
c12) United States Patent
Sharif et al.

(54) SYSTEMS AND METHODS FOR SECURE
IN-VM MONITORING

(75) Inventors: Monirul Islam Sharif, Atlanta, GA
(US); Wenke Lee, Atlanta, GA (US)

(73) Assignee: GEORGIA TECH RESEARCH
CORPORATION, Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 436 days.

(21) Appl. No.: 13/508,314

(22) PCT Filed: Nov. 4, 2010

(86) PCT No.: PCT /US2010/055507

§ 371 (c)(l),
(2), (4) Date: Aug.23,2012

(87) PCT Pub. No.: W02012/039726

PCT Pub. Date: Mar. 29, 2012

(65)

(60)

(51)

(52)

Prior Publication Data

US 2013/0091568Al Apr. 11, 2013

Related U.S. Application Data

Provisional application No. 61/258,033, filed on Nov.
4, 2009.

Int. Cl.
G06F 21150
G06F 91455
G06F 21162
U.S. Cl.

(2013.01)
(2006.01)
(2013.01)

CPC G06F 21150 (2013.01); G06F 9145558
(2013.01); G06F 2116227 (2013.01); G06F

2009145583 (2013.01); G06F 2009145587
(2013.01)

GUEST OS

216

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US009129106B2

(IO) Patent No.:
(45) Date of Patent:

US 9,129,106 B2
Sep.8,2015

(58) Field of Classification Search
None

(56)

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8,032,897 B2 *
8,250,519 B2 *
8,510,756 Bl*
8,719,823 B2 *
8,763,115 B2 *

10/2011 Serebrin 719/318
8/2012 Buclko et al. 717/100
8/2013 Koryakin et al. 719/318
5/2014 Subralnnanyam et al. ... 718/101
612014 Buclko et al. 726122

2005/0268112 Al 12/2005 Wang et al.

(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Mar. 6, 2012
for related PCT Patent Application No. PCT/US2010/055507.

Primary Examiner - Michael R Vaughan
(74) Attorney, Agent, or Firm - Troutman Sanders LLP;
Ryan A. Schneider; Christopher Close, Jr.

(57) ABSTRACT

Security systems can provide secure and efficient in-VM
monitoring. An exemplary security system can be built upon
hardware virtualization features and can comprise a virtual
machine having a plurality of standard virtual address spaces,
as well as a hidden virtual address space. While the standard
virtual address spaces can be directly accessible by a kernel in
the virtual machine, the hidden virtual address space can be
hidden from the kernel, which can be absent a virtual page
table corresponding to the hidden virtual address space. A
security monitor can reside in the hidden address space,
monitoring the kernel without being modifiable by the kernel.
A processor can transfer focus from the standard virtual
address spaces to the hidden virtual address space only
through predetermined entry gates, and the processor can
transfer focus from the hidden virtual address space to the
standard virtual address spaces only through predetermined
exit gates.

14 Claims, 7 Drawing Sheets

VM HYPERVISOR HARDWARE

llQ
I

120
I

200 I I

~ I I 205
CONTEXT3il

I I
CPU

I I
CONTEXT342 I I 207

I I MEM

CONTEXT343 +
* • 210

• DEV •
CONTEXT344

EJ ~

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0006226 Al 1/2007 Hendel

US 9,129,106 B2
Page 2

2009/0006714 Al* 1/2009 Durham et al 711/6
2009/0037936 Al 2/2009 Serebrin
2009/0055571 Al* 212009 Buclko et al. 711/6
2010/0299665 Al* 1112010 Adams 718/1

2008/0244573 Al* 10/2008 Sahita et al. 718/1 * cited by examiner

U.S. Patent Sep.8,2015 Sheet 1of7 US 9,129,106 B2

0
I'-

0
I.{)
...--

/
0
0 0

...--

...--

CENTRAL
PROCESSING

NETWORK

212

SYSTEM ~7
MEMORY

216

209 ~ ACCESS I I MEMORY
224

READ I 11
ONLY 226

MEMORY . . .

Fig. 2

250

220

OPERATING
SYSTEM

WEB

WEB PAGE

200

/

INPUT/OUTPUT
CONTROLLER

MASS STORAGE
DEVICE

I
11214

~
00
•
~
~
~
~ = ~

1J1
('D

'?
'"CIO
N
0
Ul

1J1

=-('D
('D
N
0
-....J

d
rJl

'"'..c

"'"" N
'"'..c

"'"" = 0--,

= N

,,,.... I I
HARDWARE-.....,

200

CPU --
MEM --
DEV --

j

Fig. 3

207

210

~
00
•
~
~
~
~ = ~

1J1
('D

'?
'"CIO
N
0
Ul

1J1

=­('D
('D
(.H

0
-....J

d
rJl

'"'..c

"'"" N
'"'..c

"'"" = 0--,

= N

U.S. Patent Sep.8,2015 Sheet 4of7

-----~------------~-----------~ -~-
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,_

410

(

: ,..-11~;:;;;;:;;;:;;;~
I
I

I
I
I
I
I
I
I
I

'---------------

421

- ------ --- -------------- -------------

PTE OFFSET

VIRTUAL
ADDRESS

401

OFFSET

PHYSICAL
ADDRESS 402

\
I
I
I
I
~···
I

MMU 436 ,,,
------------~-----------------

432

Fig. 4

US 9,129,106 B2

l
I

.I

" 1
l
I
I
I
I
I
I
I
I
I
I
I
I
I
J

U.S. Patent Sep.8,2015 Sheet 5of7 US 9,129,106 B2

180

190

152

154

Fig. 5

U.S. Patent Sep.8,2015 Sheet 6of7 US 9,129,106 B2

.
0)

u...

U.S. Patent Sep.8,2015 Sheet 7of7 US 9,129,106 B2

Fig. 7

US 9,129,106 B2
1

SYSTEMS AND METHODS FOR SECURE
IN-VM MONITORING

CROSS-REFERENCE TO RELATED
APPLICATIONS

2

This application is a United States National Stage Appli­
cation of International Patent Application Serial No. PCT/
US2010/055507, filed 4 Nov. 2010, which claims a benefit,
under35 U.S.C. §119(e), ofU.S. Provisional Application Ser.
No. 61/258,033, filed 4 Nov. 2009. The entire contents and

10

substance of which these two applications are hereby incor­
porated by reference as if fully set out below.

same VM of the trusted process, without being subject to the
conventional risks of in-VM monitoring. In an exemplary
embodiment, such systems and methods can provide security
similar to out-of-VM monitoring, with efficiency similar to
conventional in-VM monitoring. It is to such systems and
methods that various embodiments of the invention are
directed.

Briefly described, various embodiments of the invention
are monitoring systems and methods for secure in-VM moni­
toring. In an exemplary embodiment, a monitoring system
can be facilitated by hardware virtualization and can com-
prise a guest VM, a hidden address space in the guest VM, an
entry gate, an exit gate, and a hypervisor.

TECHNICAL FIELD

Various embodiments of the present invention relate to
security of computer systems and, more particularly, to
secure monitoring of a computer system from within a virtual
machine in which an untrusted program executes.

BACKGROUND

Kernel-level attacks or malicious programs, such as root­
kits, that compromise the kernel of an operating system are
one of the most important concerns in systems security at
present. These attacks can run at the same privilege level as
the kernel and can thus modify kernel-level code or sensitive
data to hide various malicious activities, to change operating
system behavior, or even to take complete control of the
system. Kernel-level security tools can be crippled and made
ineffective by these attacks, which can run, access, and
modify these security tools. A large body of research has
adopted virtual machine (VM) monitor technology in an
effort to mitigate such attacks. A higher privileged hypervisor
outside of a virtual machine in which the kernel runs can
enforce memory protections and preemptively intercept
events throughout the operating system environment.

