ALKALINE PULPING: DEADLOAD REDUCTION STUDIES IN CHEMICAL RECOVERY SYSTEM

A Thesis Presented To The Academic Faculty

By

Yusup Chandra

In Partial Fulfillments Of the Requirements for the Degree Master of Science in Paper Science Engineering

School of Chemical & Biomolecular Engineering Georgia Institute of Technology

November 8th, 2004

ALKALINE PULPING: DEADLOAD REDUCTION STUDIES IN CHEMICAL RECOVERY SYSTEM

Approved by:

Dr. Howard (Jeff) Empie, Advisor

Dr. Yulin Deng

Dr. Sujit Banerjee

Date Approved: November 8th, 2004

ACKNOWLEDGMENT

I would like to dedicate this thesis first and foremost to my parents, Azis and Rienni, who have given me all the love and support the years.

I would like to thank IPST for this great opportunity to attend this Georgia Tech and to meet all of the wonderful people here. Dr. Empie thanks for introducing me to this new thesis topic and doing a great job. I know it has been difficult through this period of time, but we got through it.

Dr. Banerjee and Dr. Deng thank you for taking the time out of your busy schedules. I appreciate all the assistance and advice I have received from everyone on the committee.

Lastly, I would like to thank the people that made my stay here in Atlanta an exciting and memorable experience. Special thanks to Luis, Sheila, Daniel, Jacobo, Josh, and Trevor who made getting through the toughest times so much easier.

TABLE OF CONTENTS

Acknowledgment	iii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
Summary	viii
Chapter 1 Introduction	1
1.1. Terms and Definitions	2
1.2. Deadload	4
1.3. Model and study	4
Chapter 2 Literature Review	5
2.1. Pulping	5
2.2. Kraft Pulping	6
2.3. Chemical Recovery	7
2.4. Deadload	8
 2.5. Deadload Impact on Process Equipments 2.5.1. Digester 2.5.2. Washer 2.5.3. Evaporators and Concentrators 2.5.4. Recovery Boiler 2.5.5. Dissolving Tank or Smelt Tank 2.5.6. Green Liquor Clarifier 2.5.7. Dregs Filter or Washer 2.5.8. Slakers 2.5.9. Causticizers 2.5.10. White Liquor Clarifier 2.5.11. Lime Mud Washer 	8 9 10 10 11 12 13 13 13 14 14 14 15 15
2.5.11. Lime Mud Washer 2.5.12. Lime Mud Filter 2.5.13. Lime Kiln	15 16 16

2.6. Process Control	17
Chapter 3 Model and Assumptions	18
3.1 Model	18
3.2. Base Assumption	19
3.3. Deadload Reduction Study	21
Chapter 4 Results and Discussion	22
4.1 White Liquor	22
4.2. Green Liquor	23
4.3. Black Liquor	24
4.4. Evaporators and Concentrator	26
4.5. Mud Cycle – Kiln	27
4.6. Energy	28
4.7. Constant Density	28
Chapter 5 Conclusion	29
Chapter 6 Future work	30
Appendix	31
A. Chemical Recovery System	31
B. Algorithm	32
References	52

LIST OF TABLES

Table 1 Composition of Liquors in Kraft Cycle	3
Table 2 Comparison of Different Pulping Processes	6
Table 3 Base Assumption	20
Table 4 Comparison between Base and New	21
Table 5 White Liquor Comparison	22
Table 6 Comparison of White Liquor Operation Condition	23
Table 7 Green Liquor Comparison	24
Table 8 Comparison of Green Liquor Operation Condition	24
Table 9 Black Liquor Comparison	25
Table 10 Black Liquor Elemental Analysis Comparison	25
Table 11 Recovery Boiler Operation Condition	26
Table 12 Concentrator Profile	26
Table 13 Evaporator Profile	26
Table 14 Inlet Material Balance in Kiln	27
Table 15 Outlet Material Balance in Kiln	27
Table 16 Energy Generation Comparison	28

LIST OF FIGURES

Figure 1 Block Flow Diagram of Kraft Chemical Recovery	7
Figure 2 Chemical Recovery Cycle	19

SUMMARY

The kraft pulping process has been known for decades. The focus in kraft pulping has always been on better operation of the chemical recovery system. One of the targets is on deadload (sodium sulfate (Na₂SO₄) and sodium carbonate (Na₂CO₃)) reduction in white liquor. A model based on several literature references was developed to study the effect of deadload reduction. A base model was developed based on current mill operation. This base model was compared to the deadload reduction model. Overall improvement, such as operating cost saving and revenue generation was achieved from deadload reduction. Operating cost saving involves less deadload chemical in chemical recovery system, and less water that was associated with the deadload itself. Revenue generation involves generating more steam and heat from the recovery boiler that can be used for mill purposes or energy revenue. Two important variables to achieve deadload reduction are causticizing efficiency and reduction efficiency.

CHAPTER 1

INTRODUCTION

Kraft pulping is a well known pulping process. The first chemical pulping process using soda was patented in 1854. This process was first commercially used in Sweden in 1884. Since this process was invented, the economical recovery of pulping chemicals became a primary focus. To be able to compete with the other processes such as the sulfite process which doesn't have a recovery system, the kraft process enables most of the pulping chemicals to be recovered and reused to reduce production cost.

Several inventions, such as the recovery furnace and chlorine dioxide bleaching, mark the major advancement for kraft pulping process. In 1930, the recovery furnace was introduced. This is where final evaporation and burning of used or spent liquor, heat recovery, and chemical recovery were combined in one unit. And in 1950, chlorine dioxide bleaching was developed, improving the kraft brightness level.

The kraft chemical recovery process primarily converts black liquor (spent liquor) into white liquor that can be reused for pulp cooking. The black liquor is converted into sodium carbonate and sodium sulfide in the recovery boiler. Sodium carbonate in the green liquor from the smelt dissolving tank is reacted with quicklime to form sodium hydroxide (major component in white liquor) and calcium carbonate (lime mud). The white liquor is separated from the mud and sent to the digester as cooking liquor. The mud is washed to recover soda values and calcined to form quicklime (CaO), which is recycled.

1.1 Terms and Definitions

To understand the concept of the pulping process, TAPPI terms and definitions will be used. Several terms such as white, black, and green liquor are common being used in the combustion, reduction, causticizing, and calcining cycle. The following will discuss several terms that will be used:

- White liquor is fresh pulping liquor that is used for the Kraft process.
 White liquor consists of the active pulping chemicals, such as NaOH, Na₂S, and small amounts of Na₂CO₃ and Na₂SO₄ left over from recovery process.
- Black liquor is waste liquor from the pulping process after pulping is completed. This black liquor contains: organics (dissolved wood component) and inorganic components (cooking chemicals). For each ton of pulp produced, 3000-5000 gallons or about 7 tons of black liquor are produced at 15% solids [8]. This black liquor must be concentrated to as high a solids content as possible before being burned in recovery boiler. Black liquor is usually burned at 65-75% solid content.
- Green liquor is produced by dissolving smelt from the recovery boiler (Na₂S, Na₂CO₃, and inerts) in water. After further processing, green liquor is converted to white liquor which can be used again for pulping.
- Total chemical, or total alkali (TA), is the sum of all sodium salts in liquors (as Na₂O) that contribute to AA (i.e. NaOH + Na₂S) or are capable of being converted to AA in the kraft cycle.

 $TA = NaOH + Na_2S + Na_2CO_3 + Na_2S_xO_y$ (as Na_2O)

No.	Content	White liquor	Black liquor	Green liquor
		% total	% total	% total
1	NaOH	53	6	8
2	Na ₂ S	21	19	52
3	Na ₂ CO ₃	15	36	60
4	Na ₂ SO ₃	3	9	3
5	Na ₂ SO ₄	5	13	6
6	$Na_2S_2O_3$	3	16	3

 Table 1: Composition of Liquors in Kraft Cycle [9]

• TTA is the sum of all of the bases in the white liquor that can be titrated with strong acid.

$$TTA = NaOH + Na_2S + Na_2CO_3 (as Na_2O)$$

• Active alkali or AA is the active ingredients in the pulping process

 $AA = NaOH + Na_2S$

• Effective alkali, or EA, is the ingredients that will actually produce alkali under pulping conditions.

$$EA = NaOH + \frac{1}{2}Na_2S$$

• Sulfidity is the ratio of Na₂S to the active alkali, usually expressed as percent.

Sulfidity =
$$\frac{Na_2S}{NaOH + Na_2S}$$
 (as Na_2O)

• Causticity is the ratio of NaOH to active alkali.

Causticity =
$$\frac{NaOH}{NaOH + Na_2S}$$
 (as Na_2O)

Causticizing efficiency is the ratio of NaOH to NaOH and Na₂CO₃ (as Na₂O).
 This is used as a measurement of how efficient the causticizing process is.

Causticity efficiency =
$$\frac{NaOH - NaOH_{in green liquor}}{NaOH + Na_2CO_3 - NaOH_{in green liquor}} \times 100\% \quad (Na_2O \ basis)$$

Reduction efficiency is the ratio of Na₂S to Na₂S and Na₂SO₄ in green liquor.
 This is a measurement of reduction efficiency of sulfur species in the recovery boiler.

Reduction efficiency =
$$\frac{Na_2S}{Na_2S + Na_2SO_4} \times 100\%$$
 (mole basis)

1.2. Deadload

In the kraft pulping process, liquor chemicals other than the active cooking chemicals are considered to be deadload [14]. The active cooking chemicals in kraft pulping are sodium hydroxide (NaOH) and sodium sulfide (Na₂S). While reusing the pulping chemicals from the recovery process, several inactive chemicals or deadloads (sodium sulfate (Na₂SO₄), sodium carbonate (Na₂CO₃), sodium thiosulfate (Na₂S₂O₃)) are formed.

1.3. Model and Study

To study the deadload effect in the liquor cycle, a steady state model was developed. The simulation of the model is based on material balances and designed to predict the effects of reducing Na₂CO₃ and Na₂SO₄ on different unit processes in a kraft pulp mill.

CHAPTER 2

LITERATURE REVIEW

2.1. Pulping

Pulping is the process by which wood is reduced to fibrous mass. It is the means of breaking bonds within the structure of wood to separate fibers. There are two types of pulping, chemical and mechanical pulping. Several combinations of these two are also found in the process such as chemimechanical and semi-chemical pulping.

Mechanical pulping is the type of pulping that uses mechanical energy with the use of little or no chemical in process. This mechanical pulp is made by 2 processes:

- Grinding: logs of wood are ground with revolving abrasive stone (SGW)
- Refining: wood chips are fed between two metal discs, with one of them rotating (RMP)

On the other hand, chemical pulping is type of pulping that uses chemicals and heat to dissolve lignin. Usually this process leaves only cellulose and hemicelluloses. Three major types of chemical pulping are kraft, soda, and sulfite pulping.

Table 2 shows the different types of pulping:

Mechanical	Hybrid	Chemical
Pulping by mechanical	Pulping with combinations	Pulping with chemical and
energy (little or no chemicals	of chemical and mechanical	heat (little or no
and heat)	pulping	mechanical mean)
High yield (90-95%)	Intermediate yield (55-	Low yield (40-50%)
	90%)	
Short, impure fibers	Intermediate pulp	Long, pure fibers
- weak	properties	- strong
- unstable		- stable
Good print quality		Poor print quality
Difficult bleaching		Easy bleaching

Table 2: Comparison of Different Pulping Processes [17]

2.2. Kraft Pulping

The word 'kraft' means 'strong' in German. This type of pulping is usually found in North America. Although the yield is low, recovery technology in kraft pulping is proven. Several products from kraft pulp include linerboard, xerographic, and food boards.

