLAB
toolbox [20]. The graphical user interface for MODEbox is
depicted in Figure 2. MODEbox consists of four major mod-
ules: preprocessing, motion description language (MDL) captur-
ing, MDL to automata, and simulation. Each of these modules
and their functionality is discussed in this article, and further
information is available on the MODEbox Web site [20].

The outline of this article is as follows: In the section on
motion description languages, a brief introduction to MDLs is
given. In the next section, the MODEbox and its basicDigital Object Identifier 10.1109/MRA.2008.919022

functionality is introduced. This is followed by a detailed expla-
nation of the key modules that comprise MODEbox. In particu-
lar, the section on recovering MDL strings from data details how
to recover MDL strings from data. The next two sections intro-
duce a method for reducing the size of the recovered mode set to
lower complexity and show how to construct a finite automaton
that reproduces the recovered MDL strings. Finally, some exam-
ples are presented in the section on robots and ants.

Motion Description Languages
The main idea behind multimodal control is to define the dif-
ferent modes of operation, e.g., with respect to a particular
task, operating point, or data source. These modes are then
combined according to some discrete switching logic, and one
attempt to formalize this notion is through the concept of an
MDL [5], [8], [14].

Each string (or word) in an MDL corresponds to a control
program that can be operated by the control system. Slightly
different versions of MDLs have been proposed, but they all

share the common feature that the individual atoms (or letters),
concatenated together to form the control program, can be
characterized by control-interrupt pairs. In other words, given
a dynamic system

_x ¼ f (x; u); x 2 Rn, u 2 Rk

y ¼ h(x); y 2 Rp, (1)

together with a control program (k1, n1), . . . ,(kz, nz), where
ki : Rp ! Rk and ni : Rp ! f0, 1g, the system operates on
this program as _x ¼ f (x, k1(h(x))) until n1(h(x)) ¼ 1. At this
point, the next pair is read, and _x ¼ f (x, k2(h(x))) until
n2(h(x)) ¼ 1, and so on. Loosely speaking, the system evolves
under triggers, i.e., it is controlled by the feedback law ki(y)
until interrupt ni(y) goes from 0 to 1, at which point the next
feedback law kiþ1(y) is used. Note that the interrupts can also
be time-triggered, but this can be incorporated by a simple
augmentation of the state space.

We first assume that the input-output (I/O) spaces (U and
Y, respectively) in (1) are finite, which can be obtained
through a quantization function. This assumption can be justi-
fied by the fact that all physical sensors and actuators have finite
range and resolution. Under this assumption, the set of all pos-
sible modes Rtotal ¼ UY3f0, 1gY is finite as well. Moreover,
we can assume that a data point is measured only when the
output or input changes value. This corresponds to the so-
called Lebesgue sampling, in the sense of [2], which allows us
to study only the I/O strings of finite length (given that the
data were generated over a finite time horizon). Under this
sampling policy, we can define a mapping d : Rn

3U! Rn as
xqþ1 ¼ d(xq, k(h(xq))), given the control law k : Y! U, with
a new time update occurring whenever a new I/O value is
encountered. For such a system, given the input string
(k1, n1); . . . ; (kz, nz) 2 R�, where R� is the free-monoid over a
particular mode set R � Rtotal, the evolution of x is given by

xqþ1 ¼ d(xq, klq (yq)), yq ¼ h(xq)

lqþ1 ¼ lq þ nlq (yqÞ,

(
(2)

where lq 2 f1, . . . , zg is the position of the active mode
within the input string at time q. (As an example, consider
the situation in Figure 3, where a mobile robot is executing
an MDL string consisting of alternating avoid-obstacle and
go-to-goal modes.)

One of the objectives of MODEbox is to recover such strings
of feedback-interrupt pairs from observed data, which will be
discussed in more detail later.

MODEbox Basics
The basic functionality of MODEbox consists of four major
modules (Figures 2 and 4). We will briefly describe each of these
building blocks below and then present the theory behind their
operation in later sections. Overall, MODEbox takes in a string
of observed data (I/O pairs) and produces MDL strings consistent
with the observed data. Next, MODEbox constructs a finite
automaton capable of producing these MDL strings as a sample

Extraction of High-Level
Control Program

Generation of Executable
Robot Control Code

Figure 1. An example is shown in which ten roaming ants in a
tank are tracked. Their behavior is analyzed and high-level
control programs are extracted for controlling teams of mobile
robots.

Figure 2. Graphical user interface for MODEbox [20].

IEEE Robotics & Automation Magazine88 MARCH 2008

path, which can then be used as a control law to simulate similar
trajectories or to control real systems.

