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and three θs nodes were used since these are the more common cases for
nodes in a DS network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xv



3.15 Test results for run time with a multiple parent network. The root finder
primarily works for Murphy’s and Zhang’s combination methods, as ex-
pected. For those methods, the root finder shows at least an order of mag-
nitude improvement in run time per node, which translates to significant
improvements for larger networks. . . . . . . . . . . . . . . . . . . . . . . 78

3.16 Test results for consistency with a multi-parent network. The y-axis uses
a logarithmic scale. All results are within round-off error of zero, which
shows perfect consistency. This result was expected given the results from
the single parent case in Figure 3.11. . . . . . . . . . . . . . . . . . . . . . 79

3.17 Test results for learning with a multi-parent network. The unknown fraction
for the multiple parent cases are similar between the optimization and root
finder methods. This result is expected, given that similar solutions should
be found. Notably, significantly higher unknown fractions are found for
the multiple parent cases than for the single parent cases. This difference
is due to the learning method. For multiple parents, the solution method
first calculates identical marginals for each parent then calculates the tran-
sition potentials per parent. Consequently, unknown information is retained
significantly longer since it is duplicated multiple times. . . . . . . . . . . . 80

3.18 Test results for weighting with multi-parent networks. Since all cases are
weighted, no deviations between cases were expected or observed. All
cases show expected total weights per node of approximately 30, confirm-
ing the results from the single parent test case in Figure 3.13. . . . . . . . . 81

3.19 Test failures for the multiple parent cases. Three interesting effects are ob-
served. First, the ECR method, Dempster’s Rule, and the overwrite method
were not expected to reliably succeed due to the random evidence sets that
were not within bounds required for the reverse solver method to succeed.
Indeed, these are the methods which tend to fail. Second, the root finder
method is more deterministic on whether it succeeds or fails. In each set
of tests, the root finder method either succeeds or fails in all tests while the
optimizer can find solutions which the root finder misses. This is most ev-
ident in the overwrite method in which the root finder fails in all cases and
the optimizer succeeds in all cases. However, the more practical methods,
Murphy’s Rule and Zhang’s Rule, show better performance by the root finder. 82

3.20 Test network used to analyze the performance of the novel Dempster-Shafer
network algorithms. This example includes nodes that have both single and
multiple parents. The number after the node name shows the number of θs
for the node. Two and three θs nodes were used since these are the more
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3.21 Test results for run time for a complex network. In both cases which suc-
ceeded, the weighting method significantly decreased run time, as expected.
In both cases, the run time order of magnitude more closely resembles the
multiple parent tests (Figure 3.15) than the single parent tests (Figure 3.10).
This is expected, given that the complex network adds the additional multi-
parent calculations. These results also suggest that the root finding method
for multi-parents still dominates the single parent solution method. . . . . . 84

3.22 Test results for consistency for a complex network. For all tested cases,
the consistency is effectively zero with round-off error, demonstrating per-
fect consistency in line with the results from the single and multi-parent
solutions (Figures 3.11 and 3.16, respectively). . . . . . . . . . . . . . . . . 85

3.23 Test results for learning for a complex network. There are two points of in-
terest here: (1) The weighted, multiple update method does display a higher
unknown fraction. This opposes the results seen in the single-parent tests
(Figure 3.12), suggesting that the multiple parent solution method fares less
well when dealing with weighted data; (2) The unknown fraction is between
the single parent tests (Figure 3.12), and the multi parent tests (Figure 3.17),
which is expected, given that the complex network is a combination of the
previous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.24 Test results for weight for a complex network. This result is consistent
with the results seen previous in Figures 3.13 and 3.18, suggesting that the
weighting results obtained in this section can be extended to DS networks
of arbitrary complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.25 Test results for failures for a complex network. The root finder is used for
both tests, with these results showing that the weighting method has no
effect on whether the root-finding method is able to find a feasible solution. 88

4.1 The layout for traffic signal scenario which is representative of timed four-
way lights without left turn signals. The grey car is approaching a red light
intersection and estimating how long until the light turns green to determine
whether to slow the car. Visibility is limited due to buildings and other ob-
structions. The cross-walk signal may be visible before the intersection.
The cross-traffic light is not visible to the grey vehicle and must be esti-
mated. Cross traffic density and speed is variable in the simulation and is
estimated by the grey vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . 91
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4.2 The deceleration profiles for the traffic signal scenario. As the grey car
approaches the red light, the two naı̈ve deceleration profiles are max decel-
eration and variable rate profiles. The alternate profile is anything between
those two naı̈ve profiles based on Dempster-Shafer analysis, a coin toss, or
a Bayesian evaluation to determine which profile to follow at each decision
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 The comparison between the Maximum Deceleration and Variable Rate
Deceleration Profiles using the stated metrics. These values are calculated
by subtracting the Variable Rate Profile results from the Maximum Decel-
eration Profile results. Thus, a value greater than zero means that the Max-
imum Deceleration Profile resulted in a higher value in that metric than
the Variable Rate Deceleration Profile. Y-axis values for each metric are
in the units specified by that metric’s label. Clearly, the largest gap is in
wear, while the speeds tend to even out over time for the given scenario.
Since the Dempster-Shafer-informed driver switches between these base-
lines, this graph shows the potential improvement over either baseline by
the Dempster-Shafer-informed driver. . . . . . . . . . . . . . . . . . . . . 95

4.4 The Dempster-Shafer network used to evaluate the traffic light scenario.
Green links represent the relationships between nodes in the direction of
effect. For example, the state of “Their Light” affects the state of “Their
Traffic Movement”. The reverse, in general, is not true, although inferences
can be made if traffic movement is observed. The “My Light” node is
included primarily to ensure that onces the light changes, the network will
immediately update the time until the light changes to green. . . . . . . . . 97

4.5 The figure represents the function for computing evidence input for the
“Time to Green” node from network training observations. This figure is
read as follows: given a observed time until the light changed to green on
the x-axis, the evidence input for the “Time to Green” node can be calcu-
lated from the belief mass assignments along the y-axis. For example, if
the scenario takes zero seconds for the traffic light to change to green, then
the evidence input is 0.72 Short, 0.08 (Short, Medium), and 0.2 unknown,
which is equivalent to (Short, Medium, Long). This function should intro-
duce uncertainty since stark conflict in evidence inputs results in rapidly
changing decision outcomes. Thus, as the function approaches values be-
tween clear situations of long, medium, and short, the majority of weight
is placed into ambiguous evidence inputs, enabling the Dempster-Shafer
combination method chosen to combine the evidence and return a reason-
able outcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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4.6 Decision criteria defined for Dempster-Shafer analysis. Precise Under-
standing means that the decision-maker requires little-to-no unknown. Flex-
ibility means that the decision-maker requires significant ambiguity or un-
known in the system. Low Known, Unknown Risk means that the decision-
maker requires both the probability of a particular risk as well as the maxi-
mum possibility of that risk to be low. High Possibilities, Belief means that
the decision-maker requires that there is a strong belief that the value un-
der consideration is true, and the possibility of that value being true is very
high; this case could be applied to the stock market. Low Possibility of Risk
is used when the decision-maker is only concerned with the maximum pos-
sibility of a risk; this limit could be applied when the impact of the risk
being realized is too high to accept, so the possibility must be minimized.
High Belief is used when only the probability of the situation is important
to the decision-maker; this choice is a typical Bayesian approach. High
Possibilities is used when only a the possibility of a situation is of interest
to the decision-maker; this criteria could likely be used in gambling situa-
tions. Finally, Low Belief is used when only the probability of the situation
is important to the decision-maker; this limit is, again, a typical Bayesian
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Comparison between the Dempster-Shafer-informed driver and a driver al-
ways following the maximum deceleration profile. Distributions are ob-
tained by subtracting the results for the baseline profile driver from the
DS-informed driver results for each simulation run. The three plots are All
(include all data), “ds maintained” (includes data in which the Dempster-
Shafer evaluation told the driver to stay at speed at least 25% of the deci-
sions), and “ds not maintained” (includes data not included in the “ds maintained”
category). The numbers below each category show the number of the simu-
lations out of the 200 ran that fall into that category. Y-axis values for each
metric are in the units specified by that metric’s label. Distributions are
shown for each of the values. Since the Dempster-Shafer-informed driver
is choosing between two profile options, it was expected that there would
be many cases in which the comparison results in a zero difference, which
skews the distribution. Beyond the zero difference comparison, the wear
distribution shows a consistent advantage over the maximum deceleration
profile, and the speed shows some advantage as well (i.e. Dempster-Shafer
correctly recommended slowing down early which lead to higher speeds
when the light changed). In most cases, while the Dempster-Shafer driver
was farther from the intersection when the light changed, that was primarily
five meters or less, which is an acceptably small difference. . . . . . . . . . 102
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4.8 Comparison between the Dempster-Shafer-informed driver and a driver al-
ways following variable rate deceleration profile. Distributions are ob-
tained by subtracting the results for the baseline profile driver from the
DS-informed driver results for each simulation run. The three plots are All
(include all data), “ds maintained” (includes data in which the Dempster-
Shafer evaluation told the driver to stay at speed at least 25% of the deci-
sions), and “ds not maintained” (includes data not included in the “ds maintained”
category). The numbers below each category show the number of the sim-
ulations out of the total ran that fall into that category. Y-axis values for
each metric are in the units specified by that metric label. Distributions are
shown for each of the values. There is no clear advantage in speed between
the driver and the variable rate driver when the light changes. However, the
Dempster-Shafer-informed driver is consistently closer to the intersection
when the light changes, leading to an overall position advantage. Based on
the wear distribution, the trade-off is between wear and position advantage
for this baseline comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Comparison between the Dempster-Shafer-informed driver and a driver us-
ing a coin toss on each decision to choose between the max deceleration
profile and the variable rate deceleration profile. Distributions are ob-
tained by subtracting the results for the baseline profile driver from the
DS-informed driver results for each simulation run. The three plots are All
(include all data), “ds maintained” (includes data in which the Dempster-
Shafer evaluation told the driver to stay at speed at least 25% of the deci-
sions), and “ds not maintained” (includes data not included in the “ds maintained”
category). The numbers below each category show the number of the sim-
ulations out of the 200 ran that fall into that category. Y-axis values for
each metric are in the units specified by that metric label. Distributions
are shown for each of the values. Other than in the distance metric, which
shows a slight advantage to the coin toss driver, the other metrics show a
clear advantage to the Dempster-Shafer-informed driver. Moreover, there
are fewer zero difference speed cases than zero difference distance cases,
suggesting that it was more likely for the two drivers to end up at the
same distance from the intersection but with the Dempster-Shafer driver
at a higher speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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4.10 Comparison between the Dempster-Shafer-informed driver and a driver us-
ing a Bayesian evaluation to choose between the max deceleration profile
and the variable rate deceleration profile. Distributions are obtained by sub-
tracting the results for the baseline profile driver from the Dempster-Shafer-
informed driver results for each simulation run. The three plots are All
(include all data), “ds maintained” (includes data in which the Dempster-
Shafer evaluation told the driver to stay at speed at least 25% of the deci-
sions), and “ds not maintained” (includes data not included in the “ds maintained”
category). The numbers below each category show the number of the sim-
ulations out of the 200 ran that fall into that category. Y-axis values for
each metric are in the units specified by that metric label. Distributions
are shown for each of the values. The distance metric shows an advan-
tage to the Bayesian driver. The other metrics show a clear advantage to
the Dempster-Shafer-informed driver. This comparison does show a Pareto
frontier in that neither system is a clear winner in all metrics. However,
since the Dempster-Shafer driver performs better in three of the four met-
rics, an equal weighting of metrics shows that the Dempster-Shafer driver
performs better overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.11 The Dempster-Shafer data analysis for a single run approaching the red
light as a function of time in seconds. The upper graph shows the com-
bined data using the Zhang combination method [18] over a window of five
observations taken at 0.2 second intervals. The lower graph shows the ev-
idence input at the “Time to Green” node at each time update. Due to the
number of observations, the evidence input to the “Time to Green” node is
smooth, with limited unknown belief. . . . . . . . . . . . . . . . . . . . . 109

4.12 The Dempster-Shafer data limits analysis for a single run approaching the
red light as a function of time in seconds. This analysis uses the data from
4.11 and the updated decision criteria from Table 4.1 to make the choice of
whether to follow the maximum deceleration profile or the variable rate de-
celeration profile. The “Inside” label includes data that meets the decision
criteria. All other data is “Outside”. Any “Outside” data that is due to the
complete set is shown as “Unknown”. This graph shows that initially the
decision criteria is close, but unmet since there is data outside the criteria
(in red). At approximately 12s, the data meets the decision criteria (the full
graph is green), allowing the decision-maker to proceed. As a result of the
smoothing shown in Figure 4.11, the “unknown” data compared against the
decision criteria is nearly non-existent, but the change in decision is smooth. 111
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4.13 The Dempster-Shafer data analysis for a single run approaching the red
light as a function of time in seconds. The upper graph shows the com-
bined data using the Zhang combination method [18] over a window of
three observations taken at 0.2 second intervals. The lower graph shows
the evidence input at the “Time to Green” node at each step. As a result of
the smaller observation window, there is a larger component of “unknown”
evidence, and the shifts in evidence are less smooth. . . . . . . . . . . . . . 112

4.14 The Dempster-Shafer data limits analysis for a single run approaching the
red light as a function of time in seconds. This uses the data from 4.13 and
the updated decision criteria from Table 4.1 to make the choice. The “In-
side” label includes data that meets the decision criteria. All other data is
“Outside”. Any “Outside” data that is due to the complete set is shown as
“Unknown”. As a result of the smaller observation window and the result-
ing evidence in Figure 4.13, there is a noticeable “unknown” component
of the data compared against the decision criteria in the evidence, but the
combined data quickly eliminates this unknown, resulting in a potentially
premature decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.15 The transition between the cross-traffic light (“Their Light”) node and the
“Time to Green” node, showing the progression as the values were learned
during the training phase. The x-axis shows each update as a step in-
put. This learning method retained all evidence through Murphy’s rule,
included the state of the cross-traffic light as evidence, and did not incor-
porate episodic learning. As can be seen, the weights quickly stabilized
and are not representative of the expected weights given the traffic scenario
described. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.16 The transition between the cross-traffic light (“Their Light”) node and the
“Time to Green” node, showing the progression as the values were learned
during the training phase. This learning method uses episodes comprised
of the light states of green, yellow, and red. Further, this learning method
includes evidence of the cross-traffic state. As can be seen, the weights
better represent the expected weights for the scenario. The x-axis represents
each episode as it was added to the network. . . . . . . . . . . . . . . . . . 115

4.17 The transition between the cross-traffic light (“Their Light”) node and the
“Time to Green” node, showing the progression as the values were learned
during the training phase. This learning method uses episodes comprised
of the light states of green, yellow, and red. As can be seen, most of the
stronger weights maps to short. Note that the mapping changes much more
aggressively between observations than in Figure 4.16 suggesting that the
node distribution was changing as well. The x-axis represents each episode
as it was added to the network. . . . . . . . . . . . . . . . . . . . . . . . . 116
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5.1 The layout for the UAS news multirotor scenario. An area of operations,
which limits the risk of the UAS flight to lives not involved in the operation,
is defined and shown. The goal of the news multirotor is to maintain the
best visual coverage of the area of interest while maintaining an ability to
land if issues arise, in order to keep the operation risk manageable. For
this operation, two safe zones are specified as areas in which the multirotor
could land without risk to lives. Additionally, the scenario assumes that
some monitoring method for these safe zones are available, which could
be as simple as an operator actively monitoring the zones and notifying
the UAS if the zones are becoming unsafe for landing. Since the goal of
the UAS is to maintain visual coverage of the area of interest, the multirotor
hovers over the primary safe zone, but will move to the secondary safe zone
if the primary zone is compromised. Additionally, the UAS will land if the
risk becomes too high. This scenario encompasses many facets of UAS risk
analysis including a mechanism to assess risk, multiple options/hypotheses,
and decision criteria associated with the risk analysis. . . . . . . . . . . . . 118

5.2 Dempster-Shafer network for UAS risk analysis. Each node includes three
θs or individual options being evaluated: low risk, medium risk, and high
risk. This network is more appropriate for a small, lower-cost UAS that
will not respond differently to risks in each internal subsystem. Power and
flight systems are still separated since power system warnings and failures
are more common issues for multiirotors and have pre-planned responses.
Likewise, the operator is a separate node since the capabilities of the oper-
ator (whether Part 107 [24] certified, etc.) play a strong role in the overall
operation risk. Multiple risks can be assessed for the environment includ-
ing weather, terrain, crowds, etc. Assuming that a Part 107 operator is
correctly following rules and flying in appropriate weather for the UAS,
the environment risk analysis is simplified to focus on safe zones, which
are known, monitored landing zones for the UAS. This network includes
multiple hypotheses for the safe zones, which are not depicted in this figure. 119

5.3 UAS risk analysis Dempster-Shafer network showing which nodes are pri-
marily affected through changes to the evidence inputs. For example, changes
to the Flight System Risk primarily will affect the Internal Risk and Oper-
ation Risk, leading to those three nodes being trained as part of the same
episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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5.4 UAS baseline response to subsystem degradation injection into the health
subsystem. The system is graded on response time. Numbers in paren-
thesis below the trials indicate the number of false negatives (uncaptured
degradations) in the 50 trials. No false positives were captured. Note that
this system is biased away from false positives to avoid safety maneuvers
during flight tests. A safety pilot is assumed to be present during flight tests
since this is an experimental aircraft. Simple failure is the same as 100%
probability of instantaneously reporting failure (i.e. the system simply fails
and continually reports a failure). Percentage failures are the probability
that the subsystem will instantaneously report failure (i.e. the subsystem is
degrading, but not fully failed). Lower percentages than 85% are not shown
since no failures were captured at 80% or below. . . . . . . . . . . . . . . . 129

5.5 UAS Dempster-Shafer network response to subsystem degradation injec-
tion into the health subsystem. The system is graded on response time.
Numbers in parenthesis below the trials indicate the number of false neg-
atives (uncaptured degradations) in the 50 trials. No false positives were
captured. In order to have comparable results to the baseline system, this
health subsystem was also biased away from false positives, meaning that
significant deviations from the “good” distribution were required to trigger
a contingency action. Two noteworthy points arise from these results: (1)
all contingency response times have a distribution — even the simple fail-
ure case — since the response is no longer deterministic. (2) this method
captures down to 25%failure, albeit with some false negatives and signifi-
cantly longer times to capture the failure. Moreover, this system gracefully
degrades in the sense that the tail of the distribution extends consistently
as the failure rate lowers. Test case meanings are the same as in Figure
5.4. The final test case — switching — is a case in which the subsystem
alternates reporting good and failure on every update. This is a case that
is impossible for the deterministic baseline to capture, but the Dempster-
Shafer network captures this quickly. . . . . . . . . . . . . . . . . . . . . . 130

5.6 UAS health subsystem response comparison between the baseline method
and the Dempster-Shafer network method. Only cases in which both meth-
ods can capture failures are shown. The baseline system clearly reacts faster
for simple failures, but the Dempster-Shafer network method has a consis-
tent, albeit slower, reaction for both the simple failure and lower failure
reporting probabilities. The Dempster-Shafer network model clearly cap-
tures significantly more failure cases while not slowing the response time
substantially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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5.7 UAS Dempster-Shafer network health subsystem responses to increased
operator and safety zone risks. Only two cases are shown — the operator
risk increase and the dual safety zone risk increase. All risk increases were
captured. The dual safety zone risk increase has a longer response time as
the two hypotheses (the dual safety zones) are first considered to determine
whether there is an alternate option before deciding to take contingency
action. The single safety zone risk increase test is not shown since the UAS
never took contingency action in this case. Instead, the UAS chose the
secondary safety zone for landing when necessary. . . . . . . . . . . . . . . 133

5.8 UAS research platform used for the flight demonstration. Flight control and
onboard computing is provided by a Raspberry Pi 3B embedded computer
with an Emlid Navio autopilot sensor suite. UAS frame size is 400mm. A
small platform and basic embedded flight computer was chosen to demon-
strate applicability to the full range of UAS sizes, as larger platforms can
carry more powerful computers. . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 UAS research platform in flight during the flight demonstration. The flight
demonstration was kept to a constrained area for personnel safety. All on-
board health decisions were performed through the Dempster-Shafer risk
analysis network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.10 Analysis of frame overruns for the two flight demonstrations. Frame over-
runs are defined as each time the computing cycle takes longer than the
time allotted in the 100Hz fixed frame update. As seen in the plot, there
were zero frame overruns during both flight demonstrations. . . . . . . . . 136

5.11 Flight demonstration one of Dempster-Shafer network risk evaluation with
real-time decision-making onboard a small UAS. The reduction in low risk
for the primary safety zone (SZ1), which signifies an increase in medium/high
risk for that safety zone, results in the UAS deciding to switch safety zones
to the secondary safety zone. During this maneuver, the UAS continues the
mission since the resulting operation risk is sufficiently low. The reduction
in low risk for the operator, which signifies an increase in medium/high risk
for the operator, results in the UAS deciding to land since the operation risk
is too high to continue the mission. . . . . . . . . . . . . . . . . . . . . . . 137

5.12 Flight demonstration two of Dempster-Shafer network risk evaluation with
real-time decision-making onboard a small UAS. The UAS responses in
this demonstration are consistent with demonstration one in Figure 5.11,
showing that the overall system is repeatable in its responses. . . . . . . . . 138
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5.13 Dempster-Shafer network for the UAS ecosystem risk analysis. This net-
work is similar to the network in Figure 5.2, but it is more complex to
include various features which could be considered common across opera-
tions. For example, the risk of hitting the ground (Ground Risk) in a given
area of operations is likely to be common across operations in that area and
could leverage previous research to estimate the effects of ground impact
[14]. Likewise, the same DJI [7] platform models could leverage common
data in the Internal Risk node while common autopilot navigation systems
could leverage common Navigation Risk information. Decisions for opera-
tions are shown in orange as the acceptable risk transference (a question of
insurance) and the acceptable risk level (a question for the regulatory agency).140

5.14 A model of the UAS environment, including many of the factors that would
impact risk evaluation of operations and the relationships among the vari-
ous systems in the environment. This model incorporates five major sys-
tems: the UAS which perform operations, operators which execute opera-
tions with the UAS, insurance agencies which insure the UAS operations, a
regulatory agency which ensures safe UAS operations, and the environment
in which the UAS operate. Each of these systems interact in multiple ways,
and the data flows depicted in the model enable the risk analysis, which
each of the systems — other than the environment model — perform. The
insurance agencies use models of the operator and flight risk and reward
to determine operation premiums. The regulatory agency uses models of
the operator and flight risk to determine whether the risk is within maxi-
mum acceptable risks. Operators use risk and reward models to determine
whether they are willing to pay the insurance premiums required to operate.
The UAS uses operation risk models to determine real-time risks of various
operation profiles to inform the operator or make automatic decisions. . . . 141

E.1 Training episodes for the UAS scenario in Chapter 5 applying all episodes
to all nodes. The x-axis represents each episode update. This figure focuses
on combined evidence distributions for the nodes affected by vehicle fail-
ure and failsafe rates. In each of the three rows of plots, multiple updates
can be seen with the same distributions suggesting that those data points
aren’t adding new information or basis functions to the transition potential
learning algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
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E.2 Training episodes for the UAS scenario in Chapter 5 applying all episodes
to all nodes. The x-axis represents each episode update. This figure focuses
on the transition potentials updates between the two vehicle systems nodes
and the overall vehicle systems node (the Internal Risk node). Of interest
in comparing this figure with Figure E.1 is that initial updates to all the
potentials are occurring as early as the first update, even though Figure
E.1 shows that information available in update one only applies to a small
subset of the transition potentials (a single basis function). . . . . . . . . . 160

E.3 Training episodes for the UAS scenario in Chapter 5 applying each episode
to distributions that are affected by that episode. The x-axis represents each
episode update. This figure focuses on combined evidence distributions for
the nodes affected by vehicle failure and failsafe rates. For each distribu-
tion, changes in the distribution can be clearly seen in the episodes which
directly affect that distribution, while subsequent episodes retain enough
information to minimize loss of data in the transition potentials. . . . . . . . 161

E.4 Training episodes for the UAS scenario in Chapter 5 applying each episode
to distributions that are affected by that episode. The x-axis represents each
episode update. This figure focuses on the transition potentials updates be-
tween the two vehicle systems nodes and the overall vehicle systems node
(the Internal Risk node). Comparing this figure to Figure E.2 shows a sig-
nificant difference in learning behaviors. The transition potentials in this
figure only start updating once information is available that directly affects
these potentials, and changes to the transition potentials after episodes di-
rectly affecting these potentials are minimized. . . . . . . . . . . . . . . . . 162

E.5 Training episodes for the UAS scenario in Chapter 5 applying each episode
to distributions that are affected by that episode and only training the tran-
sitions of multi-parent nodes that are affected by each episode. The x-axis
represents each episode update. This figure focuses on combined evidence
distributions for the nodes affected by vehicle failure and failsafe rates.
For each distribution, changes in the distribution can be clearly seen in the
episodes which directly affect that distribution, while subsequent episodes
retain enough information to minimize loss of data in the transition potentials.163
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E.6 Training episodes for the UAS scenario in Chapter 5 applying each episode
to distributions that are affected by that episode and only training the tran-
sitions of multi-parent nodes that are affected by each episode. The x-axis
represents each episode update. This figure focuses on the transition poten-
tials updates between the two vehicle systems nodes and the overall vehicle
systems node (the Internal Risk node). Comparing this figure to Figure E.4
shows a noticeable difference in learning behaviors. The transition poten-
tials in this figure update in the same pattern between the Flight Systems
Risk to Internal Risk transition and the Power Risk to Internal Risk transi-
tion. Figure E.4 shows a different behavior between the two, even though
the training inputs in this scenario were identical. . . . . . . . . . . . . . . 164
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NOMENCLATURE

Belief Mass Non-negative measure similar to probabilities, but a non-classical idea in

which the masses are not necessarily based on the occurrence of an event.