A major reason for adopting virtualization is to isolate
security tools from an untrusted VM by moving those security
tools to a separate, trusted, secure VM, and then using intro­
spection to monitor and protect the untrusted VM from inside
the trusted VM. Approaches that passively monitor various
security properties, by periodically looking inside the
untrusted VM for evidence of suspicious activity, have been
proposed, but passive monitoring can only detect renmants of
an already successful attack. Active monitoring from outside

15
The guest VM can contain code and data for the kernel of

an operating system. One or more applications can run within
on the operating system inside the VM, and the operating
system can provide each application with its own virtual
address space. The kernel can contain virtual page tables for

20 each of the applications, so as to map the virtual address
spaces of the applications to an address space of the operating
system. The guest VM can also contain a hidden address
space, for which the kernel does not have a virtual page table.
Thus, the kernel does not have access to the hidden address

25 space. A security monitor, such as part of an antivirus appli­
cation, can run inside the hidden address space, isolated from
the untrusted portion of the guest VM outside of the hidden
address space.

The hypervisor can run outside of the guest VM at a higher
30 privilege level than the guest VM. The hypervisor can contain

one or more shadow page tables corresponding to the virtual
page tables in the guest VM, so as to map the address spaces
of the applications and the operating system to a physical
address space. The hypervisor can also contain a secure

35 shadow page table for the hidden address space, enabling the
hypervisor to map the hidden address space to physical
address space.

The entry gate and the exit gate can be code blocks con­
figured to switch the focus of a processor from between an

40 address space of an application running on the operating
system and the hidden address space. The processor can
access the hidden address space only through an entry gate,
and the processor can exit the hidden address space only
through an exit gate. In an exemplary embodiment, the entry

45 gate can contain code that first modifies the value in the CR3
register to a physical address corresponding to the hidden
address space. With the CR3 register modified to point to the
hidden address space, the processor automatically jumps into
the hidden address space, where the processor can process

of the untrusted VM, in contrast, has the advantage of detect­
ing attacks earlier and preventing certain attacks from suc­
ceeding. Active monitoring from outside of an untrusted VM
can be achieved by placing secure hooks inside the untrusted
VM, to intercept various events and invoke the security tool
residing in a separate secure VM. Because the secure VM is
isolated from the untrusted VM, so as to prohibit tampering,
switching between the VMs occurs through the hypervisor.
But the large overhead for switching between the untrusted
VM, the hypervisor, and the secure VM makes this approach 55

suitable only for actively monitoring a few events that occur
less frequently during system execution.

50 code of the security monitor inside the hidden address space.
After the security monitor handles an event that triggered the
call to the entry gate, the security monitor can then call the
exit gate, to return focus to a process executing the guest
operating system.

Generally, a call to the hypervisor is performed whenever
the CR3 register is modified. The hardware underlying the
monitoring system, however, can provide a target list of CR3
values, such that a hypervisor call is not made when the CR3
register value is modified to one of the target values. Thus, to

Thus, with previous systems and methods, in-VM moni­
toring provides an inadequate level of security, while moni­
toring from outside a VM is feasible only when limiting the
number and type of events that can be actively monitored,
and.

SUMMARY

There is a need for secure in-VM monitoring systems and
methods, for monitoring untrusted processes from within the

60 avoid hypervisor calls when focus is switched from the kernel
to the hidden address space, the target list can be maintained
to include the values to which the entry and exit gates will
modify the CR3 register, so as to avoid a hypervisor call when

65

switching into or out of the hidden address space.
The monitoring system can thus provide efficient, secure

in-VM active monitoring of untrusted processes in a com­
puter system. Other objects, features, and advantages of the

US 9,129,106 B2
3

monitoring system will become more apparent upon reading
the following specification in conjunction with the accompa­
nying drawing figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a diagram of a monitoring system,
according to an exemplary embodiment of the present inven­
tion.

FIG. 2 illustrates an exemplary computing system, on
which the monitoring system can operate, according to an
exemplary embodiment of the present invention.

FIG. 3 illustrates a hardware-based virtualization system,
which can comprise and build upon the hardware and soft­
ware components of FIG. 2, and in which the monitoring
system can be implemented, according to an exemplary
embodiment of the present invention.

FIG. 4 illustrates how virtual memory addresses can be
translated to addresses in a physical address space in a typical
x86-type architecture, useable in an exemplary embodiment
of the present invention.

FIG. 5 illustrates memory mapping for a guest virtual
machine, according to an exemplary embodiment of the
present invention.

FIG. 6 illustrates how the switching is performed between
standard and hidden virtual address spaces by updating the
CR3 register, according to an exemplary embodiment of the
present invention.

FIG. 7 illustrates contents of an entry gate and an exit gate
for accessing the hidden virtual address space, according to
an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

To facilitate an understanding of the principles and features
of the invention, various illustrative embodiments are
explained below. In particular, the invention is described in
the context of being a monitoring system for secure and
efficient in-VM monitoring of untrusted processes. Embodi­
ments of the invention, however, are not limited to this con­
text. Rather, embodiments of the invention can provide a
means to isolate various types of processes, other than just
monitor processes, from other processes within a VM.

The components described hereinafter as making up vari­
ous elements of the invention are intended to be illustrative
and not restrictive. Many suitable components that can per­
form the same or similar functions as components described
herein are intended to be embraced within the scope of the
invention. Such other components not described herein can
include, but are not limited to, similar or analogous compo­
nents developed after development of the invention.

4
The guest VM can comprise a system address space 130

and a hidden address space 140. A kernel 150, including both
kernel code 152 and kernel data 154, can reside in the system
address space 130, while a security monitor 160, or monitor­
ing process, can reside in the hidden address space 140. The
hidden address space 140, and thus the security monitor 160,
can be hidden from the kernel 150. The monitoring system
100 can be a secure, in-VM monitoring system based on
hardware virtualization features. Through the monitoring

10 system 100, the security monitor 160 can securely monitor
untrusted processes having the same privilege level and resid­
ing in the same VM as the security monitor 160. The moni­
toring system 100 can be as, or nearly as, secure as an out­
of-VM monitoring system, while maintaining an efficiency

15 on par with conventional in-VM monitoring systems.
Embodiments of the present monitoring system 100 can
achieve this level of security and efficiency by not requiring a
privilege transfer when switching to the monitor for an inter­
cepted event, and by enabling the monitor 160 to access the

20 address space of a kernel 150 at native speed.
In the monitoring system 100, a desired level of security

can be achieved by isolating the security monitor 160 from
the kernel 150, so as to prevent tampering with the security
monitor 160 code 162 or data 164 by the kernel 150 or by an

25 untrusted process accessing the kernel 150. As shown in FIG.
1, the guest VM 110 can comprise at least one entry gate 112
and at least one exit gate 114, which can be the only means by
which focus is switched between the system address space
130 and the hidden address space 140. Through these pro-

30 tected gates 1124 and 114, the monitoring system 100 can
ensure that the security monitor 160 is not tampered with by
an untrusted process.

The desired level of efficiency can be achieved by not
requiring privilege switches when a process switches focus

35 between the kernel 150 and the security monitor 160. As
discussed above, in a conventional out-of-VM approach, a
security monitor would be located in a separate VM. In that
case, a call would have to be made to the hypervisor 120 to
switch focus between to the security monitor 160 when a

40 hook is triggered. In embodiments of the present monitoring
system 100, however, isolation can be achieved by putting the
monitor code along with its private data in a separate hyper­
visor protected guest address space that can only be entered
and exited through specially constructed protected gates.

45 Because the security monitor 160 can be located inside the
guest VM 110 with the kernel 150, a call can be made to the
security monitor 160, by way of the entry gate 112, without
need for a privilege switch. As a result, normal operation of
the security monitor 160 can proceed without hypervisor 120

50 intervention, but any attempts to breach the security of secu­
rity monitor 160 can be trapped and prevented by the hyper­
visor 120.

Referring now to the figures, in which like reference
numerals represent like parts throughout the views, various
embodiments of monitoring systems and methods for secure 55

in-VM monitoring will be described in detail.

