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(57) ABSTRACT 

Security systems can provide secure and efficient in-VM 
monitoring. An exemplary security system can be built upon 
hardware virtualization features and can comprise a virtual 
machine having a plurality of standard virtual address spaces, 
as well as a hidden virtual address space. While the standard 
virtual address spaces can be directly accessible by a kernel in 
the virtual machine, the hidden virtual address space can be 
hidden from the kernel, which can be absent a virtual page 
table corresponding to the hidden virtual address space. A 
security monitor can reside in the hidden address space, 
monitoring the kernel without being modifiable by the kernel. 
A processor can transfer focus from the standard virtual 
address spaces to the hidden virtual address space only 
through predetermined entry gates, and the processor can 
transfer focus from the hidden virtual address space to the 
standard virtual address spaces only through predetermined 
exit gates. 

14 Claims, 7 Drawing Sheets 
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SYSTEMS AND METHODS FOR SECURE 
IN-VM MONITORING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 

This application is a United States National Stage Appli­
cation of International Patent Application Serial No. PCT/ 
US2010/055507, filed 4 Nov. 2010, which claims a benefit, 
under35 U.S.C. §119(e), ofU.S. Provisional Application Ser. 
No. 61/258,033, filed 4 Nov. 2009. The entire contents and 

10 

substance of which these two applications are hereby incor­
porated by reference as if fully set out below. 

same VM of the trusted process, without being subject to the 
conventional risks of in-VM monitoring. In an exemplary 
embodiment, such systems and methods can provide security 
similar to out-of-VM monitoring, with efficiency similar to 
conventional in-VM monitoring. It is to such systems and 
methods that various embodiments of the invention are 
directed. 

Briefly described, various embodiments of the invention 
are monitoring systems and methods for secure in-VM moni­
toring. In an exemplary embodiment, a monitoring system 
can be facilitated by hardware virtualization and can com-
prise a guest VM, a hidden address space in the guest VM, an 
entry gate, an exit gate, and a hypervisor. 

TECHNICAL FIELD 

Various embodiments of the present invention relate to 
security of computer systems and, more particularly, to 
secure monitoring of a computer system from within a virtual 
machine in which an untrusted program executes. 

BACKGROUND 

Kernel-level attacks or malicious programs, such as root­
kits, that compromise the kernel of an operating system are 
one of the most important concerns in systems security at 
present. These attacks can run at the same privilege level as 
the kernel and can thus modify kernel-level code or sensitive 
data to hide various malicious activities, to change operating 
system behavior, or even to take complete control of the 
system. Kernel-level security tools can be crippled and made 
ineffective by these attacks, which can run, access, and 
modify these security tools. A large body of research has 
adopted virtual machine (VM) monitor technology in an 
effort to mitigate such attacks. A higher privileged hypervisor 
outside of a virtual machine in which the kernel runs can 
enforce memory protections and preemptively intercept 
events throughout the operating system environment. 

A major reason for adopting virtualization is to isolate 
security tools from an untrusted VM by moving those security 
tools to a separate, trusted, secure VM, and then using intro­
spection to monitor and protect the untrusted VM from inside 
the trusted VM. Approaches that passively monitor various 
security properties, by periodically looking inside the 
untrusted VM for evidence of suspicious activity, have been 
proposed, but passive monitoring can only detect renmants of 
an already successful attack. Active monitoring from outside 

15 
The guest VM can contain code and data for the kernel of 

an operating system. One or more applications can run within 
on the operating system inside the VM, and the operating 
system can provide each application with its own virtual 
address space. The kernel can contain virtual page tables for 

20 each of the applications, so as to map the virtual address 
spaces of the applications to an address space of the operating 
system. The guest VM can also contain a hidden address 
space, for which the kernel does not have a virtual page table. 
Thus, the kernel does not have access to the hidden address 

25 space. A security monitor, such as part of an antivirus appli­
cation, can run inside the hidden address space, isolated from 
the untrusted portion of the guest VM outside of the hidden 
address space. 

The hypervisor can run outside of the guest VM at a higher 
30 privilege level than the guest VM. The hypervisor can contain 

one or more shadow page tables corresponding to the virtual 
page tables in the guest VM, so as to map the address spaces 
of the applications and the operating system to a physical 
address space. The hypervisor can also contain a secure 

35 shadow page table for the hidden address space, enabling the 
hypervisor to map the hidden address space to physical 
address space. 

The entry gate and the exit gate can be code blocks con­
figured to switch the focus of a processor from between an 

40 address space of an application running on the operating 
system and the hidden address space. The processor can 
access the hidden address space only through an entry gate, 
and the processor can exit the hidden address space only 
through an exit gate. In an exemplary embodiment, the entry 

45 gate can contain code that first modifies the value in the CR3 
register to a physical address corresponding to the hidden 
address space. With the CR3 register modified to point to the 
hidden address space, the processor automatically jumps into 
the hidden address space, where the processor can process 

of the untrusted VM, in contrast, has the advantage of detect­
ing attacks earlier and preventing certain attacks from suc­
ceeding. Active monitoring from outside of an untrusted VM 
can be achieved by placing secure hooks inside the untrusted 
VM, to intercept various events and invoke the security tool 
residing in a separate secure VM. Because the secure VM is 
isolated from the untrusted VM, so as to prohibit tampering, 
switching between the VMs occurs through the hypervisor. 
But the large overhead for switching between the untrusted 
VM, the hypervisor, and the secure VM makes this approach 55 

suitable only for actively monitoring a few events that occur 
less frequently during system execution. 

50 code of the security monitor inside the hidden address space. 
After the security monitor handles an event that triggered the 
call to the entry gate, the security monitor can then call the 
exit gate, to return focus to a process executing the guest 
operating system. 

Generally, a call to the hypervisor is performed whenever 
the CR3 register is modified. The hardware underlying the 
monitoring system, however, can provide a target list of CR3 
values, such that a hypervisor call is not made when the CR3 
register value is modified to one of the target values. Thus, to 

Thus, with previous systems and methods, in-VM moni­
toring provides an inadequate level of security, while moni­
toring from outside a VM is feasible only when limiting the 
number and type of events that can be actively monitored, 
and. 

SUMMARY 

There is a need for secure in-VM monitoring systems and 
methods, for monitoring untrusted processes from within the 

60 avoid hypervisor calls when focus is switched from the kernel 
to the hidden address space, the target list can be maintained 
to include the values to which the entry and exit gates will 
modify the CR3 register, so as to avoid a hypervisor call when 

65 

switching into or out of the hidden address space. 
The monitoring system can thus provide efficient, secure 

in-VM active monitoring of untrusted processes in a com­
puter system. Other objects, features, and advantages of the 
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monitoring system will become more apparent upon reading 
the following specification in conjunction with the accompa­
nying drawing figures. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 illustrates a diagram of a monitoring system, 
according to an exemplary embodiment of the present inven­
tion. 

FIG. 2 illustrates an exemplary computing system, on 
which the monitoring system can operate, according to an 
exemplary embodiment of the present invention. 

FIG. 3 illustrates a hardware-based virtualization system, 
which can comprise and build upon the hardware and soft­
ware components of FIG. 2, and in which the monitoring 
system can be implemented, according to an exemplary 
embodiment of the present invention. 

FIG. 4 illustrates how virtual memory addresses can be 
translated to addresses in a physical address space in a typical 
x86-type architecture, useable in an exemplary embodiment 
of the present invention. 

FIG. 5 illustrates memory mapping for a guest virtual 
machine, according to an exemplary embodiment of the 
present invention. 

FIG. 6 illustrates how the switching is performed between 
standard and hidden virtual address spaces by updating the 
CR3 register, according to an exemplary embodiment of the 
present invention. 