In kraft pulping, two chemicals that are used are sodium hydroxide (NaOH) and sodium sulfide (Na₂S). The operation of kraft pulping is as follows [2, 17]:

- Chemicals and chips are charged into the digester, continuous or batch
- Usually, temperature is raised to 170 C
- Cooked for 2 to 4 hours depending on lignin removal desired

- Pulp and black liquor are blown at the end of the cook
- Black liquor consists of used chemicals, carbohydrates, and dissolved lignin

2.3. Chemical Recovery

Chemical recovery in kraft pulping has been the focus through the decade because of the large volume that is being produced. As mentioned before, each ton of pulp produced, 3000-5000 gallons or about 7 tons of black liquor produced at 15% solids.

The kraft recovery system has three main functions [9]. They are:

- Recovery and reuse of the inorganic pulping chemicals
- Removal and sale of valuable organic by-product chemicals
- Destruction of remaining organic material and recovery of its energy value as process steam and electrical power

Figure 1 shows the chemical recovery cycle diagram.

Figure 1: Block Flow Diagram of Kraft Chemical Recovery [8]

2.4. Deadload

According to Blackwell and MacCallum, about fifty-percent of North America's kraft mills are restricted in production by the rate of formation of fireside deposits in the recovery boiler. One of the causes of this is the deadload of inactive and inert inorganic chemicals in kraft liquor cycle. The most common of deadload chemicals are sodium carbonate (Na₂CO₃) and sodium sulfate (Na₂SO₄). Sodium sulfate in white liquor comes from incomplete reduction in the furnace or recovery boiler and oxidation of Na₂S in recausticizing. Carbonate in white liquor comes from incomplete conversion in the causticizers [4, 7]. Sodium carbonate (Na₂CO₃) generally accounts for most of the deadload, while sodium sulfate (Na₂SO₄) is about one-fourth of carbonate amount [14].

Other deadload in kraft liquor includes unreacted calcium oxide (CaO), Ca(OH)₂, inert compounds containing Na, Mg, Fe, Mn, aluminum complexes, silica complexes, chloride, phosphate, and sulfate [3]. These deadload species enter the process with the wood, process water, and make-up limestone. However, the amount of these other compounds is generally much smaller than sodium carbonate and sodium sulfate.

According to Keitanniemi and Virkola, about 20 to 25% of inorganic chemicals circulating in the liquor cycle are present as deadload. About two-thirds of it is sodium carbonate and the rest is sodium sulfate [20].

2.5. Deadload impact on process equipments

Deadload inorganic chemicals can affect the chemical recovery system costs in several ways. Several major aspects that were known are [3,7]:

- Restriction in capacity of process equipment, especially recovery boilers.
- Increased recovery boiler total reduced sulfur (TRS) emissions.

- Energy consumed to heat, evaporate and pump the associated water.
- Added evaporation requirement in kiln.
- Increased make up requirements because of higher chemical losses.
- Higher cleaning costs resulting from scale in evaporators.

For details, the following sections will analyze the effect or impact of deadload on process equipment.

2.5.1. Digester

Wood and white liquor (NaOH and Na_2S) are reacted in the digester at about 170 C to produce kraft pulp and weak black liquor. Several by-products such as turpentine and non-condensable gases will be recovered from the digester also.

While there is no effect of deadload on the pulp production process, several aspects that are impacted by the deadload in the digester operation are [7]:

- 1. The heat load for taking the inerts and their associated water up to the cooking temperature.
- 2. Reduced capacity in digester because of the physical space that was taken by the inerts and their water.
- 3. White liquor concentration or black liquor concentration recirculation limitation to keep the dissolved solids concentration in the black liquor in the chips below the point where soap precipitates. Soap precipitation is determined by the concentration of sodium counterion; thus, this will increase with inorganic deadload.

2.5.2. Washer

Weak black liquor is separated from pulp at the washers. The black liquor is diluted by the wash water. Modern pulp washing normally recovers at least 98% of the chemicals applied in digester [9].

Several aspects causing inefficiency in the washer because of deadload are:

- 1. Increased washing losses (the amount of inorganic chemical leaving the pulping and recovery system with the washed pulp).
- 2. More wash water is required to achieve a better washing efficiency. Thus, this will increase the evaporation loads and energy consumption in evaporators.

2.5.3. Evaporators and Concentrators

The evaporation or concentration of black liquor is carried out in multiple effect evaporators using low pressure steam. A modern evaporator normally consists of six effects with an economy of about 4.8 lb of water evaporated per lb of steam. Concentrators consist of two or three units with an economy of about 1.8 lb of water evaporated per lb of steam. These units generate concentrated black liquor that will be charged into the recovery boiler.

Deadload has a direct effect on evaporation operations such as [3,7]:

- 1. Increased steam consumption to evaporate water that carries deadload and additional wash water from washing operation.
- 2. Increased boiling point rise of the liquor. This boiling point rise is proportional to inorganic concentration, thus will go up directly with deadload.

 Increased scaling problems. A double salt, 2NaSO₄·Na₂CO₃, can precipitate from black liquor at solids concentration of 50%. This will result in reduction of productivity.

2.5.4. Recovery Boiler

The development of the recovery boiler in 1930 led to the predominance of the kraft process. The purpose of the recovery boiler is to recover the inorganic chemicals as smelt (sodium carbonate and sodium sulfide), burn the organic chemicals so they are not discharged from the mill as pollutants, and recover the heat of combustion in the form of steam.

This recovery boiler is the largest and most expensive piece of equipment in the kraft mill. The cost of this equipment is over \$100 million [8]. Nowadays, recovery boilers can support 2500-3000 tons of pulp production per day [8, 10].

In addition to combustion reactions, the overall chemical reactions in the recovery boiler are:

1. Conversion of sodium salts:

2NaOH + CO₂ \rightarrow Na₂CO₃ + H₂O

2. Reduction of make-up chemical:

 $Na_2SO_4 + 4C \leftrightarrow Na_2S + 4CO$

For more details of the reaction, there are 3 known zones of reaction

a. Oxidation zone:

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

$$\operatorname{Na}_{2}S + 2O_{2} \rightarrow \operatorname{Na}_{2}SO_{4}$$

 $\operatorname{H}_{2}S + \frac{3}{2}O_{2} \rightarrow SO_{2} + \operatorname{H}_{2}O$

b. Drying zone:

Organics \rightarrow C+CO+H₂

2NaOH + CO₂ \rightarrow Na₂CO₃ + H₂O

c. Reduction zone:

Organics \rightarrow C+CO+ H₂ 2C+O₂ \rightarrow 2CO

 $Na_2SO_4 + 4C \leftrightarrow Na_2S + 4CO$

$$C + H_2O \rightarrow CO + H_2$$

The impacts of deadload on the recovery boiler are as following [2, 3, and 7]:

- 1. With deadload presence, the ratio of organics to inorganics in the liquor decreases. Thus, it decreases the higher heating value per kg of total solids.
- 2. The increased ash content of the liquor with deadload presence means that more inorganic material leaves the recovery boiler entrained in the exit gas.
- 3. Increased TRS emission.
- 4. Lower reduction efficiency

2.5.5. Dissolving Tank or Smelt Tank

Weak Wash from mud washer fills the dissolving tank, which is usually located below the Kraft recovery furnace, where the molten smelt is added from the smelt spout to form green liquor (mainly Na₂CO₃ and Na₂S).

The presence of deadload in smelt will result in increasing the melting point and viscosity of smelt. This will make smelt handling harder [4].

2.5.6. Green Liquor Clarifier

The green liquor clarifier is a settling tank used to remove dregs by sedimentation before the green liquor is recausticized. This clarifier can also serve as a storage tank for green liquor and can provide at least 12 hours supply of green liquor [2, 9]. The dregs settle to the bottom where rakes move them to outlets. If there is no or inadequate green liquor clarification, the inert materials build up in the lime, hence decreasing the lime availability.

While the presence of deadload in the green liquor clarifier is minimal, one of the most significant impacts is decreasing capacity of the clarifier. More deadload will result in requiring a bigger volume for sedimentation at constant TTA [2, 7].

2.5.7. Dregs Filter or Washer

Dregs are undissolved materials in the green liquor. The dregs are about 0.1% of the liquor and consist of carbon (20% or more) and foreign materials (mainly insoluble metal carbonates, sulfates, sulfides, hydroxides, and silicates) to give a black bulky material [2]. Many believe that the source of dregs is from incomplete combustion of organic materials in recovery furnace. These dregs are washed in a dregs washer, often a drum filter or sedimentation washer.

Several references [2, 3, and 7] explain that reduction of deadload will reduce amount of dregs which must be transferred to landfill.

2.5.8. Slaker

The slaker is a chemical reactor in which lime is mixed with green liquor. The reaction temperature is 99-105 C [2]. Using a high temperature lime directly from kiln gives a lime mud that settles well. The lime, CaO, forms slaked lime, Ca(OH)₂, and much of the causticizing reaction occurs here. This slaking reaction is as following

 $CaO + H_2O \rightarrow Ca(OH)_2$

Grit is removed here by the classifier section. Grits are unreactive lime particles and insoluble impurities. Grit accounts for 0.5 to 2% of the lime feed and are often sent to landfills.

One main impact of deadload presence in the slaker is to limit the slaker capacity because it and its associated water occupy space in the slaker [3, 21].

2.5.9. Causticizers

Causticizers are two to four continuous flow, stirred reactors that are used to complete the causticizing reaction. The following shows the causticizing reaction

 $Na_2CO_3 + Ca(OH)_2 \rightarrow 2NaOH + CaCO_3$

The extent of the causticizing reaction depends on the concentration of the initial Na₂CO₃ and the amount of lime used. With the concentration of actual chemical below 16%, the theoretical conversion is over 90% [17]. At concentrations above this, the theoretical conversion drops quickly. For this process, usually it desired to have about 1% excess lime. The causticizing efficiency should be 3-4% below the equilibrium value if excess liming is avoided.

The impacts of deadload on causticizers are as follows [2, 3, and 7]:

1. Lower causticizing efficiency

- 2. Probable increased in a scaling problems
- 3. Loss in causticizing capacity because of the inert deadload and its associated water which occupies space in causticizers.

2.5.10. White Liquor Clarifier

The white liquor clarifiers are settling tanks (gravity sedimentation) used to remove the lime mud (CaCO₃) from the white liquor. The lime mud usually leaves with a solid content above 35% in order to minimize entrained soda that is removed in the lime mud washer.

Poor settling lime may be the result of excess lime to the slaker (more than 1% excess), a low lime availability (below 80-85% is indicative of a high level of contaminants due to inadequate removal of dregs and/or grit or incomplete slaking due to overloading the lime kiln), a high percentage of low reactivity unburned fresh lime, or inadequate white liquor clarification [2, 9]. Lime burned at too low a temperature gives mud of high viscosity; lime burned at too high a temperature gives a slow causticizing reaction and a slow settling lime mud with entrained alkali.

One of the known impacts of deadload presence in the clarifier is limited capacity because of it and its associated water occupies space in clarifier [3, 21].

2.5.11. Lime Mud Washer

The lime mud washer removes most of the 15-20% of entrained alkali (Na₂O basis) from the lime mud, usually by sedimentation washing [2]. This lime mud wash is typically a settling tank (or two in series) where fresh (make-up) water is used to wash the lime mud. If it were not removed, the Na₂S would cause slagging in the kiln and reduced sulfur compounds would be released as H_2S . Usually about 1% of alkali on lime

mud remains after washing. The liquor (known as weak wash) is used to dissolve smelt from recovery boiler. A proper balance of water is important during lime mud washing to avoid formation of excess weak wash.

The impacts of deadload on mud washers are as following [2, 3, and 7]:

- More thorough washing is needed to reach the same residual sodium level in the mud.
- Minor effect on capacity limitation

2.5.12. Lime Mud Filter

Thick lime mud from storage is diluted to 25-30% solids before going to the lime mud filter [9]. The lime mud filter is a rotary drum vacuum filter washer used for final lime washing and thickening to 60-70% solids before the lime enters the kiln.

