[antral of

Manufacturing

Processes and

Robotic Sp stems

presented at
THE WINTER ANNUAL MEETING OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS BOSTON, MASSACHUSETTS NOVEMBER 13-18, 1983
sponsored by
THE DYNAMICS AND CONTROL DIVISION, ASME
edited by
DAVID E. HARD
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
WA YNE J. BOOK
GEORGIA INSTITUTE OF TECHNOLOGY

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
United Engineering Center $\quad 345$ East 47 th Street New York, N. Y. 10017

V. Sangveraphunsifi and W. J. Book

School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

To enable faster cobot arm motion one night reduce the arm weight and use a minimum time control. Light arms will be flexible. A simple example of a light ara is a single beam, rotating about one end, and subject to bending. This paper models such a beam in modal coordinates, linearizes the model, and formulates the control according to an algoritho developed by Plant and Athans. This algorithm moves she system state to a hypersphere near the origin in minimum inme. The objeztive of this eesearch is to understand the nature of the optiaal control $=0$ aid in formulating a more practical suboptimal control.

NTRODUCTION

Invreased demands for performance of robot arms and other mechanizal systems lead one $=0$ consider new ranges of design parameters. 3y reducing the structural mass of an arm the movement time may be reduced, improving that aspect of performance. To achieve this improved performance vibration of the rore flexible arm must be considered. In this paper one approach to this problem is zonsidered. A simple flexible arm is modeled using the method of assumed modes. The time optial control of this nonlinear model is sought. Due to the simple configuration of the arm, the linearized equations of motions constitute a reasonable model of the system. The linearized problem is solved numerically using the method of Plant [9]. The optimal control is then applied to the nonlinear system equations in a simulation.

By solving for the optimal sontrol for this simple case one hopes to gain insight into the optimal control of more complicated arms as well as practical approximations to this optimal control. One can also compare the true optimu with various suboptimal contcols. diternative design and control strategies can thus be evaluated.

Dyomic Modelling of the Proposed Coufiguration

The flexible manipulator arm will be modeled using the method of assumed modes. Reference [3] has some details in time domain modelling of two links by applying Lagrange's equation and the assuned mode method. The same approach will be used here to forn the dynami= equations of the proposed configuration, shown in Figure 1.

Let $\{\vec{U}\}=\left[\begin{array}{l}\vec{u}_{x} \\ \vec{u}_{y}\end{array}\right]$ be the unit vector of reference frame $O X Y$,
$\left\{\vec{u}_{1}\right\}=\left[\begin{array}{c}\vec{u}_{x} \\ \vec{x}_{1} \\ { }_{y l}\end{array}\right]$ be the unit vector of reference from $0 X_{1} Y_{1}$,
and $\left\{\tilde{U}_{1}\right\}=\{C]\left\{\begin{array}{c}\text { U }\end{array}\right\}$
where $C=$ the rotational transformation matrix (See Fig. l).
$[C]=\left[\begin{array}{ll}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$
With respect to the reference frame $\left[0 X_{1} Y_{1}\right]$ the vector posizion of point P would be

$$
\vec{R}_{d}=\left\{\vec{U}_{1}\right\}^{\prime}\left[\begin{array}{l}
x_{1} \\
u_{1}
\end{array}\right]=x_{1} \vec{u}_{x 1}+u_{1} \stackrel{\rightharpoonup}{u}_{y l}
$$

The vector position of point P ean also be dessribed with respect so reference frame [OXY] as

$$
\begin{aligned}
\vec{R}_{d}= & {\left[-\dot{\theta}_{1} \sin (\theta)-\dot{\partial} u_{i} \cos (\theta)-u_{1} \sin (\theta)\right] \dot{u}_{x}+} \\
& {\left[\dot{\theta} x_{1} \cos (\theta)-\dot{\theta} u_{1} \sin (\theta)+\dot{u}_{1} \cos (\theta)\right] \dot{u}_{y} }
\end{aligned}
$$

Assured mode method.
A solution of the flexible zotions is assumed to be a Inear combination of admissible functions multiplied by size eependent generalized :oorindates.

$$
u_{1}\left(x_{1}, t\right)=\sum_{i=1}^{n} p_{i}\left(x_{i}\right) q_{i}(\varepsilon)
$$

where the $:$ ate admissible funczions which satisfy the jeometric boundary conditions and the $q_{1}(t)$ are generallzed coordigates.

Furthermore, assumming that the amplitude of the higher zodes of the flexible link are very small compared with the first one (cef 2), n $=2$ will be accurate enough to represent the system.

$$
u_{1}\left(x_{1}, t\right)=\phi_{1}\left(x_{1}\right) q_{1}(t)+\phi_{2}\left(x_{2}\right) q_{2}(t)
$$

 the next section.