The description of each module will be accompanied by a
simple maze example to better illustrate the MODEbox opera-
tion. Note that this example is overly simplistic, but it is merely
to be thought of as a vehicle for making certain operational
aspects explicit. Let us assume that data are collected from the
observations of a robot going through a maze as depicted in
Figure 5(a). These data will be given by an I/O string, where
the inputs are variables relevant to the system’s control deci-
sions and the outputs are signals possibly used to control the
observed system. For this particular maze example, we choose
the output to be y ¼ (y1, y2, y3, y4), where y1, y2, y3, and y4

correspond to the colors (i.e., 0 is black and 1 white) of the
cells in front, to the left, behind, and to the right of the robot,
respectively. The input u is the corresponding action (1 stands
for go straight; 2, turn left; 3, U-turn; or 4, turn right) taken
by the robot in response to the outputs. These data are sent to
the preprocessing block.

Block 1: Preprocessing
In the first block in Figure 4, a data string consisting of I/O
pairs is being read by MODEbox. The assumption is that the
data are generated by a dynamic system xqþ1 ¼ f (xq, uq),
yq ¼ h(xq), and the data string is given by (y1, u1), . . . ,
(yN , uN), where the outputs yi 2 Rp and the inputs ui 2 Rk.
Here, we use boldface to denote variables before they have
been operated on by the preprocessing block. In fact, this
string is operated on by the preprocessing block using three

different, sequential components, namely, Quantize, Encode,
andLebesgue. Quantize produces a finite precision represen-
tation of the data string, Encode maps the quantized data strings
to symbols, and Lebesgue reduces the length of the data
string by making sure that no consecutive, symbolic I/O pairs
are the same [2]. As a result, the output of this block is a new
string (y1, u1), . . . ,(yr , ur), where r � N and yi 2 Y, ui 2 U.
The user can specify how many regions (quant.numbers)
the quantization should produce and what quantization method
to use (quant.method). The user can select between four
quantization methods: uniform, equidistributed, optimal pulse
code modulation (PCM), and optimal differential pulse code
modulation (DPCM). The choice of a quantization method

Figure 3. A multimodal input string is used for negotiating
two rectangular obstacles.

Data Preprocessing

Quantize

Lebesgue

Encode

Quant.Numbers
Quant.Method
Lebesgue ON/OFF

MDL-Capturing

IO2MDL

Compression

Recovery Method
Compression Parameters

Reduction Method
Computational Bounds

MDL String
to Automata

Simulation

Quantize

Encode

Execute
Automaton

Decode

Quant.Levels A = < S, s0, Ξ, K, T, h >

Simulation
/Execution

y ∈Rp u ∈Rk

(y1,u1)...(yN,uN)
yi ∈Rp

ui ∈Rk

(y1,u1)...(yr,ur)
yi ∈R = {1,...,NY}
ui ∈U = {1,...,NU}

(ki1
, �j1

)...(kis
, �js

)

 ki ∈ UY

�i ∈{0, 1}Y

Figure 4. Overview of the MODEbox operational units.

IEEE Robotics & Automation MagazineMARCH 2008 89

and quantization levels is motivated by which one of these two
opposite entities is to be preferred: the final model’s complexity
or the model’s performance at approximating the original sys-
tem. The user can also choose whether or not Lebesgue sam-
pling should be employed (Lebesgue ON/OFF).

For the maze example, each data point comes from a small
discrete set Y 3 U , where Y ¼ f0, 1g4 and U ¼ f1, 2, 3, 4g.
Generally, the data could belong to countably or uncountably
infinite sets. Here, data already belong to a small discrete set;
therefore, we do not need to quantize the data any further.
These data are now encoded into a discrete set of symbols
Y 3 U, where Y ¼ f1, 2, . . . , 16g and U ¼ f1, 2, 3, 4g, and
the resulting I/O string is sent to the MDL-capturing block.

Block 2: MDL Capturing
The output from the preprocessing block is now fed into the
MDL-capturing block. The method for recovering MDL
strings from I/O data, IO2MDL, has been developed by the
authors in [7], and different strategies for minimizing certain
objectives have been devised. Although minimizing the
so-called empirical specification complexity is the preferred
objective, this is not always achievable, as noted in [7]. Instead,
the user can choose from one of four methods that manage this
complexity (this will be addressed in more detail in the next
section). Once an MDL string is produced, the result is fed to
Compression, where similar feedback laws and interrupt

functions are identified and combined, which are based on
user-specified compression parameters that set the
thresholds (between zero and one) for how similar they need
to be in order to be considered the same. The similarity measure
is a normalized average entropy quantifying the uncertainty in
the random variable ki(y) [and, respectively, ni(y)], where i can
be any of the modes under consideration. The resulting output
from this block is a string (ki1 , nj1), . . . , (kis , njs), where s � r.

