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Unless he is indifferent to fame and fortune, he cannot have aspirations; unless he stays

calm and quiet, he cannot reach afar.

Zhuge Liang, a Chinese politician during Three Kingdom period



For the young man may who stays curious and passionate along the journey.
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SUMMARY

In this dissertation, Chapter I will provide an overview of Edge Intelligence (EI), includ-

ing a definition, a design landscape, a generic EI design methodology and reviews of state-

of-art research/industrial EI demonstrations. Then, Chapter II-V will discuss several EI

works in details to cover various EI design challenges/opportunities. Data-aware algorithm

for EI will be discussed in Chapter II with an example of data-fusion-based edge occupancy

detection for HVAC control. The fusion algorithm enables 5× detection error deduction

and 3× sensor lifetime expansion while offering 26% energy savings for HVAC system

in various environment through accurate occupancy detection. In Chapter III, context-

aware wireless sensor control will be discussed through a self-optimizing wireless video

surveillance camera platform. The self-optimizing control strategy systematically enables

4.3× energy reduction per frame compared with baseline designs. Further, a continued

self-optimizing wireless image processing system-on-chip (SoC) work will be discussed in

Chapter IV. This work is going to demonstrate silicon effectiveness with respect to energy,

latency and area through state-of-art circuit techniques and full computation, communi-

cation and control on-chip integration. The test chip features (1) a 1.05TOPS/W (peak)

programmable DNN image processor, (2) a 768pJ/b digitally-adaptive transceiver and (3)

0.59pJ/MAC actor-critic controller for efficiently controlling computation, communication

blocks separately as well as jointly. In Chapter V, distributed intelligence and its hardware

design considerations will be discussed via a swarm robotic application-specific-integrated-

circuit (ASIC).The test chip supports both model-based and learning-based algorithm and

the hybrid-digital-mixed-signal computation enables excellent scalability with number of

robotic agents. A 1.1-9.1 TOPS/W efficiency is measured across various swarm size and

computation precision. Finally, conclusions will be drawn in Chapter VI with both insights

gained from previous chapters as well as discussions on promising future EI research di-

rections.
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CHAPTER 1

INTRODUCTION

From manually collecting and processing real-world data, to cloud-based Internet of Things,

the evolution of technology has fundamentally changed the way human interface the real

world. When we look at the trend, we are essentially trying to perceive, interpret and re-

spond to our living surroundings more intelligently. In pursuing this goal, we have come

to an era of cloud-based Internet of Things: IoT sensors collect data and transmit to the

back-end cloud servers, and servers process the raw data for further action.

Despite extensive research efforts devoted to and significant societal achievements driven

by such a paradigm, numerous bottlenecks inherent in cloud-IoT system have urged us to

look for an alternative that can push the advances further. Firstly, wireless data has in-

creased tremendously that creates significant transmission workload for the network. This

rapid data growth has resulted from both an exponential growth of IoT sensors deployed in

the real-word and also high dimensional data demanded by applications. These trends are

manifested in Fig. 1.1. Further, the consequent heavy communication for individual IoT

Figure 1.1: Cloud traffic and IoT device analysis [1, 2].
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node brings heavy energy burden on wireless devices which either results in degraded qual-

ity of service (QoS), or increased form-factor making them less preferable. Nevertheless,

due to network leaks in recent years, security/privacy concerns also prevent us from fully

trusting the cloud service.

To mitigate aforementioned problems inherent in cloud-based solutions, there have

been significant demands to enable edge intelligence (EI) paradigm for IoT development.

Instead of simple ”sample-transit” procedure in a centralized mannaer, EI tends to bring

intelligence closer to the IoT devices that directly connect us with the real world targeting

a more responsive, private and efficient IoT service. In this Chapter, I will first introduce

EI and its design challenges. Then the EI design landscape and methodology will be dis-

cussed. Then, I will present a literature survey on state-of-art EI designs. Finally, I will

provide an overview of the dissertation.

1.1 Edge Intelligence

”Edge intelligence” (EI) refers to the ability to empower resource-constrained edge devices

at the source of the data, using advanced devices, circuits, architecture, algorithms, and

Edge Intelligence

System AlgorithmCircuit

To EnableML/AI on IoT

ServerIoT Nodes Human
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Resource

Control

EnvironmentContext
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Figure 1.2: Edge intelligence overview.
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control techniques to enhance the ability of data to be transformed into information (shown

in Fig. 1.2). In particular, EI features machine learning (ML) and artificial intelligence (AI)

applications on the IoT nodes. These edge ML/AI usages not only include computation

for perception, classification, decision making and learning, but also smart control and

collaboration in a dynamic wireless network. Enabling ML/AI on edge nodes will greatly

enhance the smartness of the network. This improvement is reflected in many aspects.

1. EI improves IoT service efficiency. Compared to the centralized cloud-IoT paradigm

that introduces enormous communication workload, EI greatly reduces the amount

of data transmission via edge computation. On one hand, such a scheme minimizes

network congestion hazard introduced by immense IoT devices in the network and

largely mitigates the the ever-increasing communication latency problem; on the

other hand, system-level energy efficiency is expected to improve by trading power-

exhaustive communication with edge computation. The energy advantage is illus-

trated in Fig. 1.3. Processing 1 bit of data in the worst case in practice, consumes

104× less energy than transmitting the same bit.

Figure 1.3: Computation vs. communication energy analysis [3]
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2. EI improves IoT adaptability to dynamic environment. Embedding intelligence on

end devices will help IoT system gain the capability to react to the environment in a

responsive and smart manner. This allows hundreds of millions of edge devices to be

dynamically controlled and self-optimized.

3. EI has inherent advantages in privacy and security. Embedded edge computation

will greatly minimize information leakage risk. Needless to say that encryption es-

sentially requires processing capability on the end devices which further enhances

security.

4. EI has the potential to solve complex problems through distributed intelligence.

When each edge device has a certain amount of intelligent resources and interacts

with each other to form a smart cluster, they can potentially perform complex data

processing tasks.

However, due to the constrained resources of IoT nodes, such as limited chip area, avail-

able bandwidth, energy storage and manufacture budget, enabling ML/AI on IoT nodes is

challenging. On one hand, we have witnessed the slow demise of Dennard’s scaling and

Moore’s Law. This has further led to slowing down of the processor performance im-

provement and flattening of the cost per transistor. This trend exposes the vulnerability
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of the road map for the microprocessor performance improvement, as technology scaling

will no longer be able to provide a straight-forward solution to sustain performance growth

(Fig. 1.4.(a-b)). Further, the limited energy resources constrain the potential applications

of edge devices. Although there has been significant improvement on battery capacity and

energy-density (around 3× within 15 years), the rapidly evolving demand for complex

workloads, from environmental sensing to high-definition video processing in surveillance

applications, has motivated us to explore fundamental innovations in computational hard-

ware. The real-time computation requirements for typical IoT applications in the past 10

years in terms of clock frequency are compared with the battery capacity improvement

trend in Fig. 1.4.(c).

1.2 EI Design Landscape, FoM and Design Methodology

EI design is an emerging research discipline that requires systematic investigation. First of

all, what are major research fields in EI landscape need to be comprehensively defined. At

the same time, a figure-of-merit (FoM) has to be proposed to facilitate EI design/research

evaluation procedure. Finally, a generic EI design methodology is highly desired to shed

light on important design considerations and potential solutions.

1.2.1 EI Design Examples

To explore EI landscape, FoM and design methodology, the author has extensively investi-

gated various EI research topics, including EI algorithm, control scheme, hardware integra-

tion, distributed intelligence and so on . And further, beyond theoretical/simulated efforts,to

facilitate real-world performance and efficiency evaluations, the author demonstrated ac-

tual physical platforms (shown in Fig. 1.5) including: (1) a wireless self-optimizing video

surveillance camera prototype; (2) a wireless HVAC data-fusion occupancy detection sen-

sor and network; (3) a self-powered camera with compress-domain gesture-triggered wake-

up; (4) a swarm robotic ASIC; (5) a wireless image processing SoC with computation-
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Figure 1.5: Example EI works.

communication trade-off; (6) LFSR-based DNN pruning ASIC. These works have broadly

investigated research topics of IoT system, ML/AI algorithm, computer architecture, digital/mixed-

signal/analog circuit design and so on. They aim at maximizing intelligence on resource-

constrained devices across design layers.

1.2.2 EI Design Landscape and FoM

Despite the fact that these preliminary works covered a broad range of research topics/ML

applications/design layers, like most EI works, they fall into one or more design fields in

the EI landscape shown in Fig. 1.6. At the core is the capability to implement computation,

especially ever-evolving ML/AI, on edge devices. It targets efficient computation through

innovations in circuit techniques (example 4-5), computer architecture (example 5) or algo-

rithm design (example 2, 6). At the same time, smart control (example 1,2,4,5) and efficient

data exchange (example 1,2,5) are both crucial for the IoT to handle dynamic environment

and reduce communication cost. Finally, seamless solid-state system integration of discrete

components determines EI platforms’ ultimate performance in the real-world (example 4-

6). Although EI design demands extensive efforts from various design fields, the goal is
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Figure 1.6: EI design landscape and figure-of-merit.

to efficiently derive ”actionable intellegence” under severe resource constraints. Or we can

represent this target as a figure-of-merit (FoM): intelligence per cost. ”Intelligence” may

be in form of accuracy, throughput and etc., and cost may be in form of area, power and

etc. The EI landscape and FoM have provided a comprehensive view of EI design/research

as well an evaluation criteria.

1.2.3 Conventional IoT Design Methodology

Traditional IoT devices are designed and implemented with general-purpose digital pro-

cessors together with discrete peripherals, such as controller and transceiver. By evaluating

EI FoM, we have found that, although they feature fast prototyping as a proof-of-concept,

their efficiencies are far below our expectations for real-time ultra-low power edge devices.

The details will be covered in Chapter II and III. To understand the cause of inefficiency,

we need to first look at the conventional IoT design scheme described in Fig. 1.7.

Data is first sampled or produced by discrete peripherals from sensor, radio frequency

(RF) modules and controllers. Then, the data is fed into digital computation system. The

data will first be quantized in voltage domain, and then binary data will go through Boolean

combination logic. The logic needs to be augmented with significant amount of memory
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(cache, scratchpad, registers) with synchronous movement across the logic-memory bound-

ary. At the architectural level, usually Von-Neumann architecture is adopted, where data

storage (memory) and computation (arithmetic logic unit) are separated and they are con-

trolled by a central controller. Finally, general-purpose compiler will optimize instruction

execution to support universal applications.

Though it is a successful design scheme in most scenarios, but in the case of EI, it

is incompatible due to the lack of efficiency caused by the various layers of abstraction

from the source of physical data to the final information. Energy loss occurs when data

go through each layer of the abstraction. (1) Data converters are required to transfer all

physical data representations into digital voltage signals. Both information loss and ADC

overhead introduces energy expenditure. (2) During Boolean operations, both dynamic

1,0

& ^|

DQ D QLogic

MEM ALUCTRL

ComplierProgram Instruction

Sensor, RF, 
CTRL
Data

Universal Application

Long 
Data-path

Figure 1.7: Conventional IoT design methodology.
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and static power are consumed to make sure computation/storage are correct and signal

is preserved rail-to-rail. (3) For the system to run in a synchronized manner, clock signal

together with the large clock tree and buffers have to constantly run; thus introducing sig-

nificant power consumption. (4) Separate memory and computation architecture results in

significant data movement cost, especially in the era of ML/AI where large models need to

constantly accessed. To push efficiency to extreme and support ML/AI on edge devices, we

have to flatten the levels of abstraction bringing processing closer to the data and eliminat-

ing unwanted data-conversions and optimizing for the minimum amount of bit resolution.

1.2.4 Proposed EI Design Methodology

To flatten the design hierarchy, the author has proposed a generic EI design methodology

as shown in Fig. 1.8.

1. Context-aware Integrated System: the system integration has to take into account

the physical representation of data as well as the device’s environmental context.

It should be open to any physical data encoding scheme to reduce data conversion

overhead, and it should adapt to the dynamics of the environmental conditions.

Short
Data-path

I T FQ
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V

+/- x

3

1

Data
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2

Figure 1.8: Proposed EI design methodology.
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2. Algorithm-aware Hardware: the computational circuit design should be aware of

the algorithm it implements and optimizes for the application it supports. By taking

into account the data encoding scheme, any physical computation scheme can be

adopted to maximize a target cost function, e.g., latency or energy-efficiency.

3. Hardware-aware Algorithm: the algorithm design should be aware of the hardware

constraints and available hardware opportunities. We need to investigate hardware-

friendly algorithms and mathematical operations that can be incorporated into the

design flow.

Through proposed design methodology, the design hierarchy is flattened as much as

possible. This will provide a scheme to trade-off the universality of digital microprocessors

for the target FoM in EI . The details will be discussed from Chapter II to Chapter IV.

1.3 Literature Survey

As discussed in the previous sections, EI requires knowledge and innovations in various

design fields. In this section, we are going to discuss state-of-art academic/industrial de-

signs in fields of 1) data acquisition, 2) edge computation, 3) wireless communication and

4) system integration.

Upon data acquisition, researchers have been looking for opportunities in improving the

capability of performing sensor data analytics while extending the lifetime of the sensors.

By incorporating limited computation to the traditional sensor, the sensor can pre-process

raw data to either facilitate further computation or extract useful information for optimized

operation of the overall system. In computer vision field, for example, pre-processing

unit for motion detection, binarization and gesture recognition [8, 9, 10] been proposed

for efficient in-camera analytics. At the same time, researchers have also worked on self-

powered camera sensors which convert the incident light into electrical energy to provide

an in-situ energy source [11]. Another important data acquisition research field is acoustic
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sensing and, in particular, ultra-low power (ULP) always-on voice activity detection (VAD)

is gaining attention as an enabling technology for IoT platforms. Various silicon chip sets

have been presented to enhance power efficiency, programmability and context-awareness

of VAD [12, 13, 14]. Besides efforts to enhance data acquisition performance by single

sensor, researchers have also investigated multi-sensors for application optimization. While

a high-performance single sensor is usually both costly and power-hungery, data fusion of

low-resolution sensors with orthogonal information becomes an promising alternative. [15]

presents a skin-disease diagnosis system with both optical and electrical dual tomographic

imaging. [16] deals with detection of occupancy in a room from various ambient sources

like temperature, humidity, light, and CO2 to leverage HVAC control in real time.

At the core of EI, the ability to handle computation-intensive task on the edge hardware

is a major challenge. With slow-down of Moore’s law as well as the reducing opportuni-

ties of scaling in digital VLSI, analog and mixed-signal circuit innovations are being ac-

tively explored. These innovations include dedicated ultra-low-power, moderate precision

mixed-signal/analog computational block, but also architectures to improve data move-

ment/computation. For example, [17] presented an SoC that performs continuous-time

hybrid approximate computation,in which both analog and digital signals are functions of

continuous time. [18] demonstrated a matrix multiplying ADC to enable feature extrac-

tion and classification with data conversion, mitigating the need for further computation.

Similarly, [19] built a switched-capacitor matrix multiplier with co-designed bitline-less

memory to reduce A/D conversion rate and improve MAC computation energy efficiency.

A novel spike-based SLAM accelerator has been presented in [20]. [21] features an

energy-efficient switched-capacitor (SC) neuron that addresses energy challenge, employ-

ing a 1024-bit thermometer-coded capacitive digital-to-analog converter (CDAC) section

for summing point-wise-products of CNN filter weights and activation and a 9-bit binary

weighted section for adding the filter bias. Meanwhile, with ever-increasing data-centric

computation, people are also looking for alternatives for von-Neuman architecture, where
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data storage and computation are tightly coupled. [22] demonstrates a 7b energy efficient

SRAM with embedded convolution computation for CNN-based machine learning appli-

cations. [23] proposed a ’sandwich’ architecture of in-memory binary weight network

(BWN) to blend feature and partial-weight memory with a computing circuit together that

achieves significantly less data access. From a larger scope, the spatio-data-correlation has

been investigated and utilized to improve system preformance as in [24]. [25] presented

a nonvolatile compute-in-memory ReRAM macro for binary DNN AI edge processors for

low power feature and fast IO accesses. Nevertheless, novel devices, especially energy-

efficient, low-cost and high data-rate non-volatile memory together with compatible com-

putation architecture are widely researched. [26] demonstrates Ferroelectric FET Analog

Synapse for Acceleration of Deep Neural Network Training. [27] provides a 3D-flash

memory with improved area capacity. [28] built STT based RAM for high-yield, high

performance and high-endurance.

Towards a fully connected internet of things, innovations in wireless data communi-

cation is crucial in maximizing datarate while minimizing latency, energy-per-bit (EPB)

and bit-error-rate (BER). On the circuit level, researchers mainly target improved RF block

metrics, such as improved transmission resolution at low loss [29] or obtaining high out-

put power while maintaining efficiency [30]. At the same time, the community is also

exploring SoC-level RF solutions, such as [31], to push throughput limits and enable 5G

networks and beyond. At the same time, as communication units are usually designed to

meet minimum requirement at worst-case, energy/performance are not optimal in a dy-

namic environment. In this background, cognitive radio where RF is optimally controlled

in a context-aware manner is widely investigated. [32] advocates the use of Reinforcement

Learning (RL) incontext-aware and intelligent Dynamic Channel Selection (DCS) scheme

to enhance QoS in Cognitive Radio (CR) networks. [33] demonstrates orthogonal tuning

knobs using an inductorless LNA which has 14dB Gain tuning range and 30 dB OIP3 tun-

ing range with power consumption goes down by 20. [34] develops a multidimensional
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adaptive power management approach that optimally trades-off power versus performance

across temporally changing operating conditions by concurrently tuning control parameters

in the RF and digital baseband components of the wireless receiver. [35] demonstrates a real

time BER vs. power consumption modulation of RF front-end devices in MIMO system.

Beyond circuit and context-aware control, communication schemes for dedicated scenar-

ios are also important for optimized performance. [36] demonstrates characterization of

human body communication for ultra-low power high-accuracy medical applications. [37]

reports results from wireless chip-to-chip communication experiments with 16 bit words

pass from one chip to another in parallel without detectable error at 1.35 billion data items

per second for a total data rate of 21.6 Gigabits per second.

On top of efforts in optimizing each functional block of EI (data acquisition, edge com-

putation and wireless communication), efficient system integration is also challenging and

provides the ultimate evaluation metrics for EI hardware design. [38] presented a com-

plete “edge-gateway-cloud” IoT system prototype for an example application that high-

lights the key advanced capabilities of the cm-scale, self-powered, intelligent and secure

mote hardware platform at the edge. In [39], Intel showed another wireless sensor node

(WSN) that integrates near-threshold voltage (NTV) 32-bit Intel Architecture (IA) micro-

controller (MCU) in 14nm tri-gate CMOS, along with solar cell, energy harvester, flash

memory, sensors and Bluetooth Low Energy (BLE) radio, to enable always-on always-

sensing (AOAS) and advanced edge computing capabilities in Internet-of-Things (IoT)

systems. [40] demonstrated a low-power Robot SoC in 22nm CMOS that is integrated

in the cm-scale minibot platform along with audiovisual and motion sensors, battery, low-

power wireless communication and motion actuator components. [41] presents a single

chip VLSI architecture of wireless image sensor node, which is constituted by an enhanced

embedded 8051 microcontroller, a CMOS camera interface and hardware accelerators.

As a broad topic and emerging area, it is challenging for individual researchers to

demonstrate a complete study of EI. Instead the field continues to advance through collabo-
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rations. During the literature study, the author has found several informative survey papers

providing insightful knowledge from various perspective. [42] provided an overview of

technologies associated with IoT in embedded systems’ landscape. They have investigated

essential technologies for development of IoT systems, existing trends, and its distinguish-

ing properties. By discussing the key characteristics, main application domains, and major

research issues in IoT, this paper provides a comprehensive IoT perspective for embedded

system design. On the other end, from an an industry and government perspective, [43]

provided insight to the problem of intelligence resource constrained IoT nodes and pre-

sented the vision of the future and important technologies that might play a strong role in

enabling the vision of trillion smart connected sensors. Finally, [44] provided an academic

perspective of the problem, starting with a survey of recent advances in intelligent sensing,

computation, communication, and energy management for resource-constrained IoT sensor

nodes leading to future outlook and needs.