Frame of Discernment (Θ) A set of mutually exclusive elements. Belief masses can be

assigned to these elements or to sets of these elements.

Powerset (2Θ) The set of all subsets of Θ. If there are n elements in Θ, then there are 2n

elements in the powerset of Θ.

Basic Probability Assignment (BPA) Assignment of a belief mass in the range [0, 1] to

each element of the powerset. m : 2Θ → [0, 1], where m (∅) = 0,
∑
m (A) ≥ 0,

A ∈ powerset. If
∑
m (A) = 1 and the masses are based on the occurrence of

an event, then these masses are equivalent to probabilities. Subsequently, we will

assume
∑
m (A) = 1.

Evidence An observation described by a BPA.

Focal Point Any subset of the powerset to which a belief mass of greater than zero is

assigned. A ∈ powerset | m (A) > 0

Belief Function (Bel) Given a BPA with {A1, . . . , An} ∈ 2Θ and Ax ∈ Θ, Bel (Ax) =∑
Ax⊆Am (Ai).

Plausibility Function (Pl) Given aBPAwith {m (A1) , . . . ,m (An)} ∈ 2Θ andAx ∈ Θ,
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Pl (Ax) = 1−
∑

A∩Ax=∅m (Ai).

Dempster’s Rule The original rule proposed by Arthur Dempster [1] for combining evi-

dence (m1 ⊕m2) (x) =
∑

E∩E′=x
m1(E)m2

(
E
′)

1−
∑

E∩E′=∅m1(E)m2(E′)
.
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SUMMARY

Airspace regulatory agencies, such as the Federal Aviation Administration (FAA) for the

United States (US), are currently focusing on risk assessment frameworks for integrating

the operation of Unmanned Aerial Systems (UAS) into National Air Space (NAS). Multiple

frameworks, such as the Specific Operations Risk Assessment (SORA) [2] framework for

the European Union and similar frameworks for the US, provide defined pathways to eval-

uate the risk and seek approval for UAS operations. These frameworks are primarily qual-

itative and are sufficiently flexible to incorporate quantitative approaches, many of which

have been proposed and tested in literature. Most proposed quantitative methods are still

under development. Likewise, real-time analysis methods, designed to provide decision-

making to unmanned systems during operations, have been proposed. Current real-time

analysis methods still suffer from limitations, such as only applying to specific operations.

This research applies Dempster-Shafer theory and valuation networks [1] [3] [4], a frame-

work for reasoning with uncertainty used extensively for risk analysis, to UAS risk analysis

by creating extensions which allow this framework to learn risk relationships in the UAS

ecosystem based on operational results and enable this framework to be used in real-time

analysis onboard small UAS. These extensions are applied to an autonomous car scenario

for testing the capabilities against known baselines, then applied to the UAS scenario for

testing in simulation against a previously implemented real-time health monitoring system.

Finally, these extensions are demonstrated in flight on a small UAS. Application to the UAS

ecosystem and conclusions are addressed based on the results of these tests.
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CHAPTER 1

INTRODUCTION

Unmanned Aerial Systems (UASs) are continuing to proliferate rapidly [5]. Engineering

development is focused on professional products for cargo delivery, news coverage, map-

ping, agriculture, and rescue missions, among other uses. Event38 [6] sells commercial-

grade systems for agriculture use, which provide a variety of analyses to farmers, previ-

ously only available at considerably higher expense and much slower update rates. Con-

sumer products are becoming pushbutton systems which provide a capability to operators

without the operators requiring understanding of how the system works or what could go

wrong. The DJI Mavic Pro [7] represents a near-entry-level consumer product (approx-

imately $900) with long flight times (approximately 28min), pushbutton operation, auto-

matic handling of common issues such as near seamless switching between GPS navigation

and optical flow navigation in the event that the GPS fails, smooth take-offs and landings

that do not require user knowledge of vehicle limits, and geo-fencing with knowledge of

Temporary Flight Restrictions (TFRs) [7], drastically reducing the requirements for oper-

ator knowledge of both current flight conditions and regulations. With this reduction of

required operator knowledge, it becomes even more necessary for the system to appropri-

ately handle contingencies without input from the operator since many operators will no

longer have the required knowledge to handle contingencies. Furthermore, by removing

the operators from direct control over the system, even operators with sufficient knowledge

to handle contingencies may not have the required control to be able to do so, thus neces-

sitating the system to handle the contingencies automatically or with some guidance from

the operator.
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Current efforts are focused on aligning provable safety systems with related regulations

to integrate unmanned systems with manned systems in the National Air Space (NAS), al-

lowing them to operate in the same airspaces. In recent years — recent months for many

of these advancements — great strides have been made both on the regulatory side and

also on the safety technology side. Several risk analysis frameworks have been proposed

that have backing from one or more regulatory bodies. Joint Authorities for Rulemaking of

Unmanned Systems (JARUS) guidelines on Specific Operations Risk Assessment (SORA)

[2] develops a framework in which Unmanned Aerial Systems (UAS) can fly specific op-

erations in a variety of airspaces once preliminary risk assessment and, if necessary, risk

mitigations have occurred and been approved by the governing authority. This framework

is flexible and enables a UAS operator to tailor the approach of risk-based operation ap-

proval to almost any situation. However, while flexible, many gaps still remain, precluding

access to many specific operations since the risk reduction requirements are too demand-

ing for current technologies or methods of risk reduction to meet. The Federal Aviation

Administration (FAA) Safety Management System (SMS) [8] is another such framework

designed to provide a top-down organization-wide management of safety risk and assuring

the effectiveness of safety controls. Beyond UAS, this framework applies to all aviation

and obliges organizations to manage safety at the same level as all other aspects of the

core business processes. A second FAA initiative, Compliance Program [9], is based on

the assumption that many errors are honest mistakes and should be self-reported. Mistakes

that are self-reported are corrected via a problem-solving approach rather than punished.

This philosophy emphasizes a “just culture” [9]. Like SMS, this risk-based approach is

focused on the culture that extends through both corporations and the entire aviation in-

dustry, but it does not provide a framework for assessing risk of a particular operation or

flight plan. Effectively, these are all-encompassing frameworks which do not provide the

low-level details necessary to make a risk assessment for particular operations. Together,

these frameworks and philosophies form a risk management-based approach to aviation
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safety which could provide the regulatory backing to enable UAS integration into NAS.

Technological solutions to safety issues must be consistent with the regulations used to

enforce them. Previous methodologies focused on specific technology requirements to ac-

cess airspace. For example, sense-and-avoid was seen as a must-have capability for UASs

intent on flying in the NAS [10]. After 20+ years of research with no accepted solution, the

focus has shifted to analyzing the risks associated with the integration of various technolo-

gies and determining whether the risk is sufficiently low to perform the given operation

or flight plan, such as in the case of SORA [2] or the current FAA focus [11]. The chal-

lenge partially shifts to the technologies providing the necessary data on whether they are

reliable. For example, fault detection systems are a large field in aerospace research. Con-

cepts such as neural networks for detecting faults in IMUs [12] enable fault detection and

handling for a sensor of which failure can cause complete loss of control on a multi-rotor.

Sufficient tests of this system result in statistics for the reliability of detection and handling,

which provide the necessary data for quantitative risk assessment. Likewise, research on

emergency path planning for UAS also exists [13]. These designs provide solutions to the

problem of how to respond once the emergency has been identified.

Recent research has enabled offboard real-time risk analysis for UAS, based on current

data, Bayes belief networks, and most-likely-hypotheses [14]. Further, consistent sepa-

ration analysis using avoidance volumes for aircraft based on the precision of navigation

systems [15] provide methods of analytically predicting problems and dealing with them

as they arise. These advances serve to underscore the importance of and focus on tech-

nological solutions to safety systems on the UAS that are consistent with the regulations

that govern use of the UAS. Limitations in each of these methods provide part of the basis

for the research in this proposal. Specifically, a complete onboard real-time system suf-

ficient for small UAS is currently not operational. Further, quantification of risk through
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a Dempster-Shafer analysis [1] [3] provides decision criteria beyond the criteria provided

by a Bayesian analysis, which better align with risk-based decisions. A scenario has been

identified that covers a broad range of possible system failures and degradations ranging

from vehicle issues, such as control or navigation system degradations, to sensor degrada-

tions due to external effects. The goal of this research is to develop a risk assessment model

which connects risk evidence through long-term operation results analysis with real-time

predictive actions to mitigate unacceptable risk during UAS operations. A further require-

ment of this research is that the chosen risk assessment methodology must be flexible to

incorporate constantly changing data about UAS risks while the results must also be ex-

plainable to governing authorities (i.e. there is a clear relationship between risk factors and

resulting risk assessment that a decision-maker can understand and follow), enabling this

analysis to be a potential basis for operational authorization.

1.1 Summary of Contributions

The contributions of this work are as follows:

• Organized and ran the Safety Symposium for Unmanned Aerial Systems in August

2018, bringing together experts from UAS law, regulations, insurance, operations,

and research and development to understanding issues with integrating UAS into

national airspace, motivating some of this work.

• First proposed use of evidence inputs at nodes to update conditional mass distribu-

tions in a Dempster-Shafer network, a model developed by Shenoy [16], Shafer [17],

and Smets [4].

• Developed a new algorithm consistent with the above that updates Dempster-Shafer

network conditional mass distributions based on observations at nodes in an optimal

manner, reducing expert information requirements for these networks to function.
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• Defined a new weighting scheme for entering multiple evidence observations si-

multaneously into a Dempster-Shafer network and updated current Dempster-Shafer

combination algorithms [18] [19] [20] to use the weighting scheme, resulting in cor-

rectly recording the “experience” captured in a Dempster-Shafer network.

• Created episodic learning for Dempster-Shafer networks, using observability con-

cepts to improve the optimization algorithm discussed above, resulting in more ac-

curately capturing the relationships in the network.

• Applied novel Dempster-Shafer network updates to a simplified autonomous car de-

cision, demonstrating improvements over baselines including researched open-loop

profiles [21] and Bayesian Belief Network [22] decisions between these open-loop

profiles.

• Applied novel Dempster-Shafer network updates to UAS real-time risk analysis based

on Safety Symposium outcomes, proving ability to reduce risk on small UAS through

in-flight decisions in simulation. Demonstrated clear improvement over baseline sys-

tem [23]. Implemented on real-time flight hardware, demonstrating through flight

test the ability to provide in-flight risk analysis and decisions on critical fight hard-

ware in small UAS.

• Developed UAS ecosystem model, demonstrating a method through which flight op-

eration experience could be shared for UAS risk analysis.

1.2 Organization of Thesis

This document is organized as follows. Chapter 2 describes the recent state of UAS op-

erations, regulations, and insurance based on expert information obtained through a UAS

safety symposium hosted in 2018, along with corroborating literature. This chapter sets the

context for the theory development and application described in the subsequent chapters.
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Chapter 3 extends the proposed theory to be used as the basis for the common infrastructure

for risk assessment of UAS operations. Chapter 4 applies the proposed to an autonomous

driving vehicle situation — evaluating a traffic light to determine whether to slow down

when approaching a red light. This application tests the theory extensions in a known,

understandable scenario to evaluate the ability of the theory extensions to analyze com-

plex situations in a real-time context. Chapter 5 applies the theory extensions to UAS — a

news multirotor scenario evaluating the risk associated with remaining on station. Chapter

6 concludes the discussion and provides trajectories of future research to be based on the

outcome of this research. Finally, the included appendices A through F include additional

discussions, proofs, and notes that are not central to the work, but are necessary for a full

understanding.
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CHAPTER 2

BACKGROUND

In August 2018, a UAS safety symposium was held in Atlanta, GA, which included experts

from many facets of UAS operations in the United States including law, insurance, opera-

tions, research, and regulation. While some changes to the UAS landscape have changed

since that symposium, much of the principles remain the same. This chapter details those

principles, highlights some of the changes since then, and corroborates some of those expert

opinions with additional literature, setting the stage for research which could fit into this

ecosystem. Note that this symposium was primarily focused on intended legal operation

of UAS; while some information and artifacts were discussed with regards to deliberate,

malicious, illegal activities, representatives agreed that a different set of principles were re-

quired to handle these activities, and those principles were outside the domain expertise of

the representatives in attendance. Appendix F includes the raw notes from the safety sym-

posium. Sections 2.1, 2.2, 2.3, 2.4, and 2.5 are primarily written based on expert opinions

from the safety symposium as documented in Appendix F. As such, those notes are not

constantly referenced throughout the following sections. Corroborating research is cited in

these sections.

2.1 Summary of Safety Symposium

By far, the principle take-away was the lack of information concerning use of UAS legally

and within regulations. Interestingly, this area is one in which there was significant di-

vergence between regulators and the rest of the industry. Operator, insurance, and law

representatives agreed that there was lack of information concerning UAS regulations and
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laws, yet the regulatory agency representative provided multiple means of obtaining infor-

mation about regulations including through Part 107 [24]. Since then, the two ends of the

spectrum have grown closer, particularly as the FAA closes towards regulations that will

require UAS to identify themselves and transmit location information while operating [11]

[25]. Second to this take-away was the consensus that the industry is in wait-and-see mode,

especially on the law and regulations side, until precedents are set, usually through a major

incident. Again, regulations have been pushing forward as mandates have been created

for the FAA to develop regulations for UAS operations [26]. All representatives agreed

that enforcing regulations is difficult at best until a reliable means of identifying UAS is

available. As mentioned previously, FAA regulations are going into force that will require

operating UAS to transmit ID and location information [11]. Finally, there was agreement

that operator education is currently lacking. Improvements have been made for Part 107

operation education [24], but there is limited education beyond that point.

2.2 United States Separation of Operations

Unmanned systems currently fly under accommodation practices — relying on operational

segregation to avoid issues with manned traffic [27]. As such, they are restricted in use

by 14 CFR Part 107, which is applicable for commercial use of small UAS under 55 lbs

[24]. Note that UAS regulation is a purely federal affair, since the federal government

regulations airspace from the tips of the blades of grass exposed to the outside up as high

as the airspace extends. This jurisdiction was solidified as of Boggs versus Meredith in

2015. Part 107 regulation restricts flight to less than 400 ft AGL unless within 400 ft of a

higher structure. Operations up to class B airspace [28] are permitted via Part 107 with Air

Traffic Control (ATC) permission or in class G airspace with no permission required. All

operations under Part 107 must be within line-of-sight of the certified operator who must

retain visual sense-and-avoid capabilities over the aircraft, further limiting the available
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flight times to daylight or civil twilight and to one pilot per unmanned system. Aircraft

flying under Part 107 are not allowed to fly over people not directly involved in the flight of

the vehicle. These derived restrictions all come from one basic concept: operational segre-

gation with human decision making as the immediate and final authority for all UAS. These

regulations were finalized as of August 29, 2016. While these regulations allow small UAS

to operate in national airspace in principle, the practical result is far from the fully inte-

grated vision of researchers, manufacturers, and the FAA alike. Subsequent to this set of

regulations, updates have been made, in large part spurred by UAS operations and planned

operations that have forced regulations to move forward [26]. Likewise, efforts are being

made in partnerships with the FAA and various UAS community stakeholders to develop

UAS Traffic Management (UTM) National Campaign II, enabling access to low-altitude

airspace for UAS [29]. Various efforts have been made to develop requirements for this

airspace integration [30].

For larger UAS — above 55lbs — the only available regulation under which to fly, outside

of FAA-designated test sites, is Section 333 [31]. Section 333 deals with waivers/exemptions,

otherwise known as Certificate of Waiver or Authorization (COA). This regulation more

clearly exemplifies the operational segregation by stating that any unmanned system can be

flown in the area under the COA with advanced notice to ATC.

While allowing unmanned research to continue with the goal to develop fully integrated

systems, these regulations clearly keep unmanned systems separate from fully integrated

national airspace. Due to this segregation, however, unmanned systems do not require any

type of certification. Only pre-flight checks by the operator are required under Part 107

[24]. Because many small UAS are never intended for fully integrated flight in national

airspace, these regulations enable low cost entry into the small UAS market, without the

need for costly certification processes or pilot training. Conversely, all UAS are limited
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to these operational restrictions due to the inability to certify systems for flight in fully

integrated airspace, precluding manufacturers and operators from developing and utilizing

UAS for many operations.

2.3 Laws Applicable to UAS Operations

The United States operates under common law [32]. This means that the body of law arises

from precedents having been derived from judicial decisions of courts and/or similar enti-

ties [32]. As such, US laws always run behind technology, waiting for a situation in which

they will be interpreted to set the precedent for how the laws apply to that technology. Note

that laws do not chase the technology; they chase the underlying issues which apply to the

technology. Those issues and laws are interpreted with respect to the specific technology.

As mentioned previously, Boggs vs. Meredith in 2015 set the precedent for establishing

that the FAA has jurisdiction down to the blades of grass if exposed to the outside. Beyond

that legal precedent, much of the law concerning UAS falls under nuisance laws such as

Peeping Tom laws. For example, video requires consent from both parties — the party

recording the video and the party being videoed. Since most UAS carry onboard cameras,

UAS operators have to be careful of the field of view of the camera since video footage

captured by those cameras are subject to two-party consent.

Since major incidents with UAS have not yet set a precedent, discussions beyond the prece-

dents described above are based on hypothetical situations. Given a hypothetical situation

in which a UAS causes the crash of a passenger jet by destroying engines, causing loss of

life, the general consensus of the experts at the safety symposium was that everyone gets

sued in a civil case — the airlines, the manufacturers, the UAS operator, etc. The burden of

proximate cause is placed on the courts to figure out. In reality, this situation likely means

that the defense is tendered to the insurance companies, who likely settle. The effect of the

10



insurance will be discussed in Section 2.4. The most difficult part of this process will be

finding enough parts of the UAS to identify the operator. Required UAS ID and tracking

— currently in the process of becoming regulations — will significantly simplify this pro-

cess. However, this does assume all systems are functional, the operator is attempting to

fly legally, and position updates between UAS in near vicinity of each other are sufficiently

unambiguous along with recovered parts to conclusively point to the system at fault. In

many cases, such as UAS crashing when flying near crowds or UAS operating in the way

of emergency systems, unsafe operations are often traced through social media postings.

Even when proof is found, proper chain of custody procedures must be followed. Often,

UAS violations are called in to local law enforcement as first responders. However, since

local law enforcement does not have jurisdiction over the airspace, this path is a dead end,

usually resulting in the UAS and operator being long gone before law enforcement officials

arrive. In summary, likely most UAS violations — other than clear criminal cases — will

result in lawsuits that must be allocated by the court system and handled through insurance,

assuming that sufficient evidence is available to track down the at-fault parties and the cor-

rect authorities are involved.

As can be clearly seen in the preceding paragraphs, there is still much ambiguity in the

realm of UAS law and the effects of lawsuits. As such, many operators, especially com-

mercial operators, have resorted to obtaining insurance to handle cases in which lawsuits

are the primary recourse by offended parties.

2.4 UAS Operation Insurance

UAS insurance is a legal issue since insurability brings in a host of concerns including

violation of FAA rules, physical damage and bodily injury, nuisance laws, trespass laws,

invasion of privacy, stalking and harassment, and wiretap laws. Of those, trespass laws
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and invasion of privacy laws are two of the major reasons for UAS violations. While there

are multiple insurance policies that can be used to cover UAS operations, that is beyond

the scope of this paper. Refer to [33] for more details concerning methods to insure UAS.

Rather, of interest is high level breakdowns in methods of insurance and how they map to

UAS operations. Insurance tends to be evaluated in one of two ways:

• It falls into a “normal” bucket. In this case, it is often passed along to re-insurers who

insure/price it based on standard rates. Typically, this is fully automated/computerized

with human oversight.

• Some parameters of the insurance request are outside the norm. In this case, it is

typically evaluated by a human in the primary insurance companies who helps to

determine the risk model and pricing.

Re-insurance, such as Swiss Re, accounts for 65% of recoverables from non-US companies.

While often less well-known than primary insurers, re-insurance is a method of spreading

risk — a way for primary insurers to insure policies with well-understood risks. To cre-

ate these buckets of insurance policies that can be passed on to re-insurers, some insurers

use exclusions to keep operators within the bounds they specify. However, this method

often leads to unintended consequences. Global Aerospace — a primary UAS insurer —

removed exclusions because crashes invariably break at least one exclusion regardless of

the operation, making the insurance useless if the exclusions were in place. Without ex-

clusions, pricing insurance premiums becomes much more dependent on information from

the operators. In fact, the current insurance model is supposed to be on a per-flight basis,

but it is often not executed this way.

In summary, the insurance industry already has a model of providing insurance which ap-

plies to, or at least overlaps with, UAS. The more pressing issue is that UAS risks are not

well understood yet, resulting in standard models still adapting to the UAS model. Fur-
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ther, aligning the risk models used by UAS operators and the FAA with the insurance risk

models will make the UAS ecosystem integration easier.

2.5 UAS Operation Safety

Operational risk and, conversely, safety closely tie to the question of insurance. In this

section, the outcomes of the 2018 safety symposium will be discussed. Much research has

also been performed for technology in this area, which will be discussed in Section 2.6.

Firstly, there are two classifications of safety that are of interest here: actual safety and

perceived safety. Currently, the concept of actual safety appears to be safety from physical

harm, applying primarily to humans. Perceived safety has been shown to vary based on

velocity, size, and distance of the UAS, with the primary determinant being velocity. The

research into perceived safety has been done by interdisciplinary teams using measures of

skin conductivity, head tilt, and heart rate, which seems to equate perceived safety with

a physical fight or flight response. Perceived safety violations are the primary driver of

reports to law enforcement and complaints to regulators versus actual safety violations.

Perceived safety is affected more through education and marketing, such as the team refer-

enced in Appendix F that used assistance from a product design and art team to make UAS

look more “friendly”.

This research is not focused on changes to perceived safety that are effected through visual

product design. Rather, this research focuses on technology changes that can be made to

enable improvements in both actual and perceived safety through risk analysis of the UAS

ecosystem. The safety symposium experts suggested that additional divisions of weight

classes for UAS could offer more refined risk categories for the ecosystem. Categories

based on weight and/or max speed could be appropriate since weight and speed directly

correlate to kinetic energy, which has a significant impact on whether the UAS can harm
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humans or property [14] [34] [35]. While these categories may have less effect on a numer-

ical risk analysis, the experts also suggested additional segmentation for operators based on

vehicle classes, beyond Part 107 [24] training, which could affect numerical analysis more

strongly since operator capability to handle an emergency could be taken into account. The

question raised here is whether different UAS (size and type) have vastly different flight

and operational characteristics, or whether the mission and flight control software removes

much of the differences in dynamics from the operator.

Regardless of how the risk and safety are determined, the panel believed that commer-

cial use will drive regulations. Losses will come first, which will drive public opinion,

in turn driving new regulations. In the meantime, the industry is in a wait-and-see mode.

Additionally, there are many redundancy and reliability issues that must be addressed for

vehicles and software. Regulation at the manufacturer level may be required to handle

safety issues. Unfortunately, software reliability drives cost. Thus, increased reliability re-

quirements may drive costs too high for many UAS manufacturers. An alternate view is that

product liability will drive increases in safety and decreases in risk. Consider, for example,

operations only being authorized if the risk (determined for each operation) is sufficiently

low. Further, consider that even if the operation is authorized, the operators must transfer

the risk (through insurance) to adequately protect themselves. Now, the risk is determined

both by the authorizing agency and the insurance company. Too high of risk means no

authorization to operate. Likewise, even with authorization, too high of risk means the risk

transference cost is too high. Consequently, operators will require more reliable systems

or alternate methods of operation which lower the risk, thereby driving a reduction in risk

without regulation at the manufacturer level. By driving risk down through this method,

manufacturers who are unable to meet software reliability requirements for lower risk may

be able to decrease risk via other means, perhaps through operational requirements for

greater separation from humans and property. Likely, a combination of the above methods
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will lead to sufficiently reduced risk to enable operations.