Kinetic energy (T), may be writien as

$$
T=(1 / 2) \int_{a} \vec{R}_{d} \cdot \vec{R}_{d} d m+\left.(1 / 2)\left[\vec{R}_{d} \cdot \vec{R}_{d}\right]\right|_{x=\ell^{M}+(1 / 2) I_{o} \dot{j}^{2}+} ^{(1 / 2) J_{p}\left[\partial \dot{u} /\left.\partial x\right|_{x=\ell}\right]}
$$

The first term in the right hand side is the kinetic energy of the cotating beam with respect to the origin (0). The second term and the third term are kinetic energy of the payload mass and the rotating inertia respectively. The last term is the kinetic energy of the payload mass when the beam is flexible.

Potential energy (V)

$$
V=\operatorname{mg} 1 \sin (\theta) / 2+\operatorname{Mg} 1 \sin (\theta)+(1 / 2) \int_{0}^{\ell} \operatorname{EI}\left(\partial^{2} u / \partial x_{1}^{2}\right) d x
$$

The first term and the second term will be neglected if the plane of motion is horizontal. The last term is the potential stored in the bean when the beam is bent.

Lagrange's Equation

By knowing kinetic energy and potential energy, the dynamic equation can be derived by using Lagrange's equation which is

$$
d\left(\partial T / \partial \dot{q}_{r}\right) / d t-\partial T / \partial q_{r}+\partial V / \partial q_{r}=Q_{r} ; \quad r=1,2, \ldots
$$

where

$$
\begin{array}{ll}
q_{r} & \text { is the generalized coordinate } \\
Q_{r} & \text { is the generalized force }
\end{array}
$$

Dynamic equation

Horizontal motion is considered here. The kinetic energy and potential energy can be derived as follows:

$$
\begin{aligned}
& \dot{\bar{R}}_{d} \cdot \dot{\bar{R}}_{d}=\dot{\theta}^{2} x_{1}^{2}+\dot{\theta}^{2} u_{1}+\dot{u}_{1}^{2}+2 \dot{\theta}_{1} x_{1} \\
& T=I / 2 \dot{\theta}^{2} \int_{m} x_{1}^{2} d m+1 / 2 \dot{\theta} \int_{m} u_{1}^{2} d m+1 / 2 \int_{m} \dot{u}_{1}^{2} d m+\dot{\theta} \int_{m} \dot{u}_{1} x_{1} d m
\end{aligned}
$$

$$
+1 / 2 M \dot{\theta}^{2} \ell^{2}+1 / 2 \dot{\theta}^{2} u_{1 E}^{2} M+1 / 2 \dot{u}_{1 E}^{2} M+\dot{\theta} \dot{u}_{1 E} \ell M+1 / 2 I_{0} \dot{\theta}^{2}
$$

$$
+1 / 2 J_{\mathrm{P}} \phi_{1 E}^{\prime} \dot{q}_{1}^{2}+\phi_{1 E}^{\prime} \phi_{2 E}^{\prime} \dot{q}_{1} \dot{q}_{2}^{J_{p}}+1 / 2 J_{\mathrm{P}} \phi_{2}^{\prime 2} \dot{q}_{2}
$$

where

$$
\begin{aligned}
& \int_{m} x_{1}^{2} d m=J_{0} \\
& \int_{\mathrm{m}} \mathrm{u}_{1}^{2} \mathrm{dm} \quad \text { is very small and can be neglected } \\
& \int_{m} \dot{u}_{1}^{2} \mathrm{dm}=\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right) m \\
& \int_{m} \dot{u}_{1} x_{1} d m=w_{1} \dot{q}_{1}+w_{2} \dot{q}_{2} \\
& \mathrm{~m}=\int_{\mathrm{m}} \phi_{1}^{2} \mathrm{dm}=\int_{\mathrm{m}} \phi_{2}^{2} \mathrm{dm} \\
& \mathrm{w}_{1}=\int_{\mathrm{m}} \phi_{1} \mathrm{x}_{1} \mathrm{dm}
\end{aligned}
$$

$$
\begin{aligned}
& w_{2}=\int_{m} \phi_{2} x_{1} d m \\
& T=\frac{1}{2} \dot{\theta}^{2} J_{o}+\frac{1}{2} m\left[\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right]+\dot{\theta}\left[w_{1} \dot{q}_{1}+w_{2} \dot{q}_{2}\right]+\frac{1}{2} M \dot{\theta}^{2} \ell^{2}+\frac{1}{2} M \dot{\theta}^{2} u_{1 E}^{2} \\
&+\frac{1}{2} M \dot{u}_{1 E}^{2}+M \dot{\theta}_{1 E} \ell+\frac{1}{2} I_{o} \dot{\theta}^{2}+\frac{1}{2} J_{p} \phi_{1 E}^{2} \dot{q}_{1}^{2}+\phi_{1 E}^{\prime} \dot{\phi}_{2 E}^{\prime} \dot{q}_{1} \dot{q}_{2} J_{P}+\frac{1}{2} J_{P} \phi_{2 E}^{\prime} \dot{q}_{2}^{2} \\
& V=\frac{1}{2} \int_{0}^{\ell} E I\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} d x \\
&=\frac{1}{2} K_{1} q_{1}^{2}+\frac{1}{2} K_{2} q_{2}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{K}_{1} & =E I \int_{0}^{\ell}\left(\phi_{1}^{\prime \prime}(x)\right)^{2} \mathrm{dx}=\frac{E I}{\ell^{3}} \int_{0}^{1}\left(\phi_{1}^{\prime \prime}(\xi)\right)^{2} \mathrm{~d}_{\xi} \\
& =E I \int_{0}^{\ell}\left(\phi_{2}^{\prime \prime}(x)\right)^{2} \mathrm{dx}=\frac{E I}{\ell^{3}} \int_{0}^{1}\left(\phi_{1}^{\prime \prime}(\xi)\right)^{2} \mathrm{~d}_{\xi}
\end{aligned}
$$