1.4 Dissertation Overview

In the following Chapters, the author will discuss algorithm design, control strategy, system

integration as well as distributed intelligence via dedicated example works. In Chapter II,

a fusion-based occupancy detection algorithm, together with an HVAC occupancy detec-

tion wireless camera system will be discussed. In Chapter III, an online EI computation-

communication trade-off control scheme is introduced with a wireless video surveillance

camera. Continuing further in the same light, Chapter IV describes an SoC implementation

of computation-communication trade-off control strategy in wireless image processing ap-

plications. The silicon effectiveness in energy, latency and area will be fully investigated.

After discussing single-agent EI algorithm, control and system design, Chapter V is going

to discuss multi-agent distributed EI through a unified swarm robotic ASIC. In particular,

this Chapter will address hardware requirements to meet scalability issues in multi-agent

learning scenarios. Finally, the author will draw conclusion in Chapter VI.
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CHAPTER 2

EI FOR DATA-FUSION-BASED OCCUPANCY DETECTION IN HVAC

CONTROL

IoT devices are widely used to sense environment and provide information to assist system-

level decision makings. As a result, the accuracy in data acquisition and processing is crit-

ical for the whole system to work properly. However, the constrained resource has made

accuracy enhancement via complex models more challenging. It is highly desirable that

EI algorithm design can fully utilize all available data, reduce model dimensionality and

enhance performance while meeting energy/latency budget. This chapter discusses a data-

fusion-based occupancy detection algorithm for HVAC control to provide an EI algorithm

design example on how to augment information per cost via data-aware algorithmic opti-

mization. This chapter is a slightly modified version of ”Smart sensing for HVAC control:

Collaborative intelligence in optical and IR cameras” published in IEEE Transactions on

Industrial Electronics with the dissertation author as the primary author.

2.1 Introduction

HVAC provides a comfortable climate controlled environment at home and work. How-

ever, trillions of kWhs of electrical energy are consumed annually in the U.S.(Fig. 2.1.a)

which accounts for more than 30% of the energy consumed in all residential and commer-

cial buildings. 10 − 40% of this electrical energy is wasted due to inefficiencies, such as

unnecessary HVAC operation, over-estimated temperature set point etc. This is further ex-

acerbated by poor and aging insulation on the walls, doors and windows. To address this

challenge, different approaches have been developed. Programmable thermostats, which

turn off the HVAC system when the house is expected to be vacant, is one common ap-

proach for efficient HVAC energy use. However, this approach repeatedly fails at predict-
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ing the room occupancy in highly dynamic occupancy pattern [45, 46]. An alternative to a

manually programmable schedule-based thermostat is the occupancy-based HVAC system

which dynamically senses room occupancy and adaptively controls itself. Among these dy-

namic detection approaches, RFID (radio-frequency identification) tags [47] and infrared

sensors are popular. RFID tags require humans to wear badges or tags in person, which

is an inconvenience and not applicable to residential buildings. Infrared sensors require

motion [48, 49]. On the other hand OP camera based sensors show great potential in occu-

pancy detection [50, 51] even when the occupants are static. However, OP camera-based

occupancy detection remains challenging. They either suffer from high miss rates, result-

ing in discomfort in the room; or high false positive rates (recognizes a non-human object

as human) leading to energy wastage in a vacant area. The trade-off between miss rate and

false positive rate and their impacts on occupancy-based HVAC system are illustrated in

Fig 2.1(b)-(c).

To achieve high occupancy detection accuracy, thus improving occupancy-based HVAC

performance, this work presents a collaborative intelligence solution via data-fusion be-

tween OP and IR camera-based sensor nodes together in a smart wireless sensor network.

Collaborative intelligence is achieved at the sensor node as well as among the sensor nodes

at the back-end server, which is located at the HVAC and controls the HVAC. With mini-

mal HW/SW overhead, improved detection accuracy results in enhanced comfort, extended

sensor lifetime and reduced HVAC energy wastage.

2.2 Platform description

Before going into the algorithmic details, let us discuss the experimental setup. Our proto-

type sensor comprises of an OP camera (IMX219PQ), an IR camera (Flir2.5), an embedded

processor for image processing (Raspberry Pi), a long range radio (LoRa) (INAIR9B) and

a transceiver controller (Arduino Uno). The system architecture is shown in Fig.2.2(a) and

the platform hardware setup is in Fig.2.2(b). OP and IR images are captured, aligned and
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processed to determine occupancy in the field of view (FoV). The sensed output, including

occupancy/vacancy transient or motion vector, is transmitted to the HVAC controller, often

at the basement of an office building, using a narrow bandwidth long range (LoRa) radio,

which is duty cycled to prevent unnecessary energy expenditure at the sensor. It should

be noted that we use LoRa in this work; however, other communication protocols, such as

Wi-Fi can be used in the sensor node. The choice of the communication depends on the

available infrastructure, requirements on power as well as distance over which the sensor

node needs to send necessary signals. This is described in more details in the following

sections.

Figure 2.1: (a) Residential and commercial energy use [52]; (b) Qualitative assessment of
the trade-off between miss rate and false positive rate; (c) The impact of miss/false positive
on latency of occupancy detection/energy waste respectively.

17



Figure 2.2: (a) System architecture of the platform prototype; (b) Hardware setup.

2.3 Occupancy detection via Collaborative Intelligence

Occupancy detection has long been investigated, and different types of special-purpose

sensors have been proposed. For example, IR motion sensors, RFID, door sensors, image

sensors etc. Some sensors suffer from low detection rates and some require additional

devices to be worn by the occupants to assist detection. In some of these sensors, the

occupants need to be in motion, or else the sensor fails to detect occupancy. Most current

solutions suffer from low accuracy or longer latency of detection. Our proposed system

Feature
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Classification

O
P

Alignment Sub-window

Fusion Scheme
& Parameter

Fusion-based
DetectionCapture

IR

Figure 2.3: Demonstration of the algorithm.
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demonstrates the simultaneous use of both OP and IR cameras. The sensor node fuses the

two images, and improves detection rates while minimizing false detection.

Instead of sensing illumination intensity or color as OP cameras do, an IR camera

perceives heat emissions. Occupancy detection through IR camera is a promising ap-

proach to counter the failures via OP cameras that are caused by darkness, optical fore-

ground/background similarities and partial occlusion. However, apart from human, there

are other sources that emit IR waves, such as sunlight, machines etc. which result in false

detection for an IR only system. Furthermore, typical (and inexpensive) IR cameras are low

resolution, which prevents efficient machine learning algorithms to detect features of a hu-

man being in the IR domain. Therefore, we combine the advantages of OP and IR detection

schemes to provide accurate detection by fusing OP/IR data. The platform captures OP/IR

images simultaneously, aligns them by image registration, fuses the information collected

from the registered images, and determines the room’s occupancy/vacancy from the fused

data.

2.3.1 Overview

Camera-based occupancy detection, either OP or IR, can be further categorized as video-

based and image-based. A typical video-based detection takes temporal difference [53]

between frames, so a successful detection relies on the motion of objects. Therefore, video-

based detection will definitely fail for static humans. The image-based approach, in con-

trast, depends on shapes of objects and independent of objects’ motion. Thus, the proposed

system applies image-based detection to handle both moving and motionless objects for

realistic residential and commercial building occupancy detection.

After the OP/IR images are captured, the two images are aligned by 2-D image regis-

tration. Then, histogram of oriented gradient (HOG) feature are extracted and classified by

an artificial neural network (ANN) template. This algorithm is outlined in Fig. 2.3.
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Image alignment

Accurate alignment of data acquired by sensors with different characteristics is essential

in data-fusion. In the proposed platform, the FoV and resolutions of OP image sensors

and IR image sensors are different. Images captured from the two cameras first need to be

registered as a preliminary data-fusion procedure upon deployment to cross-check regions

of interest. We assume a long distance between the human and the platform (mounted on

the wall near the ceiling), so that any human being can be regarded as 2-D, together with a

parallel placement of the OP and IR camera sensors [54]. We apply a rigid translation and

the 3-D translation can hence be decomposed into 2-D by:

X ′

Y ′

 = s

 cosθ sinθ

−sinθ cosθ


X
Y

 +

∆X

∆Y

 (2.1)

where a 2-D point (X,Y) in OP image is transformed to a 2-D point (X’,Y’) in IR image

with a scaling factor s, rotation angle θ and offset (∆X,∆Y)T. Since θ, (∆X,∆Y)T are

recorded during installation, we only need to perform a calibration to obtain the registration

matrix for every image.

Feature extraction

Feature extraction derives informative and non-redundant values to facilitate the subsequent

stages to generate better classification results. It is a key stage in performing classification

with high accuracy. In human detection, feature extraction is crucial to discriminate human

from cluttered background. Different feature descriptors are available, including wavelets,

SIFT and HOG. Among all feature extractors, Histogram of Gradient (HOG) is chosen for

its excellent performance [55, 56, 57]. HOG first divides the input image matrix evenly into

M×N cells. Gradient angle and gradient magnitude of each pixel are computed. Each pixel

within the cell votes for an orientation-based histogram channel by comparing gradient
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angle with angle bins with weight of gradient magnitude. Angle bins evenly spread on

(−π, π] range and number of bins is Nbin. Then the spatially connected cells form a block

of size (M-1)×(N-1) to be locally normalized to account for changes in illumination and

contrast where M and N stands for number of rows and columns of cells.

Classification

Classification is the final step of detection which takes extracted feature descriptor as an

input, compares it with a trained template, and outputs scores indicating the likelihood of a

detection (occupied vs. unoccupied). Among different classification methods such as sup-

port vector machine (SVM), Naı̈ve Bayes, tree etc., a three-layer artificial neural network

(ANN) is selected for its improved performance in classification and linear computation

cost with input size [58]. ANN is an information processing paradigm inspired by biologi-

cal neural system consisting of input layer, hidden layer and an output layer. In the current

design, the number of input layers is the same as the feature size Nf with hidden and out-

put layers of sizes Nh and Nl respectively. The output score of the input feature vector is

computed as follow:

Y (~x) =

Nhl∑
i=1

[αi

N f∑
j=1

(ωijxj + γij) + βi] (2.2)

where xj is the jth element of the input feature descriptor; and ωij , γij , αi and βi are ith

hidden neuron weights, biases, output neuron weights and biases for jth input element re-

spectively. In the proposed design, the hidden layer neuron size is fixed to be 100. The

computation cost of classification increases with the feature descriptor size. This relation

will be discussed in the following section.

OP/IR database

With the rapid development of machine learning (ML) technique, a great many OP and IR

data sets are generated, such as INRIA, MPII, InfAR and etc., to facilitate ML-based OP
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and IR detection/recognition/classification tasks. However, a good ”OP+IR” in-door hu-

man data set, where OP and IR images are captured simultaneously targeting fusion-based

ML, is still not available to our knowledge. Previous work, such as [59], is only based

on limited or separate data set. This has motivated us to create our own data set which

(1) contains substantial pairs of positive and negative ”OP+IR” pictures and (2) pictures

demonstrate diverse OP/IR foregrounds and background features. The collected data set

contains 3727 pairs of 40×40 8-bit gray-scale OP/IR images, 1928 positive and 1799 neg-

ative, covering foreground samples of human in different postures, clothing and so on; and

background in different lighting conditions and infrared intensities. (The database will be

publicly released and is currently not linked for the blind review process). Furthermore,

to demonstrate realistic results and avoid sample testing, training data and testing data are

populated separately with totally different human foreground and OP/IR backgrounds.
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Figure 2.4: (a) Data-level fusion; (b) Feature-level fusion; (c) Decision-level fusion; and (d)
The proposed collaborative, hierarchical and adaptive template (CHAT) algorithm. Here
FE and CL denote feature extraction and classification respectively.
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Figure 2.5: (a) OP/IR decision table for CHAT; (b) Flow chart of CHAT.
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Figure 2.7: Prototypical example of nominal, IR hard and OP hard data sets.

2.3.2 Fusion-based detection

Multi-sensor data fusion is an emerging technology applied to various areas such as au-

tomated target recognition, battlefield surveillance, autonomous vehicles and so on. It

combines data from multiple sensors and related information from associated databases

to achieve improved accuracy than could be achieved by single sensor alone.

A key issue in developing a multi-sensor data fusion system is the question of where

to accurately combine the data in the data flow. Typical schemes are data-level fusion,

feature-level fusion and decision-level fusion [60, 61] as shown in Fig.2.4.(a)-(c).

In the proposed occupancy detection system, data-level fusion refers to integrating

aligned OP and IR with different weights into a combined single frame, extracting HOG

features from combined data and classifying the feature with the ANN template. Feature-

level fusion refers to extracting HOG feature of OP/IR frames separately and concatenating

the weighted two feature descriptors into one single feature descriptor for ANN template

inference. Decision-level fusion refers to separate OP/IR frame evaluation and use the

weighted sum of output scores to indicate human occupancy.

Apart from those traditional approaches, this work presents a novel fusion scheme with
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collaborative, hierarchical and adaptive template (CHAT) as is shown in Fig.2.4.(d). A

”coarse” feature descriptor is first extracted for OP and IR images and evaluated by the

corresponding ”coarse” ANN templates; if two sensors reach consensus, the system out-

puts the agreed decision, as is shown in Fig.2.5.(a), otherwise, it goes back and follow

a decision-level fusion with ”fine-grain” feature extraction and classification, as is shown

in Fig.2.5.(b). The advantages of such an approach are (1) computation cost savings for

easy detection environments using the ”coarse” feature templates and classification; and

(2) accuracy improvement by resolving contentions via hierarchical template adaptation.

To fully explore detection performance and computation cost of the four fusion schemes,

experimental results are demonstrated in Fig.2.6. As we can observe from Fig.2.6.(a)-(b), a

larger feature space helps improve detection accuracy at the cost of increased computation.
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After feature bin size equal to or greater than 8, the advantage of CHAT in both detection

performance and computation cost become apparent. In Fig.2.6(c), the maximum accuracy

and minimum computation is observed. Based on the measurements above, the proposed

system selects CHAT as the fusion scheme and all the fusion-based experimental results

discussed in the rest of the chapter use the CHAT fusion algorithm. The receiver operating

characteristic (ROC) of single OP, single IR and CHAT fusion-based detection schemes in

the nominal case are demonstrated in Fig.2.6.(d). At false positive rate of 0.1, fusion-based

detection achieved 3× and 4× miss rate reduction for single OP and IR detection.

2.3.3 OP/IR hard detection and sensor lifetime

Despite the improvement of detection performance in general, a significant benefit of ap-

plying fusion-based detection in real environment is that it maintains reasonable detection

accuracy when OP and IR sensor alone will fail in extreme cases, and extend the sensor

lifetime.

Fig.2.7 shows three illustrative cases of data: the nominal case, where both the OP and

IR foreground show contrast against the background; the IR hard case, where the infrared

background is similar to the humans in the foreground; and the OP hard case, where the
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OP background is similar to the humans in the foreground. In the latter two cases, the

corresponding single sensor system will show heavily degraded performance, more than

50% detection miss at fpr of 0.1, as is shown in Fig.2.8.(a)-(b).

As the proposed system is duty-cycled to save sensor energy consumption and extend

the sensor lifetime, latency of occupancy detection, which is the interval between a person

entering the FoV and being detected, depends largely on both the sampling rate and the

miss rate for a certain fpr as is shown in Fig.2.8.(c)-(d). Here fpr is maintained at 0.1 for

both the IR and OP hard cases: the latency of occupancy detection is reduced at higher

sampling rate. The proposed system detects objects more quickly than the corresponding

baseline single-sensor designs owing to its lower miss rate. To maintain a maximum target

latency of occupancy detection of 30 seconds, fusion-based sensor platform can sample

more slowly and it thus prolongs the sensor lifetime as is shown in Fig.2.9, despite the

energy overhead brought by an extra sensor.

2.4 Smart sensor network

In both residential or commercial buildings, more than one sensor is required to cover the

whole HVAC zone. These front-end sensors will form a wireless network and periodically

transmit sampled data to the back-end HVAC controller. In designing such a network, the

maximum number of nodes, maximum range of the network, average sensor power/energy

as well as system level detection performance are primary concerns. In the proposed sys-

tem, the intelligence of the front-end sensor is complemented with a network level inter-

dependent wake-up mechanism which optimizes the target design metrics. In this work,

we use LoRa as the communication protocol. However, other protocols such as Wi-Fi can

be used as well depending on the availability.
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2.4.1 Intelligent LoRa front-end

In conventional wireless sensor networks, front-end sensors usually follow a centralized

”sense-transmit” working scheme: raw data are captured and transmitted directly to the

back-end data-center without any in-situ intelligence. However, for camera-based data-

intensive application, such communication strategy not only results in high communication

energy and hence low battery life of the sensor node, but also network congestion producing

severe quality of service (QoS) degradation in the form of queueing delay at best, and

packet loss or blocking of new connections in the worst case [62, 63, 64, 65].

To address these issues, the proposed system is equipped with in-sensor data processing

capability and notifies the back-end controller (located at the HVAC control) when an area

is occupied through low-bandwidth/low-power long range radio (LoRa). Here we numer-

ically compare wireless front-end of conventional “sense-transmit (BLE, Wi-Fi)” strategy

with the proposed intelligent LoRa wireless scheme.

Packet arrival is modeled as a Poisson process [66] and compared with ”sense-transmit

(BLE, Wi-Fi)” whose raw data are always transmitted and processed at the back-end. In

comparison, de-centralized “embedded computation + LoRa” suffer from less packet fail-

ures in wireless networks with a large number of nodes, as is shown in Fig.2.10.(a). For

example, at 10% packet failure rate, The maximum number of sensors in LoRa network

is 200, much larger than the estimated 10(100) of BLE(Wi-Fi) counter-part. Further the

Wi-Fi network is heavily utilized for data transmission, and its use for HVAC control will

further exacerbate the network congestion.

An important factor for wireless network is the average transmission energy per sample

for individual sensor front-end, estimated as:

Etx =
ptxτ

Ns

(2.3)

where Etx stands for transmission energy per sample and ptx is the active transmission
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power. Here we assume transmission time interval is equal to minimum receiver window,

τ . From Fig.2.10.(b) we observe that the LoRa based sensor consumes the least amount of

battery energy in our wireless networks for HVAC control.

Apart from the network capacity and transmission energy, transmission range is also

important in controlling large HVAC regions, especially in warehouses, and large office

buildings. As is shown in Fig.2.10.(c), the range of LoRa radios outperform BLE and

Wi-Fi by at least 10×.The system parameters are listed in the table of Fig.2.10.(d).

As we have seen, an advantages of LoRa is the long range over which communication

can happen, which is relevant to large commercial buildings or warehouses. Since the in-

sensor processor will reduce the data volume that needs to be transmitted to the back-end,
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a narrow-band protocol such as LoRa is an excellent choice. However, Wi-Fi can also be

used if available.

In our current experimental setup, the Raspberry PI includes an integrated Wi-Fi radio.

We have also enabled an Aduino based LoRa radio that interfaces with the Raspberry PI.

An added advantage of using LoRa in the current set-up is the ability to enable fine grain

power management (turning on and off the radio) through the Arduino board – thereby

reducing power. More advanced designs, including ASICs may further improve power

management on the radio by enabling fast wake-up and sleep; but it is outside the scope of

this work.
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2.4.2 Collaborative dynamic network control

When detection accuracy is fixed after the employment of the sensor network, minimizing

latency of occupancy detection depends on reducing the sample interval (i.e., the number

of OP and IR images captured per second), T. However, a high sampling rate will lead to

severe sensor energy expenditure and limited sensor lifetime. And it is also noted that the

occupancy of a particular region in a building is dependent on its neighboring regions. For

example, consider a typical floor-plan of a building with three rooms, A, B and C. The

occupancy of room A is dependent on room B if a door between A and B is available and

people can walk from B to A as is shown in Fig.2.11.(a), and vice versa. This motivates

the proposed dynamic HVAC control strategy targeting minimized latency of occupancy

detection based on a collaborative scheme among neighboring HVAC sections.

Consider a network of sensors deployed as shown in Fig.2.11.(a). The sensor node

at B estimates the presence of an occupant. If an occupant is detected, then it further

tracks the occupant via difference of frames and estimation of the direction of motion. The

direction of motion is sent to the back-end which resolves the potential adjoining HVAC

areas that can be subsequently occupied. In this example, an occupant moving from B

towards A will allow the back-end to send an “alert” to the sensor node at A. This sensor

Occupancy detection
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Detected?

Motion estimation

Detected?

Transmit motion vector to back-end station

(a) (b)

Back to sleep

Back to sleep

yes
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Figure 2.12: (a) Flow chart of occupancy/motion detection and sampling rate; (b) Demon-
stration of a Case Study.
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node, now, increases its sampling rate to reduce the latency of detection. The effective

sampling interval Teff is reduced as is shown in.2.11.(b).