FIG. 7 illustrates contents of an entry gate and an exit gate 
for accessing the hidden virtual address space, according to 
an exemplary embodiment of the present invention. 

DETAILED DESCRIPTION 

To facilitate an understanding of the principles and features 
of the invention, various illustrative embodiments are 
explained below. In particular, the invention is described in 
the context of being a monitoring system for secure and 
efficient in-VM monitoring of untrusted processes. Embodi­
ments of the invention, however, are not limited to this con­
text. Rather, embodiments of the invention can provide a 
means to isolate various types of processes, other than just 
monitor processes, from other processes within a VM. 

The components described hereinafter as making up vari­
ous elements of the invention are intended to be illustrative 
and not restrictive. Many suitable components that can per­
form the same or similar functions as components described 
herein are intended to be embraced within the scope of the 
invention. Such other components not described herein can 
include, but are not limited to, similar or analogous compo­
nents developed after development of the invention. 

4 
The guest VM can comprise a system address space 130 

and a hidden address space 140. A kernel 150, including both 
kernel code 152 and kernel data 154, can reside in the system 
address space 130, while a security monitor 160, or monitor­
ing process, can reside in the hidden address space 140. The 
hidden address space 140, and thus the security monitor 160, 
can be hidden from the kernel 150. The monitoring system 
100 can be a secure, in-VM monitoring system based on 
hardware virtualization features. Through the monitoring 

10 system 100, the security monitor 160 can securely monitor 
untrusted processes having the same privilege level and resid­
ing in the same VM as the security monitor 160. The moni­
toring system 100 can be as, or nearly as, secure as an out­
of-VM monitoring system, while maintaining an efficiency 

15 on par with conventional in-VM monitoring systems. 
Embodiments of the present monitoring system 100 can 
achieve this level of security and efficiency by not requiring a 
privilege transfer when switching to the monitor for an inter­
cepted event, and by enabling the monitor 160 to access the 

20 address space of a kernel 150 at native speed. 
In the monitoring system 100, a desired level of security 

can be achieved by isolating the security monitor 160 from 
the kernel 150, so as to prevent tampering with the security 
monitor 160 code 162 or data 164 by the kernel 150 or by an 

25 untrusted process accessing the kernel 150. As shown in FIG. 
1, the guest VM 110 can comprise at least one entry gate 112 
and at least one exit gate 114, which can be the only means by 
which focus is switched between the system address space 
130 and the hidden address space 140. Through these pro-

30 tected gates 1124 and 114, the monitoring system 100 can 
ensure that the security monitor 160 is not tampered with by 
an untrusted process. 

The desired level of efficiency can be achieved by not 
requiring privilege switches when a process switches focus 

35 between the kernel 150 and the security monitor 160. As 
discussed above, in a conventional out-of-VM approach, a 
security monitor would be located in a separate VM. In that 
case, a call would have to be made to the hypervisor 120 to 
switch focus between to the security monitor 160 when a 

40 hook is triggered. In embodiments of the present monitoring 
system 100, however, isolation can be achieved by putting the 
monitor code along with its private data in a separate hyper­
visor protected guest address space that can only be entered 
and exited through specially constructed protected gates. 

45 Because the security monitor 160 can be located inside the 
guest VM 110 with the kernel 150, a call can be made to the 
security monitor 160, by way of the entry gate 112, without 
need for a privilege switch. As a result, normal operation of 
the security monitor 160 can proceed without hypervisor 120 

50 intervention, but any attempts to breach the security of secu­
rity monitor 160 can be trapped and prevented by the hyper­
visor 120. 

Referring now to the figures, in which like reference 
numerals represent like parts throughout the views, various 
embodiments of monitoring systems and methods for secure 55 

in-VM monitoring will be described in detail. 

A key idea of the monitoring system 100 is the use of a 
separate hypervisor-protected virtual, hidden address space 
140 in the guest VM 110. The hidden address space 140 can 
store the security monitor 160 and can exist in parallel to the 

FIG. 1 illustrates a diagram of a monitoring system 100, 
according to an exemplary embodiment of the present inven­
tion. As shown in FIG. 1, the monitoring system 100 can 
comprise a guest VM 110 and a hypervisor 120, both residing 60 

on a computing system 200 (see FIG. 2). The hypervisor 120 
can have a higher privilege level within computing system 
200 than does the guest VM 110. As a result, the hypervisor 
120 can monitor activities of the guest VM 110 without being 
subject to tampering by any untrusted process in the guest VM 65 

110, which untrusted process would be limited to operation 
within the guestVM 110. 

virtual address spaces utilized by the kernel 150 of the oper­
ating system 216. The virtual memory can be mapped in such 
a way that the security monitor 160 can have a one-way view 
of the guest VM' s original virtual address space. Thus, while 
the security monitor 160 can view the address space of the 
operating system 216, no code executing in the operating 
system 216 can view the security monitor's hidden address 
space 140. One or more entry gates 180 and one or more exit 
gates 190 can be the only code that can transfer execution 
between the system address space 130 and the hidden address 
space 140. 
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As in conventional active monitoring, hooks 170 can be 
placed in the kernel 150 before specific events to be moni­
tored. When triggered, a hook can transfer control to the entry 
gate 180, which can in turn transfer control to the security 
monitor 160. The security monitor's code 162, including 
handlers for each hook, and data 164 can all be contained 
within the hidden address space 140, inaccessible except 
through the entry gate 180. When the security monitor 160 
finishes handling the triggered hook, the security monitor 160 
can transfer control to the exit gate 190, which can in turn 10 

transfer control back to the process in which the hook was 
triggered. 

To achieve active monitoring, a goal of an exemplary 
embodiment of the monitoring system 100, certain events 

15 
need to be intercepted. To this end, a set of hooks 170 can be 
placed in the monitored kernel 150 to invoke corresponding 
handlers 168 contained the security monitor's code 164. A 
hook 170 can pass data related to the triggering event that is 
gathered at the point of the hook 170, thus enabling the 20 

handler 168 to analyze and handle the triggering event. 
Conventionally, the overhead in executing security tools 

out of the guest operating system 216 is primarily due to the 
change in privilege levels that occurs when switching back 
and forth between the kernel-level 150 and the hypervisor- 25 

level 120. 
An exemplary embodiment of the monitoring system 100, 

however, meets performance requirements similar to the per­
formance of conventional in-VM approaches, which do not 
require these privilege switches to occur when a hook 170 is 30 

encountered. For example, performance requirements met by 
the monitoring system 100 can be as follows: 

6 
approaches satisfy this requirement because the adver­
sarial program does not have any means to access a 
separate, trusted guest VM. 

Designated point for switching into the security monitor 
code 164: Execution should switch to the security moni­
tor 160 only at one of the handlers 168. This requirement 
can ensure that an attacker does not invoke any security 
monitor code 162 other than through the designated 
points of entry. Since the hypervisor 120 initiates entry 
into the monitor, out-of-VM approaches can ensure this 
requirement. 

A handler 168 is called if and only if the corresponding 
hook 170 executes: This requirement has two parts: (a) If 
a hook 170 is reached in the monitored system, then the 
corresponding handler 168 can be initiated by the sys­
tem; and (b) a handler 168 can be initiated only if the 
hook 170 was executed. In out-of-VM approaches, the 
first requirement can be satisfied by design of the han­
dler dispatcher, and the second requirement can be sat­
isfied because the exact VMCalls that initiated the 
hypervisor execution can be identified and checked. 

The behavior of the security monitor 160 is not maliciously 
alterable: The execution of handlers 168 should not be 
maliciously alterable by the adversary. The control-flow 
of the security monitor 160 thus should not depend on 
any control-data that is alterable by the attacker. Further, 
the handlers 168 should not need to call any dependency 
that is at the control of the adversary. Lastly, after the 
handler 168 completes, execution should return to a 
point that is intended by the security monitor 160. An 
out-of-VM monitor can satisfy these requirements by 
not using any control-data contained in untrusted VM. 

