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AN APPROACH TO THE MINIMUM TIME CONTROL OF A SIMPLE FLEXIBLE ARM 
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Atlanta. Georgia 

To enable fastec cobot aCID motion one r.1i.ght reduce the aCID weight 
and use a minimum time ~ontcol. Light arms will be flexible. A simple 
example of a light arm is a single beam, rotating about one end, and 
subject to bending. This paper ~odels such a beam in modal ~oocdinates, 
linearizes the model, and fOClDulates the ~ontrol according to ~n 

algodthm developed by ?lant and Athans.· This algorithm moves t~e 

~ystem state to a hypersphere near the ocigin in ,tinimum ::.ime. c:.e 
objective of this ~eseacch is to understand the nature of the opti=l 
~ontrol ::'0 aid in formulating a more peacti~al suboptimal conteol. 

INTROOOC!IOR 

Increased demand'3 for perfocmance of robot arms and otlJer 
~echanical ~ystems lead one to ~onsider new ranges of desi~n 

parameters. 1Y reducing the structural mass of an aCID the rnove~ent ::i~e 

may be reduced, improving that aspect of performance. To achieve t~is 
impcoved performance vibration of the nore flexible ~ClD must ~ 

~onsidered. In this paper one appcoach to this problem is ~onsideced. 
A simple flexible arm is modeled using the method of assumed rnodes. The 
time opt1:nal .;;ontrol of this nonlinear model is sought. Due to ::.he 
simple configuration of the arm, the linearized equations of motions 
constitute a reasonable model of the system. The linearized problem is 
solved numeri.:ally using the method of Plant (9). The optimal control 
is then applied to the nonlinear system equations in a simulation. 

8y solving for the optimal control for this simple case one hopes 
to gain insight into ::he optimal control of more complicated acIDS as 
well as practical approximations to this optimal control. One can also 
compace the true optimum with various suboptimal controls. Alternative 
design and control strategies can thus be evaluated. 
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DJ-1c 1hcIeJUDI of the Pl'OpoMd Coafiguratioll 

The flexible I18nipulator arll will be modeled using the method of 
assuaed modes. Refe~ence [3) has so.e details in time domain modelling 
of two links by applying Lagrange's equation and the assumed mode 
method. The same approach will be used here to fOrll the dynamio: 
equations of the proposed configuration, shown in Figure 1. 

{u+}. [u~+yx] Let be the unit vector of reference frame OXY , 

{Ul }· [l;~J be the unit vector of reference from OX l Yl ' 

where C:& the rotational transformation matrix (See Fig. 1). 

(C) :& [ 
cos( 9) 
-sin( 9) 

sin( 9) ] 
cos( 9) 

With respect to the reference fcame (OX l Yll the vector posi~ion of 
point P would be 

... ... [XlJ R :& {U }' 
d 1 u

1 
The ve;:toc position of pOint P ;:an also be des.:cibed IoIi.th respect 

to reference frame (OXY) as 

Rd ,. (-9x 1sin(9) - a ulcos(9) - ulsin(a»)~x + 

(8 x1;:os(6) - ,3 ursin(S) + ~lcOS(6)J~y 

Msu.ed .ode ethod. 

A solution of the flexible ~tions is assumed 
.:ombination of admissible functions multiplied by 

to be a Linear 
t i::le ::ependent: 

generalized coorindates. 

~here the ~. are admissible functions which satisfy the 5eometric 
boundary conditions and the qi(t) are generalized coordigates. 

Furthermore, .• ssumming that the amplitude of the higher .odes of 
the flexible link are very small ':OlIpared \o/ith the first one (ref 2), n 
,. 2 will be accurate enough to represent the system. 

where 41 , ~., llIUst be orthogonal. Details on the mode shape is shown in 
the next section. 

Xi_tic -97 (T), may be wri~::en as 

T" (lIZ) f Rd • Rd dm + (lIZ) (Rd· Rdllx:&t!'1 + (lIZ) 

III (1/2) J (a~1 ax I • I 
p x'" ... 
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The first teem in the right hand side is the kinetic energy of the 
rotating beam with respect to the odgin (0) •. '. The second teem and the 
third term are kinetic energy of the payload mass and the rotating 
inertia respectively. The last teem is the kinetic energy of the 
payload mass when the beam is flexible. 

Potential energy (V) 

11 

V mgl sine 8)/2 + Mgl sine 8) + (1/2) J EI( a2u/axi) dx 

o 

The first teem and the second teem will be neglected if the plane 
of motion is horizontal. The last teem is the potential stored in the 
beam when the beam is bent. 