For region A, the occupants are either from outside with no sensor node, or from in-

side the building, that is monitored by the wireless sensor network. The average effective

sampling interval Teff of this region is:

Teff = γTeff + (1− γ)T ; (2.4)

where γ represents the ratio of occupants entering A from adjoining rooms to the total

number of occupants entering A. This is illustrated in Fig.2.11.(c). The average sample

interval T of the sensor node is :

T = βTeff + (1− β)T ; (2.5)

where β represents the average occupancy of the region. Although the average sampling

rate is temporarily increased, we increase the default sample interval, which enables us

to reduce the overall sensor energy. Combining the above two equations, we obtain the

normalized detection latency:

d =
2− γ

2− γβ
(2.6)

Here we assume that Teff is T/2, the detection latency is proportional to Teff and the sensor

lifetime is proportional to T . The numerical results are demonstrated in Fig.2.11.(d). Here

we observe that the detection performance is improved significantly, especially in cases of

high γ (e.g. γ = 0.8) and high occupancy β (e.g. β = 0.6). The corresponding algorithm

(implemented at the back-end) and a demonstration of the scheme [67, 53] is shown in

Fig.2.12.(a)-(b).
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2.5 System measurements

To best evaluate the sensor performance with diverse HVAC systems, two sets of occupancy

patterns are randomly generated to simulate an office HVAC environment and a residential

HVAC environment. We assume an occupant’s arrival time and duration of stay in a par-

ticular HVAC region, follow a normal distribution. In the residential occupant model, the

mean arrival time is assumed to be 19:00 in the evening with a standard deviation of 1 hour

and the mean duration of occupancy of 8 hours with a standard deviation of 2 hours. For

an office occupancy model, on the other hand, we assume that people arrive in the office

at 9:00 in morning and leave at 14:00 in afternoon with a standard deviation of 1 hour,

and leaves the region for a break after 40 minutes with a standard deviation of 10 minutes.

Occupants’ patterns are assumed to be independent and the region is marked as occupied

if one or more occupants appear in the region. We assumed that the mean number of occu-

pants is 5 in the residential environment and 40 in an office environment. Fig.2.13 shows

the probability density function of the models and the first subplot of Fig.2.14.(a)-(b) shows

a generated example of residential and office occupancy patterns from the model.

As mentioned in Fig.2.6.(d), fusion-based detection demonstrates better miss rate/false

positive rate trade-off than single sensor platforms. When the upper bound of the miss rate

(a) (b)
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Figure 2.13: (a) PDF of arrival time; (b) PDF of time interval between an individual enter-
ing and leaving a region.

33



(a)

(b)

Occupancy (ground truth) of residential setting

OP/IR fusion based sensing

OP camera based sensing

Occupancy (ground truth) of office setting

OP/IR fusion based sensing

OP camera based sensing

Figure 2.14: Simulated system performance showing occupancy (ground truth), fusion
based detection and single sensor based detection in (a) a residential and in (b) an office
setting.

is fixed to guarantee a level of human comfort, the proposed fusion-based platform delivers

lower false alarm than a single sensor as is shown in the subplots of Fig.2.14.(a)-(b).

To understand the implication of the sensor based system on HVAC energy in typical

building scenarios, we use EnergyPlus to model the HVAC energy [45] (parameters shown

in figure caption) and the results are discussed for two locations (Chicago and Atlanta).

For the results to be representative, we applied reference models from the Department

of Energy for both residential and commercial buildings as is shown in Fig.2.15. HVAC

control patterns based on the occupancy sensor are generated from Fig.2.14 and the HVAC

controlled by programmed schedule is set from 17:00 to 9:00 for the residential scenario
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Figure 2.15: HVAC zone floor plan and sensor placement for (a) residential building (b)
and commercial building; corresponding 3D model and dimension in (c) and (d); table in
(e) lists all the model parameters.

and from 9:00 to 17:00 for the office scenario. For both sensor-based control and schedule-

based control, during summer, the HVAC’s hysteretic temperature controls are set to 23C

and 26C; during winter these are set to 23C and 20C. More advanced control topologies

for the HVAC can further reduce HVAC power as described in [68, 69, 70, 71]. However,

the contribution of this work is the data-fusion in-sensor algorithm and advanced control

topologies for control will be left for future work.

Simulation in Fig.2.16 show a maximum of 26% (CHI 2) in summer and an average

of 18.1-21.4% energy savings are achieved in the fusion-based sensing compared with

a schedule-based HVAC control. With our current model, HVAC system saves around

30kWh per day in summer and 55kWh per day in winter on average. At the same time, a

single sensor based platform, due to its high false positive rate, consumes more energy than
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the schedule-based HVAC control.

In Fig.2.17, the indoor temperature change in one day is demonstrated with residen-

tial occupancy pattern shown in subplot1 of Fig.2.14.(a). In both summer and winter,

occupancy-based HVAC control outperforms schedule-based control in sampling ”unusual”

human arrivals, as is shown in highlighted region where resident unexpectedly (1) came

back home at noon and stays for a while and (2) arrives home later than usual. In case

(1), HVAC is dynamically turned on to provide comfortable environment and in case (2),

HVAC is kept off at time of vacancy which saved HVAC energy.

Fig.2.17 shows the trade-off between the HVAC energy savings and detection latency.

Figure 2.16: HVAC energy consumption per day in (a) summer and (b) winter.
”CHI”/”ATL” stands for Chicago/Atlanta and ” 1”/” 2” stand for residential/office.
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Figure 2.17: HVAC region temperature change in (a) summer and (b) winter.
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Figure 2.18: HVAC energy vs. latency of occupancy detection.

We observe that energy is saved for all the sensor-based HVAC when more detection la-

tencies are tolerated. We also note that when we have strict detection latency constraints, a

single sensor based HVAC control, especially in IR or OP hard cases, performs worse than

a simple schedule-based control.

Comparison with state-of-art HVAC occupancy detection platform is demonstrated in

the table of Fig.2.19. Depending on the mechanism of detecting occupancy, these works are

divided into motion-based approach, such as infrared and camera [48, 49, 72], accessory-

based approach, which includes RFID and smart phone [47, 73], as well as the proposed

non-intrusive camera based approach. Our proposed work shows high accuracy and signif-

icant energy savings from the HVAC system without being intrusive or relying on motion
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Y.Agarwal et.
al. 2010

J. Lu et. al.
2010

Z. Yi et. al.
2010

N. Li et. al.
2012

B. Balaji et. al.
2013

Figure 2.19: Comparison with existing literature and competing technologies.

for occupancy detection.

2.6 Conclusion

We proposed a novel collaborative and adaptive template based data fusion algorithm be-

tween an OP and an IR camera, which shows significant improvement in miss rate (5×)

and false positive rate (5×), extends the lifetime of a wireless sensor lifetime by 3× and

achieved a maximum of 26% HVAC energy savings compared to schedule-based control.
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CHAPTER 3

COMPUTATION-COMMUNICATION TRADE-OFF IN EI SENSOR NODES FOR

WIRELESS VIDEO SURVEILLANCE

In previous chapter, the EI algorithm design is discussed for data-fusion-based occupancy

detection. Besides algorithm for data processing, as IoT devices are usually deployed in

highly dynamic and complex environments, adaptation of changing environmental condi-

tions is also desirable. Nowadays, IoT devices are applied to diverse environments, and the

operating conditions are also constantly changing. As a result, efficient adaptation to the

environment is crucial for providing required system level performance. In this chapter, we

will discuss an EI control scheme and how the control strategy adapts to time-varying con-

text for improved system-level performance in a wireless video surveillance system. This

chapter is a slightly modified version of ”Self-optimizing IoT wireless video sensor node

with in-situ data analytics and context-driven energy-aware real-time adaptation” published

in IEEE Transactions on Circuit and Systems I: regular papers with the dissertation author

as the primary author.

3.1 Introduction

With the proliferation of small form factor distributed sensors and Internet of Thing end-

nodes, aggregate data transfer to the back-end servers in the cloud is expected to become

prohibitively large. For example, 100 image sensors in a sensor network transferring HD

data can result in an aggregate throughput of over 1GBps and significantly increase the

network’s drop rate [62, 63, 64, 65] as is shown in Fig. 3.1. This large amount of data

transfer not only results in high energy expenditure and hence low battery life of the sensor

node, but it will also results in network congestion producing severe quality of service

(QoS) degradation in the form of queueing delay at best, and packet loss or blocking of new
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connections in the worst case [74]. This data back-log on cloud servers also precludes any

real-time processing and network control, which is a requirement in a myriad of monitoring

and sensing applications [75, 76]. Moreover, with the expected rapid growth both in the

number of sensors and raw data, the IoT network design itself will only become more

complex increasing both the implementation and deployment costs.

To achieve both high energy efficiency in the end-node and seamless network operation,

in-situ data analysis capability has to be enabled in the end-node itself [77, 75, 76]. Limited

intelligence and decision making, under strict energy constraints, embedded in ubiquitous

IoT sensors can reduce the volume of transmitted data by either transmitting only the data

of interest or compressing raw data into features or decisions of much smaller volume. It

will greatly reduce the volume of data the network has to handle and relieve bandwidth

burden on the back-end servers. Although in-situ data-analytics reduces the communi-

cation energy at the sensor nodes, it places extra burden on processing. One of the key

challenges in IoT nodes is power consumption and system design in pivoted upon reducing

the total dissipated power [77]. As we introduce in-situ processing, the computation power

increases at the sensor, as it acquires data and analyzes it for possible information content.

However, the energy to compute and the energy to communicate are not constants [78, 79,
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Figure 3.1: (a) Aggregate throughput increases with number of sensor node in the network
and the data volume the sensor acquired. (b) Drop rate of the network increased signifi-
cantly with source rate [64].
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Figure 3.2: (a) Pipelined operations at different processing depth (PD), including tem-
poral difference of consecutive frames (TD), compression (CR), feature extraction (FE)
and classification (CL). (b) Power consumption changes with PD and the optimal PD for
minimum-power consumption also varies under different channel conditions. For example,
a noisy channel results in more embedded processing.

75]. Rather, they are context and environment dependent. For example, a clean wireless

channel would lead to lower communication power, with channel adaptive radios. Simi-

larly, if there is no (or little) information contained in the sensed data, then it should be

detected early in the processing pipeline. Hence, an energy-optimal system should: (1)

allow in-situ data-analytics to extract information from the sensed data to reduce the power

overhead of communication, and (2) perform optimal trade-off between the depth of com-

putation and the amount of communication to enable lowest possible power at the sensor

node.

This chapter presents a prototypical camera based wireless IoT sensor node for detect-

ing the presence of human beings, with applications in video surveillance. The sensor node

supports multiple machine learning algorithms to meet target accuracy requirements. The

image processing pipeline (IPP) consists of hardware supported object segmentation and

localization through temporal difference (TD) followed by compression (CR), feature ex-

traction (FE) and finally classification (CL). We define processing depth (PD) as the stages

of computation that are performed in the sensor node, before the data is transmitted to the

cloud server. The details of the PD are tabulated in Fig. 3.2a. For example, PD=1 means
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that only TD and CR are performed on the sensor node and then the data is transmitted. A

PD=2 means that TD, CR and FE are performed before transmission, and so on. The sen-

sor node transmits the output of the processed data and the depth of processing (i.e., PD=1,

2 or 3) for each video frame to the cloud. For PD<3, the rest of the pipeline is imple-

mented in the cloud. An adaptive radio provides power scalable transmission, depending

on the signal to noise (SNR) characteristics of the channel. It is intuitive to understand that

as the PD increases, the energy cost to compute increases, but the data volume required to

transmit decreases, thus reducing the energy cost to communicate. As the channel condi-

tion changes (from clean to noisy channel), the minimum energy point also changes. For

a clean channel, a lower PD is preferred (as the energy to communicate is low), whereas

with increasing path-loss a higher PD is preferred. This is shown qualitatively in Fig. 3.2b,

where the energy to compute and communicate (for two channel conditions) have been

shown and we note that the minimum energy point is observed at two different PD points.

With this motivation, we demonstrate an end-to-end self-optimizing node, which can dy-

namically adapt the PD depending on the channel condition, to always track the point of

minimum total energy. Further, we support multiple CR, FE and CL algorithms depending

on the accuracy/power consumption target set by the cloud back-end and the user. Our

experimental results show measurements in a dynamic environment where both the infor-

mation content of the video and the channel conditions are constantly changing. This is

due to (1) a mobile sensor node and (2) time varying path-loss.

The complete hardware system consists of an ADI ADSP-BF707 image processor,

OV7670 camera sensor and USRP B200 software defined radio. The IPP is implemented

on the ADSP-BF707. Measurements have been carried out with a variety of channel condi-

tions and contexts (input image) and, compared with full-transmission and full-computation

strategies, we measure a maximum of 4.3× reduction in energy consumption through

end-to-end self-optimization. To the best of our knowledge, this is the first work to re-

port fine-grain power management between computation and communication on a self-
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optimizing sensor node. We have compared our design with baseline designs where (1)

Full-Computation is performed on the sensor node independent of the channel conditions

and (2) Full-Transmission of all the acquired data is performed at the sensor node without

any “in-sensor” intelligence. The proposed system shows a peak of 4.3× improvement in

energy efficiency. We have also compared the design with state-of-art camera based sensor

nodes and adaptive wireless systems. These systems do not exhibit any self-optimization

between computation and communication. We note 2× to 45× improvement in energy-

efficiency (measured in terms of energy/frame) compared to the state-of-the-art designs.

The rest of this chapter is organized as follows. In Section II, the hardware platform is

described. Section III introduces the IPP and the embedded human detection algorithm(s)

and the tradeoff between detection accuracy and energy-efficiency. The communication

system is described in Section IV. Self-optimization between computation and communi-

cation in the end-to-end system is discussed in Section IV, followed by experimental results

in Section V and finally conclusions are drawn.

3.2 Prototype Hardware Platform

Before we dive into the algorithms and results for in-sensor processing and wireless trans-

mission, let us discuss the hardware platform which forms the basis of the rest of the chap-

ter. In the remainder of the chapter, we will present measurement results to support theory

of computation/communication and optimization, based on this embedded platform. The

proposed video based sensor platform comprises of camera, image processor, software de-

fined radio, and a PC based controller and configuration control as is shown in Fig. 3.3 and

Fig. 3.4. The camera (OV7670) captures 8-bit gray-scale VGA video frames at 10-30fps

(frames per second) and consecutive frames, Fi and Fi-1, are stored in a 1.53MB off-chip

SDRAM. Temporal difference (TD) is computed in the blackfin image processor (ADSP-

BF707) with the two subsequent frames fetched from SDRAM to identify, localize and

segment a moving object in the image frame. When a moving object is detected, the seg-
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Figure 3.3: End-to-end system architecture showing the different hardware components,
the data processing pipeline and the software defined transceiver. CQI is the channel quality
index quantified by path-loss and S is the information content size which will be defined in
Section 3.3.

mented image of interest is processed through the different IPP stages. Human detection

templates are stored in off-chip SDRAM on the board and fetched during CL.

The transceiver (Ettus B200) works in half duplex mode. During transmission, it re-

ceives data from the processor (data can be the output of any PD). This data is wrapped

in packages with prefix containing information of the algorithm, PD, package length and

total data volume. Packages are modulated in GMSK and transmitted at 985Mhz. Chan-

nel condition (in terms of path-loss) is evaluated at cloud back-end (which also consists

of an identical transceiver board) and sent to the IoT node. The transceiver at the sensor

node, adjusts the power amplifier gain accordingly to meet a bit error rate (BER) target,

as will be described in Section IV. The configuration settings and end-to-end controller

parameters (transmitter gain, PD, choice of algorithm, energy models for each operating

condition) are currently implemented in a PC; and can be ported to an embedded hardware

for deployment. Platform hardware and architecture is previously discussed in [50].
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Figure 3.4: Experimental setup showing the system components.

3.3 Embedded Computation

Our current platform is designed for detecting the presence of human beings (henceforth,

called human detection) in the field of view. The IPP for human detection is composed of

four processing stages: object localization and segmentation through temporal difference

(TD), compression (CR), feature extraction (FE) and classification (CL). As discussed in

Section I, PD is a direct control knob that allows us to trade-off computation vs. com-

munication at the sensor node. Besides a dynamically tunable PD, the prototype platform

offers three algorithm choices with different level of computation complexities and detec-

tion accuracy to provide higher level of power-performance trade-off. The target accuracy

is set by the cloud back-end and is typically application specific. As is shown in Fig. 3.5,

in our design, Algorithm-1 compresses the input frame at the least compression ratio, ex-

tracts feature with the most gradients and classifies the feature descriptor with the most

computationally-intensive SVM template; and thus achieves best performance in terms of

human detection accuracy.On the contrary, Algorithm-3 adopts maximum compression of

the acquired frame, extracts the least number of gradient feature and applies the tree based
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template, which offers a low-power implementation apt for severely energy-constrained

systems. Algorithm-2 is the nominal design point. The design parameters of each algorithm

are also listed in the Fig. 3.5. Depending on the trade-off between accuracy requirement

and energy budget, a particular algorithm should be selected. This offers programmability

on the platform for specific applications and energy constraints. Fig. 3.6 demonstrates how

a single frame with a moving object is processed through the IPP and each stage of the IPP

are described below.

3.3.1 Objection Localization and Segmentation:

Object localization and segmentation is the pre-processing stage to detect whether a certain

frame contains a moving object and segment the object for further computation or trans-

mission. The pre-processing stage prohibits unnecessary computation or communication of

following stages when the field of view (FoV) is empty. As pre-processing is always on, the

low-power requirement of this algorithm is a primary consideration. There are three ma-

jor approaches for object activity detection and segmentation: temporal difference [td1],

model based object localization [80, 81] and optical flow [82]. Optical flow method can

Algorithm CR Ratio # Gradients Template
1 2:1 7 SVM
2 4:1 5 NB
3 8:1 3 Tree

CR1 HOG1 CL1

CR2 HOG2 CL2

CR3 HOG3 CL3

A
qu

isi
tio

n

Object
Seg.& Loc.

High Accuracy
Nominal
Low Power

Figure 3.5: Embedded human detection computation and design points of different
algorithms/operations.Algorithm-1 (highest accuracy) applies CR ratio of 2:1, 7 feature
gradients and SVM classification template; Algorithm-2 (nominal) compresses input frame
4 times, extracts 5 gradients per feature and applies NB human detection template;
Algorithm-3 (most energy-efficient) heavily compresses input frame 8 times, extracts 3
feature gradients and classifies with the tree template.
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Figure 3.6: Algorithm demonstration with a real video frame.

obtain complete information and detect the moving object from background better, but

requires clustering, which is computationally expensive and unsuitable for real-time IoT

operation. Model based background subtraction relies heavily on dynamically calibrated

background models, which has a large overhead in an embedded systems, especially un-

der strict power constraints. Compared with optical flow and model-based background

extraction, temporal-difference computes moving object area with the least operation and

consumes least energy.Hence, in the current implementation, we use temporal-difference

for its simplicity and high energy efficiency [80] in the low-power pre-processing stage.

In the temporal difference method, we subtract two consecutive video frames. The pixels

whose difference is greater than a certain energy threshold, Eth, are labeled as activated

pixels with label value of 1. Otherwise, label value 0 is assigned. This can be summarized

as:

Di(m,n) = |F i(m,n)− F i-1(m,n)| (3.1)

Li(m,n) =


0, |Di(m,n)−Di-1(m,n)| ≤ Eth

1, |Di(m,n)−Di-1(m,n)| > Eth

(3.2)
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The area of interest is defined as the pixels within the rectangular boundary with label

value of ‘1’. We quantify the “information content” (S) of a frame as the number of acti-

vated pixels (normalized to the total number of pixels) and it forms a consistent measure of

context in camera based sensor nodes. If information content is less that 3.125% (60×40 in

a QVGA frame), we do not perform any further processing and the entire system is gated

till the next frame is captured.
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Figure 3.7: (a) Measured detection accuracy vs. compression ratio. (b) Measured detection
accuracy vs. number of gradients extracted from HOG feature extraction. (c) Measured de-
tection accuracy vs. number of blocks to extract feature vectors in HOG feature extraction.
(d) Power consumption and accuracy at design points in different algorithms.
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Figure 3.8: (a) Measured human detection accuracy with three different algorithms.
(b) Number of estimated operations in millions of multiplication-accumulation-counts
(MMAC) for different algorithms/depths.