None of the existing in-VM approaches can satisfy all of 
the above security and performance requirements at the same 

Fast invocation: Invoking the security monitor's handler 
168 for a hook 170 need not involve any privilege level 
change. 

Data read/write at native speed: The monitor code 164 can 
read and write any system data and local data at native 
speed, i.e., without hypervisor 120 intervention. 

35 time. In contrast, an exemplary embodiment of the present 
monitoring system 100 can improve upon convention in-VM 
approaches and out-of-VM approaches by meeting all of the 
above performance and security requirements. 

In conventional in-VM monitoring, a direct control trans­
fer to the handler code 168 from the hook 170 initiates the 
security monitor 160. Moreover, the security monitor 160 can 
access all data and code because everything is contained in 
the same address space. But as discussed above, conventional 
in-VM monitoring lacks a desired level of security. The prob­
lem of out-of-VM approaches is that both performance 
requirements listed above cam10t be satisfied. In out-of-VM 
monitoring, the hypervisor 120 is invoked when the hook 170 
is executed to transfer control to the handler 168 residing in 
another VM. Additionally, the hypervisor 120 usually needs 
to be invoked to partially map memory belonging to the 
untrusted VM into an address space in the trusted VM for the 
out-of-VM monitor. 

In addition to meeting performance requirements based on 
conventional in-VM monitoring, the monitoring system 100 
can also meet security requirements that are based on out-of­
VM monitoring. To state the security requirements, we con­
sider an adversarial program residing in the same environ­
ment as the kernel 150. In this threat model, the adversarial 
program runs with the highest privilege in the guest VM 110 
and therefore can directly read from, write to, and execute 
from any memory location that is not protected by the hyper­
visor 120. To ensure the security of the security monitor 160, 
the monitoring system 100 can meet the following security 
requirements, on par with those of out-of-VM approaches: 

Isolation of the monitor's code 162 and data 164: This 
ensures the integrity of the monitor's code 162 and data 
164 is protected from the adversary. Out-of-VM 

In an exemplary embodiment, the monitoring system 100 
40 can leverage Intel VT hardware virtualization extensions and 

the virtual memory protections available in standard Intel 
processors. A prototype has been developed of an embodi­
ment of the monitoring system 100 based on KYM, an open­
source virtual machine monitor available as part of main-

45 stream Linux that exclusively uses hardware virtualization 
features. Microbenchmarks show that, in the exemplary pro­
totype, an invocation of the security monitor 160 in is almost 
eleven times faster than that ofa security monitor 160 residing 
in a separate VM. According to the microbenchmarks, out-

50 of-VM monitoring introduced an overhead of 690%, which 
includes external introspection costs, whereas the overhead 
introduced by the monitoring system 100 was only 13%. 
Macrobenchmarks carried over a number of representative 
benchmark programs show an average overhead of 4.15% 

55 compared to 46.10% in out-of-VM system call monitoring. 
Further details of the monitoring system 100 will be pre­

sented following an introduction of various concepts on 
which embodiments of the present invention build. 

FIG. 2 illustrates an exemplary computing system 200, on 
60 which the monitoring system 100 can operate, according to an 

exemplary embodiment of the present invention. As shown in 
FIG. 2, a computing system 200 embodying the monitoring 
system 100 can comprise a central processing unit 205, or 
processor, and one or more system memories 207, such as a 

65 random access memory 209 ("RAM") and a non-volatile 
memory, such as a read-only memory ("ROM") 211. The 
computing system 200 can further comprise a system bus 212 
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coupling together the memory 207, the processing unit 205, 
and various other components. A basic input/output system 
containing routines to assist in transferring information 
between components of the computing system 200 can be 
stored in the ROM 211. Additionally, the computing system 
200 can include a mass storage device 214 for storing an 
operating system 216, application programs, and other pro­
gram modules. 

The mass storage device 214 can be connected to the pro­
cessor 205 through a mass storage controller (not shown) 10 

connected to the bus 212. The mass storage device 214 and 
other computer-readable media can comprise computer stor­
age media, which can include volatile and non-volatile, 
removable and non-removable media implemented in any 
method or technology for storage of information, such as 15 

computer-readable instructions, data structures, program 
modules, or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EPROM, EEPROM, flash 
memory, other solid state memory technology, CD-ROM, 
digital versatile disks ("DVD"), other optical storage, mag- 20 

netic cassettes, magnetic tape, magnetic disk storage, other 
magnetic storage devices, or various other media used to store 
data accessible by the computing system 200. 

A number of program modules and data files can be stored 
in the computer storage media and RAM 209 of the comput- 25 

ing system 200. Such program modules and data files can 
include an operating system 216 suitable for controlling 
operations of the computing system 200, or of the guest VM 
110 of the computing system 200. A web browser application 
program, or web client 224, can also be stored on the com- 30 

puter storage media and RAM 209. The web client 224 may 
comprise an application program for requesting and render­
ing web pages 226 created in Hypertext Markup Language 
("HTML") or other types of markup languages. The web 
client 224 can be capable of executing scripts through the use 35 

of a scripting host. The scripting host executes program code 
expressed as scripts within the browser environment. 

Computer-readable instructions on the storage media of 
the computing system 200 can include, for example, instruc­
tions for implementing processes of the monitoring system 40 

100. These instructions can be executed by the processor 205 
to enable use of the monitoring system 100. 

The computing system 200 can operate in a networked 
environment using logical connections to remote computers 
over a network 250, such as the Internet. The computing 45 

system 200 can connect to the network 250 and remote com­
puters through a network interface unit 220 connected to the 
bus 212. 

8 
216, e.g., an instance of a conventional Microsoft Windows®, 
Linux®, or Unix® operating system, can execute in coordi­
nation with a guestVM 110, providing application software 
and operating system services. As is typical of modern oper­
ating system design, each application or service can run in its 
own virtual memory address space and can include one or 
more execution contexts, e.g., contexts 341, 342, 343 ... 344, 
and each context can have an associated instruction pointer. 
Typically, an execution context, which can also be referred to 
as a "process," "thread," or "task," includes a set of process 
registers and a virtual address space. 

As on a conventional hardware computer platform, guest 
operating system 216 can coordinate execution of sequences 
of instructions on one or more processors 205, can help to 
maintain memory management and mapping information 
(e.g., virtual-to-physical page mappings), and can manage 
devices 210 of the underlying computing system 200. 
Together, the operating system 216, in the guest VM 110, and 
underlying computing system 200 can manage context 
switches amongst various execution contexts based on prior­
ity, data or instruction memory access stalls, input/output 
events, explicit code directives, or other characteristics. 
Numerous techniques and designs, in both hardware and soft­
ware, for scheduling and performing context switches in mul­
titasking/multithreaded systems are known and will be under­
stood by persons of ordinary skill in the art. 

From the perspective of the operating system 216 and the 
individual execution contexts, the guest VM 110 appears to be 
and, indeed, behaves like a conventional hardware computer 
platform, such as that illustrated in FIG. 2, executing instruc­
tion sequences and presenting an apparent processor 205 and 
memory state. In general, the characteristics and configura­
tions ofa virtual machine 110 need not match those of under­
lying hardware resources, although in many implementa­
tions, a correspondence between instruction set architectures 
of virtual processors and underlying hardware processors 205 
may be desirable. Although particular virtualization strate­
gies/designs are described herein, the virtualization system 
300 is representative of a wide variety of designs and imple­
mentations in which underlying hardware resources are pre­
sented to software as virtualized instances of computational 
systems that may or may not precisely correspond to the 
underlying physical hardware. 

