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SUMMARY

Distributed systems are fundamental to today’s world. Many modern problems

involve multiple agents either competing or coordinating across a network, and even tasks

that are not inherently distributed are often divided to accommodate today’s computing

resources. In this thesis we consider distributed optimization through the lens of several

problems.

We first consider the fragility of distributed systems, with an investigation in game

theory. The inefficiency, relative to total cooperation, of agents acting myopically in their

own interest is well studied as the so called the Price of Anarchy. We assess how much

further the social welfare can degrade due to repeated small disruptions. We consider two

models of disruptions. In the first, agents perceive costs subject to a small adversarial

perturbation; in the second a small number of Byzantine players attempt to influence the

system. For both models we improve upper and lower bounds on how much social welfare

can degrade for several interesting classes of games.

We next consider several problems in which agents have partial information and wish

to efficiently coordinate on a solution. We measure the cost of their coordination by the

amount of communication the agents must exchange. We next investigate a problem in

active and semi-supervised learning. After providing a novel algorithm to learn it in the

centralized case, we consider the communication cost of this algorithm when the examples are

distributed amongst several agents. We then turn to the problem of clustering when the data

set has been distributed among many agents. Here we devise an algorithm for coordinating

on a global approximation that can be communicated efficiently by the use of coresets.

Finally we consider a problem of submodular maximization where the objective function

has been distributed among agents. We adapt a centralised approximation algorithm to the

distributed setting with efficient communication between the agents.
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CHAPTER I

INTRODUCTION

As computing is becoming ubiquitous we face new challenges in the realm of distributed

computation. There are many reasons a given problem might be distributed. Sometimes the

problem is inherently distributed — in sensor networks, data collection happens simulta-

neously by disparate sensors and the data subsequently must be combined. Other times a

problem is broken up to meet technical constraints. Because computing is so cheap today we

can tackle problems in ways we could not before, with clusters replacing the supercomputers

of yesterday.

It is important to solve our problems efficiently. Of course any attempt to optimize

can only happen with respect to some measure. Classically the default cost considered is

temporal, i.e. we measure an algorithm that computes something by the maximum amount

of time it could take to complete the computation. Another foundational model measures the

spatial costs of computation — how much memory is consumed. In the case of approximation

algorithms, when we cannot guarantee finding a solution at all, we instead measure how

accurate the solution is. For machine learning problems, we often measure performance

by the number of examples that are needed to (guarantee that we) reach a given accuracy

threshold.

In many distributed problems, the natural cost we wish to optimize for is communication.

For any particular distributed problem we want to find solutions while enabling the parties

to communicate as efficiently as possible. Indeed the cost of coordination for parties with

asymmetric information is what distinguishes a problem in the distributed setting from a

centralized one.

One prominent setting is Game Theory which features problems that are inherently

distributed. The standard game theoretic setting contains many individual agents interacting

in a common environment, each trying to optimize their own objective function which depends
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on their joint action. In some sense, this is an optimization problem where the objective is

distributed into multiple (possibly conflicting) parts. These are then passed out to distinct

agents who each attempt to optimize their portion. If we consider a particular measure of

how good the group outcome is — a so-called measure of social welfare — we can compare

the distributed problem in which the agents act independantly to a centralized one. The

standard setting compares the social welfare in the optimum state to the social welfare

in a Nash equilibrium. The ratio of these provides a measure of the ineffiency introduced

by decentralization. We consider a variation on this classic work where all the agents are

subject to uncertainty in their environment. We seek to measure the additional inefficiency

caused by this uncertainty. We consider two types of noisy environments: one in which the

agents have imprecise measurements of their utility functions, and one in which there are a

few agents with irregular or malicious behavior.

We also consider several instances in which a learning or optimization problem can be

solved or approximated in the standard centralized setting, but the problem is distributed

in some way. We then develop tools and algorithms that allow for efficient coordination. In

particular we consider the problems of clustering and (for both the semi-supervised and

active settings) of learning two-sided disjunctions. We shall describe the problems in more

detail below.

Noise in Distributed Settings: Game Theory is the study of multiple agents interact-

ing in a shared envionment. It is common to assume that agents are self-interested and seek

to maximize their own utility functions. The concept of a Nash equilibrium refers to a state

in which each agent would decrease their utility if they unilaterally changed their strategy.

However, such an equilibrium might be suboptimal for each of the parties involved. Using

the sum of all players utilities as a measure of social welfare, we can compare the social cost

of an equilbrium with that of the optimal outcome. The most famous such measure is the

Price of Anarchy (PoA)[59] which is the ratio of the social welfare in the optimal state to

the social welfare of the ‘worst’ Nash equilibrium.

In real world settings the model’s assumptions may prove inaccurate. Chief among these

assumptions are that, when the agents decide their action, they know what payoffs they
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recieve given what other agents select. This may not be correct for a number of reasons.

An agents utility may depend on small order terms ignored by the model. Consider a

job-scheduling game in whch we measure how long it takes a particular set of programs to

run. Even though the cost will be dominated by how the jobs are distributed among the

machines, other factors will also contribute to the runtime, e.g. the operating system will

have a small effect which is ignored in the model’s cost assumption. Similarly, consider a

congestion game in a road network. For any given car, the time to travel along a particular

path may be primarily due to congestion, but there will many small factors which contribute

to the precise time — even things like traffic light timings or the weather. In some games,

the utility measurement may even be the result of a random or statistical process. Thus

by seeking to measure the effects of smaller order terms we are measuring the fragility of

our model — does it still hold up under more realistic conditions? In particular, we are

interested in how the dynamics change when agents respond in noisy conditions, when they

might misjudge, if only slightly, their outcomes. This challenge led to a measure called the

Price of Uncertainty (PoU), first analyzed by Balcan Blum and Mansour.[12]

When agents who begin in some state and follow a set of dynamics (best response)

to what they percieve to be their outcomes at every time step, the social welfare evolves

over time. The PoU measures the largest possible increase, and provides a measure of how

resilient the game and dynamics are to small perturbations. 1

Another implicit assumption is that each player is utility maximizing. Imagine a

congestion game with drivers. Most drivers try to minimize their time in the car, but others

may be on the roads for other reasons — they want to take a scenic route, they just enjoy

driving. Recently, taxi drivers have taken to clogging traffic as a protest against competition.

Social networks can suffer from Sybil attacks, where attackers create and manage multiple

profiles with the goal of amplifying their effect on the network. Agents of this sort are called

Byzantine after the Byzantine Generals Problem. To analyze this we define the Price of

Byzantine Behavior (PoB). For a particular class of games following a particular class of

1We slightly alter the definition from reference so that PoU(0) is a nontrivial question. As in the original
work, we focus on games where PoU(0) is small, i.e. a logarithmic increase.
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dynamics, the PoB is the maximum ratio between the cost of an initial starting state and a

state that can be reached when there are at most b Byzantine players.

We consider potential games following improved response dynamics. Furthermore we

focus on those where there is a small GAP between potential and social welfare. These

conditions taken together tell us the dynamics we are studying are not inherently fragile —

thus any fragility in these dynamics can be attributed to the presence of noise. Our results

provide novel upper and lower bounds in the PoU setting and are tight in the PoB setting.

Learning Two-Sided Disjunctions with Unlabelled Examples: We next consider

a problem in learning theory. The PAC model (Probably, Approximately Correct)[85]

of Valiant allows for guarantees on the sample complexity. Following real world trends,

theoretical models incorporating unlabelled data have been developed. In particular Balcan

and Blum[7] established a theoretical framework for semisupervised learning. Assumptions

about the relationship between the data distribution and the concept class were formalized

as compatibility notions. This allows a measurement of how well unlabelled data fits with

a particular hypothesis. Semisupervised learning gives the learner access to two pools of

examples, one labelled, another larger and unlabelled. We measure the number of examples

of each type separately. Active learning allows the learner to select which examples they

wish to have labelled, and measures the number of queries to the labelling oracle.

In these settings, similar to the PAC model, generalization is well-understood; given

sufficient data, hypotheses which are both consistent with labelled examples and compatible

with the unlabelled ones are guaranteed to generalize well. However finding hypotheses

both consistent and compatible with a particular data set is much harder. We consder

the problem of learning two-sided disjunctions: all positive examples contain a feature

that is a positive indicator and all negative examples include a feature which is a negative

indicator. In the fully supervised setting this problem is equivalent to the simple problem

of learning disjunctions. However, in the semi-supervised setting it was an open problem

to reduce the number of labelled examples needed. We provide a novel algorithm in both

the semi-supervised and active settings for finding consistent, compatible hypotheses. We

conclude this section with a discussion of how to turn the centralized algorithm into a

5



distributed one.

In distributed learning settings, access to the underlying distribution (in the form of

examples) is distributed amongst multiple agents. This naturally introduces a need to

communicate efficiently.

Minimizing Communication in Optimization Problems: We next turn to the

problem of clustering. Given a set of points and some similarity metric, the goal of the

clustering problem is to divide the points into some fixed number of clusters such that the

points in the clusters are ‘close’ to each other given the similarity metric. More formally, the

goal is usually to minimize the size of the largest cluster given some notion of size. There

are many choices for how to measure cluster size; two of the most prominent are k-means

and k-medians. We note in passing that these problems are hard — given a set of points it

is NP hard to find the optimal division into k clusters such that the mean of the largest

cluster is minimized.2 In practice there are a number of heuristic algorithms that work well,

e.g. Lloyd’s algorithm, which iteratively relabels all points as belonging to the cluster with

the closest center.

We examine this problem in the distributed setting. Consider agents who independently

have been collecting parts of a larger data set and wish to work together to find an optimal

clustering. Of course the simplest thing to do in this problem is for each agent to share all

their data, reducing this to the centralized setting. However this may not be possible for a

number of reasons (e.g. sharing data is costly, or privacy concerns.) We want a solution to

this problem as good as can be found in the centralized setting (or at least an approximation

thereof). Furthermore, we wish to do so as parsimoniously as possible. The key idea in

the algorithm we develop is the use of coresets[39]. Intuitively, each agent finds a way to

compress their data into a representative sample with a much smaller size. A coreset of a

given set of points will be a weighted point set such that, for any set of centers, the cost

of the original data set is well approximated by the cost of the coreset. Using these we

2The underlying assumption is that the target clustering (the ground truth) is close to the k-means or
k-medians minimum. Balcan, Blum and Gupta showed that if all clusterings that are close to the target
(in the sense of the labelling of the points) are also close according to these metrics, then one can sidestep
finding the best k-means solution and instead find nearly optimal clusterings directly.
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construct a data set which, though considerably smaller, well-approximates the original

global data set.

We finish with a discussion of ongoing work related to distributed submodular maxi-

mization. A set-valued function f : 2{n} → R is said to be submodular if it has diminishing

marginal returns. Formally, for A ⊆ B and x /∈ B, f(A + x) − f(A) ≥ f(B + x) − f(B).

Many important problems can be represented by submodular functions, such as cuts in

graphs or cost of spanning trees. We focus on submodular maximization problems with

cardinality constraints. It is well known that this can be approximated with a simple greedy

algorithm.

Our goal here is an algorithm that allows for optimization of the global objective

with efficient communication. To do this we aim to decentralize the algorithm by replacing

submodular function oracle queries with approximations taken by sampling the agents partial

functions. We present some preliminary results on this topic which allow for distributed

optimization with communication only logarithmically dependent on the number of nodes.

Summary of Contributions: The remainder of the thesis is organized as follows:

Chapter 2: We provide improved upper and lower bounds for the Price of Uncertainty and

Price of Byzantine Behavior for several classes of potential games. Most notably, we

provide a tight bound on the PoB for consensus games, and an exponential improvement

over the previous best results for the PoU of congestion games. This work was published

in WINE.[13]

Chapter 3: We provide novel algorithms capable of finding consistent, compatible hy-

potheses for the class of two-sided disjunctions, allowing us to efficiently make use of

unlabelled examples in both the semi-supervised and active settings. We extend these

to the distributed setting and analyze the communication costs incurred. This work

was published in ICML.[8]

Chapter 4: We provide an algorithm for clustering a distributed data set with the aim of

minimizing communication cost. Our primary contribution is adopting the notion of

coresets (which have previously been used for clustering) to the distributed setting.
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This work was published in NIPS.[14]

Chapter 5: We provide a distributed algorithm which maximizes a monotone submodular

optimization problem subject to cardinalty constraints. We achieve an optimal ap-

proximation with communication cost that is independent of the number of number of

nodes and cardinalty constraint.
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CHAPTER II

PRICE OF UNCERTAINTY AND PRICE OF BYZANTINE

BEHAVIOR

Uncertainty is present in different guises in many settings, in particular in environments

with strategic interactions. However, most game-theoretic models assume that players can

accurately observe interactions and their own costs. In this chapter we quantify the effect

on social costs of two different types of uncertainty: adversarial perturbations of small

magnitude to costs (effect called the Price of Uncertainty [12]) and the presence of several

players with Byzantine, i.e. arbitrary, behavior (effect called the Price of Byzantine behavior).

We provide lower and upper bounds on both the Price of Byzantine behaviour and the

Price of Uncertainty in well-studied classes of potential games including consensus games,

set-covering games, and (λ, µ)-smooth games. Many of our bounds are tight and significantly

improve over the previously best known bounds of [12].

2.1 Introduction

Overview Uncertainty, in many manifestations and to different degrees, arises naturally

in applications modeled by games. In such settings, players can rarely observe accurately

and assign a precise cost or value to a given action in a specific state. For example a player

who shares costs for a service (e.g. usage of a supercomputer or of a lab facility) with others

may not know the exact cost of this service. Furthermore, this cost may fluctuate over

time due to unplanned expenses or auxiliary periodic costs associated with the service. In

a social network, the cost a player perceives for an action such as disagreeing with some

neighbor may also fluctuate over time. Another type of uncertainty arises when some players

are misbehaving, i.e., they are Byzantine, perhaps due to incentives that have not been

accurately modeled in the game.

In this chapter we assess the long-term effect of small local uncertainty on natural

dynamics in cost-minimization potential games [66]. We study the degree to which small

9



fluctuations in costs or the presence of Byzantine players can impact the result of natural

best-response and improved-response dynamics in well-studied classes potential games,

using the framework introduced by [12]. A first class we analyze is that of consensus

games [24, 26, 66, 80, 82]. We show that in these games uncertainty can have a strong

snowball effect, analogous to the increase in size and destructive force of a snowball rolling

down a snowy slope. Namely, we show that small perturbations of costs on a per-player basis

or a handful of players with Byzantine (i.e. adversarial) behavior can cause a population of

players to go from a good state (even a good equilibrium state) to a state of much higher

cost. A second class we analyze is that of set-covering games [24]. We improve on the

previously known bounds of Balcan, Blum, and Mansour [12] for these games and show

that they are more resilient to uncertainty. Finally, we also provide positive bounds for

(λ, µ)-smooth games using random order. Thus our work provides a clear picture of the

consequences of uncertainty or unmodeled low-order effects on the behavior of players in

these important classes of games.

Problem setup and results We consider both improved-response (IR) dynamics in which

at each time step exactly one player may update strategy in order to lower his (apparent)

cost and best-response (BR) dynamics in which the updating player chooses what appears

to be the least costly strategy. Any state is assigned a social cost, which in this chapter is

defined as the sum of all players’ costs in that state. We measure the effect of uncertainty

as the maximum multiplicative increase in social cost when following these dynamics. We

instantiate this measure to each type of uncertainty.

For the first uncertainty type, we assume adversarial perturbations of costs of magnitude

at most 1 + ε for ε > 0 (a small quantity that may depend on game parameters). That is, a

true cost of c may be perceived as any value within [ 1
1+εc, (1 + ε)c].1 Consider a game G

and an initial state S0 in G. We call a state S (ε, IR)-reachable from S0 if there exists a

valid ordering of updates in IR dynamics and corresponding perturbations (of magnitude at

most ε) leading from S0 to S. The Price of Uncertainty [12] (for IR dynamics) given ε of

game G is defined as the ratio of the highest social cost of an (ε, IR)-reachable state S to

1As mentioned in [12] this is similar to the Statistical Query model of Kearns. [55]
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the social cost of starting state S0.

PoUIR(ε,G) = max
{ cost(S)

cost(S0)
: S0; S (ε, IR)-reachable from S0

}
For a class G of games and ε ≥ 0 we define PoUIR(ε,G) = supG∈G PoUIR(ε,G) as the highest

PoU of any game G in G for ε. PoUBR is defined analogously.

For the second uncertainty type, we assume B additional2 players with arbitrary, or

Byzantine [69] behavior. Similar to the Price of Uncertainty, the Price of Byzantine behavior

(PoB(B)) on social cost measures the effect of B Byzantine players on social cost, and is

defined as the maximum ratio of the cost of a state reachable in the presence of B Byzantine

agents to that of the starting state.

PoB(B,G) = max
{ cost(S)

cost(S0)
: S0; S B-Byz-reachable from S0

}
where state S of G is B-Byz-reachable from S0 if some valid ordering of updates by players

(including the B Byzantine ones) goes from S0 to S.PoB(B,G) = supG∈G PoB(B,G) for

class G. PoB, like PoU, may depend on the dynamics.3

Note that for any class of games G, we know that PoU(0,G) = PoB(0,G).

In the games we study, social costs cannot increase much without uncertainty (namely

PoU(0) and PoB(0) are small). Thus if the PoU or PoB is low, then one can have confidence

that small errors by players in estimating costs or arbitrary behavior of others will not cause

a system currently in a low-cost state to devolve into one of much higher cost. On the

other hand, a high PoU or a high PoB reveals a high sensitivity to such factors and raises a

warning flag for designers or modelers of these systems.

Next we introduce the classes of games we study and summarize our results.

Consensus games [29] model a basic strategic interaction: choosing one side or the other

(e.g. in a debate) and incurring a positive cost for interacting with each agent that chose

the other side. More formally, there are two colors (or strategies), white (w) and red (r),

which each player may choose; hence IR and BR dynamics coincide. Each player occupies a

2Note that the presence of additional players alters the game. It is necessary that the altered game with
these additional players remains in the class G.

3We omit parameters from PoU and PoB when they are clear from context.
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different vertex in an undirected graph G with vertices {1, . . . , n} and edges E(G) (without

self-loops). A player’s cost is defined as the number of neighbors with the other color.

Bounds on PoU(ε) We establish PoU(ε) = Ω(n2ε3) for ε = Ω(n−1/3) and PoU(ε) = O(n2ε)

for any ε. We note that these bounds are asymptotically tight as Θ(n2) for constant ε,

and the highest possible since costs are in [1, n2].

Bounds on PoB(B) We provide a tight bound of PoB(B) as Θ(n
√
nB) for B Byzantine

players; in contrast, individual updates by cost-minimizing players cannot increase the

social cost. To achieve this, we identify a stylized game with the essential properties

of a consensus game with B Byzantine players. While the cost in a consensus game

depends on the state, in our new game it suffices to bound the number of edges. This

is achieved by demonstrating an explicit extremal graph with Θ(n
√
nB) edges and

showing via an inductive argument that an arbitrary game in our new class can be

reduced (without losing any edges) to our extremal graph. We note that our new

bound greatly improves [12]’s bound of Ω(n) for B = 1.

Set-covering games [24] model many applications where all users of a resource share

fairly its base cost. These natural games fall in the widely studied class of fair-cost sharing

games [2]. In a set-covering game, there are m sets, each set j with its own fixed weight

(i.e. base cost) wj . Each of the n players must choose exactly one set j (different players

may have access to different sets) and share its weight equally with its other users, i.e incur

cost wj/nj(S) where nj(S) denotes the number of users of set j in state S. Prior work

has provide a tight characterization of PoBBR(1) = Θ(n) for such games so we focus on

providing bounds on PoUIR(ε) and PoUBR(ε).

Bounds on PoUIR(ε) We prove PoUIR(ε) = (1 + ε)O(m2)O(logm) for ε = O( 1
m). This is

the first bound known that has no dependence on the number of players n, and so will

be small in the natural case that the number of players is large and the number of

resources is small (or even constant).4 We also improve the existing lower bound for

4Our approach yields a new upper bound on PoUBR in a class of matroid congestion games (see
Section 2.5.1.1 for more details).
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these games (due to [12]) to PoUIR(ε) = Ω(logpm) for ε = Θ( 1
m) and any constant

p > 0. Our new lower bound is a subtle construction that uses an intricate “pump”

gadget with finely tuned parameters. A pump replaces, in a non-trivial recursive

manner with identical initial and final pump states, one player in a state of small cost

with one player in a state of high cost. This gadget can be adapted for a polylogarithmic

lower bound on PoUIR (again for ε = Θ( 1
m)) in a much broader class of games.

Bounds on PoUBR(ε) We show a lower bound of PoUBR(ε) = Ω(εn1/3/ log n) for ε =

Ω(n−1/3) and m = Ω(n) which is valid for any ordering of updates in which each player

moves sufficiently often, unlike the bound of [12] which only showed the existence of

some bad ordering.

(λ, µ)-smooth games. Finally, we upper bound the effect of arbitrary perturbations

assuming a random order of player updates in an important class of games, (λ, µ)-smooth

games [82]. (λ, µ)-smooth games are those in which players unilateral cost deviations from a

state S to S′ in total do not cost significantly more than the costs of states S and S′. We

show that these games are resilient to uncertainty provided that player who best responds

at each time step is chosen randomly.

We note that our lower bounds use judiciously tuned gadgets that create the desired snowball

effect of uncertainty. Most of them hold even if players must update in a specified order,

e.g. round-robin (i.e. cyclically) or the player to update is the one with the largest reduction

in (perceived) cost. Our upper bounds on PoU hold no matter which player updates at any

given step.

2.2 Related Work

2.2.1 Potential Games

Potential games are an important class of games that have been studied extensively [38,

72, 73, 87]. They were first introduced in 1973 by Rosenthal [80] as games which have a

potential function. An (exact) potential function is a function on joint actions such that an

agent’s change in utility when responding to some joint action will be equal to difference in

the potential function. He proved these games had Pure Nash Equilibria, by noting that any
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local minimum of the potential function would be a Pure Nash Equilibrium. Monderer and

Shapley proved that exact potential games correspond precisely to congestion games [66].

Many of the games considered in this chapter are matroid congestion games, in which

each player’s strategy must be a base of a matroid. Ackermann et al. [1] show that all

best-response sequences in such games (with perfect, accurate information) are of polynomial

length. They also show that many non-matroid congestion games can have best-response

paths of exponential length.

Anshelevich et al. [2] were the first to apply the potential function method to fair-cost

sharing games, a generalization of set-covering games in which any player must connect his

source and destination in a graph with a path. A player may use more than one edge and

shares the cost of each such edge fairly with all other users of the edge. These games are have

been used in a wide variety of contexts [76, 83, 37]. Another important class of potential

games are consensus games which have also been extensively studied [11, 29, 68, 70].

2.2.2 Uncertainty and Related Solution Concepts

Uncertainty in potential games. There are relatively few papers that address the effects

of uncertainty in potential games. Balcan, Blum, and Mansour [12] defined the Price of

Uncertainty, recognizing the harmful effect on social costs of imperfect information coupled

with selfish behavior. They showed lower and upper bounds on PoU for BR or IR dynamics,

adversarial or random order of strategy updates and for several classes of matroid congestion

games. Unlike us, they very briefly touch on Byzantine players or consensus games. Monderer

et al. [67] study potential games in which players face uncertainty about the number of other

players. They define and prove existence and uniqueness of a certain equilibrium concept

in any such game, and they show that this equilibrium can be better if players have less

information. Similarly, Meir, Tennholtz, Bachrach and Key [64] study congestion games

in which some players may fail to participate in the game. In this model they show that

independent failure of the agents improves games by avoiding bad equilibria.

Roth [81] shows tight bounds for the social cost of players using regret-minimization

dynamics in the presence of Byzantine players in congestion games where resources have
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linear costs. This work measures how much the quality of the worst coarse-correlated

equilibria can degrade with the introduction of Byzantine players. In contrast, we measure

how much the dynamics can degrade the social cost of any given state.

Similar Solution Concepts. Some work has been done to investigate how much the social

cost can increase following a particular type of dynamics, i.e. for an uncertainty level of 0.

The Price of Sinking, introduced by [42] tries to investigate best response dynamics in games

which don’t necessarily have a pure Nash equilibrium, by finding instead sets of states in

which best response dynamics get trapped (the so called sinks) and analyzing the expected

social welfare over these states. Recent work in [17] similarly explores different best-response

dynamics, and defines the dynamic inefficiency as the ratio of the social optimum to the

average social welfare over time. Note that dynamic inefficiency does not consider uncertainty

and it is rather an average-case measure as opposed to PoU or PoB, that are worst-case.

Our technique to bound the PoB in consensus games produces a setting similar to

that of diffusion models. We introduce the notion of B-flippablity as a consensus game in

which flipping B agents can change every player from red to blue. The study of diffusion

models [23, 57] investigates the spread of a change through a network given that a node will

adopt the change once some threshold of neighbors have already accepted it. Blume, Easley,

Kleinberg, Kleinberg and Tardos [23] investigate the diffusion through regular graphs given

that the failure thresholds for each node are drawn i.i.d.; the graphs they consider need not

be finite. Kempe, Kleinberg and Tardos [56, 57] consider the question of which nodes in the

graph have the maximum influence over the rest. We believe our constructions can provide

new insights into diffusion models as well.

2.3 The Formal Model

We consider games with n cost-minimizing selfish players. A player i can use a finite

set Σi of strategies and independently aims to minimize his cost. The dependence of

his cost on his and others’ strategies is given by costi : ×ni′=1Σi′ → R. A state is a

strategy vector S = (S1, . . . , Sn) where Si ∈ Σi is a strategy of player i for all i ∈ [n] =

{1, . . . , n}. For a joint action S we denote by S−i the actions of players j 6= i, i.e. S−i =
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(S1, S2, . . . , Si−1, Si+1, . . . , Sn). The social cost cost(S) in a state S aggregates individual

costs cost1(S), . . . , costn(S). From a global point of view, lower social costs are better. We

consider as a social cost function the sum of the costs of all players: cost(S) =
∑n

i=1 costi(S),

which is a common social cost in the literature.

Dynamics and potential games. We define natural dynamics for any player to

lower his current cost. We say that player i performs improved-response (IR; equivalently,

better-response), if i updates its strategy Si to S′i, an improved strategy (i.e. costi(Si, S−i) ≥

costi(S
′
i, S−i)), given S−i. We say that player i performs best-response (BR) if i updates

its strategy Si to S′i, the best strategy (i.e. costi(S
′
i, S−i) ≤ costi(S′′i , S−i), ∀S′′i ∈ Σi) given

S−i. BR is a type of IR dynamics. A state (S1, . . . , Sn) is a Nash equilibrium if each player

minimizes his cost given others’ strategies, i.e. if costi(Si, S−i) ≤ costi(S
′′
i , S−i) for any

player i and strategy S′′i ∈ Σi. That is, a Nash equilibrium S is a stable point for either

dynamics: Si is a best-response to S−i,∀i.

The games we study in this chapter are exact potential games. We say that game G has

an (exact) potential function Φ:×ni′=1Σi′→R if the change in a player’s cost at any strategy

update (not necessarily cost-reducing) equals the change in potential, i.e. if

costi(Si, S−i)− costi(S′i, S−i) = Φ(Si, S−i)− Φ(S′i, S−i), ∀i ∈ [n], ∀Si, S′i ∈ Σi,∀S−i ∈ Σ−i.

The potential Φ thus globally tracks individual strategy updates. As the potential decreases

at any update in IR (and BR) dynamics in the absence of uncertainty, these dynamics are

guaranteed to converge. Such games have been widely studied in the literature. [2, 24, 26,

28, 66, 80, 82].

PoU. We now introduce a central concept in this chapter: the Price of Uncertainty

(PoU) [12] for a class of games G, measuring the degradation of social costs during dynamics

based on perturbed costs. Fix ε > 0, that may depend on parameters common to all games

in G, e.g. ε = 1/n. We consider Nash dynamics in which players observe costs that are

perturbed, possibly adversarially, by a multiplicative factor in [ 1
1+ε , 1 + ε]. That is, a player

whose actual cost in state S is c may perceive instead any cost in the interval [ 1
1+εc, (1 + ε)c].

Consider a game G ∈ G and an initial state S0 in G. We call a state S (ε, IR)-reachable from
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S0 if there exists a valid ordering of updates in IR dynamics and corresponding perturbations

(of magnitude at most ε) leading from S0 to S. We are now ready to define the price of

uncertainty for IR dynamics given ε of game G as the ratio of the highest social cost of an

(ε, IR)-reachable state S to the social cost of starting state S0.