3.3.2 Compression

The second stage of IPP is image compression. The purpose of compression is to reduce

the amount of data to compute or communicate while maintaining a target accuracy re-

quirement. This is simply performed by averaging the pixel values over a sliding window.

In our design, compression further scales down the segmented image from pre-processing

by evenly averaging pixels at certain compression ratio. CR1, CR2 and CR3 represents

increasing compression as shown in Fig. 3.5.

3.3.3 Feature Extraction

Feature extraction derives informative and non-redundant values to facilitate the subse-

quent stages to generate better classification results. In human detection, feature extraction

is crucial to discriminate human from cluttered background. Different feature descriptors

are available, including wavelets, SIFT and HOG. Among all feature extractors, Histogram

of Gradient (HOG) is chosen for its excellent performance and large INRIA human dataset

availability [56, 57]. HOG first divides the input image matrix evenly into M×N cells. Gra-

dient angle and gradient magnitude of each pixel are computed. Each pixel within the cell

votes for an orientation-based histogram channel by comparing gradient angle with angle
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bins with weight of gradient magnitude. Angle bins evenly spread on (−π, π] range and

number of bins is Nbin. Then the spatially connected cells form a block of size (M-1)×(N-

1) to be locally normalized to account for changes in illumination and contrast where M

and N stands for number of rows and columns of cells. The hardware supports three FE

options, as shown in Fig. 3.5.

3.3.4 Classification

Classification is the final step in the IPP. The classifier is trained offline in testing phase and

classification template is generated and stored in the SDRAM. Different machine learning

classifiers have different performance-power trade-offs. We employ three different clas-

sification schemes depending on the target accuracy set by the cloud back-end depending

on the application. Based on our simulations, we support Support Vector Machine (SVM)

for highest performance, Naı̈ve Bayes classifier (NB) for nominal performance, binary tree

classifier for highest energy efficiency, as three classifiers to offer different trade-offs of

complexity/accuracy in human detection.

Naı̈ve Bayes (NB) classifier [83, 84, 85] assumes strong independence between indi-

vidual descriptors and applies Bayes’ theorem, which describes stochastic event based on

related conditions, on test data to predict class:

P (Ck|~x) =
P (Ck)

P (~x)

N in∏
i=1

p(xi|Ck); (3.3)

CK = argmax Ck P (Ck|~x) (3.4)

where Ck is the kth class and ~x is the input test descriptor. P (Ck), P (~x) and p(xi|Ck) are

constants and obtained from training and the predicted class, CK, is the one with highest

conditional probability for all classes. In the current set-up, there are only two labels:

human and non-human.
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Binary tree or decision tree, is composed of nodes, branches and leaves representing

test, test-outcome and labels respectively [86, 87]. The configuration of a tree, including

shape and test condition on each node is obtained by observation. The tree classifier in

our application is binary, which means, starting from root node, on each node, one of the

predictors in feature set is compared with a certain threshold. Then it either goes left or

right depending on comparison result till it reaches the one of the leaves which contains

one of the classification results.
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Figure 3.9: (a) Measured transmission load vs. processing depth with different algorithms
and PD. (b) Measured front-end computation energy per frame vs. processing depth. (c)
Estimated Tradeoff between transmission data volume with computation energy (d) dif-
ferent detection accuracy requirements result in different algorithm chosen, computation
energy (Ecomp) and transmission data volume
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Figure 3.10: Measured (a) transceiver power vs. output power. (b) energy per byte vs. data
rate.

3.3.5 Comparative Analysis of Classification Schemes

The three classification schemes have been mapped to the ADI camera processor and op-

timized for minimum area on the on-board memory. Benchmarking is carried out on the

INRIA human dataset [56, 57]. Tree classifiers use cascaded comparators of depth 10, and

are the most energy efficient scheme. SVMs demonstrate highest performance but require

more than 500 support vectors and hence dissipate the highest power. NB shows nominal

performance and power dissipation. Fig. 3.7 illustrates how detection accuracy changes

with CR, number of gradients and number of blocks in different classification algorithms.

Accuracy improves when CR is low and more gradient features where number of blocks

in feature extraction does not show strong tendency. The design parameters for each algo-

rithm selected for our platform are also denoted in the figure. The compression ratio are

designed as 2:1, 4:1 and 8:1 for three algorithm with 3, 5 and 7 gradient orientations in each

block of feature extraction. Number of blocks in extracting gradient orientation is designed

to be 21 for all algorithms.

Accuracy measurements in Fig. 3.8a were carried out on human detection database,

INRIA [56] because of its relevance to surveillance. The design parameters are chosen from

Fig. 3.7. Algorithm-1 is designed to provide a target accuracy of 91% while Algorithms-2

and 3 provide target accuracy of 83% and 77% respectively. Fig.3.8b illustrates how the
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number of computations (in terms of 106 MAC operations) changes with both the algorithm

of choice and the PD. Higher accuracy and deep embedded processing suffer from heavy

computation which is expected to result in high computation energy expenditure.

As the PD is increased, the amount of data required to transmit to the backend (in-

cluding all the header information) is reduced. Fig. 3.9a illustrates the transmitted (Tx)

load (i.e., the amount of data to be transmitted per frame) for each computation depth.

Fig. 3.9b, illustrates the measured computation energy per frame for the three different al-

gorithms and PDs as discussed above. We note that the lowest computational energy of

0.71mJ/frame is recorded for Algorithm-3 and PD-1 while the highest computational en-

ergy of 8.2mJ/frame is measured for Algorithm-1 and PD-3, thus showing a span of 8X/9X

depending on the choice of algorithm and PD. We also note that as the computation energy

at the sensor node increases (higher PD), the total data volume decreases sharply thus al-

lowing a smooth trade-off in the cost of computation and communication. Key results are

tabulated in Fig. 3.9d.

3.4 Adaptive Wireless Communication

Wireless communication conventionally is the major cause of energy expenditure and short-

ened lifetime of wireless sensors, especially when the sensors are experiencing expanding
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Figure 3.11: Measured (a) Bit-error-rate vs. path-loss under different PA gain. (b) PA gain
and transceiver power vs. path loss under BER requirement of 10-4 and 10-8.
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bandwidth, rapid growth of nodes and ever-increasing data volume with the development

Internet of Things [75, 76]. To implement energy-efficient wireless design on SDR (soft-

ware defined radio), the power/energy characteristics of the adaptive radio is first explored.

As is shown in Fig. 3.10a, transceiver power, first dominated by standby power at low loads,

increases with output power and dynamic power gradually dominates which is generally the

case with noisy channels or long-distance transmissions. In Fig. 3.10b, it is observed that

with the increase of data rate, energy per byte transmitted decreases tremendously. In our

system, data rate is set at 125kBps by GNUradio.

Traditionally, transceivers are designed for the worst-case, hence maximum power con-

sumption, to guarantee target performance, such as bit-error-rate (BER). However, as chan-

nel condition of wireless sensors varies significantly from time to time [ber], adaptive

wireless communication is desired which adjusts the transceivers dynamically to operate

marginally with respect to performance according to temporal channel quality to save en-

ergy [88, 78, 79, 89, 90, 91, 92, 93, 94, 95]. Channel quality is affected by (1) Path Loss (2)

Interference Strength. (1) can be compensated by increasing transmitted power amplifier

(PA) output power, (2) can be handled by increasing receiver linearity. Since we focus on

co-optimizing computation and transmitter power, we mostly focus on (1) in this work. .
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Figure 3.12: Measured (a) transmission energy per frame vs. transmission data volume
under various channel conditions. (b) Transmission energy per frame vs. processing depth
under different path-loss conditions.
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Path-loss in dB is expressed as [96]

Path loss = 20log10(
4πdf

c
) (3.5)

Here d is distance, f is the carrier frequency and c is the speed of light. In our design, the

carrier frequency is 985Mhz.

To compensate for path-loss, the power amplifier gain is adjusted dynamically to guar-

antee minimum BER. Measured BER vs. path-loss for different PA gains of the SDR are

shown in Fig. 3.11a. The PA gain and the total transmission power required to meet a tar-

get BER=10-8 and BER=10-4 for different path-loss are also shown in Fig. 3.11b. For the

rest of the chapter, we will use these two target BERs. BER=10-8 is a conservative target

,which represents minimal error detection/correction and channel coding and high com-

munication energy. On the other hand, a more relaxed BER target of 10-4, with complex

channel coding employed, illustrates usage models where the energy cost of computation

can dominate the energy cost of communication, particularly for cleaner wireless channels.

55



In this chapter, we have not considered the network aspect of the wireless node. Hence,

we present results for both a conservative BER target and a relaxed BER target that en-

compasses typical ranges for wireless nodes. We measure the total transmitted energy as

a function of the total transmitted data volume (also referred to here as Tx load). For low

path loss, the standby power dominates, however with increasing path loss and PA gain

we see a near-linear increase in total transmission energy as a function of the data volume

(Fig. 3.12a). Since, the volume of transmitted data decreases with PD, we can now esti-

mate the total transmission energy per frame of video data as a function of PD, as shown in

Fig. 3.12b. With clean channel (40dB path-loss), transmission energy per frame is 1mJ for

transmission after PD1, while for noisy channel (70dB path-loss), transmission energy per

frame can be as high as 17mJ.

The energy breakdown of the system is demonstrated in Fig. 3.13. Here, we can ob-

serve that in a noisy channel with a path-loss=70dB, transmitter energy occupies more

total budget as compared to a clean channel. At the same time, with deeper processing

depth, transmitter energy can be saved at the expense of computation energy. The overall

self-optimization of total energy will be introduced in the section V.

3.5 Self-optimization Procedure and System Setup

In the previous sections we have seen the strong trade-off between transmission energy,

PD and the algorithm of choice. A self-optimizing system needs to be cognizant of this,

and adjust its operating point dynamically based on the choice of algorithm and channel

conditions.

3.5.1 Energy Model

We first develop a model for the total energy of the sensor node. The total energy, E,

includes computation energy, Ep, and communication energy, ETX; and is a function of

temporal variables of information content (S), processing depth (PD), and path-loss, (PL),
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Figure 3.14: Calibration and runtime self-optimization scheme.

under the constraint of accuracy requirement, (Acc0), as defined by application/cloud server

when choosing the most-energy efficient algorithm, ALG.

E = Ep + ETX = f(S, PD, PL), Acc(ALG) > Acc0; (3.6)

Once the most energy-efficient algorithm is chosen according to minimum accuracy

requirement, computation energy is only a function of information content and processing

depth independent of path-loss and it can be further decomposed into dynamic energy and

static energy per frame. With processing period fixed at T, i.e., 1/frames per second, Ep

changes with processing time (τ p), a function of information content and processing depth.

Large information content size, deep embedded processing and more complex algorithms
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will result in high computation energy. Pdynamic,p and Pstatic,p are the dynamic processing

power and static processing power respectively which are obtained from the image proces-

sor measurement. The processing energy can then be expressed in terms of S, PD and other

parameters as

Ep = f 1(S, PD) = P dynamic,p · τ p(S, PD) + P static,p · T = θALG,PDS + Estatic,p (3.7)

where θALG,PD is model coefficients of algorithm ALG at processing depth PD which is

fitted via regression during pre-deployment testing and calibration

Communication energy is modeled as a function of PL, power amplifier (PA) gain and

the static power. The total energy to transmit each video frame is modeled as

ETX = f 2(S, PD, PL) = P dynamic,TX · τ p(S, PD) + P static,TX · T

= P dynamic,TX(PL) · ΓALG(S, PD)

DR
+ Estatic,TX

(3.8)

where ΓALG(S, PD) is transmission load when processed by algorithm-ALG, processing

depth of PD and information content of S, and DR is the data rate.
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(A) (B) (C) (D)

Figure 3.16: Measured embedded computation power consumption where transient congrol
signal of each processing stage is indicated by GPIO output voltage level: (A), object
segmentation and localization through temporal difference (TD) together with compression
(CR); (B), feature extraction(FE); (C), classification (CL) and finally (D), idle power down
state. Note that alternative opertions have alternative active-high and active-low control
signals. For example, (A) is active-high, (B) active-low and so on.

3.5.2 Self-optimization Procedure

The over-all system first characterizes itself before deployment. On the test-bench, for dif-

ferent algorithms, PD and path loss conditions, the system performs energy calibration and

determines the total energy for each IPP task and transmission. Then the system populates a

look-up table (LUT) which contains information about possible operating conditions. This

is currently implemented on a PC, but can be embedded if required. This calibration step

can use external or embedded sensors (power/current sensors); and, in the present system

we perform the calibration using external on-board sensors.

Calibration of the system is performed during test phase. This procedure is illustrated

in the flow-chart shown in Fig. 3.14. The key algorithmic steps before the IoT node is

deployed are:

1. The algorithms (combination of different compression ratios, feature extraction meth-

ods and classifiers) are characterized on a known (INRIA) data-base during design.
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The accuracy of the algorithms for the task at hand are determined.

2. During calibration phase, models for energy dissipation are constructed. A random

value of path-loss is generated. A corresponding minimum power amplifier gain that

satisfy the target BER is measured and the gain together with its Pdynamic,TX are stored

in the corresponding LUT entries.

3. LUT entries for the coefficient θ are populated for each algorithm and processing

depth. Assuming a linear relationship and to avoid over-fitting, ten processing energy

measurements (Ep) against ten random information sizes (S) from a test video per PD

and algorithm are used in the current setup. We use regression to calculate θ. Videos

in this calibration stage are obtained from ViSOR data-set, ”Outdoor, Unimore D.I.I

setup” category. It encompasses a large range of information content, from pixel sizes

of 2400 (60×40) to 21600 (180×120). This allows us to obtain a comprehensive

and accurate energy model which is critical for the success of the design. During

run-time we test the setup with a real-time system with hours of videos obtained

from the OV7670 image sensor. This allows us to obtain accurate measurements

of energy consumption during operation and perform online optimization between

computation and communication energy. It should be noted that to train the system

for human detection we used the INRIA image data-set, as has been mentioned, and

performance/accuracy testing was done on hours of real-time videos acquired with

the final system setup.

After deployment, information about path-loss is sent from back-end cloud to the front-

end platform periodically (every 1s) and the minimum power amplifier gain needed to

overcome path-loss is updated. Then the energy model estimates the energy for all the IPP

blocks with respect to the information content. Then the system chooses the PD for min-

imum energy of operation. The PD information, algorithm, transmission gain and energy

for IPP blocks are packed into the frame header and transmitted. This is used by cloud
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server for back-end processing. The calibration and run-time self-optimization scheme are

shown in Fig. 3.14 and data/operations in time domain is shown in Fig. 3.15.

Upon obtaining accurate coefficients, the overhead of the self-optimized system is lim-

ited to storing the model parameters and modeling the computation/communication energy.

The model, including PL-PA gain table, will consume no more than 40 bytes of memory in

double-precision. For the system running at 10 frames per second, the maximum computa-

tion needed for the energy estimation is 70 MAC/second. For the overall system, both the

model storage and energy estimation overheads are negligibly small.

3.6 End-to-end System Demonstration and Measurements

The algorithms are implemented on ADI-BF707 image processing board and computation

power consumption is measured. An example of measured power and the processing steps

is shown in Fig. 3.16. We can observe the different processing steps through GPIO output

(the IPP steps are alternatively active high and active low), and the corresponding power

consumption. During pre-deployment calibration, the LUT is populated and the energy

models are constructed for varying path-loss and information content of the captured video

frames. Based on the LUT data, the system chooses the operating mode for minimum

energy per frame. This is shown in Fig. 3.17 where different PL scenarios are examined. As

the PL increases, the self-optimizing sensor node always chooses the most power optimal

PD. We note that the increasing path-loss will result in more embedded computation and

total energy is saved on the self-optimizing platform. Also, improved energy-efficiency will

be achieved with low-power algorithm, Algorithm-3 for example, or lower target BER, i.e.

10-4. Comparisons on total energy per frame is also demonstrated among different design

strategies in Fig. 3.18. We compare the results of the proposed system vis-a-vis two static

designs. These are:

1. Full-Transmission: In this design the sensor node only performs image acquisition,

localization and compression, and then transmits the entire video data.
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Figure 3.17: Measured total energy (computation+communication) per frame for different
PD with increasing path-loss. Experimental results are demonstrated for the three algo-
rithms described here and two BER targets.When path-loss is high, the general trend is that
optimal mode moves to more front-end embedded processing.

2. Full-Computation: In this design the sensor node performs all the tasks in the IPP

without considering the energy cost of computation, independent of the channel con-

ditions.

We note that by properly balancing the energy for computation and communication,

the proposed system always operates at minimum energy point. We measure peak sav-
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Figure 3.18: Measured total energy (computation+communication) per frame for the pro-
posed system comapred against two static designs.Experimental results are demonstrated
for three algorithms and two BER targets.

ing of 4.3× at 70dB path-loss, operating with Algorithm-1 and target BER of 10-8, when

compared with baseline design (Full-Transmission Design). For a target BER of 10-4, the

proposed system shows 2.2× to 3.1× peak savings. A random path-loss scenario is gener-

ated and its impacts on PD, PA gain, computation energy per frame, communication energy

per frame and total energy is demonstrated in Fig. 3.19.(a). We note how in transient mode

the system operated at the correct PD to track minimum overall energy by trading compu-
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(a) (b)
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Figure 3.19: Case Study: Random and dynamic path-loss condition created by a mobile
IoT node and the corresponding PD, PA gain, computation, transmission and total energy
per frame under BER constraints of (a) 10-8 and (b) 10-4.
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Figure 3.20: Path-loss measurements under different indoor and outdoor environments.

tation for communication energy when channel is noisy (high path-loss). Also, with lower

BER requirement as is shown in Fig. 3.19.(b), the system performs less computation (no

PD= 3 mode is observed) and operates at smaller PA gains. Energy per frame under differ-

ent environment are also shown. Finally, the end-to-end system is deployed on a mobile IoT

platform and various indoor and outdoor conditions are used to evaluate the potential of the
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Figure 3.21: Measured total energy (average) per frame in different environments vis-a-vis
static designs under BER targets of (a) 10-8 and (b) 10-4.

design. Path-loss as a function of distance between the IoT node and the base-station for

various wireless conditions are shown in Fig. 3.20. For these operating conditons, we com-

pare the total energy/frame dissipated in the proposed system vis-a-vis “Full-Transmission”

and “Full-Computation” designs. The comparative results for two BER targets are shown

in Fig. 3.21. We note that the proposed system saves significant energy during run time and

the optimal balance between computational energy and communication energy is obtained.

Fig. 4.29 shows the comparison with state-of-art designs on low-power wireless video

applications. Previous research efforts have been focused on either (1) embedded low-

power video processing [97, 98, 99], such as SRAM-FPGA based on-board object detec-

tion, or (2) adaptive wireless communication which adjusts the PA power and transmit-

ter linearity with the dynamic wireless channel conditions [100, 101], To the best, of our

knowledge this is the first reported work where the computational and communication en-

ergies are being co-optimized for achieve the highest energy efficiency. To compare the

proposed system with published results, the power numbers reported are normalized to the

image size (320×240), maximum TX output power (20dBm) to estimate the final metric of

energy per frame. The comparison shows that the proposed system outperforms state-of-art
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design by more than 2×.

Figure 3.22: Comparison table: The proposed system has been compared with state-of-
the-art video based sensor nodes which either (1) perform “in-sensor” video processing, or
(2) improve energy-efficiency of the wireless transmitter through real-time adaptation. The
proposed system performs self-optimization between the computation and communication
to enable the lowest power consumption in a dynamic environment.

3.7 Conclusion

This chapter presents a video IoT sensor node which performs self-optimization between

the amount of computation (for human detection) and the total data volume to be trans-

mitted. As the information content and the channel conditions change, the system tracks

the minimum energy point. Hardware measurements show 4.3× reduction of the total en-

ergy/frame compared to a baseline design. Comparisons with state-of-the-art video based

sensor nodes, we note more than 2× reduction in energy/frame.

3.8 Discussions

3.8.1 System Inefficiency

This platform has systematically proved the significance of computation and communica-

tion trade-off with respect to energy in dynamic environment. However, it consumes hun-

dreds of miliwatts for the video surveillance task and typical battery’s stored energy will

drain away in only several weeks. As an practical platform instead of prototype, it lacks
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energy efficiency. One major cause of the inefficiency comes from its adopted conventional

IoT design methodology as discussed in the chapter I. In conventional IoT design, the data

has traversed a long path towards extracted information through stacked hierarchies. From

quantization, boolean logic all the way to general purpose compiler of the ADI image pro-

cessing board, the energy loss is significant. At the same time, extensive unused modules,

such as processing element, on-chip SRAM, peripherals and so on, has introduced large

amount of static energy consumption.