For the maze example, a close look at the trajectory in Fig-
ure 5(a) shows that the robot’s behavior is almost always
predictable. Indeed, the robot goes straight whenever possible
(i.e., u ¼ 1 when y ¼ (1, -, -, -)T) and turns left or right when
it is the only possible choice (i.e., u ¼ 2 when y ¼ (0, 1, 1, 0)T

and u ¼ 4 when y ¼ (0, 0, 1, 1)T). The only unpredictable sit-
uation is when the robot is facing a wall, with two openings on
the left and right (situation that we will denote y? ¼
(0, 1, 1, 1)T). In this case, we see that the robot sometimes
chose to turn left (u ¼ 2) and sometimes right (u ¼ 4). With
this in mind, a recovery method minimizing the number of
distinct modes could return the sequence k1n1k1n1k2n2

k1n1k1n1k1, where mode 1 (respectively, mode 2) makes the
robot turn left (right) when y? happens (i.e., k1(y?) ¼ 2 and
k2(y?) ¼ 4), where the two modes behave the same for all
other situations (i.e., whenever y 6¼ y?, k1(y) ¼ k2(y)) and
where the interrupts functions would be the same, only trig-
gering when y? happens (i.e., n1(y?) ¼ n2(y?) ¼ 1). This par-
ticular mode sequence is depicted in Figure 5(b). Because the
two modes are almost identical, it is conceivable to merge
them into a single mode (k12, n12). In this case, k12(y?) is now a
random variable (and not deterministic as before) as
k12(y?) ¼ 2 or 4. The resulting compressed mode sequence
would be k12n12k12n12k12n12k12n12k12n12k12. Now this mode
sequence will be sent to the MDL to automata block.

Block 3: MDL to Automata
The resulting MDL string can be thought of as a sample path gen-
erated on a finite automaton, where the output function h(s) ¼ k
returns the feedback law that the system should use in state s.
Transitions in the automaton are triggered by the corresponding
interrupts. If we let K and N denote the set of feedback laws and
interrupt functions, respectively, the MDL to automata block
produces a finite automaton A ¼ hS, s0, N,K, T , hi, where S is
the state space, s0 the initial state, T : S3N! S is the transi-
tion relation, and h,K, and N are as previously defined. More-
over, A should not only be such that the MDL string is a
sample path of A but should also be small in the sense of state-
space cardinality. This subject is considered in the ‘‘From MDL
Strings to Finite Automata’’ section, where algorithms for find-
ing such automata are discussed. The user is free to choose
between an optimal and a suboptimal algorithm through the
user input reduction method.

For the simple maze example, the optimal automaton is easily
recovered, and the results are shown in Figure 6. An automaton
corresponding to the recovered mode string without compres-
sion (k1n1k1n1k2n2k1n1k1n1k1) is shown in Figure 6(a), and an
automaton corresponding to the compressed mode string
(k12n12k12n12k12n12k12n12k12n12k12) is shown in Figure 6(b).

(a) (b)

Figure 5. (a) Trajectory of a robot going through a maze,
which can be used as input data for MODEbox. The arrow and
cross indicate the starting and finishing locations, respectively.
(b) Example of a recovered mode sequence. Each arrow
corresponds to the execution of one mode. Note that at the
same moment an interrupt is triggered, a last action is taken
by the active mode. For this reason, interrupts are located one
step before the head of an arrow, i.e., when the robot faces a
wall with two openings on its left and on its right.

The main idea behind

multimodal control is to define

different modes of operation

in different situations.

IEEE Robotics & Automation Magazine90 MARCH 2008

Block 4: Simulation or Execution
Once A has been produced, it can be used as a hybrid control
law to mimic observed behavior or control real systems in the
simulation block. The last block in the MODEbox flow dia-
gram represents this situation, where externally obtained
measurements y 2 Rp (either through simulation or a real
experiment) are quantized and encoded [with the same
quantization levels (quant.levels) used in the preprocess-
ing block] to produce symbolic measurements y 2 Y. These
measurements are then used for driving the finite automaton
through ExecuteAutomata, and the corresponding con-
trol symbols u 2 U are computed and decoded to produce
executable control signals u 2 Rk. This is the only block in
the toolbox that requires any significant user input since each
simulation is application specific.

The control procedure recovered in the previous block is
now applied to a robot to navigate through a new maze
depicted in Figure 7. We assume that the control automaton
used in this example is the one depicted in Figure 6(b). First,
we define two functions f (x, u) and h(x) reflecting the state
evolution and observation of the robot traversing the maze. At
each time increment, the real measurement yq ¼ h(xq) is
quantized and encoded into a symbolic measurement yq 2 Y.
A symbolic input uq 2 U is then computed. It corresponds to
the value k12(yq) of the feedback mapping of the active mode.
This symbolic input is decoded into an executable control
u 2 Rk. By applying this control to the robot, the state evolves
according to xqþ1 ¼ f (xq, uq). Figure 7 shows how the simu-
lated system exhibits trajectories or behaviors similar to those
of the system used for training.

