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ABSTRACT

To enable faster robot arm motion one night reduce the arm weight
and use a minimum time control. Light arms will be flexible. A simple
example of a light arm is a single beam, rotating about one end, and
subject to bending. This paper nodels such a beam in modal coordinates,
linearizes the model, and formulates the control accordiag to an
algorithm developed by Plant and Athans.” This algorithm moves the
system state to a hypecrsphere near the origin in minimum :time. The
objective of this -esearch is to undecrstand the nature of the optimal
control to aid in foramulating a more practical suboptimal control.

INTRODUCTION

Inzreased demands for performance of cobot arms and other
nechanical systems lead one <o consider new ranges of design
parameters. 3y reducing the structural mass of an arm the movement time
may be reduced, improving that aspect of performance. To achieve this
imptoved pecrformance vibration of the mnoce flexible arm gust »e
considered. In this paper one approach to this problem is considered.
A simple flexible arm is modeled using the method of assumed modes. The
time optimal control of this nonlinear model is sought. Due to :che
simple configuration of the arm, the linearized equations of wmotions
constitute a reasonable model of the system. The linearized problem is
solved numerically using the method of Plant [9}. The optimal control
is then applied to the nonlinear system equations in a simulation.

By solving for the optimal control for this simple case one hopes
to gain insight into the optimal control of more complicated arms as
well as practical approximations to this optimal contcrol. (me can also
compare the true optimum with vacious suboptimal controls. Alternative
design and control strategies can thus be evaluated.
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Dyocamic Modelling of the Proposed Configuration

The flexible manipulator arm will be modeled using the method of
assumed modes. Reference [3] has some details in time domain modelling
of two links by applying Lagrange’s equation and the assumed mode
method. The same approach will be used here to form the dynamic
equations of the proposed configuration, shown in Figure 1.

-
u

Let ({} = [JX] be the unit vector of reference frame OXY ,
y

>
It

{ﬁl} = [ JXI] be the unit vector of reference fcrom OX1Y1 y
yl

and {ﬁl} = [c] (B}

where C = the rotational transformation matrix (See Fig. 1).

cos(8) sin(8)
(el = [-sin(e) cos(e)]

With respect to the reference frame [OXI Yl] the vectoc position of
point P would be
R 'ﬁ}‘xl = O, +uu
CE e R O B T
The vector position of point P zan also be desczribed with respect
to reference frame [OXY] as
e

Rd = [-éxlsin(e) -4 ulcos(e) - ulsin(a)]trx +

cog(8) - 3 u sin(8) + u

L] X 1 1:03(6)]uy

Agsumed mode method.

A solution of the flexible w=otions 1s assumed to be a llnear
combination of admissible functions amultiplied by time <dependent

generalized coocrindates. a

ul(xl,:) = ZE: ai(xl)qi(t)
i=1

where the :i ace admissible functions which satisfy the geometric
boundary condltions and the qi(c) are generallzed coordinates.

Fucthermore, assumming that the amplitude of the higher =odes of
the flexible link are very small compared with the first one (cef 2), n
= 2 will be accurate enough to cepresent the system.
up(x,8) = ¢ (x g, (2) + 6,(x,)q,(z)

where $., 3, zust be orthogonal. Details on the mode shape is shown in
the next section.

Kinetic energy (T), may be written as

> > > > 22
T = (1/2) Ry * Rydm+ (1/2) ([Ry * Ry _ M+ (1/2) 37 +

2 g [au/ax| _, ]
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The first term in the right hand side is the kinetic energy of the ’
rotating beam with respect to the origin (0). “The second term and the
thicd term are kinetic energy of the payload mass and the rotating
inertia respectively. The last term is the kinetic energy of the
payload mass when the beam is flexible.

Potential energy (V)

¢!

V = ngl sin(8)/2 + Mgl sin(8) + (1/2) f m(azu/axf) dx
[o]

The First term and the second term will be neglected if the plane
of motion is horizontal. The last term is the potential stored in the
beam when the beam is bent.