Lagrange's Equation 

By knowing kinetic Energy and potential energy, the dynamic 
equation can be derived by using Lagrange's equation which is 

d( aT/ aq )/dt - aT/aq + av/aq = Cl_; r = 1,2, •••• r r r "r 

where 

qr is the generalized coordinate 
Qr is the generalized force 

Dynamic equation 

Horizontal motion is considered here. 
potential energy can be derived as follows: 

The kinetic energy and 

where 

- - = S'2x2 + '2 ·2 •• Rd'Rd 1 Su 1 +u 1 +26u 1x 1 

T = 1/2 92 J 2 
xldm + 1/28 f 2 

uldm + 1/2 J '2 uldm + 6 J ~lxldm 

+ 

m 

+ 1/2 Me212 + 

, 
'2 

1/2 Jp -p1Eql 

J 
o 

+ 

1/2 ·2 2 S u1EM + 

' . . 
<PlE <P2E ql q2 Jp 

m m 

1/2 
·2 •• 
u1EM + Su1E1M + 

+ 
'Z • 

1/2 Jpq>Z q2 

is very small and can be neglected 

221 

m 

1/2 I e2 
0 



. - ~--.\:. 

;, '- . .'-. 
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where 

EIfR, 

o 

EI J
R. 

o 

" 2 (4)2 (x) dx 

Substitute T and V into Lagrange's equation. The dynami.:: equation can 
be written as 

(1) 
2 22 22 2·· 

[Jo + MR. + Io + M (4)lEq l + 4>2Eq 2 + 24>lE ~2Eqlq2)16 + 2M4>lEq l q 16 

+ 2M4>~Eq2q26 .+ 24>lE4>2Eq l q2 6M + 2M4>lE~2Eqlq2 e + w1ql + w2
q2 q 

+ MR,4>lEq 1 + MR,<P2Eq = T 

where 

m mass of the beam 
M = payload mass 
J p = inertia of payload mass about its center of gravity 
Io = rotating inertia at the jOint 
J o = inertia of beam with respect to the joint 

ulE = u 1 (x) .x=R. 

u2E = u2 (x) 'x=R, 
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,.-: 

, +IE - +1 (x) lx-I. 

+21 • +2{x) lx-I. 

K • 
I 

K • 
2 

JR." 2 
EI ('l(x» dx 

o 
1. r " 2 

EI J~ ('2(x) dx 

o 

or 

Linearization 

+1 (t) I tal 

+2(tH
t
_1 

To simulate the motion of the proposed system, the nonlinear 
equations (1) will be used. For the purpose of design of the minimlllr" 
time control, the linearized form of equations (1) will be obtained. 
All the higher degree terms in 6, ql and q~ are dropped frOll the 
equations. The resulting linearized syscem of equations (1) ~an then be 
written as 

The above equations can be wcitten in the fom of . 
(3) X· AX+Bu 

where 

0 0 0 I o 0 

0 0 0 0 o 

0 0 0 0 o 1 
A· 

M-Il( 
0 o 0 

0 o 0 
0 o 0 

223 

.. 'f;:::.'i:;;;~' 



B [ ~IJ 
where 

[ 
J + 1U2+ I Mt'lE + wl ., + ""E ] 0 0 

wl + M!~lE 
2 '2 ~'lE~2E + Jp~~E~2~ M - m + M, lE+ J p<PIE 

w2 + Mt'2E M<PIE~2E + J p<PIE<P2E 
2 '2 

~'2E + J p'2E + m 

[ 
0 0 0 1 

K • 0 -Kl 0 

J 0 0 -K2 

b • [:] 
Xl 9

1 
., 

x., ql 

X3 qz . 
X 2 X. 9

1 .. 
Xs ql 

~ q2 

Mode Sba2! Aaallsis 

The simple arm of these studies consists of a beam with 
inertia at ODe end and payload cass at the other end. 

The transverse vibration of the beam can be described as 

where 

U(1.:) • q(t)r(~) 

~ • x/t 

Boundary Conditions on the arm (inertia. beam. and payload) are 

at ~ - 0 : 
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l.c(t) - 0 

2 •... d2C(t)/dt2 ,. -(I
O
·/pAJ.3)a\d r(t)/dtl taO) 

and, at 

1. 

2. 

t ,. 1 

d
2

r(f.)/df.
2

", 0 

d 3 r( f.)dl <,3 '" -(HI pAt) 6
4 
r( f.) 