2.5.1 Quantitative Framework Characteristics

Based on the results from the safety symposium, three primary characteristics were derived

for a quantitative risk-analysis framework for UAS decision-making:

• Explainable: the risk analysis framework will be used by both regulatory agencies

for authorizing operations and by insurers for insuring operations. As such, any

quantitative results from a risk analysis framework must be explainable to humans

overseeing the operational decisions. This characteristic rules out purely data-driven

methods such as neural networks [36] which are flexible but difficult to explain.

• Flexible: as noted in Section 2.1, there is significant unknown with regards to UAS.

Coupled with the fact that new UAS are being manufactured and introduced to the

ecosystem on a regular basis, the risk analysis framework must be flexible to han-

dle an ever-changing analysis. This characteristic rules out more cognitive systems

such as expert systems and case-based reasoning [37] that are easy to explain but

inflexible.

• Initialize from unknown: Unlike manned aviation, UAS introduced to the ecosys-

tem are typically flown before risks are quantitatively established — i.e. there are

no priors for initializing quantitative frameworks. As such, a framework that can

incorporate these UAS quickly must handle lack of a-priori information.

2.6 Current Risk Frameworks and Technology

For some specific operations, such as ones that are already authorized under current UAS

rules, some current UAS technologies are sufficiently provable for authorization under pro-

posed risk assessment frameworks. Others, however, do not provide the assurances re-
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quired to operate in more complex and higher risk environments. In manned aviation,

there is always the fall-back position to the human pilot and the airframe. The airframe,

which includes critical vehicle systems such as required flight controls, is proven to re-

liability standards. If all non-critical functions such as sensor failure, the human pilot is

believed to be able to recognize the failure and replace the failed system with their own ca-

pabilities, thereby providing the ultimate backup system. In helicopters, human-controlled

auto-rotation is available. Manned quadrotors are not typically flown, and multirotors with

more rotors (such as 18 rotor systems which have been recently demonstrated [38]) can

lose at least one motor and still be brought safely to the ground.

For unmanned systems, the technology systems become more crucial since a ground-based

pilot might rely on sensors to provide critical flight feedback, the system may rely on

decision-making systems to make appropriate recommendations or decision, or, in many

cases, the system may rely on flight control systems to control the vehicle even if the opera-

tor takes as direct control of the vehicle as possible. For most small UAS, the development

of these flight control and sensor systems are not regulated or verified nearly as rigorously

as for manned aviation. The question then arises: will UAS be cost effective while proving

that they will remain within safety constraints? For some operations, the answer is “yes”

since the revenue of those operations outweighs the development and operating costs. For

other operations, the answer is likely “no”.

A second approach taken by several innovative systems such as Xavion [39] is to create

a backup system that does not depend on the primary system. Xavion [39] does so by

providing a flight trajectory guidance that the pilot can follow to an alternate landing. Sys-

tems that takes over in the event of failure of the primary systems can be developed under

guidance from ASTM F3269 [40] (such as an auto ground collision avoidance system).

In this case, a single, well-developed backup system could be cost effective by spreading
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the cost across the myriads of UAS which would use it. However, this method too has

its drawbacks. Either the system must be sufficiently self-contained such that all sensors,

controls, actuators, etc. are highly proven and are carried as a second system onboard the

vehicle (which is untenable for small UAS), or certain parts of the original system must be

trusted. Herein lies the deeper issue: either the original system must accurately report when

it is failing, or the backup system must have sufficient technology to detect and handle the

failure.

Current research provides means to detect and handle certain failures. In particular, fault

detection systems [12] [41] provide detection of failures with some degree of reliability.

Further, risk assessment systems [14] provide means to predict the results of failing sub-

systems and provide the operator with an assessment of the implications. In both cases,

some level of a-priori knowledge is required. The reliability of the fault detection sys-

tems must be characterized in order to feed the priors of the Bayes reasoning-based risk

assessment systems [14]. Therein lies the issue: there is insufficient flight time and test-

ing performed on these systems to provide accurate priors, leading groups such as JARUS

to fall back to qualitative assessment methodologies in SORA [2]. Subsequent sections

discuss research into risk analysis frameworks and underlying technology used to feed the

data required for the risk analysis frameworks to function.

2.6.1 Risk Framework Research

Much research has already been performed on risk frameworks, with various papers focus-

ing on individual operations to overall frameworks designed to incorporate technical risks

analysis in various aspects of UAS operations. Several papers based on research performed

by Roland E. Weibel are focused on risk analysis and mitigated methods for integrating

UAS into the US National Airspace System (NAS). Three papers in particular are “An

Integrated Approach to Evaluating Risk Mitigation Measures for UAV Operational Con-
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cepts in the NAS” in 2005 [42], “Safety Considerations for Operation of Unmanned Aerial

Vehicles in the National Airspace System” in 2005 [43], and “Safety Considerations for

Operation of Different Classes of Unmanned Aerial Vehicles in the National Airspace Sys-

tem”, his Master’s Thesis in 2005 [44], all co-authored by R. John Hansman, Jr at MIT.

While each of these papers deal with the topic of risk assessment and mitigation for UAS,

these papers primarily form what could be seen as the basis of the SORA concept since

these papers preceded SORA. These papers do incorporate a different focus in that they are

interested in US NAS while SORA is focused on the European airspace [2]. However, their

primary concern is still a holistic risk model. As such, grounding risk analysis research in

this type of framework applies to US and European airspaces, making this a solid founda-

tion for research.

More recent work develops risk assessment tools designed to be trusted as the basis for

FAA assessment and operator evaluation [45]. This work focuses on the numerical risk

assessment of air and ground collisions, using historical data from manned aircraft to val-

idate the model. Further, this work relates the risk to costs to insure the operation in order

to make the results more meaningful. Similarly, recent work in characterizing the conse-

quences of UAS collisions in the NAS [46] provide an improved understanding of the risks,

paving the way for integration into a comprehensive risk analysis framework. Other recent

risk assessment frameworks also seek to fulfill the FAA’s need for a consistent measure of

risk assessment [47] that takes into account the effect of UAS collisions with the ground.

Other recent works seek to evaluate the operational risk of particular operations, such as

urban cargo delivery by small UAS [48], which focuses on the entire risk assessment for

that class of operations. “A ConOps derived UAS safety risk model” develops a risk as-

sessment model derived from concept of operations (ConOps) that uses Bayesian Belief

Networks (BBN), causal narrative, and Huggins engine to determine rolled-up probability
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of failure for specific scenarios [49]. Likewise, “UAS (Unmanned Aerial System) Safety

Analysis Model (USAM)” uses a BBN for developing a data-driven, integrated safety anal-

ysis model [50]. Similar work uses expert opinions to derive fault trees and associated risk

analysis [51]. Combined with risk analysis frameworks discussed previously, there is fairly

extensive literature for developing a risk framework and quantitative analysis for UAS. The

research in this paper is not intended to replace the risk analysis frameworks developed pre-

viously, since, as already stated, using a framework such as SORA [2] or those developed

by Weibel, et al. provides an adequate basis for grounding this research. Instead, this re-

search focuses on numerical frameworks that can provide a basis for generically calculating

the risks, which deals with the shortcomings of the technologies underpinning numerical

frameworks already in use.

2.6.2 SORA

Since the SORA [2] framework or a similar framework is used as a basis for grounding this

research, a short background of SORA is provided. More details of the SORA framework

along with gap analysis can be found in [52]. SORA is derived from the JARUS guide-

lines document [2]. SORA [2] proposes a methodology to assess risk required to support

an application for authorization to operate a UAS within the specific category. In many

cases, UAS operators only desire or need to operate the UAS within a limited or restricted

manner. In such cases, full design approval, airworthiness certification, type certificate, and

vehicle certification consistent with a pilot’s license (assuming the vehicle systems make

decisions while flying) is unnecessary and restricts the ability of the UAS to perform the

desired tasks. The SORA methodology is based on a bottom-up, total system safety risk

assessment model that evaluates risks for a specific operation. This analysis includes all

threats for the operation, the relevant design, and any mitigations to determine the bound-

aries for safe operation. The definition of risk used is the combination of the frequency of

an occurrence and its associated level of severity. The consequence of each occurrence is
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a harm. While there can be many levels of harms, multiple studies have shown that the

energy associated with a crash is consistently well above the low energy levels required

for a human fatality [2]. Further, human fatalities are well-defined and, in most countries,

well-known by authorities. Therefore, under SORA, only human fatalities are considered

as harms due to ground collisions or catastrophic mid-air collisions. As a result, the best

measure of quantifying risk is the number of deaths in a given time interval or per special

circumstance (such as per take-offs). The SORA bow-tie model in Figure 2.1 shows the

flow from threats to harms and options for mitigations to reduce the risk.

Figure 2.1: [2] The bow-tie model shows the flow from threat to harm in any specific
operation. Using this model, mitigation can be employed at each step to reduce the
risk that a specific threat will result in a specific harm. These mitigations are employed
through risk barriers and harm barriers — steps taken to block the chain from a
threat to a harm.

The three categories of harm defined in SORA are fatal injuries to third parties on the

ground, fatal injuries to third parties in the air, and damage to critical infrastructure. It is

the operator’s responsibility to ensure that no other categories of harm arise in their spe-

cific operation. Degradation of mission is not considered a harm in SORA. The only hazard

specifically defined in SORA is “UAS operation out of control” [2]. Out of control means

that the operation being conducted is beyond of the approved operation, which is signif-

icantly wider than simply loss of control of the UAS. For example, the UAS entering an
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unauthorized airspace, even when under full control by the operator and within visual line

of sight, would be considered out of control since that airspace was not authorized for the

specific operation and could lead to mid-air collision harm.

The five categories of threats identified by SORA are the following:

• Technical issue with the UAS

• Human error

• Aircraft on collision course

• Adverse operating conditions

• Deterioration of external systems supporting the UAS operation

SORA presents a framework for systematically analyzing each of these threat categories,

determining the appropriate threats in each for the given specific operation, and determin-

ing the paths from those threats to the specific hazard and the three specific harms defined

in SORA. These paths can be analyzed through quantitative probabilities, which are con-

trolled by the limits in Figure 2.1, derived from an equivalence to manned aviation.

Table 2.1: [2] The probability limits of fatalities per flight hour for SORA are equal
to the limits for manned aviation, since use of those limits provides a consistent basis
of acceptable risk levels in aviation. These limits are further broken down to enable
limiting risks depending on the category of operations.

Number of fatal injuries Number of Number of Probability that
to third parties on ground hazards per persons struck person suffers a

per flight hour flight hour per flight hour fatal injury
Certified 1−6 1−6 to 1−4 1−2 to >1 1
Category
Specific 1−6 1−6 to 1 1−5 to >1 0.01 to 1
Category

Open 1−6 1−2 to 1 1−5 to 1−2 0 (harmless) or
Category 0.01 to 1

The inherent difficulties associated with quantitative analysis of probabilities in complex
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systems, however, limit the utility of a numerical analysis. Completeness uncertainties, due

to inadequacies of the model, modeling uncertainties due to lack of knowledge of how to

model complex phenomena, and parameter value uncertainties due to lack of test data to

provide those values are just three of the difficulties with quantitative analyses that limit

the utility of the analysis results. Therefore, SORA uses a qualitative analysis with a range

of numerical levels that include risks, mitigations, and their levels of robustness. This

analysis begins with an initial risk assessment. For in-air collisions, that would be an air

risk assessment, with the categories shown in Figure 2.2.

Figure 2.2: [2] The Air Risk Class (ARC) assessment provides the strategic risk class
depending on the arena of operations, which is primarily dependent on the airspace
class.

The goal through the SORA process is to ensure that the risk is commensurate with the

proposed Concept of Operations (ConOps). Once the initial Air Risk Class (ARC) has

been assigned, risk mitigation/reduction efforts are performed as necessary to align the

risk with the proposed ConOps. These efforts are illustrated in Figure 2.3. The strategic
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mitigation efforts affect the air risk class. For example, a flight plan that avoids a high-risk

airspace could be substituted for a flight plan that requires passage through the high-risk

airspace. Tactical mitigation efforts then follow. These efforts do not change the air risk

class, but rather reduce the risk to an acceptable level within that air risk class. Depending

on the level of risk reduction, there is an associated required level of robustness for the

tactical mitigation effort. The final ARC and risk are then used to determine the Specific

Assurance and Integrity Level (SAIL) value, which encompasses the qualitative assessment

of the operational risk for all threats to the operation.

Figure 2.3: [2] This is an example risk reduction method for air encounters. Once
the strategic risk assessment has been performed (the ARC assessment), tactical risk
mitigation is performed to bring the risk to acceptable levels.

2.6.3 Separation Standard

In the paper “Establishing a Risk-Based Separation Standard for Unmanned Aircraft Self

Separation” [53], Roland Weibel and Caroline Sieger Fernandes propose quantifying the
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“well-clear” aircraft separation standard based on a time to closest point of approach anal-

ysis. Further, per the safety symposium notes in Appendix 2.1, the University of Central

Florida (UCF) estimated the well-clear distance for UAS and helicopters, which went into

the FAA guidance and has been corroborated via other research [54]. Further, performance

standards are being defined through the Radio Technical Commission for Aviation (RTCA)

for UAS in the NAS for both large and small UAS (RTCA SC-228 and the result — DO-

365), including standards on detect and avoid systems [55]. Quantifying standards enables

further quantifiable risk analysis, enabling a broader numerical risk analysis. The limita-

tion, however, is that sufficient knowledge of all other air traffic that could collide with

the UAS is required, through either onboard sensors or offboard information and datalinks.

Each of these risk factors need to be added to the model; information that is unavailable

results in higher risks and potentially unacceptable operational conditions. Since the FAA

regulations that have been proposed in 2020 [11] will require transponders on all UAS, this

information will be available, although datalink reliability, update rates, and other factors

will still need to be handled in the risk analysis.

2.6.4 Failure Impact Analysis and Crowd Modeling

Analyzing the risk of UAS operating over populations is an essential component of inte-

grating UAS into the NAS and has been the subject of various research endeavors [47] [56]

[57] [58] [59]. Several recent research endeavors have focused on predicting the impact of

a failure. For example, analysis of population centers [35] [60] [61] is used to predict the

likelihood of loss of life due to a failure and resulting ground collision. Decisions based on

risk analysis are comprised of two primary components: likelihood of failure and impact of

failure. Without estimates of the effects of failure, the best scenario is to prevent any flight

trajectories which could cause death if failure occurs. That is the current situation in which

UAS are not allowed to fly over crowds or people who are not associated with the flight

operations [24]. Thus, this analysis is essential to the risk analysis and decision making for
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UAS. The impact of failure modeling consists of understanding the crowd or population

dynamics and the vehicle dynamics during impact.

Current population modeling uses estimates based on number of people living in popu-

lation centers and various models for macro-movement versus individual movement ver-

sus hybrids [62] [63]. Recommendations are made for incorporating cell phone statistics

into the measures for a more real-time estimate. Since multilateration (triangulation of a

transmitter position through measurements obtained via multiple receivers) is already used

extensively in the cell phone industry and has been researched for developing population

maps [64], centralized, anonymous statistics could be used to evaluate the safe zones for

landing in the event of degradation of systems essential to a UAS [65]. While this con-

cept works for populated areas in which there is sufficient cell phone use to anonymize the

statistics, regulations prevent using this data in more rural areas in which the likelihood of

identifying the cell users is too high. An alternative in rural areas is to plan flight paths

via zip codes, using population statistics for the zip codes, provided the UAS has sufficient

range. A third method for capturing crowds in real-time is to use geo-located social media

feeds. For example, Twitter geo-located tweets can be used for analysis of crowd forma-

tion and movement [66]. Using video feeds from UAS, research has also shown that neural

networks can be used to improve the crowd modeling, thereby supplementing data sources

with direct observations [67].

While the previous research focused on population and crowd modeling while including

basic dynamics of the vehicle upon impact, other research has been done to model the dy-

namics of the vehicle including bounce effects to better understand the potentially affected

area [68].
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2.6.5 Path Planning

A significant portion of handling off-nominal conditions is path planning and estimation,

both before and after events occur. Path planning before the occurrence of an event that

causes off-nominal conditions has the ability to provide a safety net of options in the case

of such an event. This type of path planning, based on nominal vehicle dynamics, is well

researched, with further ongoing investigations. These planners typically perform opti-

mizations with parameters that allow the designer to choose the balance between safety

(related to particular situations) and mission efficiency. A good example of this type of

path planning is detailed in the work by Vian, et al. [69]. Once an event has occurred that

causes off-nominal conditions, the flight trajectory prediction is based on the new vehi-

cle dynamics. Since the off-nominal vehicle dynamics are not known a-priori, they must

be estimated either based on known failures or through an online learning algorithm. For

example, the neural network capabilities in the GUST software [70] enable learning the

new vehicle dynamics online, allowing path planning and estimation to be based on the

updated model of the vehicle dynamics [71] [72] [73]. These path planner may either be

short or long time horizon planners depending on the requirements for the contingency

reaction.

2.6.6 Fault Detection, Identification, and Accommodation (FDIA)

For small UAS, fault detection is often difficult as there are not always backup or monitor-

ing systems available to detect or handle subsystem failures. In the case of the multirotor,

for example, the failure of the IMU can be catastrophic since stabilization is required for

multirotors, and the IMU is required for stabilization. Newer autopilot hardware often in-

cludes more than one IMU, but even a second IMU only provides a backup; it does not

provide fault detection capabilities. Redundancies and detection for many aspects of small

UAS, including IMU, can be provided if designed properly [74]. An option for IMU FDIA

is proposed in “Fault Detection, Identification and Accommodation Techniques for Un-

26



manned Airborne Vehicle” by Lennon R. Cork, Rodney Walker, and Shane Dunn [12]. In

their research, they proposed using a neural network to detect abnormal operation of the

IMU and to replace the IMU data with output from the neural network should such a detec-

tion occur. While neural networks are limited in application for flight approval since it is

difficult to prove that neural networks have repeatable responses, this concept demonstrates

that even the most central of sensors for multirotor stabilization can be provided with both a

backup and observer. These methods provide an information input to a risk analysis model

— both as a safety alternative and the probability of the alternative fulfilling its role should

the primary system fail. FDIA techniques enable lower risk of primary system failure since

detection and accommodation can potentially handle the first failure, allowing the vehicle

to land or divert safely within operational parameters on the backup system.

Fixed wing aircraft provide the easiest backup systems in the event of motor failure since

they can glide safely to a landing, should a landing zone be available. Options provided by

Pedro Fernando Almeida Di Donato in his PhD dissertation “Toward Autonomous Aircraft

Emergency Landing Planning” at the University of Michigan in 2017 enable potentially

safe landing options for UAS [13]. Further, autonomous auto-rotation for rotary wing

aircraft, such as provided in “Flight Path Planning for Descent-phase Helicopter Autorota-

tion” by Thanan Yomchinda, Joseph F. Horn, and Jack W. Langelaan [75] or by a Rockwell

Collins patent [76] enables safe descent methodologies for the third major class of UAS (ro-

tary wing versus plane or multirotor). These technologies enable online risk analysis with

backup options. However, there still remains the risk associated with whether the FDIA

system correctly handles these faults, and more importantly for risk analysis, whether that

risk is quantifiable. This question goes back to the heart of system design and development

with a focus on the approval process. If FDIA systems cannot adequately quantify their

ability to detect and handle faults, then the risk analysis must ultimately still be handled

by an a-priori qualitative risk analysis, which limits the ability of these systems to make
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decisions in real-time.

A recent development regarding FDIA is the use of a backtracking algorithm to deter-

mine the critical failures that can cause a specific degradation or failure to occur [77]. In

addition to FDIA pathways, this method also provides risk assessment of the critical fail-

ures and probability of the downstream failure to occur, enabling this technology to be

easily included in risk assessment frameworks that use probabilities as the basis of the risk

assessment.

2.6.7 Online Risk Analysis

There is another option for a backup system to handle contingencies: predict the effect of

off-nominal behavior on the trajectory of the UAS. There is a subtle difference between

this option (online risk analysis) and the previous option (FDIA). In the previous option,

the backup system must detect a failure (fault identification) and handle it (fault handling)

in order to return the system to a near-nominal condition. This subject has already been

and continues to be researched extensively. Online risk analysis leaves detection and han-

dling of failure to other systems such as FDIA. Instead, online risk analysis stochastically

predicts the new trajectory of the UAS [14], enabling either an operator or an intelligent

system to respond appropriately. In other words, online risk analysis tells the operator what

will likely happen as a result of the fault, without attempting to handle the fault. This op-

tion can only be performed online since the cause of an off-nominal trajectory is not known

until it occurs. Online risk analysis provides several advantages, but the primary one is the

ability to delay decisions until they become necessary. For example, a system without any

online analysis must restrict its flight to ensure all contingencies do not cause out of control

operations. Online risk analysis provides the means to allow a broader flight envelope until

the risk of out of control operations is too great. Flight trajectory predictions provide the

operator with a means to steer the trajectory to minimize the impact of the off-nominal
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conditions. Further, these evaluations do not need to occur in real-time. Close to real-time

is sufficient, provided that the time delay of computations is incorporated into the trajectory

predictions.

A couple papers have recently been published which begin to realize this option. “Real-

time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Manage-

ment (UTM)” by Ancel, et al. [14] provides the first real-time risk assessment implemen-

tation in literature for a UAS. This is a significant achievement towards the realization of

real-time risk analysis and adaptation for UAS, but there are still many gaps to be addressed.

The primary gaps in this research are the use of offline resources for computations, which

become unusable in the event of loss of communications, and the restriction to Bayesian

Belief Networks, which typically require a reasonable set of a-priori data to provide the

priors. Likewise, recent developments have been made in online guidance updates based

on collision risk assessment [78]. This research uses decision trees and probability of col-

lision to determine whether to maneuver and, if so, which policy choices to follow based

on offline learning.

In “A Unified Approach to Separation Assurance and Collision Avoidance for UAS Op-

erations and Traffic Management”, Ramasamy, et al. develops a rigorous analysis of air

vehicle avoidance volumes using the errors built up in the navigation system [15]. Specifi-

cally, this approach both provides the avoidance volumes for a given system and allows the

computations of the necessary avionics to achieve a desired avoidance volume. This work,

together with the former risk assessment framework, provides a mechanism for real-time

evaluation of a vehicle’s trajectory and the areas it might impact. Further, combining these

analyses with the failure impact analysis in Section 2.6.4 provides a complete means to

evaluate the air or ground collision risk of a UAS, albeit with some shortcomings.
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2.6.8 Dempster-Shafer Theory

In general, quantitative risk analysis frameworks require an underlying technology to calcu-

late the risk, usually in the form of probabilities. The frameworks discussed in Section 2.6.1

use various methods; Bayesian Belief Networks is used several times as a structured data

method that allows reasoning over stochastic variables. A less well-known theory which

applies to this problem is Dempster-Shafer Theory, which many view as a generalization

of Bayesian reasoning [3]. However, unlike Bayesian reasoning, Dempster-Shafer Theory

does not require knowledge of priors. Furthermore, Dempster-Shafer is based on the con-

cept of probabilities over sets of sets, including the complete set, which is equivalent to un-

known information. Thus, Dempster-Shafer explicitly defines and calculates what portion

of the probability distribution is unknown, allowing the theory to start from fully unknown

data (i.e. no priors) as well as make different decisions when faced with lack of information

versus balanced probabilities between various options. Primarily used in sensor fusion and

risk analysis [79] and typically requiring higher computational resources, Dempster-Shafer

Theory provides useful properties that overcome some of the issues facing the risk calcu-

lation technologies underpinning quantitative, general risk analysis frameworks discussed

in Section 2.6.1. Chapter 3 discusses in-depth background research in Dempster-Shafer

Theory and develops extensions which apply to the UAS risk analysis problem discussed

here.
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CHAPTER 3

DEMPSTER-SHAFER RISK ANALYSIS FRAMEWORK

3.1 Introduction to Numerical Risk Analysis Frameworks

for Unmanned Systems

Central to the concept of a risk-based assessment for Unmanned Aerial Systems (UASs)

operations and the ecosystem that surrounds that assessment is a mathematical framework

capable of computing the risk. There are many frameworks currently available for this type

of risk computation. One of the most basic is a rules-based analysis, commonly known as

“expert systems” [80]. While easy to understand and explain the results, these systems suf-

fer from being inflexible, requiring branches to be updated as new information and options

are revealed. Further, risk analysis inherently requires capturing stochastic distributions, for

which expert systems are not well-suited. A second option, case-based reasoning, also pro-

vides a methodology which is easy to explain and relates well to human decision-making

[81]. This method can better capture stochastic distributions and mirrors the concept of

SORA which builds cases for each flight authorization and adds those cases to a library

to be building blocks for future authorization requests. However, this method suffers from

a need for each case to be analyzed by a human to choose the important features before

the case is entered into a library for future analyses, limiting the flexibility of this method.