Substitute T and V into Lagrange's equation. The dynamic equation can be written as

$$
\begin{align*}
& {\left[J_{o}+M R^{2}+I_{o}+M\left(\phi_{1 E}^{2} q_{1}^{2}+\phi_{2 E}^{2} q_{2}^{2}+2 \phi_{1 E} \phi_{2 E} q_{1} q_{2}\right)\right] \ddot{\theta}+2 M \phi_{1 E}{ }^{2} q_{1} \dot{q}_{1} \dot{\theta}} \tag{1}\\
& +2 M \phi_{2 E}^{2} q_{2} \dot{q}_{2} \dot{\theta}+2 \phi_{1 E} \phi_{2 E} \dot{q}_{1} q_{2} \dot{\theta}_{M}+2 M \phi{ }_{1 E} \dot{\phi}_{2 E} q_{1} \dot{q}_{2} \theta+w_{1} \ddot{q}_{1}+w_{2} \ddot{q}_{2} q \\
& +M \ell \phi_{1 E} \ddot{q}_{1}+M \ell \phi_{2 E} \ddot{q}=T \\
& \ddot{q}_{1}+w_{1} \ddot{\theta}+M \phi_{1 E}^{2} \ddot{q}_{1}+M \phi_{1 E} \phi_{2 E} \ddot{q}_{2}+M \ell \phi_{1 E} \ddot{\theta}+J_{P} \phi_{1 E}^{\prime} \ddot{q}_{1}+J_{P} \dot{\phi}_{1 E} \dot{\phi}_{2 E} \ddot{q}_{2} \\
& -M \dot{\theta}^{2} \phi_{1 E}^{2} q_{1}-M \dot{\theta}^{2} \phi_{1 E} \phi_{2 E} q_{2}+K_{1} q_{1}=0 \\
& \ddot{m q}_{2}+w_{2} \ddot{\theta}+M \phi_{2 E}^{2} \ddot{q}_{2}+M \phi_{1 E} \phi_{2 E} \ddot{q}_{1}+M \ddot{\theta}_{2} \phi_{2 E}+J_{P} \phi_{1 E}^{\prime} \phi_{2 E}^{\prime} \ddot{q}_{1} \\
& +J_{P} \phi_{2 E}^{\prime} \ddot{q}_{2}-M \dot{\theta}^{2} \phi_{2 E}^{2} q_{2}-M \dot{\theta}^{2} \phi_{1 E} \phi_{2 E} q_{1}+K_{2} q_{2}=0
\end{align*}
$$

where

$$
\begin{aligned}
& m=\text { mass of the beam } \\
& \mathrm{M}=\text { payload mass } \\
& J_{\mathrm{P}}=\text { inertia of payload mass about its center of gravity } \\
& I_{0}=\text { rotating inertia at the joint } \\
& =\text { inertia of beam with respect to the joint } \\
& \begin{array}{ll}
u_{1 E}=u_{1}(x) \|_{x=\ell} & =u_{1}(\xi) \|_{\xi=1} \\
u_{2 E}=u_{2}(x) \|_{x=\ell} & =u_{2}(\xi) \|_{\xi=1}
\end{array}
\end{aligned}
$$

Linearization
To simulate the motion of the proposed system, the noalinear equations (1) will be used. For the purpose of design of the minimum time control, the linearized form of equations (1) will be obtained. All the higher degree terms in θ, q, and q, are dropped from the equations. The resul:ing linearized systen of equations (1) aan then be written as

$$
\begin{equation*}
\left(J_{0}+M \ell^{2}+I_{0}\right) \ddot{\theta}+\left(M \ell_{1 E}+w_{1}\right) \ddot{q}_{1}+\left(M \ell \phi_{2 E}+w_{2}\right) \ddot{q}_{2}=T \tag{2}
\end{equation*}
$$

$$
\left(w_{1}+M q_{1 E}\right) \ddot{\theta}+\left(\mathbb{I}+M_{1 E}^{2}+J_{P} \phi_{1 E}^{\prime 2}\right) \ddot{q}_{1}+\left(M_{1 E} q_{2 E}+J_{P} \phi_{1 E}^{\prime} \phi_{2 E}^{\prime}\right) \ddot{q}_{2}=-k_{1} q_{1}
$$

$$
\left(w_{2}+M \ell_{2 E}\right) \bar{\theta}^{2}+\left(M \phi_{1 E}{ }_{2 E}+J_{P} \phi_{1 E}^{\prime} \dot{\phi}_{2 E}^{\prime} \ddot{q}_{1}+\left(M_{2 E}^{2}+J_{P} \phi_{2 E}^{2}+m\right) \ddot{q}_{2}=-K_{2} q_{2}\right.
$$