A key idea of the monitoring system 100 is the use of a
separate hypervisor-protected virtual, hidden address space
140 in the guest VM 110. The hidden address space 140 can
store the security monitor 160 and can exist in parallel to the

FIG. 1 illustrates a diagram of a monitoring system 100,
according to an exemplary embodiment of the present inven­
tion. As shown in FIG. 1, the monitoring system 100 can
comprise a guest VM 110 and a hypervisor 120, both residing 60

on a computing system 200 (see FIG. 2). The hypervisor 120
can have a higher privilege level within computing system
200 than does the guest VM 110. As a result, the hypervisor
120 can monitor activities of the guest VM 110 without being
subject to tampering by any untrusted process in the guest VM 65

110, which untrusted process would be limited to operation
within the guestVM 110.

virtual address spaces utilized by the kernel 150 of the oper­
ating system 216. The virtual memory can be mapped in such
a way that the security monitor 160 can have a one-way view
of the guest VM' s original virtual address space. Thus, while
the security monitor 160 can view the address space of the
operating system 216, no code executing in the operating
system 216 can view the security monitor's hidden address
space 140. One or more entry gates 180 and one or more exit
gates 190 can be the only code that can transfer execution
between the system address space 130 and the hidden address
space 140.

US 9,129,106 B2
5

As in conventional active monitoring, hooks 170 can be
placed in the kernel 150 before specific events to be moni­
tored. When triggered, a hook can transfer control to the entry
gate 180, which can in turn transfer control to the security
monitor 160. The security monitor's code 162, including
handlers for each hook, and data 164 can all be contained
within the hidden address space 140, inaccessible except
through the entry gate 180. When the security monitor 160
finishes handling the triggered hook, the security monitor 160
can transfer control to the exit gate 190, which can in turn 10

transfer control back to the process in which the hook was
triggered.

To achieve active monitoring, a goal of an exemplary
embodiment of the monitoring system 100, certain events

15
need to be intercepted. To this end, a set of hooks 170 can be
placed in the monitored kernel 150 to invoke corresponding
handlers 168 contained the security monitor's code 164. A
hook 170 can pass data related to the triggering event that is
gathered at the point of the hook 170, thus enabling the 20

handler 168 to analyze and handle the triggering event.
Conventionally, the overhead in executing security tools

out of the guest operating system 216 is primarily due to the
change in privilege levels that occurs when switching back
and forth between the kernel-level 150 and the hypervisor- 25

level 120.
An exemplary embodiment of the monitoring system 100,

however, meets performance requirements similar to the per­
formance of conventional in-VM approaches, which do not
require these privilege switches to occur when a hook 170 is 30

encountered. For example, performance requirements met by
the monitoring system 100 can be as follows:

6
approaches satisfy this requirement because the adver­
sarial program does not have any means to access a
separate, trusted guest VM.

Designated point for switching into the security monitor
code 164: Execution should switch to the security moni­
tor 160 only at one of the handlers 168. This requirement
can ensure that an attacker does not invoke any security
monitor code 162 other than through the designated
points of entry. Since the hypervisor 120 initiates entry
into the monitor, out-of-VM approaches can ensure this
requirement.

A handler 168 is called if and only if the corresponding
hook 170 executes: This requirement has two parts: (a) If
a hook 170 is reached in the monitored system, then the
corresponding handler 168 can be initiated by the sys­
tem; and (b) a handler 168 can be initiated only if the
hook 170 was executed. In out-of-VM approaches, the
first requirement can be satisfied by design of the han­
dler dispatcher, and the second requirement can be sat­
isfied because the exact VMCalls that initiated the
hypervisor execution can be identified and checked.

The behavior of the security monitor 160 is not maliciously
alterable: The execution of handlers 168 should not be
maliciously alterable by the adversary. The control-flow
of the security monitor 160 thus should not depend on
any control-data that is alterable by the attacker. Further,
the handlers 168 should not need to call any dependency
that is at the control of the adversary. Lastly, after the
handler 168 completes, execution should return to a
point that is intended by the security monitor 160. An
out-of-VM monitor can satisfy these requirements by
not using any control-data contained in untrusted VM.

None of the existing in-VM approaches can satisfy all of
the above security and performance requirements at the same

Fast invocation: Invoking the security monitor's handler
168 for a hook 170 need not involve any privilege level
change.

Data read/write at native speed: The monitor code 164 can
read and write any system data and local data at native
speed, i.e., without hypervisor 120 intervention.

35 time. In contrast, an exemplary embodiment of the present
monitoring system 100 can improve upon convention in-VM
approaches and out-of-VM approaches by meeting all of the
above performance and security requirements.

In conventional in-VM monitoring, a direct control trans­
fer to the handler code 168 from the hook 170 initiates the
security monitor 160. Moreover, the security monitor 160 can
access all data and code because everything is contained in
the same address space. But as discussed above, conventional
in-VM monitoring lacks a desired level of security. The prob­
lem of out-of-VM approaches is that both performance
requirements listed above cam10t be satisfied. In out-of-VM
monitoring, the hypervisor 120 is invoked when the hook 170
is executed to transfer control to the handler 168 residing in
another VM. Additionally, the hypervisor 120 usually needs
to be invoked to partially map memory belonging to the
untrusted VM into an address space in the trusted VM for the
out-of-VM monitor.

In addition to meeting performance requirements based on
conventional in-VM monitoring, the monitoring system 100
can also meet security requirements that are based on out-of­
VM monitoring. To state the security requirements, we con­
sider an adversarial program residing in the same environ­
ment as the kernel 150. In this threat model, the adversarial
program runs with the highest privilege in the guest VM 110
and therefore can directly read from, write to, and execute
from any memory location that is not protected by the hyper­
visor 120. To ensure the security of the security monitor 160,
the monitoring system 100 can meet the following security
requirements, on par with those of out-of-VM approaches:

Isolation of the monitor's code 162 and data 164: This
ensures the integrity of the monitor's code 162 and data
164 is protected from the adversary. Out-of-VM

In an exemplary embodiment, the monitoring system 100
40 can leverage Intel VT hardware virtualization extensions and

the virtual memory protections available in standard Intel
processors. A prototype has been developed of an embodi­
ment of the monitoring system 100 based on KYM, an open­
source virtual machine monitor available as part of main-

45 stream Linux that exclusively uses hardware virtualization
features. Microbenchmarks show that, in the exemplary pro­
totype, an invocation of the security monitor 160 in is almost
eleven times faster than that ofa security monitor 160 residing
in a separate VM. According to the microbenchmarks, out-

50 of-VM monitoring introduced an overhead of 690%, which
includes external introspection costs, whereas the overhead
introduced by the monitoring system 100 was only 13%.
Macrobenchmarks carried over a number of representative
benchmark programs show an average overhead of 4.15%

55 compared to 46.10% in out-of-VM system call monitoring.
Further details of the monitoring system 100 will be pre­

sented following an introduction of various concepts on
which embodiments of the present invention build.

FIG. 2 illustrates an exemplary computing system 200, on
60 which the monitoring system 100 can operate, according to an

exemplary embodiment of the present invention. As shown in
FIG. 2, a computing system 200 embodying the monitoring
system 100 can comprise a central processing unit 205, or
processor, and one or more system memories 207, such as a

65 random access memory 209 ("RAM") and a non-volatile
memory, such as a read-only memory ("ROM") 211. The
computing system 200 can further comprise a system bus 212

US 9,129,106 B2
7

coupling together the memory 207, the processing unit 205,
and various other components. A basic input/output system
containing routines to assist in transferring information
between components of the computing system 200 can be
stored in the ROM 211. Additionally, the computing system
200 can include a mass storage device 214 for storing an
operating system 216, application programs, and other pro­
gram modules.

The mass storage device 214 can be connected to the pro­
cessor 205 through a mass storage controller (not shown) 10

connected to the bus 212. The mass storage device 214 and
other computer-readable media can comprise computer stor­
age media, which can include volatile and non-volatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as 15

computer-readable instructions, data structures, program
modules, or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EPROM, EEPROM, flash
memory, other solid state memory technology, CD-ROM,
digital versatile disks ("DVD"), other optical storage, mag- 20

netic cassettes, magnetic tape, magnetic disk storage, other
magnetic storage devices, or various other media used to store
data accessible by the computing system 200.