PoUIR(ε,G) = max
{ cost(S)

cost(S0)
: S0; S (ε, IR)-reachable from S0

}
and

PoUIR(ε,G) = supG∈G PoUIR(ε,G)

The PoU of class G is defined as the highest PoU of any game G in G for the same ε. For

the more specific best-response dynamics, PoUBR is defined analogously.

PoB. Instead of costs, players are often uncertain about other players’ goals. A worst-

case assumption is that some players can behave in a Byzantine [21, 69], i.e. arbitrary,

manner5. A natural measure of the effect of B Byzantine players from a starting state S in

game G is the ratio of the cost of a state reachable in the presence of B Byzantine agents to

that of S. The maximum of the ratios over all states, that we call the Price of Byzantine

behavior, abbreviated PoB, is clearly analogous to the Price of Uncertainty.

PoB(B,G) = max

{
cost(S)

cost(S0)
: S0; S B-Byz-reachable from S0

}
and

PoB(B,G) = supG∈G PoB(B,G)

where state S of G is B-Byz-reachable from state S0 of G if some valid order of updates by

players (including the B Byzantine ones) goes from S0 to S. PoB, like PoU, may depend

on the dynamics used6. We note that the B Byzantine players are in addition to the n

cost-minimizing ones.

Order of updates. Most of our lower bounds hold even if the players must update in

some specified order, e.g. round-robin (i.e. cyclically) or the player to update is the one with

the largest reduction in (perceived) cost [18, 28]. Our upper bounds on PoU hold no matter

which player updates at any given step.

5When considering Byzantine players we no longer allow for perturbations in the costs perceived by players
6To avoid notation clutter, we omit parameters from the PoU and PoB notation when they are clear from

context.
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2.4 Consensus Games

In this section, we provide upper and lower bounds regarding the effect of uncertainty on

consensus games which are asymptotically tight up to constant factors. In the uncertainty

model these hold when ε is constant, and this holds in the Byzantine model forany number

B of Byzantine players. Our bounds highlight a strong snowball effect of uncertainty in this

class of games.

Consensus games [29] encapsulate a very common strategic interaction: there are two

colors (or strategies), white (w) and red (r), which each player may choose; hence IR and

BR dynamics coincide. Each player occupies a different vertex in an undirected graph G

with vertices {1, . . . , n} and edges E(G) (without self-loops). A player’s cost is defined as

the number of neighbors with the other color. We call an edge good if its endpoints have the

same color and bad if they have different colors. The social cost is the number of bad edges

(i.e. half the sum of all players’ costs) plus one, which coincides with the game’s potential.

In the absence of uncertainty, the social cost decreases when a player decreases its own cost.

Thus PoU(0) = PoB(0) = 1. Since the social cost is in [1, n2], PoU(ε) = O(n2),∀ε and

PoB(B) = O(n2), ∀B.

2.4.1 Lower Bound and Upper Bound for Perturbation Model

Perturbation model. Since each action’s cost is the number of neighbors of the other color,

the perturbation model is as follows: if a vertex i has n′ neighbors of some color, then a

perturbation may cause i to perceive instead an arbitrary value in [ 1
1+εn

′, (1 + ε)n′].7 In this

model, only an ε = Ω( 1
n) effectively introduces uncertainty.8 We also assume ε ≤ 1 in this

section.

We first provide a PoU upper bound for consensus games that depends on ε. It implies

that the existing Θ(n2) lower bound cannot be replicated for any ε = o(1). The proof is

based on comparing the numbers of good and bad edges at the first move that increases the

7It may be natural to assume that the players perceive their number of neighbors as integers. Our results
hold in this model as well.

8If ε < 1/3n, consider a node with r red neighbors, w white neighbors, and r > w. Since r and w are
both integers, r ≥ w + 1. For a potential increasing move to occur, we must have (1 + ε)2w ≥ r ≥ w + 1.
This implies that n ≥ w ≥ 1/(2ε+ ε2) ≥ 1/3ε > n.
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social cost.

Theorem 1. PoU(ε, consensus) = O(n2ε).

Proof. We note that if no move is cost-increasing (i.e. any move would be valid for ε = 0),

then the potential function decreases. As potential and cost are equal, the social cost cannot

increase in the absence of uncertainty.

Consider a strictly cost-increasing move by a player i. Let mb < mg be the number of

bad, respectively good, edges adjacent to i before i’s move (their roles switch afterwards).

Since i’s move is cost-decreasing in the perturbed dynamics, 1
(1+ε)2

≤ mb
mg

< 1. We get

mb(1 + ε)2 ≥ mg ≥ mb + 1 i.e.

mb ≥ 1
2ε+ε2

(1)

Thus before any cost-increasing move, in particular the first one, there must be Ω(1
ε ) bad

edges in the graph. As there are O(n2) edges in all, we get PoU = O(n2ε), as desired.

We now turn our attention to a lower bound. The proof is similar in spirit to a previous

construction for weighted graphs due to Balcan et. al [12]. In that construction, there was a

line of nodes where the weight between each successive pair of nodes grew exponentially.

Our construction is similar in spirit, but works with unweighted graphs. There are two key

ideas in our construction. First, rather than nodes we have a line of ‘levels’ which grow

exponentially, and which can have alternating colors. Using this we can construct a graph

with Ω(n2ε) edges, and find a state where most of the edges are bad. Secondly, rather than

alternating every level, our construction alternates in blocks of two. This provides resilience

which allows the adversary to maintain the construction despite allowing arbitrary orderings

of player updates.

Theorem 2. PoU(ε, consensus) = Ω(n2ε3) for ε = Ω(
√

1
n) even for arbitrary orderings of

player updates.

Proof. Assume for convenience 1
ε is an integer.

We first describe our construction assuming that the adversary can choose which player

updates at any step. We describe in order the structure of the game, the initial and final states,
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(a) The construction relies
on three separate pieces,
shown here.

(b) Memory nodes start
out with the opposite
color to engine and out-
put nodes.

(c) Before the last two en-
gine levels change color,
the memory nodes switch
color.

(d) The rest of the engine
switches color in succes-
sive levels. Once the last
engine level changes color,
the first output level can
change.

(e) The output levels
change color in succession
. . .

(f) . . . but the last two lev-
els are ‘fixed’.

(g) Each epoch switches
the color of all nodes in
the engine and memory,
and fixes two more levels
of output.

(h) Note that this final
configuration is stable in
the sense that for every
node there is a perturba-
tion that prevents it from
changing color.

Figure 1: Construction for the PoU(ε) = Ω(n2ε3) (for ε = Ω( 1√
n

)) lower bound in consensus

games. In the diagram, levels are represented by nodes, and an edge between two levels
implies that there is an edge between each pair of nodes on those levels. Note that engine
and memory levels can take the color of the smaller level ‘above’ them.
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calculate the Price of Uncertainty, and finally describe a schedule of the dynamics which

lead from the initial state to the final state. We subsequently show that the adversary can

reduce an arbitrary ordering (that he cannot control) to his desired schedule by compelling

any player other than the next one in his schedule not to move.

Let us describe the structure of our lower bound. We construct a graph G (illustrated in

Fig. 1 with keng = 5, kout = 8) with

• keng = 1
ε levels of “engine” nodes, where level i has (1+ε)i

ε nodes, for i=0 . . . keng. Let

neng denote the number of nodes in all engine levels, and note neng ≈ 1
ε2

. Each node

in an inner engine level is connected to each node in the two adjacent levels and not

connected to any other engine node.

• kout levels of “output” nodes, where level i = 0 . . . kout has (1+ε)i

ε nodes. Each node

in an inner output level is connected to each node in the two adjacent levels and not

connected to any other output node. We note that kout = 1
ε [ln(nε2) − ln 2] as we

describe shortly. Let nout denote the number of nodes in all output levels, and note

that nout ≈ n2ε.

• 3 levels of “memory” nodes, where each level has 1+ε
ε nodes. The first memory level

is fully connected to the first engine level and to the middle memory level. We call

this the out-layer. The third memory level is fully connected to the last engine level

and to the middle memory level. We call this the in-layer. The middle layer is only

connected to the other memory levels. We call this level the storage. Let nmem denote

the number of nodes in the memory levels.

There are no other edges in the graph. Let nconstr = neng + nout + nmem. If nconstr < n,

then we also have n− nconstr excess nodes not connected to anything. There are no other

nodes in the graph.
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It is easy to verify that we have at most n nodes in our graph.

neng + nout + nmem =

keng∑
i=1

(1 + ε)i

ε
+

kout∑
i=1

(1 + ε)i

ε
+ 3

1 + ε

ε

= (1 + ε)
(1 + ε)keng − 1

ε2
+ (1 + ε)

(1 + ε)kout − 1

ε2
+ 3

1 + ε

ε

= (1 + ε)
(1 + ε)1/ε − 1

ε2
+ (1 + ε)

(1 + ε)1/ε[ln(nε2)−ln 2] − 1

ε2
+ 3

1 + ε

ε

≤ (1 + ε)
e− 1

ε2
+ (1 + ε)

1
2(nε2)− 1

ε2
+ 3

1 + ε

ε

≤ (1 + ε)
e− 1

ε2
+ (1 + ε)

1
2(nε2)− 1

ε2
+ 3

1 + ε

ε

≤ (1 + ε)

[
n

3
+
n

2
ε2 + 3

1

ε

]
≤ n

Note that (1 + ε) e−1
ε2

> n
3 provided that ε > 2√

n
. By requiring ε ≥ n−1/2 we ensure that

engine and memory components are most a constant fraction of the nodes.

To prove our bound we will consider an initial state where all the storage and out-layer

memory nodes are colored red, and all other nodes are white. As we shall show, we can

reach from this a final state which alternates colors every other output level. (The color of

the engine levels and memory levels will be the same as in the initial configuration.)

This immediately implies a lower bound on the price of uncertainty. We see that the

initial number of bad edges is Θ( 1
ε2

), (namely the number of bad edges between the out-layer

of memory and the first engine level and the number of edges between the storage level and

the in-layer, all of which have Θ(1
ε ) nodes). The final number of bad edges is at least the

number of bad edges between output levels. Note that this occurs either from odd levels

to even levels, or the other way around (depending on the parity of kout). Without loss of

generality, this is at least

∑(kout−1)/2
i=1

(1+ε)(2i)+(2i+1)

ε·ε = (1+ε)
ε2

(1+ε)2kout+2−1

(1+ε)4−1
= Θ( (nε2)

2

ε3
) = Θ(n2ε)

where we used that (1 + ε)kout = Θ(nε2). Thus PoU(ε, consensus) = Ω(n2ε3).

We now show how it is possible to reach our desired final state from the initial state. We

first do this by composing a schedule of updates for the players and perturbations at each
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step which lead the dynamics from the initial state to the final state. We then subsequently

relax this and show that the schedule can be maintained even if the order in which players

update is arbitrary. Note that every node is connected to all of the nodes in precisely

two other levels (with the exception of the last level of nodes in both engine and output).

Furthermore, the levels grow slowly enough so that a perturbation can prevent a node from

telling which level that it is connected to is larger. If all the nodes in a level change color

together, then we can treat the levels as supernodes with weighted edges between them that

are growing exponentially.

Additionally, causing these levels to alternate colors improves the construction further.

The engine and memory levels facilitate changing the color of the first output layer. There

are kout/2 epochs in the schedule. In epoch i, the engine and the first kout + 1− 2i output

levels will match the memory color (that alternates between epoch) at the start of the epoch.

The schedule ends when the output levels alternate color (in blocks of 2).

In order to describe the schedule, we must first introduce some notation. In all the

relevant states, all nodes in each level of all components (i.e. engine, memory, output) will

have the same color so we will use just one letter (w/r) to represent the color of all nodes

in a level. The engine and output component will be represented as a string of keng and kout

letters respectively, and the memory component will be represented by three letters. The

relevant colorings of engine and output levels are:

Engine. First j levels of one color, then keng − j levels of the other: rjwkeng−j or

wjrkeng−j for 0 ≤ j ≤ keng.

Output. First i levels of one color, next j levels with the other, and the remaining levels

with alternating colors in blocks of two: riwj(rrww)(kout−i−j)/4 and wirj(rrww)(kout−i−j)/4

for 0 ≤ i, j ≤ kout with kout ≥ i + j. Note that we specify white for the last two output

levels, red for the next to last pair of levels, then white for the previous pair etc.

A state is encoded by a triple, e.g. (wkeng ,rrw,wkout), for colors of the engine, memory

and output nodes.

We now specify the schedule through which the initial state (wkeng ,rrw,wkout), in which

all nodes are white except for the storage and out-layer memory nodes (see Fig. 1b), reaches
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the final state (·, ·, (rrww)kout/2) in which the output levels have alternating colors in blocks

of 2 (see Figure 1h). Note that any level in the engine or output can adopt the color of the

level before it by a 1 + ε perturbation.

Consider without loss of generality if level i− 1 is red. We claim that a node in level i

can change color to red. Since all if its neighbors in level i− 1 are red, then this node has at

least 1
ε (1 + ε)i−1 red neighbors. An ε-perturbation can cause the node to perceive this as

1
ε (1 + ε)i. This node also has at most 1

ε (1 + ε)i+1 white neighbors, as the nodes on level i+ 1

are the only possible neighbors. Even if all of these are colored white, an ε-perturbation may

cause the node to perceive this also as 1
ε (1 + ε)i. The node is therefore indifferent between

colors red and white, and can break ties arbitrairly. Thus this particular node on level i,

and similarly all nodes on level i, can update to take the color red.

The schedule is indicated by Figure 1. Figure 1b-1f show the schedule within a particular

epoch, and the remaining figures show how the epochs reach the desired ending state.

Without loss of generality we may assume this is epoch which starts with the engine being

white. For epoch i, this is configuration (wkeng ,rrw,wkout−2i(rrww)i/2).

First the engine takes the color of the memory nodes. The first engine level takes the color

of the out-layer of memory nodes, and then the first keng − 2 engine levels change their color

in order. This is depicted in 1c. This configuration (rwkeng−1,rrw,wkout−2i(rrww)i/2i)→

· · · → (rkeng−2w2,rrw,wkout−2i(rrww)i/2). Then each node in the storage level changes

to the color of the in-layer, and then the out-layer adopts the color of storage. Fi-

nally the last two engine levels change color. (rkeng−2w2,rrw,wkout−2i(rrww)i/2) →

(rkeng−2w2,www,wkout−2i(rrww)i/2) → (rkeng ,wwr,wkout−2i(rrww)i/2) At this point,

all non-output nodes have reversed color, as shown in 1e.

Next the output levels will change color, as in 1f. The first output level is connected to

more than twice as many nodes of last engine level than to the next level of output, so these

nodes change color to state (rkeng ,wwr,rwkout−2i−1(rrww)i/2). Thereafter, until level

kout−2i, each output level adopts this color reaching state (rkeng ,wwr,rkout−2i−1ww(rrww)i/2).

Finally epoch i is complete, and this is the starting configuration for epoch i+ 1.

Arbitrary Orderings. Finally we note that the adversary can use this schedule, even
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if he does not have control over who updates at each time step. We do this by showing that

given some arbitrary ordering, he can reduce it to his desired schedule by compelling players

not to move. In each epoch, there are two types of nodes: those the adversary wishes to

not change color (the nodes already fixed) and those the scheduled to change color precisely

once.

Consider the nodes scheduled not to change color. Each one of these is in the final k

levels of output. Consider such a node. Without loss of generality, it has a number of red

neighbors equal in size to the previous level and a number of white neighbors equal to the

size of the next level. By overestimating the number of red neighbors by a factor of (1 + ε)

and underestimating the number of white neighbors by the same, this node perceives equal

costs for either red or white, and so can stay with the same color they have currently chosen.

The only fixed nodes that do not have red level and a white level adjacent are the nodes in

the first fixed level — but these have an excess of neighbors that are their current color. So

these can preserve their color throughout the epoch.

Now consider an odd numbered epoch. Of the remaining, non-fixed nodes, memory

nodes in the storage and out-layer levels wish to change color from red to white; all other

nodes wish to change from white to red. (The colors are reversed for even numbered epochs.)

We now wish to show that for any node that has updated from white to red there exists

a perturbation that keeps it red. Note that a perturbation exists to choose a particular

color if at least a 1
2 − ε fraction of its neighbors are that color. For all non memory nodes,

the number of red neighbors is monotonically increasing over the course of the epoch, so

these nodes can stay red. (The sole exception to this is the first level of engine nodes, but

note that the memory nodes it is connected to change color to white only after it and its

successor level have changed to red. This is enough to prevent these nodes from changing

back to white.)

Next we consider the storage and out-layer levels of memory nodes. The adversary will

cause them to change color before any nodes in the last two engine levels change color, but

after the entire first and second engine levels have changed color. Note that the adversary

can prevent them from updating: the storage level has an equal number of red neighbors
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and white neighbors until all the in-layer has changed color, and nodes in the out-layer only

have red neighbors. Further, the in-layer cannot change color until the last engine level has

changed color. Thus these nodes will not change the color of these nodes until the after the

second engine level changes color.

Since the storage level has an equal number of neighbors of each color, once the second

engine level has changed color, the storage can be compelled to update from white to red.

After all nodes in the storage level have changed color, the nodes in the out-layer can update.

These nodes have an equal number of neighbors of each color, and so can stay the same

color throughout the rest of the epoch. The nodes in the storage level have at least as many

white neighbors as red neighbors even after the in-layer updates, so they can also decline to

change color for the rest of the epoch.

We note that the penultimate engine level can decline to change color, since, until it

changes color, it has more white neighbors than red neighbors.

Finally, consider the in-layer of memory nodes. Until the nodes in the last engine level

change color, these have only white neighbors, so they will not change color. After the

storage nodes have changed color, the number of red neighbors is monotonically increasing.

Once all the nodes in the last engine level have changed color, they have more red neighbors

than white neighbors and so cannot change color to white.

Thus we have shown how for every node at every timestep there is a perturbation which

preserves the adversary’s schedule.

We note that the previously known lower bound of Ω(1 + nε) due to Balcan et. al [12]

was based on a much simpler construction. When ε =
√

1
n , the bounds meet and for larger

values of ε our new results can be drastically better. Our new bound is better by a factor of

at least n1/3 for ε = Ω(n−1/3), and when ε is a constant the bound is improved by a factor

of n. We also note that since PoU(ε) = O(n2) for any ε, it implies a tight PoU bound of

Θ(n2) for any constant ε.
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2.4.2 Tight Bound for Byzantine Players

As described earlier, Byzantine players can choose their color ignoring their neighbors’

colors (and therefore their own cost). Note however the Byzantine players cannot alter the

graph9. We show a tight bound on the effect of B Byzantine players, for any B: the effect

of one Byzantine player is very high, of order n
√
n and that the subsequent effect of B ≤ n

Byzantine players is proportional to the square root of B. As was the case for PoU , the

effect of uncertainty is decomposed multiplicatively into a power of n and a power of the

extent of uncertainty (ε for PoU, B for PoB).

Theorem 3. PoB(B, consensus) = Θ(n
√
n ·B).

The rest of this section establishes this tight bound. We begin by providing a high-level

overview of the proof.

• We first consider an instance of a consensus game under Byzantine uncertainty. We show

that this instance can increase its cost to a value of k (i.e. ∃S such that cost(S) = k)

then (by Lemma 1) there exists a B-flippable graph FG,k (we shall define flippable

shortly), such that |V (FG,k)| ≤ 3n and |E(FG,k)| ≥ k.

• We then seek to bound the number of edges in flippable graphs. We identify a particular

B-flippable graph, Fseq(n,B), on n vertices. Among B-flippable graphs F on n

vertices, Fseq(n,B) has the most edges. Thus |E(F )|
Lemma 2
≤ |E(Fseq(n,B))| Lemma 3

=

Θ(n
√
nB).

• As PoB(B,G)=k≤|E(FG,k)|, we have PoB(B,G)≤maxS cost(S)≤maxflippable F |E(F )|=

O(n
√
nB).

• Finally, half of Fseq(n,B)’s edges can be made bad, i.e. PoB(B,Fseq(n,B)) = Ω(n
√
nB).

The proof of the O(n
√
n ·B) upper bound follows from Lemmas 1, 2 and 3 below. The

key to this bound is the notion of a flippable graph. For any consensus game, let Sred be the

9For the lower bound, we assume that a player will break ties in our favor when he chooses between two
actions of equal cost. With one more Byzantine player the same bound holds even if players break ties in the
worst possible way for us. For the upper bound, we assume worst possible players’ moves from the social cost
point of view.
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configuration where all nodes are red, and similarly let Swhite be the configuration where all

nodes are white.

Definition 1 (B-Flippable graph). Consider graph G on n vertices of which B are designated

special nodes and the other n−B nodes are called normal. We say G is B-flippable (or just

flippable when B is clear from context) if in the consensus game defined on G where the

special nodes are the Byzantine agents, Swhite is B-Byz-reachable Sred.

We now describe the concept of a conversion dynamics in a consensus game which we

use in several of our proofs. In such a dynamics, we start in a state where all vertices are red

and have Byzantine players change their color to white. Then all normal nodes are allowed

in a repeated round-robin fashion to update, so long as they are currently red. This ends

when either every vertex is white or no vertex will update its color.

We note that in a flippable graph the conversion dynamics induces an ordering of the

normal vertices: nodes are indexed by the order they first change color from red to white,

with the first node switching to white being labelled 1, the next 2, and so on. We note that

there may be more than one valid ordering. In the following with each B-flippable graph,

we shall arbitrarily fix a canonical ordering (by running the conversion dynamics). Where

there is sufficient context, we shall use v a vertex interchangeably with its index in this

ordering. Using this ordering we induce a canonical orientation by orienting edge uv from

u to v if and only if u < v. We also orient all edges away from the B special nodes. To

simplify notation, we shall write vin = |δ−(v)| and vout = |δ+(v)| for a vertex v’s in-degree

and out-degree respectively. We note that by construction, for a flippable graph we have

vin ≥ vout. One can easily show the following:

Claim 1. A graph is B-flippable if and only if there exists an ordering on n− B normal

vertices of the graph such that, in the canonical orientation of the edges such that for every

normal vertex v, vin ≥ vout. A graph is B-flippable if and only if for every pair states S, S′,

S is B-Byz-reachable from S′.

Proof. We first show a graph is B-flippable if and only if there exists an ordering on n−B

normal vertices of the graph such that the canonical orientation of the edges such that for
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every normal vertex v, vin ∈ vout.

Suppose a graph has such an ordering. Let the adversary start it in the all red configu-

ration, update each Byzantine player to white, and the update according to the specified

ordering (breaking ties towards white). Observe that each vertex updates to white immedi-

ately. Thus the graph is B-flippable. On the other hand, consider a B-flippable graph. We

note that the conversion ordering has our property, as desired.

We now show that a graph is B-flippable if and only if for every pair states S, S′, S is

B-Byz-reachable from S′. One implication is trivial, as Swhite B-Byz-reachable from Sred is

the definition of B-flippable. The other direction is also easy. We show this by inducting

over flippable subgraphs. Order the nodes by the conversion dynamics, and let v be the last

node. Note that G \ {v} is also flippable, with the same conversion ordering. We first color

v by either leaving it the proper color or by changing the color of all vertices of G. In either

case, having colored v properly, we restrict our attention to the subgraph G \ {v} and color

it appropriately by induction. Note that since v is last in the conversion ordering, all other

vertices can swap their color even if v is colored differently.

Lemma 1. Fix a game G on n vertices, B of which are Byzantine, and a pair of configura-

tions S0 and ST such that ST is B-Byz-reachable from S0. If cost(S0) ≤ n, then there exists

a B-flippable graph F with at most 3n nodes and at least k edges (in total).

Proof. Let our initial consensus game G have an initial configuration S0 and a B-Byz-

reachable configuration ST . Recall that Sred refers to the state where every vertex is red,

and likewise that Swhite is the state where all vertices are white.

We shall first construct a consensus game G′ such that there exists a configuration S′T

which is B-Byz-reachable configuration Sred, such that cost(S′T ) ≥ cost(ST ). Informally,

this means that the intermediate game G′ will have at least as many bad edges in the

configuration S′T as G does in ST .

We then transform the game G′ into a B-flippable graph G′′ on the same vertex set by

deleting edges of G′ while ensuring that Swhite is B-Byz-reachable from Sred in G′′, and

|E(G′′)| ≥ cost(S′T ).
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We now describe the structure of G′. Consider G in state S0. For each edge e = uv that

is bad in S0, introduce two nodes, a mirror node me and a helper node he. We delete edge

e, and put in new edges ume, mev and mehe. Additionally, the mirror and helper nodes

have an edge from each Byzantine agent. Thus we introduce two nodes for each bad edge.

By assumption there are at most n bad edges in S0 and thus at most 2n new nodes overall.

Note that by controlling the order of updates and being able to choose how other nodes

break ties, the adversary can control the color of the mirror node independently of the rest

of the game. When attempting to change node me, to color i, the adversary first asks the

Byzantine node to change color to i. Then the node he is chosen to update, and chooses to

break its tie in favor of color i. Then the mirror node does the same.

We now show how the dynamics can reach a state S′T with k = cost(ST ) bad edges while

starting from Sred.

Let v1, v2, . . . , vt be the ordering of updates that reaches k bad edges, with associated

configurations of G, S1, S2 and so on. Note that the vi may not be distinct, but that they

do not include the Byzantine vertex. Further, let Ir be the set of vertices that are red in S0

and Iw be the set of vertices initially white. The dynamics proceeds in two stages. In the

first stage, we only update vertices of Ir, in the second stage we only update vertices of Iw.

Since the mirror nodes isolate set Ir from set Iw and vice-versa, the adversary can simulate

the dynamics from S0 to ST on Ir. In the set Iw, the adversary simulates the dynamics from

S̄0 to S̄T — the dynamics with color of every node reversed.

Let S′0 in G′ be state where every vertex is colored red, i.e. Sred. Then, the Byzantine

agent updates to white, and queries every helper node, and then every mirror node. This

simulates the original dynamics in G to the vertices of Ir.

The adversary then uses the following ordering: For i ∈ [1, t], vi is updated if vi ∈ Ir.

Then for each mirror edge with a ∈ Ir, b ∈ Iw, the adversary induces mab to take color of

b in Si+1. This maintains the invariant that all nodes of Ir have identical numbers of red

and white edges as in the state Si of G when they make their updates, so each vertex of Ir

updates the same as before.

Now we wish to update the nodes of Iw. For any state S of G let S̄ denote the state
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in which the color of every vertex in G is flipped. The adversary will update the nodes of

Iw following the dynamics from S̄0 to S̄T . Note that since the vertices of Iw are defined as

those that have the color white in S0, they all are red in S̄0. We perform the same update

procedure for Iw as we did for Ir, ensuring that we get to S̄T . For i ∈ [1, t], vi is updated if

vi ∈ Iw. Then for each mirror edge with a ∈ Ir, b ∈ Iw, the adversary induces mab to take

color of b in S̄i+1. After this procedure, the vertices of b are the same color as in S̄T .

Finally we update each helper edge to be the opposite color of the mirror edge. This

final configuration is S′T .

We finally note that all edges internal to Ir that were bad in ST are bad in S′T . Likewise,

all edges internal to Iw are bad in S′T if they were bad in ST . The only bad edges of ST

that might not be present are those edges which have been replaced by mirror nodes. But

for each of these edges there is a bad edge its mirror node to its helper node in S′T , which

suffices. Thus from Sred we reach a state S′T with at least k bad edges.

We have constructed G′ and a state S′T such that cost(S′T ) ≥ cost(ST ) and S′T is B-Byz-

reachable from Sred in G′. We now find a set of edges in G′ that we can delete creating

G′′ such that Swhite is B-Byz-reachable from Sred in G′′ and no edge which is bad in S′T is

deleted.

To construct G′′ we must first examine the vertices of G′. Let R be the set of vertices

in G′ that never change color to white in the conversion ordering. Note that these vertices

cannot change to white in any update ordering while performing IR. To see this, we observe

that for all nodes v ∈ R, v must have more edges to nodes of R than nodes outside of R, else

v would change color in the conversion dynamics. Assume to the contrary that some node v

in R changes color. Without loss of generality we examine the first time in the dynamics

that this happens. But note that all of v’s inside R at this time are still red, so v does not

change color after all.