Virtual resources can be presented to the guest VM 110 
using mapping or emulation techniques. The hypervisor 120 
can be a hardware and/or software interface provided 
between the guest VM 110 and the various hardware compo­
nents and devices in the underlying hardware platform, and 
the hypervisor 120 can provide the necessary mapping and 

50 emulation. 
The computing system 200 can also include an input/out­

put controller 222 for receiving and processing input from a 
number of input devices, including a keyboard, mouse, or 
electronic stylus. Interactions between the input devices and 
the monitoring system 100 can be detected by the input/ 
output controller 222 to provide meaningful input to the com­
puting system 200. The input/output controller 222 can addi- 55 

tionally provide output to a display screen, a printer, or other 
type of input/output device. 

FIG. 3 depicts a hardware-based virtualization system 300, 
which can comprise and build upon the hardware and soft­
ware components of FIG. 2, and in which an embodiment of 60 

the monitoring system 100 can be implemented, according to 
an exemplary embodiment of the present invention. More 
specifically, FIG. 3 illustrates a class ofvirtualization system 
300 embodiments in which underlying hardware resources 
are exported to guest computations as one or more isolated, 65 

and apparently independent, virtual machines, e.g., guest VM 
110. In the illustrated system 300, a guest operating system 

Most modern memory hierarchies and processor designs 
employ or support virtual memory techniques. In general, 
virtual memory implementations can provide a mechanism 
that allows a computational system to map from a virtual 
address space to a physical address space. Building on vir­
tual-to-physical mappings, modern computational systems 
can present software with an apparent memory space that is a 
different size than underlying physical memory and that 
appears to be contiguous, although in reality the memory 
allotted to a particular application can be a non-contiguous, 
collection of memory blocks. In this manner, an application 
can run more efficiently, and the virtualization system 3 00 can 
protect certain portions of memory by isolating those portions 
from computations or processes. 

Paged virtual memory is by far the most common form of 
virtual memory supported by modern processors and memory 
architectures and by the operating systems that execute 
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thereon. In typical paged virtual memory implementations, 
the address space of a process or set of processes can be 
organized as a collection of blocks, or pages, of contiguous 
virtual memory addresses. The virtual memory addresses 
employed or manipulated by an application can be translated 5 

or mapped to corresponding physical addresses used by hard­
ware to reference specific locations in physical memory. 
Typically, virtual memory implementations can encode map­
pings from virtual address spaces to a physical address space 
using page tables, which are typically maintained by the 10 

operating system. 
By way of example only, FIG. 4 illustrates how virtual 

memory addresses can be translated to addresses in a physical 
address space in a typical x86-type architecture, useable in an 
exemplary embodiment of the present invention. It will be 15 

understood by one skilled in the art that the means of virtual 
address translation discussed herein does not limit the scope 
of the monitoring system 100. 

As shown in FIG. 4, a 32-bit virtual address 401 can 
includes constituent portions that are treated as a 10-bit page 20 

directory entry (PDE) index, a 10-bit page table entry (PTE) 
index, and a 12-bit page offset (OFFSET). The respective 
indices can be used in a two-level mapping scheme that 
employs a 1024-entry page directory 410, indexed using the 
PDE index, to retrieve a corresponding page table base 25 

address (PTBA) 411, which can identify a 1024-entry page 
table 420, such as exemplary page table 421. The exemplary 
page table 421 can be indexed using the PTE index portion of 
virtual address 401 to identify a corresponding physical page 
base address (PPBA) entry 422, which in tum can identify a 30 

page 431 in physical memory 432. Page and offset portions of 
the mapped physical address 402 can be used to access a 
particular target location 433 in physical memory 432 based 
on the virtual address 401. 

10 
number. Otherwise, the MMU 436 can walk the page tables to 
locate the virtual page number and physical mapping. 

To walk the page tables, MMU 436 identifies a page direc­
tory corresponding to the current context and indexes first 
into the page directory and then into a page table 420. Exem­
plarily, in the illustration of FIG. 4, the PDE portion of virtual 
address 401 is used as an index into the page directory 410, 
while the PTE portion of the virtual address 401 is used as an 
index into the page table 421. More specifically, a 40-bit value 
retrieved from control register CR3 is used as the upper 40 
bits, a 10-bit value from the PDE portion of virtual address 
401 is used as the next lower address bits, and the last two 
address bits are set to 0 to form the 32-bit address in physical 
memory 432 of the PTBA entry 411. In turn, the PTBA entry 
411 is used to identify the page table 421, and the PTE portion 
of the virtual address 401 is used as an index into the identified 
page table 421. More specifically, a 40-bit value obtained 
from the PTBA entry 411 is used as the upper address bits, a 
10-bit value from the PTE portion of virtual address 401 is 
used as the next lower address bits, and the last two address 
bits are set to 0 to form the 32-bit address in physical memory 
432 of the PPBA entry 422. Finally, the PPBA entry 422 is 
used to identify the mapped page 431, and the offset portion 
of the virtual address 401 is used as an offset into the mapped 
page 431. More specifically, a 40-bit value obtained from the 
PPBA entry 422 is used as the upper address bits and the 
12-bit offset portion of virtual address 401 is used as the lower 
address bits to form the 32-bit address in physical memory 
432 of the target location 433. 

Page directories are typically page-aligned, and in x86-
type processor designs, 40 bits from control register CR3 are 
sufficient to uniquely identify a 4-kilobyte page that encodes 
the page directory for the current execution context. Page 
tables 420 and, of course, the pages themselves are also page 

In the illustrated example, the page directory 410, page 
tables 420 and individual mapped memory pages such as page 
431 are all represented in physical memory 432 as 4-kilobyte­
memory pages. Typically, in modern paged virtual memory 
implementations, a memory management unit (MMU) 436 
performs the virtual-to-physical address translations either by 
walking the page tables 420 or by retrieving cached page 
mappings from a translation lookaside buffer (TLB) 435. 
Typically, an operating system 216 maintains, often in con­
junction with the MMU 436, contents of the page tables 420 
in correspondence with demand paging activity. The MMU 
uses page mappings coded therein to perform virtual-to­
physical address translations in the course of memory 
accesses performed by the processor 205. As is conventional 

35 aligned. Therefore, 40-bit page table base addresses, e.g., 
PTBA 411, and physical page base addresses, e.g., PPBA 
422, are also sufficient in the illustrated configuration. Thus, 
entries in the illustrated page directories and tables are 32 bits, 
and the additional bits are generally available to code appro-

in x86-type processor architectures, contents of a control 
register, such as the CR3 register, are used to identify the page 
directory 410 corresponding to a current execution context 
and its address space. 

Use of the illustrated page mappings can be understood as 
follows: When the MMU 436 receives a virtual address 401, 
the MMU 436 can determine whether there is an entry in the 
TLB 435 that provides a mapping for the virtual address 401 
to a corresponding physical page number. In the illustrated 
context, a combination of PDE and PTE portions of the vir­
tual address 401 can be considered a virtual page number. 
Therefore, the TLB 435 can map 40-bit virtual page numbers 
to 40-bit physical page numbers, although other configura­
tions are possible as well. Typically, the TLB 435 is imple­
mented as a content addressable store in which a subset of 
virtual-to-physical page number mappings is cached. If the 
TLB 435 contains an entry that matches the virtual page 
number forthe virtual address 401, the MMU 436 can use this 
cached mapping to obtain the corresponding physical page 

40 priate and desirable attributes, such as, for examples, validity 
of the entry, types of access allowed for the corresponding 
page, whether the corresponding page has been modified or 
referenced since loaded into physical memory 432, whether 
caching is disabled, or whether the corresponding page must 

45 remain in physical memory 432. 
In general, page mapping state is dynamic and constantly 

changing in accordance with demand paging activity, based 
on context switches and, in some cases, based on explicit 
instructions (e.g., flush, invalidate, etc.) executed by operat-

50 ing system or application code. Relative to demand paging, as 
virtual-to-physical page translations are performed, some 
page mappings may indicate that corresponding data is not 
currently present in physical memory 432. In this case, the 
MMU 436 can generate a page fault that, once serviced, 

55 results in the needed data being loaded into physical memory 
432 and corresponding changes made in the page tables 420. 
For example, if at the time that the MMU 436 attempts to map 
virtual address 401, corresponding data does not actually 
reside in physical memory 432, the PPBA entry 422 will so 

60 indicate. As a result, corresponding data can then be loaded 
from backing storage and the PPBA entry 422 can be updated 
to identify the page in physical memory 432 into which the 
data is loaded. In this manner, either initially or eventually 
based on operation of a page fault handler, a mapped physical 

65 page frame can contains data corresponding to a virtual 
address 401. Since physical memory is finite, the preceding 
sequence can typically displace data that previously resided 
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in the page frame and both the PPBA entry 422 and other page 
mapping information corresponding to the now displaced 
data can also be updated. 