The solution of the equation (4) subject to the boundary condition 
is 

(5) (f.) sin(Sf.)-sinh(Sf.) + v (cos(Sf.) - cosh(Sf.) + 

where 

V 2 (sin(S) + sinh(S»/«2I*/S3)sinh(S) - (cos(S) + cosh(S» 

4 2 4 
6 = pAw i. lEI 

1* ,. PAt3/I 
o 

Modified Mode Shape 

The mode shape used in the dynamic modelling, is measured from the 
axis without deflection. With this assumption, zero slope at the pinned 
end has to be achieved. Thus, the mode shape can be written as 

where r( f.) is the mode shape which is derived from the previous 
section and satisfies the boundary .:onditions (Le. Beam ;;ith 
concentrated mass on at one end ( f. = 1 ) and rotary inertia mass (1

0
) 

at the other end ( f. = 0). So, the modified mode shape is 

(6) ,,( f.) = sine Sf.) - sinh( Sf.) + 

V(COS(Df.) - cosh(Sf.) + (21*/S
3

)sinh(Sf.) - (21*/6
2

)(f.» 

The natural frequencies have been tested by comparing the transfer 
matrix (DSAP package, ref [4]) and the dynamic state variable results. 
The frequencies of the first mode are very close together. For the 
second mode, the difference is typically less than 10 percent. This 
difference is caused by the truncation of the higher modes in the 
dynamic equations. 

'l'be t1!e-Optillal Positi01l Cancrol for LiDear Tt.e-Invadanc Planc 

Given the dynamic system 

(7) 

where 
X(t) 
A 
B 
:[(t) 

! (t) .. AX(t) + BU(t) 

• the state vector 
• the nxn system matrix 
• the oxr gain matrix 
• the control vector 

(8) I Uj(t) I <; 1; j .. 1, 2, ••• , c 
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Then. _ given that at the initial time t.,. 0., the initial state of 
the systl!ll (7) is X(O) - Xo. find the .:ontr"ol u (t) that t,.ansfers the 
system (7) from Xc to the origin 0 in minimum ti~ • 

The .:ost fun.:ti~nal is 

(9) J(u)" l dt; T free 

The Hamiltonian fun~tion for the problem is 

(10) H(.!( t), .£..( t), .!!.( t» ~ 1 + < AX(t), .£..(t) > 

+ < ~(t), .R(t) > 

1 + < AX(t), .R(t) > 

+ < .!!.( t), ~.R(t) > 

where 

.R(t) ~ .:ostate ve.:tor and 
<.> 2 inner produ.:t operation 

Necessary Conditions 

Let U*(t) be a time-optimal .:ontr01 that transfers the initial 
state Xo to the origin 0. Let X*.(t) denote the trajectory of the system 
(7) .:ocresponding to U*(t), originating at Xo at to ~ 0, and hitting the 
origin 0 at the minimllll time (T*). Then there exists a .:ocresponding 
.:ostate vector p*(t) such that: 

. 
! *(t) = aH(!*(t), E*(t), E*~(t»/aE*(t) 

,. AX*(t) + BU*(t) 

p *(::) 

= - .!!:..E..*( t) 

~ith the boundary .:onditions 
!.*(O) .. Xo 

.!*(T*) .. ° 
In addition, from the Hamiltonian function and minimum prin.:iple, the 
inequality 

(11) 1 + <~*!*(t)'R*(t» + <~*(t), !'R*(::» 

< 1 + < ~*!*(t), Z*(t) > + < E(t), !'R*(t) > 

holds for all admissible U(t) and for t [0, T*I. Relation (11) yields, 
in turn, the relation 

(12) .!l.*( t) 2 - sgn {!' R*( t)} 

Because H(!*(t), R*(t), E*(t» is not an explicit function of t 

H(!*(t), ~(t), E*(t» ,. 1 + <!!*(t), Z*(t) > + <~*(t), !'R*(t) > .. 0 

holds for all t [O,T*I. 
The costate function obeys· 
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, 
; .... 

(13) 
. .,' 

R,*(t) --!'R,*(t) 

p*(t) # 0 for t [O.T*j 

A necessary condition for the solution of the system (7) to exist 
is that the systea be completely controllable. The system is completely 
controllable if aDd only if the system is normal. !be necessary and 
sufficient conditions for the system to be normal is that the [nxn] 
matrices GI • G2 ••••• Gr given by the equations 

G a [b Ab A~ An-~ I 
G1 _ [b 1 Ab 1 A2b1 An-l b1] 

2 2 2 2 2 

are all nonsingular where the bi are the component vectors of B. 
If the system (7) is normal, then the time-optimal control is 

unique (if it exists). 