3.8.2 Control Overhead

Online computation and communication trade-off requires proper control modules. This

control module will inevitably introduce overhead. In this design, control overhead has not

been accounted for: 1) Controller is implemented on the PC whose OS is needed to con-

figure SDR, but in practical platform, we need much more efficient module to account to

minimize area/power overhead; 2), SDR has wide and fine-grained programmability which

are preferred for the proposed application/control algorithm. However, as a discrete compo-

nent, the reconfiguration latency is significant in real time application and highly dynamic

environment. The TX configuration overhead need to be minimized; 3), Environment mod-

elling is at the core of wireless IoT controller. Due to model inaccuracy or environmental

change, the control system will need calibration after deployment. In this scenario, con-

troller’s self-learning capability is preferred. For the proposed system, controller utilizes

fixed coefficient LUT which is incompatible with online self-learning scheme.

3.8.3 DNN Computation Architecture

For state-of-art image processing algorithm, deep-neural-network (DNN) is widely applied

for its superior performance in object detection, image classification and so on. In the

proposed platform, such algorithm has not been explored nor optimized. For state-of-art

wireless image-based IoT device, an DNN accelerator is highly demanded to handle vari-
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ous applications. Further, like a general-purpose image processing unit, the DNN acceler-

ator needs to provide programmable computation pipeline to account for various network

topology/layer types.
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CHAPTER 4

A WIRELESS IMAGE PROCESSING SOC ENABLING EI

As discussed in previous chapters, EI design with discrete components lacks the required

energy efficiency and real-time controllability. To investigate the improvements gained

through fully-integrated design and validate computation-communication trade-off with

state-of-art customized circuit, this chapter discusses an SoC design integrating both com-

putation and communication units that efficiently trades-off computation-communication

for wireless image processing applications. This chapter is an expanded version of ”A

65nm Image Processing SoC Supporting Multiple DNN Models and Real-Time Computation-

Communication Trade-off via Actor-Critical Neuro-Controller” presented to 2020 Sym-

posia on VLSI Technology and Circuits with the dissertation author as the primary author.

4.1 Introduction

The wide spread proliferation of smart sensors has led to hardware that enable edge intel-

ligence (EI) with extreme energy-efficiencies. This decreases the volume of data that is

transmitted to the cloud, thus reducing: (1) processing latency, (2) communication energy

and (3) network congestion. However, this comes with an added cost of computation at the

edge node [1-3] (Fig. 4.1.(a)). The cost (energy/latency) of edge computation and the cost

of communication to the cloud vary widely depending on operating conditions, that include

(1) information content in the data, (2) algorithm selection, (3) channel conditions (noise,

path-loss etc.), (4) network size, available bandwidth and (5) resources at the cloud, as

shown in Fig. 4.1.(b). We call the number of NN layers processed at the edge, processing-

depth (PD). Increasing edge-computation increases PD, but reduces the volume of data to

be transmitted. This not only provides an opportunity to efficiently configure computation

and communication blocks but also trade-off between computation and communication in
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real-time to meet system targets.

Wireless image processing is among the most demanding use-cases for optimal computation-

communication trade-off. On one hand, image processing is at the core of many important

applications, such as surveillance, authentication, recognition, behavior analysis and so on.

On the other hand, the high-dimensional data volume together with extensive computation

(deep neural-networks and etc.) have brought about significant challenges to resource-

constrained wireless IoT platforms. Both facts have motivated us to investigate chip-level

solutions to addresses various wireless image processing challenges with systematic opti-

mization and state-of-art circuit techniques.

This chapter presents a 65nm wireless image processing SoC for real-time computation-

communication trade-off on resource-constrained edge devices. The test-chip includes (1)

an all-digital, near-memory, reconfigurable and programmable neural-network (NN) based

systolic image processor at 1.05TOPS/W (peak), (2) a digitally-adaptive RF-DAC based

transceiver with Tx energy-efficiency of 768pJ/b and (3) a mixed-signal, time-based, actor-

critic neuro-controller with compute-in-memory (CIM) and in-place weight updates that

provides online learning and adaptation at 0.59pJ/MAC for efficiently controlling the com-

putation, communication blocks separately as well as jointly.

4.2 System Analysis

Conventionally IoT image processing schemes either directly transmit captured image to

the back-end server or process end-to-end algorithms locally without data exchange. As

mentioned in previous section, both schemes lacks environmental awareness and system-

atic optimization. The smart wireless image processing scheme proposed is shown in

Fig. 4.2.(a). There are three major building modules: pipelined computation, adaptive

communication and optimal policy control. Such a system optimizes programmable sys-

tem targets (yT) according to dynamic sensed variables (uD) through various control knobs

(CTRL). The detailed variables are denoted in Fig. 4.2.(b). A systematic overview and
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Figure 4.1: Edge computation and cloud communication trade-off.

analysis of the three modules are discussed in this section.

4.2.1 DNN Image Processing Pipeline

Deep neural-network (DNN) is the state-of-art image processing framework and has even

achieved performance superior than human in certain applications, such as image recog-

nition, object detection and so on. Compared with shallow multi-layer perception, DNN

usually has extensive cascaded/parallel convolution layers to extract features and several

fully-connected layers at the end to separate feature space. Further, people have looked into

pruning techniques to sparsify neural-network to maximally reduce computation/storage

bottleneck for embedded system.

To understand DNN processing, 4 widely applied network topologies (AlexNet, GoogleNet,

SqueezeNet and VGG16) are analyzed. Fig. 4.3 shows output data volume and accumulated

number of operations at certain layers in these DNNs. We have observed a monotonically
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Figure 4.2: Self-optimizing platform.

decreased output data volume and monotonically increased computation workload with re-

spect to deeper DNN processing depths (PD). It means that DNN framework is inherently

compatible to act as an computation-communication trade-off scheme: shallow PD for edge

computation savings and deep PD for data communication savings depending on dynamic

communication cost.

At the same time, each DNN topology has its own computation characteristics with

respect to computation workload, data transfer patterns, layer specifications and so on. The

proposed DNN computation pipeline as a processor should feature not only any particular

DNN, but DNNs in general to adapt to wide future use-cases. The optimization is im-

plemented on both macro and micro levels: (1), pipeline is reconfigurable to account for

workload distribution between PDs and maximize local intermediate data utilization across

72



TX Data Volume #Ops on the Edge

0

1

Data C1 C5 fc6
N

or
m

 V
ol

um
e 

/
# 

O
pe

ra
tio

ns

AlexNet

0

1

Data C5 fc6 fc8

N
or

m
 V

ol
um

e 
/

# 
O

pe
ra

tio
ns

VGG16

0

1

Data Fire8 C8

N
or

m
 V

ol
um

e 
/

# 
O

pe
ra

tio
ns

SqueezeNet

0

1

Data INC3 INC4 INC5

N
or

m
 V

ol
um

e 
/

# 
O

pe
ra

tio
ns

GoogleNet
PD0 PD1 PD2 PD0 PD1 PD3PD2

PD0 PD1 PD2 PD0 PD1 PD3PD2

PD3

Figure 4.3: Output data volume and accumulative number of computations across layers
for various DNN architectures.

DNNs; (2), the processing element in the pipeline is able to reconfigure for layer-wise op-

timizations, such as convolution layers, fully-connected layers, sparsely-connected layers

and so on. The detailed implementation will be discussed in following sections.

4.2.2 Adaptive Communication

Wireless environment is highly dynamic. To guarantee data transmission (Tx) accuracy,

transceivers are conventionally designed for the worst case, which becomes a major power

consumer for the edge system. To mitigate communication energy bottleneck, adaptive

transmission has been extensively explored. By monitoring dynamic wireless channel con-

ditions, the Tx control knobs are tuned accordingly to provide marginal performance thus

preserve energy consumption.

An example of adaptive communication is illustrated in Fig. 4.4. In the first case,

channel suffers from severe path-loss (70dB) and data accuracy is critical (BER10-8), thus

output PA power will be tuned to high gain resulting in significant Tx power. On the
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contrary, when channel loss is moderate (30dB) and transmission data error tolerance is

high (BER10-4) as in the second case, the transceiver can save to up to 100× Tx power by

properly lowering PA gain in this example.

In hardware adaptive transceiver design, we would like to incorporate more programmable

knobs to provide high degree of freedom. Meanwhile, efficient on-chip transceiver (TRx)

implementation is highly desired for responsive Tx control. The adaptive transceiver details

are discussed in following sections.

4.2.3 Optimal Control

Besides computation pipeline and adaptive communication, it is crucial to optimally con-

trol the two modules independently as well as the integrated system. The controller will

take design targets and sensed variables as input and dynamically choose control knobs as

output. In a complex environment, both input/output dynamic range and variable size will

be large, It will consequently lead to significant policy search space and make real-time

control more challenging. Further, for complex environment, it is difficult to model the

system accurately. The devices have to be able to calibrate off-line trained/modeled policy

and learn in the deployed environment over time. It requires thorough investigations into

the choice of control scheme.
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One straightforward solution is to offload control to the cloud. With immense com-

putation resources at the back-end, the control can handle highly complex environment

with respect to processing and will be able to calibrate the model at the same time. How-

ever, there is a delayed control with respect to locally sensed variables. This delay may

result in platform energy waste or even consecutive transmission failures in the worst-case

with over-optimistic control choice. Alternatively, we may choose embedded look-up-table

(LUT) as a controller implementation. We are able to use input as index to find optimal pol-

icy immediately. However, LUT lacks learnability. To improve learnability, we may choose

neural-network as an emulator for the platform. By emulating control knobs together with

sensed variables, we can easily locate optimal policy. The problem from a hardware per-

spective is that exhaustive search is required. Both energy and delay overheads make such

a scheme less preferable.
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Real-time 
Learning

Policy
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Remote CTRL (cloud) no yes /
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Figure 4.5: (a) Neural-network-based actor-critic controller; (b) optimal policy control
scheme comparisons.
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To address all the problems mentioned above, we have chosen neural-network-based

actor-critic (AC) control scheme. It has an actor neural-network and critic neural-network,

one for making decisions and one for system emulation. In run-time, the actor picks opti-

mal control knobs in a single shot with sensed variables and design targets; and the critic

emulates chip performance with sensed variables and selected controls. During training,

emulation errors are collected to calibrate critic neural-network, while the target errors at

the output of critic controller are back-propagated through critic controller as control er-

rors to train actor neural-network. The AC-controller is able to provide both real-time and

learnable optimal control. The control scheme comparison is shown in Fig. 4.5.(a) and data

flows are shown in Fig. 4.5.(b).

In actual hardware implementation, we expect our controller to be as efficient as possi-

ble, for both inference and learning. The implementations details will be discussed in the

following sections.

4.3 System Architecture

The SoC architecture is shown in Fig. 4.6. There are three major blocks designed for DNN

computation pipeline, adaptive communication and optimal control respectively:

1. PE Spatial Array: A 3-by-3 processing element (PE) array with reconfigurable in-

terconnections between PEs to account for various DNN architectures. Each PE has

8 threads (each thread with an ALU, a 1KB SRAM, and a shift register). PE is also

reconfigurable for optimized layer operations.

2. Adaptive Transceiver: On-chip digitally reconfigurable channel-aware transceiver

with programmable power amplifier (PA) gain, data rate and error correction code

mode.

3. Actor-Critic Controller: A neuro-based actor-critic controller. Both controllers

are 2-layer neural-network with each layer implemented with 10-by-10 compute-
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in-memory (CIM) module.

Besides the major building blocks, the SoC has also included an 8KB frame buffer to

store input image, a pre-processor to infer frame difference, data/instruction caches to store

temporal data/instructions, a scan chain and a decoder.

The SoC interfaces with camera, power supply and management unit, optional external

DRAM and programmable interface. The SoC will be remotely connected with cloud

server for data exchange through on-chip transceiver.
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Figure 4.7: 3x3 PE spatial array for reconfigurable DNN pipelines.

4.4 Circuit Design

4.4.1 Reconfigurable PE Spatial Array

The PE spatial array has 9 PEs and the PEs are placed in a 3-by-3 configurations as is

shown in Fig. 4.7. Each PE is able to reconfigure its input to any of the outputs of 4

adjacent PEs. At the same time, each PE can bypass the data so that one PE’s output

data can directly reach any other PE. By controlling each PE’s interconnection and bypass

status, the PE array can be easily reconfigured for various pipeline topologies depending

on workload distribution and data-flow pattern. For example, in a deep pipeline where

workload is evenly distributed and data is sequentially passed on to next stage, the PE array

can be reconfigured to support up to 9 stage serial pipeline. On the contrary, if a workload

is highly parallel and there are minimal data exchange between computations, the array can

also be reconfigured as parallel 1-stage pipeline. And it can also form any pipeline between

1 stage and 9 stages as is shown in Fig. 4.7.

PE in the array (shown in Fig. 4.8) includes 8 threads, and each thread consists of the

following sub-blocks:
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Figure 4.8: Reconfigurable PE for various DNN layers.

1. Arithmetic Logic Unit: ALU’s inputs are connected with two 2-to-1 multiplexers.

Input A is able to select between (1), the data on the global bus at the output of input

buffer shared by all threads and (2), the data stored in local shift-register. Input B

is able to select data between (1), data on global bus at the output of any particular

SRAM in the memory bank and (2), data read from local SRAM.

2. Retention-enabled SRAM: The SRAM output is both connected to the ALU within

the same thread and a global bus shared with all SRAM blocks in the PE. Further, to

reduce static power consumption of un-accessed SRAM, the PE have full control to

put any SRAM blocks into retention mode.

3. Shift-register: The shift registers are connected to other shift-registers in its neigh-

bouring threads. The first shift-register is connected to input buffer. The shift buffer

chain will work as a FIFO register array when needed and push input one data in at

each clock cycle.

With proper configurations, the PE is able to optimize for various DNN layer types who

differ in computation pattern and memory usage. In particular, the energy-efficiency and

throughput of fully-connected layers, convolution layers and sparsely-connected layers are

most important features to optimize in DNN acceleration.
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Fully-connected configuration is depicted in Fig. 4.9.(a). All threads work in parallel.

The ALU selects one input from global input bus and another input from local memory

which stores weights. Each thread acts as an output neuron as shown in Fig. 4.9.(a). By

feeding sequential input data to PE, a maximum of 8 output neurons will be computed

at the same time through multiplication and accumulation (MAC) operations on parallel

ALUs. The input sharing minimized input data access and computation parallelism im-

proved throughput. It should be noted that fully-connected layer’s computation is essen-

tially parallel vector product between input data vectors and weight vectors. As a result,

such configurable also applies to 1-by-1 filter kernel in GoogleNet, SqueezeNet and Mo-

bileNet.

Convolution configuration is described in Fig. 4.10.(a). All ALUs compute MAC in

parallel where one input from local shift-register (input data) and the other from global

memory bus (weight). During the computation, only the SRAM stores the weight will be

active, while all others in retention. All threads compute convolutions with the same kernel

of diverse portions in the input data array (shown in Fig. 4.10.(b)). By feeding sequential

input data to PE and shift the data, a maximum of 8 convolutions can be processed in each

clock cycle. Further, as filter weights are shared with all threads, un-accessed memory

sub-banks can be put into retention to save static memory energy expenditure.
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Sparsely-connected layer’s PE configuration is shown in Fig. 4.11.(a). The threads

will be assigned to either MAC or accumulation tasks respectively. The ones assigned

to MAC tasks will collect input data from global data bus in a pipelined manner. The

thread to perform accumuation will be acting as an index accumulator to compute which

input should be fetched for computation. The accumulator will read from its local memory

of index difference and accumulate them for actual index. Un-used SRAMs are put into

retention mode.

4.4.2 Reconfigurable RF-DAC Tx and ULP OOK Rx

To have energy-efficient communication with an external Hub, a digitally reconfigurable,

data-rate and channel-aware transceiver (Fig. 4.12) is designed on the same SoC that demon-

strates the effectiveness of computation-communication trade-offs through adapting to var-

ious data rates and channel conditions. The input data for test purpose comes from the

PRBS generator. Alternatively, real-data from the on-chip compute units are utilized as

input, which can be selected by the baseband select mux. The data rate control is achieved

by changing the clock rate from 40kHz to 10MHz in 256 steps using an 8-bit control. The

ECC can be enabled by one control bit that turns on [8,4] Hamming codes. From the digital

baseband, 3 bits of I amplitude control and 3 bits of Q amplitude control controls how many
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legs of the RF-DAC would be turned on, while 2 bits of LO control generates appropriate

local oscillator phases.

The power delivery subsystem consists a reconfigurable RF-DAC based PA (Fig. 4.13.(a))

and a tapped capacitor matching network with reconfigurable capacitor banks. The RF-

DAC based PA combines the DAC, mixer and PA operations in a single module through

a digital-friendly architecture that switches on or off different legs of the module, and can

support higher order modulation schemes such as 16-QAM or 64-QAM. The output power

control is achieved using 3 bits that alters the capacitor banks present in the matching net-

work. As mentioned earlier, 3 bits of I-path amplitude control and Q-path amplitude control

determines how many legs in the I-path and Q-path would be turned on.
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The 2.4GHz LO generation (Fig. 4.13.(b)) for both I and Q paths is performed by an on-

chip LO generator, as shown in the right-hand side of this slide. 4 LO phases are selected

based on the 2bit LO control as obtained from the I-Q signal mapper.

For the design of the matching network, the effect of finite Q of the on-chip inductor

is considered, which modifies the well-known formula obtained in the ideal scenario that

considers an infinite Q. 5 different values of C1 and C2 are considered and are put on chip

as a part of two different capacitor banks that cover a matching network impedance from

about 100 ohms to about 1600 ohms. While designing the matching network, the effects

of pad capacitance, bond-wire inductance and pcb capacitance are also considered, and the

effect of the additional capacitances are included in the value of the on-chip capacitor, C1.

The capacitor matching design is described in Fig. 4.14.(a-b).

Along with the transmitter, we also have an ultra low power OOK receiver (Fig. 4.15.(a))

on the same chip that captures control signals from a nearby base station to achieve closed-

loop control on the 8 clock control bits, 1 ECC control bit and 3 Pout control bits. The

receiver consists of 2 stages of RF LNA, a differential to single ended converter, or D2S,

an envelope detector, or ED, 2stages of baseband VGA and a baseband comparator.

For the envelope detector (Fig. 4.15.(b)), a 4-stage gate biased structure is used which

increases the output voltage by 4X as compared to the 1stage envelope detector, thereby

compensating for the loss incurred during envelope detection. The SNR, however, remains

Reconfigurable RF_DAC based PA

Programmable
On-Chip
Tapped

Capacitor
Matching N/W

IAC→I_Amp_Ctrl (Amp Control for I-path)
QAC→Q_Amp_Ctrl (Amp Control for Q-path) 5.

9n
H

C2

C1

QAC [0]QAC[1]QAC[2]LO_Q LO_Q LO_Q

Q_PATH
1X 2X 4X

IAC [0]IAC[1]IAC[2]LO_I LO_I LO_I

I_PATH
1X 2X 4X

Ext.
Clock

Injection

C
lk

0

Clk270

C
lk180

Clk90

Clk90

Clk270

Clk0

Clk180

LO_Ctrl [0]

LO_Ctrl [1]

LO_Q

LO_I

Low-Power 2.4GHz LO Generator(a) (b)

Figure 4.13: TX programmable (a), modulation circuit, (b), clock synthesis circuit.

83



0

500

1000

1500

2000

1 2 3 4 5

Z M
N

(Ω
)

Combination of C1 and C2

Without pin-bondwire-pad model
With pin-bondwire-pad model

RF-
DAC

5.
9n

H

C2

C1

50Ω
RMN

𝐑𝐌𝐍,𝐫𝐞𝐚𝐥 = 𝟏 + 𝐐𝐋𝐨𝐚𝐝𝐞𝐝𝟐 × 𝐑𝐒

Real Scenario:  Finite 𝐐

𝐑𝐌𝐍,𝐢𝐝𝐞𝐚𝐥 = 𝟏 + 𝐂𝟏
𝐂𝟐

𝟐
× 𝟓𝟎𝛀

Ideal Scenario:  𝐐→ ∞	

𝐑𝐒 =
𝟓𝟎𝛀
𝟏;𝐐𝟏

𝟐 , 𝐐𝟏 = 𝛚𝐂𝟏 × 𝟓𝟎𝛀

𝐐𝐋𝐨𝐚𝐝𝐞𝐝 =
𝟏

𝛚𝐂𝐞𝐟𝐟×𝐑𝐒
, 𝐂𝐞𝐟𝐟 =

𝐂𝟏,𝐬𝐂𝟐
𝐂𝟏,𝐬;𝐂𝟐

𝐂𝟏,𝐬 = 𝐂𝟏 ×
𝟏;𝐐𝟏

𝟐

𝐐𝟏
𝟐 .