Not much detail has been reported about the impact of deadload on mud filter performance.

2.5.13. Lime Kiln

The lime kiln is a chemical reactor in which lime mud (CaCO₃) is dried, heated, and converted to CaO. This process is also known as calcining.

 $CaCO_3 + heat \rightarrow CaO + CO_2$

Fuel oil or natural gas (or occasionally coal or biomass) supplies the fuel to achieve the high temperature (1200 C) required [2, 17]. The combustion gases run counter-current to the lime flow.

The purity of the lime is given by lime availability and is defined as

Lime availability =
$$\frac{\text{CaO}}{\text{lime}}$$
 (as mass ratio)

The main disadvantage of deadload in the kiln is that it carries water into the kiln; this will add to evaporation requirements [16], resulting in an increase of fuel consumption and a decrease of kiln capacity.

2.6. Process control

With many types of equipment that are used in this chemical recovery system, complex process control using a computerized system has been implemented to control deadload in the system. In general, the following overall objectives are optimized by the control system [9]:

- Steady and satisfactory white liquor quality
- Adequate production capacity
- Minimum energy consumption
- Minimize deadload chemicals in white liquor
- Meet air emissions requirements
- Minimum downtime
- Minimize chemical loses

CHAPTER 3

MODEL AND ASSUMPTION

The purpose of this study is to evaluate and analyze the result of deadload reduction in the white liquor supplied to the digester. To achieve this result, a base model was developed to analyze the effect of deadload reduction.

3.1 Model

A detailed computer simulation model of the kraft liquor cycle has been constructed in a Microsoft Excel[®] spreadsheet for simplification and easy editing. This model was developed based on operating experience [1, 8, 9, and 19]. The simulation encompasses evaporators, concentrators, recovery boiler, recausticizing, and lime kiln.

For details, figure 2 shows the process block diagram that was used in this model. To understand the heat balance in the recovery boiler, a heat balance calculation was added in this model as well. A Black liquor higher heating value of 6300 btu/bls for the base model was assumed.

This simulation depends on two important parameters which determine the amount of deadload, namely causticizing efficiency and reduction efficiency. These parameters were defined in chapter 2.

The slaking/ causticizing process is modeled according to slaking and causticizing reactions (chapter 2). These reactions proceed simultaneously in the slaker and causticizers. Some slaked, uncausticized lime (Ca(OH)₂) passes through the causticizers and is eventually recycled to the lime kiln.

The reduction reaction in the recovery boiler is as follows:

$$Na_2SO_4 + 2C \rightarrow Na_2S + 2CO_2$$

Figure 2: Chemical Recovery Cycle

3.2. Base Assumption

Table 3 shows base assumption for this liquor recovery cycle model. Details of the assumptions are shown in the appendix.

From Table 3, the specific gravity for this model was assumed constant. This might not be a real assumption, with the reduction of deadload; one can expect specific gravity will decrease. However, for simplification of this study, specific gravity will be assumed constant.

Table 3: Base Assumption

Base Parameter	Amount	Unit
1 o.d. ton dry unbleached pulp	2000.0	lb
Pulp yield	48.0	%
AA on o.d. wood	16.5	%
White Liquor activity	85.0	%
Sulfidity	25.0	%
White Liquor total alkali	7.5	lb/ft ³
Excess lime	2.0	%
Lime Availability	85.0	%
Specific gravity of white liquor	1.13	
Na ₂ SO ₄ /Na ₂ S ratio	0.2	
Density of Water	62.4	lb/ft ³
Specific gravity of green liquor	1.16	
Mud solid underflow	40	%
Fuel requirement in Lime kiln	0.18	lb/ lb CaO
Fuel/ air ratio in kiln	0.06	lb/ lb air
Grit solid in purge	60	%
% Solid from concentrator	70	%
Concentrator steam economy	1.8	
Evaporator steam economy	4.8	

3.3. Deadload reduction study

With the base case values set as in table 3, a new case, or deadload reduction case, was developed for comparison. This new case has a different composition of white liquor chemical, notably the amount of deadload in the liquor. Active alkali composition will remain the same. Details of chemical recovery system are summarized in chapter 4. Table 4 shows this comparison.

Chemicals	Base	New
	(lb as Na2O)	(lb as Na2O)
Na ₂ S	171.88	171.88
NaOH	515.63	515.63
Na ₂ CO ₃	121.32	57.00
Na ₂ SO ₄	18.88	9.44

Table 4: Comparison between Base and New

From Table 4, the amount of Na_2CO_3 and Na_2SO_4 was reduced approximately 50% each. From these new values, several observations regarding the process improvement will be presented.

CHAPTER 4

RESULTS AND DISCUSSIONS

Using the definitions of the base model case and the new model case, comparison between both cases was done. Several aspects such as white liquor requirement, green liquor composition, and black liquor composition were analyzed to understand more about the effect of deadload reduction.

4.1. White liquor

One of the most important aspects of the chemical recovery system is the white liquor composition that was charged to the digester. Tables 5 and 6 show the comparison of these two conditions. The amount of water that is carried to the digester will be reduced by 7.3 % (6472 to 6000 lb) and the white liquor solids will be reduced by 11.6% (1132 to 1000 lb).

Table 5: White Liquor Comparison

Chemicals	Base	New	unit
Na ₂ S	216.23	216.23	lb
NaOH	665.32	665.32	lb
Na ₂ CO ₃	207.42	97.45	lb
Na ₂ SO ₄	43.25	21.62	lb
Water	6472.01	5998.87	lb

Another important aspect of this reduction is a higher white liquor activity, which is the ratio of active alkali to total alkali. This is due to the fact of deadload reduction lowering TTA. The causticizing efficiency of the chemical recovery system is also improved to 87.90% from 77.67%. The white liquor volume charged to digester decreases, thereby opening up the possibility for increased capacity. Details about the white liquor are shown in Tables 5 and 6.

Description	Base	New	unit
White Liquor activity	85.00	92.34	%
Na ₂ SO ₄ /Na ₂ S ratio	0.20	0.10	-
AA as Na ₂ O	687.50	687.50	lb
White Liquor TTA	808.82	744.50	lb
White Liquor Volume	107.84	99.27	ft ³
Causticizing efficiency	77.67	87.90	%

Table 6: Comparison of White Liquor Operation Condition

4.2. Green Liquor

In the chemical recovery system, usually the green liquor TTA is controlled. A similar result to the white liquor composition was achieved for the green liquor composition. With the reduction of white liquor deadload, the deadload in the green liquor was reduced as well. The amount of water in green liquor itself is reduced by 6.0% (from 7833 to 7368 lb) and the green liquor solids will be reduced by 9.0% (1561 to 1421 lb).

The reduction efficiency has to have been increased (presumably accomplished by recovery boiler operating changes) because of the deadload reduction that was assumed in the white liquor. As this reduction efficiency is a measure of amount of sodium sulfide to the total sodium sulfate and sodium sulfide, the reduction of sodium sulfate will increase reduction efficiency. Also, the volume of green liquor will decrease by 6.7%. Details about the green liquor are shown in Tables 7 and 8.

Chemicals	Base	New	unit
Dregs	7.22	7.22	lb
Na ₂ S	255.45	258.83	lb
NaOH	120.66	131.09	lb
Na ₂ CO ₃	1126.60	998.20	lb
Na ₂ SO ₄	51.09	25.88	lb
Water	7833.24	7368.28	lb

Table 7: Green Liquor Comparison

Table 8: Comparison of Green Liquor Operation Condition

Description	Base	New	unit
% SO ₄ ²⁻ reduction	90.10	94.79	%
GL TTA	955.51	891.19	lb
Volume GL	127.40	118.83	ft ³

4.3. Black Liquor

A similar result was achieved with the black liquor composition after deadload reduction. The amount of black liquor solids will decrease from 2673 to 2546 lb. This 4.8% reduction occurs due to reduction of deadload chemicals in the white liquor that was charged to digester. The amount of water in the black liquor is decreased as well by 4.8% from 13051 to 12431 lb.

Chemicals	Base	New	unit
Na	588.08	534.33	lb
С	984.77	936.69	lb
Н	93.56	93.73	lb
S	80.23	75.49	lb
0	919.28	898.73	lb
inert	7.22	7.23	lb
Water	13051.20	12431.50	lb

Table 9: Black Liquor Comparison

Table 10: Black Liquor Elemental Analysis Comparison

Chemical	Base	New	unit
Na	22.00	20.99	%
С	36.84	36.79	%
Н	3.50	3.68	%
S	3.00	2.96	%
0	34.39	35.30	%
Inert	0.27	0.28	%

Table 11: Recovery Boiler Operation Condition

Description	Base	New	unit
Black liquor Heating Value	6300	6614	Btu/lb
Heat to steam generation	1.229E7	1.243E7	Btu

One of the most important features in this deadload reduction is the increase in higher heating value due to lower black liquor inorganics. Table 11 shows how this deadload reduction affects the recovery boiler operation. Heat-to-steam generation from the recovery boiler is increased as well by 1.1% from 1.229E7 to 1.243E7 Btu. This is important, since it will generate more revenue and reduce some operational cost.

4.4. Evaporator and concentrator

With less black liquor solids (BLS) that are produced, the water that carries the black liquor solids is less as well. This can be seen in the evaporator and concentrator profile in the following tables. This means that the steam that is used to evaporate the water will be less.

Description	Base	New	unit
Steam	1485.08	1414.56	lb
Energy usage	1.78E+06	1.69E+06	BTU

Table 13:	Evaporator	Profile
-----------	------------	---------

Description	Base	New	unit
Steam	2719.00	2589.90	lb
Energy usage	3.19E+06	3.04E+06	BTU

4.5. Mud cycle - kiln

The mud cycle operation which was also analyzed in this study didn't show any changes with deadload reduction. Several studies have shown that there is either little or no effect on the lime mud cycle in the chemical recovery system [14, 16].

Table 14 and 15 show the inlet and outlet material balance comparison.

Description	Base	New	unit
CaCO ₃	928.36	928.36	lb
inert	82.99	82.99	lb
water	337.12	337.12	lb
fuel	79.24	79.24	lb
air	1260.38	1260.38	lb

Table 14: Inlet Material Balance in Kiln

Table 15: Outlet Material Balance in Kiln

Description	Base	New	unit
CaO	448.93	448.93	lb
inert	83.83	83.83	lb
dust	125.86	125.86	lb
CO2	352.73	352.73	lb
combustion product	1339.61	1339.61	lb
water	337.12	337.12	lb

4.6. Energy

With less inorganic BLS that are produced with reduced deadload, more recoverable energy from the recovery boiler can be expected. Also, less energy will be used by the concentrator and evaporators because of less black liquor solids and the water associated with them. The total effect is a 5.2% increase in net energy generation. Table 16 shows the energy comparison for these two cases.

Table 16: Energy Generation Comparison

Description	Base	New	unit
Total Energy Going Outside Recovery Process	7.32E+06	7.70E+06	BTU

4.7. Constant Density

Basic assumption that was stated in chapter 3 about constant density or specific gravity is likely shortcoming in this model. This assumption doesn't fit the real world operation. The water that associated with inorganic solids is directly calculated from this density assumption. This density also shows interdependency with total alkali. Lack of information (between density and total alkali) and calculation of water forced of this density assumption.

However, one can argue the deadload reduction is small (about 64 lb of Na_2CO_3 and 9.4 lb of Na_2SO_4); hence there is no effect on the model itself. Therefore, constant density that was used in the algorithm in Microsoft excel is valid.