Generally, memory management facilities of an operating 
system are responsible for creating and maintaining page 
tables 420 in memory accessible for use by the MMU 436. 
The MMU 436 or operating system memory management 
facilities are generally responsible for managing contents of 
the TLB 435, so that recently or frequently obtained map­
pings between virtual page numbers and physical page num­
bers are cached. Typically, demand paging activity will result 
in changes to the TLB contents. In addition, mappings can be 
flushed from the TLB 435, e.g., in connection with a context 
switch, or can be individually invalidated, e.g., when a cor­
responding memory page is unmapped. 

For example, when a mapping for a particular virtual page 
number is not contained within the TLB 435 and a page table 
walk is performed, the MMU 436 typically evicts an entry 
from the TLB 435 to free up space for a new entry for the 
current mapping. The virtual page number is cached in the 
newly available entry of the TLB 435, along with the physical 
page number obtained from the page table walk (and any 
demand paging). In general, when an entry in TLB 435 is 
evicted, the bit indicating whether the page has been modified 
is typically copied from the evicted entry to the corresponding 
entry in page tables 420. 

A challenge in the virtualization of modern computer 
architectures is creation and maintenance of memory map­
ping information in shadow page tables, maintained by the 
hypervisor 120. In general, shadow page tables encode vir­
tual-to-physical memory mappings usable by a MMU 436 or 
other facility of underlying hardware in mapping memory 
access targets of instructions executed on behalf of a guest 
computation. Typically, the guest computation is aware of 
mappings to an apparent physical address space of a guest 
VM 110, but is unaware of actual mappings to an address 
space in underlying physical memory. 

Thus, while mappings encoded in shadow page tables can 
correspond to mappings maintained by a guest operating 
system 216 in conventional page tables, e.g., guest page 
tables, shadow page tables can go a step further, completing 
the mapping to addresses in underlying physical memory. To 
understand why this further mapping is relevant, it is impor­
tant to recognize that the guest operating system 216, or an 
execution context thereof, need not be aware that it executes 
on a guest VM 110. Accordingly, the guest operating system 
216 and its execution contexts maintain and view the guest 
page tables 420 as representing operant virtual-to-physical 
memory mappings, even though the mapped-to "physical" 
addresses are really addresses in a space on the guest VM 110, 
which is itself virtualized. Such guest page table mappings 
can therefore be understood as mappings from guest virtual 
page numbers to Guest physical page numbers, which can be 
further mapped by the hypervisor 120 to actual physical 
addresses. 

As discussed above, paging based virtual memory can be 
facilitated by page tables, for mapping virtual addresses to 
physical addresses. When an instruction is executed, the cur­
rent page table can be used to perform address translations. 
The operating system 216 can create a separate page table for 
each process, so that a process can have its own virtual 
memory address space in which to operate. 

FIG. 5 illustrates memory mapping for the guest VM 110 
and its hidden address space 140, according to an exemplary 
embodiment of the present invention. As shown in FIG. 5, a 
process address space 510 can be defined by the operating 
system 216 for each executing process. In FIG. 5, an exem-

12 
plary process address space 510 is shown in the left, while the 
hidden address space 140 is shown on the right. The guest 
memory 520, seen to the guest VM 110 as physical memory, 
corresponding to these address spaces 510 and 140 are rep­
resent in the middle of the diagram. 

Generally, as shown in FIG. 5, the kernel 150 can be 
mapped into a fixed address range in each process's address 
space 510. All pages containing kernel code 152 can have 
read and execute privileges, to enable the kernel 150 to 

10 execute its functionality as needed for the process to operate. 
But the kernel code 152 can be write-protected, especially in 
places where hooks are placed, so as to limit modifications of 
the kernel 150 by untrusted processes. 

As mentioned earlier, the entry and exit gates 180 and 190 
15 can be used to perform transitions between the system 

address space 130, in which the process address space 510 
exists, and the hidden address space 140. Since the gates 
include code, they can be set with execute permissions but can 
be made read only so that they cannot be modified from with 

20 the guestVM 110. 
The hidden address space 140 can include the security 

monitor code 162 and data 164. In addition to the security 
monitor 160, the hidden address space 140 can contain all the 
contents of the system address space 130 that are mapped to 

25 the hidden address space 140. However, some of the permis­
sions can be set differently, for the monitoring system 100 to 
behave as desired. The kernel code 152 and data 134 regions 
do not have execute permissions. This means that while 
execution is within the hidden address space 140, no code 

30 mapped in from the system address space 130 can be execut­
able. Thus, any unauthorized modifications to the kernel 150, 
such as by a malicious rootkit, cannot execute in the hidden 
address space 140 to modify the security monitor 160. Invo­
cation checkers 165, which can identify the processes in 

35 which hooks are triggered to call the entry gate 180, can also 
be contained only in the hidden address space 140 and can 
have execution privileges. 

Because the system address space 130 contents can be 
mapped into the hidden address space 140, an important 

40 requirement for the mapping to work can be to ensure that 
other, i.e., the additional, regions in the hidden address space 
140, e.g., the security monitor code 162, security monitor data 
164, and the invocation checker 165 regions, do not overlap 
with the mapped-in regions from the system address space 

45 130. There are at least two methods by which this can be 
achieved. First, the virtual address range that is used for user 
programs may be used for allocating the hidden address space 
140 regions. This approach is suitable for security monitors 
160 that will be primarily used to monitor kernel level code 

50 132. Second, operating system functionality can be utilized to 
allocate memory from the system address space 130. Once 
allocated, any legitimate code, such as the operating system 
216 itself, should not attempt to use this memory region in the 
system address space 130. 

55 Since the hidden address space 140 contains all kernel code 
152 and data 134, along with the security monitor code 162 
and data 164 in its address space, the instructions as part of the 
security monitor 160 can access the kernel 150 regions at 
native speed. This satisfies the performance requirement of 

60 the monitoring system 100, by not requiring a privilege trans­
fer to switch focus between the kernel 150 and the security 
monitor 160. The memory mapping method we have intro­
duced also satisfies the isolation security requirement, by 
having the security monitor code 162 and data 164 regions in 

65 a separate hidden address space 140, not directly accessible 
by the executing kernel 150 in the system address space 130. 
Any kernel-level instruction executing in the guest operating 
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system 216 will utilize the system address space, which do 
not include these security monitor 160 regions. Although any 
kernel-level code 132 executing in the operating system 216 
environment can have full freedom to change the process 
virtual memory mappings, because they are mapped into the 5 

system address space 130, kernel-level code 132 cannot 
modify or alter the hidden address space 140. By design, a 
hidden page table for the hidden address space 140 is neither 
included in the system address space 130, nor in the hidden 
address space 140. This we will be discussed in more detail 10 

later in this disclosure. 