We shall now describe the structure of G′′. G′′ will be identical to G′ with internal edges

of R deleted. Formally, V (G′′) = V (G′) and E(G′′) = E(G′)\ {e = (a, b) : a, b ∈ R}. This

does not change our PoB; each of the deleted edges had both endpoints red in every state

of the dynamics, and hence were not bad edges in any state, and thus were not bad in S′T .
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We can follow the old dynamics ignoring any queries to nodes of R, and reach the final

configuration S′T .

Furthermore, every vertex can now be colored white. This is true as every node is only

connected to vertices that can be colored white. If we use conversion dynamics, then all

of these vertices are turned white, and the nodes of R are only connected to white nodes.

Thus they can also turn white.

Thus, given G, we have constructed G′′ where E(G′′) ≥ cost(ST ), |V (G′′)| ≤ 3n, and

Swhite is B-Byz-reachable from Sred in G′′. In short, G′′ is a B-flippable graph with the

desired parameters.

Definition 2 (Fseq(n,B)). Let Fseq(n,B) be the B-flippable graph with n−B normal nodes

with labels {1, 2, . . . , n−B}. There is an edge from each special node to each normal node.

Every normal node v satisfies vout = min(vin, (n−B)− v), and v is connected to the nodes

of {v + 1, . . . , v + vout}. This is called the no-gap property. In general, if k = min(vin, n− v)

then v has out-arc set {v + 1, . . . , v + k}.

By claim 1 we immediately get that Fseq is B-flippable. Our upper bound follows by

showing |E(F )|≤|E(Fseq(n,B))| for any flippable graph F on n vertices. For this, we take

a generic flippable graph and transform it into Fseq without reducing the number of edges.

We say there is a gap(a, b, c) for a < b < c if vertex a does not have an edge to b but does

have an edge to c, see Figure 3a. Note that this is defined in terms of an ordering on

the vertices; we use the conversion ordering for each graph. Since we fix B and n, we use

shorthand Fseq for Fseq(n,B).

Lemma 2. A B-flippable graph on n vertices has at most as many edges as Fseq(n,B).

Proof. For this proof we only consider B-flippable graphs on n vertices with B special nodes.

We refer to the minlex pair of a graph as the lexicographically minimal pair (a, b) in a graph

such that gap(a, b, c) is present in the graph for some c. This proof proceeds by backwards

induction on graphs classified by their minlex pair.
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S0 ST

R S′T

R B

(a) First the game is converted to one in which the all red configura-
tion can reach a state of social cost no less than cost(ST ). Next, we
show that we can reach the all white configuration without deleting
any bad edges.

(b) The sets Ir and Iw are only connected
by mirror nodes. The blue dotted edges
connect the new mirror and helper nodes to
the Byzantine player. The large solid dots
are mirror nodes, while the smaller dots are
helper nodes.

Figure 2: The diagram on the left shows the three stages of Lemma 1, while the diagram on
the right shows a closer look at the first stage. Note that white nodes are drawn as blue in
this image.

(a) gap(a, b) is present in this graph. Note that
block I does not include node a.

(b) When bout < cout

(c) d → b but d 6→ c can be changed by adding
a→ b and d→ c and deleting a→ c and d→ b

(d) If (iii) 6→ c then the graph is not edge maximal.
We delete a → c and add in arcs a → (iii) and
(iii)→ c

(e) Demonstrating that cIin ≥ bIin − x

Figure 3: Relevant nodes and blocks for the proof of Lemma 2. The nodes are arranged
from left to right by increasing index. Dashed lines represent arcs not present. Only one
Byzantine player is pictured (as the gray node); its edges (one to each node) are omitted to
avoid clutter. Figure 3a shows the relevant definitions, while the rest show relevant cases.
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We first note that Fseq is precisely the (B-flippable) graph on n vertices with no gaps,

and so it (vacuously) has a minlex pair greater than that of any other graph. This serves as

our base case.

We now assume any graph with minlex pair (x, y) determined by gap(x, y, z) with

(x, y) >lex (a, b) has at most as many edges as Fseq.

Among B-flippable graphs with minlex pair (a, b) consider the graph G with the most

edges. Let G’s lexicographically minimal gap be gap(a, b, c). We shall show that |E(G)| ≤

|E(Fseq)| which implies that all graphs with minlex pair gap(a, b, ·) have fewer edges than

Fseq.

If cout < cin, we remove a → c and add a → b. This results in a graph, G′, with the

same number of edges, but with a strictly later minlex pair. Note that G′ is also B-flippable,

since we maintain the propery that for all v, vin ≥ vout. By our inductive hypothesis, G′ has

fewer edges than Fseq, and so the induction holds.

If bout < cout, find d with c → d and b 6→ d, as shown in Figure 3b. Create G′ by

removing edges a → c and c → d while adding edges a → b and b → d. G′ maintains the

condition on vertices, and is thus a B-flippable graph with the same number of edges, but

with a later minlex pair. Thus by our induction G′ has fewer edges than Fseq.

Consider any d with a < d < b. If d→ b but d 6→ c, we remove edges d→ b, a→ c and

add edges d→ c and a→ b, as shown in Figure 3c. This results in a B-flippable graph with

the same number of edges but a strictly greater minlex pair. Thus again by induction, it

has fewer than Fseq edges.

Now assume for the sake of contradiction that none of the above hold. Thus bout ≥

cout = cin. We show cin > bin which leads to a contradiction as bin ≥ bout ≥ cout = cin.

Let block I be the nodes of index < a, block II be the nodes with index in [a, b), and

block III be the nodes with index in [b, c) — see the figure below. We will count the vertices

with edges into both b and c in each block. We use vJin to denote the number of edges to v

in block J , for J ∈ {I, II, III}.

We begin with block II. Let (ii) be a vertex in block II. By assumption, for any vertex

(ii) such that (ii)→ b, we must also have (ii)→ c. So cIIin ≥ bIIin . Furthermore, a is in this
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block, so cIIin ≥ bIIin + 1.

There are x vertices in block III (including b). These must all go to c. Otherwise, suppose

(iii) 6→ c where (iii) is a vertex in block III, as shown in Figure 3d Note that a 6→ (iii),

or else the minimal gap is actually gap(a, b, (iii)). We delete edge a → c and add edges

a → (iii) and (iii) → c. This is a graph with more edges but with gap(a, b, (iii)). This

violates our choosing the graph G with the most edges. Thus cIIIin = x. Further, none of the

vertices in block III go to b as they all have indices exceeding b, so bIIIin = 0.

There are bIin nodes in block I which go to b. We note since there are no gaps before a,

each of these nodes i < a hit their next iin neighbors.

Also note that each successive node has at least as many in-edges (and therefore out

edges) as its predecessor. This is because the graph is Fseq(a,B) before this point as there

are no gaps prior to a. So of the bIin nodes that hit b, 1) they are consecutive, and end at a,

2) at least bIin − x hit c. We get cIin ≥ bIin − x. This is shown in Figure 3e.

Summing overall we find that cin = cIin+cIIin+cIIIin ≥ (bIin−x)+(bIIin+1)+x = bin+1 > bin.

Thus we have reached the desired contradiction.

Our last lemma tightly counts the number of edges in Fseq(n,B) via an inductive

argument and thus, by Lemma 2, it also upper bounds the number of edges in any flippable

graph.

In the following discussion, it will be helpful to refer to the node of a given index. To

this end, we shall write x to represent the node of index x. Similarly, we can write xin to

represent its number of in-arcs.

Lemma 3. If B ≤ n
2 , the flippable graph Fseq(n,B) has Θ(n

√
nB) edges.

Proof. Note that the number of in-edges at a given node is monotonically increasing. (This

follows as the no-gap property ensures that there is at most one node which has an edge to to i

but not i+ 1, and i itself is a node which contributes to i+ 1.) Let f(k) be the lowest-indexed

node in Fseq(n,B) which has k in-edges (not counting edges from the Byzantine player). We

show by induction that, in a graph with B Byzantine players, f(jB) =
(
j+1

2

)
B + 1. Our

base case is trivial, as 1 has no in-edges (f(0) = 1).
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Now suppose that f(jB) =
(
j+1

2

)
B+1, and we wish to show that f((j+1)B) =

(
j+2

2

)
B+1.

We first count the number of in-edges of
(
j+2

2

)
B + 1. Note that

(
j+1

2

)
B + 1 has at least

jB in-edges by our induction, so it must have (j + 1)B out-edges. This implies that it has

an out-edge to
((

j+1
2

)
B + 1

)
+ (j + 1)B =

(
j+2

2

)
B + 1.

Thus, by the no-gaps property which defines Fseq,
(
j+2

2

)
B + 1 has in-edges from all nodes

in the range
[(
j+1

2

)
B + 1,

(
j+2

2

)
B
]

= (j + 1)B in-edges, as desired. Thus f((j + 1)B) ≤(
j+2

2

)
B + 1, as desired.

To show f((j+ 1)B) ≥
(
j+2

2

)
B+ 1, we consider

(
j+2

2

)
B, and compute how many in-edges

it has. Note that
(
j+1

2

)
B has fewer than jB in-edges, so it has strictly fewer than (j + 1)B

out-edges. The last node it reaches has index at most
(
j+2

2

)
B − 1. Thus the node has

in-edges from nodes with indices in the range
((

j+1
2

)
B,
(
j+2

2

)
B
)

, and thus has fewer than

(j + 1)B in-edges. Thus as desired we have shown that f((j + 1)B) ≥
(
j+2

2

)
B + 1.

Together these imply that f((j + 1)B) =
(
j+2

2

)
B, and our induction holds. Now we use

this to approximate the number of edges in Fseq(n,B).

We wish to compute
∑n−B

x=1 xin. To do so we shall compute this as a function holding

B fixed:
∑m

x=1 xin. (This is the number of edges in Fseq(m+B,B)). We note that when

x ∈ [
(
j
2

)
B + 1,

(
j+1

2

)
B], that (j − 1)B ≤ xin < jB.

We break our sum into the following sub-sums

m∑
x=1

xin =

√
m
B∑

j=1

(j+1
2 )B∑

x=(j2)B+1

xin ≤

√
m
B∑

j=1

(j+1
2 )B∑

x=(j2)B+1

jB =

√
m
B∑

j=1

(j + 1)BjB = O(m
√
mB).

We have just shown that Fseq(m+B,B) has O(m
√
mB) edges. Similarly, we may bound

this from below.

m∑
x=1

xin =

√
m
B∑

j=1

(j+1
2 )B∑

x=(j2)B+1

xin ≥

√
m
B∑

j=1

(j+1
2 )B∑

x=(j2)B+1

(j − 1)B =

√
m
B∑

j=1

(j + 1)B(j − 1)B = Ω(m
√
mB).

By plugging in m = n−B, we see that |E(Fseq(n,B))| = Θ
(

(n−B)
√

(n−B)B
)

. Note

however that n/2 ≤ n − B ≤ n. Since the number of normal nodes is n − B = Θ(n), we

conclude that Fseq(n,B) has Θ(n
√
nB) edges, as desired.
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Proof. We first argue that the PoB(B, consensus) = O(n
√
nB). Consider a consensus graph

G on n nodes, and a pair of configurations S0 and ST B-Byz-reachable from S0. If B ≥ n/2,

then the statement is trivial, so we may assume that B < n/2. We assume cost(S0) < n:

if cost(S0) ≥ n, since G has fewer than n2 edges, we get PoB(B,G) ≤ n2/n = n. Denote

by k := cost(ST )−1 the number of bad edges in ST . By Lemma 1, we demonstrate a

flippable graph F on fewer than 3n nodes, with at least k edges. By Lemma 2, F has at

most as many edges as Fseq(3n,B), which has only O(n
√
nB) edges by Lemma 3. We get

PoB(B) = O(n
√
nB).

It will now be enough to prove that PoB(B,Fseq(n,B)) = Ω(n
√
nB). We claim now

that if G is a flippable graph with m edges, then PoB(B,G) ≥ m
2 . We get this via the

following probabilistic argument using the fact that the adversary can color G arbitrarily

(by claim 1). Consider a random coloring of the graph, where each node is colored white

independently with probability 1/2. The probability an edge is bad is 1/2, so in expectation,

there are m/2 bad edges. Thus some state has at least m/2 bad edges and it is reachable

via dynamics from any other state (claim 1) since G is a flippable graph. This establishes

PoB(B,G) ≥ m
2 . Since Fseq(n,B) is flippable and it has m = Θ(n

√
nB) edges, we get

PoB(B,Fseq(n,B)) = Ω(n
√
nB).

In contrast to the existing bound PoB(1) = Ω(n), our bound is parametrized by B,

sharper (by a Θ(
√
n) factor for B = 1) and asymptotically tight.

2.5 Set-Covering Games and Extensions

Set-covering games (SCG) [26, 37] are a basic model for fair division of costs, and have

wide applicability, ranging e.g. from a rental car to advanced military equipment shared by

allied combatants. A set-covering game is played over m sets where each set j has weight

wj . Each player i uses exactly one set from {1 . . .m} (some sets may not be available to i).

All users of a set share its weight fairly: letting nj(S) denote the number of users of set j in

state S, each such player has cost
wj

nj(S) . This game admits the potential function

Φ(S) =
∑m

j=1

∑nj(S)
i=1

wj
i =

∑m
j=1 Φj(S) where Φj(S) =

∑nj(S)
i=1

wj
i (2)
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Φj(S) has a simple, intuitive representation: it can be viewed as a stack (see Fig. 5a

and 5b) of nj(S) chips, where the i-th chip from the bottom has a cost of wj/i. When a

player i moves from set j to j′ one can simply move the topmost chip for set j to the top

of stack j′. This tracks the change in i’s costs, which equals by definition the change in

potential Φ. We will only retain the global state (number of players using each set) and

discard player identities.10 This representation has been introduced for an existing PoUIR

upper bound; we refine it for our improved upper bound.

SCGs have quite a small gap between potential and cost [2]: cost(S) ≤ Φ(S) ≤

cost(S)Θ(log n),∀S. Hence without uncertainty, the social cost can only increase by a

logarithmic factor: PoU(0) = PoB(0) = Θ(log n).

2.5.1 Upper Bound for Improved-Response

We start with an upper bound on PoUIR in set-covering games that only depends on the

number m of sets. This is a relevant quantity as we expect it to be less than the number

n of players (since players share set weights). In particular for ε = O( 1
m2 ) we obtain a

logarithmic PoUIR(ε). That is, such an ε (magnitude of uncertainty) has virtually no

effect on set-covering games since PoUIR(0) is also logarithmic. We leverage our bound’s

independence of n in Section 2.5.1.1 below and extend it to classes of matroid congestion

games.

Theorem 4. PoUIR(ε, set-covering) = (1 + ε)O(m2)O(logm) for ε = O( 1
m).

Proof. We let J0 denote the sets initially occupied and W0 = cost(S0) =
∑

j∈J0 wj be their

total weight. We discard any set not used in the course of the dynamics.

With each possible location of a chip at some height i (from bottom) in some stack j,

we assign a position of value11 wj/i. Thus in any state, a chip’s cost equals the value of its

current position. The plan is to bound the cost of the m most expensive chips by bounding

costs of expensive positions and moves among them.

10Note however that the game may still be non-symmetric, i.e. different players may have different available
sets.

11To avoid confusion, we talk about the weight of a set, the cost of a chip and the value of a position
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It is easy to see that any set has weight at most W0(1 + ε)2(m−1) (clearly the case for

sets in J0). Indeed, whenever a player moves to a previously unoccupied set j′ from a set

j, the weight of j′ is at most (1 + ε)2 times the weight of j; one can trace back each set

to an initial set using at most m− 1 steps (there are m sets in all). We also claim that at

most mi(1+ε)2mpositions have value at least W0
i ,∀i: indeed positions of height i(1 + ε)2m or

more on any set have value less than W0
i since any set has weight at most W0(1 + ε)2(m−1).

Fix a constant C > (1 + ε)2m (recall ε = O( 1
m)). Note that any chip on a position of

value less than W0
m in S0 never achieves a cost greater than W0

m (1 + ε)2Cm2

. Indeed, by the

reasoning above for i = m, there are at most m ·m · (1 + ε)2m ≤ Cm2 positions of greater

value. Thus the chip’s cost never exceeds W0
m (1 + ε)2Cm2

as it can increase at most Cm2

times (by an (1 + ε)2 factor).

We upper bound the total cost of the final m most expensive chips, as it is no less than

the final social cost: for a set, its weight equals the cost of its most expensive chip. We

reason based on chips’ initial costs. Namely, we claim h(i) ≤ W0
i−1 · (1 + ε)2Cm2

,∀i ∈ [m],

where h(i) denotes the cost of ith most expensive chip in the final configuration. If this

chip’s initial cost is less than W0
m then the bound follows from the claim above. Now consider

all chips with an initial cost at least W0
m . As argued above, at most Cm2 positions have

value W0
m or more, and any of these chips increased in cost by at most (1 + ε)2Cm2

. A simple

counting argument shows that for any i, there are at most i chips of initial cost at least W0
i

and thus h(i) ≤ W0
i−1 · (1 + ε)2Cm2

,∀i.

To show this, we claim that for any k, there are at most k chips of initial cost at least

W0
k . Let J0, be the set of initially used resources. For each j ∈ J0, let rj be set j’s fraction

of the initial weight (i.e. wj = rjW0), and let pj be the number of initial positions with

value greater than W0
k in set j. We have

wj
pj

=
rjW0

pj
≥ W0

k , implying pj ≤ krj . Counting the

number of initial positions with sufficient value yields
∑

j pj ≤
∑

j krj = k
∑

j rj = k since∑
j rj = 1.

As the ith most expensive chip has cost at most W0
i−1(1+ε)2Cm2

(at most i−1 chips have
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higher final cost),

∑m
i=1 h(i) = h(1) +

∑m
i=2 h(i) ≤ h(1) +

∑m
i=2

W0
i−1(1 + ε)2Cm2

= O(W0(1 + ε)2m +W0(1 + ε)2Cm2

logm) = W0 · (1 + ε)O(m2)O(logm)

As desired, PoUIR(ε, set-covering) = (1 + ε)O(m2)O(logm) as the final social cost is at most∑m
i=1 h(i).

The previously known bound [12] is PoUIR(ε) = O((1+ε)2mn log n). Unlike our bound,

it depends on n (exponentially) and it does not guarantee a small PoUIR(ε) for ε = Θ( 1
m2 )

and m = o(n). This bound uses chips in a less sophisticated way, noting that any chip can

increase its cost (by (1 + ε)2) at most mn times.

2.5.1.1 Best-Response in Matroid Congestion Games

In this section we extend this bound to best-response dynamics in matroid congestion games.

These games are important in that they precisely characterize congestion games for which

arbitrary best-response dynamics (without uncertainty) converge to a Nash equilibrium in

polynomial time [1]. We show that their BR dynamics can be simulated by IR dynamics in

generalized set-covering games, in which resources may have arbitrary latencies, but each

player must use exactly one resource.

We first define a congestion game [66], comprised of a set of resources 1 . . .m with

Σi ⊆ 21...m specifying the strategies (i.e. resource subsets) that player i may use. Each

resource j has a delay function cj : N→ R (not necessarily increasing) that depends only

on the number of players using j. A player’s cost is defined as the sum of the delays on all

resources he uses. A congestion game has a canonical potential defined as Φ(S) =
∑m

j=1 Φj(S),

for any state S where Φj(S) =
∑nj(S)

i=1 cj(i) denotes the aggregated cost if the nj(S) current

users of j joined j sequentially: cj(1) for the first player, cj(2) for the second player etc.

Set-covering games are congestion games; the potential in Eq. (2) is a special case of the

one defined here.

A matroid is a combinatorial structure generalizing, among others, sets of linearly

independent rows of a matrix and cycle-free sets of edges in a graph. Formally, a matroid
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is a tuple M := (1 . . .m, I) where I ⊆ 21...m is a family of independent subsets of 1 . . .m,

such that I is hereditary, i.e. if I ∈ I and J ⊆ I then J ∈ I, and I satisfies the exchange

property, i.e. if I, J ∈ I and |I| > |J |, then ∃i ∈ I such that J ∪ {i} ∈ I. All maximal sets

of I (bases of M) have the same size (by the exchange property), called M ’s rank rk(M).

In a matroid congestion game, a player i’s strategy set Σi is the set of bases of a matroid Mi

on the resources.

There is a natural representation [12] of BR dynamics in a matroid congestion game as an

instance of IR dynamics in a generalized set-covering game over the same m resources. Each

player i controls rk(Mi) markers, one for each resource she currently uses. A move from one

basis to another corresponds to a player moving (some of) her markers from her current

resources to her new resources. Thus a PoUIR upper bound on generalized set-covering

games automatically implies a PoUBR upper bound for matroid games.

Our next result is an immediate extension of Theorem 4 to a generalization of set-covering

games, Fair Cost Sharing Matroid Games (FCSMG), where each resource has a base cost,

and the cost of a resource is split evenly by all who use it. Theorem 4’s upper bound is,

importantly, independent of the number of players and thus not affected by the increase

from n players to
∑n

i=1 rk(Mi) marker players.

Theorem 5. PoUBR(ε, FCSMG) = (1 + ε)O(m2)O(logm) for ε = O( 1
m).

This is a corollary of Theorem 4.

Proof. Note that we can view the dynamics as an improved-response set-covering game,

with m sets and
∑n

p=1 rk(Mp) players. However, our bound does not depend on the number

of players, so this follows immediately.

We now generalize this upper bound to a much broader class, that of matroid congestion

games with decreasing cost functions (MCGD). We consider an alternative cost function for

sets as an intermediary in our proof: cost′(S) =
∑

j:nj(S)≥1 cj(1), i.e. the sum of the “base

cost” cj(1) of each resource j used.

We define gap′ = maxj
∑n
i=1 cj(i)
cj(1) as the gap between potential and the new social cost

function. For any resource j, this is the ratio of its contribution to the potential to its
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contribution to the social cost. By considering all resources we get cost′(S) ≤ Φ(S) ≤

gap′ · cost′(S). Since for decreasing delay functions, the standard social cost is less than the

potential we get cost(S) ≤ Φ(S) ≤ gap′ · cost′(S).

Theorem 6. For ε = O( 1
m), PoUBR(ε,MCGD) = (1 + ε)O(m2)O((gap′)2 logm).

Proof. We first note that the increase in potential of any marker is limited by the number

of positions of greater potential. This is done the same as in Theorem 4.

We then carefully count the positions of large potential and show that there can only be

a few large markers. This will bound the overall increase of base cost. Finally, we bound

the difference between the social cost and base cost.

Let W0 be the social cost of the initial state, an upper bound on the base cost of the

initial configuration.

As delay functions are decreasing, we can note that when a player moves to an unoccupied

resource j′ from some previously occupied resource j that the base cost of j′ is at most

(1 + ε)2 greater than the base cost of j. Thus the base cost for any set does not exceed

W0(1 + ε)2m. The total potential (for all sets) is then bounded by mgap′ ·W0(1 + ε)2m.

The total potential is also the sum of all positions’ values. We note that there are at

most mk(1 + ε)2m positions of value exceeding gap′ ·W0/k. In particular, there are at most

m2(1 + ε)2m positions of value greater than gap′ ·W0/m. As ε = O( 1
m), we can define the

constant C = (1 + ε)2m.

Since we are bounding the base cost it suffices to bound the value of the m heaviest

markers. Note that if there are at most x positions of value greater than v, then the value

of any marker with initial value less than v is bounded by v(1 + ε)2x. Thus all marker with

initial value less than gap′ ·W0/m never achieve a value exceeding gap′ ·W0(1 + ε)2m2C/m.

Furthermore, any markers with initial cost greater than this never increase by a factor of

more than (1 + ε)2m2C .

Thus to bound the m heaviest markers at some point in the dynamics, it suffices to bound

the cost of the m heaviest markers initially. We simply observe that the kth most expensive

chips initially cannot weigh more than (1/k)gap′ ·W0 individually. Summing, we find that
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the total cost of these markers amounts to gap′ ·W0O(logm), as desired. Thus we deduce

that the base cost of any configuration is bounded by (1 + ε)2m2Cgap′ ·W0O(logm). We

use this to bound the social cost. Since the cost function is decreasing, the potential of a set

is greater than the actual social cost of the players on the set. As gap′ bounds the difference

between the base cost and the potential, the social cost is (1 + ε)2Cm2

W0(gap′)2O(logm).

Thus the price of uncertainty can be bounded by (1 + ε)2Cm2

(gap′)2O(logm), as desired.

Let us now investigate gap′, for some simple decreasing cost functions. Consider a

matroid congestion game, with delay functions of the form cj(x) =
kj
xα , with α ∈ (0, 1), kj ∈

R,∀j. We have that Φj(S)
∑n

l=1
kj
lα ≈ kj

∫ n
1 x−αdx = kj

1
1−αn

1−α i.e. within a constant

factor (namely 1
1−α) of the social cost. Thus gap′ = Θ(n1−α). This implies a bound of

PoU = (1 + ε)O(m2)O(n2−2α logm) these games. The existing upper bound was exponential

in n (rather than polynomial, as in our bound) for many values of ε.

2.5.2 Lower Bound for Improved-Response

Our upper bound showed that PoUIR(ε) is logarithmic for ε = O( 1
m2 ). A basic example

(one player hopping along sets of cost 1, (1 + ε)2, . . . , (1 + ε)2(m−1)), applicable to many

classes of games, yields the lower bound (1 + ε)2(m−1)≤PoUIR(ε, set-covering). In fact, this

immediate lower bound is the best known on PoUIR(ε). For ε = ω( 1
m), we get that PoUIR(ε)

is large. An intriguing question is what happens in the range [ω( 1
m2 ),Θ( 1

m)], in particular

for natural uncertainty magnitudes such as ε = Θ( 1
m) or ε = Θ( 1

n).

In this section we show that for ε = Θ( 1
min(m,n)), PoU can be as high as polylogarithmic.

We obtain this by a non-trivial construction that repeatedly uses the snowball effect to

locally increase one chip’s cost, without other changes to the state. Our main gadget is

a pump, treated for now as a black box and described fully in Section 2.5.2.1. A pump

increases a chip’s cost by α = log n′, where n′ = min(m,n). We use p pumps to increase

each chip’s cost by a Ω(logp n′) factor. As pumps are “small”, the total cost increase is

Ω(logp n′).

Theorem 7. PoUIR(ε, set-covering) = Ω(logp min(m,n)), for ε = Θ( 1
min(m,n)) and constant

p > 0.
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We first define a key component of our construction. An (α,W )-pump uses O(1
ε ) sets

and O(2α) players to increase, one by one, an arbitrary number of chip costs by an α factor

from W/α to W . For ease of exposition, we assume m = Θ(n) and we only treat p = 2,

i.e. how to achieve PoUIR( 1
n) = Ω(log2 n). For general p, we use p pump gadgets instead of

two.

Definition 3 (Pump). An (α,W )-pump P is an instance of a set-covering game specified

as follows:

• The number mP of sets used is O(1
ε ). For our choice of ε, mP = O(n). The total

weight WP of all sets in P that are initially used is in (2αW, e2αW ). The number of

players used is nP = 2α+1 − 2.

• Within O(n3) moves of IR dynamics contained within the pump, and with a final state

identical to its initial state, a pump can consume any chip of cost at least W/α to

produce a chip of cost W .

Proof. Let N :=α22α. The number of players will be n :=N + nP1 + nP2 . Thus α=Θ(log n).

Note that each player can use each set.

We use two pumps, an (α, 1/α) pump P1, and a (α, 1) pump P2. Aside from the pumps,

we have Type-I, Type-II and Type-III sets, each with a weight of 1/α2, 1/α and 1 respectively.

At any state of the dynamics, each such set will be used by no player or exactly one player.

In the latter case, we call the set occupied. We have N Type-I sets, 1 Type-II set, and N

Type-III sets, i.e. m := 2N + 1 +mP1 +mP2 = Θ(n) sets in all.

Let cfg(i, j, k) refer to the configuration with i Type-I sets occupied, j Type-II sets

occupied, and k Type-III sets occupied. We shall use 2N + 1 intermediate states, denoted

statei. Our initial state is state0 = cfg(N, 0, 0), and our final configuration will be state2N =

cfg(0, 0, N). In general, state2i = cfg(N − i, 0, i) and state2i+1 = cfg(N − i− 1, 1, i). Thus

we want to move each player on a Type-I set (initially) to a corresponding Type-III set,

an α2 increase in cost. To this purpose, we will pass each such player through the first

pump and move it on the Type-II set. This achieves the transition from state2i to state2i+1.

Since the player’s cost is increased by an α factor (from 1
α2 to 1

α), we can pass it through
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the second pump and then move it on the Type-III set. This achieves the transition from

state2i+1 to state2i+2.