Moving away from cognitive methods, data-driven methods such as neural networks [36],

Gaussian processes [82], and support vector machines [83] offer the flexibility of adapting

to new information as it becomes available. Further, data-driven methods easily capture the

stochastic distributions required to analyze risk. The three principle limitations to apply
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these methods to UAS risk analysis are the following:

• Lack of information

• Lack of computing power

• Lack of explainability

Currently, limited information is available for risk analysis of UAS, as discussed in the 2018

Safety Symposium notes in Appendix F. New UAS products and upgrades from compa-

nies such as DJI [7] are often available, departing from a more traditional manned aviation

model in which vehicles product updates are slower, allowing for an improved understand-

ing of the risks associated with operation in the NAS. As such, the mathematical analysis

framework will need to be able to start from nearly no quantitative evidence and build over

time to incorporate new data from subsequent operations. Purely data-driven methods re-

quire substantial training data before they can provide usable results [36]. Further, purely

data-driven methods typically require significantly higher computing power to run the anal-

ysis since relationships between data points are calculated rather than given by expert input.

Since one of the goals of the risk analysis framework is to run on autopilots onboard UAS,

an ability to run on embedded systems with lower computing power is essential. Finally,

the conclusions from purely data-driven methods are much more difficult to explain. For

a system which operates under human oversight, such as the US national airspace operat-

ing under the oversight of the Federal Aviation Administration (FAA), it is necessary for

the reasoning behind decisions to be explainable to the humans providing oversight to the

system. This condition makes purely data-driven methods difficult to use in the NAS.

A third category of quantitative risk analysis frameworks is structured data. This category

is a blend of the previous two, combining the knowledge of subject matter experts (SMEs)

for structuring the data while enabling sufficient data flexibility to encompass stochastic

distributions and risk analysis. Methods in this category include Bayesian reasoning and

Markov processes. Due to their data structure, these methods are sufficiently explainable
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to serve as a basis for decisions in a system with human oversight. Further, efficient means

of computing decisions through these networks are available [84].

Due to the afore-mentioned method evaluation, the numerical framework initially chosen

for this risk-analysis was a Bayesian network. However, Bayesian networks still run into

their own limitations in that these networks require probability distributions to initialize

the network. Typically, the data and time requirements to obtain the initial probability

distributions are quite high. Since UAS are still in their infancy, the initial probability dis-

tributions are, in general, unknown. This is also true because the capabilities and designs

of UAS are constantly changing without presenting enough information about the ever-

new systems to understand the risk associated with them. Thus, the chosen mathematical

framework must incorporate the capacity to start from unknown information and gradually

incorporate sufficient information to provide informed risk assessments. Evidential rea-

soning, also named Dempster-Shafer theory after the original developers of the theory [1]

[3], is a structured data approach similar to Bayesian. However, Dempster-Shafer theory

quantifies “unknown” data — the component of the probabilities that could be any stated

option. By quantifying unknown data, Dempster-Shafer theory enables starting an analysis

with no a-priori knowledge of the probability distribution.

This section is structured as follows:

• Section 3.2 provides a brief overview of Dempster-Shafer theory

• Section 3.2.3 provides a brief overview of evidence propagation through a network

• Section 3.3.1 discusses the requirements of this network to combine evidence at each

node

• Section 3.3.2 develops novel rules to update the transition potential matrices based

on evidence inputs to nodes

• Section 3.4 develops the novel use of episodic learning for Dempster-Shafer net-
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works, improving the transition update results

• Section 3.5 develops novel rules for evidential weighting to combine evidence in the

network

• Section 3.6 shows tests and results for the novel update rules

• Section 3.7 discusses the conclusions, limitations, and future work for the novel tran-

sition potential matrix update methods

3.2 Dempster-Shafer Theory

Dempster-Shafer (DS) theory was originally devised by Arthur Dempster [1] and Glenn

Shafer [3]. The following papers provide a mathematical background to the theory [79]

[85]. “Smart Projectile State Estimation Using Evidence Theory” provides an practical

understanding of evidence theory using sensor fusion and state estimation as the backdrop

[86]. Other practical explanations of DS theory are available [87]. For the purpose of this

work, focusing on extensions to DS theory as applied to networks, this chapter will start

with a simple, practical example to set the stage for understanding what the DS network

offers. This example will be related to Bayesian reasoning for readers familiar with that

framework. Readers who are already familiar with DS theory and its complications can

jump to Section 3.2.3.

3.2.1 Dempster-Shafer Information Fusion Example

Using the nomenclature previously defined, this section focuses on a simple example which

will make the DS theory and application clearer. Consider a situation in which an object is

one of the following options as shown in Figure 3.1.

• Red ball

• Green ball
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• Red cube

Figure 3.1: Visual representation of the simple Dempster-Shafer example. Θ repre-
sents the three options that could be observed by the sensors. The powerset column
represents all combinations which Dempster-Shafer analysis considers. Recall that
sets with multiple options signifies the belief that the observed object could be any
one of the objects in the set. The two sensors that provide observations — evidence
— can detect all objects, but can only detect certain properties of each object. Those
detections are shown, along with the belief masses assigned to each element of the pow-
erset: the Basic Probability Assignment (BPA). The combined mass column shows
the powerset again, along with the results of the analysis which correspond to the
greater details in Table 3.1. The highlighted element of the powerset (the red ball) is
the θ which is believed to correspond to the true object, based on the Dempster-Shafer
analysis.

Together, these options comprise the Frame of Discernment, Θ, as the object under ques-

tion can only be one of these. The powerset of Θ is then shown in the “Powerset” column

of Table 3.1. Assume two sensors provide evidence concerning the object. Evidence one

is provided by a black and white camera that can only distinguish shape but with error.

Evidence two is provided by a sensor that only distinguishes color with error. Suppose

the object in question is a red ball. The evidence provided by sensor one may look sim-

ilar to the belief masses in the “Evidence 1” of Table 3.1. The “Evidence 1” column is

then a BPA assigning the belief masses to each element in the powerset. All elements
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with non-zero mass are Focal Points. This evidence can be interpreted as the sensor is 10%

sure the object is a cube, 80% sure the object is a ball, and 10% unsure of what the object is.

The “Evidence 2” column represents a potential set of evidence from a sensor that only

distinguishes color. In this case, sensor two is 20% sure the object is green, 60% sure the

object is red, and 20% unsure of the color. This sensor is less precise at distinguishing

colors than sensor one is at distinguishing shapes. Since these two evidence sets are not in

high conflict, which will be discussed in more detail in Section 3.2.2, Dempster’s Rule [1]

can be used to combine the evidence, and the result is shown in the “Combined” column of

Table 3.1.

Table 3.1: Dempster-Shafer Evidence Example. The “Powerset” column represents
the full set of options to which a BPA can be assigned. The “Evidence 1” column
shows the first evidence set from the sensor that distinguishes shape. The “‘Evidence
2” column shows a second evidence from a sensor that distinguishes color. The “Com-
bined” column shows the rounded, combined masses based on Dempster’s Rule, and
the “Bel” and “Pl” columns show the Belief and Plausibility functions, respectively,
for each of the elements of the powerset of the combined data.

Powerset Evidence 1 Evidence 2 Combined Bel Pl
Red ball 0.0 0.0 0.490 0.490 0.734

Green ball 0.0 0.2 0.184 0.184 0.367
Red cube 0.1 0.0 0.082 0.082 0.163

(Red ball, Green ball) 0.8 0.0 0.163 0.837 0.857
(Green ball, Red cube) 0.0 0.0 0.000 0.266 0.286
(Red ball, Red cube) 0.0 0.6 0.061 0.633 0.653

(Red ball, Green ball, Red cube) 0.1 0.2 0.020 1.0 1.0

First, note that only the subset green ball and red cube had zero evidence assigned from

either sensor. All other subsets either had an ambiguity or a θ that was a focal point of

each evidence set. Dempster’s Rule follows the single-vote-no concept in that, if a single

evidence set assigns zero mass to an element of the powerset and to any set that contains

that element, then that element will be eliminated from the combined result. Second, notice

that the unknown element — the complete set — is significantly reduced in the combined

dataset from each of the two evidence sets. Since the evidence sets were not highly con-
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flicted, unknowns and ambiguities (sets that include more than one θ but not the complete

set) were reduced. Finally, note that the correct classification, the red ball, has the highest

combined mass of any of the elements of the powerset. Looking at the “Bel” and “Pl”

columns of Table 3.1 — the belief and plausibility functions, respectively — one can see

that the belief functions are the sums of all masses that could apply to that element, and

the plausibility functions are one minus the sum of all masses that could not apply to that

element. Thus, the belief function for red ball equals the combined mass for red ball while

the belief function for red ball and green ball is equal to the sum of the belief masses for

red ball, green ball, and (red ball, green ball). Likewise, the plausibility function for red

ball is one minus the sum of the belief masses for green ball, red cube, and (green ball,

red cube). Looking at the difference between the belief function and plausibility function

columns leads to a few conclusions:

• This example concludes that there is a precise understanding of the belief associated

with the object being either a red ball or a red cube because the belief and plausibility

function values — the “Bel” and “Pl” values for the (Red ball, Red cube) row in Table

3.1, which represent the lower and upper bounds on the belief — are nearly the same

value.

• There is a similar precise understanding of the belief associated with the object being

either a red ball or a green ball, but the belief in that case is significantly higher than

the belief that the object is either a red ball or a red cube. This result is expected

since we know from the example setup that the sensor that distinguishes shapes is

more precise than the sensor that distinguishes color.

• The largest range of belief values is associated with the correct object classification

– the red ball. This classification is also the strongest belief and highest plausibility

of any of the θ elements.

• If a decision-maker were to play it safe, the decision-make could state that it is most
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likely that the object is either a red ball or a green ball. If the decision-maker were

willing to accept a bit more risk, then that decision-maker could state that the object

is likely a red ball. The choice the decision-make will make is governed by the

acceptable limits placed on the belief and plausibility functions.

Finally, we take a look at this same problem from a Bayesian perspective [88]. Before

doing this, we must note one nuance concerning the DS approach. The DS approach had

an original unstated hypothesis concerning the object: that the type of object was unknown

(all belief mass is assigned to the complete set). When Dempster’s rule is used to com-

bine a BPA of all mass assigned to the complete set with another BPA, the result is the

same as the second BPA, thus allowing that step to be removed from the simple example.

For a comparable Bayesian example, we start with all mass equally divided among the Θ

elements, using similar terminology as the DS example for ease of comparison. The first

point to note is that the closest representation of unknown in Bayesian is equal probabil-

ity distribution across all options. However, this distribution is indistinguishable between

equal probabilities of all options being correct versus no knowledge of which option is

correct. The Bayesian observations are then cube versus ball for the first evidence and red

versus green for the second evidence. The ambiguities in the DS evidence translate into

likelihoods (correct and incorrect) for the Bayesian test, and we assume the observation is

correct — a red ball. The result of these computations is shown in Table 3.2. From this

analysis, we can make a few observations:

• The correct answer — red ball — has the highest posterior probability (the final

column in Table 3.2), meaning that the object in question is most likely a red ball.

• The evidence was highly supportive of the correct answer to the extent in the DS

example that the belief and plausibility functions of the Θ elements don’t overlap.

The Bayesian result does not communicate this information at all, meaning that in

the Bayesian analysis, the decision-maker cannot be as confident in the decision that
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Table 3.2: Bayesian probability Example. This example mirrors the DS example in
Table 3.1 as closely as possible for comparison. Because the evidence sets are direct
observations of the priors, the likelihood is 1.0.

Θ Prior Likelihood 1 Posterior Likelihood 2 Posterior
Red ball 0.333 0.459 0.623

Green ball 0.333 0.459 0.267
Red cube 0.333 0.081 0.110

incorrect shape 0.15
correct shape 0.85

incorrect color 0.3
correct color 0.7

the object is a red ball.

In summary, this simple example resulted in the same outcome with Bayesian and DS

analyses. However, the additional information contained in the DS analysis presents the

reliability of the result to the decision-maker. For a decision based on the highest proba-

bility, either analysis works. However, suppose for example that the decision-maker wants

to ensure that the object in question is not a red cube or a green ball. In the Bayesian

analysis, there is no way to know the upper limit on the probability for the object either

being a red cube or a green ball. From Table 3.1, in the DS analysis, the upper limit of the

probability that the object is a green ball is 0.367. The upper limit on the probability that

the object is a red cube is 0.163. The lower limit that the object is a red ball is 0.490. Thus,

for a decision-maker whose responsibility is ensuring that the object is not a red cube or

green ball, the DS analysis provides the information necessary to make that decision. The

Bayesian analysis does not provide the required information. This is one reason why DS

analysis is used heavily in risk analysis and sensor fusion, typically for classification of

sensed objects.
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3.2.2 Dempster-Shafer Combination Rules

With this basis in understanding of the application of DS analysis, the next step is to look

at the combination rules. The original DS combination rule is linear, which preserves the

axioms required for probability combinations [1], thus allowing this method to reduce to

Bayesian reasoning under certain conditions. However, this rule suffers from a couple of

issues, the principle one being the assumption that all evidence contributors have equal

weight, reliability, and full knowledge of the frame of discernment. In our simple example

in Section 3.2.1, each sensor still had full knowledge of all elements of the powerset (can

detect every possible combination), but returned ambiguities when it could not distinguish

between specific θs. This application adheres to the assumptions of Dempster’s Rule. In

contrast, suppose that sensor one could not detect red cubes. In that case, sensor one

would always assign zero mass to any subset of the powerset that contains red cubes. This

situation violates the assumptions of Dempster’s Rule and leads to non-intuitive results due

to the classic vote-no-by-one issue in which a single no-vote by an evidence contributor

results in the option being assigned a belief of zero when the evidence is combined. For

highly conflicting data, this results in non-intuitive results such as in Table 3.3 [79].

Table 3.3: Dempster-Shafer Conflicting Example. The combination of highly conflict-
ing data provides non-intuitive results. In this case, although both A and C each have
a large belief mass in an evidence set, 0 mass for each of A and C in the other evidence
set results in a vote-no-by-one scenario in which one sensor “votes no” for A and the
other sensor “votes no” for C. The result that all belief mass is given to B when com-
bined. Note that for this simple example, only single options are focal points in the
frame of discernment.

Data Set A B C (A,B) (A,C) (B,C) (A,B,C)
Evidence 1 0.9 0.1 0.0 0.0 0.0 0.0 0.0
Evidence 2 0.0 0.1 0.9 0.0 0.0 0.0 0.0

Combination 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Because the assumptions of Dempster’s Rule are often not applicable to real-life scenarios

(in most situations, all evidence observations do not have full knowledge of all elements of

the powerset and are not equally reliable), multiple authors since the 1980s have devised

40



ways around these assumptions including different combination rules as well as different

input functions that add unknown mass to account for the lack of knowledge of elements of

the powerset. Since this paper is not an overview of these combination rules, the focus will

be placed on three combination rules that have useful properties for the risk analysis being

developed. Zhang’s combination method [18], Murphy’s combination method [19], and the

Evidential Reasoning rule [89] are three such methods that enable a custom weighting to be

associated with each new evidence. This property will be useful later in the development

of the risk analysis network in Section 3.5.

3.2.3 Evidence Propagation

Evidence propagation through a hypertree [17] was first introduced in the 1980s. Similar

to Bayesian propagation, the principle difference is that evidence propagation is less con-

cerned with the transition values being conditional probabilities. This is best shown through

Figure 3.2, which shows a parent node with its transition to a child node. Note that it is

easy to convert transition values into conditional probabilities [17] [4]. Since DS reasoning

condenses down to Bayesian reasoning under certain assumptions [90], evidence propaga-

tion is very similar to Bayesian propagation. In fact, the example given in the original work

by Shafer and Shenoy is a Bayesian example that overwrites nodes with new evidence

and treats conditional probabilities at each transition as a known fact used for evidence

propagation [17]. In order to maintain consistency in the network with known conditional

probabilities, it is necessary to overwrite node information with marginal probabilities in-

ferred through the conditional transitions based on the most recent evidence update. The

effect of this can also be seen through Figure 3.2 since propagating even an identical input

to the previous child marginals does not result in the parent marginals being recovered.

This mechanism assumes that the most recent evidence is the best choice and, therefore,

limits the capabilities for the network to incorporate uncertain evidence at each node.

This original work was extended through the 1990s and early 2000s under various names
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Figure 3.2: Propagating the Dempster-Shafer evidence masses through the transition
between nodes. For simplicity, only two options are available at each node. The di-
rection of propagation is represented by the arrows between evidence masses. The
arrows between the nodes represent the definition of the network. As can be seen, ev-
idence propagation from node A to node B results in normalized masses. Conversely,
evidence propagation from node B to node A results in non-normalized masses. More-
over, the original masses are not recovered if masses are propagated from node A to
node B to node A through the same transition.

for the field of study. Valuation networks is the general name given to these networks by

Shenoy [16], which are not required to be directed (i.e. each connection between nodes has

a direction associated with it) or acyclic (i.e. given any starting node, there are no paths

in the network following the directions between nodes that return to the starting node)

and encode the relationships between characterizations of the uncertainty for local sets of

knowledge. The determination of whether sets of knowledge can be broken into separate

nodes is based on conditional independence [91], e.g. if sets of knowledge are condition-

ally independent from each other, then they can be broken into separate nodes with the

relationship encoded on the link between the nodes. Uncertainty propagation was extended

by Smets [4] [92] based on the Transferable Belief Model (TBM). While the Transferable

Belief Model is a powerful tool for capturing the relationships between knowledge sets, it

is based on the non-probabilistic belief function theory [93], in contrast to the probability-

based belief function theory that underpins DS Theory [93]. Using the formal theory of
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TBM, Smets showed the relationships between the joint probabilities used in Shenoy’s

original work [17] and conditional probabilities used in Bayesian networks [4]. Specif-

ically, Smets showed that conditional probabilities for each of the θs in node A that are

conditionally dependent on node B could fully capture the effects of the probability distri-

bution of node B on the θs in node A [4]. This relationship allowed the joint probabilities

from Shafer and Shenoy [17] to be reduced to the minimum representation of conditional

probabilities, which results in reduced computer memory usage and could leverage condi-

tional probability calculations already developed for Bayesian networks. This work applies

to valuation networks in general — no directed acyclic assumptions required — and has

since been extended [94].

More recently, primarily in the 2000s, work has returned to the joint probabilities origi-

nally used by Shafer and Shenoy [17] for encoding the relationships between nodes in a

valuation network. Evidential networks — valuation networks which use evidential rea-

soning to combine observations at nodes and joint mass tables (the general case of joint

probabilities as seen in Figure 3.2) — have been extended and applied to various scenar-

ios including threat assessment [93] [95] [96]. Further, discounting has been introduced

to reduce the weight of inferred evidence versus directly observed evidence [95]. These

extensions and applications are consistent with the original work [17] while offering im-

provements in computation speed, reliability weighting of evidence, and analysis of what

evidence can be propagated between nodes. However, these extensions are still based on

the same assumptions about joint masses — the joint masses are set and updated occasion-

ally by someone who has knowledge of the relationships between nodes. This concept of

unchanging joint masses or joint probabilities is an assumption that allows the joint proba-

bilities to be represented as conditional probabilities. This assumption clearly underlies the

use of vector projections and spans to show that the conditional probabilities are a minimal

representation (i.e. minimum information required) of the joint probabilities [4]. Consider

43



the case in Figure 3.3 in which variable d is not influenced by the variables in node A, thus

allowing the conditional probability representation to be smaller than the joint probability

representation.

Figure 3.3: An example case in which the conditional probabilities are a minimum,
and a smaller, representation of the joint probabilities. The variable d in nodeB is not
influenced at all by the variables a, and b, in NodeA and is, thus, independent from the
variables in Node A. The conditional probabilities would reflect that by eliminating
that row of zeros, resulting in fewer values being stored to represent the relationship.

While this assumption is useful if the joint probabilities are not changing often, the appli-

cation of the evidential network in this paper is to unmanned systems, and an underlying

assumption of this analysis is that the relationships between nodes are constantly changing

as operational data is received. Thus, the move from joint probabilities to conditional prob-

abilities actually causes an issue.

Published papers that are based on evidential reasoning networks often assume a directed

acyclic network, such as the work by Pollard and Pannetier [95], which can model the

knowledge required for the applications described in this paper. Further, directed acyclic

networks with multi-path loops can always be reconstructed to remove the loops, as shown

in Figure 3.4. Since directed acyclic networks are sufficient for the decision analysis in

this paper, directed acyclic networks are assumed for the rest of the developments in this
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paper.

Figure 3.4: A simple example of how to remove multi-path in a directed acyclic graph.
The variables in nodes C and D are combined into node E, resulting in a single path
from A to B. This combination is always possible since belief masses assigned to
sets including variables from both nodes D and D can always be set to zero, thereby
resulting in two independent belief mass distributions contained within the same node.

Other methods of handling valuation network representations have been developed [97]

[98]. While these representations have less in common with the evidential reasoning net-

works, limitations are introduced to prevent information from being incorrectly inferred

[97]. For example, if the network is comprised of two nodes such that the parent node has

two options: “writer” and “not writer”, and the child node has two options: “journalist” and

“not journalist”, evidence suggesting the entity under question is not a journalist cannot be

used to infer evidence against the entity being a writer.

3.3 New Rules for Evidence Propagation

Current rules for updating the network have difficulties with highly limited a-priori data

because the transition potentials are only updated based on user inputs, thus requiring suf-

ficient knowledge of the relationships between nodes before the network is used. New

rules have been developed to facilitate intuitive evidence propagation when transitions be-

tween nodes start with limited or unknown information. Unknown transition information
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is represented as transitions mapping all marginal masses to the complete set as shown in

Figure 3.5. This state is referred to as “vacuous” [4]: providing no information on the joint

probabilities between the nodes.

Figure 3.5: An example network that starts with no data. This analysis is beyond
the scope of Bayesian logic since Bayesian requires priors. Further, overwriting infor-
mation is risky in this context since a full overwrite of information suggests sufficient
data behind each update. In other words, the first overwrite would be similar to start-
ing with Bayesian logic after the first update, but insufficient information for that to
occur has already been assumed.

3.3.1 Evidence Combination at Nodes

One of the principle strengths of DS theory is combining evidence in a single frame of dis-

cernment. Developing a hypertree or network enables structuring the data such that each

local frame of discernment is computationally feasible. For example, as in Figure 3.2, each

node has 2 options, which means each powerset comprises 3 options (see Nomenclature

for powerset definition). Without the structure, there are 4 options available, which means

a powerset of 10. As the number of nodes and hypotheses (θs) per node grow, an evi-

dential reasoning network quickly becomes the only computationally feasible option for

limited computing power. In addition, information about causality between hypotheses is

obfuscated. Within a network, however, new evidence provided at each node often still in-
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cludes high uncertainty. Further, the newest evidence is not necessarily the most reliable —

i.e. overwriting data at each node with new information is not necessarily the best update

mechanism. As a simple example, new data for aircraft engine failures over a period of

time since the last update does not mean that the new probabilities are the best to use, espe-

cially if the engines have not been modified since the previous period. It may be better to

consider the sets of evidence equally and combine evidence at that node. This is especially

true for evidence inferred through a transition from another node, which can be considered

to be less reliable than directly observed evidence.

The first rule defined for this network is that all evidence updates at each node uses an

evidential combination rule as shown in Figure 3.6. This rule aligns with previous work

[95] [99]. In Section 3.2 it was noted that there are multiple combination rules that have

been developed as alternatives to handle the non-intuitive results of conflict in the DS rule.

Some rules, such as Yager’s method, are dependent upon the order in which data is entered

[20]. These rules create an intrinsic weighting of evidence based on temporal order. This

distinction is important since the weighting discussed in Section 3.5 does not need to handle

temporal order. The inherent drawback to using combination methods to update each node

is immediately realized in that the network values are no longer consistent with each other

once evidence has been propagated through a transition and combined at a node — i.e. the

node’s marginal probabilities no longer equal the previous node’s marginal probabilities

multiplied by the transitional values, which can be clearly seen in Figure 3.6. This result

suggests the possibility of learning the transitional values through updating the transitions

to be consistent with the new node values. This update is discussed in Section 3.3.2.

3.3.2 Transition Updates

As stated in Section 3.3.1, subsequent to combining evidence at a node, the network is no

longer locally consistent across transitions to the neighboring nodes. This state leads to the
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Figure 3.6: An example network update that uses Dempster-Shafer updates to com-
bine evidence at each node. The combined value from node A (A)1 is propagated as
evidence through the transition to node B (B)1, where it is combined with directly
injected evidence (B)2, resulting in (B)3.

hypothesis that the transition can be updated to return to a consistent state. The transition is

governed by the following three sets of equations: 3.1, 3.2, and 3.3, assuming the transition

matrix is T , the parent marginal column vector is Mp with p values, and the child marginal

column vector is Mc with c values.