Lagrange’s Equation

By knowing kinetic energy and potential energy, the dynamic
equation can be derived by using Lagrange’s equation which is

d(ar/a&t)/d: - 3T/3q + 3V/3q= Q3 € = 1,2,....

where
q, is the generalized coordinate
Q. is the generalized force
Dynamic equation

Horizontal motion is considered here. The kinetic energy and
potential energy can be derived as follows:

- = 22 2 .2 .s
Rd Rd=6x1+9ul+u1+29ulx1
2 2 . 2 .9 . .
T=1/238 xldm + 1/29 uldm + 1/2 uldm + 8 ulxldm
m n m m

2 2

2 .2 .o .
uy M+ 1/2 u;_ M + 6Bu ER.M+ 1/2 Ioe

22 2 .
+ 1/2 M8°2° + 1/2 8 & 1E 1

C e o
+ L2 Jpdipdy * g 9pdaydp F 12 00,7 qp

where

is very small and can be neglected

a\a\i-s\

2 Y] )
uldm = (q1 + qz)m
f ulxldm = wlql + w2q2
o

n =-/.¢%dm=‘/‘¢§dm
m m
w1 '—f ¢1x1dm
m
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w2 =f ¢2x dm

m
1 52 22 1222
T = 26.] +—m[q1+q2]+9[wlq +w2q2] + MBR. +2MeulE
1 .2 .o 1. 2 .2 L1 ‘2 w2
+ g Mupg + MBujpd + 5 T 67 + 5 Jpéppq) + 4’15 “’zsq 4dp * 3 Jp 05 Oy
3
1 2
v=-;-f EI ( a‘z‘)zd
ax
o)
| 1, 2
=7 K9 3K
where
. 1
1"
R, = €I | (,"(x))%dx = EL (4, (N4
1 1 3 1 £
[o] [o]
P 1 )
" "
- £ (6, xN%ax =EL [ (4 "0
2 2,3 1 g
o] o]

Substitute T and V into Lagrange’s equation. The dynamic equation can
be written as

2 2 2 2
(1 1o+t a1 e ot e akad e 20, 4y 9,018 ¢ zqulq1

+ 2““’213‘*2“26 * 2¢1E¢zaq a, 8 + 2M¢1E°zsq 4, 8+ "1“1 + w2“2 q

+ M9.¢IEq + mq;ZEq =T
mqy * "’1e M M¢1qu + Mopd, Eq') + M“’u:e + JP¢1E p Cpu:"zx-:qz
.2 2 .2
- METOpa - MOTe pdpd, + Kiq = 0

. . .. . . ’

2
mq, Wy 0 Meypay F ME dypa) + MOLE, + Tpo g 4’25 q1

9 a9 .2
* Jpbog 9y 7 MOTOpay = MO 0ppa; F Kpqy = 0

where
m = mass of the beam
M = payload mass
JP = inertia of payload mass about its center of gravity
I° = rotating inertia at the joint
Jo = inertia of beam with respect to the joint
b T u el = w0
Ugp = Uy - up By
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$p = ¢z(x) L = ’2(5)'5-1
1
2
v, -f’l(x)xldn = pAL[ ¢,(8)dg
| | o
1
" -f $, (x)x dn T = ouzf NGEL
m o]
|3 1
" 2 EL " 2
K = EIf (¢l(x)) dx = z—3f (¢1(E)) dg
o] o]
L 1
"2 El " 2
K, = EI/ (4, (x)"dx = -Lj [ (4>2(E)) dE
[o] [o]
”n 2 2
d7¢(x) 3% $(E)
$ = 2 or 2
dx 3E
X
£ = 1
Linearization

To simulate the motion of the proposed system, the noanlinear
equations (1) will be used. For the purpose of design of the minimum—
time control, the linearized form of equations (1) will be obtained.
All the higher degree terms in 6, q, and q, are dropped from the
equations. The resulting linearized syskem of ‘equations (l) can then be
written as

o - - -
(2) (Jo + ML+ Io)a + (H!.QIE + wl)q1 + (M£¢2E + \«lz)q2 = T

.