𝐂𝟏 (pF) 𝐂𝟐 (pF) 𝐑𝐌𝐍,𝐢𝐝𝐞𝐚𝐥 𝐑𝐌𝐍,𝐫𝐞𝐚𝐥

0.75 2 95𝛀 117𝛀

0.75 1.5 112.5𝛀 152𝛀

1 1 200𝛀 288𝛀

1.5 0.75 450𝛀 607𝛀

2 0.5 1250𝛀 1600𝛀

5.
9n

H

C2

C1

ZL

RMN C p
ad

C P
C

B
Lbond

VDD

VDD

C 1
=0

.7
5p

F
C 2

=2
pF

C 1
=0

.7
5p

F
C 2

=1
.5

pF

C 1
=1

pF
C 2

=1
pF C 1

=1
.5

pF
C 2

=0
.7

5p
F

C 1
=2

pF
C 2

=0
.5

pF

Design with pad capacitance (Cpad), bond-wire inductance (Lbond) and PCB capacitance (CPCB):

pad-bondwire
-PCB model

I av
g,

R
F-

D
AC

I av
g,

R
F-

D
AC 0

500

1000

1500

2000

1 2 3 4 5
Z M

N
(Ω

)
Combination of C1 and C2

Without pin-bondwire-pad model
With pin-bondwire-pad model

5.
9n

H

C2

C1

50Ω
RMN

𝐑𝐌𝐍,𝐫𝐞𝐚𝐥 = 𝟏 + 𝐐𝐋𝐨𝐚𝐝𝐞𝐝𝟐 × 𝐑𝐒

Real Scenario:  Finite 𝐐

𝐑𝐌𝐍,𝐢𝐝𝐞𝐚𝐥 = 𝟏 + 𝐂𝟏
𝐂𝟐

𝟐
× 𝟓𝟎𝛀

Ideal Scenario:  𝐐→ ∞	

𝐑𝐒 =
𝟓𝟎𝛀
𝟏;𝐐𝟏

𝟐 , 𝐐𝟏 = 𝛚𝐂𝟏 × 𝟓𝟎𝛀

𝐐𝐋𝐨𝐚𝐝𝐞𝐝 =
𝟏

𝛚𝐂𝐞𝐟𝐟×𝐑𝐒
, 𝐂𝐞𝐟𝐟 =

𝐂𝟏,𝐬𝐂𝟐
𝐂𝟏,𝐬;𝐂𝟐

𝐂𝟏,𝐬 = 𝐂𝟏 ×
𝟏;𝐐𝟏

𝟐

𝐐𝟏
𝟐 .

𝐂𝟏 (pF) 𝐂𝟐 (pF) 𝐑𝐌𝐍,𝐢𝐝𝐞𝐚𝐥 𝐑𝐌𝐍,𝐫𝐞𝐚𝐥

0.75 2 95𝛀 117𝛀

0.75 1.5 112.5𝛀 152𝛀

1 1 200𝛀 288𝛀

1.5 0.75 450𝛀 607𝛀

2 0.5 1250𝛀 1600𝛀
5.

9n
H

C2

C1

ZL

RMN C p
ad

C P
C

B

Lbond

VDD

VDD

C 1
=0

.7
5p

F
C 2

=2
pF

C 1
=0

.7
5p

F
C 2

=1
.5

pF

C 1
=1

pF
C 2

=1
pF C 1

=1
.5

pF
C 2

=0
.7

5p
F

C 1
=2

pF
C 2

=0
.5

pF

Design with pad capacitance (Cpad), bond-wire inductance (Lbond) and PCB capacitance (CPCB):

pad-bondwire
-PCB model

I av
g,

R
F-

D
AC

I av
g,

R
F-

D
AC

(a) (b)

Figure 4.14: Capacitor matching.

constant as we increase the number of stages.

4.4.3 NN-based Actor-Critic Controller

The large control space across computation and communication is learnt using a low over-

head ( 5% power, 2.5% area) actor-critic NN (AC-NN) controller (Fig. 4.16). The AC-NN

takes both design targets and sensed variables as inputs and learns to optimally control the

control knobs. These are listed in Fig. 4.2.

The controller features 4 10 x 10 memory sub-banks with time-based compute-in-

memory modules. During inference, digital to time converters (DTCs) allow pulse width

modulated word-lines (WLs) (input signals) to be turned on sequentially such that the
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Figure 4.15: Receiver circuit design.
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falling edge of one row triggers the rising edge of the next. The partial products are accu-

mulated on the BL as long as VBL is greater than a threshold (VL) to avoid read disturb.

However, if the operands are large and VBL reaches VL then the process is stopped, the

ADC converts to a 6b word, the BL pre-charged and the sequence restarts. The differential

bitcell and ADC allows both positive and negative weights by discharging either BL (posi-

tive) or BLbar (negative). The thermometer encoding of data enables a weight update to be a

left or a right shift (sign of the update), and that the duration of shift process (magnitude of

update) is controlled by the DTC. The array can be read both row as well as column-wise

providing a seamless design for transposing the weight matrix during back-propagation.

This also enables in-place online learning without requiring reads and write-backs (base-

line designs).

The thermometer encoded weight storage unit consists of 8 sequentially connected 1-

b storage cells, control logic and pull up/pull down transistor at the edges as is shown in

Fig. 4.18. The update is fulfilled by one single time pulse generated by DTCs and the

magnitude of update is controlled by duration of the time pulse. For example, to increase

magnitude, the pull-up transistor is enabled and propagate ‘1’ to the right for certain amount

of time. Bit cells will flip one by one. After the propagation, the storage element enters

retention mode to store the new weight. By controlling time pulse duration and bit shift

direction, stored weight can be updated without leaving the storage unit. To enable data
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Figure 4.16: NN-based actor-critic controller circuit.
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Figure 4.18: 8b thermometer-encoded memory cell.

transfer and retention, the bit cell design is described in Fig. 4.19.(a). Bit cell configurations

for moving left, right and retention mode is shown in Fig. 4.19.(b). Compared conventional

latch, it also includes transposed bit-line accesses and an additional transmission gate to

provide bi-directional propagation.

According to the data distribution simulation, more than 90% results fall in 6-bit range

while the worst case requires 8b resolution ADC. As we expect data conversion to be a

major energy consumer, we decided to implement an adaptive A/D conversion scheme that
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uses 6b resolution ADC for optimized energy efficiency but still supports 8b output. The

circuit diagram and data simulation distribution are shown in the Fig. 4.20. We choose 6b

capacitor-based SAR ADC and share the capacitors with bit-lines. This improves the dy-

namic range and embeds the sampling process of ADC into the compute cycle. The ADC

connect with weight storage elements via a 10-1 multiplexer, and two additional compara-

tors detect potential read disturbance. In addition, the monolithic switching procedure of

ADC further reduce the energy.

The timing diagram in Fig. 4.21 illustrates the adaptive A/D conversion scheme.The bit-

lines are pre-charged first. In most cases, the 10-by-10 vector multiplication is completed

before conversion. However, when the intermediate sum of product gets close to the ADC’s

dynamic range which may cause a read disturbance on the storage cell, the computing cycle

is stopped, and ADC starts to convert the bit-line voltage to digital output. After conversion,

bit-lines are pre-charged again and continue computing the remaining cells. When all cells

are computed, the outputs are accumulated to get the result.

4.5 Measurements

The test chip is fabraicated in 65nm technology with a total area of 5mm2. The chip die

photo and characteristics is shown in Fig. 4.22.
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Figure 4.19: Bit cell circuit.
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Figure 4.20: 6b ADC design and data distribution.

The measured power-performance of the processing engine (Fig. 4.23) shows VMIN

of 0.5 V and FMAX of 760 MHz. Peak arithmetic energy-efficiency of 1.05 TOPS/W

(0.43 TOPS/W, 0.18 TOPS/W) is measured for CONV (FC, sparse) networks at 210 MHz

(0.575 V). With proposed weight sharing scheme in PE’s convolution configuration and fine

control of un-accessed SRAM retention mode, computation-centric convolution operation

has achieved sub-pJ efficiency per operation by minimizing unnecessary memory usage.
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Figure 4.21: Bitline MAC timing diagram.
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The RF subsystem, shows a maximum Tx efficiency of 30.3% at -0.3 dBm, with back-

off efficiencies of 19.2% (7.8%) at -6.5 (-13.7dBm) with QPSK. At 1 Mbps, the Tx energy

efficiency is 768 pJ/bit with 1 V supply (-0.3 dBm output power. The measured energy-

efficiency for the OOK Rx is 207 (124) pJ/bit at 1 (0.8) V supply, with a sensitivity of

-72 dBm for a BER of 10-3 at 1 Mbps. An [8,4] Hamming Code on the Tx improves the

sensitivity to -78 dBm but halves the number of information bits.

The oscilloscope capture of neural network 10-by-10 CIM block bitline discharge is

shown in Fig. 4.25. By providing 1-3 unit time worldline voltage pulse, bitline discharges

proportionally with constant weights.

To investigate the computation accuracy of CIM block, we have applied random inputs

to the controller at measured output result for each bitline (Fig. 4.26). First, we can observe

that more than 95% of final results are within -40 to 40 range. Further, before digital
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Figure 4.22: Chip die phot and characteristics.
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compensation, we find average error increase with final computation result. That means

non-linearity errors accumulates on bit-line. An average of 1.6 error is measured. After

compensation, the error is largely reduced, especially in computations where final results

are significant. Average error after compensation is around 0.6.

The measured performance of the neuro-controller is shown in Fig. 4.27. The CIM

consumes a measured 305.2 pJ (training) and 156.8 pJ (inference) at 0.7V with less than

0.6lsb of non-linearity error. The peak measured energy efficiency is 0.59 pJ/MAC and

0.4 pJ for each weight update which are 2.2x and 4.75x lower than a digital counterparts

(simulated).

The full system is deployed and neuro-controller is allowed to learn online from emu-

lated signals from the cloud and energy meters. Then it is tested for varying noise power
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Figure 4.24: Measured transceiver energy performance.

and network sizes and the system autonomously determines the optimal PD to minimize

energy, latency or EDP. The online adaptation allows the system to learn and choose the

CTRL parameters optimally. We test across various conditions of path-loss, number of

edge nodes (i.e., available bandwidth) and obtain a 2.44x (1.47x) improvement in average

energy (latency) for a BER of 10-3 compared to the baseline cases while running a modified

AlexNet that maps to the SoC (Fig. 4.28).

The proposed system is one of the first prototypes to address computation and com-

munication trade-off with full SoC solution. We have benchmarked our system with state-

of-art designs and show competitive figures-of-merit (Fig. 4.29). The design presents a

vertically integrated SoC featuring the first real-time NN based adaptation for computa-

tion, communication and their trade-offs in energy constrained systems.
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4.6 Conclusions

This chapter presents a 65nm wireless image processing SoC for real-time computation-

communication trade-off on resource-constrained edge devices. The test-chip includes (1)

an all-digital, near-memory, reconfigurable and programmable neural-network (NN) based
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Figure 4.26: Measured CUIM module non-linearities.

92



0

0.5

1

1.5

2

2.5

CIM Digital CIM Digital

En
er

gy
 p

er
 O

pe
ra

tio
n 

(p
J)

MEM. ACCESS COMP. ADC DTC
MAC

1.9pJ

2.
2x 4.
75
x

0.4pJ

1.3pJ

0.59pJ

Weight Update

294

252

201.6

156.8

568.4

483.2

371.6

305.2

0 100 200 300 400 500 600

1

0.9

0.8

0.7

Energy (pJ)

VD
D

 (V
)

Serie…
Serie…

Training
Inference

(a)

(b)

Figure 4.27: Measured CUIM energy efficiency.

systolic image processor at 1.05TOPS/W (peak), (2) a digitally-adaptive RF-DAC based

transceiver with Tx energy-efficiency of 768pJ/b and (3) a mixed-signal, time-based, actor-

critic neuro-controller with compute-in-memory (CIM) and in-place weight updates that

provides online learning and adaptation at 0.59pJ/MAC for efficiently controlling the com-

putation, communication blocks separately as well as jointly.

4.7 Discussions

4.7.1 On-chip System

Compared with the video surveillance platform discussed in previous chapter, proposed

SOC has advantages with respect to power, area, real-time transmission reconfigurability,

control efficiency and so on. One major reason is that the on-chip system design has short-

ened the data flow hierarchies through customized circuit design as discussed in proposed
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Figure 4.28: System measurements compared with baseline designs.

EI design methodology in Chapter I. In particular for the CIM controller, it utilizes various

data-encoding scheme with according circuit techniques (time pulses on WL, charge accu-

mulation on BL/BLB, weight update with pulse modulation and so on). The data movement

is minimized and energy is maximally preserved. Further, on-chip design/implementation

has greatly improved real-time programmability thus reducing control overhead. In par-

ticular, on-chip TRx design has made transmission scheme adjustment delay minimal. In

realistic platform, such a implementation can maximally improve its capability to adapt to

environment.
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Figure 4.29: State-of-art comparison.

4.7.2 Sequential BL Operation Non-linearity

The controller applied in-memory computation scheme. In-memory read, vector multipli-

cation and write and maximally reduce data movement thus improve overall energy ef-

ficiency for both inference and learning. However, in the proposed CIM block, the bit-

line leakage problem demands careful calibration. Bit bitline discharge happens when the

rest of cells are not enabled by corresponding word lines, but leakage current drain from

precharged bitline to ground through access transistors. This will introduce non-linearity

when precharge state is long and/or there are many 0s stored on the bitline side. In this

platform, we have applied high-Vt access transistor as well as digital compensation. But

intrinsically, it is caused by column-wise sequential bit cell access. The motivation of se-

quential access is to reduce ADC area by adaptive conversion. It is at the cost of leakage

by extending operation time duration on bitline thus introducing leakage non-linearity.
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4.7.3 Thermometer-based Encoding

The data-encoding scheme we have adopted for CIM controller is thermometer-encoding.

As the bits stored in each latch has equivalent weight compared with binary encoded storage

elelment, it is compatible to use pulse modulation to update internal weights. However, we

know that thermometer-encoded data lacks density. It consumes 2n/n times more storage

for the same information as binary-encoding. For large systems or hgih precision interal

weights for neural network, thermometer-encoding should be avoided. It is appropriate for

control problem is mainly because the input variable and neural network weight precision

are limited.
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CHAPTER 5

DISTRIBUTED EI: A UNIFIED COMPUTATIONAL ASIC FOR SWARM

ROBOTIC APPLICATIONS

While extensive research efforts have been made to enable intelligence in individual IoT

via advanced algorithms, control and system integration for techniques as discussed in

Chapter II-IV, scaling these research vectors to multi-agent systems remains a challenging

problem. It is critical to investigate collaborative algorithms and hardware architectures

that can efficiently collaborate and solve complex problems across multiple agents, such

as collaborating robots. This chapter will detail our investigation of a unified computing

platform that enables multiple collaborative algorithms on swarm robotics. This chapter

is a slightly modified version of ”A 65-nm 8-to-3-b 1.0–0.36-V 9.1–1.1-TOPS/W Hybrid-

Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics” published in

IEEE Journal of Solid-State Circuit with the dissertation author as the primary author.

5.1 Introduction

Inspired by the collective intelligence of biological systems, swarm robotics is an emerging

area where multiple robots work together to enable complex swarm behaviour. The prob-

lem solving capability enabled through simple interactions among the agents enables novel

applications [102, 103, 104, 105, 106]. In swarm robotics multiple small and distributed

robots co-ordinate and gather data to enable intelligent decision-making as a group. These

have been used in applications such as exploration, reconnaissance and disaster relief [107].

The fact that distributed and swarm robotics are resilient to component-level failures fur-

ther motivates the use of swarms. In swarm robotics, multiple robots often co-ordinate in

real-time to solve diverse problems such as pattern-formation, cooperative reinforcement

learning (RL), path-planning etc. Some of these algorithms use learning-based methods
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Figure 5.1: Swarm algorithms that can successfully accomplish (a) collaborative path-
planning (b) pattern formation; (c) multi-agent patrolling; (d) multi-agent predator-prey.

and have gained increasing importance with the success of deep neural networks and neu-

romorphic computing. Although certain swarm algorithms rely on real-time learning (e.g.,

cooperative RL) representing a model-free approach, many powerful algorithms that have

been developed over the past two decades (e.g., pattern formation) rely on a mathemat-

ical structure and represent a more traditional physical-model-based approach. The next

generation of swarm hardware needs to support both of these approaches; and hence, it

is important to identify the common computational kernels that need to be supported in

hardware. However, hardware designs that can support computation in swarms is compu-

tationally challenging; especially from an energy-perspective. This is discussed in [108]:

main processor in a coin-size swarm robot consumes 4× energy than a micro-controller,

and this energy is comparable (more than 80%) to motors and camera based sensors [108].

As swarm robots are expected to enable so-called “intelligence” in reduced form fac-
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tors, energy-efficient hardware design continues to be an active area of research. In this

chapter, we identify the commonalities and shared compute primitives across a variety of

model-based and model-free swarm algorithms and present a unified, fully-programmable,

energy-efficient and scalable platform capable of real-time swarm intelligence. Although

we demonstrate how to support some sample algorithms here, the design principles are

scalable and can be applied to larger swarms enabling more advanced algorithms.

To enable a unified energy-efficient computing platform for swarm robotics, we demon-

strate a hybrid mixed-signal and digital design. In [109], we demonstrated a purely time-

based mixed-signal neural network for reinforcement learning on edge devices. However,

a purely mixed-signal solution shows superior energy-efficiency for low bits of resolution.

As the number of bits on the data-path increases, mixed-signal solutions tend to be less effi-

cient than purely digital counterparts. In swarm robotics, the size of the swarm determines

the size of vectors that need to be computed and hence the bit-width required for high-

accuracy also scales with the swarm size. Hence, mixed-signal solutions are efficient for

small swarms while digital solutions tend to out-perform in larger swarms. To enable such

scalability, we demonstrate a hybrid digital-mixed-signal solution where a time-domain

mixed-signal kernel computes on 3b-5b data. A digital wrapper around the mixed-signal

kernel further scales the computing platform to 6b-8b. This allows high energy-efficiency

for low-precision along with the excellent energy-scalability of digital computing for larger

bit-widths.

The test-chip has been fabricated in a 65nm CMOS process. We demonstrate 9.1TOPS/W

peak energy-efficiency at 3b of resolution. The energy-efficiency decreases to 1.1TOPS/W

for 8b resolution. The test-chip interfaces with a raspberry-Pi platform consisting of inte-

grated sensors (inertial sensors and ultrasonic distance sensors) and LoRa (Long Range)

radios for decentralized, peer-to-peer communication among mobile robotic vehicles in a

swarm. The rest of the chapter is divided as follows. Section II provides an overview of the

swarm algorithms. The next two sections describe the scalability of the computing platform
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Figure 5.2: Schematic map showing APF-based path-planning and formation.

with the swarm size and the hybrid-digital-mixed-signal design. The system overview is

described in Section V and measurement results are shown in Section VI. Finally outlook

of potential future works are discussed in Section VII and conclusions are drawn in Section

VIII.

5.2 An Overview of Swarm Algorithms

Swarm algorithms can be broadly classified into two categories: the ones based on physical

and mathematical models and the ones based on learning. In the following subsections, we

provide an overview of the types of algorithms that are supported by the common unified

platform.

5.2.1 Algorithms Based on Physical Models

Over the past decades, there have been significant development in swarm control algo-

rithms inspired by physical and mathematical models. Among these mathematical models,

Artificial Potential Field (APF) is a popular and practically useful computational approach.
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In APF, we assume that the robots and the objects (goal, obstacles, teammates and etc.) are

similar to ’electrical charge’ that produce artificial attractive and repulsive potential fields

whose potential functions are to be leveraged by the system designer for optimal robotic

control and system performance. By aggregating the potential fields (i.e., forces), the mo-

tion vector can be obtained at each evaluation step. In general, APF algorithm has the

following format [110, 111, 112, 113, 114]:

mi
d~vi

dt
= ~F pro,i + ~F int,i + ~F esp,i + ~F est,i; (5.1)

This is based on Newton’s second law to describe the ith robot’s velocity vi change deter-

mined by propulsion ~F pro,i, interaction ~F int,i, objective escape ~F esp,i and stochastic forces

~F est,i and mass mi. By properly choosing the potential function that generates each term,

we are able to design a cooperative control algorithm that can implement applications such

as collaborative path-planning, co-coordinated formation and etc.. A typical example is

shown in Fig. 5.2.