Mc = T ∗Mp (3.1)

c∑
i=1

(colj(T ))i = 1 ∀ j = 1, . . . , p (3.2)

Ti,j ≥ 0 ∀ i = 1, . . . , c and j = 1, . . . , p (3.3)

Due to equations 3.3 and 3.2, all values are automatically limited to the range [0, 1], which
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is necessary for transitions potentials, per the definition [17]. These equations do not fully

constrain the transition potentials, thus requiring an optimization routine to choose a feasi-

ble solution which minimizes a cost function. The equality constraints (equations 3.1 and

3.2) can be rewritten into a vector equation of the form Ax = b, where A is a matrix and b

and x are vectors. This equation can be optimized to solve for x. There are two important

points in this optimization design:

• In most cases, there will be one redundant equation. The redundant equation is not

known a-priori because it is dependent on the parent and child marginals. Therefore,

all equations are included in the optimization, which does not degrade the solution.

• The inequality constraint, 3.3, is not included in the vector equations. Depending on

the optimization routine and cost function chosen, this constraint may or may not be

included.

The primary goal is to find a feasible solution which updates the network in a stable manner

and is quickly computable. With that aim in mind, the cost function was chosen to be

equation 3.4.

min

(
i,j=m,n∑
i,j=0,0

(
T ∗i,j − Ti,j

)2

)
(3.4)

This cost function minimizes the change from the previous transition matrix to satisfy the

stable update goal. While other cost functions can be chosen, this cost function enables

least squares optimization, which does not require iteration and satisfies the goal of fast

computations. Note that other solution methods also meet the stated goals as discussed

in Appendix C. It is clear, however, that the cost function is incompatible with the design

vector. This issue is because the design vector, x, is based on Equations 3.1 through 3.3,

but Equation 3.4 is the difference between the previous transition matrix and the new tran-

sition matrix. Thus, the design vector is modified to account for this difference, with the

resulting offsets calculated from the previous transition matrix and added into the b vector.
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Importantly, a least squares solution without constraint modifications does not guarantee all

design variables are greater than zero, which is necessary to satisfy Equation 3.3. In prac-

tice, the cost function pushes the design variables towards positive semi-definite values and

usually provides feasible solutions since the previous values were positive semi-definite.

This shortcut was deemed necessary to improve the solution speed. However, when the

least squares solution returns an infeasible solution, another method has to be chosen. The

following two described methods were tested, and the second was chosen for its reliability.

Adhering to the goal stated previously, constrained quadratic optimization was avoided

due to the uncertainty of the iteration time. Instead, the problem was modified for linear

programming, which automatically guarantees positive semi-definite design variables and

returns solutions quickly. Two modifications were made for linear programming. First, the

design variables were changed to be the new transition potentials. Second, the cost func-

tion was changed to be the sum of the design variables with weights. Higher weights were

placed on design variables that were previously close to zero to approximate the effect of

least squares minimization. While this optimization resulted in a different solution than

the least squares method, it provided feasible solutions with fast computations, which is

necessary for real-time updates. However, in practice, the NumPy [100] implementation

of this method was found to be unreliable at finding feasible solutions. Instead, a second

method was developed to find feasible solutions.

The least squares solution always meets the constraints given by equations 3.1 and 3.2

since those are defined for the solution method, and it was previously shown that at least

one solution always exists that meets all constraints. The task is then to adjust the solution

as minimally as possible to meet the constraints defined in equation 3.3. This adjustment

can be done through a series of mathematical operations defined below that (i) maintain

adherence to the constraints in equations 3.1 and 3.2, (ii) find a result which meets the con-
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straints in equation 3.3, and (iii) attempts to minimize deviations from the solution found

via the least squares method. The goal is to modify all values that are negative to be non-

negative. Due to the constraints given in equation 3.2, this automatically guarantees that

any values greater than the value of one will also be reduced to less than or equal to the

value of one. The procedure is as follows:

(1) Order the columns to adjust values. Do this by summing all values that are less than

zero or greater than one in the column and sort from greatest to least. This order is

useful because the maximum value this sum can attain is 1.0. This is because any

value above 1.0 must have an equivalent set of values below zero to compensate.

However, values below zero can be balanced by values in the range (0.0, 1.0]. Since

this is true, when the sum is equal to 1.0, the scenario is the most highly constrained

in which all negative values must be used to balance the value that is greater than 1.0.

Note that any columns that already meet the constraint will sum to 0.0.

(2) Step through each column from step (1) above in order.

(3) For each column, order all values in the column that are less than 0.0 from maxi-

mum absolute value to minimum absolute value. While this order is not required, it

provides a consistent solution method which makes debugging easier.

(4) For each value in order from step (3) above, redistribute excess mass per Algorithm

1.

As shown in Figure 3.7, this method can handle cases in which the child node of the tran-

sition being updated only has a single parent transition — case (1) in Figure 3.7. For

multiple parent transitions — case (2) in Figure 3.7 — this update method is too simplistic

since each parent transition would return the child marginals, with the combination of those

marginals resulting in a different solution.

This effect means that the transition potentials for any parent transitions to the same child
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Algorithm 1: Mass redistribution algorithm. This algorithm redistributes mass
which does not adhere to the final constraint in Equation 3.3 in a way that seeks
to minimize the difference from the minimum solution found through the least
squares approach.
1 excess mass = 0.0 - negative mass value
2 negative mass value = 0.0
3 if some value > 1.0 in column then
4 some value -= excess mass
5 else
6 previous positives = {}
7 for all some value in column do
8 previous positives[some value] = some value >= 0.0
9 if some value is not negative mass value then

10 some value -= excess mass / (len(column) - 1)
11 end
12 end
13 for any some value in column do
14 if (some value is < 0.0) and (previous positives[some value] is True) then
15 # Redistribute over remaining values per the above for loop
16 end
17 end
18 # Repeat above until the mass is redistributed as close as possible to

excess mass / (len(column) - 1) since that is
19 # the minimum squared changed from the previous value.
20 end
21 # Now that the column has been redistributed, redistribute the mass across the

other columns to balance out equation 3.1. The goal is to equally distribute the
mass across all columns, with compensation based on the parent marginals. This
compensation ensures that changes do not drastically affect other columns,
causing new issues.

22 for all some column in columns do
23 if some column != adjusted column then
24 column compensated mass = adjusted mass *

parent marginal[adjusted column] / parent marginal[new column];
some column[adjusted value] += column compensated mass

25 # If some column has not already been fixed, allow the value to go
negative. Once it has been fixed, the excess mass must

26 # be distributed across columns to ensure this value does not go negative
while minimizing changes from applying the average

27 # across all columns, which minimizes squared changes from the least
squares solution.

28 end
29 end
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Figure 3.7: Case (1) shows a single parent node with transitions to two child nodes.
Each unknown transition can be calculated using the update method described pre-
viously via either least squares minimization or linear programming minimization.
Moreover, case (1) reduces to the simplest case of one parent and one child node if
Node C and the associated transitions are removed. In contrast, case (2) cannot solely
be solved via the described least squares or linear programming methods. The child
marginal values are a result of a Dempster-Shafer combination algorithm, which must
be part of the method for updating the unknown transition potentials. This case is
handled in Section 3.3.3

node are linked and must be solved together. The naı̈ve approach is to simultaneously solve

for all transition potentials using equations 3.2 and 3.3. Equation 3.1 would be modified to

equation 3.5.

Mc = comb (T1 ∗Mp1, T2 ∗Mp2, ..., Tn ∗Mpw) (3.5)

In Equation 3.5, comb is the DS combination algorithm chosen from the list of options dis-

cussed previously, and w is the number of parent transitions that must be simultaneously

solved. The primary issue with this method is that DS combination methods can have

highly non-linear effects depending on the evidence sets fed into the combination method.

Further, because all transition potentials are being solved simultaneously, the optimiza-

tion routine becomes significantly more complex to run, causing a large, non-deterministic

increase in optimization time. To combat these issues with this solution method, two sim-
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plifying assumptions are made:

• The simultaneous optimizer is used only to solve for the DS combination of marginals

that results in the child marginals. This problem is significantly smaller than optimiz-

ing the full transition matrices with the DS combination algorithm included. Then,

the solution methods for individual branches (the previously-described least squares

and linear programming minimization methods) is used to find the correct transition

potentials for each parent transition based on the specific marginals for that branch.

• With the assumptions that the DS network is initialized with completely unknown

information and all transitions are learned as information is added to the network,

then there is no a-priori information concerning the transition potentials. Thus, any

solutions which meet the previously defined constraints of transition potentials are

reasonable. Given this, the following simplifying assumption is made when updating

the transition potentials matrix: all marginals combined via a DS algorithm to pro-

duce the desired child marginal are the same. Subsequently, this assumption can be

relaxed for certain combination algorithms.

Given these two assumptions, an optimizer could be used on the reduced problem to find

the marginals which combine to create the desired child marginal. An appropriate opti-

mizer would be a trust-region interior points method or something similar. However, this

optimization still suffers from non-deterministic run times and difficulty sectioning the op-

timization routine for real-time operating systems unless a specific optimization routine

were written for this. Instead, a more reliable and faster method was developed for certain

combination algorithms as detailed in section 3.3.3.

3.3.3 Multi-Parent Transition Updates

Several DS combination algorithms reduce to the same algorithm when combining iden-

tical evidence sets. In particular, the original DS rule [1], Murphy’s rule [19], Zhang’s
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rule [18], and Evidential Combination Reasoning (ECR) [89] are the same for identical

evidence sets and equal weights. This result is because (i) Murphy’s rule and Zhang’s rule

reform the evidence masses per their rules, then combine the reformed evidence masses

via Dempster’s rule (n− 1) times, where n is the number of evidence sets; and (ii) ECR

was specifically designed to reduce to Dempster’s Rule when using equal weights [89].

Because Dempster’s rule does not result in a normalized combined evidence set regardless

of whether the input evidence sets are all normalized, Yager’s rule [101], which is similar

to Dempster’s rule but assigns the unallocated mass to the universal set, does not fit the pre-

vious pattern, and the result developed in this section does not apply to Yager’s rule [101].

While this result may seem fairly constrained since it only applies to four rules, it serves

well for most decision networks, and in particular risk-analysis networks, since those four

rules can cover the various cases to which decision networks are typically applied. The

averages in Murphy’s rule [19] apply when low beliefs of an event occurring are important.

Conversely, Zhang’s rule [18] applies when outliers need to be eliminated. The original DS

rule [1] and ECR [89] apply when only the combined evidence is known at each update; the

history of evidential inputs is not retained. Further, by combining Zhang’s rule [18] with

sufficient evidence history, the winning decision will be emphasized, which is one of the

primary propositions of the Rayleigh methods [20]. Finally, the chief property of Yager’s

rule [101] — avoiding issues with Dempster’s rule [79] — is also a property of Murphy’s

rule [19], Zhang’s rule [18], and ECR [89].

Murphy’s rule is intuitive for risk-analysis since it uses averages to reform the evidence

masses [19], and averaging large datasets to obtain means and standard deviations is typ-

ical for risk analysis. Zhang’s rule [18] reforms the evidence sets in a weighted fashion

which helps to reduce or eliminate outliers which skew the data. While this rule can elim-

inate potentially important information in risk analysis (e.g. if failure rates are less than

0.001%, the failures may be classified as outliers and eliminated), it still has application in
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risk-analysis. ECR provides a different capability which is essential for large, continuously

expanding datasets. Zhang’s Rule requires maintaining all the evidence and reforming at

each update [18]. This method quickly becomes infeasible for large sets of evidence. Mur-

phy’s Rule, using averages, can be updated at each step. However, if the underlying average

information is lost due to rebuilding the network, the ability to update the averages is also

lost. In short, Murphy’s Rule and Zhang’s Rule work well for a framed problem (e.g. a

sliding window of evidence over which the decision is being made), but break down when

no frame is used, and the evidence becomes excessive or the underlying evidence is no

longer available. Both Dempster’s Rule and ECR add the new evidence into the previously

combined data, thus bypassing both the framing and rebuilding issues. Because Dempster’s

rule produces counter-intuitive results [79] when evidence sets do not have equal weight,

equal reliability, or visibility of the full powerset of inputs, the rule has less applicability to

risk analysis. However, it is the basis of the other rules and the ,result that will be developed

in this section applies to Dempster’s rule [1] as well.

To develop the algorithm, first note that in Dempster’s rule, input evidence masses can

only apply to output masses that are a subset of the input mass. For example, (a, b, c) ap-

plies to all elements of the powerset, but (a, b) can only apply to a, b, and (a, b). Thus, for

identical input evidence sets, the only contributor to the universal set (in the example —

(a, b, c)) is the universal set, to the n power, where n is the number of times the identical

evidence sets are combined. With no other dependencies, the input mass for the universal

set is immediately solvable from Equation 3.6.

(universal set)out = (universal set)nin (3.6)

Continuing on with this trend, an example for two identical evidence set inputs and 3 op-

tions per input is shown in Table 3.4.
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Table 3.4: Dempster-Shafer combination details for two identical input evidence sets
with three options each. E1 and E2 are evidence sets one and two, respectively. Each
matrix cell mass is assigned to the specified Destination row mass unless otherwise
stated in the cell.

E
1

A
B

C
(A

,
B
)

(A
,
C
)

(B
,
C
)

(A
,
B
,
C
)

A
A

2
0

0
(A

,
B
)
A
→

A
(A

,
C
)
A
→

A
0

(A
,
B
,
C
)
A
→

A

B
0

B
2

0
(A

,
B
)
B
→

B
0

(B
,
C
)
B
→

B
(A

,
B
,
C
)
B
→

B

E
2

C
0

0
C

2
0

(A
,
C
)
C
→

C
(B

,
C
)
C
→

C
(A

,
B
,
C
)
C
→

C

(A
,
B
)

(A
,
B
)
A

(A
,
B
)
B

0
(A

,
B
)2

(A
,
B
)
(A

,
C
)
→

A
(A

,
B
)
(B

,
C
)
→

B
(A

,
B
,
C
)
(A

,
B
)
→

(A
,
B
)

(A
,
C
)

(A
,
C
)
A

0
(A

,
C
)
C

(A
,
C
)
(A

,
B
)
→

A
(A

,
C
)2

(A
,
C
)
(B

,
C
)
→

C
(A

,
B
,
C
)
(A

,
C
)
→

(A
,
C
)

(B
,
C
)

0
(B

,
C
)
B

(B
,
C
)
C

(B
,
C
)
(A

,
B
)
→

B
(B

,
C
)
(A

,
C
)
→

C
(B

,
C
)2

(A
,
B
,
C
)
(B

,
C
)
→

(B
,
C
)

(A
,
B
,
C
)

(A
,
B
,
C
)
A

(A
,
B
,
C
)
B

(A
,
B
,
C
)
C

(A
,
B
,
C
)
(A

,
B
)

(A
,
B
,
C
)
(A

,
C
)

(A
,
B
,
C
)
(B

,
C
)

(A
,
B
,
C
)2

D
es

tin
at

io
n

→
A

→
B

→
C

→
(A

,
B
)

→
(A

,
C
)

→
(B

,
C
)

→
(A

,
B
,
C
)

When converted to equation form, the equations for each of the combined evidence masses

is a polynomial of order n, where n is equal to the number of identical evidence sets entered
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into the combination algorithm. Further, each combined evidence mass is only dependent

on inputs of the same evidence mass and on evidence mass inputs closer to the universal

set. For example, in Table 3.4, the resulting mass aout is only dependent on ain, (a, b)in,

(a, c)in, and (a, b, c)in. This set of polynomial equations can be solved individually if done

in the correct order, which results in an easy algorithm to run as well as one that can be

paused mid-update for real-time operating systems.

Expanding this example further, the general case is shown in Equations 3.7 through 3.8,

where omeans out, imeans in, n is the number of input evidence sets, universal set−p

is the subsets of number of elements of the universal set minus p elements, and g... are the

multipliers for each polynomial term and follow the pattern defined in Algorithm 2. One

noteworthy point is that the simplest cases, such as polynomials of order two, are easy

to solve directly. At higher orders, root finding methods are easy to use. However, since

each result is used to compute the results of the next combined evidence masses, errors

compound. Thus, for larger power sets and higher order polynomials, root finding errors

will eventually limit the utility of this solution method unless more precise computations

are executed.

(universal set)o = (universal set)ni (3.7)

∀mo ∈ (universal set− p)o mo =

mp
i + gp−1

(∑
∀qi ∈ (universal set− r) , r = [0, p− 1] & qi ∩mi = mi

)1

i
mp−1

i

+ · · ·+ g1

(∑
∀qi ∈ (universal set− r) , r = [0, p− 1] & qi ∩mi = mi

)p−1

i
m1

i

+
(∑

qi ∈ (universal set− r) , r = [0, p− 1] & qi1 ∩ qi2 ∩ · · · ∩ qin = mi

)
(3.8)
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Algorithm 2: Multiplier calculation algorithm. The polynomial multipliers are
based on the equations detailed above. This algorithm provides a simple method
for calculating these multipliers in code.
1 level = 2
2 multipliers = [2]
3 for level in range(2, p) do
4 multipliers old = multipliers
5 multipliers[0] = multipliers old[0] + 1
6 for index in range(1, len(multipliers)) do
7 multipliers[index] = multipliers old[index] + multipliers old[index - 1]
8 end
9 multipliers.append(multipliers old[len(multipliers old)] + 1)

10 end

Recalling that all focal pointsmi must be positive semi-definite, the equation above presents

a bound on the capabilities of this solution. Specifically, the zero-eth power term in equa-

tion 3.8 must be less than or equal to the child marginal, mo. If this is not the case, then

the equation returns a negative solution. Assuming that the child marginal is a combination

of identical parent marginals — as in the case of Murphy’s Rule or Zhang’s Rule — of at

least the number of parents, then a valid solution will always be found via this method. In

practice, this limitation is not an issue. This limitation simply means that the child node

must have enough evidence sets combined to be at least the number of parent nodes. In

effect, the solution method cannot guarantee a valid solution until the node is sufficiently

initialized. In many cases before the initialization is complete, a valid solution is available

even though it is not guaranteed. Within the initialization, the case in which all parents

but one have the total mass in the complete set is trivial, since the remaining parent can

be set equal to the child. Other situations only arise when using Dempster’s Rule or ECR.

Currently, a solution is not available to calculate the parent marginals without using a high

dimensionality optimization, which is a slow process. Instead, the focus is placed on re-

stricting the inputs to ensure that the child marginals have an available solution for the

parents. This restriction is accomplished by analyzing the polynomial solution discussed

in Equations 3.7 through 3.8. The restriction in Equation 3.9 and 3.10 allows Dempster’s

59



Rule and ECR to retain the ability for the reverse calculation for multiple parents, assuming

that the previous assumption holds of at least as many inputs as parents. Validation of this

restriction is shown in Appendix A.

∀main except universal set,min ≤ mbins.t.mbin ⊂ main (3.9)

m(universal set)in
≤
∑

m(a,...)p−1
where p = len (universal set) and a ⊂ Θ

(3.10)

By combining the equations and algorithms developed in this section with those in Section

3.3.2, updates to the nodes in the DS network can be used to learn the transition potentials

between all nodes in the network. While these updates can be performed when a single

node is observed and other nodes are updated based on inference, more reliable updates are

performed when more than one node is observed simultaneously. However, these updates

present a conundrum since each node update will propagate throughout the entire network,

thus providing the effect of several updates simultaneously. The solution to this issue lies

in proper weighting of the updates, which is discussed in Section 3.5.

3.4 Episodic Learning

As shown in Section 3.6, the learning methods detailed in Section 3.3 enable the DS net-

work to understand the relationship between nodes based on evidential inputs at each node.

This method is sufficient for some applications: when the windowed mass distribution at

each node represents the entire mass distribution of interest for understanding the network

relationships. Recall that the window can be defined as long as appropriate for the applica-

tion. With reasonable weighting (see Section 3.5), the window can encompass the entirety
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of the evidence history.

However, this view is limited. In many cases, the entire mass distribution is not visible

in the current window, and including the entirety of the evidence history does not capture

the nuances of the relationships. For example, consider a traffic light scenario in which the

network is evaluating the relationship between the time until the light turns green and the

state of the cross-traffic light (see Figure 4.1 for the scenario). The relationship would be

roughly expected as shown in Table 3.5.

Table 3.5: Expected relationships between cross-traffic light and time until green.
Given knowledge of the cross-traffic light at an intersection, this table details the ex-
pectations of the time until the light changes from red to green for the evaluator to
continue through the intersection. Note that any ambiguous sets are removed for ease
of description. Those sets can be interpolated from the relationships shown in this
table.

Green Yellow Red
Long 0.9 0.1 0.0

Medium 0.1 0.8 0.1
Short 0.0 0.1 0.9

The issue with learning these relationships is that the entire distribution is not present at a

given time. When the cross-traffic light is green, estimates of time until the same-side light

changes from red to green are likely only long and medium. Likewise, when the cross-

traffic light changes to red, estimates of time until the same-side light changes from red to

green are likely only short and medium. Using the previously developed learning method-

ology in Section 3.3, the natural response would be to retain all evidence via Murphy’s rule

using a weighting scheme. However, this method will be biased by the amount of time

spent in each situation. For example, assuming the light is being evaluated from a long dis-

tance away approaching the intersection, one can safely assume that the evidence gathered

usually reports the cross-traffic light as green and the time until the same-side light changes

from red to green as long. In this case, the learned relationship will be biased towards a

long time until green regardless of the current state of the cross-traffic light because the
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majority of evidence is during a period in which it takes a long time for the light to change

to green (i.e. other relationships are masked by the amount of evidence showing a long

time to green, even though much of this evidence is just repeating known information). In

order to combat this issue, an episodic learning method was developed, which required two

additional mathematical rules.

3.4.1 Change-Weighted Least Squares

Recall from Section 3.4 that the goal is to capture in the transition the nuances of the re-

lationship between the mass distributions of the parent and child nodes. Note that while

this discussion is applied to a single parent and child, it can be generalized to multiple

parent or child nodes using the techniques developed in Section 3.3. The question then

becomes how to mathematically capture the concept of only updating the weights in the

transition that apply to the current episode. Suppose the baseline distributions for the par-

ent and child nodes are known. With no loss of generality, we will take those baseline

distributions as the unknown distribution: p = 0∀p ∈ M ∧ p 6= universal set and

p = 1 ⇐⇒ p = universal set, where M is the marginal mass vector of the parent

or child. Then, modify Equation 3.4 to include weighting relative to the change from the

baseline distribution, as shown in Equation 3.11, where c is an arbitrary control term for de-

termining the effect of the weighting. Note that Equation 3.1 is modified with the weights

defined in Equation 3.11 to balance the equations.

min

i,j=m,n∑
i,j=0,0

(T ∗i,j − Ti,j) ∗
1 +

c(
M∗

pi
−Mpi

)2 ∗
(
M∗

cj
−Mcj

)2




2 (3.11)

Observe three points concerning Equation 3.11:

• If the control constant c is set to 0, then the additional weight disappears, and the
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equations reduce to the previous set.

• The weight is inversely proportional to the squares of both the differences in ap-

plicable parent marginals and the applicable child marginals. If the child or parent

marginal changes minimally, then the design vector is weighted such that the appli-

cable transition value should be modified minimally from its current value.

• If either the parent or child marginal change is zero, then the inverse weighting is

undefined — divide by zero scenario. Thus, this weighting must be protected by a

maximum weight. In practice, any weight on the order of 1,000 or above does not

have much effect since there is a limit to the flexibility of the solution given the rest

of the constraints.

3.4.2 Zero Marginal Value

Recall from Equations 3.1 to 3.3 that a zero marginal value in the child marginal vector

means that all non-zero values in the parent marginal vector must be multiplied by a transi-

tion value of zero for the equations to balance. Assuming marginal probabilities are reset to

a baseline between episodes in order to capture the effects of each episode, it is reasonable

to assume that marginal values will often be zero even if those values were observed in

prior episodes. In practice, this can cause prior episodic information to be lost. To avoid

this loss of information, any marginal value which was observed in a prior episode is pre-

vented from returning to zero and is instead reset to a small value in the range of [0, 1], such

as 0.01. Due to the weighting described in Section 3.4.1, such a small value will result in a

high weight, preventing the associated transition values from changing significantly.

3.4.3 Episodic Learning Implementation

Given the additional mathematical rules described above, episodic learning is implemented

as shown in Algorithm 3. Determining episodes can be accomplished either through expert
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information or automatically by determining when marginals are statistically different than

previous episodes.