1E%E29 = T X

; ) -
(W) + Mo )8 + (m + Mop + Jp 915)q) + (Moo 2,0 + Jpd 19

. .. ) by -
(g + MLE) )0 + (MOp dpp + Jpdipbpp)ay + (Mg + Jpiop + ), = Koq,

- &

The above equations can be written in the form of

&) X = M+Bu
where
) 0 0 1 0 0 ]
0 0 0 0 1 0
0 0 0 0 0 1
A=
0 0 0
Mk
0 0 0
A 0 0 o
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0

0
0
B =
Ml
where 2
. 3, M T e v, + Hig,
M- + ML R IR . u + b
Y) Y1g m o+ Mot oty 0% + Jp?etor
’, ' 2 '2
[ Wy * Hidyp MéipPor * Jpbigbop  Mépp * Jpdpp T O
" 0 0 o ]
K = 0 =%, 0
0 0 X,
‘ T
e |0
0
- .
X, 8,
X q
X3 5
X-= X = 61
. x6 - - qz J

Mode Shape Analysis

The simple arm of these studies consists of a beam with rotarcy
inertia at one end and payload mass at the other end.

The transverse vibration of the beam can be described as
(4) er 3%/ + oA 2%/:% = 0
where
U(x,z) = q(t)r(€)
£ = x) L .
Boundary Conditions on the arm (inertia, beam, and payload) are

at £€=0 :
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1. v;r_(E) =0 . ' -

2. deceyiagl - _(I;/prz)Ba(d e(€)/dg] )
and, at E=1 :

1. derael = 0

2. d3c(e)d/E = —(u/oAt) B e(E)

The solution of the equation (4) subject to the boundary condition

is

(s) c(E) = sin(BE)-sinh(BE) + v (cos(BE) =~ cosh(BE) +
(21%/8%)sLah(BE))

where

v = (sin(B) + sinh(8))/((2I*/8°)sinh(B) - (cos(8) + cosh(8))
34 = pAu2l4/EI

* 3

I = pAf /Io

Modified Mode Shape

The mode shape used in the dynamic modelling, 1s measured from the
axis without deflection. With this assumption, zero slope at the pinned
end has to be achieved. Thus, the mode shape can be written as

o(&) = (&) - &(d r(ti)/dﬁl‘s_0 )

where ¢( £ ) is the mode shape which is derived from the previous
section and satisfies the boundary conditions (i.e. Beam with
concentcated mass (M) at ode end ( £ = 1 ) and rotary inertia mass (I
at the other end ( £ = 0 ). So, the modified mode shape is

(6) 3(€) = sin(BE) - sinh(BE) +
Wcos(BE) - cosh(BE) + (2I%/8)sinn(BE) = (21%/82)(&))

The natural frequencies have been tested by comparing the tramsfer
matcix (DSAP package, ref {4]) and the dynamic state variable results.
The frequencies of the first mode are very close together. Focr :he
second mode, the difference is typically less than 10 percent. This
difference is caused by the truncation of the higher modes in the
dynamic equations.

The Time—Optimal Position Control for Linear Time-Invariant Plant

Given the dynamic system

(1) X (t) = AX(t) + BU(t)

where
X(t) = the state vector
A = the nxn system matrix
B = the nxr gain matrix
U(t) = the control vector

® | Uj(t) € 1; 3=1,2, «eey T
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Then, . given that at the initfal time t.= 0, the Initfal state of
the system (7) is X(0) = X,, find the control u (t) that transfers the
system (7) from X5 to the origin O in minimum time.

| The cost functignal is

(9) J(u) = dt; T free
The Hamiltonian fungtion for the problem is

(10) H(X(t), p(t), U(t)) =1 + < AX(t), p(t) >

' + < BUCE), p(r) >
=1+ < AX(t), p(£) >
+ <U(e), B’ p(x) > -

where

p(t) = costate vector and
<*> = innec product operation

Necesgsary Conditions

Let U*(t) be a time-optimal control that transfers :the initial
state X, to the origin O. Let X*(t) denote the trajectocy of the system
(7) corresponding to U*(t), originating at Xy at t, = 0, and hitting the
origin 0 at the minimum time (T*). Then there exists a corcesponding
costate vector p*(t) such that:

X *(r) = BMOH(r), pr(z), U*q(r))/3p*(z)
= AX*(t) + BU*(t%)
p *(t) = = BH(X*,p*(r), L*(r))/aX(t)

= - Alpx(r)

with the boundacy conditions

20 = X
X(T*) =0 .