CHAPTER 5

CONCLUSION

A first principles model was developed to study the effect of white liquor deadload reduction on process performance. The process equipment impacted include evaporators, concentrator, recovery boiler, smelt tank, lime mud clarifier, lime mud washer, lime mud filter, kiln, dregs washer, green liquor clarifier, slaker, causticizer, and white liquor clarifier. This model was developed based on a set of assumptions that was based upon literature references [1, 8, 9, and 19] and fundamental engineering principles.

Deadload in white liquor, green liquor and black liquor is reduced. Thus, water that carries the deadload is also decreased. This will improve the energy performance and loading performance of the equipment. Several operating costs, such as steam requirement for concentrator and evaporators, can be cut, since less chemical is cycled around the chemical recovery system. From the recovery boiler stand point, more energy can be produced with less deadload in system.

The two most important variables to determine the effect of deadload reduction are

- Causticizing efficiency \rightarrow sets the amount of Na₂CO₃ in the liquor
- Reduction efficiency \rightarrow sets the amount of Na₂SO₄ in the liquor

CHAPTER 6

FUTURE WORKS

The reduction of deadload in kraft pulping and chemical recovery can be very beneficial. Many pulp mills in North America need to reduce the operation cost of the mill to be able to compete with newer mills. These results can point to ways to achieve better operation in the chemical recovery system. While operating costs of process equipment can be cut drastically, other effects such as a potential capacity increase and process improvements can be achieved.

Several assumptions were used in this model that are based on fundamental engineering principles. Because the assumption of constant density or specific gravity doesn't fit the real world operation, a detailed study of liquor density would be beneficial to give a more rigorous model. An expanded model featuring an overall heat balance will also give a better insight to the chemical recovery system, yielding a more accurate model to predict the energy benefits of deadload reduction.

Another important outgrowth of this work would be to test the model results against mill data.

APPENDIX A. CHEMICAL RECOVERY SYSTEM

B. ALGORITHM

1. Entry & Assumption

	Α	В	С	D
1		Enter the Amount of Na2CO3 & Na2SO4		
2		White liquor	As Na2O	
3		Na2S	171.875	lb
4		NaOH	515.625	lb
5		Na2CO3	57	lb
6		Na2SO4	9.44	lb
7				
8		BASIS/ ASSUMPTION		
9				
10		1 ton dry pulp	2000	lb
11		Yield	48	%
12		AA on od wood	16.5	%
13		WL activity	85	%
14		Sulfidity	25	%
15		WL total alkali	7.5	lb/ft^3
16		Excess lime factor	2	%
17		Availability lime	85	%
18		Solid in unwashed slurry	40	%
19		Sp. Gr. WL	1.13	
20		Na2SO4/Na2S	0.2	lb/lb
21		Grit in system/total grit produced	0.9	
22		Water density	62.4	lb/cft
23		Sp. Gr. GL	1.16	
24				
25		Mud washer		
26		Recirculated solids from kiln	10	%
27		Washed mud solids content at underflow	=C18	%
28		Sp. Gr. at mud washer underflow	1.01	
29		Density of chemical at mud washer underflow	1.6	lb/cft
30		Density of TTA at mud washer underflow	1.1	
31		Wash water	1900	lb
32				
33		Mud filter		
34		Feed solid	25	%
35		Filtrate discharge	75	%
36		Filter shower/filter discharge	1	
37				
38		Kiln and calciner		
39		Fuel requirement	=353/2000	Ib fuel /Ib CaO
40		Ratio of fuel/air	=353/5615	lb/lb
41				
42		Scrubber		
43		Water in scrubber to mud washer	3320	lb
44		Dilution water	4500	lb
45				

46	Slaker/Causticizer		
47	Make up lime	26.11	lb
48	Water evaporated	40	lb
49	Grit solids in purge	60	%
50			
51	GLC		
52	Density of chemical at dregs filter	12.2	lb/cft
53	Underflow Solids	8	%
54	G L dregs	7.22	lb
55	Assume no Na2SO4 lost		
56			
57	Dregs Filter		
58	Dregs solids content	50	%
59	Wash water/dregs ratio	2.5	lb
60			
61	Recovery boiler		
62	Black liquor elemental composition		
63	Na	22	%
64	С	36.84	%
65	Н	3.5	%
66	S	3	%
67	0	34.39	%
68	inert	0.27	%
69			
70	Solid Concentration	70	%
71	Humidity (lb moisture/ lb dry air)	0.015	
72	Black Liquor Heating Value	6300	BTU/Ib BLS
73	Salt cake rate (Salt cake/ BLS)	0.03	lb/lb
74			
75	Dry Air composition		
76	02	0.232	lb O2/lb air
77	N2	=1-C76	
78	Excess air in to system	15	%
79	-		
80	Energy balance		
81	Temp. of liquor from concentrator	220	F
82	Temp. of combustion air enters	300	
83	Temp. of flue gas discharge	350	F
84	Temp. of smelt	1500	F
85	Temp of reference	11	F
86	Radiation loss	0.28	%
0/	Unaccountable loss	2	70
00			
09	Concentrator		
90	Steen Economy	1.0	
02	Solid conc. In	1.0 50	0/
92	Steam Pressure	=160±14.696	nei
9/	Steam Temperature	370 /	F
95	Enthalny	1197 12	htu/lb
96	Linnaipy	1131.12	Diario
97	Evaporators		
98	Steam Economy	4.8	
99	Solid conc. In	17	%
100	Steam Pressure	=31.5+14.696	psi
101	Steam Temperature	276	F
102	Enthalpy	1172.739	btu/lb

т																																											
U		%weight	='Base-Calculation 'IC68	0	='Base-Calculation 'IC71	='Base-Calculation 'IC69	='Base-Calculation 'IC70	='Base-Calculation 'IC72	0	='Base-Calculation 'IC73	=SUM(G3:G10)																																
L	Black ligour composition	Compound	Na	K	S	С	н	0	CI	inert	total																																
ш																												_															
Q												6	%		%	2			%	%	%		Ib of dry solid				02 needed	0	-04/142 000	=C32*48/106		=32/44*C34	=16/18*C35	=SUM(D29:D35)									
C	MW	=46+32	=46+32+64	=23+35.5	=23+23+12+48	=39+39+12+48	=12+32	=18				-45/442*400	-40/142 100	-32/142 100 -64/449*400	=C16+C14+C13	22			='Base-Calculation 'IC399	='Base-Calculation 'IC82	='Base-Calculation 'IC75	='Base-Calculation 'IC76	-	='Entry & Assumption'IC73			Amount	=C24*C20/100*78/32*(G5/100+C25*C14/100) -C24*142/222/1 C20/1000*C5 [100. C25*C14/100)	1001 141 0 1701 1001 1001 1001 1000-1) 7177 1 470-	=C24*106/46*(G3/100-46/32*G5/100)		=44/12*(G6/100*C24-12/106*C32)	=C24*18/2*G7/100	Sum of O2		=C41*0.232	=(100-C22)/C22*C24	=(D36-G8/100*C24-C15/100*C25*C24)/0.232	=C40*(1+C21/100)	=C41*0.768	=(D36-G8/100*C24-C15/100*C25*C24)*C21/100	=C43+C42+C34	
8	Compound	Na2S	Na2SO4	NaCI	Na2CO3	K2C03	C02	H2O			3	Salt cake composition	DN G		total	100000	MATERIAL BALANCE	Assumption	Reduction Eff.	Excess air	Solids	Humidity (Ib H20/Ib dry air humidity)	Basis	Salt cake rate			Compound	Na2S	100.00t	Na2CO3		C02	H2O			O2 inlet	Water in ligour	Theoritical air	Total air	N2 in flue gas	O2 in flue gas	Dry flue gas	
A	-	2	0	4	5	6	~	~	6	0	- 0	NC	2	t 4) (C	~	. 00	6	0	5	2	5	4	S	9	~	00	0.0	2 1	22	5	4	22	90	2	00	6	0	-	2	<u></u>	4	1

2. Base-Recovery boiler

17					
-			10		
49 Air			Flue das		=SUM(H50:H53)
20	N2	=C42		C02	=C34
51	02	=C38		N2	=D50
52	H20	=C46		02	=C43
53 Salt cake		=C25*C24		H20	=C45
54 Liqour					
55	Na	=G3/100*\$C\$24	Smelt		=SUM(H56:H61)
56	×	=G4/100*SCS24		Na2S	=C29
57	S	=G5/100*\$C\$24		Na2SO4	=C30
58	U	=G6/100*\$C\$24		NaCI	=C31
59	H	=G7/100*\$C\$24		Na2CO3	=C32
60	0	=G8/100*\$C\$24		K2C03	=C33
61	CI	=G9/100*\$C\$24		Inert	=D62
62	Inert	=G10/100*\$C\$24			
63	Water	=C39			
64 total		=SUM(D50:D63)	total		=H55+H49
65					
66					
67					
68 Compound	MM		Black ligour composition		
69 Na2S	=46+32		Compound	%weight	
70 Na2SO4	=46+32+64		Na	=63	
71 NaCI	=23+35.5		K	=G4	
72 Na2CO3	=23+23+12+48		S	=G5	
73 K2C03	=39+39+12+48		0	=66	
74 CO2	=12+32		I	=67	
75 H2O	=18		0	=G8	
76			G	=69	
17			inert	=G10	
78			tota/	=SUM(G70:G77)	
79 Salt Cake Compositi	on				
80 Na	=46/142*100	%			
81 S	=32/142*100	%			
82 O	=64/142*100	%			
83 Total	=C82+C81+C80	%			
84					
85 Ratio conversion					
96 BLS	=C24	=D87/C87*C86			
87 smelt	=H55	=SUM(Base-Calculation 'IC401:C405)			
88					
89 Assumption					
2 · · · ·					