The remainder of this article is devoted to presenting the
theory related to the MODEbox modules in detail and show-
casing the MODEbox operation through some examples.

Recovering MDL Strings from Data
In [7], we presented different methods for recovering multimo-
dal control strings from empirical data in a theoretical setting.
In particular, the problem was to produce strings in a given
MDL that were consistent with the empirical I/O strings. At
the same time, the control programs were viewed as having an
information-theoretic content, i.e., they could be coded more
or less effectively. For this, we define a complexity measure, the
empirical specification complexity, which corresponds to the
number of bits needed to specify a mode string r with an opti-
mal coding scheme:

Se(r) ¼ jrjHe(r),

where jrj is the length of the mode sequence r andHe(r) is its
entropy.

The minimization of Se(r) is, in fact, very hard to address
directly and is still an open problem. However, the easily
established bound Se(r) � jrj log2 (M (r)), where M (r) is the
number of distinct modes in r, allows us to focus on the fol-
lowing more tractable subproblems:

u minimizing the length of the mode sequence jrj,
which was solved using dynamic programming in [1]

u minimizing the number of distinct modes M (r), which
was solved in [6] and relies on the initial construction
of mode sequences, where the interrupts always trigger
and are referred to as always interrupt sequences (AIS).

It is important to note that the solutions to these problems
are not unique; hence, they can be further processed to reduce
complexity. In particular, [7] presents additional algorithms to
minimize entropy and reduce the length of mode strings given
by the AIS solution while preserving consistency. MODEbox
supports four different methods for recovering MDL strings,
and the users can select among them based on their preference.
The supported recovery methods are as follows: MinLength
(minimizes the string length), AIS (minimizes the distinct
number of modes), RAIS (reduces the length of a string
produced by the AIS to further reduce the specification com-
plexity), and RMEAIS (reduces the length of the lowest
entropy AIS string). Although the RMEAIS produces the
lowest complexity strings among AIS, RAIS, and RMEAIS, it
does not necessarily produce strings with complexity lower
than the MinLength.

Reducing the Size of the Motion Alphabet
The conversion from mode sequences to executable I/O
automata requires splitting the motion alphabet R into two

Figure 7. Trajectory of a robot navigating through a maze using
a controller derived by MODEbox.

k1 k1 k1

�1 �1 �1 �12

�2

(a) (b)

k2 k12

Figure 6. (a) Automaton corresponding to the noncompressed
recovered mode string. (b) Automaton corresponding to the
compressed mode string.

Application of the MODEbox

tool is illustrated on two different

examples involving robots

and ants.

IEEE Robotics & Automation MagazineMARCH 2008 91

alphabets: the input alphabet N of interrupt functions and the
output alphabet K of feedback mappings. To produce small
automata (in terms of the number of states), a preliminary task
consists of reducing the size of N andK by merging the combi-
nations of elements that look similar. To do so, we first need to
define a measure of similarity. Consider merging n distinct
feedback mappings ki1 , ki2 , . . . , kin , resulting in the creation of
a macro-feedback mapping KI , where we let I ¼ fi1, . . . , ing.
Here, we choose to merge feedback mappings, but the same
ideas, definitions, and algorithm apply for interrupt functions.
Note that for a given y 2 Y, two distinct feedback mappings
may map y to two different inputs, i.e., 9(a, b) 2 I2 such that
ka(y) ¼ u and kb(y) ¼ v with u 6¼ v. For this reason, we choose
to represent KI (y) as a random variable. Consequently, the
macro-feedback mapping KI is a random process defined on Y.

Now, for a given y 2 Y, the probability mass function of
KI (y) can be recovered by

pKI (y)(u) ¼ PrfKI ðyÞ ¼ ug

¼ cardfqjyq ¼ y, uq ¼ u; and mq 2 I , q ¼ 1, . . . , Ng
cardfqjyq ¼ y and mq 2 I , q ¼ 1, . . . , Ng ,

where mq refers to the active mode at time q, card denotes car-
dinality, and N is the number of data points in the I/O string.
Next, we define the entropy of the random variable KI (y):

H(KI (y)) ¼ �
X
u2U

pKI ðyÞ(u) log (pKI ðyÞ(u)),

with the following bounds

0 � H(KI (y)) � log (n):

Finally, we define an entropy measure for the random process
KI . It is the normalized average of the entropies of all random
variables KI (y), y 2 Y:

H(KI) ¼
1

log (n)

X
y2Y

pY (y)H(KI (y)):

Note that in this definition, the output is also considered as a
random variable Y . We propose three methods for establishing
its probability mass function pY : y! pY (y) ¼ PrfY ¼ yg:

1) y is a uniform random variable. In this case, p(y) ¼
1=jYj

2) we look at the proportion of y when any mode in I is
active, i.e., pY (y) ¼ ðcardfqjyq ¼ y and mq 2 I , q ¼ 1,
. . . , Ng)=(cardfqjmq 2 I , q ¼ 1, . . . , N)g

3) we look at the proportion of y in the whole observed
output sequence, i.e., pY (y) ¼ (cardfqjyq ¼ y, q ¼ 1,
. . . , Ng)=N .