For example, for path-planning applications as demonstrated in Fig.5.1.(a), the posi-

tional information of objectives and obstacles are required in determining motion vectors.

In this design, we consider standard parabolic potential Uobj for the object and an exponen-

tial potential barrier for the obstacles Uobs from [110]:

U obj(~r) = kobjdis(~r, ~robj)
2; (5.2)

U obs(~r) = kobsdis(~r, ~robs)
-1; (5.3)

where ~robj and ~robs are positions of the objective and obstacles respectively. The force
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vectors created by these potential functions in the 2-D plane are of the form:

~F pro = −kf∇i(U obj(~r) +
M∑

m=1

U obs(~r)); (5.4)

F pro,x = α|~r − ~robj|cosθobj +
M∑

m=1

βm|~r − ~robs,m|-2cosθobs,m; (5.5)

F pro,y = α|~r − ~robj|sinθobj +
M∑

m=1

βm|~r − ~robs,m|-2sinθobs,m; (5.6)

For formation applications as demonstrated in Fig.5.1.(b), the potential function uses a

logarithm-cosine-hyperbolic function:

U int(~r) = βln(cosh|~r − ~R|); (5.7)

where ~r is the interaction vector while ~R is the target vector. Enabling each interaction with

a dedicated target vector allows fine tuning of the shape of the formation. The resulting

force equations in the 2-D plane can be expressed as:

~F int = −∇i(U int(~ri, ~ri); (5.8)

F int,x =
M∑

m=1

αi[tanh(|~rj − ~Rj|)cosθj]; (5.9)

F int,y =
M∑

m=1

αi[tanh(|~rj − ~Rj|)sinθj]; (5.10)

To solve swarm problems we need to compute equation eq. (5.1) with the correct parametric

representations of the functions and parameters as obtained from eqs. (5.4) to (5.6) and

eqs. (5.8) to (5.10). These parameters are obtained from system level simulations before
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deployment.

5.2.2 Learning-Based Algorithms

With the rapid development of hardware systems to support machine learning and artificial

intelligence [115, 116, 109, 117], advanced learning-based techniques are becoming popu-

lar for applications such as multi-robot predator-prey and multi-agent patrolling as shown

in Fig. 5.1.(c-d), Learning-based algorithms have now become competitive in a variety of

problems where pre-defined models may not exist or may be incomplete. The motivation

for the learning-based approach is to allow each robot to learn continuously without human

intervention and establish a control model with real-world knowledge. Among all the ap-

proaches, reinforcement learning (RL) based cooperative Q learning [103, 118, 119, 120]

algorithm has shown great promise.

Single-agent Q learning[121, 122] is based on the iterative update of the Q value, as a

robot navigates through a series of (state, action, reward) tuples. This iterative scheme is

derived from the Bellman equation [123] for optimal control. The iterative algorithm can

be summarized as:

Qt+1(S t, At) = Qt(S t, At)+

α(Rt + γmaxQt(S t+1, At)−Qt(S t, At));
(5.11)

Rt = f(S t); (5.12)

where γ and α are discount factor and learning rate to aggregate the distant rewards and up-

date Q tables respectively. By taking a series of actions A (moving forward, backward etc.)

in the state space S (positions, obstacle vectors and etc.), the robot calculates the reward

for each action and updates the Q-table, thus creating a robust functional mapping from

the state space to the action space. The reward is based on a single robot’s current state.

A hardware implementation of Q-learning for autonomous navigation has been presented
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in [109, 124] and interested readers are pointed to the references for more details.

In cooperative Q learning, global , instead of local, states and rewards are utilized to

facilitate multi-agent collaboration. As opposed to the baseline Q-learning where a single-

agent’s local state is used, in a swarm, the local states are broadcasted to all the teammates.

This forms a global state which incorporates the knowledge of all teammates. The Q-value

of the swarm is now evaluated as:

Qt+1(S t,global, At) = Qt(S t,global, At)+

α(Rt,global + γmaxQt(S t+1,global, At)−Qt(S t+1,global, At));
(5.13)

S t,global = [S t,1, S t,2...S t,N]; (5.14)

In a manner described in [124], each robot will now take an action based on the best Q value

of current global state. A global reward is evaluated based on the team’s performance, for

example, whether one of the targets has been reached by one of the team members. It

is worth noting that we incorporate the task completion time as a reward function, as it

improves the swarm’s performance and facilitates convergence by encouraging all robots

to take continuous actions.

Rt = g(S t,global, t); (5.15)

When the environment is complex and the swarm size is large, the global state can also be

significantly large. It is difficult to store all the Q values in a table, especially in memory-

constrained design. Therefore, the Q value is typically approximated as a neural network

output. The states (St,global), (sensor values, current positions etc.) act as inputs to the neu-

ral network. Then every neural-network propagates the states through embedded neural

network and produces Q- values of each action. A hard-max function at the end of the neu-

ral network establishes the best action to be taken. We use ε-greedy as means to perform

exploration. Details of co-operative Q-learning for multi-robot action is a rich and evolv-
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ing area of algorithmic research. For more details on co-operative Q-learning, interested

readers are directed to [103].

5.3 A Common Computing Platform

As we mentioned earlier, future computing platforms that can support swarm algorithms,

need to support both mathematical algorithms as well as learning-based algorithms. Inter-

estingly, we observe that both these two algorithms have a basic mathematical structure.

As computational problems, they both feature:

1. Linear Processing Unit: Both types of algorithms work on vectors and matrices and

hence linear processing is a critical components of computation. In APF based algo-

rithms, linear operations are performed on trigonometric transformations of motion

vectors (eq. (5.1)). In neural networks, the linear units allow the synaptic weights to

be summed up at the input of a neuron. Fundamentally, the computational platform

needs to support multiplications and additions (through multiply-and-accumulate,

MAC units).

2. Non-linear Processing Unit: Apart from linear vector processing, both algorithms

require non-linear transformations. In APF algorithms, these transformations are

mostly trigonometric (eqs. (5.4) to (5.6) and (5.8) to (5.10) whereas in neural net-

works these transformations are the activation functions (sigmoid, ReLU etc.). In

APF, the linear processing is done on non-linearly transformed motion and position

vectors; hence we perform non-linear processing followed by linear processing. On

the other hand, in neural networks, we perform MACs first, followed by non-linear

activation functions.

Since linear/non-linear operations are the major workloads in robotic algorithms, this

unified compute platform is designed to provide a unified solution to accelerate both types
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of computation. With a dedicated Non-linear Processing Unit and a Linear Processing Unit,

we achieve high energy-efficiency as will be described in the later sections.

The order of linear and non-linear processing are different in the two algorithms but

in a memory-centric system, this amounts to simply changing the order of instructions to

support both classes of algorithms. This shows that a unified computing platform com-

prising of (1) a linear processing unit, (2) a programmable non-linear processing unit, (3)

a data-cache and (4) an instruction cache will be able to support both the model-based

and learning-based algorithms. In the proposed ASIC, we demonstrate support for both

types of algorithms with a non-linear processing unit which is composed of a look-up table

based piece-wise approximation of the non-linear function. The linear processing unit is

composed of a MAC array and data-cache and instruction-cache with standard 6T SRAM

cells.

5.4 Scalability with Swarm Size

The number of agents in a swarm, also called the swarm size, is a major design parameter

for providing optimal performance and robustness at minimal system cost. For example, in

disaster relief, to ensure the largest area coverage and fastest convergence rate a relatively

large number of agents is often preferred. However, for indoor exploration, a small group

of robots is likely to be sufficient given the reduced problem complexity, and increased

environmental clutter. As a consequence, future computing platforms that can support

multiple swarm algorithms also need to be able to support multiple swarm sizes. To prevent

over-design, the computing platforms need to perform at optimal energy-efficiency for a

large scale of swarm sizes.

To better understand the computation requirement for varying swarm sizes, we ana-

lyze both the model-based and learning-based algorithms as a function of the swarm size.

In model-based APF swarm control, the mathematical structure of the problem follows a
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Figure 5.3: Algorithmic simulations demonstrate how the required bit-precision scales with
the swarm size for two template problems: (a) collaborative path-planning and (b) multi-
agent predator-prey. The number of bits required to accurately compute different template
algorithms for varying swarm sizes is shown in (c).

general form:

~F =
M∑

m=1

NLm(~dm); (5.16)

where ~F , NLm and ~dm represent the aggregated potential field force vector, the mth nonlin-

ear function and mth distance vector respectively, while M is the total number of vectors.

On the other hand, for learning-based cooperative RL algorithms, as the Q table is approx-

imated by the neural network, the general computation paradigm is the same as computing

each neuron’s output:

yj = a(
N∑
i=1

wi,j(xi)); (5.17)

here x, w, y and a are the inputs, weights, neuron outputs and nonlinear activation functions
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respectively whileN is the number of pre-synaptic neurons. It is easy to understand thatM

will scale with swarm size, especially in applications such as pattern formation. Similarly,

N is determined by the dimension of the global states of the system which scales with

the swarm size. As a result, a larger swarm will require a wider range of operands, thus

requiring a higher bit-precision to correctly process APF algorithms as well as co-operative

RL. Fig. 5.3(a-b) demonstrates simulation results of representing the required range of the

operands for different swarm sizes in both physical model-based (coordinated path-planing)

and well as learning-based (multiple predator-prey) template algorithms. We note that as

the swarm size increases, the bit-precision required to correctly compute also increases.

The simulation results can be summarized in the Fig.5.3.(c) where the template algorithms

that can be supported require a bit-width of 3b to a maximum of 8b. In these applications,

the sensor-data are assumed to have a bit width of 8b or less and obstacle-avoidance is

performed using ultra-sonic sensors.

5.5 Hybrid Digital-Mixed-Signal Computing

The advantage of using analog and mixed-signal design principles for energy-efficient com-

puting have been demonstrated in [109, 124, 125]. More recently, there has been increasing

interest in time-based mixed-signal computing. Here information is represented in phase

or frequency domain and hence the effective number of bits is not limited by the voltage-

scalability of the design. However, since the data is processed in time-domain, the system

throughput is lower than corresponding digital systems. For many problems of practical in-

terest, in particular for control and robotics on small form factors where the data-processing

speed is relatively low, this is a favorable trade-off. It has been demonstrated successfully

in RL problems [109, 124] as well as in convolutional neural networks [126], decoders

[127] and pipelines circuits [128]. In spite of its superior energy-efficiency at low bit-

widths (typically less than 5b or 6b depending on the process), it is well understood that

as the bit-precision scales to high values, the energy-efficiency of digital circuits take-
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over. Hence, for the problem at hand, where an increasing swarm size should be supported

with a higher bit-width, an ideal system should scale seamlessly between a mixed-signal

(time-based) to a digital design such that a high energy-efficiency is obtained as the system

specifications scale.
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Figure 5.4: Circuit schematic illustrating (a) the time-domain-mixed-signal MAC circuit
(b) the digital-to-pulse-converter (DPC) (c) the digitally-controlled-oscillator (DCO).

5.5.1 Time-Domain Multiplication and Accumulation

The details of time-domain multiplication and accumulation have been described in

[109] and will be summarized here for completeness. Fig. 5.4.(a-c) illustrates the time-

based multiply-and-accumulate (MAC) circuit. The time-based circuit operates on 5b data

representing both positive and negative numbers. It has a pulse input (Tp) used as the

“Enable” signal to an up-down counter. Signed operation is handled by XOR operation of
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4 0.14 0.56 0.16 0.61
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Figure 5.5: Energy map vs. operand range in pJ for (a) digital (b) TDMS and (c) HDMS
MAC implementations. (d) The energy/MAC (normalized to a digital implementation) for
TDMS and HDMS implementations. We see that HDMS out-performs TDMS (average
and worst cases) and digital (average case) for large swarm sizes.

sign bit as indicated in Fig. 5.4.(a). One of the operands (X[0:4]) is encoded in the pulse-

width of Tp using a digital-to-pulse-converter (DPC) with X[4] as sign bit. For the ith input

Xi, we obtain:

Tpi = Xi ∗ T0 (5.18)

where T0 is the unit time-constant for the DPC. The other input (Y[0:4]) is encoded

in the signed magnitude format and controls a digitally-controlled oscillator (DCO). Y[4]

represents the sign bit and Y[0:3] represents the magnitude of the second operand. The
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Figure 5.6: Circuit schematic of the HDMS circuit illustrating the 5b TDMS kernel and the
digital peripherals to enable efficient scaling to 8b.

3-stage DCO converts the digital value to a frequency proportional to Y[0:3]. Each stage

of the DCO consists of a bank of parallel binary-sized inverters controlled by the digital

value (Y[0:3]) as shown in Fig. 5.4.(b-c). The frequency of the DCO for the jth word (Yj),

is Fj and ignoring second-order effects such as non-linearity, is given by:

Fj = Yj ∗ F0 (5.19)

where F0 is the unit frequency of the DCO corresponding to a code 1 when W = 00001.

The clock to the counter is driven by the DCO, and the enable signal is controlled by the
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pulse width (Tpi). Hence, the counter output is given by:

DTij = Tpi ∗ Fj = Xi ∗ Yj ∗ F0 ∗ T0 (5.20)

From. eq. (5.20) we can observe that the counter output is proportional to the product

of the two operands. As shown in Fig. 5.4.(a), polarity of MAC is taken care of through

up-down knob of counter controlled by XOR of X[4] and Y[4]. The constants, F0 and

T0 represent the overall system throughput and designed to maintain correct functionality

amidst non-linearities. The scalability of this design to a large number of vector-parameters

has been discussed in [124, 125].

5.5.2 Hybrid-Digital-Mixed-Signal Computing Platform

It is worth noting that the time-domain MAC shows high energy-efficiency for low bit-

widths only. Fig. 5.5.(a-b) illustrate the simulation results of a 65nm CMOS GP process

and it reveals that the energy consumed for a MAC operation scales faster than a digital

system. This can be intuitively understood from the fact that the number of switching

events (in the worst-case) for a time-domain phase-frequency based design scales as 2N for

N-bit operands. This results in an interesting artifact, where important computation (where

operands have higher magnitudes) consumes more energy than less important computation

(where operands have lower magnitudes). The 2D energy-bar shown in Fig.5.5 illustrates

how a time-domain system shows high energy-efficiency for bit-width less than 5, but it

increases dramatically as the bit-width increases. To maintain high efficiency across the

entire operating range, we proposes a hybrid-digital-mixed-signal (HDMS) MAC kernel as

shown in Fig.5.6.

The HDMS MAC kernel consists of a conventional time-domain mixed-signal (TD-

MS) multiplier, a 5b-8b digital add and shifter and a 5-8b TD-MS controller. For bit pre-

cisions less than 5b, the circuit operated completely in the time-domain. The idea is to

compute an 8 bit multiplication via shift-and-add. At the core, we have an energy-efficient
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time-domain 5b multiplier. Around that, we have peripheral circuits (add-shifter and con-

troller) to reconfigure the multiplier to higher bit precision, as needed by allowing seamless

shift and add operations. The 5b-8b digital add-shifter circuit diagram is shown in Fig.5.6.

The figure illustrates the HDMS circuit: a shifter shifts the TD-MS products by 0, 2, 4 and

8 bit each time and accumulates through time with a 16b full adder. The computation starts

from the most significant bit and proceeds to the least significant bit. This helps us to save

unnecessary switching by stopping the computation as soon as any overflow is detected

through the embedded overflow detection. By driving a digital select signal (DS SEL) ac-

tive, the 5-8b TD-MS controller splits 8 bit input operands A and B into 4 bit components,

passes them to TD-MS multiplier in pairs, and controls the add-shifter to produce high pre-

cision output. With the proposed kernel, we are able to preserve the energy-efficiency of the

time-domain computation for lower bit-precision, while leveraging the efficiency of digital

computation for higher bits of precision. The energy map of HDMS is demonstrated in

Fig.5.5.(c) and TDMS/HDMS energy normalized to digital circuit with same bit-precision

is shown in table in Fig.5.5.(d). It should also be noted that the proposed scheme is scalable

to handle more than 8b operations.

We should also note that, although HDMS requires additional clock cycles (4×) than

TD-MS, it still shows higher throughput; owing to the fact that HDMS avoids long clock

periods, typical of 8b TDMS (16×). With both energy and throughput advantages, the

major trade-off is the additional area required for the digital peripherals. However, it should

be noted that HDMS achieves lower throughput than high-speed digital. In the current

application, the throughput that we achieve is more than sufficient to support the data rate

for the sensors and actuators.

5.6 System Overview

The system architecture of proposed computation platform is illustrated in Fig.5.7. As

mentioned in section IV, we have noted that APF and cooperative RL are essentially com-
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Figure 5.7: Overall system architecture of the unified computing platform.

binations of nonlinear evaluations and linear operations. This has inspired us to design a

dedicated accelerator for nonlinear and linear computations, which are called the Nonlin-

ear Function Evaluator (NFE) and the Linear Processing Unit (LPU) respectively. NFE

implements the non-linear function using piece-wise linear approximation of the nonlinear

functions. We embed a number of widely used nonlinear functions in the NFE. By choosing

the function to evaluate and providing the input parameter, NFE generates an offset (xoff), a

reference gradient (gref) and a reference offset (yref) in one clock cycle. The corresponding

evaluation result is generated by multiplication/addition of xoff, gref, yref in the LPU. The

number of clock cycle depends on the bit-precision selected. We observe that many of the

required functions show symmetry or periodicity, and we take advantage of that to imple-

ment a mapping mechanism to reduce the number of comparisons and computations. This

saves active die-area as well as computational energy. The reference parameters are stored
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in a look-up-table (LUT). By storing only the important parameters, determined from the

range of the inputs and by interpolating in the LPU, NFE is achieving target accuracy for

the entire range of the data. As opposed to using a LUT for the complete range of inputs,

the proposed design allows a compact implementation with a reduced memory foot-print.

On the other hand, the LPU supports all the linear operations (addition and multiplica-

tion). Most operations are implemented in the digital domain except for multiplication

and accumulation (MAC). Circuit and control details of NFE and LPU are illustrated in

Fig.5.8.(a-d).

PU FUNC EN seg #comp

000 Tanh 1 10 5
001 Cosine 0 12 6
010 Sqrt 1 4 4
011 step 1 2 1
100 ReLU 1 2 1
101 X2 0 12 6
110 1/X 1 10 5

INS OP #Bytes #Clk

000 A+B 2 1
001 A-B 2 1
010 AB+C 2 / 3 2 / 6
011 ∑	�� A N N+1
100 ∑	�� AB N / 2N N+2/5
101 ∑	�� AB+C 2 / 3N N+3/6

(a) (c)

(d)(b)

A[7:0]

B[7:0]

ACC[7:0]

P[7:0]

C[7:0]

S[7:0]
X

+/- !	
�

� D[7:0]

FIFO

FIFO

FIFO

Figure 5.8: (a) Circuit schematic and (b) the corresponding control bits for the NFE. (c)
Circuit schematic and (d) the instructions for the LPU.

We provide bi-directional local data path between LPU and NFE for computations.

Data can move between the LPU and the NFE seamlessly to preserve data-locality.

A 16KB on-chip SRAM is embedded together with an instruction cache, a data loader

and write-back controllers. A front-end controller is also provided and the design is full-

scan. It should be noted that, either in model-based or learning-based applications, required

information storage will scale with the swarm size and the complexity of the environment.
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6 clk 6 clk

2-6 clk 6 clk

Figure 5.9: Clock diagram for examples in APF (a) and cooperative RL(b).

The current design is a prototype with 16KB of on-chip memory. For more complex “ex-

perience maps”, off-chip storage is required. This is not supported in the current test-chip.