The above equations can be written in the form of

$$
\begin{equation*}
\underline{\dot{x}}=A \underline{A}+\underline{B} u \tag{3}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline & \underline{M}^{-1} \underline{y} & & 0 & 0 & 0 \\
& & & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \phi_{1 E}=\phi_{1}(x) 1_{x=\ell} \\
& \phi_{2 \mathrm{E}}=\phi_{2}(x) 1_{x=\ell} \\
& w_{1}=\int_{a} \phi_{1}(x) x_{1} d m \\
& =\rho A \varepsilon^{2} \int_{0}^{1} \phi_{1}(\xi) \xi d \xi \\
& \omega_{2}=\int_{m} \phi_{1}(x) x_{1} d m \\
& =\rho A \ell^{2} \int_{0}^{1} \phi_{1}(\xi) \xi d \xi \\
& K_{1}=E I \int_{0}^{\ell}\left(\varphi_{1}^{\prime \prime}(x)\right)^{2} d x \\
& =\frac{E I}{l^{3}} \int_{0}^{1}\left(\phi_{1}^{\prime \prime}(\xi)\right)^{2} d \xi \\
& \mathrm{~K}_{2}=\mathrm{EI} \int_{0}^{\ell}\left(\phi_{2}^{\prime \prime}(\mathrm{x})^{2} \mathrm{dx}\right. \\
& =\frac{E I}{l^{3}} \int_{0}^{1}\left(\varphi_{2}(\xi)\right)^{2} \mathrm{~d} \xi \\
& \left.=\quad \phi_{1}(\xi)\right)_{\xi=1} \\
& =\quad \phi_{2}(\xi) 1_{\xi-1} \\
& =\rho A \varepsilon^{2} \int_{0}^{1} \phi_{1}(\xi) \xi d \xi \\
& =\rho \operatorname{Al}^{2} \int_{0}^{1} \phi_{1}(\xi) \xi d \xi \\
& =\frac{E I}{l^{3}} \int_{0}^{1}\left(\phi_{1}^{\prime \prime}(\xi)\right)^{2} d \xi \\
& =\frac{E L}{e^{3}} \int_{0}^{1}\left(\Phi_{2}^{\prime \prime}(\xi)\right)^{2} d \xi \\
& \phi^{\prime \prime}=\frac{d^{2} \phi(x)}{d x^{2}} \quad \text { or } \quad \frac{\partial^{2} \phi(\xi)}{\partial \xi^{2}} \\
& \xi=\frac{x}{l}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{X}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathrm{K}_{1} & 0 \\
0 & 0 & -\mathrm{K}_{2}
\end{array}\right] \\
& \underline{b}=\left[\begin{array}{l}
\mathrm{T} \\
0 \\
0
\end{array}\right] \\
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
\theta_{1} \\
q_{1} \\
q_{2} \\
\dot{\theta}_{1} \\
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]
\end{aligned}
$$

Mode Shape Analysis
The simple arm of these studies consists of a beam with rotary inerila at one end and payload mass at the other end.

The transverse vibration of the beam can be described as

$$
\begin{equation*}
\text { EI } \partial^{4} U / \partial x^{4}+\rho A \partial^{2} 0 / \partial z^{2}=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
U(X, t)=q(t) r(\xi) \\
\xi=x / \ell .
\end{gathered}
$$

Boundary Conditions on the arm (inertia, beam, and payload) are at $\xi=0$:

1. $\quad c(\xi)=0$
2. $d^{2} r(\xi) / d \xi^{2}=-\left(I_{0} / \Omega A \varepsilon^{3}\right) B^{4}\left(d r(\xi) /\left.d \xi\right|_{\xi=0}\right)$
and, at $\xi=1$:
3. $d^{2} r(\xi) / d \xi^{2}=0$
4. $\quad d^{3} r(\xi) d / \xi^{3}=-(M / D A R) B^{4} c(\xi)$