A number of program modules and data files can be stored
in the computer storage media and RAM 209 of the comput- 25

ing system 200. Such program modules and data files can
include an operating system 216 suitable for controlling
operations of the computing system 200, or of the guest VM
110 of the computing system 200. A web browser application
program, or web client 224, can also be stored on the com- 30

puter storage media and RAM 209. The web client 224 may
comprise an application program for requesting and render­
ing web pages 226 created in Hypertext Markup Language
("HTML") or other types of markup languages. The web
client 224 can be capable of executing scripts through the use 35

of a scripting host. The scripting host executes program code
expressed as scripts within the browser environment.

Computer-readable instructions on the storage media of
the computing system 200 can include, for example, instruc­
tions for implementing processes of the monitoring system 40

100. These instructions can be executed by the processor 205
to enable use of the monitoring system 100.

The computing system 200 can operate in a networked
environment using logical connections to remote computers
over a network 250, such as the Internet. The computing 45

system 200 can connect to the network 250 and remote com­
puters through a network interface unit 220 connected to the
bus 212.

8
216, e.g., an instance of a conventional Microsoft Windows®,
Linux®, or Unix® operating system, can execute in coordi­
nation with a guestVM 110, providing application software
and operating system services. As is typical of modern oper­
ating system design, each application or service can run in its
own virtual memory address space and can include one or
more execution contexts, e.g., contexts 341, 342, 343 ... 344,
and each context can have an associated instruction pointer.
Typically, an execution context, which can also be referred to
as a "process," "thread," or "task," includes a set of process
registers and a virtual address space.

As on a conventional hardware computer platform, guest
operating system 216 can coordinate execution of sequences
of instructions on one or more processors 205, can help to
maintain memory management and mapping information
(e.g., virtual-to-physical page mappings), and can manage
devices 210 of the underlying computing system 200.
Together, the operating system 216, in the guest VM 110, and
underlying computing system 200 can manage context
switches amongst various execution contexts based on prior­
ity, data or instruction memory access stalls, input/output
events, explicit code directives, or other characteristics.
Numerous techniques and designs, in both hardware and soft­
ware, for scheduling and performing context switches in mul­
titasking/multithreaded systems are known and will be under­
stood by persons of ordinary skill in the art.

From the perspective of the operating system 216 and the
individual execution contexts, the guest VM 110 appears to be
and, indeed, behaves like a conventional hardware computer
platform, such as that illustrated in FIG. 2, executing instruc­
tion sequences and presenting an apparent processor 205 and
memory state. In general, the characteristics and configura­
tions ofa virtual machine 110 need not match those of under­
lying hardware resources, although in many implementa­
tions, a correspondence between instruction set architectures
of virtual processors and underlying hardware processors 205
may be desirable. Although particular virtualization strate­
gies/designs are described herein, the virtualization system
300 is representative of a wide variety of designs and imple­
mentations in which underlying hardware resources are pre­
sented to software as virtualized instances of computational
systems that may or may not precisely correspond to the
underlying physical hardware.

Virtual resources can be presented to the guest VM 110
using mapping or emulation techniques. The hypervisor 120
can be a hardware and/or software interface provided
between the guest VM 110 and the various hardware compo­
nents and devices in the underlying hardware platform, and
the hypervisor 120 can provide the necessary mapping and

50 emulation.
The computing system 200 can also include an input/out­

put controller 222 for receiving and processing input from a
number of input devices, including a keyboard, mouse, or
electronic stylus. Interactions between the input devices and
the monitoring system 100 can be detected by the input/
output controller 222 to provide meaningful input to the com­
puting system 200. The input/output controller 222 can addi- 55

tionally provide output to a display screen, a printer, or other
type of input/output device.

FIG. 3 depicts a hardware-based virtualization system 300,
which can comprise and build upon the hardware and soft­
ware components of FIG. 2, and in which an embodiment of 60

the monitoring system 100 can be implemented, according to
an exemplary embodiment of the present invention. More
specifically, FIG. 3 illustrates a class ofvirtualization system
300 embodiments in which underlying hardware resources
are exported to guest computations as one or more isolated, 65

and apparently independent, virtual machines, e.g., guest VM
110. In the illustrated system 300, a guest operating system

Most modern memory hierarchies and processor designs
employ or support virtual memory techniques. In general,
virtual memory implementations can provide a mechanism
that allows a computational system to map from a virtual
address space to a physical address space. Building on vir­
tual-to-physical mappings, modern computational systems
can present software with an apparent memory space that is a
different size than underlying physical memory and that
appears to be contiguous, although in reality the memory
allotted to a particular application can be a non-contiguous,
collection of memory blocks. In this manner, an application
can run more efficiently, and the virtualization system 3 00 can
protect certain portions of memory by isolating those portions
from computations or processes.

Paged virtual memory is by far the most common form of
virtual memory supported by modern processors and memory
architectures and by the operating systems that execute

US 9,129,106 B2
9

thereon. In typical paged virtual memory implementations,
the address space of a process or set of processes can be
organized as a collection of blocks, or pages, of contiguous
virtual memory addresses. The virtual memory addresses
employed or manipulated by an application can be translated 5

or mapped to corresponding physical addresses used by hard­
ware to reference specific locations in physical memory.
Typically, virtual memory implementations can encode map­
pings from virtual address spaces to a physical address space
using page tables, which are typically maintained by the 10

operating system.
By way of example only, FIG. 4 illustrates how virtual

memory addresses can be translated to addresses in a physical
address space in a typical x86-type architecture, useable in an
exemplary embodiment of the present invention. It will be 15

understood by one skilled in the art that the means of virtual
address translation discussed herein does not limit the scope
of the monitoring system 100.

As shown in FIG. 4, a 32-bit virtual address 401 can
includes constituent portions that are treated as a 10-bit page 20

directory entry (PDE) index, a 10-bit page table entry (PTE)
index, and a 12-bit page offset (OFFSET). The respective
indices can be used in a two-level mapping scheme that
employs a 1024-entry page directory 410, indexed using the
PDE index, to retrieve a corresponding page table base 25

address (PTBA) 411, which can identify a 1024-entry page
table 420, such as exemplary page table 421. The exemplary
page table 421 can be indexed using the PTE index portion of
virtual address 401 to identify a corresponding physical page
base address (PPBA) entry 422, which in tum can identify a 30

page 431 in physical memory 432. Page and offset portions of
the mapped physical address 402 can be used to access a
particular target location 433 in physical memory 432 based
on the virtual address 401.

10
number. Otherwise, the MMU 436 can walk the page tables to
locate the virtual page number and physical mapping.

To walk the page tables, MMU 436 identifies a page direc­
tory corresponding to the current context and indexes first
into the page directory and then into a page table 420. Exem­
plarily, in the illustration of FIG. 4, the PDE portion of virtual
address 401 is used as an index into the page directory 410,
while the PTE portion of the virtual address 401 is used as an
index into the page table 421. More specifically, a 40-bit value
retrieved from control register CR3 is used as the upper 40
bits, a 10-bit value from the PDE portion of virtual address
401 is used as the next lower address bits, and the last two
address bits are set to 0 to form the 32-bit address in physical
memory 432 of the PTBA entry 411. In turn, the PTBA entry
411 is used to identify the page table 421, and the PTE portion
of the virtual address 401 is used as an index into the identified
page table 421. More specifically, a 40-bit value obtained
from the PTBA entry 411 is used as the upper address bits, a
10-bit value from the PTE portion of virtual address 401 is
used as the next lower address bits, and the last two address
bits are set to 0 to form the 32-bit address in physical memory
432 of the PPBA entry 422. Finally, the PPBA entry 422 is
used to identify the mapped page 431, and the offset portion
of the virtual address 401 is used as an offset into the mapped
page 431. More specifically, a 40-bit value obtained from the
PPBA entry 422 is used as the upper address bits and the
12-bit offset portion of virtual address 401 is used as the lower
address bits to form the 32-bit address in physical memory
432 of the target location 433.