14 
directories. FIG. 6 illustrates how the switching is performed 
by updating the CR3 register. Besides the hypervisor-main­
tained shadow page table structures, the monitoring system 
100 can also utilize a specialized shadow page table, referred 
to herein as a secure shadow page table. The secure shadow 
page table converts virtual addresses in the hidden address 
space 140 to host physical addresses. Since it is directly 
maintained in the hypervisor 120 and the security monitor 
160 need not manage its virtual memory, no guest level page 
table for the hidden address space 140 need be provided. The 
root of the secure shadow page table structure can be a secure 
shadow page directory, which can be designates as 
SIM_SHADOW. The physical address of the current secure 
shadow page directory maintained by the hypervisor 120 can 

In the Intel x86 processors, the CR3 register can contain the 
physical address of the root of the current page table data 
structure. In the two-level paging mechanism supported in the 
IA-32 architecture, the root of the page table structure is 
called the page directory. As part of the process context 
switching mechanism, the content of the CR3 register can be 
updated by the kernel 150 to point to appropriate page table 
structures used by the current process. Although the kernel 
150 of the operating system 216 mainly maintains the valid 
CR3 values to switch among processes, any code executing 
with the kernel-level privilege can modify the CR3 register to 
point to a new page table. However, to ensure the correct 
operation of the operating system 216, kernel code 152 needs 
to see its expected CR3 values. 

15 be designated as P _SHADOW. Switching between the pro­
cess address space 510 and the hidden address space 140 can 
be required to directly modify the CR3 register and to load the 
value ofSIM_SHADOW or P _SHADOW, after already add­
ing them to the CR3_TARGET_LIST. This ensures the cor-

In conventional virtual machines, the page tables in the 
guest VM 110 are not used for translating virtual addresses to 
physical addresses, because the physical memory that needs 
to be translated to is on the host, which can be maintained and 
shared among various VM's by the hypervisor 120. In con­
ventional virtualization, the hypervisor 120 can take com­
plete control over the guest operating system 216 memory 
management by intercepting all accesses to the CR3 register. 
The guest physical memory then only becomes an abstraction 
utilized by the hypervisor 120 for maintaining correct map­
ping to the host physical address. Shadow page tables can be 
used by the hypervisor 120 to map guest virtual to host physi-
cal memory. The hypervisor 120 can thus give the guest 
operating system 216 the illusion that the operating system's 
designated page tables are being used. 

20 rect operation of the code in the guest VM 110 when the 
hypervisor 120 remains uninvolved. The entry and exit gates 
180 and 190 can perform this switching, as will be described 
below, and the rest of the design of the monitoring system 100 
can ensure that the switching is transparent to the guest oper-

25 ating system 216. 
The entry and exit gates 180 and 190 can be the only 

regions that are mapped into both the system address space 
130 and the hidden address space 140 in pages having execut­
able privilege. This ensures that a transfer between the 

30 address spaces 130 and 140 can only happen through code 
contained in these pages. Moreover, since these pages are 
write-protected by the hypervisor 120, the contents of the 
gates 180 and 190 cannot be modified by any in-guest VM 
110 code. Exemplary contents of the entry and exit gates 180 

35 and 190 are shown in FIG. 7. 
Each hook and associated handler can correspond to a pair 

of corresponding entry and exit gates 180and190. The task of 
an entry gate 180 can be to first set the CR3 register with the 
physical address of the secure shadow page directory, or 

40 SIM_SHADOW. This action can switch focus into the hidden 
Since an exemplary embodiment of the monitoring system 

100 requires the switching of address spaces, the CR3 register 
can be modified directly to this end. However, the modifica­
tions to the CR3 register by the guest VM 110 are typically 
trapped by the hypervisor 120. The monitoring system 100, 45 

however, can bypass the hypervisor 120 invocation, so that 
the desired performance requirement, i.e., reduction of privi­
lege-transfers, can be satisfied. 

address space 140. Since the CR3 register cannot be directly 
loaded with data, the value of SIM_SHADOW first needs to 
be moved to a general purpose register. For this reason, all 
register values can be saved to the stack, so that the security 
monitor 160 can access register contents at the point when the 
hook was reached. Even though the register contents are 
saved on the stack in the system address space 130, since 
interrupts are disabled by the entry gate 180 already, an 
attacker will not be able to regain execution and modify the 
values before entry into thehidden address space 140. Once in 
the hidden address space 140, the next task is to switch the 

To enhance performance, the monitoring system can utilize 

stack to a region contained in the security monitor 160 by 
modifying the ESP register. The stack switching may be 
necessary, so that code executing in the hidden address space 
140 does not use a stack provided by the untrusted guest 
kernel-level code 132. Otherwise, an attacker can select an 
address in the form of the stack pointer that may overwrite 
parts of the security monitor 160 once in the hidden address 
space 140. Finally, control can be transferred to the invocation 

a hardware virtualization feature available in Intel VT. By 50 

default each access to the guest CR3 register by the guest VM 
110 can cause a VMExit, which is a switch from the guest VM 
110 to the hypervisor 120. Intel VT includes a target list 
(CR3_TARGET_LIST) maintained by the hypervisor 120.A 
modification to the CR3 register does not trigger a VMExit if 55 

the CR3 is being switched to one of the page table structure's 
root addresses in the target list. The number of values this list 
can store varies from model to model, but the Core 2 Duo and 
Core 2 Quad processors support a maximum of four trusted 
CR3 values in the CR3_TARGET_LIST. 60 checker routine 165 to verify where the entry gate 180 was 

invoked, which will be discussed in more detail below. The guest operating system 216 can provide the addresses 
of guest page directories in the CR3 register, and the correct 
execution of the guest VM 110 is ensured by the hypervisor' s 
modifying the addresses to the appropriate shadow page 
directories instead. However, when the monitoring system 
100 bypasses the hypervisor 120 while switching CR3 values, 
the system 100 needs to directly switch between shadow page 

The first instruction executed in the entry gate 180 can be 
the CLI to stop interrupts from executing. This can guarantee 
that execution is not diverted to somewhere else due to inter-

65 rupts. The reason for executing the same CLI instruction 
again after entering the hidden address space 140 is discussed 
further below. 
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The exit gate 190 can perform a transfer out of the hidden 
address space 140 into the process address space 510. When 
called, the exit gate 190 can first switch the stack back to the 
stack address saved by the entry gate 180. To make the 
address space switch, the exit gate 190 can load the CR3 
register with the address in P _SHADOW, which can be the 
physical address of the shadow page table root. The hypervi­
sor 120 may be using multiple process shadow page tables 
and switching between them as necessary. To ensure correct 
system state, the value of P _SHADOW can be equal to the 10 

address of shadow page directory being used by the hypervi­
sor 120 just prior to entering the hidden address space 140. 
Querying the hypervisor 120 for the correct value during 
monitor invocation violates the performance requirement of 
the monitoring system 100, so instead, the hypervisor 120 can 15 

update the value of P _SHADOW used in the exit gate 190 
when the hypervisor 120 switches from one process shadow 
page table to another during normal process switches. These 
calls to the hypervisor are common to conventional in-VM 
monitoring and need not be avoided to achieve similar per- 20 

formance as conventional in-VM monitoring. Having the 
value of P _SHADOW as an immediate operand in every exit 
gate 190 would require the hypervisor 120 to perform several 
memory updates. Instead, storing it as a variable in the hidden 
address space 140 can require only one memory update by the 25 

hypervisor 120 at the time of shadow page table switches. At 
the end of the exit gate 190, the interrupt flag can be cleared to 
enable interrupts again, and then execution can be transferred 
to a designated point, usually immediately after the hooked 
location. The exit gate 190 can have write permissions in the 30 

hidden address space 140, enabling the security monitor 160 
to control where the execution is transferred back. 