Figure 4: This shows the structure of the construction, with pumps used as black boxes.
Players travel from sets of Type-I, to the Type-II set, and then to a set of Type-III.

The social cost of our initial configuration isW0 = N · 1
α2 +WP1+WP2 ≤ 2α+e· 1α2α+e·2α ≤

7 · 2α. The final social cost (excluding the pumps) is at least N = α22α. Thus PoU = α2,

and α = Θ(log n).

Finally, we note the number of moves in the dynamics. Note that there are 2N uses of

the pumps. As we shall show, each use of the pump uses fewer than n3 moves. Thus in all

we use at most O(n4) moves.

We now detail an (α, ·) pump (that we call an α-level pump). Fig. 5 depicts a pump

with α = 4.

2.5.2.1 Pump Gadget

We first outline the mechanism of the pump and then define it more formally.

• A pump has chips of costs w, w2 , . . . ,
w
α (at heights 1 . . . α) on sets of weights w =

W,W (1+ ε), . . . ,W (1+ ε)
1
ε.

• By repeated advancements (see Algorithm 1), the pump doubles the cost of each chip.

• One chip at each level is promoted to next level, and all other chips return to their

starting configuration.

We make several conventions for a more intuitive exposition. We may refer to sets as

stacks; accordingly, level k will be the collection of chips all at height k in their respective

stacks. A chip in level k will always maintain its level, except possibly at the end of the
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pump. When talking about chips on a given level, we say that any set with no players on

the relevant level is unblocked. We assume that α and 1
ε are integers.

A pump has 1
ε +1 sets, and α special sets, i.e. mP = 1

ε +α+1. We shall number the main

sets s0, s1, . . . , s 1
ε
, and the special sets t1, . . . , tα. Set si will have weight Wi = W (1 + ε)i.

Each set ti will have weight 2W/i. We refer to all main sets simply as sets. Fig. 5 only

depicts the main sets (as gray blocks). Special sets will only be used during the reset phase.

We get 2αW ≤ WP ≤ e2αW by noting that the weight of each of the 2α occupied sets is

in [W, eW ]. There are nP =
∑α

j=1 2j = 2α+1 − 2 players in the pump. Each player will be

allowed to use each set of the pump, as will any players who move into the pump.

In the pump’s initial state (see Fig. 5a), the first 2α sets will be occupied. The first 2α−j

sets will each be occupied by (at least) j + 1 chips, except for the first set s0, which will

“save” one position for the input chip and thus will only be occupied by α − 1 chips. To

activate the pump, first a chip of cost at least WP /α moves on to the top of stack 0. This is

followed by 1
ε “advancement” phases, and then a reset phase.

Each advancement phase moves the entire collection of players one set forward on the

pump. An advancement phase is depicted in Fig. 5a to Fig. 5k. Note that, since the sets are

each a (1 + ε) factor apart, any chip can be induced to move to either of the next two sets

(on the same level). The chip may also freely move to any set (on the same level) which is

lower.

The players in the advancement phase are moved in accordance with Algorithm 1. Each

advancement phase for level i starts with an advancement for level i+ 1 (seen in Fig. 5b, 5c

and 5f for i = 3, 2, 1). Then all level i+1 chips are positioned on even sets (seen in Fig. 5b, 5d

and 5i for i = 3, 2, 1). This allows level i chips on odd sets, one by one, to advance two

sets, effectively moving one set from the start of level i to the end of level i (seen in Fig. 5a

to 5b, 5b to 5c, 5d to 5f and 5i to 5j for i = 4, 3, 2, 1).

Note that after 1
ε − 2α phases the bottom level has no more space to move forward.

Henceforth we apply an α − 1 advancement. In general, if only L levels still have empty

space then we only advance L levels.

46



The reset phase (not shown in Fig. 5) is simpler. At this stage there are α chips on the

last set s 1
ε
. We move the chip at height j in this last stack, in decreasing order of j, to

the special set tj . This is a valid IR move since the chip’s cost (1 + ε)
1
εW/j is at least the

weight 2W/j of tj . Since 2W/j ≥W/(j − 1) for 2 ≤ j ≤ α, we may move the chip in tj to

the (j − 1)st level of set 0. Subsequently, we repeatedly move the unblocked chip of lowest

level to the first unoccupied set in that level. When this is finished, we move the chip on t1

out of the pump. The pump has returned to its initial state via moves inside the pump only.

The pump consumed a chip of cost at least W/α, and produced a chip of cost W , as desired.

Finally, note that one use of a pump employs O(n3) moves: for each of the Θ(1
ε )

advancement phases, each of the 2α+1 chips moves at most 2α times. The reset phase has

fewer moves than an advancement one.

Algorithm 1 describes a level advancement phase for a pump.

Algorithm 1 k Level Advancement.

1: for i = α, α− 1, . . . , k + 1 do
Require: All level i+1 chips to be on even sets up to 2i (i.e. all chips on odd sets in

level i to be unblocked).
2: while There are still two level i chips adjacent do
3: Take the level i chip on the largest odd set, j.
4: if set j + 1 is unoccupied on level i then
5: Move the chip to set j + 1
6: else
7: Move the chip to set j + 2
8: end if
9: end while

Ensure: Each chip on level i is on even sets up to 2i+1.
10: end for
11: Iterating through odd sets in decreasing order, move each level k chip forward by 2.
12: while There are two non-adjacent chips in a level do
13: Of chips that are both unblocked and not in a single contiguous level, choose the chip

with the lowest level.
14: Move this chip to the lowest set it can occupy.
15: end while

As we show below, our pump gadget can be tweaked to also provide a polylogarithmic

lower bound on PoU for generalized set-covering games with increasing delay functions, as

long as they have bounded jumps, i.e. if an additional user of a resource cannot increase

its cost by more than a constant factor. This well-studied class is much broader than
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(a) The initial configuration for a
pump. Each level has twice the
number of chips of the level that
rests on it.

(b) We begin with a level 4 step
forward.

(c) After a level 3 chip hops for-
ward.

(d) Having arranged the light
gray chips on alternating sets,
we can now hop the dark grays
forward.

(e) First the rightmost dark gray
makes room . . .

(f) . . . and then the leftmost dark
gray completes the level 2 step
forward.

(g) It now remains to position
the dark grays on alternating
sets so as to allow the black sets
to advance.

(h) (i) We finally arrange the dark
grays on alternating sets.

(j) Finally with all black odd sets
unblocked, each black odd set,
starting from the right, hops for-
ward two spaces.

(k) All players can return to the
initial position — but shifted
over a single space — and the
process repeats.

(l) In this final position, the
starting cost of any chip has
roughly doubled, a greater in-
crease than the ratio between
levels. We then promote one
node of each level to the lower
level, and reset the pump.

Figure 5: A 4-level (α = 4) pump. Each gray block is a set, and each set has a weight that
is precisely a factor of (1 + ε) greater than its predecessor. Note that any chip can move
up to two spaces forward (at the same level) and hop as far back as desired (on the same
level). This sequence shows the advancement procedure, listed in Algorithm 1, by which
all levels move forward.
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set-covering games (that have decreasing delay functions).

Let ce(x) be the cost function for edge e with x players on it. We shall consider edges

with ce(x) = ked(x), where ke is an edge-dependent multiplier, and d(x) is a base delay

function that is identical across all edges.

First, let us augment the definition of a pump with a length parameter `, such that the

total number of sets in the pump is α + ` instead of 1
ε . The pump has, as before, Θ(2α)

players. The pump can consume any chip of weight W/d(α) to produce a chip of weight W .

The pump is functionally the same as before: players stay on the same level, and may

advance past each other as before. In this pump, the levels of highest value are on the top,

rather than the bottom, since delay functions are increasing (recall for set-covering we called

a given (set, level) pair a position). As before, we number the levels in increasing order of

value: level k contains 2α+1−k players. As before, the pump is valid for any weight W .

For a pump to operate, a chip that travels the length of the pump must increase its cost

enough to enter the next level. Then we only require that

ce(x+ 1)

ce(x)
≤ (1 + ε)`∀x = 1 . . . n− 1 (3)

The reader may recognize Eq. (3) as the γ-bounded jump condition (see for example Chien and

Sinclair [28]) with γ = (1 + ε)`. Note that ce(x+1)
ce(x) = O(1) for polynomial (ce(x) = kex

r−1)

and even for exponential (ce(x) = ker
x) delay functions (where r > 1), that we will revisit

shortly.

Theorem 8. For generalized set-covering games with increasing delay functions with γ-

bounded jumps (where γ ∈ (1,∞)) PoUIR = Ω(logp n) for any fixed constant p, for ε = Θ(1/n)

and m = Θ(n).

Proof. We will use a similar, but simpler, construction compared to the one in Theorem 7

for set covering games. We have one pump (instead of two), n sets of weight W and n sets,

initially occupied, of weight W/d(α). We bound the price of uncertainty as follows.

Initially, we have α2α sets of weight W/d(α) with one player each, and a pump with 2α

players of weight at most W . In total, the initial weight is at most 2αW (α/d(α) + 1).
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Our final weight is at least α2αW . We have constructed it so that α ≈ log n.

PoU ≥ α

α/d(α) + 1
=

αd(α)

α+ d(α)
≥ 1

2
min(α, d(α)).

In particular, for polynomial delay functions d(n) = c · nδ with δ ∈ N,

d(n+1)
d(n) = c(n+1)δ

cnδ
= (n+1

n )
δ ≤ 2δ.

Thus the pump construction is valid for ` ≥ 1
ε δ ln 2 = Θ(1/ε), as desired.

Another interesting case is that of exponential delay functions [75]. If d(n) = rn, then it

suffices for the pump to have length ` = 1
ε ln r = Θ(1/ε). This is interesting because our

PoU lower bound is slightly better in this case. Computing the initial weight of the pump

we find that it is of order αW rather than our näıve bound of 2αW .

2.5.3 Lower Bound for Best-Response

A significant increase in costs is possible for a large range of ε even if players follow best-

response dynamics.

Theorem 9. PoUBR(ε, set-covering) = Ω(εn1/3/ log n), for any ε = Ω(n−1/3). This holds

for any arbitrary ordering of the dynamics, i.e. no matter which player is given the opportunity

to update at any time step.

Proof. The construction is quite similar in nature to the previous construction of Balcan

et al. [12] which achieves a lower bound of Ω(ε
√
n/ log n). While our lower bound has a

weaker guarantee, it will preserve its guarantee even under arbitrary orderings, unlike the

aforementioned construction. Set N := n2/3. The increase in social cost in this construction

comes from N players sitting on
√
N sets (of cost N) being moved to individual sets of cost

N . We shall introduce other players and sets to facilitate this, taking care that their initial

cost is not too high.

Consider N players of Type I, indexed by pairs (i, j) for 1 ≤ i, j ≤
√
N . Type-I player

(i, j) has 3 sets to choose from: a set s∗i , a set sij and a personal set s(i,j), all of cost N .
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Initially, all Type-I players begin on the sets s∗i , for a total cost of N
√
N . We shall call the

sets sij the active sets, the sets s∗i the base sets, and the sets s(i,j) the final sets.

Next there are N players of Type II, indexed by pairs (j, k), with 1 ≤ j ≤
√
N , and

2 ≤ k ≤
√
N . A Type-II player (j, k) may choose any of the sets sij , and has an additional

set f(j,k). The cost of f(j,k) is 1
ε
N
k . All Type-II players begin on the sets f(j,k). In total, the

initial cost of these sets is (1
εN
√
N) logN . We refer to the sets f(j,k) as private sets.

Additionally on each set f(j,k) there are 1/ε ‘helper’ players of Type III. These players

are indexed by triples, where the first pair indicates the Type-II player whose set they are

associated with. Each Type-III player (j, k, l) may use only two sets, the private set f(j,k)

and a set f(j,k,l), with cost (1
ε
N
k )/l. (For players with l < 1

2ε , we shall only allow them to use

the private set, thus ensuring that each private set has at least 1
2ε players on it at all times.)

We shall refer to the sets f(j,k,l) as storage sets. Type-III players all begin on the sets f(j,k).

As in the previous construction the Type-III players drive the Type-II players to the

active sets, which then lure the Type-I players (from one base set) to the active sets. We

call this the loading phase. Once the base set is empty, the Type-II and Type-III players

return to their starting set, and the Type-I players move to their final set. We call this the

unloading phase. Then the process repeats with a different base set.

We first examine the loading phase. The adversary first queries all Type-III players in

reverse lexicographical order, then all Type-II players in lexicographical order, and then

finally all Type-I players in any order.

Consider a Type-III player (j, k, l). They have a storage set of cost s := (1
ε
N
k )/l. The

apparent cost of the private set is p := (1
ε
N
k )/(l+ 1). Since l ≥ 1

2ε , we see that s < p(1 + ε)2,

so this perturbation will compel the Type-III player to move to its storage set.

Next the Type-II players move. Consider a Type-II player (j, k). Since 1/(2ε) players

have moved off of every private set, the apparent cost is now 2N/k ≥ N/(k − 1). Thus

querying the players in lexicographical order will lead to each Type-II player moving to the

active sets. Note that the players (j, 2) have apparent cost N and able to choose from all

the active sets. The adversary will ensure (via a small perturbation) that they choose active

sets sij with i corresponding to the base set being moved.
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Finally the Type-I players move. The players on base set i each see an available choice

with apparent cost
√
N — namely the active set, and this is their best response. Type-I

players from other base sets are either alone on a final set and see empty sets of cost N , or

stay on a set of cost
√
N .

During the unloading phase, the adversary moves first the Type-III players onto the

private sets in lexicographical order. Then he moves the Type-II players onto the private

sets in reverse lexicographical order, and finally the Type-I players onto the final sets in any

order.

The adversary first queries the Type-III players in lexicographical order. They are

indifferent between the private sets and their storage sets, so an arbitrarily small perturbation

causes them to return to the Type-II players sets. Once all the Type-III players have returned,

the Type-II players can return in decreasing order, as they will be indifferent between their

choices.

Finally, when all Type-II players have returned to their private sets, the Type-I players

move. They only players willing to move are on active sets, and they have a choice of three

sets. Each one of these sets has no other players and has a cost of N , so an arbitrarily small

perturbation will cause them to choose the final set.

Thus each loading phase and unloading phase transfers players from one base set to the

final sets. After
√
N repetitions, all Type-I players have moved to the final sets, and all

other players are on the private sets.

Finally, we compute the PoU . First we note that the initial cost of the sets is Θ(N
√
N +

1/εN
√
N logN). The final cost is at least N2 from Type-I players alone. Thus the increase

is Ω(ε
√
N/ logN). We note that this construction uses Θ(N/ε) = O(n) players and m =

Θ(N/ε) = O(n) sets. Since N = n2/3, we can substitute to find PoUBR = Ω(εn1/3/ log n) as

desired.

In particular, we observe that PoUBR(ε, SCG) = Ω(n1/6/ log n) for ε = n−1/6 if the

adversary can choose which player to update at any given step. Our next theorem will show

that this result remains valid for any ordering of the dynamics, even one that the adversary
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cannot influence.

Theorem 10. The construction in Theorem 9 is valid regardless of the ordering of updates,

provided that the ordering guarantees, at every point in time, that each player will be given a

future chance to update.

Proof. We shall prove this by showing that each loading and unloading phase completes as

planned regardless of the ordering. To show this, note that once all Type-II and Type-III,

and Type-I players have moved once, the phase is over. (Note that we restrict our attention

to ‘active’ Type-I players, or those whose base set is being unloaded.) Thus it suffices to

show that none of them ever move twice in a phase.

This is simplified by the restricted set of choices of the players. No player can use both

storage sets and active sets, so the interactions between sets are limited to players moving

between storage sets and private sets, or moving between private sets and active sets.

We shall show this by a simple inductive argument over each loading and unloading

stage, by showing that, in each stage, players move only one direction relative to the sets,

either all joining or all leaving.

During the loading stage, the adversary can ensure that:

1. The apparent cost of the base set only increases.

2. The apparent cost of each active set only decreases.

3. The apparent cost of each private set only increases.

We show that no player moves off of an active set, no player moves onto a private set,

and that no player moves onto a base set.

First consider a player moving onto its base set. The only players who can consider this

are Type-I players who have already moved to an active set. In that case, however, they are

on an active set whose apparent cost has only decreased since they chose, while the cost

of the base set has only increased. The same perturbations which led them to choose the

active set before will cause them to make the same choice again.
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Now consider a player who would move off of an active set. This player cannot be Type-I,

so they must be Type-II. Again, we note that they moved to the active set during this

phase, and its cost has only decreased while the cost of their base set has increased. The

perturbations which led them to choose the active set before will cause them to choose it

again.

Finally we note that the cost of a private set only increases during this phase. We know

that the adversary can ensure that no Type-II players join the private set, so it suffices to

show that no Type-III players join it. But at the beginning of the phase they all started on

the private set. By using the same perturbations that caused them to choose the storage set,

any Type-III player considering moving from a storage set to a private set can be influenced

not to.

Once all Type-II players, Type-III players and active Type-I players have moved once,

the phase is complete and the unloading phase begins.

During the unloading stage, the adversary ensures that:

1. The apparent cost of each active set only increases.

2. The apparent cost of each private set only decreases.

To maintain this invariant it suffices to show that no player will move from a private set to

a storage set, and that no player will move from a private set to an active set.

First we show that the cost of a private set does not increase. Consider a player on a

private set who considers moving to an active set. This player must be of Type-II, but note

that earlier in this unloading stage they moved from an active set to the private set. The

private set has only decreased in apparent cost, and the active set has only increased in

apparent cost. Therefore the perturbations that made this player choose the private set

before will make that player choose the same set again.

Consider a player on a private set who considers moving to a storage set. This player is

of Type-III, and must have an l ≥ 1/2ε. They began the unloading phase on a storage set,

but chose to move to the private set. Since the apparent cost of the private set has only

decreased, (and the cost of the storage set is unchanged) the adversary can compel them to
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make the same choice as before.

No Type-I player will want to move unless they are alone on an active set. In this case,

the adversary can compel them to choose the final set via an arbitrarily small perturbation.

We have thus demonstrated that with any ordering of updates, the loading and unloading

phases may proceed as before. Thus the construction still holds, for arbitrary ordering

rules.

Let us take a moment to outline some of the key differences between this construction

and the previous lower bound [12]. The structure is very similar. Because they allow the

adversary to control the order of updates only needs O(N) players of Type-II. This smaller

set of Type-II players lures each Type-I player off a base set sequentially, and doesn’t let

them update until all Type-I players have been removed from the base set. Thus the increase

to O(N2) comes from a lower bound of order Ω(1
εN logN) rather than our Ω(1

εN
2 logN).

Additionally, we have O(1
εN

2) players rather than only O(1
εN +N2), so our constraints on ε

must be traded off directly against N . Matching the previous lower bound of PoU ≥ ( ε
√
n

logn)

in the arbitrary ordering model would require new insight into the structure of this game.

2.6 Best-response in Random Order in (λ, µ)-smooth Games

Throughout most of this chapter we have studied best-response dynamics in which the

adversary controls the order of player updates. We have shown this is not necessary for

lower bounds in other contexts, but we will now investigate a game in which random order

helps keep the Price of Uncertainty low.

Let the gap (between potential and cost) is defined as gap = k2/k1 where k1 ≤ 1 ≤ k2

such that Φ(St) ∈ [k1cost(St), k2cost(St)],∀St (for our other games, k1 = 1). Previous

work by Balcan et al. [12] established that random order updates can be helpful. Under

adversarial perturbations but random order dynamics, they showed that β-nice games [3]

have an expected PoUBR that is at most a constant times β gap even for constant ε. We

establish a similar upper bound for another important class, (λ, µ)-smooth games [82] that

admit a potential function Φ.

Definition 4 ((λ, µ)-smooth game [82]). A game with a set of cost functions costi is a
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(λ, µ)-smooth game if

∑
i costi(S

′
i, S−i) ≤ λ · cost(S′) + µ · cost(S), ∀S, S′ where λ > 0 and µ ∈ (0, 1).

Informally, unilateral strategy updates from state S towards another state S′ cannot

increase cost significantly beyond the costs of S and S′.

This class offers a unified framework for quantifying (often exactly) the price of anarchy

as λ
1−µ and includes congestion games with polynomial delay functions. For example, linear

congestion games are (5/3,1/3) smooth, which can be used to prove optimal bounds on the

price of total anarchy [82].

Let OPT = minS cost(S) denote the socially optimal cost. The main result of this

section shows that the expected potential at any step is bounded by a state-independent

factor times the initial cost. This immediately yields a bound on the expected PoU.

Theorem 11. E[Φ(St)] ≤ max[5k2
λ

1−µOPT, k2cost(S0)] ≤ k2
5λ

1−µcost(S0),∀t for ε < min(3−4µ
31 , 1

17)

where λ
1−µOPT is an upper bound on the cost of any Nash equilibrium [82]. Hence,

E[cost(St)] ≤ 5λ
1−µcost(S0) · gap.

The rest of this section is devoted to proving this claim. We prove this by showing the

potential value is either decreasing, or acceptably small at every time step. We show that if

the cost at a state is low, then the potential is also low and cannot increase very much. If

the cost is high, then the potential must decrease in expectation. We begin by introducing

some definitions.

For a state St with player strategies S1, . . . , Sn, let costt denote the perturbed costs at

this time step. Let BR(S−i) be a player i’s best-response (given true costs) to the other

players’ strategies S−i and let B̃R(S−i) be i’s best-response given perturbed costs.

• Let ∆i(St) be player i’s true cost reduction when best-responding in the current state,

i.e. ∆i(St) := costi(Si, S−i)− costi(BR(S−i), S−i). Let ∆(St) =
∑

i ∆i(St).

• Let ∆̃i(St) := costti(St)− costti(B̃R(S−i), S−i) be i’s reduction in perturbed cost due

to i’s best-response given perturbed costs.
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• Let ∆̂i(St) := costi(St)− costi(B̃R(S−i), S−i) be i’s (real) reduction in unperturbed

cost due to i’s perceived best-response given perturbed costs.

Note that Ei[∆̃i] is the expected perceived reduction in cost when a player best responds,

and that Ei[∆̂i] is the expected reduction in cost. However, since this is an exact potential

game, −Ei[∆̂i] = E[Φ(St+1)− Φ(St)], precisely the expected drop in potential at time t.

Observe that

∆̂i(St) = costi(St)− costi(B̃R(S−i), S−i)

≥ costti(St)− εcosti(S)− costti(B̃R(S−i), S−i)− εcosti(B̃R(S−i), S−i)

= ∆̃i(St)− 2εcosti(St) + ε∆̂i(St)

Rearranging we find that

∆̂i(St) ≥
∆̃i(St)− 2εcosti(St)

1− ε
(4)

In any high cost state, some players can significantly lower their cost by best-responding.

Lemma 4 shows that a high cost implies that the true best response move has a large

reduction in cost for some players. Lemma 5 translates that to the perceived best-responses

that are actually played, to show that the potential necessarily decreases in high cost states.

Lemma 4. At any time t, if cost(St) ≥ 2λ
1−µOPT then (1− µ)cost(St) ≤ 2∆(St).

Proof. Let S∗ := argminS cost(S), be a state with cost OPT . From (λ, µ)-smoothness we

get

∑
i costi(S

∗
i , S−i) ≤ λOPT + µcost(St)

A best response costs no more than the response played in OPT

∑
i costi(BR(S−i), S−i) ≤

∑
i costi(S

∗
i , S−i) ≤ λOPT+µcost(St),

We now add ∆(St) to both sides and multiply through by 2. Recall that ∆i(St) +

costi(BR(S−i), S−i) = costti(St). Summing over all i we see:

2cost(St) ≤ 2λOPT + 2∆(St) + 2µcost(St)

57



rearranging, we find

2(1− µ)cost(St) ≤ 2λOPT + 2∆(St) ≤ (1− µ)cost(St) + 2∆(St)

where the last line follows from the assumption that cost(St) ≥ 2λ
1−µOPT .

Thus if the cost is high, a correct best-response decreases the cost significantly. This

also implies a large drop expected in potential is large from high cost states, as our next

lemma shows.

Lemma 5. At any time t, for ε < 3−4µ
31 , if cost(St) ≥ 2λ

1−µOPT then E[Φ(St+1)− Φ(St)] ≤

−cost(St)/(8n).

Proof. We have, by Eq. (5.2) in [12], ∆̃i(St) ≥ ∆i(St)− 2εcosti(St) since the perturbations

are only at most an ε fraction of the true cost.

Since cost(St) is large, this in turn implies that ∆̃i(St) ≥ costi(St)(
1−µ

2 −2ε), by applying

Lemma 4.

Thus, applying Equation 4 we have ∆̂i(St) ≥ (∆̃i(St) − 2εcosti(St))/(1 − ε). Putting

this all together we get

−E[Φ(St+1)− Φ(St)] = Ei[∆̂i(St)]

≥ Ei

[
∆̃i(St)− 2εcosti(St)

1− ε

]

≥ Ei


(

1−µ
2 − 2ε

)
costi(St)− 2εcosti(St)

1− ε


=

[
1−µ

2 − 2ε− 2ε

1− ε

]
Ei[costi(St)]

=

[
1−µ

2 − 4ε

1− ε

]
cost(St)

n
.

Thus if ε < 3−4µ
31 , we have E[Φ(St+1)− Φ(St)] ≤ −cost(St)/(8n), as desired

Lemma 6. The expected increase in potential (after an arbitrary best-response move)

E[Φ(St+1)− Φ(St)] is at most 2εcost(St)/(n(1− ε)).
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The proof is due to [12] and offered here for completeness.

Proof. Again, by Equation 4 for any player ∆̂i(St) ≥ (∆̃i(St)− 2εcosti(St))/(1− ε). Recall

that

E [Φ(St+1)− Φ(St)] = −Ei
[
∆̂
]

≤ Ei

[
2εcosti(St)− ∆̃i

1− ε

]

≤ Ei
[

2εcosti(St)

1− ε

]
=

2εcost(St)

(1− ε)n

The second step follows as ∆̃i is non-negative.

Finally, we prove our upper bound on the expected PoU.

Proof of Theorem 11. This proof follows the structure of a similar result on β-nice games

by Balcan et al. [12]. We show that at a time step where the expected cost is low, then

the expectation will remain small. On the other hand, if the expected potential is high,

i.e. E[cost(St)] ≥ 4 λ
1−µOPT , the potential’s expectation cannot increase, i.e. E[Φ(St+1)] ≤

E[Φ(St)].

First we show that if the expected cost is low on time step t, it will not increase too

much in the next time step. Assume that E[cost(St)] ≤ 4 λ
1−µOPT . We will show that

E[cost(St+1)] < 5k2
λ

1−µOPT . Note that the potential is also small, E[Φ(St)] ≤ 4k2
λ

1−µOPT .

By Lemma 6 we can bound the expected increase in potential.

E[Φ(St+1)− Φ(St)] ≤ 8ε
λ

1− µ
OPT

n(1− ε)
≤ λ

1− µ
OPT

The last inequality holds provided ε < 1/9. Thus E[Φ(St+1)] ≤ (4k2 + 1) λ
1−µOPT ≤

5k2
λ

1−µOPT . We know that the potential exceeds the cost by at most a factor of k1, and

that k2/k1 = gap. Thus we can conclude that E[cost(St+1)] ≤ 5 λ
1−µOPT · gap.
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Now we consider the case where cost(St) ≥ 4 λ
1−µOPT . Let pt = P

[
cost(St) ≥ 2 λ

1−µOPT
]
.

We have

E[cost(St)] = ptE
[
cost(St)

∣∣∣∣cost(St) ≥ 2
λ

1− µ
OPT

]
+ (1− pt)E

[
cost(St)

∣∣∣∣cost(St) ≤ 2
λ

1− µ
OPT

]
≤ ptE

[
cost(St)

∣∣∣∣cost(St) ≥ 2
λ

1− µ
OPT

]
+ 2

λ

1− µ
OPT

Because we are in the case where E[cost(St)] ≥ 4 λ
1−µOPT , we can conclude that:

E
[
cost(St)

∣∣∣∣cost(St) ≥ 2
λ

1− µ
OPT

]
≥ 2

pt

λ

1− µ
OPT.

We now can evaluate the change in potential

E[Φ(St+1)− Φ(St)] ≤ptE
[
Φ(St+1)− Φ(St)

∣∣∣∣cost(St) ≥ 2
λ

1− µ
OPT

]
+ (1− pt)E

[
Φ(St+1)− Φ(St)

∣∣∣∣cost(St) < 2
λ

1− µ
OPT

]
We can apply Lemma 5 to the first expectation, and Lemma 6 to the second.