The total entropy H(KI) is a measure of the average uncer-
tainty in the random process KI . It varies from zero to one,
where

u H(KI) ¼ 0 means that there is no uncertainty in KI ,
i.e., for all y 2 Y, all modes in I map y to the same
input value

u HðKI Þ ¼ 1 means that the uncertainty in KI is maxi-
mal, i.e., for all y 2 Y, all modes are equally active,
and they all map y to a distinct input value.

In other words, the two extreme values are reached when
the n feedback mappings are either equal (H(KI) ¼ 0) or com-
pletely different (H(KI) ¼ 1). We propose to define a
threshold value ck 2 ½0; 1� so that if H(KI) � ck, the feedback
mappings are considered similar enough to be merged. On
the basis of this idea, we suggest the following alphabet
reduction algorithm.

Given an alphabet A ¼ fa1, a2, . . . , ang and a reduction
threshold c, we reduceA in the following manner:

A ¼ fa1, a2, . . . , ang
p ¼ n
while p[1

find the combination C� of p elements from A with
minimum entropy HðC�Þ

if H(C�)\c
merge the elements of C�

update A
else

p ¼ p� 1
end

end

This alphabet reduction algorithm serves many purposes.
First, as mentioned earlier, this algorithm splits the motion
alphabet (R) obtained from the earlier step into two alphabets
(N andK) so that the recovered hybrid strings can be viewed as
I/O strings of a hybrid automaton. Second, this process facili-
tates noise reduction, which is naturally occurring when deal-
ing with empirical data. Additionally, the reduction in the size
of the alphabet makes the construction of automata more
tractable. Finally, this process also leads to a stochastic interpre-
tation of the feedback and interrupt functions, which is some-
times more natural than a deterministic interpretation.
However, it should be noted that the computational burden
associated with this algorithm may be quite high in that every
mode combination must be computed.

From MDL Strings to Finite Automata
After applying the alphabet reduction algorithm presented
earlier, our recovered string is of the form ki1nj1ki2nj2 � � �,
where we can think of kiq as the output from the underlying
finite automaton in state sq, and njq as the corresponding event
that triggers a transition from state sq to sqþ1. The question then
becomes, can we recover this underlying automaton? And, is it
unique? The answer to the second question is ‘‘no,’’ and we
will focus our attention on trying to recover minimal autom-
ata, but first we need to establish some notation.

An output automaton is a sextuple hS, R, Y , s0, T , hi,
where S is the finite set of states, R is the input alphabet, Y is
the output alphabet, s0 2 S is the initial state, T � S 3 R 3 S
is the set of allowable transitions, and h : S! Y is the output
function. For our purposes, the input and output alphabet will
be the finite set of interrupts (N) and feedback laws (K),

IEEE Robotics & Automation Magazine92 MARCH 2008

respectively. We define a path p as a finite alternating sequence,
si1rj1 si2rj2 si2 � � �rjn�1 sin , of states and inputs, starting and ending
with a state. We say that a path is executable on A if si1 ¼ s0,
and each input transitions the state preceding it to the one fol-
lowing it, i.e., (siq , rjq , siqþ1) 2 T for all q. An I/O path py is an
alternating sequence, y‘1rj1y‘2rj2 � � �rjn�1y‘n , of outputs and
inputs, starting and ending with an output. We say that an I/O
path is executable on A if there exists an executable path
si1rj1 si2rj2 � � � sjn such that for all q, h(siq) ¼ y‘q . Now, given an
I/O path py ¼ y‘1rj1 � � � y‘n , the problem under consideration
here is to find the smallest deterministic output automaton
A ¼ hS, R, Y , s0, T , hi on which py is executable.

Note that for a given I/O path py ¼ y‘1rj1 � � � y‘n , there
always exists at least one output automaton A on which py is
executable. It is the automaton that jumps to a new state at
each transition. This sequential output automaton has exactly
n states. The set of automata that can execute py is thus non-
empty, and there always exists a solution to the problem
defined earlier.