Kodified systea 

For the case of interest let T '"' T - t, the the system (7) can be 
written as: 

(4) ,!Cr) - - AX( T) - bu( T) 

and 

~ote that b is an nxl constant matrix. 

Given p( T) • a*Q*V, equation (13) has the unique solution 

OS) 
-A' (t T) 

pet) '"' a e - QV 

and we have 

( ) ( AT» u* t = -sgn (y, ~ b> ds 

The solution of equation (14) at T - T is 

T 

(16) MeV.T) • e-
AT 

{V + 1 eM b sgn«V,Qe!­

o 

b»ds} 

Iterative Procedare for 50191118 the Mf..D.t.. n.e Positioa Control 

More details for this procedure can be found in ref (9) by John B. 
Plant. The iterative procedure is based on equation (9) by chOOsing 
element (V,T) and checking to see if the particular choice satisfies Xo 
• M(V,T). 

A typical step in the iterative pro.:edure is illustrated in Figure 
(2) (for a second order plant) where the hypersurface PHI is an 
isochrone 
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(17) PRI(T.X
O
) - £X:X • exp(Ar)(X

O 
+ 

T . ~.~ J up (-Ae)bu(l)cls) •. Jul < I} 

wh'\ch are reachable fro. Xo in or PBI(T.Xo> is the let of all Itate. 
tille T. 

One can select a suitable Itate-space reprelentation and use the 
byperspbere as a target. or choose a suitable Q matrix and leave the 
state-space representation as it is initially. 

Some definitions which will be used in the iterative procedure will 
be listed in the following. Kare details can be found by consulting 
ref. [9). 

Defini tioa 1 

Ryperspherical coordinates, h (a ), will be defined as 
h 1 (a) • cos (a) 

,\(a) • cos 
k-l 

(\) j!l sin ay (k - 2,3, ••• ,n-l) 

where 0 ,·a
i 

'11 i· 1, Z, ••• , n-2 

and the h a( e) is the first derivative of h( a ) with respect 
that is ah

1 
( e) ah! (a) ah 1 ( e) 

~ aez ae n-1 

h e( e) .. 
ah

n 
( 8) ah

n 
(8) ah

n 
(9) 

a a1 aaz aa n-1 

to 8 , 

Given V, a vector which belongs to the set of vectors from the 
ocigin to boundary of hypersphere, a unique ~ can be solved from the 
relation a .. (1/r)h-1(LV) where <V,QV)· rand Q • L'L. (Q and L 
can be unity matrices). The h (9) is used merely to find the 
derivative of M(V,T) when restricted ~o D. 

Definitioa 2 (D) 

Let 0 aSxR be the set of ordered pail'S in aSxR such that if 
(V,T) t D, then Vt3S (the bouodary of the hypersphere) is the terminal 
state at tille t* • T of the tiae-optimal trajectory for SOlIe state X in 
the domain of controllability. 

Let G(V,T) be the first decivatlve of M(V,T) restricted to D and 
with respect to all arguments. ~t is, 

G(V,T) - [rK
V

(V,T)L-
1
h a(a)I ~(V,T»). 

The iterative procedure can be summarized in the following. 
(from Ref [9». 

For the k(th) guess of (V,T) • (Vk , Tk) 

1. ~ - M (Vk' Tk) 

228 



Vi 
t 

(It can be abovn that MeV» T) is a one-to,-one mapping of each point 
on the boundary of the hypecshpece (V) to a point a10"3 the ",in~ 
isochcollt! \11th the _ .unillUll ti1le T.) 

where 

3. Xa - H(V·, r*) 

4. \. • {l/c)h -1 (v
k

) 

where h-1(Vk) is the inverse fun~tLon of h(\.) 

s. ~. [r~(Vk' Tk ) hS(Sk) I M:r(Vk • Tk )] 

[ ~:r~J -1 6. u - Gk e k 

8. 