≤− pt/(8n)E
[
cost(St)

∣∣∣∣cost(St) ≥ 2
λ

1− µ
OPT

]
+

2ε(1− pt)
n(1− ε)

E
[
cost(St)

∣∣∣∣cost(St) ≤ 2
λ

1− µ
OPT

]
Recalling E

[
cost(St)

∣∣∣cost(St) ≥ 2 λ
1−µOPT

]
≥ 2

pt
λ

1−µOPT

≤
(
−1

8n

)
2

(
λ

1− µ
OPT

)
+

2ε

n(1− ε)

(
2

λ

1− µ
OPT

)
≤ 2

n

λ

1− µ
OPT

(
−1

8
+

2ε

1− ε

)
which is non-positive for ε < 1/17.

2.7 Concluding Remarks

We quantify the long-term increase of social costs due to local uncertainty in potential games.

We analyze natural dynamics, improved-response and best-response, under the weakest

assumptions on the order of players updates. We use a natural model of cost perturbations,

for which we obtain lower and upper bounds for important classes: consensus games (not
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studied before from the perspective of uncertainty), set-covering games, matroid congestion

games and (λ, µ)-smooth games. We assess the effect of uncertainty via judiciously tuned

parametrized constructions or in-depth analysis of costs. We provide the first tight bounds

on social cost degradation during dynamics due to Byzantine players.

In conclusion, this work provides a precise picture of the long-term consequences of

uncertainty or unmodeled low-order local effects on social costs in these important classes of

games.
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CHAPTER III

SEMISUPERVISED AND ACTIVE LEARNING OF TWO SIDED

DISJUNCTIONS

We provide efficient algorithms for learning disjunctions in the semi-supervised setting

under a natural regularity assumption introduced by [7]. We prove bounds on the sample

complexity of our algorithms under a mild restriction on the data distribution. We also give

an active learning algorithm with improved sample complexity and extend all our algorithms

to the random classification noise setting.

3.1 Introduction

In many modern applications, like web-based information gathering, unlabeled data is

abundant but labeling it is expensive. Consequently, there has been substantial effort in

understanding and using semi-supervised learning (using large amounts of unlabeled data to

augment limited labeled data) and active learning (where the algorithm itself asks for labels

of carefully chosen examples with the goal of minimizing the human labeling effort) [91, 33].

Conceptually, what makes unlabeled data useful in the semi-supervised learning context [9,

91], is that for many learning problems, the natural regularities of the problem involve

not only the form of the function being learned but also how this function relates to the

distribution of data; for example, that it partitions data by a wide margin as in Transductive

SVM [50] or that data contains redundant sufficient information as in Co-training [22].

Unlabeled data is useful in this context because it allows one to reduce the search space

from the whole set of hypotheses, down to the set of hypotheses satisfying the regularity

condition with respect to the underlying distribution. Such insights have been exploited for

deriving a variety of sample complexity results [34, 52, 77, 9]. However, while in principle

semi-supervised learning can provide benefits over fully supervised learning [9, 91], the

corresponding algorithmic problems become much more challenging. As a consequence there

has been a scarcity of efficient semi-supervised learning algorithms.
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In this chapter we provide efficient algorithms with nearly optimal sample complexity for

semi-supervised and active learning of disjunctions under a natural regularity assumption

introduced in [7]. In particular we consider the so called two-sided disjunctions setting,

where we assume that the target function is a monotone disjunction satisfying a margin like

regularity assumption1. In the simplest case resolved in [7], the notion of “margin” is as

follows: every variable is either a positive indicator for the target function (i.e., the true

label of any example containing that variable is positive) or a negative indicator (i.e., the

true label of any example containing that variable is negative), and no example contains

both positive and negative indicators. In this work, we consider the much more challenging

setting left open in [20] where non-indicators or irrelevant variables, i.e., variables that

appear in both positive and negative examples, are also present.

In the semi-supervised learning setting, we present an algorithm that finds a consistent

hypothesis that furthermore is compatible (in the sense that it satisfies our regularity

assumption). This algorithm is proper (it outputs a disjunction), has near-optimal labeled

data sample complexity provided that each irrelevant variable appears with non-negligible

probability, and it is efficient when the number of irrelevant variables is O(log n). We next

present a non-proper algorithm that PAC learns two-sided disjunctions with nearly the same

sample complexity and whose running time is polynomial for any k.

In the active learning setting, we present an efficient active learning algorithm for two-

sided disjunctions. This algorithm outputs a consistent, compatible hypothesis, with sample

complexity linear in the number of irrelevant variables and independent of the probability of

irrelevant variables appearing, a quantity that appears in the bounds in the semi-supervised

setting. Combined with the NP-hardness result we show for two-sided disjunctions (see

Section 3.8), the algorithm also shows that the active query ability can help to overcome

computational difficulty.

We also discuss how our algorithms can be adapted to deal with random classification

noise.

Discussion: To see why the presence of irrelevant variables significantly complicates the

1See Section 3.10 for further discussion
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algorithmic problem, note that in the absence of non-indicators (the case studied in [7]), we

could construct an approximation of the so called commonality graph, defined on n vertices

(one per variable), by putting an edge between two vertices i and j if there is any example

x in our unlabeled sample with xi, xj set to 1. If the target function indeed satisfies the

regularity assumption, then no component will get multiple labels, so all we need to learn is

a labeled example in each component. Furthermore, if the number of components in the

underlying graph is small, then both in the semi-supervised and active learning setting we

can learn with many fewer labeled examples then in the supervised learning setting.

Introducing non-indicators into the target concept complicates matters, because compo-

nents can now have multiple labels. We could think of the non-indicators as forming a vertex

cut in the commonality graph separating variables corresponding to positive indicators from

those corresponding to negative ones. To learn well, one could try to find such a cut with the

necessary properties to ensure compatibility with the unlabeled data (i.e. no examples are

composed only of non-indicators). Unfortunately, this is a difficult combinatorial problem

in general. Interestingly, we will be able to find such cut for k = O(log n) and for general

k we will be still be able to learn with nearly optimal rates, if each non-indicator appears

with non-negligible probability; we do this by identifying a superset of non-indicators and

carefully making inferences using it. Furthermore, since classification mistakes reveal vertices

in both sides of the cut, our adaptive query ability in the active learning model will allow us

to actively search for vertices in the cut.

Related work: While several semi-supervised learning methods have been intro-

duced [25, 90, 51], much of the theoretical work has focused either on sample complexity

(e.g., [34, 52, 77]) or on providing polynomial time algorithms with error bounds for surro-

gate losses only (e.g., [78]). The few existing results with guarantees on the classification

error loss hold under very stringent conditions about the underlying data distribution (e.g.,

independence given the label [22]). By contrast, we provide (PAC-style) polynomial time

algorithms for learning disjunctions with general guarantees on the classification error loss.

We note that while a lot of the research on active learning [32, 6, 45, 46, 35, 19, 58]

has not made an explicit regularity assumption as in semi-supervised learning, this is an
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interesting direction to study. As our results reveal, active learning could help overcome

computational hardness limitations over (semi-supervised) passive learning in these settings.

3.2 Preliminaries and Notation

Let X = {0, 1}n be the instance space, Y = {−1, 1} be the label set, and D denote any

fixed probability distribution over X. Following [7], a two-sided disjunction h is defined as

a pair of monotone disjunctions2 (h+, h−) such that h+(x) = −h−(x) for all x ∼ D, and

h+ is used for classification. Let the concept class C be the set of all pairs3 of monotone

disjunctions and for any hypothesis h = (h+, h−) ∈ C, define h(x) = h+(x).

For a two-sided disjunction (h+, h−), variables included in h+ are the positive indicators,

and variables in h− are negative indicators. Variables appearing neither in h+ nor in h−

are called non-indicators, as the value of any such variable has no effect on the label of any

example. To simplify the discussion, we will often identify binary strings in X = {0, 1}n with

subsets of the variables V = {x1, . . . , xn}. In other words, we say an example x contains xi

if the i-th coordinate of x is set to 1. This allows us to speak of variables “appearing in” or

“being present in” examples rather than variables being set to 1. We will use similar language

when referring to hypotheses, so that a two-sided disjunction h = (h+, h−) consists of a set

h+ of positive indicators and a set h− of negative indicators (which completely determine a

third set of non-indicators).

In the semi-supervised learning setting, we will assume that both labeled examples L

and unlabeled examples U are drawn i.i.d. from D and that examples in L are labeled by

the target concept h∗, where h∗ is a two-sided disjunction with at most k non-indicators.

We will let |L| = ml and |U | = mu; both ml and mu will be polynomial throughout this

chapter. In the active setting, the algorithm first receives a polynomially sized unlabeled

sample U and it can adaptively ask for the label `(x) = h∗(x) of any example x ∈ U . In the

random classification noise model (studied in Section 3.9) we assume that the label of each

labeled example is flipped with probability α.

2Recall that a monotone disjunction is an OR function of positive literals only, e.g. h(x) = x1 ∨ x3 ∨ x4.
3Although we are actually interested in learning a single monotone disjunction, we need to associate each

disjunction with a second disjunction in order to test compatibility.
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The generalization error of a hypothesis h is given by err(h) = Prx∼D[h(x) 6= h∗(x)],

the probability of h misclassifying a random example drawn from D. For a set L of

labeled examples, the empirical error is given by errL(h) = |L|−1
∑

x∈L I[h(x) 6= h∗(x)]. If

errL(h) = 0 for some h we say that h is consistent with the data.

To formally encapsulate the regularity or compatibility assumption for two-sided dis-

junctions described in the introduction, we consider the regularity or compatibility function

χ: χ(h, x) = I[h+(x) = −h−(x)] for any hypothesis h and example x ∈ X. In addition,

we define (overloading notation) the compatibility between h and the distribution D as

χ(h,D) = Ex∼D[χ(h, x)] = Prx∼D[h+(x) = −h−(x)]. For a set U of unlabeled examples,

define the empirical compatibility between h and U as χ(h, U) = |U |−1
∑

x∈U I[h+(x) =

−h−(x)]. If χ(h, U) = 1 we say that h is compatible with the data. Thus a hypothesis is

consistent and compatible with a set of examples if every example contains exactly one type

of indicator and every labeled example contains an indicator of the same type as its label.

We will assume throughout this chapter that the target function is compatible.

We define, for any ε > 0, the reduced hypothesis class CD,χ(ε) = {h ∈ C : 1−χ(h,D) ≤ ε},

the set of hypotheses with “unlabeled error” at most ε. Similarly, for an unlabeled sample

U , we define CU,χ(ε) = {h ∈ C : 1− χ(h, U) ≤ ε}. The key benefit of using unlabeled data

and our regularity assumption is that the number of labeled examples will only depend on

log(CD,χ(ε)) which for helpful distributions will be much smaller than log(C).

3.2.1 The Commonality Graph

The basic structure used by all of our algorithms is a construct we call the commonality graph.

As mentioned in the introduction, the commonality graph is the graph on variables that

contains an edge between any two vertices if the corresponding variables appear together in

a common example. That is, given the set U of unlabeled examples, define the commonality

graph Gcom(U) = (V,E) where V = {x1, . . . , xn} and E contains an edge (xi, xj) if and only

if there is some x ∈ U such that xi and xj are both set to 1 in x. Furthermore, given the set

L of labeled examples, let V +
L be the set of variables appearing in positive examples and

V −L be the set of variables appearing in negative examples.
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The edge structure of the commonality graph and the labeled examples will allow us to

draw inferences about which vertices in the graph correspond to positive indicators, negative

indicators, and non-indicators in the target concept. Any variable that appears in a labeled

example cannot be an indicator of the type opposite of the label. In addition, an edge

between two variables implies they cannot be indicators of different types. This means that

any path in the commonality graph between positive and negative indicators must contain a

non-indicator. Similarly, paths that pass only through indicator variables can be used to

propagate labels to the unlabeled examples.

3.3 Semi-supervised Learning

Our general strategy is to identify non-indicators and remove them from the commonality

graph, reducing this problem to the simpler case. Notice that each non-indicator that appears

in the unlabeled data is significant; failing to identify it can lead to incorrect inferences about

a large probability mass of examples. A variable is obviously a non-indicator if it appears in

both positive and negative examples. A näıve approach would be to draw enough labeled

examples so that every significant non-indicator appears in examples with both labels. The

problem with this approach is that some non-indicator can appear much more frequently in

positive examples than in negative examples. In this case the number of examples needed

by the näıve approach is inversely proportional to the probability of that non-indicator

appearing in negative examples. This sample complexity can be worse than in the fully

supervised case.

In our approach, it is enough to ensure each non-indicator appears in a labeled example,

but not necessarily in both positive and negative examples. The number of examples needed

in this case will now depend on the minimum probability of a non-indicator appearing. This

allows the sample complexity to be significantly smaller than that of the näıve approach; for

example, when a non-indicator appears in positive examples with constant probability while

in negative examples with probability ε/n.

Our approach can still identify non-indicators, now by examining paths in the com-

monality graph. In paths whose interior vertices appear only in unlabeled examples (i.e.
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are indicators) and whose endpoints appear in oppositely labeled examples, one of the

endpoints must be a non-indicator. When k = O(log n) we can enumerate over all consistent

compatible hypotheses efficiently by restricting our attention to a small set of paths.

If the number of non-indicators is larger, we can still find a good hypothesis efficiently

by finding the non-indicators one at a time. Each time our working hypothesis makes a

mistake this reveals a path whose endpoint is a non-indicator.

The number of labeled examples we require will depend on the minimum non-indicator

probability defined by

ε0(D,h∗) = min
xi /∈h∗+∪h∗−

Pr
x∼D

[xi = 1].

For notational convenience denote it simply by ε0 without ambiguity. To guarantee with

high probability that each non-indicator appears in some labeled example, it suffices to use

Õ( 1
ε0

log k) labeled examples.

3.3.1 Finding a Consistent, Compatible Hypothesis Efficiently when k = O(log n)

We now give an algorithm, along with some intuition, for finding a two-sided disjunction

that is consistent and compatible with a given training set. We note that this problem is

NP-hard in general (see Section 3.8). Given example sets L and U , the algorithm begins by

constructing the commonality graph G = Gcom(U) and setting G to G \ (V+ ∩ V−). This

removes any variables that appear in both positive and negative examples as these are

guaranteed to be non-indicators.

To identify the rest of the non-indicators, we consider a new graph. Using u ↔G v

to denote the existence of a path in the graph G between vertices u and v, we define the

indicator graph Gind(G,V+, V−) to be the bipartite graph with vertex set V+ ∪ V− and

edge set {(u, v) ∈ V+ × V− : u↔G\(V+∪V−) v}. The key idea is that an edge in this graph

implies that at least one of its endpoints is a non-indicator, since the two variables appear

in oppositely labeled examples but are connected by a path of indicators.

Note that the target set of non-indicators must form a vertex cover in the indicator

graph. By iterating over all minimal vertex covers, we must find a subset of the target

non-indicators whose removal disconnects positive examples from negative examples, and
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Algorithm 2 Finding a consistent compatible two-sided disjunction

Input: unlabeled set U , labeled set L
Set G = Gcom(U), V+ = V +

L , V− = V −L
Set G = G \ (V+ ∩ V−)
Set V+ = V+ ∩G, V− = V− ∩G
Set GI = Gind(G,V+, V−)
for each minimal vertex cover S of GI do

Set G′ = G \ S, V ′+ = V+ \ S, V ′− = V− \ S
Set h+ = {v ∈ G′ : ∃u ∈ V ′+, u↔G′ v}
if (h+, G

′ \ h+) is consistent and compatible then
break

end if
end for
Output: hypothesis h = (h+, G

′ \ h+)

this corresponds to a consistent compatible hypothesis. The algorithm is summarized in

Algorithm 2.

The key step in Algorithm 2 is enumerating the minimal vertex covers of the indicator

graph GI . One way to do this is as follows. First find a maximum matching M in GI , and

let m be the number of disjoint edges in M . Enumerate all 3m subsets of vertices that cover

M (for every edge in M , one or both of the endpoints can be included in the cover). For

each such cover S, extend S to a minimal vertex cover of GI by adding to S every variable

not covered by M that has no neighbors already in S. This extension can always be done

uniquely, so there is a one-to-one correspondence between covers of M and minimal vertex

covers of GI .

This enumeration method gives us both a concrete way to implement Algorithm 2 and a

way to bound its running time. We prove in Theorem 12 that given enough data, Algorithm 2

correctly outputs a consistent compatible hypothesis with high probability. We then bound

its time and sample complexity.

Theorem 12. For any distribution D over {0, 1}n and target concept h∗ ∈ C such that

χ(h∗, D) = 1, h∗ has at most k non-indicators, and the minimum non-indicator probability

is ε0, if mu ≥ 1
ε

[
log 2|C|

δ

]
and

ml ≥ max

{
1

ε0
log

k

δ
,
1

ε

[
log

2|CD,χ(ε)|
δ

]}
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then with probability at least 1 − 2δ, Algorithm 2 outputs a hypothesis h ∈ C such that

errL(h) = 0, χ(h, U) = 1, and err(h) ≤ ε. Furthermore, when k = O(log n) the algorithm

runs in time at most poly(n).

Proof. We separate the proof into three sections, first proving consistency and compatibility of

the output hypothesis, then giving the sample sizes required to guarantee good generalization,

and finally showing the overall running time of the algorithm.

Consistency and Compatibility: The exit condition for the loop in Algorithm 2

guarantees that the algorithm will output a consistent compatible hypothesis, so long as a

suitable minimal vertex cover of GI is found. Thus, it suffices to show that such a vertex

cover exists with high probability when L is large enough.

By the definition of ε0 along with the independence of the samples and a union bound,

if ml >
1
ε0

log k
δ , then with probability at least 1− δ, all non-indicator variables appear in

some labeled example. We will assume in the remainder of the proof that all variables not

in V +
L ∪ V

−
L are indicators.

Since an edge in G between indicators forces both endpoints to be of the same type,

a path through indicators does the same. Edges in GI correspond to such paths, but the

endpoints of such an edge cannot be indicators of the same type because they appear in

differently labeled examples. It follows that at least one endpoint of every edge in GI must

be a non-indicator.

Now let V0 be the set of non-indicators in the target hypothesis. The above observations

imply that V0 contains a vertex cover of GI . It follows that there must exist a subset S̃ ⊆ V0

that is a minimal vertex cover of GI . Let h̃ = (h̃+, h̃−) be the hypothesis h formed from

the minimal vertex cover S = S̃. We only need to show that h̃ is both consistent and fully

compatible.

Every indicator of h∗ is also an indicator of h̃ since only true non-indicators were

removed from G and all remaining variables became indicators in h̃. Since every example

contains an indicator of h∗, every example must contain an indicator of h̃ of the correct type.

Furthermore, if an example contained both positive and negative indicators, this would

imply an edge still present in GI . But removing a vertex cover removes all edges, so this is
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impossible. Hence h̃ is a consistent, fully compatible hypothesis.

Generalization Error: If mu ≥ 1
ε [log 2|C|

δ ] and ml ≥ max{ 1
ε0

log k
δ ,

1
ε [log

2|CD,χ(ε)|
δ ]},

the above analysis states that Algorithm 2 will fail to produce a consistent compatible

hypothesis with probability at most δ. Furthermore, an algorithm with true error rate

greater than ε will be fully consistent with a labeled set of size ml with probability at

most δ/CD,χ(ε). Union bounding over all compatible hypotheses we see that a consistent

compatible hypothesis will fail to have an error rate less than ε with probability at most δ.

By a union bound over the two failure events, the overall probability of failure is ≤ 2δ.

Running Time: Since checking consistency and compatibility can be done in time

polynomial in the number of examples, the limiting factor in the running time is the search

over minimal vertex covers of GI . In a bipartite graph, the size of the minimum vertex cover

is equal to the size of the maximum matching. The set of k non-indicators in the target

hypothesis includes a vertex cover of GI , so the size m of the maximum matching is at most

k. There is one minimal vertex cover for each of the 3m covers of the maximum matching,

so the number of minimal vertex covers to search is at most 3k.

3.3.2 A General Semi-supervised Algorithm

Algorithm 2 is guaranteed (provided the labeled set is large enough) to find a hypothesis

that is both consistent and compatible with the given data but is efficient only when k is

logarithmic in n. When k is instead polylogarithmic in n, our algorithm is no longer efficient

but still achieves a large improvement in sample complexity over supervised learning. We

now present an efficient algorithm for finding a low-error (but not necessarily consistent and

compatible) hypothesis which matches the sample complexity of Algorithm 2.

The algorithm, summarized in Algorithm 3, begins by constructing the commonality

graph from the unlabeled examples and identifying potential indicators from a subset of

the labeled examples. We use sample(m,S) to denote a random sample of m elements

from set S. An initial hypothesis is built and tested on the sequence of remaining labeled

examples. If the hypothesis makes a mistake, it is updated and testing continues. Each

update corresponds to either identifying a non-indicator or labeling all indicators in some
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Algorithm 3 Learning a Low-error Hypothesis for Two-Sided Disjunctions

Input: data sets U and L, parameters ε, δ, k
Set L′ = sample( 1

ε0
log k

δ , L) and L = L \ L′

Set G = Gcom(U) \ (V +
L′ ∩ V

−
L′ )

Set P = G ∩ (V +
L′ ∪ V

−
L′ )

Set h = hG,L′ and c = 0
while L 6= ∅ and c ≤ 1

ε log k+T
δ do

Set x = sample(1, L)
Set L = L \ {x}, and L′ = L′ ∪ {x}
if h(x) 6= `(x) then

Set G = G \ nnG,P (x)
Set h = hG,L′ and c = 0

else
Set c = c+ 1

end if
end while
Output: the hypothesis h

connected component in the commonality graph, so the number of updates is bounded.

Furthermore, if the hypothesis makes no mistakes on a large enough sequence of consecutive

examples, then with high probability it has a small error rate overall. This gives us a

stopping condition and allows us to bound the number of examples seen between updates.

The hypotheses in Algorithm 3 use a variation on nearest neighbor rules for classification.

Given a commonality graph G and a set L of labeled examples, the associated nearest

neighbor hypothesis hG,L classifies an example x the same as the nearest labeled example

in L. The distance between two examples x and x′ is the measured by the minimum path

distance in G between the variables in x and the variables in x′. If no examples in L are

connected to x, then hG,L classifies x negative by default. For convenience, we use nnG,S (x)

to denote the vertex in the set S nearest to a variable in the example x via a path in G.

If no such vertex exists, nnG,S (x) returns the empty set. Using hypotheses of this form

ensures that the neighbor variable used to classify an example x is connected to x by a

path through indicators, which allows us to propagate its label to the new example. If the

example is misclassified, we must have been fooled by a non-indicator.

The number of examples used by Algorithm 3 depends on T , the number of connected

components in the commonality graph after removing all non-indicators. Lemma 8 bounds
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this quantity by the number of compatible hypotheses. The proof is left to Section 3.9.

Lemma 7. Let G be the graph that results from removing all non-indicators from Gcom(U),

and suppose G is divided into T connected components. If mu ≥ 2n2

ε log n
δ , then T ≤

log2 |CD,χ(ε)| with probability at least 1− δ.

The following theorem bounds the number of examples sufficient for Algorithm 3 to

output a low-error hypothesis.

Theorem 13. For any distribution D over {0, 1}n and target concept h∗ ∈ C such that

χ(h∗, D) = 1, h∗ has at most k non-indicators, and the minimum non-indicator probability

is ε0, if mu ≥ 2n2

ε log n
δ and

ml ≥
1

ε0
log

k

δ
+
k + log |CD,χ(ε)|

ε

[
log

k + log |CD,χ (ε) |
δ

]
then with probability at least 1− 3δ, Algorithm 3 outputs a hypothesis h in polynomial time

such that err(h) ≤ ε.

Proof. Generalization Error: First note that according to the loop exit condition, Algo-

rithm 3 outputs the first hypothesis it encounters that correctly classifies a sequence of at

least 1
ε log k+T

δ i.i.d. examples from D. If err(h) > ε for some hypothesis h, then the probabil-

ity that h correctly classifies such a sequence of examples is at most (1− ε)
1
ε

log k+T
δ ≤ δ

k+T .

Assuming Algorithm 3 updates its hypothesis at most k + T times, a union bound over the

k + T hypotheses considered guarantees that with probability at least 1− δ, the hypothesis

output by Algorithm 3 has error rate at most ε. In the remainder of the proof, we will bound

the total number of samples required by Algorithm 3 and show that it makes at most k + T

updates to its hypothesis.

Mistake Bound: By the definition of ε0, the initial set of ml labeled examples ensures

that with probability at least 1− δ all non-indicators are included in the potential indicator

set P , so all variables outside P (call this set Q) are indicators. We will assume such an

event holds throughout the remainder of the proof. In particular, this means that any paths

through Q must consist entirely of indicators of the same type.
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Suppose at some point during the execution of Algorithm 3, the intermediate hypothesis

h misclassifies an example x. There are two types of such mistakes to consider. If the

variables in x are not connected to any variables in P , then by the above observation,

all variables connected to x are indicators of the same type, and in particular, they are

indicators of the type corresponding to the label of x. This means that this type of mistake

can occur only when h knows of no labeled examples connected to x. Once h is updated

to be hG,L′ where x ∈ L′, h can make no further mistakes of this type on any examples

connected to x. Thus, Algorithm 3 can make at most T mistakes of this type before all

connected components have labeled examples.

The hypothesis hG,L′ labels x with the label of the example of L′ containing nnG,P (x).

If x is labeled incorrectly, then this must be an example with label opposite that of x. But

since the path between nnG,P (x) and x consists only of vertices not in P , i.e. indicators, we

conclude that nnG,P (x) must be a non-indicator. Algorithm 3 can make at most k mistakes

of this type before all non-indicators are removed from G.

Sample Complexity and Running Time: We have shown that after Algorithm 3

makes k + T updates, all non-indicators have been removed from G and all connected

components in G contain a variable that has appeared in a labeled example. Since at most

1
ε log k+T

δ examples can be seen between updates, the total number of labeled examples

needed by Algorithm 3 is at most

1

ε0
log

k

δ
+
k + T

ε
log

k + T

δ
.

Straightforward algebra and an application of Lemma 8 yields the bound given in the

theorem statement, and a union bound over the three failure events of probability δ yields

the stated probability of success. The time complexity is clearly polynomial in n per example

and therefore polynomial overall.

3.4 Active Learning

We now consider the problem of learning two-sided disjunctions in the active learning model,

where the learner has access to a set U of unlabeled examples and an oracle that returns

the label of any example in U we submit. The additional power provided by this model
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allows us to use the same strategy as in the semi-supervised algorithm in Section 3.3.2 while

achieving sample complexity bounds independent of ε0.

As in Section 3.3.2, the goal will be to identify and remove non-indicators from the

commonality graph and obtain labeled examples for each of the connected components in the

resulting graph. In the semi-supervised model we could identify a mistake when there was

a path connecting a positive labeled example and a negative labeled example. To identify

non-indicators we guaranteed that they would lie on the endpoints of these labeled paths. In

the active learning setting, we are able to check the labels of examples along this path, and

thus are able to remove our dependence on minimum non-indicator probability parameter.

The algorithm we propose can be seen as a slight modification of Algorithm 3. The idea

is to maintain a set of at least one labeled example per connected component and to test the

corresponding nearest neighbor hypothesis on randomly chosen examples. If the hypothesis

misclassifies some example, it identifies a path from the example to its nearest neighbor.

Since these examples have opposite labels, a non-indicator must be present at a point on

the path where positive indicators switch to negative indicators, and such a non-indicator

can found in logarithmically many queries by actively choosing examples to query along this

path in a binary search pattern. The search begins by querying the label of an example

containing the variable at the midpoint of the path. Depending on the queried label, one of

the endpoints of the path is updated to the midpoint, and the search continues recursively on

the smaller path whose endpoints still have opposite labels. Let BinarySearchG,L(x) return

the non-indicator along the path in G from a variable in x to nnG,L (x). As with Algorithm 3,

the algorithm halts after removing all k non-indicators or after correctly labeling a long

enough sequence of random examples.

The details are described in Algorithm 4, and the analysis is presented in Theorem 14.