In addition, from the Hamiltonian function and minimum principle, the
inequality

(1) 1 + <A*X*(t),p*(t)> + <U*(t), B p*(t)>
< 1+ < A*X*(t), p*(t) > + < U(t), B p*(t) >

holds for all admissible U(t) and for t {0, T*]. Relation (l}l) yields,
in turn, the relation

(12) U*(t) = - sgn{B’p*(t)}
Because H(X*(t), p*(t), U*(t)) is not an explicit function of ¢
H(X*(t), p*(t), U*(t)) = 1 + <AX*(t), p*(t) > + <U*(t), B'p#(t) > = 0

holds for all t [0,T*).
The costate function obeys:
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A FHE) = AR

G e S S e e

I

S R T R R I B
An important pro;tty' for p*(t) 1s
e ‘p*(t) # 0 for t [0,T*]
A necegsary condition for the solution of the system (7) to exist
is that the system be completely controllable. The system is completely
controllable if and only if the system is normal, The necessary and

sufficient conditions for the system to be normal is that the [axn]
matrices Gy, Gy, ++., G, given by the equations

-
e Aot

G, = [b, Ab Agb
3 eee 700

1 15,1
G2 = [b2 Abz A"b

¢ =[b Ab A% .. A" )
r r r r C

are all nonsingular where the bi are the component vectors of B.
If the system (7) is normal, then the time-optimal control is
unique (if it exists).

Modified system

For the case of interest let T =T - t, the the system (7) can be
written as:

(1) X(1) = = AX(1) = bu(T)
and
Xt=0) =V .
Note that b is an axl constant matcix.
Given p(T) = o*Q*V, equation (13) has the unique solution
(15) p(t) = ae A6~ Doy
and we have

u*(t) = -sgn(<V¥, QeéF b>)ds)

The solution of equation (l14) at Tt =T is
T
(16) M(V,T) = AT (v +./” My sgn((V,Qe—‘&-s b>)ds}
o
Iterative Procedure for Solving the Minimum Time Position Control

More details for this pcocedure can be found in ref [9] by John B.
Plant., The iterative procedure is based on equation (9) by choosing
element (V,T) and checking to see if the particular choice satisfies X,
= M(V,T).

A typical step in the iterative procedure is illustrated in Figure

(2) (for a second order plant) where the hypersurface PHI is an
isochrone
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_ o . -
(7)  FAKTX) = (XX = exp(ATI(X, + f exp (~As)ba(s)ds), |uf < 1}

or PHI(T,X;) 1s the set of all states willch are reachable from Xg in
time T.

One can select a suitable state-space representation and use the
hypersphere as a target, or choose a guitable Q matrix and leave the
state-space representation as it is initially.

Some definitions which will be used in the iterative procedure will
be listed in the following. More details can be found by consulting
cef. [9].

Definition 1

Hyperspherical coordinates, h (0 ), will be defined as
hl(B) = cos (8)

‘hk(e) - cos (§) ';ji st 0 (k = 2,3,...,0-1)
n=1
hn(e) = le sin Gj

where 0 ¢ 8 <wx {=1,2, +s., n=2

i
<
0 en—l < 2«
and the he(e) is the first derivative of h( 8 ) with respect to 8,
that is ah, (8) 3, (8) 3h, ()
ael 362 aen_l
he( 8). = .
ahn(e) ahn(B) ahn(e)
36, a6, 38 )

Givem V, a vector which belongs to the set of vectors from the

origin to boundary of hypersphere, a unique 9 zan be solved from the

relation 8 = (L/r)h~1(LV) where <V,QV> = ¢ and Q = L'L. (Q and L

) . can be wunity matrices). The h,(8) is used merely to find the
/ derivative of M(V,T) when cestricted to D.

Definition 2 (D)

Let D 3SxR be the set of ordered paiecs in 3SxR such that if
(v,T) € D, then VedS (the boundary of the hypersphece) is the tecminal
state at time t* = T of the time-optimal trajectory for some state X in
the domain of controllability.

Let G(V,T) be the first decivatlive of M(V,T) restricted to D and
with respect to all arguments. That is,

6(V,D) = (M (v, DL h (8] M (¥, D1,

The iterative pcocedure can be summarized in the following.
(from Ref [9]).