With the embedded computation/storage capability, the chip is able to interface with sen-

sors and communication components for swarm robotics. The sensors and actuators inter-

face through a Raspberry PI, which acts simply as an interface. All the sensors produce
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.

digital outputs. Ultra-sonic sensors are used for depth measurements. IMUs are used to

estimate position, by integration in the Raspberry PI. In future work, the system may be

scaled to enable more complex mapping and localization algorithms. With limited on-chip

resources, this test chip is intended to work as a co-processor to support key algorithms and

This work [109] [129] [130] [131] [117] [126] [128]
Application Swarm Autonomous CNN DNN CNN CNN CNN DTW

Learning micro-robotics Inference Inference Inference Inference Inference
Optimization Cooperative Reinforcement none none none none none Time-series

algorithm RL/potential field Learning Classification
Learning/Training Online real-time Online real-time offline offline none offline offline none

Technology 65nm 55nm 180nm 65nm 65nm 65nm 40nm 65nm
Aream 2mm2 3.4mm2 3.3mm2 16mm2 16mm2 16mm2 0.124mm2 1.67mm2

On-die SRAM 16KB 200B 144KB 36KB 490.5KB 181.5KB / /
Resolution 5-8b 6b 4b-16b 16b 16b 16b 8/1b 4/10b

Power 0.3-3.4µW 650µW 7.5-300mW 45mW 6.57mW 278mW 28.67µW 35-136mW
Frequency 1KHz-1.5MHz 67.5MHz 200MHz 125MHz 10-100MHz 200MHz 24MHz 110MHz

Supply voltage 0.4-1V 0.4-1V 1V 1.2V 0.7-1.2V 0.82-1.17V 0.375-1.1V 0.7V
Performance 1.1-9.1 3.12 0.26-10.0 1.42 / 0.21 4.65-12.08 /
(TOPS/W)

Norm Performance 1.1-3.4 2.34 0.52-5.0 2.84 / 0.42 1.51-4.65 /
(TOPS/W·Byte)

Table 5.1: Benchmarking table showing competitive figures-of-merit compared to similar
hardware accelerators.
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Figure 5.11: Measured linearity of (a) DCO and (b) DPC.

applications. Sample timing diagrams for two tasks, one for APF algorithm and one for the

co-operative RL, are shown in Fig.5.9.

5.7 Measurements

The proposed computational platform is implemented and taped-out in 65nm GP CMOS

process. It occupies a total area of 2mm2 and is packaged in a chip-size QFN package.

The chip die photo and characteristics are shown in Fig.5.10. Since TD-MS circuits use
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Figure 5.12: Measured power-performance trade-off.

mixed-signal DCO and DPCs, we characterize their non-linearities at two different voltages

(VCC = 1.0V and VCC = 0.6V ). The worst case INL and DNL range from -1.0lsb to 1.1lsb,

as illustrated in Fig.5.11. The measured power-performance trade-off is shown in Fig.5.12.

We note a measured peak FMAX of 1.5MHz and correct functionality down to a VMIN

of 0.36V, below which the embedded SRAM arrays cease to function. The processing

throughput scales with supply voltage and thus clock frequency. We measure a logic-power

dissipation 3.2 µW (1.9 µW) for 8b (5b) operations. The measured energy/op (in Fig.5.13)

shows high scalability with the bit-resolution illustrating a peak of energy-efficiency of

0.22 pJ/MAC (at 3b) and 1.76 pJ/MAC (at 8b). We note that at low bit-widths, the TD-MS

circuit cores show superior energy-efficiency while the digital peripherals allow almost

linear energy-scaling for 5b-8b. We also measure the average arithmetic energy-efficiency

as a function of the supply voltage and record a 9.1 TOPS/W (for 3b operations) and it

decreases to 1.1 TOPS/W (for 8b operations) as is shown in Fig.5.14. This shows how the

bit-resolution scalability allows efficient operations for multiple bit-wdths and hence swarm

sizes. We plot the energy break-down of the computation unit in Fig.5.15 and show that

the LPU and the NPE consumes 88% and 12% of the logic power respectively. The power-

distribution across various blocks of the LPU are further shown and all the components

119



contribute equally in the power dissipation.
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The test-chip is integrated and mounted on an application platform. It is used as a

controller for a robotic car as show in in Fig.5.16(a-b) and interfaces with a Raspberry-Pi,

motor-controllers, sensors and LoRA radios. The convergence of co-operative RL is shown

in Fig. 5.16(c). The neural-network Q-approximator has two layers and each layer has 100

neurons. Through hyper-parameter tuning, this setting results in the best performance un-
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der the constraints of the limited on-chip memory. Here inference is implemented in 5b

TDMS and learning in 8b HDMS. In either mode, the non-linearity of the DPC and DCO

(post-calibration), does not affect the accuracy of the algorithms. In particular during learn-

ing, the digital peripheral circuits for HDMS, reduces the impact of non-ideality and can

successfully train the network. Further, for applications requiring higher bit-precision, the

proposed HDMS can be scale to 12b-16b. A video demonstration of this can be found in:
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Figure 5.17: Application level benchmarking demonstrating measured energy/performance
for different template algorithms.

https://www.youtube.com/watch?v=_NqdJabFJKo. In this video, we demon-

strate a 2-robot cooperative learning task for predator-prey applications. The swarm size

can also be scaled in the future for more complex demonstrations. However, the current

design is limited in the number of sensor interfaces it can handle; and further modifica-

tions are required to develop real-time demonstrations of larger swarms. We implement 4

template swarm algorithms, namely: path-planning, pattern-formation, predator-prey and

joint-exploration. The first two are based on physical and mathematical models and the last

two are based on learning algorithms. We measure the total-energy as well as the number of

actions taken per second for each of these tasks in sample environments. These are plotted

in Fig.5.17 and we note a large variation in both the energy-cost and the number-of-actions-

per-second for these template problems. This also illustrates the wide variety of algorithms

(SLAM, vision-based path-planning and etc.) that need to be supported in future robotic

controllers as the complexities of the environments and the cost-functions can dramatically

change.
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The test-chip has been bench-marked against similar designs and shows competitive

figures-of-merit, as illustrated in Table 5.1. This is also the first demonstration of an uni-

fied and programmable platform that can accelerate a large class of algorithms for swarm

robotics with efficient scalability in terms of swarm sizes and application.

5.8 Outlook

Swarm robotics is computationally challenging and the proposed test-chip is a prototype to

demonstrate some key enabling features. The first challenge is scalability. The current de-

sign is limited by the on-chip memory and the number of interfaces. Future platforms can

extend the design by incorporating off-chip memory to store complex “experience maps”.

For higher bit precision, HDMS circuits need to be evaluated, in particular, when support

for more complex algorithms is required. Further,to support advanced applications, such

as Simultaneous Localization And Mapping (SLAM) and vision-based navigation, the cur-

rent design need to enable with higher throughput and near/in-memory computing. Finally,

higher throughput can be supported through an array of LPUs and NPEs which can paral-

lelize the algorithms.

5.9 Conclusions

This chapter presents a 65nm CMOS platform which supports both model-based and learning-

based algorithms for swarm robotics. The proposed hybrid-digital-mixed-signal compu-

tational unit provides excellent scalability with swarm sizes. We measure a peak energy-

efficiency of 9.1TOPS/W. The test-chip is integrated with peripheral controllers and sensors

and mounted on a robotic car. Sample algorithms have been executed and bench-marked.
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5.10 Discussions

5.10.1 Charge-domain vs. Time-domain

To explore energy efficiency for moderate precision computation, charge-domain compu-

tational circuit is widely applied as discussed in previous chapter. Charge-based circuit

technique usually utilizes voltage to encode the data and explores per-transistor physical

computation representation with continuous input/output voltage. As a result, it has advan-

tages in power, area, delay and so on over digital counterpart for approximate computation.

However, charge-domain computation has its intrinsic disadvantage. 1), Because data is

encoded with voltage, the maximum achievable precision is limited by the signal to noise

(SNR) ratio. As power supply scales down with Denard’s scaling, it will be more diffi-

cult to sustain SNR. It has been pointed out[132] that to maintain same SNR and speed, it

may even consume more energy at lower power supply. 2), Charge-domain circuit usually

requires biasing to work in saturation region. In a low power system with dense analog

modules, biasing current can be detrimental to overall energy efficiency. 3), As both input

and output are analog, charge-domain circuit requires data conversion to interface with dig-

ital peripherals if needed. This will greatly undermines the power/area advantages brought

by charge-domain computation.

For time-domain computation, it shares advantages as charge-domain computation with

respect to power and area efficiency discussed in previous sections. However, as it does not

require voltage to represent information, it features better ultra-low-power design poten-

tials. 1), As data is encoded in time/frequency, voltage pulses can be pulled rail-to-rail.

As a result, time-domain computation power efficiency is less affected by supply voltage

scaling. 2), As voltage is rail-to-rail like digital circuit, time-domain computation does

not suffer from biasing current, thus static power, as charge-domain computation. 3), time

domain computation input/output are digital, so it can easily interface with digital periph-

erals. The HD-MS circuit technique has take advantage of it to scale TDMS computation
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precision as discussed in this chapter. However, time-domain computation has its intrinsic

limitations: 1), Time-domain computation is intrinsically slow. The computation latency is

largely determined by the operands’ magnitudes. It will not be sufficient to support real-

time applications whose computation delay is critical. 2), Time-domain noise is difficult to

handle. For example, there could be phase noise of pulses. The time-based noise will fur-

ther prohibit time-domain computation from real-time computations. It requires extensive

investigation into circuit techniques to mitigate the problem.

Overall, time-domain computation provides an alternative in approximate computation

with respect to charge-domain computation. It has great potentials to implement platforms

for energy/area-critical applications, such as micro-robotics, implanted medical device and

so on.

5.10.2 Memory Static Power Issues in Time-domain ASIC

This test chip has demonstrated an extreme low logic power (several uW level), however,

the ASIC suffers significantly from static power. The major static power consumer is the

16KB on-chip SRAM (over 70%). Although it is a severe issue for all platforms, especially

nowadays with scaled technology, it is particularly problematic for time-based computa-

tion: intrinsically slow in computation, static energy dominates on average. The author

has learned two implications from the issue: 1), It is crucial to have fine leakage control of

SRAM banks on chip; 2), It is desirable to augment computation capability at marginal cost

when static power is significant. Potential solutions are many, author will list a few. 1), En-

able retention/power gating mode of SRAMs; 2), Break large SRAM into a bank of small

SRAM modules and only turn on the required ones; 3), Parallel time-based computations to

improve throughput or tasks latency. Proper retention/power-gating control is expected to

save 40% on leakage, and a 10× parallelism is expected to shorten task-level latency thus

average static energy by a similar scale. If this ASIC is going to be re-designed, the au-

thor is expecting one order of magnitude static power deduction and same order throughput
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improvement.
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CHAPTER 6

CONCLUSIONS

6.1 EI Expands the IoT Solution Space

Conventionally, the affordable application on IoT system is determined by each individual

module’s performance. For example, the processor’s power/throughput efficiency, data

converter speed, transmitter energy per bit and so on. However, as we discussed in previous

chapters, such a discrete method can introduce a large number of design abstractions in

IoT systems which in turn causes severe efficiency/information loss. This has become a

bottleneck to pushing IoT-enabled applications forward.

On the contrary, EI design has largely expanded the IoT solution space in an inte-

grated manner. Besides pushing individual module’s metric to extreme, EI also tries to

solve problems not in a traditional design paradigm but in a more fundamental manner.

For example, in the effort to minimize ultrasonic sensor data conversion overhead or im-

prove data conversion speed in a mirco-robot, an enhanced ADC module is mandatory.

However, EI design can alternatively eliminate data conversion stage and choose to de-

sign customized time-domain circuit that is inherently compatible with ultrasonic pulses.

Not only data conversion, such design methodology has motivated customized computa-

tional circuit to improve ML/AI algorithms as well. This is of particular interest when we

are witnessing the slowing down of Moore’s Law and the conventional digital design fails

to offer sufficient improvement. The compute-in-memory module discussed in previous

chapters is one example that takes advantage of circuit-algorithm co-design. This module

has largely saves data access energy through bit-line charge accumulation and time-domain

in-situ update for ultra-low-power inference/learning. Finally, when expanding the scope

further even beyond algorithm to the application scenarios, we find a systematic solution
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may bring even more benefits than individual innovations at circuits and algorithms. For

example, the online computation-communication trade-off discussed in chapter III and IV

is such an example. The awareness of environmental dynamics and its impact on com-

munication cost have led to online edge-cloud trade-off. This scheme has fundamentally

reshaped wireless IoT architecture. With such a system solution, we have observed 2-5 ×

energy/delay improvement.

To conclude, EI is about breaking conventional IoT design paradigm with customized

design. In such a way, the design hierarchy is flattened and data path shortened, and most

importantly, the solution space has expanded so that we can tackle IoT challenges from a

fundamental design point.

6.2 EI is More Than ’Edge Computation’

Edge computation is a closely related research field to EI. However, as we have discussed

previously, ”intelligence” is more than ”computation”. The intelligence we are talking

about for EI is more than ML/AI inference or learning, but also how the device as an agent

reacts to the environment in a smart manner. For example, we explore how a robot intel-

ligently controls and communicates with other robots or agents in the network. Chapter V

is a control example to demonstrate edge intelligence in robotic problems. The ASIC is

so designed and optimized to support machine learning, reinforcement learning and other

model-based algorithms in multi-agent collaboration control. Further, chapter III-IV has

visited both chip control intelligence as well as communication intelligence. We have mea-

sured significant system-level performance and adaptation enhancement by embedding in-

telligence into control and communication.

To conclude, for EI, we not only need the edge node to acquire data, process the data,

but in the future we also would like it to take actions when required and smartly exchange

data in the network. In the future, I am expecting to see more EI implementation of ML/AI

in control and communication modules and looking forward to see how they interact with
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each other.

6.3 Integrated Circuits to Enable EI

Solid-state chip design is an important approach to improve platform performance as we

have demonstrated in Chapter IV and Chapter V. Through customized design, we are able

to largely improve computation efficiency for specific algorithms, achieve real-time trans-

mission control, reduce power and area consumption and so on.

However, custom IC solution has its disadvantages. Although with EDA tool develop-

ment and technology scaling, circuit/system design have become easier and fabrication with

early technology nodes have become cheaper, the relative cost and effort to fabricate/design

chip compared with discrete design are still significant. One way to make the most use of

chip design is to enhance versatility of the designed chip and make it compatible with

varying use-cases. In chapter V, I have demonstrated a unified platform with non-linear

function evaluator (NFE) and linear processing unit (LPU) to account for varying swarm

robotic applications. Further, the system features bit-precision scaling to provide capabil-

ity to adapt to varying swarm sizes. In chapter IV, the wireless image processing SoC has

reconfigurable processing pipeline, processing element array, programmable transceiver,

adaptive controller and so on. These designs in particular want to address the versatility

in solid-state chip design. But versatility does not come without actual cost. For example,

area and power are two major cost of versatility. For example, the digital peripherals for

bit-precision scaling in HD-MS method, the controller overhead, the PE spatial array inter-

connection area and so on. It requires designers’ expertise to improve chip use-cases with

as minimal overhead as possible.

To conclude, EI chip design is costly, the versatility of the chip is desired but requires

extensive circuit innovations and systematic analysis to minimize the power/area overhead.
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6.4 Future EI Research Directions

Edge intelligence is an exciting and broad research field. The projects and discussions

in this dissertation are far from enough to provide a comprehensive overview. During EI

investigation in this dissertation, the author has been exposed to many interesting EI topics

and would like to share. The author believe the successes in these research fields will make

great significance in both academic and industrial world. And the author further believe

these successes will eventually lead to technology development that benefit all human-

kinds.

1. Neuromorphic Microbotics:

Microbots often refer to small robots under 1mm dimension that is capable of han-

dling perception, computation and actuation tasks [133]. Due to their small size and

potentially very cheap cost, it is desirable to use large numbers of them (as discussed

in Chapter V) to explore environments that are too small or too dangerous for peo-

ple. It is expected that microbots will be very useful in disaster rescue, environmen-

tal sensing, medical care, scientific research, social study and so on. However, the

computation and energy constraints are major challenges for microbots due to small

form-factor. Although the individual’s lack of efficiency could be partly mitigated by

applying swarm robotic strategy, enhancing intelligence (by maximizing information

per cost) is at the core of microbotic breakthrough.

On the other hand, brain has been so far the most efficient computation engine on

these earth. It has supreme computation capability to solve complex task with only

tens of watts. Its efficiency is several orders of magnitude higher than state-of-art

server engines. People believe the extreme high ”information per cost” lie in its

computation architecture. The computation, compared with the hardware nowadays,

has features such as low speed, asynchronous, noise tolerant, spike-based, massively

connected (1:10000), sparse, distributed and so on. These features have inspired
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many interesting works in neuromorphic hardware to improve efficiency [134, 135].

However, the interplay between neuromorphic hardware and microbotics have not

been widely explored. The extreme efficiency of brain-inspired computation will en-

able significant intelligence in the resource-constrained robots and the wide usage

of microbots will in turn provide future direction of neuromorphic hardware in con-

trol, communication as well as computation. This dissertation, especially chapter V,

has already provides some interesting insights about this research topic. In the fu-

ture, it is exciting to find more interesting ideas. For example, it will be interesting

to design a time-spike-based mircrobots that can process extreme low-power, real-

time reinforcement learning (RL). With current edge intelligence concentrating more

on perception perspective, neuromorphic microbots are expected to reveal the next

phase where edge nodes make decisions and take action in a safe, secure, sustainable

and autonomous manner.

2. RF Machine Learning Systems:

Wireless communication has become one of the major driving force of the society in

fields such as IoT, multi-media, education, remote working and so on. However, the

enormous end devices and ever-exploding data stream in the air has made smartness

in RF system an urgent demand. In chapter III and IV, ML has been incorporated in

RF system to mitigate resource constraints in highly-dynamic environment. In the

future, there are other challenges to solve by exploring ML and hardware advances

in RF systems. On one hand, the demands for intelligence in spectrum sensing [136]

is ever-increasing. Current spectrum monitoring is on demand and it is impractical to

reliably monitor and classify large bandwidth with current systems. In future, an RF

system is expected to identify all signals of a given type across certain bandwidth, or

so-called salience detection. At the same time, they should have the ability to exercise

control over hardware receiver and extend awareness over high bandwidth (for exam-
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ple higher than 10Ghz) with autonomous sensory-motor control. On the other hand,

the communication security is also very important to prevent privacy risks [137]. In

order to prevent the leakage and attack, it is desirable to build RF system that can ap-

ply individual discriminant physical identity. For example, how to uniquely identify

a wide range of devices in a large population with feature learning, and how to learn

a waveform modulation that allows for more effective discrimination with waveform

synthesis.

3. Explainable EI: Nowadays, many ML/AI models have high performance but the

decision-making mechanism remains a ”blackbox”, such as deep neural network and

so on. In future ML/AI advances, ”explanability” of the blackbox will be required

for many reasons [138]. For example, to foster trust in mission-critical tasks such

as medical care, to investigate in advanced DNN architecture by identifying model

weakness or to bring insights to human about certain application such as Alpha Go’s

move to Go players are all motivations for a more interpretable model. Needless to

say the regulation requirements of ML/AI data usage. There are two fields in partic-

ular that require explainable AI. First is data analytics where AI helps human analyst

to look for certain items or patterns. Second is autonomy where the behavior expla-

nations are required after each action taken by robots or autonomous cars. They all

require extensive further research in explainable model and explainable interfaces.

Explanation on the edge, or ”Explainable EI”, will be an extended research field that

enables AI interpretability on resource-constrained IoT devices. When explanations

are inserted in the data-flow pattern the current architectures for hardware-AI are bro-

ken. Support for only spatial data-flow architectures is no longer a possible solution.

Data-flow processors will need to be augmented with specialized near-memory and

in-memory processing elements that will concurrently provide explanability to the

deep neural networks. We will develop both algorithms as well as energy-efficient

hardware to enable explainable AI to augment next-generation deep convolution neu-
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ral networks. The design will ensure that the results of classification and explanation

are obtained by the user at the same time. Aforementioned hardware design in this

dissertation is focused heavily on CNNs and DNNs for EI. However, explainable EI

may require significant changes to the current architectures or even new computation

paradigm. Innovations are required in memory access patterns, bit-precision for the

associated explanation-logic, new logic and functional unit design to support new

computational kernels and data-structures and balancing the pipeline for simultane-

ous decision and explanation. We will develop algorithms, models, FPGA prototypes

and CMOS circuit prototypes to demonstrate key concepts.

It is expected that ”explainable EI” is able to achieve both real-time ML/AI infer-

ence/learning, but also explanation. It will find broad application in autonomous

vehicles, wearable medical devices and more [139].

The topics mentioned here cover various design fields, such as robotics, communication

and novel ML algorithm. It is consistent with previously defined EI landscape in chapter I.

At the same time, both the generic design methodology as well as some specific techniques

introduced in the dissertation are helpful or provide insights into these topics.
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