Theorem 14. For any distribution D over {0, 1}n and target concept h∗ ∈ C such that

χ(h∗, D) = 1 and h∗ has at most k non-indicators, let T be the number of connected

components in the graph G that results from removing all non-indicators from Gcom(U). If
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Algorithm 4 Actively Learning Two-Sided Disjunctions

Input: unlabeled data U , parameters ε, δ, k
Set G = Gcom(U) and L = ∅
for each connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

end for
Set h = hG,L and c = 0
while c ≤ 1

ε log k
δ do

Set x = sample(1, U) and L = L ∪ {(x, `(x))}
if h(x) 6= `(x) then

Set v = BinarySearchG,L(x)
Set G = G \ {v}
for each new connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

end for
Set h = hG,L and c = 0

else
Set c = c+ 1

end if
end while
Output: the hypothesis h

mu ≥ 2n2

ε log n
δ then after at most

mq = O

(
log |CD,χ(ε)|+ k

[
log n+

1

ε
log

k

δ

])
label queries, with probability ≥ 1− 2δ, Algorithm 4 outputs a hypothesis h in polynomial

time such that err(h) ≤ ε.

Proof. Generalization Error: According to the exit condition of the loop in Step 3,

Algorithm 4 outputs the first hypothesis it encounters that correctly classifies a sequence

of at least 1
ε log k

δ i.i.d. examples from D. If err(h) > ε for some hypothesis h, then the

probability that h correctly classifies such a sequence of examples is at most (1− ε)
1
ε

log k
δ ≤ δ

k .

Assuming Algorithm 4 updates its hypothesis at most k times, a union bound over the k

hypotheses considered guarantees that with probability at least 1− δ, the hypothesis output

by Algorithm 4 has error rate at most ε. In the remainder of the proof, we will bound the

total number of samples required by Algorithm 4 and show that it makes at most k updates

to its hypothesis.
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Queries per Stage: In the loops over connected components of G, one label is queried

for each component. The components are those formed by removing from G a subset of the

non-indicators, so the total number of queries made in these loops is at most T , the number

of components after removing all non-indicators.

Now suppose the hypothesis h misclassifies an example x. Let x′ be the nearest labeled

example to x, and let xi and xj be the endpoints of the shortest path from x to x′ in G. If

each variable along the path appears in examples of only one label, then there could be no

path between xi and xj , which appear in examples with different labels. Thus, there must

exist a variable along the path from xi to xj that appears in both positive and negative

examples, i.e. a non-indicator. Since the commonality graph was constructed using the

examples in U , we can query the labels of examples that contain variables between xi and xj

in order to find the non-indicator. Using binary search, the number of queries is logarithmic

in the path length, which is at most n.

Query Complexity and Running Time: Each mistake results in removing a non-

indicator from the G, so at most k mistakes can be made. For each mistake, O(log n) queries

are needed to find a non-indicator to remove and at most 1
ε log k

δ more queries are used

before another mistake is made. Combined with the queries for the connected components,

we can bound the total number of queries by O
(
T + k

[
log n+ 1

ε log k
δ

])
. We can further

bound T by log |CD,χ(ε)| via Lemma 8, and pay the price of an additional δ probability of

failure. The running time for this algorithm is clearly polynomial.

3.5 Random Classification Noise

We now consider the more challenging problem of learning two-sided disjunctions under

random classification noise with noise rate α ∈ [0, 1/2}. As before, the underlying target

concept can be represented by a two-sided disjunction, but unlike the rest of this work, the

observed labels are noisy. Specifically, the observed label of each example is reversed (from

that given by the target concept) independently with probability α. Note that compatibility

relies only on unlabeled data, which does not change in the face of noise.

All our previous algorithms can be extended to this noisy setting. Since we can still
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build an accurate commonality graph, we only need to ensure that we can still determine

the indicator type of each variable, which can be done by taking a majority vote of the

labels of those examples containing the variable. To guarantee with high probability that

we will not be fooled by noise, we can use this majority voting scheme only for variables

that appear in at least Õ( 1
(1−2α)2

) labeled examples, a property we call significance. For

semi-supervised learning, we need more labeled data up front to ensure that we have enough

significant variables. In the active setting, we can selectively make variables significant by

querying the labels of enough relevant unlabeled examples.

Some additional technical modifications are required for the same guarantees to hold.

We discuss some of these details below for the extensions to Algorithms 3 and 4 and leave

the theorems and proofs to Section ??. While Algorithm 2 also extends to this setting, its

main advantage was obtaining consistent and compatible hypotheses, which is no longer

achievable in the noisy setting.

Semi-supervised Learning: We first need enough examples to ensure that all non-

indicators are significant. We then build a hypothesis in a similar manner to the noise-free

setting by deciding indicator types via majority voting. To verify the hypothesis, we test it

on an entire set of labeled examples instead of stopping to update at the first mistake. If the

empirical error is small, we are guaranteed to have a hypothesis with small error. Otherwise,

the high error may be caused either by a component without any labeled variables (which

can be corrected by a majority vote of the examples in that component) or a non-indicator.

In the latter case, we need to distinguish between the non-indicator causing an error rate

of α+O(ε(1− 2α)/k) and other significant indicators causing an error rate of α, and this

requires Õ
(

k2

(1−2α)2ε2

)
labeled examples. As in the noise free case, the hypothesis is updated

at most k + T times, which leads to a label complexity of Õ
(

k+T
(1−2α)2

[
1
ε0

+ k3

ε3
+ T

ε

])
.

Active Learning: There are two main alterations to make to Algorithm 4 in order to

extend it to this setting. First, we use majority voting to determine indicator types instead

of using single examples. Second, instead of performing binary search over vertices in the

path that connects positive and negative examples, we need to search over edges in order to

distinguish disagreement caused by non-indicators from that caused by noise. If an edge
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contains an indicator, a majority vote of examples containing the two variables in the edge

will agree with the type of the indicator, even if the edge contains a non-indicator. Any

variable contained in edges of different labels must be a non-indicator. This leads to a query

complexity of Õ
(

1
(1−2α)2

[
T + k2

ε + k
ε2

])
.

3.6 Distributed Learning

The above algorithms can be adapted to the distributed learning model of Balcan et

al. [10] in which the data is assumed to be distributed among K entities. In particular, for

1 ≤ i ≤ K, entity i has access to examples drawn i.i.d. from distribution Di, and the goal

is to find a hypothesis that has a low error rate on the joint mixture of D1, . . . , DK with

as little inter-entity communication as possible. Balcan et al. study this model in the fully

supervised setting and are concerned with finding protocols for various settings with optimal

communication complexity while only requiring that each entity uses a polynomial number

of samples. A modification of this model that applies to the semi-supervised setting is to

attempt to simultaneously optimize communication complexity and label complexity while

ensuring that each entity uses a polynomial amount of unlabeled data.

Our goal is to analyze the communication and sample complexity of learning two-sided

disjunctions in this semi-supervised distributed learning model. Table ?? summarizes our

findings. For comparison, we first analyze the sample complexity of two baseline algorithms

given in [10] that apply to learning disjunctions in general with no unlabeled data. We then

adapt the SSL algorithms for the case of two-sided disjunctions with no non-indicators in two

ways: one that achieves the same overall label complexity as in the non-distributed setting

and one that achieves a better communication complexity while sacrificing label complexity

in some cases. The main result of this section is an adaptation of Algorithm 3 that achieves

the same overall label complexity in the distributed setting and incurs a communication

cost of only O(Kn log n) bits. It is interesting to note that this algorithm allows the labeled

examples to be evenly distributed among all K entities, so each entity needs a multiplicative

factor of K fewer labels than an entity running Algorithm 3 on its own.
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Table 1: Summary of results for learning two-sided disjunctions in the semi-supervised
distributed learning model.

Setting Communication complexity Label complexity (per entity)

Baseline 1 O(Kn) bits O

(
n

ε
log

K

δ

)
Baseline 2 O(n log n) bits O

( n

Kε
log

n

δ

)

k = 0 Alg. 1 O(Kn) bits O

(
Ti
ε

log
KTi
δ

)
k = 0 Alg. 2 O(Kn log n) bits O

(
T

Kε
log

T

δ

)

k ≥ 0 Alg. 1 O(Kn log n) bits O

(
k + T

Kε
log

k + T

δ

)

3.6.1 Baseline Algorithms

One of the most basic algorithms for learning disjunctions in the fully supervised distributed

model is a special case of the more general algorithm for intersection- or union-closed classes

given in [10]. In particular, the class of disjunctions can be learned by inverting each example

and its label and running the algorithm for learning conjunctions. Using this approach, each

entity i needs only (n/ε) log(K/δ) examples to learn a hypothesis hi with at most ε error

on Di with probability at least 1 − δ/K. After each entity sends its n-bit hypothesis to

the center, the center can compute the final hypothesis h which, with probability at most

1−K(δ/K) = 1− δ will have error rate at most ε on D.

While the above algorithm achieves a communication complexity growing only linearly

in n when the number of entities K is constant, it can be wasteful in terms of both

communication and label complexity when K is large, especially for K ≥ Ω(log n). We

can improve upon this first baseline algorithm in such cases by a different fully supervised

algorithm that takes advantage of the following general transformation. The idea is to

convert any algorithm that learns C in the mistake bound model (with mistake bound M)

in the non-distributed setting into a distributed learning algorithm with label complexity
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evenly distributed among all entities. The transformation is valid for both supervised and

semi-supervised algorithms provided we keep track of the communication used.

The transformation is as follows. Since each entity will essentially be running a shadow

copy of the same algorithm, they first must communicate to agree on a starting state which

should include an initial hypothesis possibly in addition to other information. Often in the

fully supervised setting the initial state is predetermined and no communication will be

necessary in this step, but in the semi-supervised setting this step may be used to share

information about unlabeled data. Since we do not have access to the joint mixture D

according to which we are measuring error, we will simulate D by drawing one example

at a time from each distribution Di and repeating the sequence of K independent draws

as necessary. When it is entity i’s turn, it will draw one example from Di, attempt to

classify it with the current hypothesis, and communicate an update to the hypothesis if a

misclassification occurs. This process continues for each entity in turn until some hypothesis

correctly classifies (1/ε) log(M/δ) consecutive examples, at which point the algorithm outputs

the current hypothesis.

Theorem 15. Given an algorithm A for learning C with mistake bound M , let r be the

number of bits of communication required to initialize a common state among all entities

and let s be the number of bits required to communicate each hypothesis update. Then there

exists an algorithm A′ that learns C in the distributed learning model with communication

complexity O(r +Ms) and label complexity O((M/Kε) log(M/δ)) per entity.

Proof. The communication complexity result is immediate for any A′ that uses one state

initialization step, one hypothesis update for each mistake, and no additional communication.

Since any mistake bound algorithm can be converted into a conservative mistake bound

algorithm (one that only updates its hypothesis on a mistake) without a change in the mistake

bound, we only need to ensure that no communication is used other than initialization and

hypothesis updates, which is clear from the construction.

Since at most M mistakes can be made and there are at most (1/ε) log(M/δ) labels

seen between mistakes, the overall label complexity is O((M/ε) log(M/δ)). Since the
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labeled examples are evenly distributed among the K entities, the label complexity is

O((M/Kε) log(M/δ)) labeled examples per entity.

It only remains to show that the final hypothesis meets the accuracy and confidence

requirements. We will only fail to meet the guarantee if one of the at most M hypotheses we

consider fools us by correctly classifying m = (1/ε) log(M/δ) examples consecutively when

its error rate is greater than ε. For a fixed hypothesis h with err(h) > ε, let pi = 1− erri(h)

be the probability of correctly classifying an example drawn from Di. By the definition of

D as the uniform mixture of all Di, we have K−1
∑K

i=1 pi = 1 − err(h) < 1 − ε. Since all

examples are drawn independently, the probability that we are fooled by h is at most

K∏
i=1

p
m/K
i =

(
K∏
i=1

pi

)m/K
≤

(
1

K

K∑
i=1

pi

)m
< (1− ε)m ≤ δ

M

where the first inequality uses the fact that the geometric mean of nonnegative real numbers

is always at most the arithmetic mean. A union bound over the at most M hypotheses

tested completes the proof.

By using this approach to transform the well-known algorithm for learning disjunctions

with mistake bound M = n, we can achieve a label complexity of (n/Kε) log(n/δ) per entity.

The initial disjunction is fixed to include all variables and need not be communicated, and

on each mistake log n bits must be sent to indicate which variable to remove from the

disjunction.

3.6.2 Absence of Non-indicators

We now give two algorithms to learn two-sided disjunctions with no non-indicators in the

distributed learning model. The first algorithm is analogous to the first baseline algorithm in

that each entity learns and shares a hypothesis of its own and the hypotheses are combined

at the end. In particular each entity starts by drawing enough unlabeled data to construct

an accurate distribution graph and then runs the following mistake bound algorithm. Start

with all variables labeled as negative indicators. If a mistake is made, set all variables in

the corresponding connected component to positive indicators. Entity i can make at most

Ti mistakes, where Ti is the number of connected components in the distribution graph of
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Di. If each entity i runs this mistake bound algorithm until it has a hypothesis that with

probability at least 1− δ/K has ε error on Di, the K n-bit hypotheses can be shared and

combined by taking the union of all positive indicators.

The second algorithm for this setting takes advantage of Theorem 15 by transforming the

above mistake bound algorithm into its distributed version. Each entity begins by drawing

enough unlabeled data to construct an accurate distribution graph and then shares the

connected component structure of its graph (O(n log n) bits) with the other entities. The

distributed mistake bound algorithm proceeds using the combined distribution graph, and

requires indicating which connected component to update for each mistake. Letting T be

the number of connected components in the distribution graph of D, this algorithm makes

at most T mistakes and uses log T bits of communication per mistake.

3.6.3 Main Result

With the inclusion of k non-indicators, the distributed algorithm becomes more involved.

The simplest solution is for each entity to share its entire distribution graph and to to

use the mistake bound algorithm behind Algorithm 3 to achieve a label complexity of

O(k+T
Kε log k+T

δ ) with communication complexity O(Kn2) bits. However, we can improve

the communication complexity to O(Kn log n) bits in the following way.

Each player sends out the component information of G′i, where G′i is the graph obtained

by removing all potential indicators from Gi. Each player also sends out a table that lists

for each vertex, whether it is connected by an edge to a potential indicator in Gi. When

given the vertex v, the player can build the graph G′ = ∪iG′i, and check in the component of

G′ that v falls into, whether there is a vertex that is connected by an edge to some potential

indicator.

The players can identify the desired potential indicators using this method for the

following two facts. 1: G′ is the graph obtained by removing all potential indicator from

G. 2: A potential indicator is connected in G to v by a path without any other potential

indicators in the middle if and only if in the component of G′ that v falls into, there is a

vertex connected by an edge to this potential indicator.
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Since each component can be indexed using O(log n) bits, describing for each vertex

which component it falls into takes O(n log n) bits. Similarly, each potential can be indexed

using O(log n) bits, and describing for each vertex which potential indicator it is directly

connected to takes O(n log n) bits.

Note: In distributed learning two-sided disjunctions, when a non-indicator is found

and removed, the players do not need to send out further information to update G′ and

the tables. This is because the non-indicator must be a potential indicator by the hitting

assumption and its removal does not change G′, and because the tables can be updated

locally. Also, when the example drawn is from a component that has no potential indicator,

no further communication is needed to update G′ and the tables. The players know by the

hitting assumption that all variables in the component are indicators of the same type as the

example, so further examples from this component can be simply labeled without resorting

to G′ and the tables.

3.7 Bounding T by log |CD,χ(ε)|

The following lemma bounds the number of connected components in the commonality

graph by the number of compatible hypotheses. For notational definitions, refer to Section 2

in the main body of the paper.

Lemma 8. Let G be the graph that results from removing all non-indicators from Gcom(U),

and suppose G is divided into T connected components. If mu ≥ 2n2

ε log n
δ , then T ≤

log2 |CD,χ(ε)| with probability at least 1− δ.

Proof. Since G has no non-indicators, a hypothesis is compatible with U if and only if every

component is made entirely of indicators of the same type. There are two possible choices

for each component, so the number of fully compatible hypotheses is |CU,χ(0)| = 2T .

To complete the proof, it is sufficient to show that CU,χ(0) ⊆ CD,χ(ε). Since any

hypothesis in CU,χ(0) is compatible with any example containing variables from only one

component, we only need to show that there is at most ε probability mass of examples that

contain variables from multiple components. All such examples correspond to edges that are

absent from Gcom(U), so we only need to show that Gcom(U) was constructed with enough
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examples so that nearly all significant edges appear in the graph.

To see this, fix any pair of variables xi, xj . If Prx∼D[xi = 1 ∧ xj = 1] < ε/n2, we

can ignore this pair since all such pairs together constitute a probability mass strictly

less than ε. Now suppose Prx∼D[xi = 1 ∧ xj = 1] ≥ ε/n2. The probability that xi

and xj do not appear together in any of the examples in U is at most
(
1− ε

n2

)mu , so if

mu ≥ n2

ε log n2

δ then this failure probability is at most δ/n2. By a union bound over all such

pairs, with probability at least 1− δ all corresponding edges appear in Gcom(U), and the

probability mass of examples containing variables from multiple components is at most ε.

This means that every fully compatible hypothesis has unlabeled error at most ε, so we have

T = log2 |CU,χ(0)| ≤ log2 |CD,χ(ε)|.

3.8 Finding a Consistent Compatible Hypothesis is NP-hard

The following theorem formalizes the computational difficulty of finding a fully consistent

and compatible two-sided disjunction in the semi-supervised setting.

Theorem 16. Given data sets L and U , finding a hypothesis h ∈ C that is both consistent

with L and compatible with U is NP-hard.

Proof sketch. The proof is by reduction from 3-SAT. Given a 3-SAT instance ϕ on variables

x1, . . . , xn we produce the following data sets L and U containing examples on the 4n

variables x+
1 , x

−
1 , x̄

+
1 , x̄

−
1 , . . . , x

+
n , x

−
n , x̄

+
n , x̄

−
n . The labeled set L contains examples of the

form ({x+
i , x̄

+
i },+1) and ({x−i , x̄

−
i },−1) for 1 ≤ i ≤ n. In addition, for each clause in ϕ of

the form (`i ∨ `j ∨ `k) where `i, `j , `k can each be positive or negative literals, L contains the

example ({`+i , `
+
j , `

+
k },+1). The unlabeled set U contains examples of the form {x+

i , x
−
i }

and {x̄+
i , x̄

−
i } for 1 ≤ i ≤ n. The labelings that are consistent and compatible with all the

non-clause examples correspond precisely to assignments of x1, . . . , xn, and the clauses are

compatible with a given hypothesis only if they are satisfied in the underlying assignment.

The set of positive indicators of any hypothesis h = (h+, h−) ∈ C that is both consistent

with L and compatible with U corresponds to a truth assignment to x1, . . . , xn that satisfies

ϕ, therefore finding such a hypothesis is NP-hard.
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3.9 Random Classification Noise

Here we consider the problem of learning two-sided disjunctions under random classification

noise, where the label of each example is flipped with probability 0 ≤ α < 1/2 independently.

Our goal is to extend our algorithms to this setting so that they still successfully output a

low error hypothesis without significant increase in sample complexity.

More specifically, we have a distribution DX,Y over labeled examples (X, `(X)), and the

Bayes decision rule is a two-sided disjunction h∗ ∈ C, which we also refer to as the target

concept. We have χ(h∗, D) = 1 where D is the margin of DX,Y over X, and

Pr[`(X) = −h∗(x)|X = x] = α.

For a hypothesis h, let errD(h) denote its error over the distribution DX,Y , i.e.

errD(h) = Pr
(x,`(x))∼DX,Y

[h(x) 6= `(x)].

Let errL(h) denote its empirical error on the noisy labeled examples L, i.e.

errL(h) =
1

|L|
∑

(x,`(x))∈L

I[h(x) 6= `(x)].

For convenience, we define the distance between h and h∗ to be

d(h, h∗) = Pr[h(x) 6= h∗(x)].

We aim to find a hypothesis h with error

errD(h) ≤ errD(h∗) + ε = α+ ε.

Note that it is sufficient to have d(h, h∗) ≤ ε, since by triangle inequality

errD(h) = Pr[h(x) 6= `(x)]

≤ Pr[h(x) 6= h∗(x)] + Pr[h∗(x) 6= `(x)]

≤ d(h, h∗) + errD(h∗) = d(h, h∗) + α.

In the following two subsections, we show how to extend the algorithms (Algorithm

2 and 3) for semi-supervised and active learning respectively. In the last subsection, we
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include the extension of Algorithm 1. Note that due to the noise in the labeled examples, we

cannot hope to find a consistent and compatible hypothesis. The extension of Algorithm 1

only outputs a hypothesis that has low error. However, it achieves better sample complexity

bound than the extension of Algorithm 2.

3.9.1 Semi-supervised Learning

In the noise-free setting, we build a hypothesis based on the commonality graph, and

then check and update the hypothesis until it has low error rate. The key idea in the

noisy setting is that we label variables (i.e. identify variables as positive/negative potential

indicators) by majority labels of sufficiently many examples containing the variables, and we

use a sufficiently large set of labeled examples each time we check the hypothesis. A brief

description is provided below, while the details are provided in Algorithm 5 and Theorem 17.

First, we build the commonality graph and the potential indicator sets. We only label a

variable if it is present in at least Õ
(

1
(1−2α)2

)
examples so that we can use majority label

of the examples to correctly decide its type. We call such variables significant. If we draw

Õ
(

1
ε0(1−2α)2

)
examples, then with high probability each non-indicator is significant and

thus labeled.

Then we build a hypothesis and draw a set of labeled examples to check it. If the

empirical error is small, we output the hypothesis since it is guaranteed to have small error.

Otherwise, either a component without any labeled variables in it or a non-indicator causes

large error. In the first case, we need sufficiently many examples fall in the component so

that we can use majority voting to decide the type of the variables in it. This requires

Õ( T
ε(1−2α)2

) examples where T is the number of connected components in the graph that

results from removing all non-indicators from the commonality graph. In the second case,

to reveal the non-indicator, we must be able to distinguish between an error rate of α (the

error rate caused by noise) and α + Θ(ε(1 − 2α)/k) (the error rate caused by noise and

the non-indicator leading to large error). This requires Õ( k2

ε2(1−2α)2
) labeled examples for

each significant variable. Therefore, we draw Õ
(

1
(1−2α)2

[
k3

ε3
+ T

ε

])
examples at each check,

so that either a component that previously contained no labeled variables is labeled, or
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Algorithm 5 Learning a Low-error Hypothesis for Two-Sided Disjunctions under Random
Classification Noise

Input: data sets U and L, parameters ε, δ, k, ε0, T
Set G = Gcom(U), V 0

+ = V 0
− = ∅

Set L′ = sample
(

100
ε0(1−2α)2

log2 n
δ , L

)
and L = L \ L′

Set size(v) = |{x ∈ L′ : x 3 v}|, ∀v ∈ V
Set SIG = {v ∈ V : size(v) > 10

(1−2α)2
log n

δ }
for each v ∈ SIG do

Set l = sign(
∑

x3v `(x)) and V 0
l = V 0

l ∪ {v}
end for
Set V+ = V 0

+, V− = V 0
− and h = hG,V+∪V−

S = sample
(

100
(1−2α)2

[
k3

ε3
+ T

ε

]
log2 n

δ , L
)

, L = L \ S
while L 6= ∅ and errS(h) > α+ 1−2α

2 ε do
Let R denote the set of the components in G that have no labeled variables
Let S(R) = {x ∈ S : x falls into R}, ∀R ∈ R
Let S(v) = {x ∈ S : nnG,V+∪V− (x) = v},∀v ∈ V+ ∪ V−
if ∃R ∈ R such that |S(R)| ≥ 10

(1−2α)2
log n

δ then

Set l = sign(
∑

x∈S(R) `(x)) and Vl = Vl ∪R
end if
if ∃v ∈ V 0

+ ∪ V 0
− such that |S(v)| ≥ 10k2

ε2(1−2α)2
log n

δ and errS(v)(h) ≥ α + (1 − 2α) ε
16k

then
Set G = G \ {v}

end if
Set S = sample

(
100

(1−2α)2

[
k3

ε3
+ T

ε

]
log2 n

δ , L
)

,

Set L = L \ S and h = hG,V+∪V−
end while
Output: the hypothesis h

a non-indicator is revealed. After at most (k + T ) updates, we are guaranteed to have a

hypothesis with small error.

Theorem 17. For any distribution DX,Y over {0, 1}n × {−1, 1} and target concept h∗ ∈ C

in the random classification noise model such that h∗ has at most k non-indicators, and the

minimum non-indicator probability is ε0, if mu = O(n
2

ε log n
δ ) and

ml = O

(
k + log |CD,χ(ε)|

(1− 2α)2
log2 n

δ[
1

ε0
+
k3

ε3
+

log |CD,χ(ε)|
ε

])
then with probability at least 1− δ, Algorithm 5 outputs a hypothesis h in polynomial time

such that errD(h) ≤ α+ ε.
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Proof. Generalization Error: Suppose we check the hypothesis at most k + T times

(proved later), where T is the number of connected components in the graph that results

from removing all non-indicators from Gcom(U). Then when

|S| ≥ 100

(1− 2α)2ε2
log

k + T

δ

w.h.p. all hypotheses h with d(h, h∗) > ε will have empirical error on S larger than α+ 1−2α
2 ε.

So when the algorithm stops the hypothesis satisfies d(h, h∗) ≤ ε and thus errD(h) ≤ α+ ε.

Bounding the Number of Updates: We now show that the hypothesis is indeed

updated at most (k + T ) times. We begin by proving that when

|L′| ≥ 100

ε0(1− 2α)2
log2 n

δ

w.h.p. every non-indicator is labeled and every labeled indicator gets the correct label, so

that the hypothesis is updated correctly when its error is large. First, by Chernoff and

union bounds, the probability that there exists a non-indicator that appears in less than

10
(1−2α)2

log n
δ examples is bounded by k exp{O(ε0|L′|)} ≤ O(δ). So w.h.p. every non-indicator

appears in enough examples and thus is labeled. Second, the type of an indicator is decided

by the majority label of O( 1
(1−2α)2

log n
δ ) examples. By Hoeffding and union bounds, w.h.p.

the types of all indicators appearing in enough examples are decided correctly.

We now prove that when the error of the hypothesis is large, we can make progress by

either labeling a previously unlabeled component or identifying a non-indicator, and thus it

is updated at most (k + T ) times. When

|S| > 100

(1− 2α)2ε2
log

k + T

δ
,

if errS(h) > α+ 1−2α
2 ε, then w.h.p. d(h, h∗) ≥ ε/4. For each v ∈ V+ ∪ V−, let X(v) denote

those examples whose nearest labeled variable is v, i.e.

X(v) = {x ∈ X : nnG,V+∪V− (x) = v}.

For each R ∈ R, let X(R) denote those examples fall into the component R, i.e.

X(R) = {x ∈ X : x falls into R}.
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Note that for any indicator v ∈ V+ ∪ V−, its type is correctly decided, so the hypothesis

makes no mistake on X(v). Since |R| ≤ T and the number of non-indicators is bounded by

k, either there is a component R′ such that

Pr[h(x) 6= h∗(x) ∧ x ∈ X(R′)] > ε/(8T )

or there is a non-indicator v′ such that

Pr[h(x) 6= h∗(x) ∧ x ∈ X(v′)] > ε/(8k).

In the first case, w.h.p. there are more than 10
(1−2α)2

log n
δ examples in S(R′) when

|S| ≥ 100T

ε(1− 2α)2
log2 n

δ
.

These examples are sufficient to decide the type of the indicators in the component correctly.

Also, w.h.p. for any R ∈ R with more than 10
(1−2α)2

log n
δ examples in S(R), the type of the

indicators in the component are correctly decided. This means that we correctly label at

least one component not labeled previously. This type of updates happen at most T times.

In the second case, we have

Pr[h(x) 6= h∗(x)|x ∈ X(v′)] > ε/(8k)

and thus

Pr[h(x) 6= `(x)|x ∈ X(v′)] > α+ (1− 2α)ε/(8k).

When

|S| ≥ 100k3

ε3(1− 2α)2
log2 n

δ

w.h.p. in S(v′) there are more than 10k2

ε2(1−2α)2
log n

δ examples and we have

errS(v′)(h) > α+ (1− 2α)ε/(16k).

Also, for any indicator v ∈ V+ ∪ V−,

Pr[h(x) 6= `(x)|x ∈ X(v)] = α.

Then w.h.p. we have

errS(v)(h) < α+ (1− 2α)ε/(16k)
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for any indicator v such that |S(v)| ≥ 10k2

ε2(1−2α)2
log n

δ . This means that we can correctly

identify a non-indicator. This type of updates happen at most k times. Hence, we update

the hypothesis at most (k + T ) times.