92 Spaniely Paintels 93 Humidity (Ib H2O/Ib t H2O/Ib t 94 Basis Basis Basis 95 Saft cake rate Basis Basis 96 Saft cake rate Basis Basis 97 Data Basis Basis 98 Compound Basis Basis 99 Na2Co3 D01 Na2Co3 103 Na2Co3 D103 Basis 104 Co2 D104 H2O 104 H2O D104 H2O 104 H2O D104 H2O 104 H2O D104 H2O 104 H2O D104 H2O 105 H2O D104 H2O 106 H2O H2O H2O 106 H2O H2O H2O 106 H2O H2O H2O 106 H2O H2O H2O 106	air humidity) =C3 =C3 =C3 =C3 =C3	22 23 86	%			
33 Humidity (Ib H2O/Ib c) 95 Saft cafe rate 96 Saft cafe rate 97 Compound 98 Compound 99 Na225 100 Na226 101 Na226 101 Na22C03 103 Na2C03 104 CO2 105 H200 106 H200 101 Na2C03 103 CO2 104 C02 105 H200 106 H200 107 K02 108 H200 109 H200 101 H200 102 H200 103 K02 104 H200 105 H200	air humidity) =C3 =D7 =C3 =C3	23				
94 Basis 96 Sait cake rate 96 Sait cake rate 97 Na2S 99 Na2S 90 Na2S 90 Na2S 9101 Na2SO4 101 Na2CO3 103 H2O 104 H2O 105 H2O 105 H2O	= =	086				
95 Sait cake rate 97 97 Compound 98 Na2S 100 Na2S04 101 Na2S04 101 Na2S03 103 Na2C03 104 H20 105 H20 106 H20	Am EC		Ib of dry solid			
96 97 98 Compound 99 Na2S 101 Na2SO4 101 Na2SO4 103 Na2CO3 103 Na2CO3 103 P2O 104 CO2 104 H2O 106 H2O	Am	:25				
97 98 Compound 99 Na2S 100 Na2SO4 101 Na2SO4 102 Na2CO3 103 Na2CO3 103 A2CO3 106 H2O 106 H2O	Am					
98 Compound 99 Na2S 101 Na2SO4 101 Na2SO4 101 Na2SO3 104 CO2 105 H2O 105 H2O	Am					
99 Na25 100 Na2504 101 Na2504 102 Na2C03 103 C02 106 H20 106 H20		nount	02 needed			
100 Na2SO4 101 Na2SO4 102 Na2CO3 103 CO2 104 CO2 106 H2O 106 H2O	Ĩ	:94*C90/100*78/32*(G72/100+C95*C81/100)	0			
101 Na2CO3 102 Na2CO3 104 CO2 106 H2O	ç	:94*142/32*(1-C90/100)*(G72/100+C95*C81/100)	=64/142*C100			
102 Na2CO3 103 Co2 104 CO2 106 H2O						
103 104 CO2 105 H2O 107	ő	:94*106/46*(G70/100-46/32*G72/100)	=C102*48/106			
104 CO2 105 H2O 107						
105 H2O 106 107	=44	4/12*(G73/100*C94-12/106*C102)	=32/44*C104			
106	2 T	:94*18/2*G74/100	=16/18*C105			
107	Sur	m of O2	=SUM(D99:D105)			
108 O2 inlet	Ŷ	:111*0.232				
109 Water in ligour	=(1	100-C92//C92*C94				
110 Theoritical air	9	D106-G75/100*C94-C82/100*C95*C94)/0.232				
111 Total air	ļ.	:110*(1+C91/100)				
112 N2 in flue das	Ŷ	:111*0.768				
113 O2 in flue gas	0	D106-G75/100*C94-C82/100*C95*C94)*C91/100				
114 Dry flue gas	Ŷ	:113+C112+C104				
115 H20 in flue gas	Ŷ	:105+(100-C92)/C92*C94+C111*C93				
116 Water in air	9	D120+D121)*C93				
117						
118 In				Out		
119 Air				Flue gas		=SUM(H120:H123)
120	N2		=C112	,	C02	=C104
121	02		=C108		N2	=D120
122	H2(0	=C116		02	=C113
123					H20	=C115
124 Salt cake						
125	Na2	2S04	=C95*C94	Smelt		=SUM(H126:H130)
126 Ligour					Na2S	=C39
127	Na		=G70/100"\$C\$94		Na2SO4	=C100
128	S		=G72/100*\$C\$94		NaCI	=C101
129	o		=G73/100*\$C\$94		Na2CO3	=C102
130	т		=G74/100*\$C\$94		Inert	=D132
131	0		=G75/100*\$C\$94			
132	Inel	at	=G77/100*\$C\$94			
133	Wa	ater	=C109			
134 total			=SUM(D127:D133,D125,D120:D122)	total		=H125+H119

137 ENERGY BALANCE 138 Temp. of liquor from concentrator ='Entry & Assumption'!C81 F 139 Temp. of combustion air enters ='Entry & Assumption'!C82 F	
138 Temp. of liquor from concentrator ='Entry & Assumption'!C81 F 139 Temp. of combustion air enters ='Entry & Assumption'!C82 F	
139 Temp. of combustion air enters ="Entry & Assumption!IC82 F	
140 Temp. of flue gas discharge ='Entry & Assumption'!C83 F	
141 Temp. of smelt ='Entry & Assumption'IC84 F	
142 Temp of reference ='Entry & Assumption'IC85 F	
143 Radiation loss ='Entry & Assumption'IC86 %	
144 Unaccountable loss ='Entry & Assumption'IC87 %	
145 Specific heat constant =0.9886+4.444*10^5*C138-(0.6276-3.557*10^-4*C138)*C92/100 Btu/lb F	
146	
147 Heat input Amount unit %	
148 1 Heating value of BLS ='Base-Calculation '!C421 Btu/lb solids =C148/\$C	\$154*100
149	
150 2 Sensible heat in black liquor =100/C22*C145*(C138-C142) Btu/lb solids =C150/\$C	\$154*100
151	
152 3 Sensible heat in air = SUM(D50:D52)*0.24*(C139-C142) Btu/lb solids = C152/\$C	\$154*100
153	
154 Total heat input =C152+C150+C148 Btu/lb solids =C154/\$C	\$154*100
155	
156 Heat Output	
157 1 Sensible heat in dry flue gas =SUM(H50:H52)*0.24*(C140-C142) Btu/lb solids =C157/\$C	\$175*100
158	
159 2 Sensible heat in moisture in flue gas =H53*0.45*(C140-C142) Btu/lb solids =C159/\$C	\$175*100
160	
161 3 Latent heat of water in black liguor =(100-C22)/C22*1030 Btu/lb solids =C161/\$C	\$175*100
162	
163 4 Latent heat of water from combustion =(H53-D52-D63)*1030 Btu/lb solids =C163/\$C	\$175*100
164	
165 5 Heat content of smelt =H55*(580+0.4*(C141-1500)) Btu/lb solids =C165/\$C	\$175*100
166	
167 6 Heat to form sulfide =H56*5550 Btu/lb solids =C167/\$C	\$175*100
168	
169 7 Radiation loss =C154*C143/100 Btu/lb solids =C169/\$C	\$175*100
170	
171 8 Unaccountables =C154*C144/100 Btu/lb solids =C171/\$C	\$175*100
172	
173 9 Heat to steam =C154-SUM(C157,C159,C161,C163,C165,C167,C169,C171) Btu/lb solids =C173/\$C	\$175*100
174	
175 Total Heat Output =SUM(C157,C159,C161,C163,C165,C167,C169,C171,C173) Btu/lb solids =C175/\$C	\$175*100
176	
177 Total Heat to steam energy =C173*D86 BTU	

3. Base-Calculation

	А	В	С	D
1		Species	MW	
2		Na2O	=23+23+16	
3		NaOH	=23+16+1	
4		Na2S	=23+23+32	
5		Na2CO3	=23+23+12+48	
6		Na2SO4	=46+32+64	
7		Water	=16+2	
8		CaO	=40+16	
9		CaCO3	=40+12+48	
10		Ca(OH)2	=40+32+2	
11		CO2	44	
12				
13		BASIS/ ASSUMPTION		
14				
15		1 ton dry pulp	='Entry & Assumption'!C10	lb
16		Yield	='Entry & Assumption'!C11	%
17		AA on od wood	='Entry & Assumption'!C12	%
18		WL activity	='Entry & Assumption'!C13	%
19		Sulfidity	='Entry & Assumption'!C14	%
20		WL total alkali	='Entry & Assumption'!C15	
21		Excess lime factor	='Entry & Assumption'!C16	%
22		Avaliability lime	='Entry & Assumption'!C17	%
23		Solid in unwashed slurry	='Entry & Assumption'!C18	%
24		Sp. Gr. WL	='Entry & Assumption'!C19	
25		Na2SO4/Na2S	='Entry & Assumption'!C20	
26		Grit in system/total grit produced	='Entry & Assumption'!C21	
27		Water density	='Entry & Assumption'!C22	lb/cft
28		Sp. Gr. GL	='Entry & Assumption'!C23	
29				
30		Mud washer		
31		Recirculated solids from kiln	='Entry & Assumption'!C26	%
32		Washed mud solids content at underflow	=C23	%
33		Sp. Gr. at mud washer underflow	='Entry & Assumption'!C28	
34		Density of chemical at mud washer underflow	='Entry & Assumption'!C29	lb/cft
35		Density of TTA at mud washer underflow	='Entry & Assumption'!C30	
36		Wash water	='Entry & Assumption'IC31	lb
37				
38		Mud filter		
39		Feed solid	='Entry & Assumption'!C34	%
40		Filtrate discharge	='Entry & Assumption'IC35	%
41		Filter shower/filter discharge	='Entry & Assumption'IC36	
42				
43		Kiln and calciner		
44		Fuel requirement	='Entry & Assumption'IC39	/lb CaO
45		Ratio of fuel/air	='Entry & Assumption'!C40	
				1

46			
47	Scrubber		
48	Water in scrubber to mud wash	='Entry & Assumption'IC43	lb
49	Dilution water	='Entry & Assumption'IC44	lb
50		Ziniy a riccampton or i	
51	Slaker/Causticizer		
52	Make un lime	='Entry & Assumption'IC47	lb
53	Water evanorated	='Entry & Assumption'IC48	lb lb
54	Grite solide in purge	='Entry & Assumption'IC49	%
55	Cinto Solido in purge		70
56	61.0		
57	Density of chemical at drea filter	='Entor & Accumption'IC52	lb/cft
59	Lindorflow Solido	= Entry & Assumption:032	0/
50	C L drog	- Entry & Assumption(C55	/0 b
55	Accurate no No2CO4 loot	-Entry & Assumption!C54	UD UD
60	Assume no Naz304 lost	- Entry & Assumption (Coo	
01	Des a Filter		
62	Dreg Fliter		
63	Dreg solids content	= Entry & Assumption 1058	%
64	vvasn water/dreg ratio	= Entry & Assumption (C59	di
65			
66	Recovery boiler		
67	Black liquor elemental composition		
68	Na	='Entry & Assumption'!C63	%
69	C	='Entry & Assumption'!C64	%
70	H	='Entry & Assumption'!C65	%
71	S	='Entry & Assumption'!C66	%
72	0	='Entry & Assumption'!C67	%
73	inert	='Entry & Assumption'!C68	%
74			
75	Solid Concentration	='Entry & Assumption'!C70	%
76	Humidity (Ib moisture/ Ib dry air)	='Entry & Assumption'!C71	
77			
78			
79	Dry Air composition		
80	02	='Entry & Assumption'!C76	
81	N2	='Entry & Assumption'!C77	
82	Excess air in to system	='Entry & Assumption'!C78	%
83	,		
84	Concentrator		
85	Steam Economy	='Entry & Assumption'!C91	
86	Solid conc.	='Entry & Assumption'IC92	%
87		=	
88	Evaporators		
89	Steam Economy	='Entry & Assumption'IC98	
90	Solid conc	='Entry & Assumption'IC99	%
30	Cond Cond.	- Entry & Assumption:033	/0

	A	В	C	D	E	F
93	Stream no	Description	Amount	Unit	as Na2O	Unit
94		White liqour clarifier				
95		AA as Na2O	=C15/C16*100*C17/100			
96		TA	=C95/C18*100			
97		Volume of white liquor to digester	=C96/C20	cft		
98		Causticizing efficiency	=(E104-E314)/(E104+E105-E314)*100	%		
99		White liqour to digester	=C24*C97*C27	lb		
100)	Degree of Conversion	=-0.0011082*(C20/0.06243)*2 + 0.087307*(C20/0.06243) + 95.243	%		
101	1	Total dissolved solids in white liquor	=C106+C105+C104+C103	lb		
102	2 40	White liqour to WL storage				
103	3	Na2S	=E103/C2*C4	lb	=C95*(C19/100)	lb
104	L	NaOH	=E104/C2*C3*2	lb	=C95-E103	lb
105	5	Na2CO3	=E105/C2*C5	lb	=C96-C95	lb
100	5	Na2SO4	=C103*C25	lb	=C106/C6*C2	lb
107	'					
108	3	Water	=C99-C101	lb		
109)					
110)	Available lime for causticizing	=C104/C3/2*C8*(1+C21/100)	lb		
111	l l	Total lime require	=C110/C22*100	lb		
112	2	Total grit from unavalaible lime	=C111-C110	lb		
113	3	Grit remaining in system	=C26*C112	lb		
114	L	Grit leaving system at classifier	=C112-C113	lb		
115	5	Excess Ca(OH)2 formed in slaker	=C21/100*C104/C3/2*C10	lb		
116	5	Total CaCO3 formed in cauticisizing	=C104/C3/2*C9	lb		
117	'	Water reacting to slake CaO	=C110/C8*C7	lb		
118	3	Total lime mud solids	=C116+C115+C113	lb		
119)	Total unwashed mud slurry	=C118/C23*100	lb		
120)	Total WL in unwashed mud slurry	=C119-C118	lb		
12	1					
122	2 18	White liqour clarifier underflow (lime mud)				
123	3	Na2S	=E123/C2*C4	lb	=\$C\$120/\$C\$99*E103	lb
124		NaOH	=E124/C2*C3*2	lb	=\$C\$120/\$C\$99*E104	lb
12	5	Na2CO3	=E125/C2*C5	lb	=\$C\$120/\$C\$99*E105	lb
126	5	Na2SO4	=E126/C2*C6	lb	=\$C\$120/\$C\$99*E106	lb
121	'	CaCO3	=C116	lb		
128	3	Ca(OH)2	=C115	lb		
129)	Inert	=C113	lb		
130)	Water	=C120/C99*C108	lb		
13		total out	=SUM(C123:C130,C108,C103:C106)	lb	=SUM(E123:E126,E103:E106)	lb
132	2					
133	3 39	Unclarified white liquor				
134	•	Na2S	=C123+C103	lb	=C134/C4*C2	lb
13	5	NaOH	=C124+C104	lb	=C135/C3/2*C2	lb
130	5	Na2CO3	=C125+C105	lb	=C136/C5*C2	lb
131	′	Na2SO4	=C126+C106	lb	=C137/C6*C2	lb