Algorithm 3: Episodic learning algorithm for a Dempster-Shafer network. This
algorithm captures episodes in order to only update the portion of the transition
potential matrix to which the episode applies.
1 reset nodes and transitions to unknown()
2 while training is True do
3 episode name = counter
4 counter += 1
5 while change in marginals() ≈ 0.0 do
6 step training()
7 end
8 save episode()
9 combine marginals with similar episodes()

10 calculate transitions()
11 reset nodes()
12 end

Evaluation of this method is tested in Section 3.6.6 and detailed in Chapter 4, which ex-

plores the finer points of a scenario that requires episodic learning. One final point with

episodic learning is that it can be used to determine whether current evidence is shifting

away from historical evidence, suggesting that historical evidence is less reliable. Current

evidence is added to the matching episode, if one exists. Since the episodes are matched

by parent node, changes in the distribution of the child nodes can suggest a shift from his-

torical evidence, which can be used to determine whether an alternate weighting scheme,

such as detailed in Section 3.5, is appropriate to emphasize current evidence over historical

evidence.

3.5 Evidence Weight

Traditional DS evidence combination assumes equal weights and reliabilities between all

evidence sets and contributors [1]. Likewise, most modifications to the DS combination

rule make the same assumption. An exception is the Evidential Reasoning rule which han-
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dles both reliability and weight of evidence sets [89]. While a single DS node handles the

assumption of equal weights well, the network requires the ability to weight evidence. To

understand this requirement, observe the update to the network in Figure 3.8. Assuming

that all inputs propagate through the network, each input equally affects all nodes, although

the data is inserted as observed at a single node and inferred at others. Further, although

all observations may be a result of a single update, for example, the results of a one-hour

test flight. Each input would result in an update at all nodes, introducing the equivalent

of y hours of test flight data, where y is the number of observations for the network from

the one-hour test flight. While more node observations for the one-hour test flight likely

results in more accurate information, the data arguably should not have the same effect as

multiple hour test flights with observations for each of those hours. Note that this discrep-

ancy was previously handled by a discounting scheme to handle the reduced reliability of

inferred evidence versus directly observed evidence [95]. This scheme is similar to Shafer

discounting [3]. While useful, no rules were developed to define the discounting factor

[95]. Further, discounting has additional effects on evidence combination [79], which must

be handled. This section develops a new rule that explicitly defines the weighting factor

based on the network input evidence, and the weighting factor can be calculated explicitly

from the network for each update. Further, weighting methods (discussed in Appendix B)

are explicitly developed for each combination rule used, avoiding known issues with Shafer

discounting [89].

To resolve this discrepancy between the weight of evidence and the time of observation

relative to pre-existing data, a weighting scheme is proposed, as demonstrated in Figure

3.8, part (2). At observed nodes, only the observation is entered with full weight. No data

calculated through transitions is entered at observed nodes. For all other nodes, the weight

of data calculated through transitions is one divided by the number of branches with data

entering that node. The resulting weight for a single update is equal to one for all nodes.
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Figure 3.8: The results of weighting inputs for a Dempster-Shafer network. Given
an update on nodes A, B, and F, a no-weight update results in 3 times the amount of
experience applied at each node, as shown in part (1) of the figure. With weighting,
only the applicable experience is applied at each node, as shown in part (2) of the
figure. The direction of the arrows shows the transition of the update experience
between nodes in the network. The network is using the standard representation,
where moving upwards on the diagram between nodes represents inference.

Use of the weighting scheme has two implications. First, either only the Evidential Rea-

soning combination method can be used, or other methods must be modified to handle

weighting. Second, given that weighting is necessary, further weighting methods can be

used to improve update stability as discussed subsequently. Modifications for weights are

easy to add to Murphy’s Rule, Zhang’s combination method, and the Rayleigh combination

methods. Details on these modifications can be found in Appendix B.

Table 3.6 shows why additional weighting schemes are necessary since a single event,

regardless of the length of operation time it represents, can significantly impact the per-

hour risk if weights are not adjusted for the evidence sets. Since the combination scheme

impacts the results as well, the Rayleigh and Murphy results are still significantly different

regardless of weighting method. Consequently, risk analysis results thrash between ex-

tremes as differing events are entered into the network. Instead, a weighting scheme based

on completed flight hours is defined. For each network node, the accumulated hours of ex-

perience represented by the combined evidence is stored. New evidence sets are relatively
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weighted as operation hours
total operation hours

. This concept is similar to how new values are added into

an average: by multiplying the average by the total experience it represents and adding

the new values before dividing by the new total experience. In both cases, the weighting

scheme prevents new evidence from over-influencing previous experience.

Table 3.6: Example of why additional weighting schemes are necessary. “Evidence
1” has significantly higher weight than “Evidence 2”. Without an included weighing
scheme, the resulting combined data in “Rayleigh” and “Murphy” shifts significantly
away from “Evidence 1” even though “Evidence 2” should arguably have a smaller
impact on the final result. The resulting combined data in “Weighted Rayleigh” and
“Weighted Murphy” is much closer to “Evidence 1” than “Evidence 2”, which is ex-
pected given the relative weights of the two evidence inputs.

Data Set Experience A B C (A,B) (A,C) (B,C) (A,B,C)
Evidence 1 30.0 0.5 0.1 0.2 0.0 0.05 0.05 0.1
Evidence 2 0.5 0.1 0.05 0.4 0.05 0.2 0.1 0.1
Rayleigh n/a 0.47 6.1e-4 0.24 2.6e-4 0.28 1.2e-3 2.2e-4

Weighted Rayleigh 30.5 0.91 3.8e-5 2.2e-2 1.4e-5 6.9e-2 1.6e-4 2.2e-3
Murphy n/a 0.30 0.03 0.30 0.025 0.13 0.075 0.10

Weighted Murphy 30.5 0.49 0.011 0.20 8.2e-4 5.2e-2 5.1e-2 0.10

Two further available weighting modifications were evaluated and were found to have dif-

ferent uses.

• Recency: new evidence can be weighted higher than the relative weight to the total

experience for risk analysis in which more recent information is considered more

reliable. In particular, this weighting scheme is advantageous if historical data po-

tentially introduces a bias or is deemed less reliable. One way to capture this his-

torical versus current evidence weight is to retain a maximum number of evidence

sets, and define the final evidence in that set as the total “historical” evidence. That

total “historical” evidence can be weighted as the total weight of the historical evi-

dence multiplied by some reduction factor to account for the lower reliability of the

evidence.

• Inference: an additional weight reduction can be applied across all transition infer-

ences assuming that inferred evidence is less reliable than directly observed evidence.
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This method has been used previously [95], although the weights are explicitly now

defined for each Evidential Reasoning combination method.

3.6 Dempster-Shafer Network Results

A DS network was developed in Python to test the algorithms developed in Section 3.3.

The code is available on GitHub at “https://github.com/chacalnoir/DSImplementation” and

“https://github.com/chacalnoir/DSNetwork”. Testing covered the following areas:

• Single node updates with and without learning transitions and with and without

weighting. These tests include modifying the transition potentials, learning from

a completely unknown starting point, and multi-level learning (i.e. with unobserved

nodes between nodes with observations). See Section 3.6.3.

• Multiple parent updates with weighting and learning transitions. See Section 3.6.4.

• A complex network to better understand the speed and effects of evidence propaga-

tion in a more realistic DS network. See Section 3.6.5.

3.6.1 Testing Methods

For each test, evidence sets were randomly generated. The same evidence sets and order

of input were used for all combination algorithms at each test to provide consistency. Each

test consisted of 30 updates of 3 simultaneous evidence sets per update. The nodes to

which the evidence sets were injected were randomly generated as well. The number 30

was chosen to allow randomly generated sets to provide acceptable analysis metrics within

a reasonable evaluation time. Furthermore, 30 tests were conducted per test case. For each

evidence set, the complete set (unknown information) mass was set to 0.0, which ensured

that the learning capabilities of the networks were properly evaluated against the metrics

discussed in Section 3.6.2. For cases without learning, approximately 80% of transition
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potential values were randomly set, since, without learning, the majority of transitions

need to be set for the network to make sense. For learning cases, all values were defaulted

to all belief mass assigned to the complete set (i.e. completely unknown starting points).

The primary limitation of these tests is that the evidence sets are randomly generated. DS

theory is designed to combine evidence sets for a given situation to arrive at a conclusion.

As such, some consistency between the evidence sets is assumed. In fact, complete conflict,

as discussed in Section 3.2, produces incalculable results for Dempster’s Rule and the ECR

rule without weighting. Due to round-off error and pseudo-random selection of evidence

sets, it was assumed that complete conflict would not occur. However, since combination

algorithms handle conflict differently, results are generally only valid when analyzed in

comparison between tests using the same combination algorithm.

3.6.2 Metrics

The DS network developed in Chapter 3 was evaluated for the following goals: propagation

time for implementation in real-time on an embedded system, learning for the ability to start

from a state with completely unknown information, and explainability for the decisions to

be accepted by organizations that use risk analysis.

• Propagation time per update per node: comparison between the baseline implemen-

tation and specific novel additions.

• Failures: how many of the tests fail, and the explanation for each failure.

• Consistency: the L2 norm of the error between the parent marginals multiplied by

the transition potentials and the child marginals. Note that for a multi-parent node,

the results of the parent marginals multiplied by the transition potentials are then

combined via the appropriate DS combination algorithm.

• Unknown fraction: the fraction of node marginals and transition potentials that re-

main in the complete set (unknown information) at the end of the update set, given
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that the network started with all masses in the complete (unknown) set.

• Weight per node: the total weight/experience attributed to each node at the end of

every update.

The propagation time metric provides insight into the ability to implement in real-time

on an embedded system. Likewise, the unknown fraction metric provides insight into the

learning capability of the network and the ability to start from an unknown state. Less

intuitive are the consistency and weight per node metrics, which provide insight into the

explainability of the network. Weight per node maps the “experience” per node after the

updates. For example, if each update represents one flight test hour, and 30 updates are

made, each node should show approximately 30 hours of experience. Significant increases

from that suggest that information is used more than once, which calls into question the

validity of any conclusions.

The final metric, consistency, evaluates the mathematical explainability of the network at

the end of all updates. Given a simple network where a parent node “A” connects to a child

node “B”, an inconsistent situation is one in which, after evidence propagation through

the network, the marginals of “A” multiplied by the transition potentials do not equal the

marginals of “B”. From an explainability perspective, if only the final network state is

viewed by the organization that needs to accept the decision, it is unclear from where the

decision came and whether the network operated correctly. In short, the result is unex-

plainable. Since the original DS network implementation overwrite data at each node after

propagation, an “overwrite” algorithm is included as the baseline for comparison.

3.6.3 Network Updates with Single Parent Only

This test analyzes the performance of the developed algorithms when applied to networks

that only have single parents per child. The test network is shown in Figure 3.9. Each
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DS combination algorithm was analyzed using this test network including an “overwrite”

algorithm that does not combine evidence but rather uses the newest evidence set to provide

a baseline. This test case analyzed the following options: learning transitions, single versus

multi-node updates, and weighting inputs.

Figure 3.9: Test network used to analyze the performance of the novel Dempster-
Shafer network algorithms. Only includes single parents for each node. The number
after the node name shows the number of θs for the node. Two and three θ nodes were
used since these are the more common cases for nodes in a DS network.

The results of these tests are shown in Figures 3.10-3.13. Figure 3.10, showing the time

test results, emphasizes that the weighting methodology helps to overcome the additional

burden of the learning calculations. In all combination algorithms, weighting improves

the update time to only [1, 2] orders of magnitude greater than the no-learning overwrite

case, which is the baseline (10−3 and 10−4 versus 10−5). Compared with the unweighted

cases, which are always in the mid to high 10−3 order of magnitude, this is a significant

improvement, thus potentially enabling single-parent network implementation in a real-

time embedded system. In the second result, Figure 3.11, the learning method returns
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an obvious improvement over all non-learning methods, resulting in effectively perfect

consistency with round-off error and a high degree of explainability. In the third result,

Figure 3.12, the three learning cases clearly improve upon the unknown knowledge in

the network, even given that the no-learning cases started with a high degree of known

transition potentials and the learning cases started with fully known information. This

result is dependent upon the number of evidence sets injected, but the potential to reduce

unknown information is shown clearly through this test. The final result, Figure 3.13, is

perhaps the most straight-forward. The weighting method clearly shows approximately

30 units of experience/weight for 30 updates of 1 unit of experience, as expected. All

unweighted methods show 3X units of experience per node, which suggests information

was used 3 times for each update. This result brings into question the validity of results

obtained from networks using unweighted updates since reusing the same information in

DS logic changes the results.

3.6.4 Multi-Parent Learning Results

Based on the results of the single parent tests, the multi-parent tests are set up to only

test learning with weighted simultaneous updates. The additional complexity that these

tests add is the need to calculate multiple simultaneous parent marginals through the use

of an optimizer or the root finding method detailed in Section 3.3.3. The test network used

is shown in Figure 3.14. The results are shown in Figures 3.15 through 3.19. In most

cases, no significant deviation is observed between the optimizer and root finder, especially

for the combination methods most likely to be used. The exception to this statement is

the run time. The primary reason for developing the root finder is that it is significantly

faster than the optimizer (at least one order of magnitude per node), and it is deterministic,

especially for two and three option nodes requiring quadratic or cubic solutions, which are

closed form. For a real-time implementation on an embedded system, the root finder can

be reliably scheduled and interrupted as necessary while operating in a way that is difficult
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Figure 3.10: Test results for run time with single parent network. Within each com-
bination algorithm group, the no-learning method is faster that un-weighted learning
methods, which shows the increased burden of the learning calculations. However,
both Rayleigh and Weighted Rayleigh methods show that the no-learning time is at
the same order of magnitude as the un-weighted learning cases, suggesting that the
combination algorithm is the driving factor for the update time. Since Dempster-
Shafer, ECR, and Overwrite do not retain explicit history, their update times are sig-
nificantly faster. Note further that single versus multi-update methods do not change
the update times significantly when both are unweighted. Finally, the weighted meth-
ods are approximately equivalent to the no-learning update times, and, in some cases,
are an improvement.

for generic optimizers.

3.6.5 Complex Network Results

The final tests are performed on the complex network shown in Figure 3.20. Within these

tests, the comparison is made between unweighted single updates and weighted multiple

simultaneous updates. In this case, it is also instructive to compare these results with the
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Figure 3.11: Test results for consistency with single parent network. The y-axis uses
a logarithmic scale. Without learning, all per-node consistency is low, with the best
case being the overwrite case. The reason that the overwrite case does not give an
approximate zero consistency result is that transition potentials are not reversible in
the consistency test. Propagating up the transition does not mean that a consistency
check down the transition will return nearly perfect consistency. However, in all learn-
ing cases, the consistency checks return an effectively zero result, equating to perfect
consistency with round-off error.

previous tests. Overall, the complex test case falls between the single parent and multi-

parent test cases, as expected, given that it is a combination of the two. The complex test

case is more similar to the multi-parent test case, suggesting that the multi-parent root find-

ing method properties tend to dominate the metrics in these tests. This test has implications

for scaling to more complex problems. First, computation times per update per node are

fairly consistent, suggesting that overall computation time scales linearly with the num-

ber of nodes. Trials for nodes with more θs per node were not conducted since structure

was specifically used to reduce the number of θs per node, and since DS computations
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Figure 3.12: Test results for learning with a single parent network. Results vary
depending on the combination algorithm used. Except for Rayleigh and Weighted
Rayleigh methods, and to a lesser extent the overwrite method, the learning method
resulted in significant reduction of unknown information over the baseline case of
no-learning with preset transition potentials. Deviations in the combination algo-
rithms can be explained through handling of conflict. High conflict in the Rayleigh
and Weighted Rayleigh algorithms means lower assignment of mass to the new focal
elements, resulting in higher mass retained in the unknown/complete set. This is a re-
sult of the randomized evidence set testing methodology and should not be construed
as evidence for or against the combination methods. Finally, since the overwrite
method does not retain previous evidence, propagated evidence through unknown
transitions will tend to have higher impact, retaining unknown information. Since
this method was included primarily as a baseline for the no-learning case, learning
with this method is not expected to be used.

are already known to scale poorly with the number of θs due to the use of the powerset.

Consequently, scaling to more complex problems in terms of computation time is a bal-

ance through using a network to maintain a low number of θs per node while not losing

important interactions between θs.
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Figure 3.13: Test results for weighted versus unweighted methods in a single parent
network. This test shows a clear demarcation between unweighted methods, with 90
units of experience/weight per node for 30 updates of 1 unit of experience each, and
the weighted method, with approximately 30 units of experience/weight per node for
30 updates of 1 unit of experience each. The unweighted method clearly suggest that
data is reused. While this is actually not the case (each propagated evidence set is from
a different observation), this result is significantly less explainable than the weighted
method, calling into question the ability for the network results to be accepted in
decision-making scenarios.

3.6.6 Episodic Learning

Tests for episodic learning were conducted to determine whether this learning method bet-

ter captured expected relationships than the least squared method without episodes. A

two-node network was constructed with “Node 1” as the parent and “Node 2” as the child.

Both nodes and the transition potentials were initialized to unknown and vacuous, respec-

tively. Two evidence sets were then entered as defined in Table 3.7. The baseline test case

without episodic learning injected the evidence sets to their respective nodes and update the
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Figure 3.14: Test network used to analyze the performance of the novel Dempster-
Shafer network algorithms. This network only includes multiple nodes per parent.
The number after the node name shows the number of θs for the node. Two and three
θs nodes were used since these are the more common cases for nodes in a DS network.

transition potentials matrix after each update. The results are shown in Table 3.8. The net-

work was then reset, and the episodic test case was run, with the two evidence sets injected

to their respective nodes. In this case, the two evidence sets (“Evidence 1” and “Evidence

2”) were considered to be different episodes, and the episodic learning algorithm was run.

The results are shown in Table 3.8. As can be seen by comparing the values in the table, the

episodic learning adjusted the weights in the transition potential matrix to a more intuitive

result based on our expectations, given the matching evidence sets.
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Figure 3.15: Test results for run time with a multiple parent network. The root finder
primarily works for Murphy’s and Zhang’s combination methods, as expected. For
those methods, the root finder shows at least an order of magnitude improvement in
run time per node, which translates to significant improvements for larger networks.

3.7 Dempster-Shafer Network Conclusions

The new rules created for the DS network updates significantly changed how the networks

function. By requiring a combination algorithm to be used at each node, similar to previ-

ous works, simultaneous evidence can be entered, allowing the transition potentials to be

calculated from the evidence. This relies on the concept of consistency in the network —

that transition potentials both define the influence between nodes and can be used for ex-

act mathematical relationships. As shown in Section 3.6, propagation of evidence without

learning updates to the transition potentials results in a significantly more inconsistent net-

work. While it can be argued that the transition potentials in this case are merely measures

of influence and do not require consistency, the breakdown in the mathematical structure of
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Figure 3.16: Test results for consistency with a multi-parent network. The y-axis uses
a logarithmic scale. All results are within round-off error of zero, which shows perfect
consistency. This result was expected given the results from the single parent case in
Figure 3.11.

the network means that important properties are lost, such as the ability to reconstruct the

network from partial information. There are some limiting assumptions made, primarily

for multi-parent nodes. In these cases, the assumption of identical evidence inputs from

the parent nodes along with the limitation to certain DS combination algorithms limits the

novel algorithm developments from being used in all scenarios. However, the DS combi-

nation algorithms used can be applied to most scenarios through appropriate network def-

inition, as discussed in Section 3.3.3. The identical evidence assumption is reasonable for

many scenarios since this assumption is only made while updating the transition potentials

and aligns with the initial conditions of unknown marginals and vacuous transition poten-

tial matrices. Further, that restriction only applies when using the polynomial solution; a

higher order optimizer can relax that assumption. Future research trajectories include re-
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Figure 3.17: Test results for learning with a multi-parent network. The unknown
fraction for the multiple parent cases are similar between the optimization and root
finder methods. This result is expected, given that similar solutions should be found.
Notably, significantly higher unknown fractions are found for the multiple parent
cases than for the single parent cases. This difference is due to the learning method.
For multiple parents, the solution method first calculates identical marginals for each
parent then calculates the transition potentials per parent. Consequently, unknown
information is retained significantly longer since it is duplicated multiple times.

laxing this assumption without the use of higher order optimizers.

Beyond the consistency obtained through updating the transition potentials, the learning

mechanism enables starting from a completely unknown set of data to fill in the entire

network. As shown in Section 3.6, learned networks with random input data results in bet-

ter known networks than those with a-priori data provided. The a-priori data provided is

based on assumptions of data that would be available. That a-priori data could serve as a

starting point for learning, resulting in a better known network in all cases.

80



Figure 3.18: Test results for weighting with multi-parent networks. Since all cases
are weighted, no deviations between cases were expected or observed. All cases show
expected total weights per node of approximately 30, confirming the results from the
single parent test case in Figure 3.13.

The transition update rules defined in this chapter capture relationships when the entire

belief distributions can be considered simultaneously. For scenarios in which this is not the

case, episodic learning was introduced to focus the transition updates on the portion of the

belief distribution that was observed during the evidence, borrowing from the well-known

concept of observability in control theory [102]. This novel use of episodes for updating

Dempster-Shafer network transitions significantly improved how the relationships between

nodes were captured, as shown in Section 4.3.2. Future research trajectories include using

statistical tests to determine breaks between episodes.

Finally, the evidence weighting has a considerable impact on the updates to the network.

Speed improved considerably since propagation was not required to all nodes in the net-
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Figure 3.19: Test failures for the multiple parent cases. Three interesting effects
are observed. First, the ECR method, Dempster’s Rule, and the overwrite method
were not expected to reliably succeed due to the random evidence sets that were not
within bounds required for the reverse solver method to succeed. Indeed, these are
the methods which tend to fail. Second, the root finder method is more deterministic
on whether it succeeds or fails. In each set of tests, the root finder method either suc-
ceeds or fails in all tests while the optimizer can find solutions which the root finder
misses. This is most evident in the overwrite method in which the root finder fails in
all cases and the optimizer succeeds in all cases. However, the more practical methods,
Murphy’s Rule and Zhang’s Rule, show better performance by the root finder.

work. Furthermore, the automatic handling of reliability of propagated evidence versus

observed evidence enables more reliable results. Finally, an accurate representation of

the accumulated evidence in the network enables testable results since they can be bench-

marked against a consistent basis. While evidence weighting based on inference versus

direct observations has already been implemented [95], Section 3.8 codifies explicit rules

for calculating the weights from evidence entry in the network, creating a consistent basis

for updates with clearly defined reasoning.
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Figure 3.20: Test network used to analyze the performance of the novel Dempster-
Shafer network algorithms. This example includes nodes that have both single and
multiple parents. The number after the node name shows the number of θs for the
node. Two and three θs nodes were used since these are the more common cases for
nodes in a DS network.

One important point with these new update rules is that they do not eliminate the need for

a subject matter expert (SME). Structured data is useful when there is structure of which to

take advantage. That structure is typically driven by knowledge of the domain or problem

— knowledge that an expert possesses. Further, designing the evidence input to enable the

network to produce meaningful data still requires the knowledge of an expert. This need

then raises the question of how this work applies to new domains and problems in which a

subject matter expert may not exist. First, the network design process is an iterative process.

In many cases the problem may start with a single DS node since relationships between θs
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Figure 3.21: Test results for run time for a complex network. In both cases which suc-
ceeded, the weighting method significantly decreased run time, as expected. In both
cases, the run time order of magnitude more closely resembles the multiple parent
tests (Figure 3.15) than the single parent tests (Figure 3.10). This is expected, given
that the complex network adds the additional multi-parent calculations. These results
also suggest that the root finding method for multi-parents still dominates the single
parent solution method.

are not known a-priori. The network is constructed iteratively as evidence combination

shows which θs do not interact or have directed, conditional relationships. Second, the

enumerated θs can be added over time, either through the use of an open-world definition

initially to suggest when the enumerated θs are not sufficient, or by observing the resulting

marginal distributions and determining whether the DS node is insufficient to choose be-

tween multiple θs, suggesting there are either overlaps or no θs are sufficiently granular to

be the “correct” choice. All of this analysis is still predicated on reasonable choices of evi-

dence entry. This part tends to rely on a DS SME — i.e. designing a problem appropriately

for DS. This part requires less domain expertise and more understanding of the appropriate
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Figure 3.22: Test results for consistency for a complex network. For all tested cases,
the consistency is effectively zero with round-off error, demonstrating perfect consis-
tency in line with the results from the single and multi-parent solutions (Figures 3.11
and 3.16, respectively).

use of mapping to unknown and ambiguous evidence as well as the appropriate weighting

of evidence and windowing of decision data, thereby controlling how the DS network con-

verges to a solution. Typically, this work can also be iterative, often starting with higher

unknowns and ambiguities and becoming more precise as an understanding of the scenario

decision dynamics is learned over time.