The entry gates 180 can be the only way to enter the hidden 
address space 140, and each entry gate 180 can first transfer 
control to the appropriate invocation checking routine 165, 35 

which can then call a handler 168 routine in the security 
monitor 160. By doing so, the monitoring system 100 can 
ensure the security requirement, i.e., isolation of the security 
monitor 160. 

16 
BRANCH_k_FROM_IP and the MSR_LASTBRANCH_ 
k_TO_IP, where k is a number from 0 to 3. 

The monitoring system 100 can check the branch that 
transferred execution to the entry gate 180 using the LBR 
information. In the invocation checking routine 165, the sec­
ond most recent branch can be the one that was used to invoke 
the entry gate 180. The monitoring system 100 can check that 
the source of the branch corresponds to a hook 170 that is 
allowed to call the entry gate 180. Although the target of the 
branch instruction can also be available, the monitoring sys­
tem 100 need not verify the target ifthe source matches. As 
will be discussed late, the monitoring system 100 can also 
mitigate possible attacks that may jump into the middle of the 
entry gate 180 and attempt to divert execution before invoca­
tion checking routine is initiated. 

A conceivable attack may be an attempt to modify these 
MSR registers in order to bypass the invocation checks. Thus, 
the monitoring system 100 can preferably stop malicious 
modifications to these MSR, but at the same time ensure that 
the desired performance requirement is not violated. With 
Intel VT, read and write accesses to MSR registers can selec-
tively cause VMExits by setting the MSR read bitmap and 
MSR write bitmap, respectively.Using this feature, the moni­
toring system 100 can set the bitmasks in such a way that 
write attempts to the IA32_DEBUGCTL MSR and the LBR 
MS Rs are intercepted by the hypervisor 120 but read attempts 
are not. Since the invocation checking routine 165 only needs 
to read the MSRs, performance is therefore not affected. 

In an exemplary embodiment, the security monitor code 
162 need not rely on any code from any untrusted region, such 
as any region outside of the hidden address space 140. There­
fore, the security monitor code 162 can be completely self­
contained. To this end, any necessary library routines can be 
statically linked with the code 162, and the security monitor 
160 does not call any kernel 150 functions. Mapping the 
kernel code 152 and data 134 with non-execute privileges, as 
discussed above, can ensure that even any accidental execu­
tion of untrusted code does not occur in the trusted, hidden 
address space 140, because execution on non-execute code 

To satisfy the security requirement of isolation, immedi­
ately after the hidden address space 140 is entered through 
one of the entry gates 180, the invocation of the entry gate 180 
can be checked to ensure that the invocation was from a hook 
that is allowed to call the entry gate 180. A challenge is that, 
because the entry gate 180 is visible to the system address 
space 130, a branch instruction can jump to this location from 
anywhere within the system address space 130. Moreover, the 
monitoring system 100 preferably does not rely on call 
instructions and checking the call stack, because these are 
within the system address space 130 and, as such, cannot be 
trusted. The monitoring system 100 can instead utilize a hard­
ware debugging feature available in the Intel processors after 
Pentium 4 to check the invocation points. This feature, which 

40 and data results in a software exception. Any software excep­
tions occurring while in the hidden address space 140 can be 
is handled by code residing in security monitor 160. More­
over, the entry and exit from the SIM address space can be 
considered an atomic execution from the perspective of the 

45 untrusted guest operating system 216. While the hypervisor 
120 can receive and handle interrupts on the guest operating 
system's behalf, the guest VM 110 need not be notified of 
interrupts while interrupts are disabled in the guest VM 110. 
Disabling interrupts before entering and after exit can ensure 

50 that interrupts do not divert the intended execution path of the 
security monitor 160, which can guarantee the desired secu­
rity requirement. Even without using the code of the guest 
operating system 216, the same functionality provided by an 

is called last branch recording, can store the sources and 
targets of the most recently-occurred branch instructions in 55 

one or more predetermined processor registers. 

out-of-VM approach can be achieved in our design. 
By disallowing kernel 150 functions to be called, the secu-

rity monitor 160 needs to traverse and parse the data struc­
tures in the system address space 130 in order to extract 
necessary information required for enforcing or verifying a 
security state of the untrusted region. However, this is the 

The last branch recording feature can be activated by set­
ting the LBR flag in the IA32_DEBUGCTL MSR. Once this 
flag is set, the processor 205 can record a running trace of a 
fixed number of last branches executed in a circular queue. 
For each of the branches, the instruction pointer (IP) at the 
point of the branch instruction and its target address are stored 
as a pair. The number of these pairs that can be stored in the 
LBR queue varies across the x86 processor families. How­
ever, all families of processors since Pentium 4 record infor­
mation about a minimum of four last branches taken. These 
values can be read from the MSR registers, MSR_LAST-

60 same semantic gap that exists while using introspection to 
analyze data structures of the untrusted guest VM from a 
separate trusted guest VM. The method of identifying and 
parsing data structures used in existing out-of-VM 
approaches can therefore be ported to this secure in-VM 

65 approach with few modifications. 
Additionally, the security monitor 160 may need to per­

form accesses to hardware or perform I/O for usability pur-
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poses instead of handling the events in the untrusted guest 
operating system 216. Theoretically, it may be possible to 
replicate the relevant guest operating system 216 functional-
ity inside the hidden address space 140. However, accessing 
hardware directly may interfere with the guest operating sys­
tem 216. Instead, because the hidden address space 140 can 

18 
known in the art and can be utilized by the security monitor 
160. For each hook 170 and corresponding handler 168, a 
hypercall can be performed by the driver to inform the hyper­
visor 120 about the hook 170 instruction, the handler's 
address, and the address to return execution to after the han­
dler 168 executes. For each received hypercall, the hypervisor 
120 component can generate an entry gate 180, an invocation 
check routine 165, and an exit gate 190. The invocation 
checking routine 165 can be modified to verify the invocation 

be trusted, the monitoring system 100 can define a layer to 
communicate with the hypervisor 120 for operating-system­
like functionality through hypercalls. This layer, referred to 
as the SIM API, can provide functionalities such as, for 
examples, memory management, disk access, file access, and 
additional I/O. This layer can be developed as a library that 
can be statically or dynamically linked with the security 
monitor code 162 based on the implementation. The handling 
of the SIM API can be performed in the hypervisor 120 or by 
a separate trusted guest VM. Since the security monitor 160 
can be designed to use such functionality less often than 
handling events in the untrusted guest kernel 150, the cost of 
hypervisor 120 invocation can be kept low even for fine­
grained monitoring. 

10 instruction address to be the hook 170 instruction address 
provided with the hypercall. A jump instruction can be placed 
at the end invocation routine 165 to jump to the provided 
handler 168. The exit gate 190 code can also be modified to 
return execution to the specified address. The address of the 

15 entry gate 180 can be returned, so that the driver can modify 
the hook 170 to divert execution to the entry gate 180. 

Embodiments of the monitoring system can thus provide 
secure and efficient monitoring of untrusted processes from 
within a same virtual machine as the untrusted processes. 