Sample Complexity and Running Time: When building the commonality graph,

we need

|L′| = O

(
1

ε0(1− 2α)2
log2 n

δ

)
.

Each time we check the hypothesis, we need

|S| = O

(
1

(1− 2α)2

[
k3

ε3
+
T

ε

]
log2 n

δ

)
.

The number of labeled examples then follows from bounding the number of checks by (k+T )

and bounding T by log |CD,χ(ε)|. The algorithm runs in polynomial time since building the

commonality graph and checking the hypothesis take polynomial time.

3.9.2 Active Learning

There are two main changes in extending our algorithm to the noisy setting. First, instead

of simply determining the type of an indicator with one example, we need to check many

examples that contain it. A majority vote will correctly identify the type of the indicator.

Second, instead of doing binary search over nodes in the path that connect positive and

negative examples, we need to search over edges. This is because with noise, an indicator

may appear both in negative and positive examples similar to a non-indicator, so it is not

straightforward to identify a non-indicator merely by the types of examples it appears in.

On the other hand, an edge that contains an indicator will have its true label match that of

the indicator, so we can reliably determine the type of an edge if there are enough examples

that contain both variables, and then identify a vertex in edges of two different types to be

a non-indicator. More specifically, Subroutine 6 can be used to decide the type of a pair of

variables (when u 6= v) or that of one variable (when u = v), which is a building block for

the extension of the active learning algorithm to the noisy setting. A brief description of the

extension is provided below, while the details are provided in Algorithm 7 and Theorem 18.

First, we build the commonality graph and an initial hypothesis. Let F be the set of all

examples that contain some pair of variables appearing together in fewer than O( 1
(1−2α)2

log n
δ )
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Subroutine 6 DecideType(U , u, v)

Input: unlabeled data U , variables u and v
Set S = sample( 100

(1−2α)2
log n

δ , {x ∈ U : {u, v} ⊆ x})
Set t = sign(

∑
x∈S `(x))

Output: {(u, t), (v, t)}

examples. We only use the unlabeled data U \F to construct the commonality graph, so that

every edge corresponds to a pair of variables whose indicator type can be decided. Then we

pick a variable in each component in the graph and decide its type. This requires Õ( T
(1−2α)2

)

queries, where T is the number of connected components in the graph that results from

removing all non-indicators from the commonality graph Gcom(U \ F ). A hypothesis is then

constructed which labels an input example by the type of the nearest labeled variable.

Second, we check and update the hypothesis on a set of examples. We randomly sample

a set S of Õ( 1
(1−2α)2ε2

) examples from U \ F , and compute errS(h). If errS(h) is at most

α+ 1−2α
2 ε, we output the hypothesis since it has small error. Otherwise, it can be shown that

on Ω(ε) fraction of examples in S the hypothesis has different labels from the target concept

h∗. This fact can be used to identify a non-indicator. We randomly sample Õ(1
ε ) examples

from S, and for each example x, pick min(k+ 1, |x|1) variables and decide their types, where

|x|1 is the number of variables appearing in x. This ensures that we will eventually pick

an indicator in an example x such that h(x) 6= h∗(x). Then we find a path connecting a

positive indicator and a negative indicator, and thus can identify a non-indicator by binary

search on the edges along the path. Therefore, after at most k updates, we are guaranteed

to have a hypothesis with small error.

Theorem 18. For any distribution DX,Y over {0, 1}n × {−1, 1} and target concept h∗ ∈ C

in the random classification noise model such that h∗ has at most k non-indicators, if

|U | = O
(

n2

ε(1−2α)2
log2 n

δ

)
, after at most

mq = O

(
1

(1− 2α)2

[
log |CD,χ(ε)|+ k2

ε
+
k

ε2

]
log2 n

δ

)
label queries, with probability at least 1− δ, Algorithm 7 outputs a hypothesis h in polynomial

time such that errD(h) ≤ α+ ε.
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Algorithm 7 Actively Learning Two-Sided Disjunctions under Random Classification Noise

Input: unlabeled data U , parameters α, ε, δ, k
Set U(u, v) = |{x ∈ U : {u, v} ⊆ x}|, ∀u, v ∈ V .
Set F = {x ∈ U : ∃u, v ∈ x, U(u, v) < 100

(1−2α)2
log n

δ }
Set U ′ = U \ F , G = Gcom(U ′), and L = ∅
for each connected component R of G do

Set L = L ∪DecideType(U, v, v) for any v ∈ R
end for
Set h = hG,L and S = sample( 10

(1−2α)2ε2
log k

δ , U
′)

while errS(h) > α+ 1−2α
2 ε do

for i = 1 to 100
ε log k

δ do
Set x = sample(1, S)
for each of min(k + 1, |x|1) variables v ∈ x do

Set L = L ∪DecideType(U, v, v)
end for
if ∃(u, 1), (v,−1) ∈ L such that u↔G v then

Set v = BinarySearchG,L(x)
Set G = G \ {v}
for each new component R of G do

Set L = L ∪DecideType(U, v, v) for v ∈ R
end for
Set h = hG,L
break

end if
end for
Set S = sample( 10

(1−2α)2ε2
log k

δ , U
′)

end while
Output: the hypothesis h

Proof. Generalization Error: Assuming the hypothesis is updated at most k times (proved

later), we bound the probability that the output hypothesis h has d(h, h∗) ≤ ε. We begin by

showing that the ignored examples F have small probability mass. When U is sufficiently

large, w.h.p. all pairs of variables that appear together with probability at least ε
8n2 will

appear in sufficiently many examples in U . Assuming this is true, we have

Pr[x ∈ F ] ≤ ε/8.

This means when d(h, h∗) > ε,

Pr[h(x) 6= h∗(x)|x ∈ X \ F ] > 3ε/4

and

Pr[h(x) 6= `(x)|x ∈ X \ F ] > α+ (1− 2α)
3ε

4
.

93



Then we have

Pr

[
errS(h) ≤ α+

1− 2α

2
ε

]
≤ δ

8k
.

Union bounding over the k updates, we have that w.h.p. the hypothesis h output has

d(h, h∗) ≤ ε, which leads to errD(h) ≤ α+ ε.

Correctness of Subroutine 6: Here we show that w.h.p. the majority voting method

always decides correctly the type of the indicators, so that we build and update the hypothesis

correctly. Fix a pair of variables (u, v) containing at least one indicator. Let Bu,v denote

the event that (u, v) appear in at least 100
(1−2α)2

log n
δ examples in U but the algorithm fails

to decide the type. This happens when the labels of more than half of the examples queried

are flipped. We have by Hoeffding bound

Pr[Bu,v] ≤ exp

{
−2(1− 2α)2 100

(1− 2α)2
log

n

δ

}
≤ δ

4n2

and thus Pr[∪u,vBu,v] ≤ δ
4 .

Queries per Stage: To build the hypothesis, we decide the type of one variable for

each connected component of G. The number of components is bounded by T , so here we

need O( T
(1−2α)2

log n
δ ) queries.

We now show that by using sufficient many queries at each check, we make sure that

when the hypothesis has large error a non-indicator is identified, so that the hypothesis is

updated at most k times. If d(h, h∗) ≤ ε/4, then

Pr[h(x) 6= h∗(x)|x ∈ X \ F ] ≤ ε/3

and thus

Pr[h(x) 6= `∗(x)|x ∈ X \ F ] ≤ α+ (1− 2α)
ε

3
.

Then w.h.p. when |S| = O( 1
(1−2α)2ε2

log k
δ ),

errS(h) ≤ α+
1− 2α

2
ε.

Therefore, if errS(h) > α + 1−2α
2 ε, we have d(h, h∗) ≥ ε/4. This means on at least ε/16

fraction of the examples in S we have h(x) 6= h∗(x). By sampling 100
ε log k

δ times from S and

then picking min(k + 1, |x|1) variables in the sampled x, w.h.p. we will eventually pick such
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an example, and pick at least one indicator in it, whose type is different from the nearest

indicator. Then we find a path connecting positive and negative indicators, and discover a

non-indicator by binary search. So we need

O

(
1

(1− 2α)2ε2
log

k

δ
+

k

(1− 2α)2ε
log

k

δ

)
queries each time we check and update the hypothesis.

Query Complexity and Running Time: Since when the hypothesis has large error

a non-indicator is identified, it is checked and updated at most k times. Then the number of

queries follows by bounding T by log |CD,χ(ε)|. Notice that T is the number of connected

components in Gcom(U \F ) (instead of Gcom(U)) after removing the non-indicators. However,

when U is sufficiently large, w.h.p. the probability mass of F is at most ε/8, i.e. all significant

edges appear in the graph, so we still have T ≤ log |CD,χ(ε)|. Building, checking and

updating the hypothesis all take polynomial time, so the algorithm runs in polynomial

time.

3.10 Discussion

One drawback of our semi-supervised algorithms is that their dependence on the minimum

non-indicator probability restricts the class of distributions under which they can be used for

learning. Additionally, the class of target concepts for which Algorithm 2 can efficiently learn

a consistent and compatible hypothesis is restricted, and the reduction given in Section 3.8

proves that some such restriction is necessary as the general problem is NP-hard. One

surprising result of our work is that both restrictions can be lifted entirely in the active

learning setting while improving label complexity at the same time. The ability to adaptively

query the labels of examples allows us to execute a strategy for identifying non-indicators

that would require too many labeled examples in the semi-supervised setting. While this

represents the first known example of how active learning can be used to avert computational

difficulties present in semi-supervised learning, it would be worthwhile to give more such

examples and to understand more generally when active learning provides this type of

advantage.

95



It is important to note that the problem of learning two-sided disjunctions can be viewed

as learning under a large-margin assumption. We can represent a two-sided disjunction

h as a linear threshold function h(x) = sign(wTx) where wi = +1 for positive indicators,

wi = −1 for negative indicators, and wi = 0 for each of the k non-indicators. If h is fully

compatible with the distribution D, it is straightforward to show that for every example

x ∼ D, |wTx|
‖ w ‖∞‖ x ‖1 ≥

1
k+1 , which corresponds to an L∞L1 margin of O(1/k). This is a

different notion of margin than the L2L2 margin appearing in the mistake bounds for the

Perceptron algorithm [79] and the L1L∞ margin appearing in the bounds for Winnow [63].

One interesting area of future work is to provide generic algorithms with bounds depending

on the L∞L1 margin.

96



CHAPTER IV

DISTRIBUTED CLUSTERING

4.1 Introduction

Most classic clustering algorithms are designed for the centralized setting, but in recent years

data has become distributed over different locations, such as distributed databases [74, 31],

images and videos over networks [65], surveillance [43] and sensor networks [30, 44]. In many

of these applications the data is inherently distributed because, as in sensor networks, it is

collected at different sites. As a consequence it has become crucial to develop clustering

algorithms which are effective in the distributed setting.

Several algorithms for distributed clustering have been proposed and empirically tested.

Some of these algorithms [41, 84, 36] are direct adaptations of centralized algorithms which

rely on statistics that are easy to compute in a distributed manner. Other algorithms [49, 54]

generate summaries of local data and transmit them to a central coordinator which then

performs the clustering algorithm. No theoretical guarantees are provided for the clustering

quality in these algorithms, and they do not try to minimize the communication cost.

Additionally, most of these algorithms assume that the distributed nodes can communicate

with all other sites or that there is a central coordinator that communicates with all other

sites.

In this chapter, we study the problem of distributed clustering where the data is

distributed across nodes whose communication is restricted to the edges of an arbitrary

graph. We provide algorithms with small communication cost and provable guarantees on

the clustering quality. Our technique for reducing communication in general graphs is based

on the construction of a small set of points which act as a proxy for the entire data set.

An ε-coreset is a weighted set of points whose cost on any set of centers is approximately

the cost of the original data on those same centers up to accuracy ε. Thus an approximate

solution for the coreset is also an approximate solution for the original data. We first propose
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a distributed algorithm for k-means and k-median, by which each node constructs a local

portion of a global coreset. Communicating the approximate cost of a global solution to

each node is enough for the local construction, leading to low communication cost overall.

The nodes then share the local portions of the coreset, which can be done efficiently in

general graphs using a message passing approach. Coresets have previously been studied in

the centralized setting ([48, 39]) but have also recently been used for distributed clustering

as in [88] and as implied by [39].

In Section 4.4, we propose a distributed coreset construction algorithm based on local

approximate solutions. Each node can construct the local portion of a coreset using only its

local data and the total weight of each node’s approximation. For ε constant, this builds a

coreset of size Õ(kd + nk) for k-median and k-means when the data lies in d dimensions

and is distributed over n sites. Building on the distributed coreset construction algorithm,

we propose an algorithm for distributed clustering over general connected graphs. The size

of the constructed coreset is independent of the communication network topology. This

improves over the work of [88] which builds coresets whose size depends on the height of a

rooted tree.1 [40] also merge coresets together using coreset construction, but they do so in

a model of parallel computation and ignore communication costs.

Comparison to Other Coreset Algorithms: Since coresets summarize local infor-

mation they are a natural tool to use when trying to reduce communication complexity. If

each node constructs an ε-coreset on its local data, then the union of these coresets is clearly

an ε-coreset for the entire dataset. Unfortunately the size of the coreset using this natural

approach increases greatly with the number of nodes. More sophisticated approaches, such

as [88] reduce the size of the global coreset by approximating the union of local coresets

with another coreset. They assume nodes communicate over a rooted tree, with each node

passing its coreset to its parent. Because the approximation factor of the constructed coreset

depends on the quality of its component coresets, the accuracy a coreset needs (and thus the

overall communication complexity) scales with the height of this tree. Although it is possible

1Their result depended on older coreset constructions, with larger size. Throughout this chapter, when we
compare to [88] we assume they use the coreset construction technique of [39] to reduce their coreset size and
communication cost.
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Figure 6: (a) Each node computes a coreset on the weighted pointset for its own data and
its subtrees’ coresets. (b) Local constant approximation solutions are computed, and the
costs of these solutions are used to coordinate the construction of a local portion on each
node.

to find a spanning tree in any communication network, when the graph has large diameter

every tree has large height. In particular many natural networks such as grid networks have

a large diameter (Ω(
√
n) for grids) which greatly increases the size of coresets which must

be communicated across the lower levels of the tree.

We show that it is possible to construct a global coreset with low communication overhead.

This is done by distributing the coreset construction procedure rather than combining local

coresets. The communication needed to construct this coreset is negligible — just a single

value from each data set representing the approximate cost of their local optimal clustering.

Since the sampled global ε-coreset is the same size as any local ε-coreset, this leads to an

improvement of the communication cost over the other approaches. See Figure 6 for an

illustration.

The constructed coreset is smaller by a factor of n in general graphs, and is independent

of the underlying communication topology. This method excels in sparse networks with

large diameters, where the previous approaches require coresets that are quadratic in the

size of the diameter for k-median and quartic for k-means.

4.2 Related Work

Many empirical algorithms adapt the centralized algorithms to the distributed setting.

They generally provide no bound for the clustering quality or the communication cost. For
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instance, a technique is proposed in [41] to adapt several iterative center-based data clustering

algorithms including Lloyd’s algorithm for k-means to the distributed setting, where sufficient

statistics instead of the raw data are sent to a central coordinator. This approach involves

transferring data back and forth in each iteration, and thus the communication cost depends

on the number of iterations. Similarly, the communication costs of the distributed clustering

algorithms proposed in [36] and [84] depend on the number of iterations. Some other

algorithms gather local summaries and then perform global clustering on the summaries.

The distributed density-based clustering algorithm in [49] clusters and computes summaries

for the local data at each node, and sends the local summaries to a central node where the

global clustering is carried out. This algorithm only considers the flat two-tier topology.

Some in-network aggregation schemes for computing statistics over distributed data are

useful for such distributed clustering algorithms. For example, an algorithm is provided

in [30] for approximate duplicate-sensitive aggregates across distributed data sets, such as

SUM. An algorithm is proposed in [44] for power-preserving computation of order statistics

such as quantile.

As mentioned previously, several coreset construction algorithms have been proposed

for k-median, k-means and k-line median clustering [48, 27, 47, 61, 39]. For example, the

algorithm in [39] constructs a coreset of size Õ(kd/ε2) whose cost approximates that of the

original data up to accuracy ε with respect to k-median in Rd. All of these algorithms

consider coreset construction in the centralized setting, while our construction algorithm is

for the distributed setting.

There has also been work attempting to parallelize clustering algorithms. [40] showed that

coresets could be constructed in parallel and then merged together. In Scalable k-means++, [5]

adapted k-means++ to the parallel setting. In this setting a centralized problem is broken

up and distributed to several processors with the aim of reducing computation time. In

contrast to the distributed setting, the communication costs are ignored.

There is also related work on clustering on samples [16]. They study the approach of

obtaining an approximation solution by clustering only a sample drawn i.i.d. from the data.

For k-median, with a sample of size Õ( k
ε2

), they obtain a solution with an average cost
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bounded by twice that of the optimal average cost plus an error bound ε. If we convert it to

a multiplicative approximation factor, the factor depends on the optimal average cost. When

the optimal average cost is small, the factor becomes large. This happens when there are

outlier points far away from all other points. In this case, after normalization, the average

cost can be very small, and no good approximation factor is available. The coreset approach

provides better guarantees. Additionally, their approach is not applicable to k-means.

4.3 Preliminaries

Let d(p, q) denote the Euclidean distance between any two points p, q ∈ Rd. The goal of k-

means clustering is to find a set of k centers x = {x1, x2, . . . , xk} which minimize the k-means

cost of data set P ⊆ Rd. Here the k-means cost is defined as cost(P,x) =
∑

p∈P d (p,x)2

where d(p,x) = minx∈x d(p, x). If P is a weighted data set with a weighting function w, then

the k-means cost is defined as
∑

p∈P w(p)d (p,x)2. Similarly, the k-median cost is defined

as
∑

p∈P d(p,x). Both k-means and k-median cost functions are known to be NP-hard to

minimize, so we generally aim at approximation solutions.

In the distributed clustering task, we consider a set of n nodes V = {vi, 1 ≤ i ≤ n} which

communicate on an undirected connected graph G = (V,E) with m = |E| edges. More

precisely, an edge (vi, vj) ∈ E indicates that vi and vj can communicate with each other.

Here we measure the communication cost in number of points transmitted, and assume

for simplicity that there is no latency in the communication. On each node vi, there is a

local set of data points Pi, and the global data set is P =
⋃n
i=1 Pi. The goal is to find a set

of k centers x which optimize cost(P,x) while keeping the computation efficient and the

communication cost as low as possible. Our focus is to reduce the total communication cost

while preserving theoretical guarantees for approximating clustering cost.

4.3.1 Coresets

For the distributed clustering task, a natural approach to avoid broadcasting raw data is to

generate a local summary of the relevant information. If each site computes a summary for

their own data set and then communicates this to a central coordinator, a solution can be

computed from a much smaller amount of data, drastically reducing the communication.
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In the centralized setting, the idea of summarization with respect to the clustering task

is captured by the concept of coresets [48, 39]. A coreset is a set of points, together with a

weight for each point, such that the cost of this weighted set approximates the cost of the

original data for any set of k centers. The formal definition of coresets is:

Definition 5 (coreset). An ε-coreset for a set of points P with respect to a center-based

cost function is a set of points S and a set of weights w : S → R such that for any set of

centers x,

(1− ε)cost(P,x) ≤
∑
p∈S

w(p)cost(p,x) ≤ (1 + ε)cost(P,x).

In the centralized setting, many coreset construction algorithms have been proposed for

k-median, k-means and some other cost functions. For example, for points in Rd, algorithms

in [39] construct coresets of size t = Õ(kd/ε4) for k-means and coresets of size t = Õ(kd/ε2)

for k-median. In the distributed setting, it is natural to ask whether there exists an algorithm

that constructs a small coreset for the entire point set but still has low communication cost.

Note that the union of coresets for multiple data sets is a coreset for the union of the data sets.

The immediate construction of combining the local coresets from each node would produce

a global coreset whose size was larger by a factor of n, greatly increasing the communication

complexity. We present a distributed algorithm which constructs a global coreset the same

size as the centralized construction and only needs a single value2 communicated to each

node. This serves as the basis for our distributed clustering algorithm.

4.4 Distributed Coreset Construction

In this section, we design a distributed coreset construction algorithm for k-means and

k-median. Note that the underlying technique can be extended to other additive clustering

objectives such as k-line median.

To gain some intuition on the distributed coreset construction algorithm, we briefly

review the coreset construction algorithm in [39] in the centralized setting. The coreset is

constructed by computing a constant approximation solution for the entire data set, and then

2The value that is communicated is the sum of the costs of approximations to the local optimal clustering.
This is guaranteed to be no more than a constant factor times larger than the optimal cost.
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sampling points proportional to their contributions to the cost of this solution. Intuitively,

the points close to the nearest centers can be approximately represented by the nearest

centers while points far away cannot be well represented. Thus, points should be sampled

with probability proportional to their contributions to the cost.

Directly adapting the algorithm to the distributed setting would require computing a

constant approximation solution for the entire data set. We show that a global coreset can

be constructed in a distributed fashion by estimating the weight of the entire data set with

the sum of local approximations. With this approach, it suffices for nodes to communicate

the total costs of their local solutions.

Algorithm 8 Distributed coreset construction

1: Input: t, {Pi, 1 ≤ i ≤ n}.
2: Round 1: on each node vi ∈ V
3: Compute a constant approximation Bi for Pi;

communicate cost(Pi, Bi) to all other nodes.
4: Round 2: on each node vi ∈ V
5: Set ti = t cost(Pi,Bi)∑n

j=1 cost(Pj ,Bj)
and mp = cost(p,Bi),∀p ∈ Pi.

6: Pick a non-uniform random sample Si of ti points from Pi, where for every q ∈ Si and

p ∈ Pi, we have q = p with probability mp/
∑

q∈Pimq. Let wp =

∑
i

∑
q∈Pi

mq

tmp
for each

p ∈ Si.
7: For ∀b ∈ Bi, let Pb = {p ∈ Pi : d(p, b) = d(p,Bi)}, wb = |Pb| −

∑
p∈Pb∩Si wp.

8: Output: Si ∪Bi, {wp : p ∈ Si ∪Bi}, 1 ≤ i ≤ n.

Theorem 19. For distributed k-means and k-median clustering on a graph, there exists

an algorithm such that with probability at least 1− δ, the union of its output on all nodes

is an ε-coreset for P =
⋃n
i=1 Pi. The size of the coreset is O( 1

ε4
(kd + log 1

δ ) + nk log nk
δ )

for k-means, and O( 1
ε2

(kd+ log 1
δ ) + nk) for k-medians. The total communication cost is

O(mn).

The distributed coreset construction algorithm for k-means and k-median is described in

Algorithm 8. Note that there are various constant approximation algorithms available for

computing local solutions [53, 62]. In the following subsections, we show that the algorithm

constructs a coreset for the global data. We focus on the analysis for k-median, and provide

a proof sketch for k-means since the key ideas are similar.
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4.4.1 Proof of Theorem 19: k-median

The analysis relies on the definition of the dimension of a function space and a sampling

lemma.

Definition 6 ([39]). Let H be a finite set of functions from a set X to R≥0. Let range(H,x, r) =

{h ∈ H : h(x) ≤ r}. The dimension of the function space dim(H,X) is the smallest integer

d such that for any G ⊆ H,
∣∣{G ∩ range(H,x, r) : x ∈ X, r ≥ 0}

∣∣ ≤ |G|d.
To interpret this, let us investigate a closely related concept class. For points p ∈ Rd, let

Ix,r(p) be 1 if d(x, p) ≤ r and -1 otherwise. Equivalently, for a given set of centers x and

radius r, a point is marked as positive if it closer than r to one of the centers.

If the functions hp in H are indexed by points p ∈ P such that h(x) := min d(x, p), (as

in our problem) then the dimension dim(H,X) is closely related to the number of ways P

can be split using concepts from I. In particular we have dim(H,X) = Θ(VC-Dim(I)).

Lemma 9. Fix a set H of functions hp : X→ R≥0, a set of weights mp ∈ R>0 for p ∈ P . Let

S be a sample drawn i.i.d. from P where each p is sampled with probability
mp∑
q∈P mq

, and let

wp =
∑
q∈P mq
mp|S| for p ∈ S. If for a sufficiently large c, |S| ≥ c

ε2

(
dim(H,X) + log 1

δ

)
then with

probability at least 1−δ, ∀x ∈ X:
∣∣∣∑p∈P hp(x)−

∑
p∈S wphp(x)

∣∣∣ ≤ εmaxp∈P
hp(x)
mp

∑
q∈P mq.

Intuitively, the sample are weighted such that the expected sum of weights of the sample

equals the total sum of weights. (The proof of the lemma is deferred to the Section 4.4.3.) To

apply the lemma, we note that the bound provided depends on two terms: maxp∈P
hp(x)
mp

and∑
q∈P mq. Ideally, we want maxp∈P

hp(x)
mp

to be bounded and
∑

q∈P mq to be small. If we

could choose mp = hp(x), then the bound would be ε
∑

p hp(x), which means the weighted

cost of the sample approximates the original cost up to ε factor. However, mp should be

independent of x. A better strategy is to choose mp to be the upper bound for hp(x), then

the bound is ε
∑

q∈P mq. The key now becomes to design hp(x) with suitable upper bounds

for our problems, i.e. we should choose hp(x) such that its value does not vary much with x.

We now consider applying the lemma to the k-median problem by choosing suitable {hp}

and {mp}. First, note that we cannot apply this lemma directly to the cost, since a suitable
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upper bound is not available by choosing hp(x) := cost(p,x). We therefore consider the local

approximation solutions. Let bp denote the closest center to p, then cost(bp,x) will be close

to cost(p,x). We now aim to approximate the error
∑

p[cost(p,x)− cost(bp,x)], rather than

to approximate
∑

p cost(p,x) directly. More precisely, let hp(x) := cost(p,x)− cost(bp,x) +

cost(p, bp), where cost(p, bp) is added so that hp ≥ 0. We apply the lemma to hp(x) and

mp = cost(p, bp). Since 0 ≤ hp ≤ 2cost(p, bp), the lemma bounds the difference between the

cost of hp and its sampled cost by 2ε
∑

p∈P cost(p, bp), so we have an O(ε)-approximation.

Second, note that the difference between the cost of {hp} and the cost of the sampled

{hp} is not the same as the difference between the true cost and the cost of the sampled

points. We show that the gap depends only on the costs of the approximation points {bp},

i.e.

∑
p∈P

hp(x)−
∑
p∈S

wphp(x) =
∑
p∈P

cost(p, x)−
∑
p∈S

wpcost(p, x)− f({cost(bp, x)}).

The centers are then weighted and added to the coreset, leading to an approximation

good for every set of centers.

In the following, we provide a formal verification of our discussion above. We have the

following lemma for k-median with H = {hp : hp(x) = d(p,x)− d(bp,x) + d(p, bp), p ∈ P}.

Lemma 10. For k-median, the output of Algorithm 8 is an ε-coreset with probability at

least 1− δ, if t ≥ c
ε2

(
dim(H,

(
Rd
)k

) + log 1
δ

)
for a sufficiently large constant c.

Proof. We want to show that for any set of centers x the true cost for using these centers is

well approximated by the cost on the weighted coreset. Note that our coreset has two types

of points: sampled points p ∈ S = ∪ni=1Si with weight wp :=
∑
q∈P mq
mp|S| and local solution

centers b ∈ B = ∪ni=1Bi with weight wb := |Pb| −
∑

p∈S∩Pb wp. We use bp to represent the

nearest center to p in the local approximation solution. We use Pb to represent the set of

points which have b as their closest center in the local approximation solution.

As mentioned above, we construct hp to be the difference between the cost of p and the

cost of bp so that Lemma 9 can be applied to hp. Note that 0 ≤ hp(x) ≤ 2d(p, bp) by triangle

inequality, and S is sufficiently large and chosen according to weights mp = d(p, bp), so the
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conditions of Lemma 9 are met. Then we have

D =

∣∣∣∣∣∑
p∈P

hp(x)−
∑
p∈S

wphp(x)

∣∣∣∣∣ ≤ εmax
p∈P

hp(x)

mp

∑
q∈P

mq

≤2ε
∑
q∈P

mq = 2ε
∑
p∈P

d(p, bp) = 2ε

n∑
i=1

d(Pi, Bi) ≤ O(ε)
∑
p∈P

d(p,x)

where the last inequality follows from the fact that Bi is a constant approximation solution

for Pi.

Next, we show that the coreset is constructed such that D is exactly the difference

between the true cost and the weighted cost of the coreset, which then leads to the lemma.