The solution of the equation (4) subject to the boundary condition is

$$
\begin{gather*}
r(\xi)=\sin (B \xi)-\sinh (B \xi)+v(\cos (B \xi)-\cosh (B \xi)+ \tag{5}\\
\left.\left(2 I * / \beta^{2}\right) \sinh (B \xi)\right)
\end{gather*}
$$

where

$$
\begin{aligned}
\nu & =(\sin (B)+\sinh (B)) /\left(\left(2 I \star / B^{3}\right) \sinh (B)-(\cos (B)+\cosh (B))\right. \\
B^{4} & =\rho A \omega^{2} Z^{4} / E I \\
I^{*} & =\rho A \ell^{3} / I_{0}
\end{aligned}
$$

Modified Mode Shape

The mode shape used in the dynamic modelling, is measured from the axis without deflection. With this assumption, zero slope at the pinned end has to be achieved. Thus, the mode shape can be written as

$$
\varphi(\xi)=r(\xi)-\xi\left(d r(\xi) /\left.d \xi\right|_{\xi=0}\right)
$$

where $[(\xi)$ is the mode shape which is derived from the previous section and satisfies the boundary sonditions (i.e. Beam with concentrated mass (M) at one end ($\xi=1$) and rotary inertia mass (I_{0}) at the other end $(\xi=0)$. So, the modified mode shape is

$$
\begin{gather*}
\partial(\xi)=\sin (B \xi)-\sinh (B \xi)+ \tag{6}\\
v\left(\cos (B \xi)-\cosh (B \xi)+\left(2 I * / B^{3}\right) \sinh (B \xi)-\left(2 I \star / B^{2}\right)(\xi)\right)
\end{gather*}
$$

The natural frequencies have been tested by comparing the transier matrix (DSAP paciage, ref (4]) and the dynamic state variable resules. The frequencies of the first mode are very close together. For the second mode, the difference is typically less than 10 percent. This difference is saused by the zuncation of the higher modes in the dynamic equations.

The Time-Optimal Position Control for hinear Time-Invariant Plant

Given the dynamic system
(7)

$$
\dot{\underline{x}}(t)=\underline{A X}(t)+\underline{B U}(t)
$$

where

```
\(X(t)=\) the state vector
    \(\bar{A}=\) the non system matrix
    \(\frac{\bar{B}}{B}=\) the \(n \times r\) gain matrix
    \(\underline{U}(t)=\) the control vector
```

(8) $\left|U_{j}(t)\right| \leqslant 1 ; j=1,2, \ldots, \tau$

Then, given that at the initial time $t .=0$, the inicial state of the syste (7) is $X(0)=X_{0}$, find the control $u(t)$ that transfers the system (7) from X_{0} to the origin 0 in minimum time.

The cost functipnal is
(9) $J(u)=\int_{0}^{T} d t$; T free

The Hamiltonian function for the problem is
(10) $H(\underline{X}(t), \underline{p}(t), \underline{U}(t))=1+\langle\underline{A X}(t), \underline{p}(t)\rangle$
$+\langle\underline{B U}(t), \underline{P}(t)\rangle$
$=1+\langle\underline{A X}(t), \underline{p}(t)\rangle$
$+\left\langle\underline{U}(t), \underline{B}^{\prime} \underline{p}(t)\right\rangle$
where
$p(t)=$ sostate vector and
$\langle\cdot\rangle=$ inner product operation

Necessary Conditions
Let $U^{*}(t)$ be a time-optimal sontrol that transfers the initial state X_{0} to the origin 0 . Let $X^{*}(t)$ denote the trajectory oi the system (7) corresponding to $U *(t)$, originating at X_{0} at $t_{0}=0$, and hitting the origin 0 at the minimum time (T^{\star}). Then there exists a zorcesponding costate vector $p^{*}(t)$ such that:

$$
\underline{\dot{X}} *(t)=\partial H\left(\underline{X} *(t), \underline{p}^{*}(:), \underline{U}^{*} \underline{g}(t)\right) / \partial \underline{p}^{*}(\tau)
$$

$=\underline{A X} *(=)+B U *(E)$
$\dot{p} *(t)=-\partial H\left(\underline{X}^{*}, \underline{p}^{*}(t), \underline{U^{*}}(t)\right) / \partial \underline{X}(t)$

$$
=-A^{\prime} p^{*}(t)
$$

with the boundary condi:ions
$X *(0)=X_{0}$
$\underline{X} *\left(I^{*}\right)=0 \quad$.
In addition, from the Hamiltonian function and minimum principle, the inequalizy

$$
\begin{align*}
& 1+\left\langle\underline{A}^{\star} \underline{X}^{\star}(t), P^{\star}(t)\right\rangle+\left\langle\underline{U} \star(t), \underline{B}^{\prime} P^{\star}(t)\right\rangle \tag{11}\\
& \left\langle 1+\left\langle\underline{A}^{\star} \underline{X}^{\star}(t), P^{\star}(t)\right\rangle+\left\langle\underline{U}(t), \underline{B}^{\prime} P^{\star}(t)\right\rangle\right.
\end{align*}
$$

holds for all admissible $U(t)$ and for $t[0, T *$. Relation (ll) yields, in turn, the relation

$$
\begin{equation*}
\underline{Q}^{*}(\tau)=-\operatorname{sgn}\left\{B^{\prime} P^{*}(\tau)\right\} \tag{12}
\end{equation*}
$$