453	total out	=SUM(C448:C452,C442:C445)	lb	
454				
455				
456	Energy usage	=C469*'Entry & Assumption'!C95	BTU	
457	Concentrators			
458				
459 4	Black liquor solid to concentrators			
460	Na	=C475	lb	
461	С	=C476	lb	
462	Н	=C477	lb	
463	S	=C478	lb	
464	0	=C479	lb	
465	Inert	=C480	lb	
466	H2O	=C473/C86*100-C473	lb	
467				
468 5	Steam requirement for concentrator			
469	Steam	=C466/C85	lb	
470				
471	total in	=SUM(C460;C466,C469)	lb	
472				
473	total black liquor solids	=SUM(C475:C480)		
474 7	Black liquor to recovery boiler			
475	Na	=C424	lb	
476	С	=C425	lb	
477	Н	=C426	lb	
478	S	=C427	lb	
479	0	=C428	lb	
480	Inert	=C429	lb	
481	H2O	=C430	lb	
482				
483 6	Condensate from Concentrators			
484	Water	=C466-C481	lb	
485	Steam	=C469	lb	
486				
487	total out	=SUM(C484:C485.C475:C481)	lb	
488				
489				
490	Energy usage	=C503*'Entry & Assumption'!C102	BTU	
491	Evaporators			
492				
493 1	Black ligour solid from washer			
494	Na	=C460	lb	
495	C	=C461	lb	
496	H	=C462	lb	
497	S	=C463	lb	
			····	

138	CaCO3	=C127	lb		
139	Ca(OH)2	=C128	lb		
140	Inert	=C129	lb		
141	Water	=C130+C108	lb		
142	total in	=SUM(C134;C141)	lb	=SUM(E134:E137)	lb
143					
144					
145	Mud washer				
146					
147 15	Fresh water dilution				
148	Water	=C36	lb		
149					
150 23	Recirculated from mud filter				
151	NaOH	=C179	lb	=E179	lb
152	Na2S	=C180	lb	=E180	lb
153	Na2CO3	=C181	lb	=E181	lb
154	Na2SO4	=C182	lb	=E182	lb
155	Water	=C209	lb		
156					
157 29	Recycle from recycle tank				
158	CaCO3	=\$C\$31/100*C168	lb		
159	Ca(OH)2	=\$C\$31/100*C169	lb		
160	Inert	=\$C\$31/100*C170	lb		
161	Water	=C48	lb		
162					
163 18	White ligour clairifer underflow (lime mud)				
164	Na2S	=C123	lb	=F123	lb
165	NaOH	=C124	lb	=E124	lb
166	Na2CO3	=C125	lb	=E125	lb
167	Na2SO4	=C126	lb	=E126	lb
168	CaCO3	=C127	lb		
169	Ca(OH)2	=C128	lb		
170	Inert	=C129	lb		
171	Water	=C130	lb		
172	total in	=SUM(C164:C171.C158:C161.C151:C155.C148)	lb	=SUM(E164:E167.E151:E154)	lb
173					
174	Total underflow	=(C183+C184+C185)/C32*100	lb		
175	Ligour	=C174-(C183+C184+C185)	lb		
176	Weight of chemical	=C175/C27*C34/C33	lb		
177	TTA			=C175/C33/C27*C35	lb
178 16	Underflow from mud washer				
179	Na2S	=E179/C2*C4	lb	=\$E\$177*0.7185	lb
180	NaOH	=E180/C2*C3*2	lb	=\$E\$177*0.21875	lb
181	Na2CO3	=E181/C2*C5	lb	=\$E\$177*0.0625	lb
182	Na2SO4	=E182/C2*C6	lb	0	lb
				-	

183	CaCO3	=(100+\$C\$31)/100*(C168)	lb		
184	Ca(OH)2	=(100+\$C\$31)/100*(C169)	lb		
185	Inert	=(100+\$C\$31)/100*(C170)	lb		
186	Water	=C175-C176	lb		
187					
188 14	Overflow to weak wash storage				
189	Na2S	=C164+C151-C179	lb	=C189/\$C\$4*\$C\$2	lb
190	NaOH	=C165+C152-C180	lb	=C190/\$C\$3/2*\$C\$2	lb
191	Na2CO3	=C166+C153-C181	lb	=C191/\$C\$5*\$C\$2	lb
192	Na2SO4	=C167+C154-C182	lb	=C192/\$C\$6*\$C\$2	lb
193	Water	=C171+C161+C155+C148-C186	lb		
194	total out	=SUM(C189 C193 C179 C186)	lb	=SUM(E189:E192 E179:E182)	lb
195					
196					
197	Mud filter				
198					
199	Mud solids	=(100+C31)/100*C118	lb		
200	Total feed flow	=C199/C39*100			
201 20	Feed to mud filter	01001000 100			
201 20	Na2S	=0179	lb	-0202/\$0\$4*\$0\$2	lb
202	NaOH	=0173	lb	=C203/\$C\$3/2*\$C\$2	lb
203	Na2CO3	-0181	Ib	-0203/0003/2 0002	lb
204	Na2603	-0182	lb	-0205/\$0\$5 \$0\$2	lb
203	0+002	-0102	lb lb	-0203/3030 3032	U
200		-0103	10		
207	Ga(OH)2	-0104	ID IL		
200	Meter .	-0105	10		
209	vvaler	-0200-0199	ai		
210	Eilten als ausses				
211 21	Filter snowers	0010*014			
212	vvater	=0219*041	D		
213	total in	=SUM(C212,C202:C209)	ID	=SUM(E202:E205)	a
214	T a LC LA LA	0100/010000			
215	Total feed to kiin	=C199/C40-100	D		
216 22	Feed to kiln	0000.0007			
217	CaCO3	=C206+C207	lb		
218	Inert	=C208	lb		
219	Water	=C215-C199	lb		
220					
221 23	Recirculated from mud filter				
222	Na2S	=C202	lb	=C222/\$C\$4*\$C\$2	lb
223	NaOH	=C203	lb	=C223/\$C\$3/2*\$C\$2	lb
224	Na2CO3	=C204	lb	=C224/\$C\$5*\$C\$2	lb
225	Na2SO4	=C205	lb	=C225/\$C\$6*\$C\$2	lb
226	Water	=C212+C209-C219	lb		
227	total out	=SUM(C222:C226,C217:C219)	lb	=SUM(E222:E225)	lb

000				
228				
229	Kile and a labor			
230	Kiln and calciner			
231	CaCO3> CaO+CO2			
232	E 1. 1.1			
233 22	Feed to kiln			
234	CaCO3	=0217	lb	
235	Inert	=C218	lb	
236	Water	=C219	lb	
237				
238 24	Fuel + air			
239	Fuel	=C44*C244	lb	
240	Air	=C239/C45	lb	
241	total in	=SUM(C234:C236,C239:C240)	lb	
242				
243 25	Reburned lime feed			
244	CaO	=C110-C52	lb	
245	Inert	=C112	lb	
246				
247 26	Underflow to scrubber			
248	Dust	=C234-C244/56*100-C245+C235	lb	
249	CO2	=C244/56*44	lb	
250	Combustion product	=C239+C240	lb	
251	Water	=C236	lb	
252	total out	=SUM(C248:C251,C244:C245)	lb	
253				
254				
255	Scrubber Stacks			
256				
257 26	Underflow to scrubber			
258	Dust	=C248	lb	
259	CO2	=C249	lb	
260	Combustion product	=C250	lb	
261	Water	=C251	lb	
262				
263 28	Dilution water			
264	Water	=C49	lb	
265	total in	=SUM(C258-C261-C264)	lb	
266		0011(0200.0201,0204)	10	
267 27	Vent das			
268	Duet	=0258-0274	lb	
269	002	=0259-0274	lb	
270	Combuction product	-0200	lb	
271	Water	-0264 0275+0261	lb.	
271	vvaler	-0204-02/07-0201	IU III	
212				