A 

r(Vk + ykt.Yk ) 
(Yk ) - -------::."A,....:.;-­

IVk + ykt.ykl 

9. Tk+l (Yk) - Tk + Ykt.Tk 

10. ~hoose Y~ in (0,1) such that 

* 11. Vk+1 • "k+1(Yk) 

* 12. Tk+1 - Tk+1(yk) 

Sote: The nxn aa;rix G(V,T) has rank n if and only if 

-<V,AV> + l<b.Av>1 )0 

In ;he step 10 of the iterative procedure. Y
k 

.;an be .:hosen by 
considering the fact (ref. [9) that 

.here Jl positiVlo! t'eal number Nlt can be chosen such that ek+l (YIt) is 
bounded. 
The value of Ylt ~ be chosen as follows 

1. Choose Tit· l »evaluate M(V1t+l' Tk+l) • When "It is chosen 

to l~ll, then 

'\+1 • e..c.+l (YIt • 1) 

2. If 1~11 < (1/2) leltl , incr_nt k and proceed to the next 

iteration. Otherliise A 

lit - (1/2) <l e
k l/lek+11) 
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1',,-,:, 

is used. ~+l can be evaluated when Nst is ;:hosen C!lllJoll to 

(112) leklll~k I 

3. If 

Ylt -

< lekl proceed to the next iteration. 

~ 2 
__ 'Y...;;It"-I_e_~I ________ _ 

2(lek+11 - (1 - yk)lekl) 

Evaluation of K(V, T) 
The value of M(V,T) can be found frol1l the fun.;tl,)., 

Othecwise 

T 

:o1(V,T) '" exp(-AT) (V + f exp(As) b sgn«V,Q e)(p(A s) b»ds 

. 0 

where 
u( t ) '" -sgn «V,Qexp(As)b» 

So u( t ) has the valute of +1 or -1 
Before one can evaluate M(V, T), the swit.;hing tillles have to ll<! 

fOllncl. ~ ;.,it.;lling times tj(V) , j - 1,2, ••• .ICC 'l >let of ordertl'! 

real nlllllbers, >l1J..:h that (t:af. [9J) 

1. T.(V) £(O,T) 
J 

Z. The inner. product <V,Qexp(At.(V»b) '" 0 
J 

3. 8gn {<V,Qexp(At~(V»b>} '" -sgn{<V,Qexp(AT~(V»b)} 
- J - - .- .- J -

4. T{~Q < tj+l (~) for all j 

Solving for the switching til1le .;onSW1les hy far the greatest porti,),\ of 
the computing time. 

In1tial~ 

This iteration method is very dependent Iln the initial guess. As 
in ref [9J, ?lant used the biggest time-constant of th,! 5y"tt!'1 for the 
starting final tlme. The lnitial point on hyper"l'hece (V) ';'1n be soived 
by IIsi"3 t!ti; ti'~e-.;onstant, and starting the it~qtion fro;]l this 
point. The proposed flexlb Ie arm .;onflguration has the eignv-'lllJes on 
the imaginary axis, so t!1e ti,nt! .;onst.lnt is equal to zero. Hence It l>l 
trlvial to guess the initial point. 

'il)t:'lIalit1 I)f the S1steJI can be shown, so the uniqueness of the 
:dnUiuaa-ti!le poistion control soll1tion call be jlroven (ref [ 11) , 
Athens). In ref (9) it was shown that -<V,AV> > 0 has to be achieved 
during the iteration for V on the hyperspere. 

By I1I)difying the problem to hitting a hypersphere instead of the 
origin. the accuracy of the Unal position of the end point of the 
flexible ara is I118de dependent on the radius of the target 
hypersphere. For the exallple in Fig. 1, when r - 0.1 is chosen. The 
final angular position is 0.18 radian inatead of zero and the length of 
beaIa is 60 inches. Then the error at the end po lnt h 1;0*0.ll'l which is 
equal to 10.8 inches. This is unacceptably large and wock is undecway 
to reduce the radius and maintain convergence. 

230 



... " ....... 

:~-~.!.~~~:.~~~C;;:~,~j·-7~~;::·~~:·~~~~ .-.' -~. -·~~··'·::·~~r~'·--~ ,-,",-;~,-~~;:.::~- :.~'~.; .. i ::- .~.~~~.'. "'-. .'~-:-:~"'~ --<-

. .'·.~1\:~r--:~·' 

.. ~ .. .;;!.; .. j' '; 
.'. ~ 

."<,;.-. 

., 

Strateal 

The objectives foe conaidecing the lliniaua-t1me position <:Ontcol' 
ace not foe contcolliDg the flexible am in all phasea of opecatioll. 
The solution of the unillwa-time position control can be COIIbined with 
the other techniques such as "bracing" or using a viscoelastic uterial 
which haa a daaping pcopecty. It is believed that these additional 
te.:hniques can iIIprove the accuracy of the end point. 
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Figure 1. Coordinates and ~nclature for the example configuration. 

x., 

Figure 2. '!be state space representation of the minimum time problem for a 
second order plant. 
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