Because $H\left(X^{*}(t), P^{*}(t), \underline{U}^{*}(t)\right)$ is not an expli=it function of $=$ $H\left(X^{*}(t), \underline{P}^{*}(t), \underline{U}^{*}(t)\right)=1+\left\langle\underline{A X}^{*}(t), \underline{P}^{*}(t)\right\rangle+\left\langle\underline{U}^{*}(t), \underline{B}^{\prime} \underline{P}^{*}(t)\right\rangle=0$ holds for all $t[0, T *]$. The costate function obeys

An inportant property for $p \star(t)$ is

$$
P^{*}(t) \neq 0 \text { for } t\left[0, T^{\star}\right]
$$

A necessary condition for the solution of the system (7) to exist is that the systen be completely controllable. The system is coapletely controllable if and only if the systea is normal. The necessary and sufficient conditions for the system to be normal is that the [axn] natrices $G_{1}, G_{2}, \ldots, G_{r}$ given by the equations

$\left.\begin{array}{l} G=\left[\begin{array}{lllll} b_{1} & A b_{1} & A_{2}^{2} & \ldots & A^{n-1} \\ G_{2}^{1} & =\left[\begin{array}{llll} b_{2}^{1} & A b_{2}^{1} & A_{2} b_{2} & \ldots \end{array}\right] & A^{n-1} b_{2} \end{array}\right] \end{array}\right]$

-
-

$G_{r}=\left[b_{r} A b_{r} A^{2} b_{r} \ldots A^{n-1} b_{r}\right]$
are all nonsingular where the b_{f} are the component vectors of B.
If the system (7) is normal, then the time-opsimal control is unique (if it exists).

Kodified syster

For the case of interest let $T=T-t$, the the system (7) can be written as:

$$
\begin{equation*}
\underline{\dot{X}}(\tau)=-\underline{A X}(\tau)-b u(\tau) \tag{14}
\end{equation*}
$$

and

$$
\underline{x}(\tau=0)=\underline{v} .
$$

Note that b is an $n x l$ constant matrix.
Given $p(T)=\alpha^{\star} Q^{\star} V$, equation (13) has the unique solution

$$
\begin{equation*}
p(t)=a e^{-A^{\prime}(t-T)} Q V \tag{15}
\end{equation*}
$$

and we have

$$
\left.u^{*}(t)=-\operatorname{sgn}\left(\left\langle\underline{V}, Q e^{A T} b\right\rangle\right) d s\right)
$$

The solution of equation (14) at $\tau=I$ is

$$
\begin{equation*}
M(V, I)=e^{-A \tau}\left\{V+\int_{0}^{T} e^{A s} b \operatorname{sgn}\left(\left\langle V, Q e^{A s} b\right\rangle\right) d s\right\} \tag{16}
\end{equation*}
$$

Iterative Procedure for Solving the Minime Tise Position Control

More details for this procedure san be found in ref [9] by John B. Plant. The iterative procedure is based on equation (9) by choosing element (V, T) and checking to see if the particular choice satisfies X_{0} $=M(V, T)$.

A typical step in the iterative procedure is illustrated in Figure (2) (for a second order plant) where the hypersurface PHI is an isochrone
(17) $\operatorname{PHI}\left(T, X_{0}\right)=\left\{X: X=\exp (A T)\left(X_{0}+\int_{0}^{T} \exp (-\Delta s) b a(s) d s\right),|u|<1\right\}$ or PBI(T, X_{0}) is the set of all states witich are reachable from x_{0} in time T .

One can select a suitable state-space representation and use the hypersphere as a target, or choose a suitable Q matrix and leave the state-space representation as it is initially.

Some definitions which will be used in the iterative procedure will be listed in the following. More details can be found by consulting ref. [9].

Definitioa 1

Hyperspherical coordinates, $h(\theta)$, will be defined as
$h_{1}(\theta)=\cos (\theta)$
$h_{k}(\theta)=\cos \left(\theta_{k}\right){ }_{j=1}^{k-1} \sin \theta_{Y}(k=2,3, \ldots, n-1)$
$h_{n}(\theta)=\operatorname{an}_{j=1}^{-1} \sin \theta_{j}$
where $0 \leqslant \theta_{i} \leqslant \pi i=1,2, \ldots, n-2$
$0<\theta_{n-1}<2 \pi$
and the $h_{\theta}(\theta)$ is the first derivative of $h(\theta)$ with respect to θ, that is

$$
h_{\theta}(\theta)=\left[\begin{array}{cccc}
\frac{\partial h_{1}(\theta)}{\partial \theta_{1}} & \frac{\partial h_{1}(\theta)}{\partial \theta_{2}} & \ldots \ldots . & \frac{\partial h_{1}(\theta)}{\partial \theta_{n-1}} \\
\vdots & & & \\
\frac{\partial h_{n}(\theta)}{\partial \theta_{1}} & \frac{\partial h_{n}(\theta)}{\partial \theta_{2}} & \cdots \cdots & \frac{\partial h_{n}(\theta)}{\partial \theta_{n-1}}
\end{array}\right]
$$