Together, these rules realize a capability which was envisioned in the 1980s [17], ex-

tended through multiple works in the 1990s and 2000s, and brought to fruition through

this work. While valuation networks provide an enormously capable system for under-

standing and evaluating knowledge of the world, this work enables starting from unknown

or limited information and learning relationships without requiring continuous significant
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Figure 3.23: Test results for learning for a complex network. There are two points
of interest here: (1) The weighted, multiple update method does display a higher un-
known fraction. This opposes the results seen in the single-parent tests (Figure 3.12),
suggesting that the multiple parent solution method fares less well when dealing with
weighted data; (2) The unknown fraction is between the single parent tests (Figure
3.12), and the multi parent tests (Figure 3.17), which is expected, given that the com-
plex network is a combination of the previous networks.

subject matter expert’s inputs — a capability which allows reasoning about the world to

progress quickly and with reduced guidance from experts.
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Figure 3.24: Test results for weight for a complex network. This result is consistent
with the results seen previous in Figures 3.13 and 3.18, suggesting that the weighting
results obtained in this section can be extended to DS networks of arbitrary complex-
ity.

Table 3.7: Episodic learning test. The baseline without episodic learning started
with unknown information (all marginal masses in the complete sets). Both evidence
sets were added and combined via Murphy’s Rule [19] into their respective nodes.
The transition potential matrix update algorithm was run against the resulting node
marginals after each evidence update. The second test applied the “Evidence 1” sets
to the appropriate nodes and ran the transition potential matrix update algorithm
against the resulting node marginals. The node marginals were then reset to the
unknown state, and the “Evidence 2” sets were applied to the appropriate nodes.
The transition potential matrix update algorithm was run against the resulting node
marginals again to incorporate the second episode into the resulting transition poten-
tials matrix.

Data Set Option A Option B (Option A, Option B) Option C Option D (Option C, Option D)
Evidence 1 0.9 0.08 0.02 0.9 0.1 0.0
Evidence 2 0.05 0.9 0.05 0.1 0.7 0.2
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Figure 3.25: Test results for failures for a complex network. The root finder is used
for both tests, with these results showing that the weighting method has no effect on
whether the root-finding method is able to find a feasible solution.
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Table 3.8: Episodic learning results. The baseline without episodic learning started
with unknown information (all marginal masses in the complete sets). Both evidence
sets were added and combined via Murphy’s Rule [19] into their respective nodes.
The transition potential matrix update algorithm was run against the resulting node
marginals after each evidence update. The second test applied the “Evidence 1” sets
to the appropriate nodes and ran the transition potential matrix update algorithm
against the resulting node marginals. The node marginals were then reset to the
unknown state, and the “Evidence 2” sets were applied to the appropriate nodes.
The transition potential matrix update algorithm was run against the resulting node
marginals again to incorporate the second episode into the resulting transition poten-
tials matrix.

Without Episodic Option A Option B (Option A, Option B)
Option C 0.552 0.455 0.821
Option D 0.448 0.329 0.179

(Option C, Option D) 0.0 0.216 0.0
With Episodic Option A Option B (Option A, Option B)

Option C 0.727 0.0 0.233
Option D 0.129 0.703 0.336

(Option C, Option D) 0.143 0.297 0.431
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CHAPTER 4

AUTONOMOUS CAR DECISION - TRAFFIC LIGHT SCENARIO

4.1 Scenario and Metrics Definition

Autonomous car development has become prolific as more manufacturers, such as Tesla

[103] and Waymo [104], move to bring self-driving vehicles to market. A common deci-

sion faced by driver — human or computer — is whether to slow down early or late when

approaching a red light. Prior research shows that the maximum comfortable deceleration

rate for automobiles is approximately 3.4m
s2

[21]. Drivers assuming the light will change

to green soon may wait until closer to the light to slow down, with deceleration rates often

approaching that maximum deceleration. A separate research project used GPS modules

in vehicles driven around Atlanta, Georgia to measure the deceleration rates [21]. This

research found that the deceleration rates were non-constant, typically with lower decel-

eration rates at the beginning and end of the maneuver and highest in the middle of the

maneuver. Additionally, the deceleration took place over a longer distance than the maxi-

mum rate deceleration maneuver.

Using the prior research as a baseline for slowdown profiles, the Dempster-Shafer (DS)

network was tested given the scenario shown in Figure 4.1. The following simplifying

assumptions were made in this scenario:

• The traffic light is open loop controlled: each light is timed without using mech-

anisms to detect the presence of cars. While this assumption constrains the traffic

lights to which this analysis applies, there are traffic lights that follow this assump-

tion, so it is not unreasonable.
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Figure 4.1: The layout for traffic signal scenario which is representative of timed
four-way lights without left turn signals. The grey car is approaching a red light
intersection and estimating how long until the light turns green to determine whether
to slow the car. Visibility is limited due to buildings and other obstructions. The cross-
walk signal may be visible before the intersection. The cross-traffic light is not visible
to the grey vehicle and must be estimated. Cross traffic density and speed is variable
in the simulation and is estimated by the grey vehicle.

• The light is a 4-way light without lights for left turns.

• Vehicles from every direction approach the light at the same speed limit. This as-

sumption is without loss of generality since evidence compares observed speeds to

expected speeds, and the expected speeds can be modified to match different speed

limits.

• Individual vehicles do not have to be modeled. Evidence inputs to the DS network
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are aggregated, thus allowing the modeling to be aggregated as well.

• Per one driver, an expressed goal is to stay at approach speed as long as possible

in hopes that the light changes while maintaining the ability to slow down and stop

before the intersection if the light stays red. This goal provided a reasonable decision

criteria to use when evaluating whether the DS network performs better than baseline

deceleration profiles. Since this goal would typically result in choosing the maximum

rate deceleration profile, and additional goal was added to minimize wear on the

vehicle.

• Drivers pick pick one of the deceleration profiles listed above depending on their

estimation of how long the light will be red. That choice can change as the driver

approaches the intersection.

• Drivers can change their speed without maneuvering around other vehicles. While

this is an over-simplification for most traffic scenarios, the complexity of dealing with

multiple drivers making inter-related decisions obscures the analysis this scenario

was designed to test.

Given the above assumptions, a simulation was developed to test the DS decisions against

a baseline deceleration profile. Four deceleration profiles were chosen. A fifth profile,

minimum constant deceleration, was evaluated, then removed since this profile showed no

advantages over the other profiles; it took longer to slow down, did not produce signifi-

cantly less deceleration on the vehicle, and is not shown by research to be representative of

realistic drivers. The drivers were compared by starting each scenario with two drivers: a

DS-informed driver, and a driver with one of the baseline profiles. By providing each driver

with an identical scenario each time, metrics could be evaluated based on the difference be-

tween each of the drivers. Note that each simulation run presented a different scenario due

to changes in approach speed, cross-traffic density and speed, visibility, and access to other

evidential inputs. Detailed initial conditions are available in Appendix D.

92



• Variable rate deceleration profile: this profile uses the GPS-tagged research described

above.

• Maximum deceleration profile: this profile assumes the driver waits as long as pos-

sible before changing speeds, then slows down quickly.

• Coin Toss: this profile switches between the above two profiles with a 50-50 prob-

ability and was included to determine whether a DS-informed driver could perform

consistently better than simply flipping a coin.

• Bayesian: this profile switches between the above first two profiles based on a Bayesian

evaluation of the traffic light state using the same observations available to the DS-

informed driver. The Bayesian Belief Network (BBN) code used for this test was

obtained from GitHub [22].

Figure 4.2: The deceleration profiles for the traffic signal scenario. As the grey car
approaches the red light, the two naı̈ve deceleration profiles are max deceleration
and variable rate profiles. The alternate profile is anything between those two naı̈ve
profiles based on Dempster-Shafer analysis, a coin toss, or a Bayesian evaluation to
determine which profile to follow at each decision point.

These profiles are shown in Figure 4.2. In order to compare the DS-informed driver with the

four profiles given, the following metrics were chosen and evaluated based on the difference

between the DS-informed driver and each of the baseline profiles. Figure 4.3 compares the

baselines to show the available gap that the DS-informed driver can use to improve on

these metrics. This figure shows the maximum and minimum values of the error bars,
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demonstrating the full extent of the range for this scenario. An interesting point is that

choosing a specific baseline over the course of the entire scenario without analyzing the

traffic light does not result in the driver consistently maintaining a higher speed when the

light changes. However, due to the range of differences between the baselines with regards

to the speed metric, there is an ability to maintain a higher speed overall if intelligent

choices are made.

• Speed when light changes: if at least one vehicle (the DS-informed driver or the base-

line driver) has not come to a complete stop when the light changes, the difference in

speed is calculated.

• Distance when light changes: if at least one vehicle (the DS-informed driver or the

baseline driver) has not come to a complete stop when the light changes, the differ-

ence in distance from the intersection is calculated.

• Time until light changes: if both vehicles (the DS-informed driver and the baseline

driver) have stopped before the light changes to green, this metric calculates the

difference in time that the drivers have to wait at the intersection (how closely they

timed their stop to when the light would change).

• Wear: This metric is defined as
∫ tf
t0

decel
max decel

∗ dt where t0 is the time at which the

vehicle starts decelerating and tf is the time at which the vehicle stops decelerat-

ing. It has been shown that there is a relationship between harder braking (i.e higher

deceleration rates) and higher wear on the tires and brakes. While the relationship

is not necessarily quadratic, the quadratic relationship shows a clear difference be-

tween consistently higher deceleration rates and the variable rate profile, enabling

easy evaluation of the effect of braking on the vehicle.

• Number of times the vehicle entered the intersection: this was a potential metric that

was removed in favor of choosing “aware” drivers: drivers that recognize when they

will enter the intersection and brake at the maximum deceleration rate to prevent it.
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By making this choice to use “aware”, this metric is rolled into the “Wear” metric

with the additional maximum deceleration.

Figure 4.3: The comparison between the Maximum Deceleration and Variable Rate
Deceleration Profiles using the stated metrics. These values are calculated by sub-
tracting the Variable Rate Profile results from the Maximum Deceleration Profile re-
sults. Thus, a value greater than zero means that the Maximum Deceleration Profile
resulted in a higher value in that metric than the Variable Rate Deceleration Profile.
Y-axis values for each metric are in the units specified by that metric’s label. Clearly,
the largest gap is in wear, while the speeds tend to even out over time for the given sce-
nario. Since the Dempster-Shafer-informed driver switches between these baselines,
this graph shows the potential improvement over either baseline by the Dempster-
Shafer-informed driver.

4.2 Dempster-Shafer Network and Decision Design

Given the scenario defined in Section 4.1, the DS network shown in Figure 4.4 was designed

to evaluate the scenario. This network does not take into account varying environmental

conditions, so those are assumed to be constant throughout the scenario. Likewise, no inter-

ference was assumed between drivers. With these assumptions, the network is sufficiently
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complex to test all the capabilities of the network development in this paper, including

nodes with single and multiple parents, while sufficiently simple to explain concisely. Ex-

pert information was used to determine the relevant relationships in the network. Recall

that no link between two nodes does not mean that there is not a relationship between those

nodes. Rather, it means that there is negligible direct effect between those nodes. Thus,

cross traffic density has negligible effect on the time until the traffic light turns green. In re-

ality, the time until the traffic light turns green is not the only reason whether the evaluating

vehicle can cross the intersection. The intersection must be clear, and higher density cross

traffic is more likely to result in a congested intersection even after the light has changed.

However, those relationships are considered negligible for this scenario in comparison to

the relationships defined.

All nodes are assumed to be observable during network training. This assumption is rea-

sonable given that a trainer could sit at an angle relative to an intersection that allows that

observer to see or compute all information present in the network nodes. Comparisons

were made between the effects of observing the cross-traffic light and not observing the

cross-traffic light during training; those comparisons are detailed in Section 4.3.2.

Evidence input design, in addition to network design, is important in DS analysis. Thus,

the functions which convert observations to evidence must be defined, and these impact the

resulting output and decision criteria. For this analysis, the evidence input for the “Time to

Green” node will be discussed. Figure 4.5 shows the function used to convert observations

of the time until the light changes to green into categorical evidence inputs. For this func-

tion to be evaluated, maximum short time and maximum medium time must be discussed,

along with the fraction for the complete set — the unknown information. Maximum short

time was defined as 1
3
∗ V ariable rate slowdown distance

current speed
. Maximum medium time was defined

as 1
3
∗ V ariable rate slowdown distance

current speed∗ 3
4

. These definitions were chosen to abstract away distance,

connect to concepts that could be observed in a real-world scenario, and provide reasonable

96



Figure 4.4: The Dempster-Shafer network used to evaluate the traffic light scenario.
Green links represent the relationships between nodes in the direction of effect. For
example, the state of “Their Light” affects the state of “Their Traffic Movement”. The
reverse, in general, is not true, although inferences can be made if traffic movement
is observed. The “My Light” node is included primarily to ensure that onces the
light changes, the network will immediately update the time until the light changes to
green.

values for decision criteria.

Using the evidence inputs described above, decision criteria were defined to balance uncer-

tainty with the driver’s goals stated previously (maintain speed as long as it is possible the

light with change to green before the driver enters the intersection, retain the ability to stop

safely if the light does not change, and minimize wear on the vehicle). In order to translate

the scenario goal into decision criteria, Figure 4.6 was developed.

Per the decision criteria chosen in Section 4.1 and the decision criteria concepts defined in

Figure 4.6, the appropriate decision criteria was chosen to be a combination of the “High

Possibility, Belief” limit in Figure 4.6 for the “Short” θ in the “Time to Green” node and

the “Low Belief” limit in Figure 4.6 for the “Medium” and “Long” θs in the “Time to

97



Figure 4.5: The figure represents the function for computing evidence input for the
“Time to Green” node from network training observations. This figure is read as fol-
lows: given a observed time until the light changed to green on the x-axis, the evidence
input for the “Time to Green” node can be calculated from the belief mass assignments
along the y-axis. For example, if the scenario takes zero seconds for the traffic light
to change to green, then the evidence input is 0.72 Short, 0.08 (Short, Medium), and
0.2 unknown, which is equivalent to (Short, Medium, Long). This function should in-
troduce uncertainty since stark conflict in evidence inputs results in rapidly changing
decision outcomes. Thus, as the function approaches values between clear situations
of long, medium, and short, the majority of weight is placed into ambiguous evidence
inputs, enabling the Dempster-Shafer combination method chosen to combine the ev-
idence and return a reasonable outcome.

Green” node. The table defining the decision criteria is shown in Table 4.1. The original

values highlighted a wide gap between the acceptable belief for the “Short” θ in the “Time

to Green” node and the acceptable possibility of that θ. In practice, however, it was found

that for reasonable windows of evidence evaluation, the gap closed considerably, leading

to the updated criteria. A more detailed evaluation of this difference is given in Section

4.3.1.

4.3 Evaluation and Test

Results of the scenario evaluation are shown in Figures 4.7 – 4.10. These are direct compar-

isons between drivers in each simulation. In all cases, the values reflect the difference of the
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Figure 4.6: Decision criteria defined for Dempster-Shafer analysis. Precise Under-
standing means that the decision-maker requires little-to-no unknown. Flexibility
means that the decision-maker requires significant ambiguity or unknown in the sys-
tem. Low Known, Unknown Risk means that the decision-maker requires both the
probability of a particular risk as well as the maximum possibility of that risk to be
low. High Possibilities, Belief means that the decision-maker requires that there is
a strong belief that the value under consideration is true, and the possibility of that
value being true is very high; this case could be applied to the stock market. Low
Possibility of Risk is used when the decision-maker is only concerned with the max-
imum possibility of a risk; this limit could be applied when the impact of the risk
being realized is too high to accept, so the possibility must be minimized. High Belief
is used when only the probability of the situation is important to the decision-maker;
this choice is a typical Bayesian approach. High Possibilities is used when only a the
possibility of a situation is of interest to the decision-maker; this criteria could likely
be used in gambling situations. Finally, Low Belief is used when only the probabil-
ity of the situation is important to the decision-maker; this limit is, again, a typical
Bayesian approach.
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Table 4.1: The decision criteria translated into numerical limits that can be evaluated
by the Dempster-Shafer network. Any “greater than” limit means that the associated
Belief or Plausibility value must be greater than that limit to meet the criteria. For
example, the belief in the “Short” θ must be greater than 0.2 to meet the decision cri-
teria. Likewise, any “less than” limit means that the associated Belief or Plausibility
value must be less than that limit to meet the criteria. This table presents the origi-
nal values chosen, which were then updated to align with the values that the network
produced, as described in Section 4.3.2.

Criteria Set Limit Application Short Medium Long
Original Belief ≥ 0.2 ≤ 0.50 ≤ 0.2

Plausibility ≥ 0.9

Updated Belief ≥ 0.2 ≤ 0.75 ≤ 0.4
Plausibility ≥ 0.25

DS-informed driver minus the baseline profile driver. Expectations were as follows:

• The DS-informed driver would end up at a slower speed, farther from the intersection,

and with significantly less wear than the max deceleration driver, but the time to

change would be less for the DS-informed driver when both vehicles have to stop.

• The DS-informed driver would end up at a higher speed, closer to the intersection,

and with more wear than the variable rate profile driver, and the time to change would

be higher for the DS-informed driver when both vehicles have to stop.

• The DS-informed driver would end up at a higher speed, closer to the intersection,

and with less wear than the coin toss profile driver, and the time to change would be

less for the DS-informed driver when both vehicles have to stop.

The first comparison is between the DS-informed driver and the max deceleration profile,

shown in Figure 4.7. There are several points to be observed in this comparison. First,

the wear is almost always lower for the DS-informed driver than for the max deceleration

driver, with a large maximum difference. Note that the wear in “ds maintained” case has a

higher maximum difference than the wear in the “ds not maintained” case, suggesting that

remaining at speed at appropriate times can reduce wear more significantly. In all cases,

the distance when the light changed metric is greater for the DS-informed driver than for
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the max deceleration profile, which is expected, given that if at least one vehicle was still

moving when the light changed, the max deceleration driver should have always been closer

or the same distance to the light as the DS-informed driver. The speed when light changed

was lower for the DS-informed driver for “ds not maintained” cases, which is expected, but

was reasonably consistent with the max deceleration profile values for the “ds maintained”

cases. This result suggests that the DS-informed driver could match the speed of the max

deceleration profile driver while still achieving better wear patterns. The time to change

metric was always less for the DS-informed driver, which is expected, given that the DS-

informed driver never slowed later than the max deceleration driver. It was expected there

there would be a significant number of simulation results with zero difference because there

were many simulation runs in which the maximum deceleration profile was the best choice,

and the DS-informed driver should choose the maximum deceleration profile consistently

in those cases. Beyond the zero difference cases, the wear distribution shows a consistent

improvement over the max deceleration profile, and the speed shows some improvements

as well; slowing down early then maintaining speed led to many cases in which the DS-

informed driver had a higher speed than the maximum deceleration profile driver when the

light changed to green.

The second comparison is between the DS-informed driver and the variable rate decelera-

tion profile driver. Again, the first point to observe is the wear pattern — the DS-informed

driver almost always has higher wear than the variable rate deceleration driver. This result

is expected given that the variable rate deceleration profile provided the least wear. The

question is whether the higher wear is worth the choice. Looking at the speed compari-

son, the speeds are effectively the same between drivers when the light changed. In the

“ds not maintained” case, the DS-informed driver appears to have higher speeds, but the

difference is mostly negligible. The primary difference when at least one vehicle is still

moving is the distance to the light. The DS-informed driver consistently is closer to the

light when it changes, with values ranging between 0m and approximately 12m. Finally,
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Figure 4.7: Comparison between the Dempster-Shafer-informed driver and a driver
always following the maximum deceleration profile. Distributions are obtained
by subtracting the results for the baseline profile driver from the DS-informed
driver results for each simulation run. The three plots are All (include all data),
“ds maintained” (includes data in which the Dempster-Shafer evaluation told the
driver to stay at speed at least 25% of the decisions), and “ds not maintained” (in-
cludes data not included in the “ds maintained” category). The numbers below each
category show the number of the simulations out of the 200 ran that fall into that cat-
egory. Y-axis values for each metric are in the units specified by that metric’s label.
Distributions are shown for each of the values. Since the Dempster-Shafer-informed
driver is choosing between two profile options, it was expected that there would be
many cases in which the comparison results in a zero difference, which skews the
distribution. Beyond the zero difference comparison, the wear distribution shows a
consistent advantage over the maximum deceleration profile, and the speed shows
some advantage as well (i.e. Dempster-Shafer correctly recommended slowing down
early which lead to higher speeds when the light changed). In most cases, while the
Dempster-Shafer driver was farther from the intersection when the light changed,
that was primarily five meters or less, which is an acceptably small difference.

when both vehicles do stop, the DS-informed driver waits longer at the light, which is

again expected. Thus, the trade-off in this comparison is between wear and distance when

the light changes: the DS-informed driver increases wear but is closer to the light each
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time the light changes while ending at approximately the same speed as the variable rate

deceleration driver, thus accumulating an advantage in distance at each intersection. With

respect to the distribution, while there were again many cases with zero difference, this

shows up most noticeably in the speed difference metric, showing that this choice clearly

does not provide much advantage of speed over the variable rate deceleration. However,

there is a consistently clear advantage in distance with the DS-informed driver ending up

closer to the intersection while at the same speed when the light changes.

The third comparison is between the DS-informed driver and a coin-toss (50/50) choice be-

tween max deceleration and variable rate deceleration profile options. If the DS-informed

analysis provides no consistent ability to correctly discern the time until the light changes

to green, then it is reasonable to assume that it would not do better overall than a coin toss.

Instead, the DS-informed driver clearly has lower wear in almost all cases, typically ends

at similar speeds to the coin toss driver, and has a shorter wait at the intersection when

both vehicles stop. However, the DS-informed driver is always further from the intersec-

tion when the light changes while the DS-informed driver is still moving. Comparing the

mean with the range of values, though, shows that the distances are usually similar with

a capacity for the DS-informed driver to be significantly farther from the intersection than

the coin-toss driver. Interestingly, this comparison is very similar to the max deceleration

comparison in Figure 4.7, although with less spread in the values. As with the maximum

deceleration comparison, this comparison shows that most values are similar, with the wear

and time to light change metrics being in favor of the DS-informed driver. With respect to

the distributions, while there were again many cases with zero difference, each of the dis-

tributions other than distance shows a clear bias in favor of the DS-informed driver with

higher speeds, lower wear, and a shorter time until the light changed to green. Interestingly,

there are more zero distance difference cases than zero speed difference cases suggesting

that while the two profiles more often ended up at the same distance from the light, the

DS-informed driver had a speed advantage in more of those cases.
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Figure 4.8: Comparison between the Dempster-Shafer-informed driver and a driver
always following variable rate deceleration profile. Distributions are obtained by sub-
tracting the results for the baseline profile driver from the DS-informed driver results
for each simulation run. The three plots are All (include all data), “ds maintained”
(includes data in which the Dempster-Shafer evaluation told the driver to stay at speed
at least 25% of the decisions), and “ds not maintained” (includes data not included in
the “ds maintained” category). The numbers below each category show the number
of the simulations out of the total ran that fall into that category. Y-axis values for
each metric are in the units specified by that metric label. Distributions are shown for
each of the values. There is no clear advantage in speed between the driver and the
variable rate driver when the light changes. However, the Dempster-Shafer-informed
driver is consistently closer to the intersection when the light changes, leading to an
overall position advantage. Based on the wear distribution, the trade-off is between
wear and position advantage for this baseline comparison.

The final comparison is between a DS-informed driver and a Bayesian driver both choosing

between the variable rate deceleration and the max deceleration. While both evaluations

are dealing with uncertainty, the methods of entry and evaluation are different. In Bayesian

belief networks (BBNs), without extensions for soft or virtual evidence [105], observations

are entered with certainty (e.g. the state of the cross traffic is seen to be None, Light, or
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Figure 4.9: Comparison between the Dempster-Shafer-informed driver and a driver
using a coin toss on each decision to choose between the max deceleration profile and
the variable rate deceleration profile. Distributions are obtained by subtracting the
results for the baseline profile driver from the DS-informed driver results for each
simulation run. The three plots are All (include all data), “ds maintained” (includes
data in which the Dempster-Shafer evaluation told the driver to stay at speed at least
25% of the decisions), and “ds not maintained” (includes data not included in the
“ds maintained” category). The numbers below each category show the number of
the simulations out of the 200 ran that fall into that category. Y-axis values for each
metric are in the units specified by that metric label. Distributions are shown for each
of the values. Other than in the distance metric, which shows a slight advantage to
the coin toss driver, the other metrics show a clear advantage to the Dempster-Shafer-
informed driver. Moreover, there are fewer zero difference speed cases than zero
difference distance cases, suggesting that it was more likely for the two drivers to end
up at the same distance from the intersection but with the Dempster-Shafer driver at
a higher speed.