In fact, this problem is related to the problem of producing
minimal equivalent automata since one could consider apply-
ing a state reduction algorithm to the sequential output
automaton derived earlier. However, this automaton is not
necessarily complete, which is a necessary condition for apply-
ing such algorithms [4]. There is, however, an abundance of
literature pertaining to the reduction of incompletely specified
automaton. This problem is known to be NP-complete [18].
The various approaches for solving this problem can be cate-
gorized as either exact or heuristic based. The standard
approach for this problem is based on enumeration of the set of
compatible states and the solution of a binate covering prob-
lem [15]. A different approach for exact minimization not
based on enumeration is presented in [16], and [19] presents
heuristic-based algorithms that significantly reduce run time
while obtaining correct results in most cases. Finally, what we
are aiming for can also be cast in terms of finding the smallest
automaton that simulates a particular sequential output autom-
aton by using the terminology in [9].

As mentioned earlier, MODEbox allows the user to select
between an optimal and suboptimal algorithm.

The optimal algorithm is an exhaustive search algorithm. The
set of all consistent automata is progressively constructed by read-
ing the I/O path from left to right. At the end of this search, the
automaton with the fewest number of states is the optimal solu-
tion. As the length of the I/O path increases, the number of possi-
ble candidates quickly increases as well. Indeed, it is easy to show a
superexponential relation for a worst-case scenario. To contain this
explosion, we apply two heuristic modifications to the algorithm.

u We limit the memory resources so that only a fixed
number of automata M can be stored. When this
number has been reached, new candidate automata are
automatically discarded.

u We set a maximum size cmax. If an automaton has more
than cmax states, it is discarded.

In MODEbox, we encode these heuristics in a high-level
iterative algorithm that slowly increases the bounds until a
solution is reached. Although this modification reduces the

computation time, the problem remains NP-complete and
quickly becomes numerically intractable for long I/O paths.
For this reason, the user can specify a time limit after which, if
no solution has been found, the algorithm returns a lower
bound on the size of the optimal solution.

Instead of keeping up with all consistent automata (as done
in the optimal algorithm), the suboptimal algorithm constructs
a single automaton consistent with the given I/O path by
greedily selecting one of them randomly. As before, the
automaton is constructed by progressively reading the I/O
path from left to right. At each iteration, we identified poten-
tial (consistent) candidates for the next state and chose one of
them randomly. A new state is added only when previously
created states cannot be used. This results in a small consistent
automaton, but the random process in this selection cannot
guarantee that the solution is optimal. However, this algorithm
is significantly faster than the previous one. In fact, it has cubic
complexity with respect to the length of the I/O path.

Robots and Ants
We now illustrate how MODEbox can be put to use in two
particular examples, involving mobile robots and ants. In the
first example, the system should recover a multimodal control
strategy, given I/O data obtained when controlling a mobile
robot using two distinct dynamic behaviors, whereas the other
example is given by the observation of a biological system.

Control of Mobile Robots
For this example, originally reported in [1], we use a unicycle-
type robot, i.e., its kinematics are given

_x ¼ v cos /

_y ¼ v sin /

_/ ¼ x,

where ðx; yÞ is the position and / is the heading of the robot.
The translational and angular velocities (v, x) are the control
variables, and we quantize them according to u 2 f(v, x)j
v 2 V , x 2 Xg, where

V ¼ fslow, medium, fastg,
X ¼ ffast left, slow left, straight, slow right, fast rightg:

In a similar manner, the measurements made by the robot
are sampled and quantized to produce an output string. We let

MODEbox allows the user

to select between an

optimal and suboptimal

algorithm.

IEEE Robotics & Automation MagazineMARCH 2008 93

y 2 f(y1, y2, y3)jy1 2 Y 1, y2 2 Y 2, y3 2 Y 3g, where y1 gives
the distance to the closest obstacle, y2 gives the relative angle
to the closest obstacle, and y3 gives the relative angle to the
goal. By letting the angular quantization be given by the posi-
tions of the sensors on the sonar ring, as shown in Figure 8(a),
we get

Y 1 ¼ fclose, medium, farg,

Y 2 ¼ f1, 2, . . . , 8g, Y 3 ¼ f1, 2, . . . , 8g:

In the experiment, we let the actual robot be controlled using

v ¼ v0 minf1, (dob=D)2g
x ¼ Cob(dob)(/ob þ p� /)þ Cg(/g � /),

where D is a specified safety distance, dob, /ob is the distance and
direction to the closest obstacle, /g is direction to the goal, and
the gain Cob(dob) ¼ 0 if dob � D and (dob �D)=d3

ob otherwise.
The robot is driven manually, and the resulting I/O string

serves as input to MODEbox so that we can control the robot
through the recovered control strategies. The results are shown
in Figure 8(b), where the real execution (dashed line) is shown
together with the effect of controlling the robot using the
MODEbox tool.

Ants in a Tank
We now consider an example from [6], where ten ants
(Aphaenogaster cockerelli) are placed in a tank with a camera
mounted on top [Figure 9(a)]. A 52-s movie is used to extract
the Cartesian coordinates x and y and the orientation h of
every ant every 33 ms using a vision-based tracking software.
This experimental setup is provided by Tucker Balch and
Frank Dellaert at the Georgia Institute of Technology BORG
Lab [13], [21].