Given V, a vector which belongs to the set of vectors from the origin to boundary of hypersphere, a unique $\frac{2}{2}$ an be solved from the relation $\theta=(1 / r) h^{-1}(L V)$ where $\langle V, Q V\rangle=\tau^{2}$ and $Q=L^{\prime} L$. (Q and L can be unity matrices). The $h_{\theta}(\theta)$ is used merely to find the deripative of $M(V, T)$ when restricted to D.

Definitioa 2 (D)

Let $D \quad \partial S x R$ be the set of ordered paics in $\partial S x R$ such that if $(V, T) \varepsilon D$, then $V \in a S$ (the boundary of the hypersphere) is the terminal state at ine $t^{*}=T$ of the tise-optimal trajectory for sose state X in the domain of controllability.

Let $G(\nabla, T)$ be the first derivative of $M(V, T)$ restricted to D and with respect to all arguments. That is,

$$
G(\nabla, T)=\left[r M_{\nabla}(\nabla, T) L^{-1} h_{\theta}(\theta) \mid \quad K_{T}(\nabla, T)\right]
$$

The iterative procedure can be sumarized in the following. (from Ref [9]).

For the $k(t h)$ guess of $(\nabla, T)=\left(V_{k}, T_{k}\right)$

$$
\text { 1. } X_{k}=M\left(V_{k}, T_{k}\right)
$$

(It can be shown that $M(V, T)$ is a one-to-one mapping of each point on the boundary of the hypershpere (V) to a point along the ainiaun isochcone with the same minimum tine T.)
2. $e_{k}=X_{0}-X_{k}$
where
3. $X_{0}=M\left(V^{*}, T^{*}\right)$
4. $\theta_{k}=\{1 / \tau) h^{-1}\left(v_{k}\right)$ where $h^{-1}\left(V_{k}\right)$ is the inverse function of $h\left(\theta_{k}\right)$
5. $G_{k}=\left[r Y_{\nabla}\left(V_{k}, T_{k}\right) h_{\theta}\left(\theta_{k}\right) \mid M_{T}\left(V_{k}, T_{k}\right)\right]$
6. $\left[\begin{array}{c}\Delta \hat{\theta}_{k} \\ \Delta T\end{array}\right]=G_{k}^{-1} e_{k}$
7. $\Delta \hat{r}_{k}=b_{f}\left(\theta_{k}\right) \Delta \theta_{k}$ an n-vector
8. $v_{k+1}\left(r_{k}\right)=\frac{r\left(v_{k}+r_{k} \Delta \hat{\gamma}_{k}\right)}{1 v_{k}+\gamma_{k} \Delta \hat{Y}_{k}}$
9. $T_{k+1}\left(r_{k}\right)=T_{k}+Y_{k} \Delta \hat{T}_{k}$
10. those r_{k} in $(0,1)$ such that
11. $V_{k+1}=\nabla_{k+1}\left(\gamma_{k}^{*}\right)$
12. $T_{k+1}=T_{k+1}\left(Y_{k}^{*}\right)$

Note: The nun matrix $G(V, T)$ has rank n if and only if

$$
-\langle V, A V\rangle+|\langle b, A V\rangle|\rangle 0
$$

In the step 10 of the iterative procedure, γ_{k} ian be chosen by considering the fast (ref. [9]) that

$$
t e_{k+1}\left(\gamma_{k}\right)\left|<\left|I-\gamma_{k}\right| t e_{k}\right|+\gamma_{k}^{2} N_{k}
$$

there \boldsymbol{q} positive real number N_{k} can be chosen such that $e_{k+1}\left(\gamma_{k}\right)$ is
bounded. bounded. The value of r_{k} an be chosen as follows

1. Choose $Y_{k}=1$, evaluate $M\left(\nabla_{k+1}, T_{k+1}\right)$. When N_{k} is chosen
to $\left|\dot{e}_{k+1}\right|$, then

$$
\dot{e}_{k+1}=e_{x+1} \quad\left(y_{k}=1\right)
$$

2. If $\left|\dot{e}_{k+1}\right|<(1 / 2)\left|e_{k}\right|$, increment k and proceed to the next iteration. Otherwise. $\hat{\gamma}_{k}=(1 / 2)\left(\left|e_{k}\right| /\left|\hat{e}_{k+1}\right|\right)$

(1/2) $\quad\left|e_{k}\right| /\left|\hat{\gamma}_{k}\right|$.
3. If $\left|\hat{e}_{k+1}\right|<\left|e_{k}\right|$ proceed to the next iteration. Otherwise

$$
r_{k}=\frac{\hat{\gamma}_{k}^{2}\left|e_{k}\right|}{2\left(\left|\hat{e}_{k+1}\right|-\left(1-\hat{\gamma}_{k}\right)\left|e_{k}\right|\right)}
$$