274 Solids =C158+C159+C160 Ib 275 Water =C48 Ib 276 total out =SUM(C268-C271,C274:C275) Ib 277 Slaker/ Causticizer 278 Slaker/ Causticizer 279 Slaker/ Causticizer 280 Ca0 + H2O -> Ca(OH)2	273 29	Recycle from recycle tank				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	274	Solids	=C158+C159+C160	lb		
Itotal out =SUM(C268:C271,C274:C275) Ib Ib 277	275	Water	=C48	lb		
277 Market Market <td>276</td> <td>total out</td> <td>=SUM(C268:C271,C274:C275)</td> <td>lb</td> <td></td> <td></td>	276	total out	=SUM(C268:C271,C274:C275)	lb		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	277					
279 Slaker/ Causticizer Image: CaO + H2O -> Ca(OH)2 Image: CaO + H2O -> CaO + H2O +> CaO + CaO += CaO + CaO + CaO += CaO + CaO + H2O +> CaO + CaO += CaO += CaO + CaO += C	278					
280 CaO + H2O -> Ca(OH)2 MacCol	279	Slaker/ Causticizer				
281 Cq(OH)2 + Na2C03 -> 2NaOH + CaC03 CaC13 Ib CaC03 CaC13 CaC13 CaC13 CaC13 <th< td=""><td>280</td><td>CaO + H2O> Ca(OH)2</td><td></td><td></td><td></td><td></td></th<>	280	CaO + H2O> Ca(OH)2				
282 NaCO3 reacted =C291/100*106 lb 283 NaOH formed =C291/100*10*2 lb 284 Water reacted =C291/100*10*2 lb 285 Available lime for causticizing =C306+C310 lb 286 Available lime for causticizing =C134 lb 286 NaCH =C134 lb =C287/SC\$4*5C\$2 lb 287 Na2CO3 =C135 lb =C289/SC\$5*3C\$2 lb 288 Na2CO3 =C136 lb =C289/SC\$5*3C\$2 lb 290 Na2SO4 =C137 lb =C290/SC\$6*5\$C\$2 lb 291 CaCO3 =C137 lb =C290/SC\$6*5\$C\$2 lb 292 Ca(OH)2 =C139 lb 293 Inert =C139 lb 293 Inert =C140 lb	281	Ca(OH)2 + Na2CO3> 2NaOH + CaCO3				
283 NaOH formed =C291/100*10*2 Ib 284 Water reacted =C291/100*18+C292/74*18 Ib 285 Available lime for causticizing =C306+C310 Ib 286 39 Unclarified white liquor 287 Na2S =C134 Ib =C287/SC\$4*\$C\$2 Ib 288 Na2CO3 =C135 Ib =C289/SC\$57\$C\$2 Ib 290 Na2SO4 =C137 Ib =C290/\$C\$6*\$C\$2 Ib 291 CaCO3 =C138 Ib =C290/\$C\$6*\$C\$2 Ib 292 Ca(OH)2 =C139 Ib 293 Inert =C140 Ib 294 Water =C141 Ib	282	NaCO3 reacted	=C291/100*106	lb		
Vater reacted =C291/100'18+C292/74'18 Ib 286 Available lime for causticizing =C306+C310 Ib 286 39 Unclarified white liquor =C306+C310 Ib =C287/SC\$4'\$C\$2 Ib 287 Na2S =C134 Ib =C287/SC\$4'\$C\$2 Ib 288 NaOH =C135 Ib =C288/SC\$332'\$C\$2 Ib 290 Na2SO4 =C137 Ib =C289/\$C\$6'\$C\$2 Ib 291 CaCO3 =C138 Ib =C280/\$C\$6'\$C\$2 Ib 292 Ca(OH)2 =C139 Ib =	283	NaOH formed	=C291/100*40*2	lb		
Available lime for causticizing =C306+C310 Ib 286 39 Unclarified white liquor	284	Water reacted	=C291/100*18+C292/74*18	lb		
286 39 Unclarified white liquor = C134 Ib = C287/SC\$4*\$C\$2 Ib 287 Na2S = C134 Ib = C287/SC\$4*\$C\$2 Ib 288 NaOH = C135 Ib = C288/SC\$37*\$C\$2 Ib 289 Na2CO3 = C136 Ib = C289/SC\$5*\$C\$2 Ib 290 Na2SO4 = C137 Ib = C290/\$C\$6*\$C\$2 Ib 291 CaCO3 = C138 Ib = C290/\$C\$6*\$C\$2 Ib 292 Ca(OH)2 = C139 Ib = C290/\$C\$6*\$C\$2 Ib 293 Inert = C140 Ib = C290/\$C\$6*\$C\$2 Ib 294 Water = C141 Ib = C141 Ib = C141	285	Available lime for causticizing	=C306+C310	lb		
287 Na2S =C134 lb =C287/5C\$4*\$C\$2 lb 288 NaOH =C135 lb =C288/5C\$3/2*\$C\$2 lb 289 Na2C03 =C136 lb =C289/5C\$5/2*\$C\$2 lb 290 Na2S04 =C137 lb =C289/5C\$5/*\$C\$2 lb 291 CaC03 =C138 lb =C290/\$C\$6*\$C\$2 lb 292 Ca(OH)2 =C139 lb =C290/\$C\$6*\$C\$2 lb 293 Inert =C139 lb =C289/\$C\$6*\$C\$2 lb 293 Inert =C141 lb =C289/\$C\$6*\$C\$2 lb	286 39	Unclarified white liquor				
NaOH =C135 lb =C288/SC\$3/2*\$C\$2 lb 289 Na2CO3 =C136 lb =C289/SC\$5*\$C\$2 lb 290 Na2SO4 =C137 lb =C289/SC\$6*\$C\$2 lb 291 CaCO3 =C138 lb =C289/SC\$6*\$C\$2 lb 292 Ca(OH)2 =C139 lb =C289/SC\$6*\$C\$2 lb 293 Inert =C140 lb =C289/SC\$6*\$C\$2 lb	287	Na2S	=C134	lb	=C287/\$C\$4*\$C\$2	lb
289 Na2CO3 =C136 lb =C289/\$C\$6^*\$C\$2 lb 290 Na2SO4 =C137 lb =C290/\$C\$6^*\$C\$2 lb 291 CaCO3 =C138 lb =C290/\$C\$6^*\$C\$2 lb 292 Ca(OH)2 =C139 lb = = 293 Inet =C140 lb = = 294 Water =C141 lb = =	288	NaOH	=C135	lb	=C288/\$C\$3/2*\$C\$2	lb
290 Na2SO4 =C137 Ib =C290/\$C\$6*\$C\$2 Ib 291 CaCO3 =C138 Ib	289	Na2CO3	=C136	lb	=C289/\$C\$5*\$C\$2	lb
291 CaCO3 =C138 lb 292 Ca(OH)2 =C139 lb 293 Inert =C140 lb 294 Water =C141 lb	290	Na2SO4	=C137	lb	=C290/\$C\$6*\$C\$2	lb
292 Ca(OH)2 =C139 lb 293 Inet =C140 lb 294 Water =C141 lb	291	CaCO3	=C138	lb		
293 Inert =C140 Ib 294 Water =C141 Ib	292	Ca(OH)2	=C139	lb		
294 Water =C141 Ib	293	Inert	=C140	lb		
	294	Water	=C141	lb		
295	295					
296 Total purge grits =C298/C54*100 lb	296	Total purge grits	=C298/C54*100	lb		
297 36 Grit to discharge	297 36	Grit to discharge				
298 Inerts =C114 Ib	298	Inerts	=C114	lb		
299 Water =C296-C298 lb	299	Water	=C296-C298	lb		
300	300					
301 37 Water evaporated	301 37	Water evaporated				
302 Water = C53 Ib	302	Water	=C53	lb		
303 total out =SUM(C302,C298;C299,C287;C294) lb =SUM(E287;E290) lb	303	total out	=SUM(C302,C298:C299,C287:C294)	lb	=SUM(E287:E290)	lb
304	304					
305 25 Reburned lime feed	305 25	Reburned lime feed				
306 CaO =C244 lb	306	CaO	=C244	lb		
307 Inert =C245 Ib	307	Inert	=C245	lb		
308	308					
309 35 Make up lime	309 35	Make up lime				
310 CaO =C52 lb	310	CaO	=C52	lb		
311	311					
312 34 Clarified green liquor feed	312 34	Clarified green liquor feed				
313 Na2S =C287 lb =C313/SC\$4*SC\$2 lb	313	Na2S	=C287	lb	=C313/\$C\$4*\$C\$2	lb
314 NaOH =C288-C283 lb =C314/SC\$3/2*SC\$2 lb	314	NaOH	=C288-C283	lb	=C314/\$C\$3/2*\$C\$2	lb
315 Na2CO3 =C289+C282 lb =C315/SCS5*SCS2 lb	315	Na2CO3	=C289+C282	lb	=C315/\$C\$5*\$C\$2	lb
316 Na2SO4 =C290 lb =C316/SC\$6*\$C\$2 lb	316	Na2SO4	=C290	lb	=C316/\$C\$6*\$C\$2	lb
317 Water =C302+C299+C294+C284 lb	317	Water	=C302+C299+C294+C284	lb		

318	total in	=SUM(C306:C307,C310,C313:C317)	lb	=SUM(E313:E316)	lb
319					
320					
321	Green Liquor Clarifier				
322	•				
323 13	Unclarified green ligour from smelt tank				
324	Dreg	=C59	lb		
325	Na2S	=C344+C356-C332	lb	=C325/\$C\$4*\$C\$2	lb
326	NaOH	=C345+C357-C333	lb	=C326/\$C\$3/2*\$C\$2	lb
327	Na2CO3	=C346+C358-C334	lb	=C327/\$C\$5*\$C\$2	lb
328	Na2SO4	=C347+C359-C335	lb	=C328/\$C\$6*\$C\$2	lb
329	Water	=C349+C360-C336	lb		
330					
331 30	Filtrate to GLC				
332	Na2S	=C344	lb	=E344	lb
333	NaOH	=C345	lb	=E345	lb
334	Na2CO3	=C346	lb	=E346	lb
335	Na2SO4	=C347	lb	=F347	lb
336	Water	=C387	lb		
337	total in	=SUM(C332:C336 C324:C329)	lb	=SUM(E325:E328.E332:E335)	lb
338					
339	Total underflow to dreg filter	=C59/C58*100	lb		
340	Ligour in underflow	=C339-C59	lb		
341	Weight of chemical in underflow	=C340/C27/C28*C57	lb		
342	TTA			=0340/027/028*018	lb
343 32	Underflow to drea filter				
344	Na2S	=F344/C2*C4	lb	=0 1*SE\$342	lb
345	NaOH	=E345/C2*C3*2	lb	=0.2*\$E\$342	lb
346	Na2CO3	=E346/C2*C5	lb	=0.7*\$E\$342	lh
347	Na2SO4	=F347	lb	0	lb
348	Dreg	=C324	lb		
349	Water	=C340-C341	lb		
350	Water	0040 0041	10		
351	GL TTA	=F356+F357+F358	lh		
352	Volume GI	=C351/C20	cft		
353	Sulphidity	=E356/C351*100	%		
354	AA in GI	=(F356+F357)/C352	lb/cft		
355 34	Clarified green liggur feed	-(235012357)/0352	ib/cit		
356	Na2S	-0313	lb	-0356/909/1*9092	lb
357	NaOH	=0313	lb	=0357/\$0\$3/2*\$0\$2	lb
358	Na2CO3	=0315	lb	=0358/\$0\$5/2 0002	lb
359	Na2503	=0316	lb.	=0359/\$0\$5 \$0\$2	lb
360	Water	-0317	lb.	-0333/0000 0002	10
361	total out	=SUM(C356-C360_C344-C349)	lb.	=SUM(E356-E359 E344-E247)	lb
362	totar Out	-00M(0330.0300,0344.0345)	u	-00m(L000.L000,L044.E047)	i0

36:	3					
364	4	Dregs filter				
36	5	0				
36	6 31	Wash water				
36	7	Water	=C64*C374	lb		
36	8					
36	9 32	Underflow to dreg filter				
37	0	Na2S	=C344	lb	=E344	lb
37	1	NaOH	=C345	lb	=E345	lb
37	2	Na2CO3	=C346	lb	=E346	lb
37	3	Na2SO4	=C347	lb	=F347	lb
374	4	Dreg	=C348	lb		
37	5	Water	=C349	lb		
37	6	total in	=SUM(C370:C375 C367)	lb	=SUM(E370:E373)	lb
37	7					
37	8 33	Dregs to discharge				
37	9	Dreg	=C374	lb		
38	0	Water	=C379/C63*100-C379	lb		
38	1					
38	2 30	Filtrate to GLC				
38	3	Na2S	=C370	lb	=F370	lb
38	4	NaOH	=C371	lb	=F371	lb
38	5	Na2CO3	=0372	lb	=F372	lb
38	6	Na2SO4	=0373	lb	=E373	lb
38	7	Water	=C367+C375-C380	lb	2010	
38	8	total out	=SUM(C379:C380_C383:C387)	lb	=SUM(E382:E385)	lb
38	9					
39	0					
39	1	Smelt tank				
39	2 14	Overflow to weak wash storage				
39	3	Na2S	=C189	lb	=F189	lb
39	4	NaOH	=C190	lb	=F190	lb
39	5	Na2CO3	=C191	lb	=E191	lb
39	6	Na2SO4	=C192	lb	=F192	lb
39	7	Water	=C193	lb		
39	8					
39	9	% Reduction	=E402/(E402+E405)*100	%		
40	0 11	Smelt from furnace				
40	1	Dreg	=C413	lb		
40	2	Na2S	=C414-C393	lh	=C402/\$C\$4*\$C\$2	lb
40	3	NaOH	=C415-C394	lb	=C403/\$C\$3/2*\$C\$2	lb
40	4	Na2CO3	=C416-C395	lh	=C404/SC\$5*SC\$2	lb
40	5	Na2SO4	=C417-C396	lb	=C405/SCS6*SCS2	lb
40	6		2.11 0000		1.1.1.0000.0002	
40	7	total in	=SUM(C401:C405 C393:C397)	lb	=SUM(E402:E405 E393:E396)	lb
				10		