Note that the centers are weighted such that

∑
b∈B

wbd(b,x) =
∑
b∈B
|Pb|d(b,x)−

∑
b∈B

∑
p∈S∩Pb

wpd(b,x) =
∑
p∈P

d(bp,x)−
∑
p∈S

wpd(bp,x). (5)

Also note that
∑

p∈P mp =
∑

p∈S wpmp, so

D =

∣∣∣∣∣∑
p∈P

[d(p,x)− d(bp,x) +mp]−
∑
p∈S

wp [d(p,x)− d(bp,x) +mp]

∣∣∣∣∣
=

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
p∈S

wpd(p,x)−
[∑
p∈P

d(bp,x)−
∑
p∈S

wpd(bp,x)

]∣∣∣∣∣. (6)

By plugging (5) into (6), we have

D =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
p∈S

wpd(p,x)−
∑
b∈B

wbd(b,x)

∣∣∣∣∣ =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑

p∈S∪B
wpd(p,x)

∣∣∣∣∣
which implies the lemma.

In [39] it is shown that dim(H,
(
Rd
)k

) = O(kd). Therefore, by Lemma 10, when

|S| ≥ O
(

1
ε2

(kd+ log 1
δ )
)
, the weighted cost of S∪B approximates the k-median cost of P for

any set of centers, then (S∪B,w) becomes an ε-coreset for P . The total communication cost

is bounded by O(mn), since even in the most general case that every node only knows its

neighbors, we can broadcast the local costs with O(mn) communication (see Algorithm 10).

4.4.2 Proof of Theorem 19: k-means

We have for k-means a similar lemma that when t = O
(

1
ε4

(kd+ log 1
δ ) + nk log nk

δ

)
, the

algorithm constructs an ε-coreset with probability at least 1− δ. The key idea is the same
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as that for k-median: we use centers {bp} from the local approximation solutions as an

approximation to the original data {p}, and show that the error between the total cost and

the weighted sample cost is approximately the error between the cost of hp and its sampled

cost (compensated by the weighted centers), which is shown to be small by Lemma 9.

The key difference between k-means and k-median is that triangle inequality applies

directly to the k-median cost. In particular, for the k-median problem note that cost(bp, p) =

d(bp, p) is an upper bound for the error of bp on any set of centers, i.e. ∀x ∈ (Rd)
k
,

d(bp, p) ≥ |d(p,x)− d(bp,x)| = |cost(p,x)− cost(bp,x)| by triangle inequality. Then we can

construct hp(x) := cost(p,x)− cost(bp,x) + d(bp, p) such that hp(x) is bounded. In contrast,

for k-means, the error |cost(p,x) − cost(bp,x)| = |d(p,x)2 − d(bp,x)2| does not have such

an upper bound. The main change to the analysis is that we divide the points into two

categories: good points whose costs approximately satisfy the triangle inequality (up to a

factor of 1/ε) and bad points. The good points for a fixed set of centers x are defined as

G(x) = {p ∈ P : |cost(p,x)− cost(bp,x)| ≤ ∆p}

where the upper bound is ∆p =
cost(p,bp)

ε . Good points we can bound as before. For bad

points we can show that while the difference in cost may be larger than cost(p, bp)/ε, it must

still be small, namely O(εmin{cost(p,x), cost(bp,x)}).

Formally, the functions hp are restricted to be defined only over good points:

hp =


cost(p,x)− cost(bp,x) + ∆p if p ∈ G(x),

0 otherwise.

Then
∑

p∈P cost(p,x)−
∑

p∈S∪B wpcost(p,x) is decomposed into three terms:

∑
p∈P

hp(x)−
∑
p∈S

wphp(x) (7)

+
∑

p∈P\G(x)

[cost(p,x)− cost(bp,x) + ∆p] (8)

−
∑

p∈S\G(x)

wp[cost(p,x)− cost(bp,x) + ∆p] (9)

Lemma 9 bounds (7) by O(ε)cost(P,x), but we need an accuracy of ε2 to compensate for

the 1/ε factor in the upper bound, resulting in a O(1/ε4) factor in the sample complexity.
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We begin by bounding (8). Note that for each term in (8), |cost(p,x)− cost(bp,x)| > ∆p

since p 6∈ G(x). Furthermore, p 6∈ G(x) only when p and bp are close to each other

and far away from x. In Lemma 11 we use this to show that |cost(p,x) − cost(bp,x)| ≤

O(ε) min{cost(p,x), cost(bp,x)}.

Using this, (8) can be bounded by O(ε)
∑

p∈P\G(x) cost(p,x) ≤ O(ε)cost(P,x).

Similarly, by the definition of ∆p and Lemma 11, (9) is bounded by

(9) ≤
∑

p∈S\G(x)

2wp|cost(p,x)− cost(bp,x)| ≤ O(ε)
∑

p∈S\G(x)

wp cost(bp,x)

≤ O(ε)
∑
b∈B

 ∑
p∈Pb∩S

wp

 cost(b,x).

Note that the expectation of
∑

p∈Pb∩S wp is |Pb|. By a sampling argument (Lemma 12), if t ≥

O(nk log nk
δ ), then

∑
p∈Pb∩S wp ≤ 2|Pb|. Then (9) is bounded by O(ε)

∑
b∈B cost(b,x)|Pb| =

O(ε)
∑

p∈P cost(bp,x) where
∑

p∈P cost(bp,x) is at most a constant factor more than the

optimum cost.

Since each of (7), (8), and (9) is O(ε)cost(P,x), we know that their sum is the same

magnitude. Combining the above bounds, we have
∣∣∣cost(P,x)−

∑
p∈S∪B wpcost(p,x)

∣∣∣ ≤
O(ε)cost(P,x). The proof is then completed by choosing a suitable ε, and bounding

dim(H, (Rd)
k
) = O(kd) as in [39].

4.4.3 Proof of Lemmas

The proof of Lemma 9 follows from the analysis in [39], although not explicitly stated there.

We begin with the following theorem for uniform sampling on a function space.

Theorem 20 (Theorem 6.9 in [39]). Let F be a set of functions from X to R≥0, and let

ε ∈ (0, 1). Let S be a sample of

|S| = c

ε2
(dim(F,X) + log

1

δ
)

i.i.d items from F , where c is a sufficiently large constant. Then, with probability at least

1− δ, for any x ∈ X and any r ≥ 0,∣∣∣∣∣
∑

f∈F,f(x)≤r f(x)

|F |
−
∑

f∈S,f(x)≤r f(x)

|S|

∣∣∣∣∣ ≤ εr.
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Proof of Lemma 9. Without loss of generality, assume mp ∈ N+. Define G as follows:

for each hp ∈ H, include mp copies of hp/mp in G. Then S is equivalent to a sample

draw i.i.d. and uniformly at random from G. We now apply Theorem 20 on F = G and

r = maxg∈G g(x). By Theorem 20, we know that for any x and any r ≥ 0,∣∣∣∣
∑

g∈G g(x)

|G|
−
∑

g∈S g(x)

|S|

∣∣∣∣ ≤ εmax
g∈G

g(x). (10)

The lemma then follows from multiplying both sides of (10) by |G| =
∑

p∈P mp. Also note

that the dimension of G is the same as that of H.

Lemma 11. If d(p, bp)
2/ε ≤ |d(p,x)2 − d(bp,x)2|, then

|d(p,x)2 − d(bp,x)2| ≤ 8εmin{d(p,x)2, d(bp,x)2}.

Proof. We first have by triangle inequality

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)].

Then by d(p, bp)
2/ε ≤ |d(p,x)2 − d(bp,x)2|,

d(p, bp) ≤ ε[d(p,x) + d(bp,x)].

Therefore, we have

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)] ≤ ε[d(p,x) + d(bp,x)]2

≤ 2ε[d(p,x)2 + d(bp,x)2] ≤ 2ε[d(p,x)2 + (d(p,x) + d(p, bp))
2]

≤ 2ε[d(p,x)2 + 2d(p,x)2 + 2d(p, bp)
2] ≤ 6εd(p,x)2 + 4εd(p, bp)

2

≤ 6εd(p,x)2 + 4ε2|d(p,x)2 − d(bp,x)2|

for sufficiently small ε. Then

|d(p,x)2 − d(bp,x)2| ≤ 6ε

1− 4ε2
d(p,x)2 ≤ 8εd(p,x)2.

Similarly, we have |d(p,x)2 − d(bp,x)2| ≤ 8εd(bp,x)2. The lemma follows from the last two

inequalities.
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Lemma 12 (Corollary 15.3 in [39]). Let 0 < δ < 1/2, and t ≥ c|B| log |B|δ for a sufficiently

large c. Then with probability at least 1− δ,

∀b ∈ B,
∑

p∈Pb∩S
wb ≤ 2|Pb|.

4.5 Effect of Network Topology on Communication Cost

We now apply our distributed coreset construction algorithm to distributed clustering

tasks where the nodes are arranged in some arbitrary connected topology, and can only

communicate with their neighbors. We propose a message passing approach for globally

sharing information, and use it for collecting information for coreset construction and sharing

the local portions of the coreset.The details are presented in Algorithm 9.

Algorithm 9 Distributed clustering on a graph

1: Input: {Pi}, {Ni},Aα. Here Ni is the neighbors of vi, and Aα is a α-approximation
algorithm for weighted clustering instances.

2: Round 1: on each node vi
3: Construct its local portion Di of an ε/2-coreset by Algorithm 8, using Message-Passing

for communicating the local costs.
4: Round 2: on each node vi
5: Call Message-Passing(Di, Ni).
6: x = Aα(

⋃
j Dj).

7: Output: x

Algorithm 10 Message-Passing(Ii, Ni)

1: Input: Ii is the message, Ni are the neighbors.
2: Let Ri denote the information received
3: Initialize Ri = {i}. Send Ii to all the neighbors.
4: While Ri 6= [n]:

If receive message Ij ,
Ri = Ri ∪ {j} and send Ij to all the neighbors.

4.5.1 General Graphs

We now present the main result for distributed clustering on graphs.

Theorem 21. Given an α-approximation algorithm for weighted k-means (k-median re-

spectively) as a subroutine, there exists an algorithm that with probability at least 1 − δ

outputs a (1 + ε)α-approximation solution for distributed k-means (k-median respectively)
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clustering. The total communication cost is O(m( 1
ε4

(kd+ log 1
δ ) + nk log nk

δ )) for k-means,

and O(m( 1
ε2

(kd+ log 1
δ ) + nk)) for k-median.

Proof. By Theorem 19, the output of Algorithm 8 is a coreset. Observe that in Algorithm 10,

for any j, Ij propagates on the graph in a breadth-first-search style, so at the end every

node receives Ij . This holds for all 1 ≤ j ≤ n, so all nodes has a copy of the coreset at the

end, and thus the output is a (1 + ε)α-approximation solution.

Also observe that in Algorithm 10, for any node vi and j ∈ [n], vi sends out Ij once, so

the communication of vi is |Ni| ×
∑n

j=1 |Ij |. The communication cost of Algorithm 10 is

O(m
∑n

j=1 |Ij |). Then the total communication cost of Algorithm 9 follows from the size of

the coreset constructed.

In contrast, an approach where each node constructs an ε-coreset for k-means and sends

it to the other nodes incurs communication cost of Õ(mnkd
ε4

). Our algorithm significantly

reduces this.

4.5.2 Rooted Trees

Our algorithm can also be applied on a rooted tree, and compares favorably to other

approaches involving coresets [88]. We can restrict message passing to operating along this

tree, leading to the following theorem for this special case.

Theorem 22. Given an α-approximation algorithm for weighted k-means (k-median respec-

tively) as a subroutine, there exists an algorithm that with probability at least 1− δ outputs a

(1 + ε)α-approximation solution for distributed k-means (k-median respectively) clustering on

a rooted tree of height h. The total communication cost is O(h( 1
ε4

(kd+ log 1
δ ) + nk log nk

δ ))

for k-means, and O(h( 1
ε2

(kd+ log 1
δ ) + nk)) for k-median.

Proof. We can construct the distributed coreset using Algorithm 8. In the construction,

the costs of the local approximation solutions are sent from every node to the root, and

the sum is sent to every node by the root. After the construction, the local portions of the

coreset are sent from every node to the root. A local portion Di leads to a communication

cost of O(|Di|h), so the total communication cost is O(h
∑n

i=1 |Di|). Once the coreset is
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constructed at the root, the α-approximation algorithm can be applied centrally, and the

results can be sent back to all nodes.

Our approach improves the cost of Õ(nh
2kd
ε2

) for k-median in [88] 3.

In a general graph, any rooted tree will have its height h at least as large as half the

diameter. For sensors in a grid network, this implies h = Ω(
√
n). In this case, our algorithm

gains a significant improvement over existing algorithms.

3Their algorithm used coreset construction as a subroutine. The construction algorithm they used builds
coreset of size Õ(nkh

εd
log |P |). For fair comparison, here we assume it uses state-of-the-art coreset construction.
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CHAPTER V

SUBMODULAR OPTIMIZATION

5.1 Introduction

Many situations have the property of diminishing marginal returns. In economics, this is a

common assumption for agent’s utility. Coverage functions exhibit this property, as do cut

functions in graphs. Functions on a ground set with this property are called submodular.

As submodular functions are so useful, a wide variety of forms of submodular optimization

have been extensively studied. While unconstrained submodular minimization is polytime

feasible, submodular maximization in general is hard. There are a wide variety of submodular

optimization problems. These can involve problems addressing various types of constraints

that might affect submodular optimization. In this chapter we focus on monotone submodular

maximization subject to cardinality constraints.

We are also concerned with distributed optimization. In particular, we consider optimiza-

tion problems where the objective is the sum of individual submodular functions. Note that

the sum (or other submodular combination) of submodular functions is again submodular.

This formulation is especially natural when each agent has a submodular utility function,

and we view the sum of all utilities as the social welfare.

Clustering can be viewed as a submodular optimization problem. The distance from a

point to a set of centers is a submodular function. A group of agents who have their own

point (or set of points) each have a clustering cost that is a submodular function and the

sum of these is also a submodular function. Thus the problem of the previous section fits

into this framework of distributed submodular optimization. The primary difference is that

clustering is a minimization problem rather than a maximization one.

Consider a group of people who jointly are working together throwing a party. They

need to coordinate on a food budget, but each person has their own dietary preferences.

How do they optimize their purchasing to optimize happiness and minimize communication?
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Everyone has a utility function and we want to maximize the sum of these utility functions.

This type of problem, submodular maximization subject to a cardinality constraint, is

hard even in a centralized setting. Nevertheless, there are approximations; a simple greedy

algorithm repeatedly picking the item with the highest marginal benefit achieves a 1− 1/e

approximation.

The question we address in this chapter is how to achieve such an approximation

guarantee without incurring a large communication cost.

5.2 Related Work

There has been a long history of constrained submodular maximization, even restricting our

attention to monotone submodular maximization subject to cardinality constraints. The

classic work of Nemhauser et al. [71] showed that a simple greedy algorithm achieved a

(1− 1/e) bound (and showed that this approximation factor was tight).

Our work primarily follows Badanidiyuru and Vondrak [4] who developed a thresholded

greedy algorithm that does not depend on the rank.

5.3 Preliminaries

A real valued function on subsets of some ground set V is called a set function. Without

loss of generality, we consider set functions where f(∅) = 0. A set function f : 2V → R is

said to be submodular if, for all A,B ⊆ V ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Equivalently, f is submodular if for all A ⊆ B ⊆ V and e ∈ V, e /∈ B, f(A+ {e})− f(A) ≥

f(B+{e})−f(B). Intuitively this says that f has diminishing returns — adding an element

to a set gives less value as the set gets larger.

A submodular function f is called monotone if for all A ⊆ B ⊆ V , f(A) ≤ f(B). In

other words, adding an item into a set cannot decrease the value.

We shall often be interested in talking about the change in utility functions when

adding some particular element to a set. For a submodular function f we define f(x|S) :=
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f({x} ∪ S)− f(S). This is sometimes called the discrete derivative[60, 86]. It thus makes

sense to say that f is `-Lipschitz if the discrete derivative is bounded by some constant `.

We shall refer to each node’s portion of the overall submodular function as the utility

function of that node. Assume that each node’s utility function is `-Lipschitz.

Problem (Distributed Submodular Maximization with Cardinality Constraints). There is

a ground set on m elements. Each of n nodes have a personal utility function fi(S) which is

a monotone, submodular function which is `-Lipschitz.

We wish to find S which maximizes the social welfare f(S) :=
∑

i≤n fi(S), subject to the

constraint that |S| ≤ k. This problem is hard so we shall be content with a constant factor

approximation. Additionally, we wish to minimize the communication cost used to generate

the answer.

5.4 Our Algorithm

It is also possible to distribute the original greedy algorithm. At each step, a coordinator

simply asks each person at what their relative gain is for each element in the base set. This

has communication cost m · n · k, and achieves the same accuracy as the centralized greedy

approximation.

We can modify the algorithm of Badanidiyuru and Vondrak [4] for cardinality constrained

submodular maximization, to apply to the distributed setting. The main difference is that

we estimate the overall value of adding a particular item by randomly sampling a subset of

nodes.

Theorem 23. With probability 1−δ, algorithm produces a 1−1/e−ε approximation to Prob-

lem 1, with a total communication cost of 1
ε3
m
(
log 1

δ + log 1
ε + logm

)
· mε (log n+ log 1/ε).

The proof, like the algorithm, follows the outline of [4]. The main idea is that when

we select an element to add to our set, we guarantee an increase of social welfare that is

a sizable fraction of OPT. We need two lemmas. The first lemma probabilistically ensures

that our sample value is accurate, in other words that (1− ε)fS(x) ≤ f̂S(x) ≤ fS(x)
1−ε for each

of our 1
ε3
m
(
log 1

δ + log 1
ε + logm

)
· mε (log n+ log 1/ε) calls to the subroutine SAMPLE. The
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Algorithm 11 Distributed Greedy via Thresholds

S ← ∅
w ← maxx∈U SAMPLE(x|∅)
while w ≥ ε/m do

for x ∈ U − S do
if SAMPLE(x) > w then
S ← S ∪ {x}
if |S| = k then

return S
end if

end if
w ← w(1− ε)

end for
end while
return S

Algorithm 12 SAMPLE(x|S)

t = 0
for i from 1 to Õ

(
1
ε3
m
)

do
Choose node j ∈ N uniformly
t← t+ fj(x|S)

end for
return t/O

(
1
ε3
m
(
log 1

δ + log 1
ε + logm

))
·N

second lemma observes that whenever we add an element into our set, it must be reasonable

compared to all the elements of OPT that we could have chosen instead. (This is analogous

to Claim 3.1 of [4].)

We shall say a call to SAMPLE succeeds if the following holds:

Lemma 13. With probability 1− δ, each of the m
ε (log n+ log 1/ε) calls to SAMPLE succeeds.

This is a standard application of a multiplicative Chernoff bound. We will consider a

single call to SAMPLE and show that it fails with probability at most δ/ns, where ns is the

number of calls to SAMPLE. We prove this by a Chernoff bound, and then apply a union

bound to show that all calls to sample succeed.

Note that a success here means that our approximation f̂ (x|Si−1) is within a multiplica-

tive factor of (1 + ε) of the true value f (x|Si−1).

Proof. Consider a single call to SAMPLE. Note that each of the O
(

1
ε3
m
(
log 1

δ + log 1
ε + logm

))
steps is an i.i.d. random variable with expected value f(x|S)/n. We wish to apply a
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multiplicative Chernoff bound, but because the bound depends on the value of f(x|S) we

must separate the cases where f(x|S) is negligible.

The cases where f(x|S) ≥ ε
m we use a multiplicative Chernoff Bound, and bound the

expectation within a factor of
(
1 + ε

m

)
. On the other hand, when f(x|S) is quite small (as

in ≤ ε/m), it suffices to guarantee that the sampled value does not exceed its expectation

by more than a constant value.

Lemma 14. Let us denote the ith element added by xi. Let O be an optimal solution. The

gain of the algorithm on the ith element is f(xi|Si−1) ≥ (1−ε)3
r

∑
a∈O−S f(a|S).

Proof. Let the threshold when xi is added be w. Since xi was added we know that

f̂ (xi|Si−1) ≥ w. Thus by Lemma 13, we know that

f (xi|Si−1) ≥ w(1− ε). (11)

On the other hand, let us consider elements a ∈ O − S. These elements were not chosen

when the threshold was one level higher — thus f̂ (a|Si−1) ≤ w
1−ε .

1

Thus for each a ∈ O − S, we know that

f (a|Si−1) ≤ f̂ (a|Si−1)
1

1− ε
≤ w

(1− ε)2 (12)

Combining the above equations, we observe that f (xi|Si−1) ≥ w(1−ε) ≥ f (a|Si−1) (1− ε)3.

But this holds true for each a ∈ O − S, so we now simply average over all of the them. We

conclude that

f (xi|Si−1) ≥ 1

|O − S|
∑

x∈O−S
(1− ε)3f (x|Si−1)

≥ (1− ε)3

r

∑
x∈O−S

f (x|Si−1)

1There is a technicality here to be careful about — f̂ (a|Si−1) may have actually tried adding to a smaller
set. This is true by submodularity; when we checked a, we may have done it against some set S ⊆ Si−1. But
note that f(a|S) ≤ f(a|Si−1) by submodularity.
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We now can prove the desired theorem.

Theorem. Note by submodularity that
∑

a∈O−S f (a|Si−1) ≥ f(O) − f(Si−1). Combining

this observation with Lemma 14 we observe that f (xi|Si−1) ≥ (1−ε)3
r (f(O)− f(Si−1)). But

since f (xi|Si−1) is simply f(Si) − f(Si−1), this gives us a telescoping bound on f(Sr) in

terms of f(O).

We note that

f(O)− f(Si) ≤

(
1− (1− ε)3

r

)
(f(O)− f(Si−1))

≤

(
1− (1− ε)3

r

)i
(f(O)− f(S0))

=

(
1− (1− ε)3

r

)i
f(O).

We conclude that

f(Sr) ≥

(
1−

(
1− (1− ε)3

r

)r)
f(O)

≥
(

1−
(

1− 3ε

r

)r)
f(O)

≥
(

1− e−(1−3ε)
)
f(O)

≥ (1− 1/e− 3ε)f(O)

as desired.

We have demonstrated that our distributed algorithm maintains the desired approxima-

tion guarantee. We now show that Algorithm 11 has the desired communication properties.

Lemma 15. Algorithm 11 has a total communication cost of 1
ε3
m
(
log 1

δ + log 1
ε + logm

)
·

m
ε (log n+ log 1/ε).

Proof. We break this into two observations. First, communication only happens when

SAMPLE is called. Observe that for each threshold level, there are m calls to SAMPLE, and

there are only 1
ε (logm+ log 1/ε) threshold levels. Thus in total there are m

ε (log n+ log 1/ε)

calls to SAMPLE.
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Second each call to SAMPLE has a communication cost of O
(

1
ε3
m
(
log 1

δ + log 1
ε + logm

))
queries to build the sample. This leads to a total communication cost of 1

ε3
m
(
log 1

δ + log 1
ε + logm

)
·

m
ε (log n+ log 1/ε) = 1

ε3
m
(
log 1

δ + log 1
ε + logm

)
· mε (log n+ log 1/ε).

5.5 Discussion and Future Directions

This algorithm does not depend on either the rank constraint, or the number of distributed

agents. It is also possible to do a näıve distribution of greedy, that simply asks each person at

each step what their relative gain is for each element in the base set. This has communication

cost m · n · k, and achieves approximately the same accuracy. However, if n is large, the

communication cost can be much worse.
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CHAPTER VI

CONCLUSION

This thesis covered a wide variety of distributed problems.

Price of Uncertainty For Set Covering Games we improved the upper and lower bounds.

The upper bound was improved to PoUIR(ε, set-covering) = (1 + ε)O(m2)O(logm) for

ε = O( 1
m). (Theorem 4) This does not depend on the number of players so it can be an

exponential improvement over the best previous bound. (Future work can improve the

case when m = Θ(n), i.e. neither the number of players nor the number of resources

dominate.) We also improved the lower bound past the trivial lower bound to a

polylogarithmic bound with respect to the number of players and resources. Formally,

PoUIR(ε, set-covering) = Ω(logp min(m,n)), for ε = Θ( 1
min(m,n)) and constant p > 0.

(Theorem 7)

For Consensus Games we improved the lower bound. We show PoU(ε, consensus) =

Ω(n2ε3) for ε = Ω(
√

1
n). (Theorem 2) Together with the upper bound of PoU(ε, consensus) =

O(n2ε) (Theorem 1) we have a good understanding of the PoU in consensus games.

We also analyzed stochastic perturbations in λ− µ smooth games with best response

dynamics. We bound the expected increase in social cost at any time step in the future.

Future work can extend the analysis of stochastic perturbations to broader classes of

games.

Price of Byzantine Behavior We provided a formal definition for this quantity. For con-

sensus games we provided a tight bound on the PoB. We showed PoB(B, consensus) =

Θ(n
√
n ·B). (Theorem 3) This provides us an understanding of the limits of informa-

tion spread through networks. (e.g. viral marketing) Additionally, this measure is very

useful in real world settings that have to deal with bad actors.
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Learning Two-Sided Disjunctions We provide algorithms that produce two-sided dis-

junctions which have low error rates for both labelled and unlabelled error, i.e. they are

both consistent with labelled examples and compatible with the unlabelled distribution.

We do this by identifying and removing non-indicator variables. For the results below,

we primarily depend on k, the number of non-indicators, and a given compatibility

notion log |CD,χ(ε)| which is an information theoretic lower bound on the number of

labelled examples required for generalization.

Semisupervised Learning We produce a good hypothesis via a mistake-bound

algorithm. As long as we can guarantee that each non-indicator has a large

enough probability to be detected (which depends on ε0), any mistake we detect

identifies a non-indicator. Thus, we can bound the number of labelled examples

as ml ≥ 1
ε0

log k
δ +

k+log |CD,χ(ε)|
ε

[
log

k+log |CD,χ(ε)|
δ

]
. (Theorem 13)

Active Learning We can identify a non-indicator with only a logarithmic number of

oracle queries. Formally, the number of labelling queries required is

mq = O
(
log |CD,χ(ε)|+ k

[
log n+ 1

ε log k
δ

])
. (Theorem 14)

Both of these algorithms generalize to the case of random classification noise.

We note that the two-sided disjunctions problem can be viewed as a linear separator

with a constant `∞`1 margin. Likewise, several other open semi-supervised problems

have compatibility notions that generalize to linear separators with such a margin.

While other margin notions can be used to provide strong guarantees on the labelled

complexity (e.g. winnow [63], perceptron [79]) we cannot bound the label complexity

in terms of this margin alone. Despite this, it seems probable that there are ways to

explicitly leverage this notion of margin. Future work on linear separators with `∞`1

margins may provide an integrated view of several semi-supervised learning algorithms.

Distributed Clustering We provided an algorithm allowing agents to compute a coreset

on their joint dataset with minimal communication costs. This works because the

agents can jointly calculate the total weight of a global approximation by each sharing

the cost of a local approximation. Formally we show that with total communication

121



O(mn) (i.e. proportional to the number of agents n and a factor related to the topology

they communicate over) the agents are able to coordinate on a coreset with size

comparable to the best coreset construction in the centralized case. For k-means this is

order O( 1
ε4

(kd+ log 1
δ ) + nk log nk

δ ) and is order O( 1
ε2

(kd+ log 1
δ ) + nk) for k-medians.

(Theorem 19)

This work has been recently extended via PCA for dimensionality reduction [15]

and parts have been shown to have communication bounds that are tight to within

logarithmic factors[89].

Submodular Optimization We provide an algorithm which allows distributed agents to

jointly maximize a shared submodular function where they each hold partial information

about the global utility function, with minimal communication. Formally we allow

n agents to approximately maximize the sum (or submodular combination) of their

personal submodular functions subject to cardinality constraints. The communication

depends only logarithmically on the number of agents.

In this thesis we have worked to understand the amount of communication needed to solve

several natural distributed problems. When studying the Price of Uncertainty and Price of

Byzantine Behavior we helped understand how distributed agents can handle noise in the

network. Our work on semisupervised and active learning solved algorithmic problems in

both the centralized and distributed settings. For the problems of clustering and submodular

maximization we took a centralized algorithm and identified a key component that could be

computed in a distributed manner. Specifically, the computation of a coreset only requires

knowing the cost of a good approximate clustering, which can be efficiently shared. For

distributed monotone submodular maximization we replaced centralized oracle queries with

an approximation via sampling.
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