Evaluation of $M(\nabla, T)$
The value of $M(V, T)$ can be found foom the funviilion

$$
M(V, T)=\exp (-A T)\left(V+\int_{0}^{T} \exp (A s) b \operatorname{sgn}(\langle V, Q \exp (A s) b\rangle) d s\right.
$$

where
$u(\tau)=-s g n(\langle V, Q \exp (A s) b\rangle)$
So $u(\tau)$ has the valute of +1 or -1
Before one can evaluate $M(V, T)$, the switihing times have to be found. The 3 witciling times $\tau_{j}(V), j=1,2, \ldots$ aer a set of ocileredi real numbers, suth that (ref. [9])

1. $\quad \tau_{j}(V) \varepsilon(0, T)$
2. The inner product $\left\langle V, Q \exp \left(A T_{j}(V)\right) b\right\rangle=0$
3. $\operatorname{sgn}\left\{\left\langle V, Q \exp \left(\underline{A T}_{j}^{+}(\underline{V})\right) \underline{b}\right\rangle\right\}=-\operatorname{sgn}\left\{\left\langle V, \underline{\exp }\left(A \tau_{j}^{-}(V)\right) \underline{b}\right\rangle\right\}$
4. $\tau_{j}(\underline{V})<\tau_{j+1}(\underline{V})$ for all j

Solving for the switching time consunes by far the greatest portion of the somputing iime.

Initial guess
This iteration method is very dependent on the intilal guess. As in ref [9], ?lant used the blygest =ime-constant of the system for the starting Elnal ine. The initial point on hypersphere (V) ian be solved by using this ilade-ionstant, and starting the iteration from this point. The proposed flexible arm ionfiguration has the eignvalues on the inaginary axis, so the time constant is equal to zeco. Hence it is Erivial to guess the initial point.

Normality of the systen can be shown, so the uniqueness of the aindaun-tise poistion control solution can be proven (ref [11], Athens). In ref [9] it was shown that $-\langle V, A V\rangle\rangle 0$ has to be achieved during the izeration for ∇ on the hyperspere.

Accuracy
By modifying the problen to hitting a hypersphere instead of the origin, the accuracy of the final position of the end point of the flexible arn is made dependent on the radius of the target hypersphere. For the exanple in Fig. 1, when $r=0.1$ is chosen. The final angular position is 0.18 radian instead of zero and the length of bear is 60 inches. Then the error at the end point is 60*n. 18 which is equal to 10.8 inches. This is unacceptably large and work is undecway to reduce the radius and maintain convergence.

Stratery

The objectives for considering the mininur-time position control are not for controlling the flexible am in all phases of operation. The solution of the mininummine position control can be combined with the other techniques such as "bracing" or using a viscoelastic material which has a damping property. It is believed that these additional teshniques can inprove the accuracy of the end point.

RBPEREBCES

1. Athans, M., and P. L.e Falb, "Optimal Control. An Introduction to the Theory and Its Applications", ItGram-illll Bnok Co., New York, 1966.
2. Book, W. J., Modeling, "Design and Control of Flexible Manipulator
 iaril illit.
3. Book, W. J., O. Maiza-Ne!: , thit D. E. Whitney, "Feedback Contros, ni

 1975.
4. Bonk, 'Hayne J., Yark Majette and Kong ia, "The Distributed Systems
 Manipulators", Seorgia Institute of Technology, Sihool of Meshanical Fagineering, July 1979. Subcontract Vo. 55l Eu Murles S:ark Draper iaboratory, Inc. NASA contract W. NAS9-13809.
F. 3ryann, A. F.., Ir., and Ho, Yu-Chi, "iuplteri nutimal Control. (), timization, Fstinathu, tht Ontrol", Hemisphere Publishiny \therefore,, 1775.
s. Craig, Roy R., Je., "Stristural Denanies. An Introduction in Sminuter fethods", John Wiley and Sons, 1931.
5. Onudson, H.K., "An Iterative Proceduce for Computing Time-Optimal Control", [ers Teans. Alato. Control, AC-9, 1964.
6. Maizza-Neto, Retavio, "Yodal Analysis and Control of =lexible Yanipulator Arws", Ph.D. thesis, Dept. of Mechanical Engiaeecinj, M.L.T., 1974.
7. Plant, J. B. and M. Athens, "An İerative Proceduce for the Computation of Iine-Optimal Controls," Proceedings of the Third IFAC Congress, London, Raper 13D, (1965).
8. Sage, Andrew P., "Optimun Sybtems Control", Prentice-Hall, Inc., 1968.

Figure 1. Coordinates and Nomenclature for the examole configuration.
x_{2}
4

Figure 2. The state space representation of the minimum time problem for a
second order plant.