For the k(th) guess of (V,T) = (V}, T)

Lo X =M (W, Ty)
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(It caa be shown that M(V,T) 1s a one-to-one mapping of each point

" on the boundacy of the hypershpere (V) to a point along the ainimum
isochcone with the same wminimum time T.)

2. e =X~ X

vhere

3. Xy = MV, T
. -1
4. ek = {1/c)h (vk)
where h-l(vk) is the inverse function of h(ek)

Se G = [0V, T hg(8) | Mp(¥, Tl

6 A?k = G—l e
° AT k k
7. by, = hi(ak)Aek an n-vector
n:(Vk + ykAYk)
8. v () = =<memes ~
L
kT A
9. Tk+1(7k) = Tk + YkATk

0. choose Y, in (0,1) such that

aia '
f4” 0<1k<llx 0" MY L Ty (vt
*
e Vi = Tan (0

*
2o Ty = T (v

Note: The nxn matcix G(V,T) has cank n if and only if

=<V, AV + [<b,av| >0

In the step 10 of the iterative procedure, Y, <an be chosen by

considering the fast (ref. [9]) that

2
lek+l(yk)l < |1~ ykl te | + v Nk

<hece a positive real number Ny can be chosen such that e+l (Yk) is
bounded.
The value of Yy can be chosen as follows

1. Choose L 1 , evaluate M(vkﬂ, rkﬂ) . When N is chosen

to !ek-l-ll » thea

oel "% (" D)

2. If IeHll < (1/2) Iekl » increment k and proceed to the next

itecration. Otherwise.
Y = W2) (e l/le D
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Gdkee 1T Al Gwdt oS e L ek AN B O T T I

2 1g used. :k-i-l can be evaluated when N is zhosen equal to *
W e /Iy | -

3. If l;k-i;ll < |e, | proceed to the next fteration. Othecwise

Evaluation of M(V,T)
The value of M(V,T) can be found from the fun.tina

T
M(V,T) = exp(-AT) (V +f exp(As) b sgn(<V,Q exp(A s) bd)ds

0

where
u{ T ) = -sgn  (KV,Qexp(As)b>)
So u( T ) hag the valute of +1 or -1
Before one can evaluate M(V,T), the switching times have to be

found. The switching times rj(V) s 3 ™ 1,2,eee ate a set of ocidered

real numbers, such that (raf. mn
1. rj(v) (0, T)
2, The inner product <V,Qexp(Arj(V))b> =0
3. sgn {<V,Qexp(§_r-;(y_) b} = -sgn{(f{,{lexp(At}(V))E)}

4, rj(z) < (_\_I_) for all j

j+i
Solving for the switching time consumes by far the greatest porctinn of
the computing time.

Initial guess

This iteration method is very depeadent on the initial guess. As
in ref {9}, Plant used the blggest time-constant of tha system for the
starting flnal time. The {nitial point on hypersphere (V) can be solved
by using this tlae-constant, and stactlng the itaration from this
noint. The proposed flexible arm configuration has the eignvalues on
the imaginary axis, 8o the time constant 1s equal to zeco. Hence Lt Is
trivial to guess the initial poilat.

Normality of the system can be shown, so the uniqueness of the
ainiaum—time poistion control solution can be proven (ref [11],
thens). In ref {9] it was shown that =<V,AV> > 0 has to be achieved
during the iteration for V on the hyperspere.

Accuracy

By modifying the problem to hitting a hypersphere instead of the
origin, the accuracy of the final position of the end point of the
flexible arm 18 made dependent on the radius of the tacget
hypecsphere. For the example in Fig. 1, when r = 0.1 is chosen., The
final angular position is 0.18 radian instead of zero and the lemgth of
beam 18 60 inches. Then the error at the end point is 60*0,18 which is
equal to 10.8 inches. This is unacceptably large and wock is undecway
to reduce the cadius and maintain convergence.




are
The
the

Strategy )

The objectives €ocr considering the minimum-time position control’
not for controlling the flexible arm in all phases of operation.
gsolution of the minimum~time position coantrol can be coambined with
other techniques such as "bracing” or using a viscoelastic material
which has a damping property. It is believed that these additional
techniques can inprove the accuracy of the end point.
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Figqure 1. Coordinates and Nomenclature for the example configquration.
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Figure 2. The state Space representation of the minimum time problem for a
second order plant,
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