Page directories are typically page-aligned, and in x86-
type processor designs, 40 bits from control register CR3 are
sufficient to uniquely identify a 4-kilobyte page that encodes
the page directory for the current execution context. Page
tables 420 and, of course, the pages themselves are also page

In the illustrated example, the page directory 410, page
tables 420 and individual mapped memory pages such as page
431 are all represented in physical memory 432 as 4-kilobyte­
memory pages. Typically, in modern paged virtual memory
implementations, a memory management unit (MMU) 436
performs the virtual-to-physical address translations either by
walking the page tables 420 or by retrieving cached page
mappings from a translation lookaside buffer (TLB) 435.
Typically, an operating system 216 maintains, often in con­
junction with the MMU 436, contents of the page tables 420
in correspondence with demand paging activity. The MMU
uses page mappings coded therein to perform virtual-to­
physical address translations in the course of memory
accesses performed by the processor 205. As is conventional

35 aligned. Therefore, 40-bit page table base addresses, e.g.,
PTBA 411, and physical page base addresses, e.g., PPBA
422, are also sufficient in the illustrated configuration. Thus,
entries in the illustrated page directories and tables are 32 bits,
and the additional bits are generally available to code appro-

in x86-type processor architectures, contents of a control
register, such as the CR3 register, are used to identify the page
directory 410 corresponding to a current execution context
and its address space.

Use of the illustrated page mappings can be understood as
follows: When the MMU 436 receives a virtual address 401,
the MMU 436 can determine whether there is an entry in the
TLB 435 that provides a mapping for the virtual address 401
to a corresponding physical page number. In the illustrated
context, a combination of PDE and PTE portions of the vir­
tual address 401 can be considered a virtual page number.
Therefore, the TLB 435 can map 40-bit virtual page numbers
to 40-bit physical page numbers, although other configura­
tions are possible as well. Typically, the TLB 435 is imple­
mented as a content addressable store in which a subset of
virtual-to-physical page number mappings is cached. If the
TLB 435 contains an entry that matches the virtual page
number forthe virtual address 401, the MMU 436 can use this
cached mapping to obtain the corresponding physical page

40 priate and desirable attributes, such as, for examples, validity
of the entry, types of access allowed for the corresponding
page, whether the corresponding page has been modified or
referenced since loaded into physical memory 432, whether
caching is disabled, or whether the corresponding page must

45 remain in physical memory 432.
In general, page mapping state is dynamic and constantly

changing in accordance with demand paging activity, based
on context switches and, in some cases, based on explicit
instructions (e.g., flush, invalidate, etc.) executed by operat-

50 ing system or application code. Relative to demand paging, as
virtual-to-physical page translations are performed, some
page mappings may indicate that corresponding data is not
currently present in physical memory 432. In this case, the
MMU 436 can generate a page fault that, once serviced,

55 results in the needed data being loaded into physical memory
432 and corresponding changes made in the page tables 420.
For example, if at the time that the MMU 436 attempts to map
virtual address 401, corresponding data does not actually
reside in physical memory 432, the PPBA entry 422 will so

60 indicate. As a result, corresponding data can then be loaded
from backing storage and the PPBA entry 422 can be updated
to identify the page in physical memory 432 into which the
data is loaded. In this manner, either initially or eventually
based on operation of a page fault handler, a mapped physical

65 page frame can contains data corresponding to a virtual
address 401. Since physical memory is finite, the preceding
sequence can typically displace data that previously resided

US 9,129,106 B2
11

in the page frame and both the PPBA entry 422 and other page
mapping information corresponding to the now displaced
data can also be updated.

Generally, memory management facilities of an operating
system are responsible for creating and maintaining page
tables 420 in memory accessible for use by the MMU 436.
The MMU 436 or operating system memory management
facilities are generally responsible for managing contents of
the TLB 435, so that recently or frequently obtained map­
pings between virtual page numbers and physical page num­
bers are cached. Typically, demand paging activity will result
in changes to the TLB contents. In addition, mappings can be
flushed from the TLB 435, e.g., in connection with a context
switch, or can be individually invalidated, e.g., when a cor­
responding memory page is unmapped.

For example, when a mapping for a particular virtual page
number is not contained within the TLB 435 and a page table
walk is performed, the MMU 436 typically evicts an entry
from the TLB 435 to free up space for a new entry for the
current mapping. The virtual page number is cached in the
newly available entry of the TLB 435, along with the physical
page number obtained from the page table walk (and any
demand paging). In general, when an entry in TLB 435 is
evicted, the bit indicating whether the page has been modified
is typically copied from the evicted entry to the corresponding
entry in page tables 420.

A challenge in the virtualization of modern computer
architectures is creation and maintenance of memory map­
ping information in shadow page tables, maintained by the
hypervisor 120. In general, shadow page tables encode vir­
tual-to-physical memory mappings usable by a MMU 436 or
other facility of underlying hardware in mapping memory
access targets of instructions executed on behalf of a guest
computation. Typically, the guest computation is aware of
mappings to an apparent physical address space of a guest
VM 110, but is unaware of actual mappings to an address
space in underlying physical memory.

Thus, while mappings encoded in shadow page tables can
correspond to mappings maintained by a guest operating
system 216 in conventional page tables, e.g., guest page
tables, shadow page tables can go a step further, completing
the mapping to addresses in underlying physical memory. To
understand why this further mapping is relevant, it is impor­
tant to recognize that the guest operating system 216, or an
execution context thereof, need not be aware that it executes
on a guest VM 110. Accordingly, the guest operating system
216 and its execution contexts maintain and view the guest
page tables 420 as representing operant virtual-to-physical
memory mappings, even though the mapped-to "physical"
addresses are really addresses in a space on the guest VM 110,
which is itself virtualized. Such guest page table mappings
can therefore be understood as mappings from guest virtual
page numbers to Guest physical page numbers, which can be
further mapped by the hypervisor 120 to actual physical
addresses.

As discussed above, paging based virtual memory can be
facilitated by page tables, for mapping virtual addresses to
physical addresses. When an instruction is executed, the cur­
rent page table can be used to perform address translations.
The operating system 216 can create a separate page table for
each process, so that a process can have its own virtual
memory address space in which to operate.

FIG. 5 illustrates memory mapping for the guest VM 110
and its hidden address space 140, according to an exemplary
embodiment of the present invention. As shown in FIG. 5, a
process address space 510 can be defined by the operating
system 216 for each executing process. In FIG. 5, an exem-

12
plary process address space 510 is shown in the left, while the
hidden address space 140 is shown on the right. The guest
memory 520, seen to the guest VM 110 as physical memory,
corresponding to these address spaces 510 and 140 are rep­
resent in the middle of the diagram.

Generally, as shown in FIG. 5, the kernel 150 can be
mapped into a fixed address range in each process's address
space 510. All pages containing kernel code 152 can have
read and execute privileges, to enable the kernel 150 to

10 execute its functionality as needed for the process to operate.
But the kernel code 152 can be write-protected, especially in
places where hooks are placed, so as to limit modifications of
the kernel 150 by untrusted processes.

As mentioned earlier, the entry and exit gates 180 and 190
15 can be used to perform transitions between the system

address space 130, in which the process address space 510
exists, and the hidden address space 140. Since the gates
include code, they can be set with execute permissions but can
be made read only so that they cannot be modified from with

20 the guestVM 110.
The hidden address space 140 can include the security

monitor code 162 and data 164. In addition to the security
monitor 160, the hidden address space 140 can contain all the
contents of the system address space 130 that are mapped to

25 the hidden address space 140. However, some of the permis­
sions can be set differently, for the monitoring system 100 to
behave as desired. The kernel code 152 and data 134 regions
do not have execute permissions. This means that while
execution is within the hidden address space 140, no code

30 mapped in from the system address space 130 can be execut­
able. Thus, any unauthorized modifications to the kernel 150,
such as by a malicious rootkit, cannot execute in the hidden
address space 140 to modify the security monitor 160. Invo­
cation checkers 165, which can identify the processes in

35 which hooks are triggered to call the entry gate 180, can also
be contained only in the hidden address space 140 and can
have execution privileges.