From this experimental data, an I/O string at each sample
time k is found for each ant i as follows:

u the input uk is given by (u1
k, u2

k), where u1
k is the quan-

tized angular velocity, and u2
k is the quantized transla-

tional velocity of the ant i at time k
u the output yk is given by (y1

k, y2
k, y3

k), where y1
k is the

quantized angle to the closest obstacle, y2
k is the quan-

tized distance to the closest obstacle, and y3
k is the

quantized angle to the closest goal of ant i at time k.
An obstacle is either a point on the tank wall or an already

visited ant within the visual scope of ant i, and a goal is an ant
that has not been visited recently.

These data are fed to MODEbox, and the resulting control
programs can be used to simulate ant behavior. Figure 9(b)
shows an example of this when 30 ants are simulated based on
the recovered hybrid control strategy.

Conclusions
In this article, we introduce the MODEbox tool for automati-
cally producing hybrid, multimodal control programs from
data. In particular, given an I/O string, four distinct opera-
tional units are introduced.

u Preprocessing: The real-valued I/O strings are trans-
formed into strings of symbols through quantization,
Lebesgue sampling, and encoding operations.

u MDL capturing: Low-complexity strings of symbolic
feedback-interrupt pairs are produced that are consist-
ent with the empirical data.

u MDL to automata: Small finite automata are produced in
such a way that outputs correspond to feedback map-
pings, and transition events correspond to interrupts.

u Simulation or execution: Simulated or real systems can be
controlled using the obtained hybrid control strategy.

5

6
7

8
1
2

3
4

(a)

0 0.5 1 1.5 2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Mode Recovery

(b)

x 2

x1

Initial Trajectory
Recovered Modes

Figure 8. (a) Angular quantization. (b) Effect of controlling the
robot using a recovered mode string.

(a) (b)

–400

100 200 300 400 500 600

–350
–300
–250
–200
–150
–100

–50

Figure 9. (a) Ten ants are moving around in a tank. The circle
around two ants means that they are docking or exchanging
information. (b) Simulation environment depicting 30
simulated ants.

The robot is driven manually,

and the resulting input-output

string serves as input

to MODEbox so that we can

control the robot through the

recovered control strategies.

IEEE Robotics & Automation Magazine94 MARCH 2008

The application of the MODEbox tool is illustrated on two
different examples involving robots and ants.

Acknowledgments
We thank Tucker Balch and Frank Dellaert for the ant data that
were made available through the BORG Lab at the Georgia
Institute of Technology. Part of the work on which this article
is based was conducted by Adam Austin and Johan Isaksson,
and their participation is greatly appreciated. This work was
supported by the National Science Foundation through the
programs EHS NSF-01-161 (Grant 0207411) and ECS NSF-
CAREER award (Grant 0237971).

Keywords

Multimodal control, hybrid systems, mobile robots.

References
[1] A. Austin and M. Egerstedt, Mode reconstruction for source coding

and multimodal controlin Hybrid Systems: Computation and Control, O.
Maler and A. Pnueli, Eds. Prague, The Czech Republic: Springer-
Verlag, 2003, pp. 36–49.

[2] K. J. Åstr€om and B. M. Bernhardsson, ‘‘Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,’’ in Proc. IEEE Conf.
Decision and Control, Las Vegas, NV, 2002, pp. 2011–2016.

[3] T. Balch and R. C. Arkin, ‘‘Behavior-based formation control for
multi-robot teams,’’ IEEE Trans. Robot. Automat., vol. 14, pp. 926–939,
Dec. 1998.

[4] R. G. Bennetts, J. L. Washington, and D. W. Lewin, ‘‘A computer algo-
rithm for state table reduction,’’ Radio Electron. Eng., vol. 42, no. 4,
pp. 513–520, 1972.

[5] R. W. Brockett, ‘‘On the computer control of movement,’’ in Proc.
IEEE Conf. Robotics and Automation, New York, 1988, pp. 534–540.

[6] F. Delmotte and M. Egerstedt, ‘‘Reconstruction of low-complexity con-
trol programs from data,’’ in Proc. IEEE Conf. Decision and Control,
Atlantis, Bahamas, 2004, pp. 1460–1465.

[7] F. Delmotte, M. Egerstedt, and A. Austin, ‘‘Data-driven generation of
low-complexity control programs,’’ Int. J. Hybrid Syst., vol. 4, no. 1-2,
pp. 53–72, 2004.

[8] M. Egerstedt and R. W. Brockett, ‘‘Feedback can reduce the specifica-
tion complexity of motor programs,’’ IEEE Trans. Automat. Contr.,
vol. 48, pp. 213–223, Feb. 2003.