An exemplary embodiment of the monitoring system 100 
can be initialized by a guest VM 110 component implemented 

20 While the monitoring system has been disclosed in exemplary 
forms, many modifications, additions, and deletions may be 
made without departing from the spirit and scope of the 
system, method, and their equivalents, as set forth in the as a Windows driver, executed after a clean boot, when the 

guest operating system 216 can be considered to be in a 
trusted state. The primary task of the initialization driver is to 25 

allocate guest virtual memory address space for placing the 
entry and exit gates 180 and 190 based on the hooks 170 
required, initiate creation of hidden virtual address space 140, 
initiate the loading of the security monitor 160 into the hidden 
address space 140, and finally initiate the creation of entry 30 

gates 180, exit gates 190, and invocation checking routines 
165. The initialization driver can communicate with the 
hypervisor 120 counterpart of the monitoring system 100 
using hypercalls, for example, the VMCALL instruction of 
Intel VT. 35 

An early task of the monitoring system 100 can be to 
reserve virtual address ranges in the system address space 130 
for use in entry and exit gate 180 and 190 creation. Because 
the monitoring system 100 need not guarantee that the normal 
operation of the operating system 216 and legitimate appli- 40 

cations do not attempt to utilize the reserved address ranges, 
the monitoring system 100 can allow the guest operating 
system 216 to allocate virtual address space. The driver can 
allocate contiguous kernel-level memory from the non-paged 
pool by using the MmAllocateContiguousMemory kernel 45 

function. This function can return the virtual address pointing 

following claims. 
What is claimed is: 
1. A security system comprising: 
a virtual machine; 
a kernel executing inside the virtual machine; 
a virtual memory inside the virtual machine comprising a 

plurality of standard virtual address spaces and a hidden 
virtual address space, wherein the standard virtual 
address spaces are directly accessible by the kernel, and 
wherein the hidden virtual address space is hidden from 
the kernel; 

a hypervisor at a higher privilege level than the virtual 
machine; 

a processor having a control register and being configured 
to execute program code, wherein the processor transi­
tions from the standard virtual address spaces to the 
hidden virtual address space exclusively through an 
entry gate, and wherein the processor transitions from 
the hidden virtual address space to the standard virtual 
address spaces exclusively through an exit gate; 

a page table base target list comprising a list of target 
physical addresses including a first physical address of 
the hidden address space and a second physical address 
of a current process in the standard address spaces, 
wherein a modification of a control register to one of the 
target physical addresses is performed absent a call to 
the hypervisor, and wherein modification of the control 
register to a value outside the target list requires a call to 
the hypervisor; 

the entry gate comprising program code for modifying the 
control register to point to the first physical address of 
the hidden address space; and 

the exit gate comprising program code for modifying the 
control register to point to the second physical address of 
the current process. 

to the starting of this allocated memory region. Because the 
function allocates memory from the Windows non-paged 
pool, it can be guaranteed by the operating system 216 to be 
never paged out. In other words, the pages can be mapped to 50 

guest physical frames that are not used until they are freed. 
Because the memory is already allocated, any legitimate 
application will not try to utilize this address space. The 
allocated virtual address space region is informed to the 
hypervisor 120 component using a predefined hypercall noti- 55 

fying the starting address and the size of the allocated region. 
During execution, the monitoring system 100 can check for 
any malicious attempts to utilize this address space or 
changes in memory mapping. 2. The security system of claim 1, further comprising a 

60 security monitor having code and data both contained in the 
hidden virtual address space, wherein access to the security 
monitor is obtained through the entry gate. 

A next step can be creation of the hidden address space 140 
by the hypervisor 120 component. After the hypervisor 120 is 
informed about the memory allocation, the secure shadow 
page table structure can be created. 

A final task is to create the relevant routines to perform 
switching into the hidden address space 140. The security 
monitor 160 can require hooking into the kernel 150 for 
invoking the handlers 168. Various forms of hooking are 

3. The security system of claim 2, further comprising one 
or more hooks in the kernel, each hook corresponding to a 

65 handler in the security monitor, and each hook being config­
ured to invoke the corresponding handler by calling the entry 
gate. 
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. 4. ~e security system of claim 3, further comprising an 
mvocat10n checker configured to verify the authenticity of a 
hook calling the entry gate. 

5. The security system of claim 1, wherein the kernel 
manages one or more virtual page tables for each of the 
standard virtual address spaces, the hypervisor comprising: 

one or more standard shadow pages corresponding to the 
standard virtual address spaces and the virtual page 
tables; and 

a secure shadow page corresponding to the hidden address 
space. 

6. The security system of claim 1, the target list being a 
hardware feature of the security system. 

7. The security system of claim 1, the control register being 
a CR3 register. 

8. The security system of claim 1, the hypervisor being 
configured to modify the target list to include an address of 
the current process. 

9. A security system comprising: 
a virtual machine; 
a virtual memory in the virtual machine, the virtual 

memory comprising one or more standard address 
spaces and a hidden address space; 

a security monitor having code and data within the hidden 
address space; 

an operating system executing in the virtual machine the 
operating system managing one or more virtual ~age 
tables. corresponding to the standard address spaces, 
wherem the hidden address space is hidden from the 
operating system; 

a hypervisor at a higher level of privilege than the virtual 
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machine, the hypervisor comprising one or more stan­
dard shadow pages corresponding to the virtual page 
tables and the standard address spaces, and the hypervi­
sor further comprising a secure shadow page corre- 35 
sponding to the hidden address space; 

a processor having a CR3 register and being configured to 
execute program code in the standard address spaces and 
in the hidden address space, wherein the processor tran­
sitions from the standard address spaces to the hidden 
address space exclusively through a first entry gate, and 
wherein the processor transitions from the hidden 
address space to the standard address spaces exclusively 
through a first exit gate; 

40 

a CR3 target list comprising a list of target physical 45 
addresses including a first physical address of the hidden 
address space and a second physical address of a current 
process in the standard address spaces, wherein a modi­
fication of the CR3 register to one of the target physical 
addresses is performed absent a call to the hypervisor, 50 
and wherein modification of the CR3 register to a value 
outside the target list requires a call to the hypervisor; 

the first entry gate comprising program code for modifying 
the CR3 register to point to the first physical address of 
the hidden address space; and 

20 
the first exit gate comprising program code for modifying 

the CR3 register to point to the second physical address 
of the current process. 

10. The security system of claim 9, further comprising a 
plurality of hooks in the operating system, each hook corre­
sponding to a handler in the security monitor, wherein trig­
gering of a first hook calls the entry gate to invoke the corre­
sponding first handler in the security monitor. 
. 11. T.he security system of claim 10, further comprising an 
mvocat10n checker in the hidden address space, the invoca­
tion checker being configured to authenticate the first hook 
when the first hook calls the entry gate. 

12. The security systemof claim9, the first entry gate being 
configured to call an invocation checker in the hidden address 
space after modification of the CR3 register to the physical 
address of the hidden address space, and the invocation 
~hecker ~eing configured to verify appropriateness of entry 
mto the hidden address space, and being further configured to 
call the security monitor. 

13. A security method comprising: 
establishing a hidden address space in a virtual machine 

the hidden address space being hidden from a kernel 
running in the virtual machine; 

configuring a hypervisor to manage a shadow page table 
for mapping the hidden address space to physical 
memory; 

establishing an exclusive entry gate for entering the hidden 
address space from a standard address space accessible 
to the kernel, the entry gate comprising program code for 
modifying a CR3 register to point to the hidden address 
space; 

establishing an exclusive exit gate for returning to the 
standa:d address space from the hidden address space, 
the exit gate comprising program code to modify the 
CR3 register to point to a calling process from which the 
entry gate was called; and 

modifying a CR3 target list to include a physical address of 
the hidden address space, wherein the target list repre­
sents addresses to which the CR3 register can be modi­
fied ~bsent a call to the hypervisor, wherein the entry 
gate 1s configured to transition from the standard address 
space to the hidden address space absent a call to the 
hypervisor, and wherein the exit gate is configured to 
transition from the hidden address space to the standard 
address space absent a call to the hypervisor. 

14. The security method of claim 13, further comprising: 
providing a.security monitor in the hidden address space, 

the security monitor being hidden from the kernel· and 
providing a hook in the kernel; ' 
wherein the security monitor comprises a handler corre­

sponding to the hook, and wherein triggering the hook 
calls. the entry gate to access the handler in the security 
mom tor. 

* * * * * 