Because the system address space 130 contents can be
mapped into the hidden address space 140, an important

40 requirement for the mapping to work can be to ensure that
other, i.e., the additional, regions in the hidden address space
140, e.g., the security monitor code 162, security monitor data
164, and the invocation checker 165 regions, do not overlap
with the mapped-in regions from the system address space

45 130. There are at least two methods by which this can be
achieved. First, the virtual address range that is used for user
programs may be used for allocating the hidden address space
140 regions. This approach is suitable for security monitors
160 that will be primarily used to monitor kernel level code

50 132. Second, operating system functionality can be utilized to
allocate memory from the system address space 130. Once
allocated, any legitimate code, such as the operating system
216 itself, should not attempt to use this memory region in the
system address space 130.

55 Since the hidden address space 140 contains all kernel code
152 and data 134, along with the security monitor code 162
and data 164 in its address space, the instructions as part of the
security monitor 160 can access the kernel 150 regions at
native speed. This satisfies the performance requirement of

60 the monitoring system 100, by not requiring a privilege trans­
fer to switch focus between the kernel 150 and the security
monitor 160. The memory mapping method we have intro­
duced also satisfies the isolation security requirement, by
having the security monitor code 162 and data 164 regions in

65 a separate hidden address space 140, not directly accessible
by the executing kernel 150 in the system address space 130.
Any kernel-level instruction executing in the guest operating

US 9,129,106 B2
13

system 216 will utilize the system address space, which do
not include these security monitor 160 regions. Although any
kernel-level code 132 executing in the operating system 216
environment can have full freedom to change the process
virtual memory mappings, because they are mapped into the 5

system address space 130, kernel-level code 132 cannot
modify or alter the hidden address space 140. By design, a
hidden page table for the hidden address space 140 is neither
included in the system address space 130, nor in the hidden
address space 140. This we will be discussed in more detail 10

later in this disclosure.

14
directories. FIG. 6 illustrates how the switching is performed
by updating the CR3 register. Besides the hypervisor-main­
tained shadow page table structures, the monitoring system
100 can also utilize a specialized shadow page table, referred
to herein as a secure shadow page table. The secure shadow
page table converts virtual addresses in the hidden address
space 140 to host physical addresses. Since it is directly
maintained in the hypervisor 120 and the security monitor
160 need not manage its virtual memory, no guest level page
table for the hidden address space 140 need be provided. The
root of the secure shadow page table structure can be a secure
shadow page directory, which can be designates as
SIM_SHADOW. The physical address of the current secure
shadow page directory maintained by the hypervisor 120 can

In the Intel x86 processors, the CR3 register can contain the
physical address of the root of the current page table data
structure. In the two-level paging mechanism supported in the
IA-32 architecture, the root of the page table structure is
called the page directory. As part of the process context
switching mechanism, the content of the CR3 register can be
updated by the kernel 150 to point to appropriate page table
structures used by the current process. Although the kernel
150 of the operating system 216 mainly maintains the valid
CR3 values to switch among processes, any code executing
with the kernel-level privilege can modify the CR3 register to
point to a new page table. However, to ensure the correct
operation of the operating system 216, kernel code 152 needs
to see its expected CR3 values.

15 be designated as P _SHADOW. Switching between the pro­
cess address space 510 and the hidden address space 140 can
be required to directly modify the CR3 register and to load the
value ofSIM_SHADOW or P _SHADOW, after already add­
ing them to the CR3_TARGET_LIST. This ensures the cor-

In conventional virtual machines, the page tables in the
guest VM 110 are not used for translating virtual addresses to
physical addresses, because the physical memory that needs
to be translated to is on the host, which can be maintained and
shared among various VM's by the hypervisor 120. In con­
ventional virtualization, the hypervisor 120 can take com­
plete control over the guest operating system 216 memory
management by intercepting all accesses to the CR3 register.
The guest physical memory then only becomes an abstraction
utilized by the hypervisor 120 for maintaining correct map­
ping to the host physical address. Shadow page tables can be
used by the hypervisor 120 to map guest virtual to host physi-
cal memory. The hypervisor 120 can thus give the guest
operating system 216 the illusion that the operating system's
designated page tables are being used.

20 rect operation of the code in the guest VM 110 when the
hypervisor 120 remains uninvolved. The entry and exit gates
180 and 190 can perform this switching, as will be described
below, and the rest of the design of the monitoring system 100
can ensure that the switching is transparent to the guest oper-

25 ating system 216.
The entry and exit gates 180 and 190 can be the only

regions that are mapped into both the system address space
130 and the hidden address space 140 in pages having execut­
able privilege. This ensures that a transfer between the

30 address spaces 130 and 140 can only happen through code
contained in these pages. Moreover, since these pages are
write-protected by the hypervisor 120, the contents of the
gates 180 and 190 cannot be modified by any in-guest VM
110 code. Exemplary contents of the entry and exit gates 180

35 and 190 are shown in FIG. 7.
Each hook and associated handler can correspond to a pair

of corresponding entry and exit gates 180and190. The task of
an entry gate 180 can be to first set the CR3 register with the
physical address of the secure shadow page directory, or

40 SIM_SHADOW. This action can switch focus into the hidden
Since an exemplary embodiment of the monitoring system

100 requires the switching of address spaces, the CR3 register
can be modified directly to this end. However, the modifica­
tions to the CR3 register by the guest VM 110 are typically
trapped by the hypervisor 120. The monitoring system 100, 45

however, can bypass the hypervisor 120 invocation, so that
the desired performance requirement, i.e., reduction of privi­
lege-transfers, can be satisfied.

address space 140. Since the CR3 register cannot be directly
loaded with data, the value of SIM_SHADOW first needs to
be moved to a general purpose register. For this reason, all
register values can be saved to the stack, so that the security
monitor 160 can access register contents at the point when the
hook was reached. Even though the register contents are
saved on the stack in the system address space 130, since
interrupts are disabled by the entry gate 180 already, an
attacker will not be able to regain execution and modify the
values before entry into thehidden address space 140. Once in
the hidden address space 140, the next task is to switch the

To enhance performance, the monitoring system can utilize

stack to a region contained in the security monitor 160 by
modifying the ESP register. The stack switching may be
necessary, so that code executing in the hidden address space
140 does not use a stack provided by the untrusted guest
kernel-level code 132. Otherwise, an attacker can select an
address in the form of the stack pointer that may overwrite
parts of the security monitor 160 once in the hidden address
space 140. Finally, control can be transferred to the invocation

a hardware virtualization feature available in Intel VT. By 50

default each access to the guest CR3 register by the guest VM
110 can cause a VMExit, which is a switch from the guest VM
110 to the hypervisor 120. Intel VT includes a target list
(CR3_TARGET_LIST) maintained by the hypervisor 120.A
modification to the CR3 register does not trigger a VMExit if 55

the CR3 is being switched to one of the page table structure's
root addresses in the target list. The number of values this list
can store varies from model to model, but the Core 2 Duo and
Core 2 Quad processors support a maximum of four trusted
CR3 values in the CR3_TARGET_LIST. 60 checker routine 165 to verify where the entry gate 180 was

invoked, which will be discussed in more detail below. The guest operating system 216 can provide the addresses
of guest page directories in the CR3 register, and the correct
execution of the guest VM 110 is ensured by the hypervisor' s
modifying the addresses to the appropriate shadow page
directories instead. However, when the monitoring system
100 bypasses the hypervisor 120 while switching CR3 values,
the system 100 needs to directly switch between shadow page

The first instruction executed in the entry gate 180 can be
the CLI to stop interrupts from executing. This can guarantee
that execution is not diverted to somewhere else due to inter-

65 rupts. The reason for executing the same CLI instruction
again after entering the hidden address space 140 is discussed
further below.