408					
409 12	Scrubber stack loss				
410	Water	=C397-C418	lb		
411					
412 13	Unclarified green ligour from smelt tank				
413	Dreg	=C324	=D324		
414	Na2S	=C325	=D325	=E325	=F325
415	NaOH	=C326	=D326	=E326	=F326
416	Na2CO3	=C327	=D327	=E327	=F327
417	Na2SO4	=C328	=D328	=E328	=F328
418	Water	=C329	=D329		
419	total out	=SUM(C413:C418,C410)	lb	=SUM(E414:E417)	lb
420					
421	Black Liquor Heating Value	='Entry & Assumption'!C72	BTU/Ib		
422	Recovery boiler				
423 7	Black liquor to recovery boiler				
424	Na	='Base-Recovery Boiler'!D127	lb		
425	С	='Base-Recovery Boiler'!D129	lb		
426	Н	='Base-Recovery Boiler'!D130	lb		
427	S	='Base-Recovery Boiler'!D128	lb		
428	0	='Base-Recovery Boiler'!D131	lb		
429	Inert	='Base-Recovery Boiler'!D132	lb		
430	H2O	='Base-Recovery Boiler'!D133	lb		
431					
432 8	Salt cake				
433	Na2SO4	='Base-Recovery Boiler'!D125	lb		
434					
435 9	Air				
436	N2	='Base-Recovery Boiler'!D120	lb		
437	02	='Base-Recovery Boiler'!D121	lb		
438	H2O	='Base-Recovery Boiler'!D122	lb		
439	total in	=SUM(C436:C438,C433,C424:C430)	lb		
440					
441 10	Flue gas				
442	N2	='Base-Recovery Boiler'!H121	lb		
443	02	='Base-Recovery Boiler'!H122	lb		
444	CO2	='Base-Recovery Boiler'!H120	lb		
445	H2O	='Base-Recovery Boiler'!H123	lb		
446					
447 11	Smelt from furnace				
448	Na2S	='Base-Recovery Boiler'!H126	lb		
449	NaOH	=C403	lb		
450	Na2CO3	='Base-Recovery Boiler'!H129	lb		
451	Na2SO4	='Base-Recovery Boiler'!H127	lb		
452	Inert	='Base-Recovery Boiler'IH130	lb		

453	total out	=SUM(C448:C452.C442:C445)	lb
454			
455			
456	Energy usage	=C469*'Entry & Assumption!C95	BTU
457	Concentrators		
458			
459 4	Black liquor solid to concentrators		
460	Na	=C475	lb
461	C	=C476	lb
462	Н	=C477	lb
463	S	=C478	lb
464	0	=C479	lb
465	Inert	=C480	lb
466	H20	=C473/C86*100-C473	lh
467			
468 5	Steam requirement for concentrator		
469	Steam	=C466/C85	lh
470			
471	total in	=SUM(C460:C466_C469)	lh
472			
473	total black liquor solids	=SUM(C475:C480)	
474 7	Black liquor to recovery holler		
475	Na	=C424	lh
476	C	=C425	lh
477	H	=C426	lh
478	S	=C427	lh
479	0	=C428	lh
480	Inert	=C429	lh
481	H2O	=C430	lh
482	1120	0400	
483.6	Condensate from Concentrators		
484	Water	=0466-0481	lh
485	Steam	=C469	lh
486		0100	
487	total out	=SUM(C484:C485;C475:C481)	lh
488			
489			
490	Energy usage	=C503*'Entry & Assumption'IC102	BTU
491	Evaporators		510
492	- apointoio		
493 1	Black ligour solid from washer		
494	Na	=C460	lh
495	C	=C461	lb
496	H	=0462	lb
497	S	=0463	lb
198	0	=0464	lb
400	<u>v</u>	-0404	IU

499	Inert	=C465	lb
500	H2O	=C507/C90*100-C507	lb
501			
502 2	Steam requirement for evaporators		
503	Steam	=C500/C89	lb
504			
505	total in	=SUM(C494:C500,C503)	lb
506			
507	Total black liquor solids	=SUM(C509:C514)	
508 4	Black liquor solid to concentrators		
509	Na	=C494	lb
510	C	=C495	lb
511	Н	=C496	lb
512	S	=C497	lb
513	0	=C498	lb
514	Inert	=C499	lb
515	H2O	=C466	lb
516			
517 3	Condensate from evaporators		
518	Water	=C500-C515	lb
519	Steam	=C503	lb
520			
521	total out	=SUM(C518:C519,C509:C515)	lb
522			

4. Base-Overall Balance

3	IN			OUT		
4	Stream no	Description	Amount (Ib)	Stream no	Description	Amount (lb)
5	1	='Base-Calculation '!B493		3	='Base-Calculation '!B517	
6		='Base-Calculation '!B494	='Base-Calculation '!C494		='Base-Calculation '!B518	='Base-Calculation '!C518
7		='Base-Calculation '!B495	='Base-Calculation '!C495		='Base-Calculation '!B519	='Base-Calculation '!C519
8		='Base-Calculation '!B496	='Base-Calculation '!C496			
9		='Base-Calculation '!B497	='Base-Calculation '!C497	6	='Base-Calculation '!B483	
10		='Base-Calculation '!B498	='Base-Calculation '!C498		='Base-Calculation '!B484	='Base-Calculation '!C484
11		='Base-Calculation '!B499	='Base-Calculation '!C499		='Base-Calculation '!B485	='Base-Calculation '!C485
12		='Base-Calculation '!B500	='Base-Calculation '!C500			
13				10	='Base-Calculation '!B441	
14	2	='Base-Calculation '!B502			='Base-Calculation '!B442	='Base-Calculation '!C442
15		='Base-Calculation '!B503	='Base-Calculation '!C503		='Base-Calculation '!B443	='Base-Calculation '!C443
16					='Base-Calculation '!B444	='Base-Calculation '!C444
17	5	='Base-Calculation '!B468			='Base-Calculation '!B445	='Base-Calculation '!C445
18		='Base-Calculation '!B469	='Base-Calculation '!C469			
19				12	='Base-Calculation '!B409	
20	8	='Base-Calculation '!B432			='Base-Calculation 'B410	='Base-Calculation '!C410
21		='Base-Calculation '!B433	='Base-Calculation '!C433			
22				27	='Base-Calculation '!B267	
23	9	='Base-Calculation '!B435			='Base-Calculation '!B268	='Base-Calculation '!C268
24		='Base-Calculation '!B436	='Base-Calculation '!C436		='Base-Calculation 'IB269	='Base-Calculation '!C269
25		='Base-Calculation '!B437	='Base-Calculation '!C437		='Base-Calculation '!B270	='Base-Calculation '!C270
26		='Base-Calculation '!B438	='Base-Calculation '!C438		='Base-Calculation 'B271	='Base-Calculation '!C271
27						
28				33	='Base-Calculation '!B378	
29	15	='Base-Calculation '!B147			='Base-Calculation '!B379	='Base-Calculation '!C379
30		='Base-Calculation '!B148	='Base-Calculation '!C148		='Base-Calculation '!B380	='Base-Calculation '!C380
31						
32	19	fresh water addition before mud filter		36	='Base-Calculation '!B297	
33		Water	='Base-Calculation '!C209-'E		='Base-Calculation 'IB298	='Base-Calculation '!C298
34					='Base-Calculation 'IB299	='Base-Calculation '!C299
35	21	='Base-Calculation '!B211				
36		='Base-Calculation '!B212	='Base-Calculation '!C212	37	='Base-Calculation '!B301	
37					='Base-Calculation '!B302	='Base-Calculation '!C302
38	24	='Base-Calculation '!B238				
39		='Base-Calculation '!B239	='Base-Calculation '!C239	40	='Base-Calculation '!B102	
40		='Base-Calculation '!B240	='Base-Calculation '!C240		='Base-Calculation 'B103	='Base-Calculation '!C103
41					='Base-Calculation '!B104	='Base-Calculation '!C104
42	28	='Base-Calculation '!B263			='Base-Calculation 'B105	='Base-Calculation '!C105
43		='Base-Calculation '!B264	='Base-Calculation '!C264		='Base-Calculation '!B106	='Base-Calculation '!C106
44					Water	='Base-Calculation '!C108
45	31	='Base-Calculation '!B366				
46		='Base-Calculation '!B367	='Base-Calculation '!C367			
47						
48	35	='Base-Calculation '!B309				
49		='Base-Calculation '!B310	='Base-Calculation 'IC310			
50						
51		Total in	=SUM(C6:C49)		Total out	=SUM(H6:H44)

References

1. Adams, T.N., (1997), <u>Kraft Recovery Boilers</u>, Tappi Press, P.3

2. Biermann, C.J., (1996), <u>Handbook of Pulping and Papermaking</u>, Academic Press, 2nd edition.

3. Blackwell, et al., (1986), Kraft Deadload Reduction by White Liquor Evaporation: Theoretical Analysis of A Proposed Process, Pulp and Paper Canada, 87:10.

4. Blackwell, B. and MacCallum, C., (1987), Effect of Kraft Deadload on Recovery Boiler Performance: A Theoretical analysis, Pulp & Paper Canada, 88:7, P.51.

5. Dorris, G.M. and Allen, L.H., (1987), Operating Variables Affecting the Causticizing of Green Liquors with Reburned Limes, Journal of Pulp and Paper Science, 13:3, P.J99.

6. Dorris, G.M., (2003), Effects of Mud Washing and Calcining Temperature on Lime Properties, Journal of Pulp and Paper Science, 29:6, P.185.

7. Grace, T. M., (1978), The Cost of Carrying Recovery Sulfate Deadload, TAPPI, 61:11, P.75.

8. Green, R.P. and Hough, G., (1992), <u>Chemical Recovery in the Alkaline</u> <u>Pulping Processes</u>, 1992 TAPPI Press.

9. Kocurek, M.J., <u>Pulp and Paper Manufacture Volume 5: Alkaline Pulping</u>, Joint Textbook Committee of the Paper Industry, 3rd Edition.

10. Kojo, M., (1978), Some Theoretical and Practical Aspects of the Causticizing Equilibrium and Raising the White Liquor Concentration, Paperi ja Puu – Papper o. Tra, 60:4, P.445.

11. Kojo, M., (1979), Effects of The Changing White Liquor Concentration on the Operation, Power Consumption and Investment of the Recovery Process, Paperi ja Puu – Papper o. Tra, 60:9, P.701.

12. Kojo, M., (1980), Benefits can be obtained with stronger and hotter white liquor, Pulp and Paper, 11, P.174.

13. Kojo, M., (1980), Dregs Problem: What to Do with Them?, Paperi ja Puu – Papper o. Tra, 61:3, P.701.

14. Misra, M.N. and Sowul, L., (1990), Kraft Liquor Cycle Simulation, Pulp and Paper Canada, 91:8, P.99.

15. Ransdell, J.C. and Genco, J.M., (1991), The Effect of Sodium Sulfide on the Equilibrium of the Kraft Causticization Reaction, Tappi Journal, 8, P.169.

16. Sandwell and Company Ltd., (1986), Deadload Reduction in the Kraft Pulping Process, Environment Canada.

17. Smook, G.A., (1982), <u>Handbook for Pulp and Paper Technologists</u>, Joint Textbook Committee of the Paper Industry, 2nd edition.

18. Sandler, S., (1999), <u>Chemical Engineering and Thermodynamics</u>, John Wiley & Sons, 3rd edition

19. Walley et al., (2003), Recausticizing Material Balance Equations Relating to Digester Requirement, TAPPI/ TIP 0418-02

20. Kietaanniemi, O. and N-E, Virkola, (1978), Amount and Behavior of Certain Chemical Elements in Kraft Pulp Manufacture: Results of a Mill Scale study, Paperi ja Puu – Papper o. Tra, 60 (9), P507.

21. Empie, H.J., 2004, Personal communication.