[9] A. Girard and G. J. Pappas, ‘‘Approximate bisimulations for nonlinear
dynamical systems,’’ in Proc. 44th IEEE Conf. on Decision and Control,
2005, pp. 684–689.

[10] D. Gr€unbaum, S. Viscido, and J. K. Parrish, ‘‘Extracting interactive
control algorithms from group dynamics of schooling fish,’’ in Proc. Block
Island Workshop on Cooperative Control, V. Kumar, N. E. Leonard, and
A. S. Morse, Eds. New York: Springer-Verlag, 2004.

[11] J. E. Hopcroft and G. Wilfong, ‘‘Motion of objects in contact,’’ Int. J.
Robot. Res., vol. 4, no. 4, pp. 32–46, 1986.

[12] A. Lj. Juloski, W. P. M. H. Heemels, G. Ferrari-Trecate, R. Vidal, S.
Paoletti, and J. H. G. Niessen, ‘‘Comparison of four procedures for the
identification of hybrid systems,’’ in Proc. 8th Int. Workshop, Hybrid Sys-
tems: Computation and Control, Mar. 2005, pp. 354–369.

[13] Z. Khan, T. Balch, and F. Dellaert, ‘‘An MCMC-based particle filter
for tracking multiple interacting targets,’’ Georgia Inst. of Technology,
Atlanta, GA. Tech. Rep. GIT-GVU-03-35, Oct. 2003.

[14] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, ‘‘Languages, behav-
iors, hybrid architectures and motion control,’’ in Mathematical Control
Theory, J. Willems and J. Baillieul, Eds. New York: Springer-Verlag,
1998, pp. 199–226.

[15] M. Paull and S. Unger, ‘‘Minimizing the number of states in incom-
pletely specified state machines,’’ IRE Trans. Electron. Comput., vol. EC-8,
pp. 356–367, Sept. 1959.

[16] J. M. Pena and A. L. Oliveira, ‘‘A new algorithm for exact reduction
of incompletely specified finite state machines,’’ in Proc. Int. Conf.
Computer Aided Design, 1998, pp. 482–489.

[17] V. Pavlovic, J. M. Rehg, and J. MacCormick, ‘‘Learning switching lin-
ear models of human motion,’’ in Advances in Neural Information Process-
ing Systems 13 (NIPS*2000), pp. 981–987.

[18] C. F. Pfleeger, ‘‘State reduction in incompletely specified finite
state machines,’’ IEEE Trans. Comput., vol. C-22, pp. 1099–1102,
1973.

[19] J. K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, ‘‘Exact and heuristic
algorithms for the minimization of incompletely specified finite state
machines,’’ IEEE Trans. Computer-Aided Design, vol. 13, no. 2, pp. 167–

177, 1994.
[20] GRITS lab (2007). [Online]. Available: http://gritslab.ece.gatech.edu/

MODEbox.html
[21] BORG lab (2006). [Online]. Available: http://borg.cc.gatech.edu

Florent Delmotte received a Diplôme d’Ing�enieur from
the Ecole Sup�erieure d’Electricit�e (Sup�elec), Gif-sur-Yvette,
France, in 2003. Since then, he has been a graduate research
assistant in the Department of Electrical and Computer
Engineering at the Georgia Institute of Technology, Atlanta,
Georgia, where he received an M.S. degree in 2003. He is
now a Ph.D. candidate. His research interests include hybrid
systems, multimodal estimation, linguistic control of mobile
robots, and optimal control.

Tejas R. Mehta is pursuing his Ph.D. degree at the Georgia
Institute of Technology, where he received his M.S. degree in
2004 and his B.S. degree in 2002 in electrical and computer
engineering. He is currently working as a graduate research
assistant at the Georgia Robotics and Intelligent Systems
Laboratory. His research interests include optimal control of
hybrid systems, multimodal control, and linguistic control of
mobile robots.

Magnus Egerstedt is an associate professor in the School of
Electrical and Computer Engineering at the Georgia Institute
of Technology, where he has been on the faculty since 2001.
He received the M.S. degree in engineering physics and the
Ph.D. degree in applied mathematics from the Royal Institute
of Technology, Stockholm, in 1996 and 2000, respectively.
He also received a B.A. degree in philosophy from Stockholm
University in 1996. From 2000 to 2001, he was a postdoc-
toral fellow at the Division of Engineering and Applied Sci-
ence at Harvard University. His research interests include
optimal control and modeling and analysis of hybrid and
discrete event systems, with an emphasis on motion planning
and control of (teams of) mobile robots.

Address for Correspondence: Magnus Egerstedt, School of
Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA 30332 USA. Phone: þ1 404 894
3484. E-mail: magnus@ece.gatech.edu.

IEEE Robotics & Automation MagazineMARCH 2008 95

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