US 9,129,106 B2
15

The exit gate 190 can perform a transfer out of the hidden
address space 140 into the process address space 510. When
called, the exit gate 190 can first switch the stack back to the
stack address saved by the entry gate 180. To make the
address space switch, the exit gate 190 can load the CR3
register with the address in P _SHADOW, which can be the
physical address of the shadow page table root. The hypervi­
sor 120 may be using multiple process shadow page tables
and switching between them as necessary. To ensure correct
system state, the value of P _SHADOW can be equal to the 10

address of shadow page directory being used by the hypervi­
sor 120 just prior to entering the hidden address space 140.
Querying the hypervisor 120 for the correct value during
monitor invocation violates the performance requirement of
the monitoring system 100, so instead, the hypervisor 120 can 15

update the value of P _SHADOW used in the exit gate 190
when the hypervisor 120 switches from one process shadow
page table to another during normal process switches. These
calls to the hypervisor are common to conventional in-VM
monitoring and need not be avoided to achieve similar per- 20

formance as conventional in-VM monitoring. Having the
value of P _SHADOW as an immediate operand in every exit
gate 190 would require the hypervisor 120 to perform several
memory updates. Instead, storing it as a variable in the hidden
address space 140 can require only one memory update by the 25

hypervisor 120 at the time of shadow page table switches. At
the end of the exit gate 190, the interrupt flag can be cleared to
enable interrupts again, and then execution can be transferred
to a designated point, usually immediately after the hooked
location. The exit gate 190 can have write permissions in the 30

hidden address space 140, enabling the security monitor 160
to control where the execution is transferred back.

The entry gates 180 can be the only way to enter the hidden
address space 140, and each entry gate 180 can first transfer
control to the appropriate invocation checking routine 165, 35

which can then call a handler 168 routine in the security
monitor 160. By doing so, the monitoring system 100 can
ensure the security requirement, i.e., isolation of the security
monitor 160.

16
BRANCH_k_FROM_IP and the MSR_LASTBRANCH_
k_TO_IP, where k is a number from 0 to 3.

The monitoring system 100 can check the branch that
transferred execution to the entry gate 180 using the LBR
information. In the invocation checking routine 165, the sec­
ond most recent branch can be the one that was used to invoke
the entry gate 180. The monitoring system 100 can check that
the source of the branch corresponds to a hook 170 that is
allowed to call the entry gate 180. Although the target of the
branch instruction can also be available, the monitoring sys­
tem 100 need not verify the target ifthe source matches. As
will be discussed late, the monitoring system 100 can also
mitigate possible attacks that may jump into the middle of the
entry gate 180 and attempt to divert execution before invoca­
tion checking routine is initiated.

A conceivable attack may be an attempt to modify these
MSR registers in order to bypass the invocation checks. Thus,
the monitoring system 100 can preferably stop malicious
modifications to these MSR, but at the same time ensure that
the desired performance requirement is not violated. With
Intel VT, read and write accesses to MSR registers can selec-
tively cause VMExits by setting the MSR read bitmap and
MSR write bitmap, respectively.Using this feature, the moni­
toring system 100 can set the bitmasks in such a way that
write attempts to the IA32_DEBUGCTL MSR and the LBR
MS Rs are intercepted by the hypervisor 120 but read attempts
are not. Since the invocation checking routine 165 only needs
to read the MSRs, performance is therefore not affected.

In an exemplary embodiment, the security monitor code
162 need not rely on any code from any untrusted region, such
as any region outside of the hidden address space 140. There­
fore, the security monitor code 162 can be completely self­
contained. To this end, any necessary library routines can be
statically linked with the code 162, and the security monitor
160 does not call any kernel 150 functions. Mapping the
kernel code 152 and data 134 with non-execute privileges, as
discussed above, can ensure that even any accidental execu­
tion of untrusted code does not occur in the trusted, hidden
address space 140, because execution on non-execute code

To satisfy the security requirement of isolation, immedi­
ately after the hidden address space 140 is entered through
one of the entry gates 180, the invocation of the entry gate 180
can be checked to ensure that the invocation was from a hook
that is allowed to call the entry gate 180. A challenge is that,
because the entry gate 180 is visible to the system address
space 130, a branch instruction can jump to this location from
anywhere within the system address space 130. Moreover, the
monitoring system 100 preferably does not rely on call
instructions and checking the call stack, because these are
within the system address space 130 and, as such, cannot be
trusted. The monitoring system 100 can instead utilize a hard­
ware debugging feature available in the Intel processors after
Pentium 4 to check the invocation points. This feature, which

40 and data results in a software exception. Any software excep­
tions occurring while in the hidden address space 140 can be
is handled by code residing in security monitor 160. More­
over, the entry and exit from the SIM address space can be
considered an atomic execution from the perspective of the

45 untrusted guest operating system 216. While the hypervisor
120 can receive and handle interrupts on the guest operating
system's behalf, the guest VM 110 need not be notified of
interrupts while interrupts are disabled in the guest VM 110.
Disabling interrupts before entering and after exit can ensure

50 that interrupts do not divert the intended execution path of the
security monitor 160, which can guarantee the desired secu­
rity requirement. Even without using the code of the guest
operating system 216, the same functionality provided by an

is called last branch recording, can store the sources and
targets of the most recently-occurred branch instructions in 55

one or more predetermined processor registers.

out-of-VM approach can be achieved in our design.
By disallowing kernel 150 functions to be called, the secu-

rity monitor 160 needs to traverse and parse the data struc­
tures in the system address space 130 in order to extract
necessary information required for enforcing or verifying a
security state of the untrusted region. However, this is the

The last branch recording feature can be activated by set­
ting the LBR flag in the IA32_DEBUGCTL MSR. Once this
flag is set, the processor 205 can record a running trace of a
fixed number of last branches executed in a circular queue.
For each of the branches, the instruction pointer (IP) at the
point of the branch instruction and its target address are stored
as a pair. The number of these pairs that can be stored in the
LBR queue varies across the x86 processor families. How­
ever, all families of processors since Pentium 4 record infor­
mation about a minimum of four last branches taken. These
values can be read from the MSR registers, MSR_LAST-

60 same semantic gap that exists while using introspection to
analyze data structures of the untrusted guest VM from a
separate trusted guest VM. The method of identifying and
parsing data structures used in existing out-of-VM
approaches can therefore be ported to this secure in-VM

65 approach with few modifications.
Additionally, the security monitor 160 may need to per­

form accesses to hardware or perform I/O for usability pur-

US 9,129,106 B2
17

poses instead of handling the events in the untrusted guest
operating system 216. Theoretically, it may be possible to
replicate the relevant guest operating system 216 functional-
ity inside the hidden address space 140. However, accessing
hardware directly may interfere with the guest operating sys­
tem 216. Instead, because the hidden address space 140 can

18
known in the art and can be utilized by the security monitor
160. For each hook 170 and corresponding handler 168, a
hypercall can be performed by the driver to inform the hyper­
visor 120 about the hook 170 instruction, the handler's
address, and the address to return execution to after the han­
dler 168 executes. For each received hypercall, the hypervisor
120 component can generate an entry gate 180, an invocation
check routine 165, and an exit gate 190. The invocation
checking routine 165 can be modified to verify the invocation

be trusted, the monitoring system 100 can define a layer to
communicate with the hypervisor 120 for operating-system­
like functionality through hypercalls. This layer, referred to
as the SIM API, can provide functionalities such as, for
examples, memory management, disk access, file access, and
additional I/O. This layer can be developed as a library that
can be statically or dynamically linked with the security
monitor code 162 based on the implementation. The handling
of the SIM API can be performed in the hypervisor 120 or by
a separate trusted guest VM. Since the security monitor 160
can be designed to use such functionality less often than
handling events in the untrusted guest kernel 150, the cost of
hypervisor 120 invocation can be kept low even for fine­
grained monitoring.

10 instruction address to be the hook 170 instruction address
provided with the hypercall. A jump instruction can be placed
at the end invocation routine 165 to jump to the provided
handler 168. The exit gate 190 code can also be modified to
return execution to the specified address. The address of the

15 entry gate 180 can be returned, so that the driver can modify
the hook 170 to divert execution to the entry gate 180.

Embodiments of the monitoring system can thus provide
secure and efficient monitoring of untrusted processes from
within a same virtual machine as the untrusted processes.

An exemplary embodiment of the monitoring system 100
can be initialized by a guest VM 110 component implemented

20 While the monitoring system has been disclosed in exemplary
forms, many modifications, additions, and deletions may be
made without departing from the spirit and scope of the
system, method, and their equivalents, as set forth in the as a Windows driver, executed after a clean boot, when the

guest operating system 216 can be considered to be in a
trusted state. The primary task of the initialization driver is to 25

allocate guest virtual memory address space for placing the
entry and exit gates 180 and 190 based on the hooks 170
required, initiate creation of hidden virtual address space 140,
initiate the loading of the security monitor 160 into the hidden
address space 140, and finally initiate the creation of entry 30

gates 180, exit gates 190, and invocation checking routines
165. The initialization driver can communicate with the
hypervisor 120 counterpart of the monitoring system 100
using hypercalls, for example, the VMCALL instruction of
Intel VT. 35

An early task of the monitoring system 100 can be to
reserve virtual address ranges in the system address space 130
for use in entry and exit gate 180 and 190 creation. Because
the monitoring system 100 need not guarantee that the normal
operation of the operating system 216 and legitimate appli- 40

cations do not attempt to utilize the reserved address ranges,
the monitoring system 100 can allow the guest operating
system 216 to allocate virtual address space. The driver can
allocate contiguous kernel-level memory from the non-paged
pool by using the MmAllocateContiguousMemory kernel 45

function. This function can return the virtual address pointing

following claims.
What is claimed is:
1. A security system comprising:
a virtual machine;
a kernel executing inside the virtual machine;
a virtual memory inside the virtual machine comprising a

plurality of standard virtual address spaces and a hidden
virtual address space, wherein the standard virtual
address spaces are directly accessible by the kernel, and
wherein the hidden virtual address space is hidden from
the kernel;

a hypervisor at a higher privilege level than the virtual
machine;

a processor having a control register and being configured
to execute program code, wherein the processor transi­
tions from the standard virtual address spaces to the
hidden virtual address space exclusively through an
entry gate, and wherein the processor transitions from
the hidden virtual address space to the standard virtual
address spaces exclusively through an exit gate;

a page table base target list comprising a list of target
physical addresses including a first physical address of
the hidden address space and a second physical address
of a current process in the standard address spaces,
wherein a modification of a control register to one of the
target physical addresses is performed absent a call to
the hypervisor, and wherein modification of the control
register to a value outside the target list requires a call to
the hypervisor;

the entry gate comprising program code for modifying the
control register to point to the first physical address of
the hidden address space; and

the exit gate comprising program code for modifying the
control register to point to the second physical address of
the current process.

to the starting of this allocated memory region. Because the
function allocates memory from the Windows non-paged
pool, it can be guaranteed by the operating system 216 to be
never paged out. In other words, the pages can be mapped to 50

guest physical frames that are not used until they are freed.
Because the memory is already allocated, any legitimate
application will not try to utilize this address space. The
allocated virtual address space region is informed to the
hypervisor 120 component using a predefined hypercall noti- 55

fying the starting address and the size of the allocated region.
During execution, the monitoring system 100 can check for
any malicious attempts to utilize this address space or
changes in memory mapping. 2. The security system of claim 1, further comprising a

60 security monitor having code and data both contained in the
hidden virtual address space, wherein access to the security
monitor is obtained through the entry gate.

A next step can be creation of the hidden address space 140
by the hypervisor 120 component. After the hypervisor 120 is
informed about the memory allocation, the secure shadow
page table structure can be created.

A final task is to create the relevant routines to perform
switching into the hidden address space 140. The security
monitor 160 can require hooking into the kernel 150 for
invoking the handlers 168. Various forms of hooking are

3. The security system of claim 2, further comprising one
or more hooks in the kernel, each hook corresponding to a

65 handler in the security monitor, and each hook being config­
ured to invoke the corresponding handler by calling the entry
gate.

US 9,129,106 B2
19

. 4. ~e security system of claim 3, further comprising an
mvocat10n checker configured to verify the authenticity of a
hook calling the entry gate.

5. The security system of claim 1, wherein the kernel
manages one or more virtual page tables for each of the
standard virtual address spaces, the hypervisor comprising:

one or more standard shadow pages corresponding to the
standard virtual address spaces and the virtual page
tables; and

a secure shadow page corresponding to the hidden address
space.

6. The security system of claim 1, the target list being a
hardware feature of the security system.

7. The security system of claim 1, the control register being
a CR3 register.

8. The security system of claim 1, the hypervisor being
configured to modify the target list to include an address of
the current process.

9. A security system comprising:
a virtual machine;
a virtual memory in the virtual machine, the virtual

memory comprising one or more standard address
spaces and a hidden address space;

a security monitor having code and data within the hidden
address space;

an operating system executing in the virtual machine the
operating system managing one or more virtual ~age
tables. corresponding to the standard address spaces,
wherem the hidden address space is hidden from the
operating system;

a hypervisor at a higher level of privilege than the virtual

10

15

20

25

30

machine, the hypervisor comprising one or more stan­
dard shadow pages corresponding to the virtual page
tables and the standard address spaces, and the hypervi­
sor further comprising a secure shadow page corre- 35
sponding to the hidden address space;

a processor having a CR3 register and being configured to
execute program code in the standard address spaces and
in the hidden address space, wherein the processor tran­
sitions from the standard address spaces to the hidden
address space exclusively through a first entry gate, and
wherein the processor transitions from the hidden
address space to the standard address spaces exclusively
through a first exit gate;

40

a CR3 target list comprising a list of target physical 45
addresses including a first physical address of the hidden
address space and a second physical address of a current
process in the standard address spaces, wherein a modi­
fication of the CR3 register to one of the target physical
addresses is performed absent a call to the hypervisor, 50
and wherein modification of the CR3 register to a value
outside the target list requires a call to the hypervisor;

the first entry gate comprising program code for modifying
the CR3 register to point to the first physical address of
the hidden address space; and

20
the first exit gate comprising program code for modifying

the CR3 register to point to the second physical address
of the current process.

10. The security system of claim 9, further comprising a
plurality of hooks in the operating system, each hook corre­
sponding to a handler in the security monitor, wherein trig­
gering of a first hook calls the entry gate to invoke the corre­
sponding first handler in the security monitor.
. 11. T.he security system of claim 10, further comprising an
mvocat10n checker in the hidden address space, the invoca­
tion checker being configured to authenticate the first hook
when the first hook calls the entry gate.

12. The security systemof claim9, the first entry gate being
configured to call an invocation checker in the hidden address
space after modification of the CR3 register to the physical
address of the hidden address space, and the invocation
~hecker ~eing configured to verify appropriateness of entry
mto the hidden address space, and being further configured to
call the security monitor.

13. A security method comprising:
establishing a hidden address space in a virtual machine

the hidden address space being hidden from a kernel
running in the virtual machine;

configuring a hypervisor to manage a shadow page table
for mapping the hidden address space to physical
memory;

establishing an exclusive entry gate for entering the hidden
address space from a standard address space accessible
to the kernel, the entry gate comprising program code for
modifying a CR3 register to point to the hidden address
space;

establishing an exclusive exit gate for returning to the
standa:d address space from the hidden address space,
the exit gate comprising program code to modify the
CR3 register to point to a calling process from which the
entry gate was called; and

modifying a CR3 target list to include a physical address of
the hidden address space, wherein the target list repre­
sents addresses to which the CR3 register can be modi­
fied ~bsent a call to the hypervisor, wherein the entry
gate 1s configured to transition from the standard address
space to the hidden address space absent a call to the
hypervisor, and wherein the exit gate is configured to
transition from the hidden address space to the standard
address space absent a call to the hypervisor.

14. The security method of claim 13, further comprising:
providing a.security monitor in the hidden address space,

the security monitor being hidden from the kernel· and
providing a hook in the kernel; '
wherein the security monitor comprises a handler corre­

sponding to the hook, and wherein triggering the hook
calls. the entry gate to access the handler in the security
mom tor.

* * * * *