Normal). Conversely, as discussed in Section 4.2, DS theory by default enters evidence as

uncertain, which allows concepts such as visibility to easily be mapped into an uncertain

observation. Finally, note that the BBN conditional values were entered by a subject matter
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expert based on the design of the simulation. A learning mechanism was not used for the

BBN. The results of these comparisons are shown in Figure 4.10. While this comparison

shows a Pareto frontier (i.e. no clear winner in all metrics), an equal weighting of metrics

shows the DS-informed driver as the winner since the DS-informed driver performs better

in three of the four metrics.

4.3.1 Window Size Effects

Real-time decision analysis in a constantly-changing scenario requires an appropriately-

designed analysis window. If the window is too long, then the decision does not change

rapidly enough to enable useful decisions. If the window is too short, the decisions ei-

ther tend to change too rapidly or insufficient information is gathered to make a reasonable

choice. A nice result of using DS analysis is that higher uncertainty due to a narrow window

results in a consistent decision instead of rapidly changing decisions. Consider the results

of a single simulation run corresponding to the traffic light scenario discussed in this chap-

ter. Figure 4.11 shows the data analysis for the run. Due to the chosen window of five data

points at 0.2 second intervals, the changes in analysis are relatively smooth, changing fully

over a one second interval. Likewise, the decision graph clearly shows the change from

believing there will be a long time until the light changes to green to believing there will be

a short time until the light changes to green. As can be seen in the lower evidence graph,

there is little unknown belief mass in the evidence, although there is significant ambiguity.

This data is translated into decision analysis through the use of Table 4.1, which is shown

in Figure 4.12. Before analyzing the lack of unknown evidence, it is useful to contrast

this analysis against a smaller window, the corresponding graphs of which are shown in

Figures 4.13 and 4.14. Note that the second set of graphs are for a different simulation run

since the observations are generated from a normal distribution, making exact replication

difficult. The evidence input in Figure 4.13 clearly shows more unknown than in Figure

4.11. The answer to this difference lies in the graph and prior combinations. Recall that
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Figure 4.10: Comparison between the Dempster-Shafer-informed driver and a driver
using a Bayesian evaluation to choose between the max deceleration profile and the
variable rate deceleration profile. Distributions are obtained by subtracting the re-
sults for the baseline profile driver from the Dempster-Shafer-informed driver results
for each simulation run. The three plots are All (include all data), “ds maintained”
(includes data in which the Dempster-Shafer evaluation told the driver to stay at speed
at least 25% of the decisions), and “ds not maintained” (includes data not included in
the “ds maintained” category). The numbers below each category show the number
of the simulations out of the 200 ran that fall into that category. Y-axis values for each
metric are in the units specified by that metric label. Distributions are shown for each
of the values. The distance metric shows an advantage to the Bayesian driver. The
other metrics show a clear advantage to the Dempster-Shafer-informed driver. This
comparison does show a Pareto frontier in that neither system is a clear winner in all
metrics. However, since the Dempster-Shafer driver performs better in three of the
four metrics, an equal weighting of metrics shows that the Dempster-Shafer driver
performs better overall.

the “Time to Green” node is not observed directly during the evaluation stage of this sce-

nario. Evidence inputs to other nodes, such as the “Traffic Movement” node, are combined

at those nodes, the results of which are then provided through the graph to the “Time to
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Green” node as evidence which is combined. This method results in decisions becoming

more concrete as they pass through the graph, assuming there is sufficient evidence at each

node for a reasonably concrete decision. The smaller window in Figure 4.13 caused the

decisions at each node to remain less concrete due to scarce evidence, resulting in higher

unknown values in the evidence inputs to the “Time to Green” node. Given those effects,

a one-second window with five observations during that window resulted in a reasonable

output for decision-making. Looking at Figures 4.12 and 4.14, it is also clear to see that the

combination method and window size affect how the decision criteria must be stated. The

original criteria in Table 4.1 was more appropriate for the smaller window size, given the

higher unknown values. With the larger window size, the updated criteria provided a more

accurate decision.

4.3.2 Network Learning Method Comparison

Multiple learning methods were evaluated as part of the traffic scenario. Since the gen-

eral relationships between the state of the cross-traffic light and the time until the driver’s

light changes to green are known (red cross-traffic light typically means a short time until

the light changes to green, yellow cross-traffic light means a medium time until the light

changes to green, and a green cross-traffic light means a long time until the light changes

to green), the learned relationships captured in the transitions can be evaluated. The first

learning method, which updates the transition at each evidence input and retains the en-

tire evidence history via Murphy’s rule, resulted in the transition shown in Figure 4.15.

While the weights stabilized quickly, the important note is that the weights are not repre-

sentative of the expectations for this scenario. For example, the “(Green, Yellow, Red)” θ,

which is the complete set (i.e. the unknown) maps strongly to the “Long” θ in the “Time

to Green” node. Even the “Red” θ has a fairly strong mapping to the “Long” θ, which is

unexpected.

Contrast Figure 4.15 with Figure 4.16. There are only four updates for this learning method
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Figure 4.11: The Dempster-Shafer data analysis for a single run approaching the red
light as a function of time in seconds. The upper graph shows the combined data using
the Zhang combination method [18] over a window of five observations taken at 0.2
second intervals. The lower graph shows the evidence input at the “Time to Green”
node at each time update. Due to the number of observations, the evidence input to
the “Time to Green” node is smooth, with limited unknown belief.
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since there was an initialization and three episodes, one for each traffic light state. How-

ever, it can easily be seen that the weights more closely align with expectations in which

the “Green” θ strongly maps to the “Long” θ and to a much lesser extent the “Short” θ,

the “Red” θ strongly maps to the “Short” θ, and the “Yellow” θ maps to the “Short” and

“(Medium, Short)” θs, with a lesser mapping to the “(Medium, Long)” θ. Furthermore,

unknown maps to unknown, which is required for a reasonable mapping.

Finally, Figure 4.17 shows episodic learning without direct evidence of the cross-traffic

light. The principle effect of this change is that the node distribution for the cross-traffic

light was being learned simultaneously and therefore updating as well. Consequently, the

shifting weights between episodes affect a much larger portion of the transition than in

Figure 4.16. This result corresponds to a “loss” of information since the simultaneous

updates to the node prevents a non-overlapping transition update.

4.4 Conclusions

Overall, the DS-informed driver performed better than the four baselines chosen for evalua-

tion. While the improvements were not always significant and represented a Pareto frontier

(i.e. no clear winner in all metrics), they demonstrated that the DS-based decisions led to

improvements in the driver response in this scenario. Based on the maximum difference

in metrics between the deceleration profiles, it is reasonable to state that the DS-informed

driver showed visible, consistent improvement over the baseline deceleration profiles. Fur-

ther, the learning methods compared in Section 4.3.2 show a clear improvement in ability to

capture the nuances of the relationships between node distributions, enabling the decision-

making used in this scenario.
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Figure 4.12: The Dempster-Shafer data limits analysis for a single run approaching
the red light as a function of time in seconds. This analysis uses the data from 4.11 and
the updated decision criteria from Table 4.1 to make the choice of whether to follow
the maximum deceleration profile or the variable rate deceleration profile. The “In-
side” label includes data that meets the decision criteria. All other data is “Outside”.
Any “Outside” data that is due to the complete set is shown as “Unknown”. This
graph shows that initially the decision criteria is close, but unmet since there is data
outside the criteria (in red). At approximately 12s, the data meets the decision criteria
(the full graph is green), allowing the decision-maker to proceed. As a result of the
smoothing shown in Figure 4.11, the “unknown” data compared against the decision
criteria is nearly non-existent, but the change in decision is smooth.

111



Figure 4.13: The Dempster-Shafer data analysis for a single run approaching the red
light as a function of time in seconds. The upper graph shows the combined data using
the Zhang combination method [18] over a window of three observations taken at 0.2
second intervals. The lower graph shows the evidence input at the “Time to Green”
node at each step. As a result of the smaller observation window, there is a larger
component of “unknown” evidence, and the shifts in evidence are less smooth.
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Figure 4.14: The Dempster-Shafer data limits analysis for a single run approach-
ing the red light as a function of time in seconds. This uses the data from 4.13 and
the updated decision criteria from Table 4.1 to make the choice. The “Inside” label
includes data that meets the decision criteria. All other data is “Outside”. Any “Out-
side” data that is due to the complete set is shown as “Unknown”. As a result of the
smaller observation window and the resulting evidence in Figure 4.13, there is a no-
ticeable “unknown” component of the data compared against the decision criteria in
the evidence, but the combined data quickly eliminates this unknown, resulting in a
potentially premature decision.
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Figure 4.15: The transition between the cross-traffic light (“Their Light”) node and
the “Time to Green” node, showing the progression as the values were learned dur-
ing the training phase. The x-axis shows each update as a step input. This learning
method retained all evidence through Murphy’s rule, included the state of the cross-
traffic light as evidence, and did not incorporate episodic learning. As can be seen, the
weights quickly stabilized and are not representative of the expected weights given the
traffic scenario described.
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Figure 4.16: The transition between the cross-traffic light (“Their Light”) node and
the “Time to Green” node, showing the progression as the values were learned during
the training phase. This learning method uses episodes comprised of the light states of
green, yellow, and red. Further, this learning method includes evidence of the cross-
traffic state. As can be seen, the weights better represent the expected weights for the
scenario. The x-axis represents each episode as it was added to the network.
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Figure 4.17: The transition between the cross-traffic light (“Their Light”) node and
the “Time to Green” node, showing the progression as the values were learned during
the training phase. This learning method uses episodes comprised of the light states
of green, yellow, and red. As can be seen, most of the stronger weights maps to short.
Note that the mapping changes much more aggressively between observations than
in Figure 4.16 suggesting that the node distribution was changing as well. The x-axis
represents each episode as it was added to the network.
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CHAPTER 5

UAS APPLICATION

The primary intent of this research, as discussed in Chapters 1 and 2, is to provide a risk

analysis mechanism for systematically understanding the risks associated with UAS oper-

ations both a-priori and in real-time during operations. Chapters 3 and 4 detail the updates

to the theory and implementation of the Dempster-Shafer (DS) analysis framework as well

as provide an example of its application to driving. This chapter focuses on applying the DS

updates to a UAS scenario — a hovering multirotor making real-time decisions on whether

to land, and, if so, in which area to land. The scenario is shown in Figure 5.1.

Previous research in real-time health assessment of UAS [23] developed a system that

provides good, warning, and failure indications of various UAS subsystems, which results

in a comprehensive health diagnostic for the UAS. Three known limitations of this system

are as follows:

• All subsystems must report a common basis of health diagnostic (e.g. good, warning,

or failure).

• The comprehensive health diagnostic selects the worst case subsystem health diag-

nostic, which ensures a worst-case response only and does not provide a full under-

standing of the risks faced by the system.

• Configurable delays help to handle conditions causing rapid changes between instan-

taneous health diagnostic states (e.g. switching rapidly between good and warning),

but these delays deal with this problem by introducing hysteresis mechanisms with-

out capturing the underlying distribution between the states.
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Figure 5.1: The layout for the UAS news multirotor scenario. An area of operations,
which limits the risk of the UAS flight to lives not involved in the operation, is defined
and shown. The goal of the news multirotor is to maintain the best visual coverage
of the area of interest while maintaining an ability to land if issues arise, in order to
keep the operation risk manageable. For this operation, two safe zones are specified
as areas in which the multirotor could land without risk to lives. Additionally, the
scenario assumes that some monitoring method for these safe zones are available,
which could be as simple as an operator actively monitoring the zones and notifying
the UAS if the zones are becoming unsafe for landing. Since the goal of the UAS
is to maintain visual coverage of the area of interest, the multirotor hovers over the
primary safe zone, but will move to the secondary safe zone if the primary zone is
compromised. Additionally, the UAS will land if the risk becomes too high. This
scenario encompasses many facets of UAS risk analysis including a mechanism to
assess risk, multiple options/hypotheses, and decision criteria associated with the risk
analysis.

Integrating this real-time health analysis system with a DS risk assessment overcomes these

limitations by translating reported health diagnostics to a common basis through transi-

tions, providing a full distribution including unknown and ambiguous components of the

risk assessment. Further, the DS analysis easily incorporates additional information exter-

nal to the UAS. Figure 5.2 shows a DS network that can be used for UAS real-time risk

analysis.
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Figure 5.2: Dempster-Shafer network for UAS risk analysis. Each node includes three
θs or individual options being evaluated: low risk, medium risk, and high risk. This
network is more appropriate for a small, lower-cost UAS that will not respond differ-
ently to risks in each internal subsystem. Power and flight systems are still separated
since power system warnings and failures are more common issues for multiirotors
and have pre-planned responses. Likewise, the operator is a separate node since the
capabilities of the operator (whether Part 107 [24] certified, etc.) play a strong role
in the overall operation risk. Multiple risks can be assessed for the environment in-
cluding weather, terrain, crowds, etc. Assuming that a Part 107 operator is correctly
following rules and flying in appropriate weather for the UAS, the environment risk
analysis is simplified to focus on safe zones, which are known, monitored landing zones
for the UAS. This network includes multiple hypotheses for the safe zones, which are
not depicted in this figure.

5.1 Decision Criteria Design

The UAS DS network includes two decisions. The first is the operation risk decision that

determines whether the UAS should land or continue the operation. The second determines

which safety zone should be used by the multi-rotor. If both safety zone hypotheses have

the same result when compared to the decision criteria, then the primary hypothesis is used.

Otherwise, the better hypothesis is chosen. This criteria is set more restrictively than the

operation risk criteria such that the vehicle can pre-position itself before making the deci-

sion whether to continue the mission.

Table 5.1 shows the decision criteria values based on the decision types defined in Fig-

ure 4.6. Since this network requires one transition for most inputs to provide evidence to
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the operation risk node, the decision analysis in the operation risk node will be less stark

than in the traffic light scenario (Section 4.3), thus enabling a greater difference between

belief and plausibility bounds.

Table 5.1: The numerical decision criteria for the UAS Dempster-Shafer network.
For real-time flight system implementation, the decision criteria is reversed such that
when the decision criteria is met, the system executes the contingency action. As such,
these criteria are consistent with Figure 4.6. The Safety Zone Risk criteria are more
restrictive than the operational risk, enabling the hypotheses and the chosen safety
zone to be switched before deciding to end the mission, thus providing an opportunity
to continue the mission with a lower risk safety zone.

Criteria Set Limit Application Low Medium High
Operation Risk Belief ≤ 0.5

Plausibility ≤ 0.9 ≥ 0.4 ≥ 0.3

Safety Zone Risk Belief ≤ 0.6
Plausibility ≤ 0.9 ≥ 0.3 ≥ 0.2

An important decision design criteria is the desired relationship between the probability of

detection and the probability of false alarm — where the system is placed on the Receiver

Operating Characteristic (ROC) curve [106]. The baseline system was designed to not pro-

duce false alarms (i.e. the probability of false alarm is zero unless a subsystem incorrectly

provides a false alarm to the health monitoring system) [23]. The reason for this design

decision is that the baseline system is typically flown on an experimental/research platform

with a safety pilot as part of the flight test. It is assumed that the safety pilot can handle

cases that the baseline system does not catch, and that false alarms could be detrimental to

the flight test. The decision design criteria for the DS system under test was set to approx-

imately match the baseline system such that a direct comparison could be made between

the two systems, instead of relying on a Pareto frontier for comparison. As such, it is likely

that there will be no false positives during the evaluation in Section 5.4, although this is

still included as an evaluation criteria for completeness as stated in Section 5.2.

Where the DS system is placed on the ROC curve is a function primarily of the decision cri-
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teria (Table 5.1), the reaction time required, the reporting of the individual subsystems, and

the evidence translation from the instantaneous reports of the individual subsystems (Table

5.2). If it is acceptable for individual subsystems to report degradation with some proba-

bility (e.g. GPS may occasionally report lost lock if it recovers within a given time frame)

without the system taking contingency action, then that limit needs to be handled when

defining the decision criteria. In the case of the UAS platform on which this system will

be demonstrated (see Section 5.5), it was assumed that any internal subsystem degradation

could cause a safety issue, and the system should take contingency action. However, for

the safety zone evaluation, some degradation was allowed since the DS evaluation needed

to test both hypotheses before determining whether to end or continue the mission. Fig-

ures 5.11 and 5.12 show that a small overall change to mission risk was allowed without

ending the mission. Since the overall mission risk is used to evaluate whether to end the

mission for these tests, the required reaction time was fast ( 1-2sec for a complete failure

reported by a subsystem), resulting in limited degradation allowed. For a more complex

network, such as described in Section 5.7, multiple decision criteria on different nodes can

be defined to enable different reactions and different points on the ROC curve [106], as

long as the least restrictive decision criteria on the overall mission risk still meets required

risk limits.

5.2 Evaluation Metrics

Evaluation of this real-time risk analysis method was performed in comparison against the

baseline real-time health assessment architecture implementation in GUST [70] [23]. For

this comparison, the following metrics were chosen:

• Response time: the time in seconds between the first notification of a degradation in

the system (e.g. an instantaneous health status changes from good to warning) and

when the system takes contingency action in response to the change
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• False positives: the number of times the system takes contingency action when there

is no degradation in the system

• False negatives: the number of times the system does not take contingency action

when there is a degradation of the system

• Processability: whether the system is capable of processing the full autopilot update

including the DS network in the 100Hz update loop

For each system (the baseline and the DS network — i.e. the system under test), trade-

offs between the first three metrics are handled through configuration parameters. These

parameters were chosen to provide a similar balance between each of the first three metrics

before comparisons were made between the systems. The final metric is a requirement for

running on small UAS, which is previously demonstrated on the baseline system [23] and

must be evaluated on the test system. Since the baseline system did not include the concept

of safe zones and multiple hypotheses, that capability is evaluated separately by testing

whether the UAS can choose the less risky safe zone (relative to the decision criteria defined

for safe zone choice) and delay aborting the mission by lowering the risk through the safe

zone choice. Further, the baseline system does not provide a way to include health or risk

information external to the system, such as operator risk. This capability will also be tested

separately by evaluating whether the UAS chooses the defined contingency action when

risks from external systems become too high or whether the UAS continues the mission

with no change.

5.3 Network Training

Training for the DS network was performed offline via simulation. While online train-

ing is feasible through this system, current methodology, as discussed in Section 3.4, uses

the results of each operation to learn the transition potentials — the relationships — of
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the network. Specifically, this method connects the long-term and real-time in-operation

timelines through the transition potentials. Since DS combinations are used to combine

the evidence per episode for the transition potentials, the captured relationships can change

over time as the evidence suggests shifts. Offline training was chosen for this application

due to the number of operations that were necessary to capture reasonable relationships for

testing against the baseline system. To clarify, evaluating only a few test cases results in

significantly higher levels of uncertainty mapping between nodes, which does not provide a

similar response to the baseline system. Further, the approximate relationships were known

a-priori, enabling rapid confirmation or disconfirmation through offline training.

Failures were modeled as Poisson Point Processes [107], which assumes stochastic inde-

pendence between each failure occurrence. More accurate failure models are likely avail-

able on a manufacturer-by-manufacturer basis such as by Velos Rotors [108], which pro-

vides a maintenance schedule for their UAS parts. The simulation used for this research

includes a replaceable model, and the Poisson Point Process was chosen since the flight

demonstration platform, described in Section 5.5, is experimental with too few flight hours

of data to provided a more accurate model. Offline training was performed by setting the

probability of failure and warning (failsafe) per hour for each of the nodes without parents

(flight systems, power systems, operator, and safety zone). The probabilities of failure and

warning were set to zero and 50% each during training cases. While 50% failure proba-

bility is high, it gives a view into the relationships when components are at high risk of

failure. Simulation lengths were randomly chosen between the minimum of 0.1 hrs and

maximum of 30 minutes, assuming a commercial multirotor such as a DJI Mavic Pro [7].

250 operations were run per learning case.

As with the traffic light scenario in Section 4.2, conversion functions from the subsys-

tems’ instantaneous reports of good, warning, or failure to evidence input for the network
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has a substantial impact on the training and how quickly the transition potentials converge.

Table 5.2 shows the chosen mapping from result to evidence input. Ambiguities and un-

known masses have an impact on how the DS solutions converge, similar to the results

in Chapter 4. Higher ambiguities and unknown results in slower, more consistent conver-

gence, but there is a theoretical limit as detailed in Appendix A, since the specific thetas

must be greater than the related ambiguities. Moreover, the ambiguities, while necessary

for smoothly combining the evidence, also have real-world meaning. A successful opera-

tion does not mean that the risk was necessarily low. It merely means that the risk did not

manifest itself into a failure or failsafe. Therefore, the (success, failsafe) ambiguities and

the (success, failsafe, failure) unknown mass capture this possibility. Higher ambiguities

and unknown masses highlight greater uncertainty between the operation results and the

risks in the operation, allowing more operations to reduce the uncertainty through evidence

combination.

Table 5.2: The mapping from results to maximum risk evidence inputs for each el-
ement of the power set. Actual evidence inputs for each operation are randomly se-
lected up to the maximum values in the table, with any leftover mass being assigned to
the complete set (unknown) to ensure the evidence masses always add up to 1.0. This
partially random input simulates evidence from risk assessments performed after the
flight operations for each specific operation. In practice, the high number of runs
along with Murphy’s combination rule [19] for averaging inputs results in a similar
outcome to fixed values. The operation risk has a higher degree of uncertainty per
outcome to simulate the uncertainty associated with the risk of the overall operation.
Individual subsystem risks are more precise, simulating more detailed fault analysis
on the subsystems.

Operation Risk Individual Risks
Power Set Success Failsafe Failure Success Failsafe Failure

Low 0.4 0.0 0.0 0.7 0.0 0.0
Low, Medium 0.3 0.15 0.0 0.3 0.3 0.0

Medium 0.0 0.4 0.0 0.0 0.7 0.0
Medium, High 0.0 0.22 0.3 0.0 0.4 0.3

High 0.0 0.0 0.4 0.0 0.0 0.7
Low, Medium, High 1.0 1.0 1.0 1.0 1.0 1.0

A significant shift from the training for the traffic light scenario evaluated in Chapter 4 is
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the need to capture overlapping training episodes for the transition updates. Training for the

traffic light scenario, as detailed in Section 4.3.2, was greatly simplified due to the network

primarily being based on the state of the cross-traffic light. While the cross-traffic den-

sity had an impact, most observations (cross-traffic speed, the time until the light changed

to green, and cross-traffic walk signal) depended primarily on the cross-traffic light, thus

allowing the episodes to be defined by the state of the cross-traffic light. Conversely, in Fig-

ure 5.2, it can be seen that all nodes affect the operation risk, creating a situation in which

no one node correlates to all of the possible episodes. As for the traffic light scenario,

to avoid implementing statistical heuristics to determine episodes, expert information was

used to define the episodes. However, in this case, the results of each operation affected

more than one episode. As with the traffic network in Figure 4.4, the impacts of interest

per episode are defined by which transitions are affected through operation observations.

Figure 5.3 shows the relationships between downstream nodes and nodes that are directly

controlled in training episodes. For example, an episode of training that is running oper-

ations with a high likelihood of failure in the flight systems will teach the network about

the transitions between the “Flight Systems Risk” node and the “Internal Risk” node and

between the “Internal Risk” node and the “Operation Risk” node. However, the transition

from the “Operator Risk” node to the “Operation Risk” node is not affected significantly,

and including the effects of the episode on that transition is detrimental to the training of

that transition.

A third and final restriction was added to training transitions of multi-parent nodes. In the

two previous methods, even if there was only a significant change in the distribution of the

“Power Risk” node (i.e. the “Flight Systems Risk” node had no effect on the change in risk

of the “Internal Risk” node), the two transitions are still trained together. This is a direct

result of the simplification in Section 3.3.3 in which the result of the parent nodes multi-

plied by the transition potentials are assumed to be the same when provided as evidence to
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the combination method in the child node. This third method still uses that simplification,

but then only trains the transition to which the episode applies. Figures E.2, E.4, and E.6

in Appendix E show the differences in training results between these three methods.

Figure 5.3: UAS risk analysis Dempster-Shafer network showing which nodes are
primarily affected through changes to the evidence inputs. For example, changes to
the Flight System Risk primarily will affect the Internal Risk and Operation Risk,
leading to those three nodes being trained as part of the same episodes.

5.4 Test and Evaluation

Given the network and metrics defined previously for this scenario, multiple tests were

created to evaluate the systems relative to the metrics in Section 5.2. 50 trials per test case

were then conducted.

• Simple switch: The instantaneous health notification of a subsystem step changes

from good to warning without switching back.

• Continuous switch: The instantaneous health notification of a subsystem continually

changes on each update between good and warning.

• Stochastic switch: The instantaneous health notification of a subsystem changes be-

tween good and warning with some defined probability. A goal of this test is to

determine whether there is a point at which the baseline and DS systems clearly

126



differ in their response.

Testing capabilities were built into the GUST flight control to enable both simulation and

in-flight tests while minimizing risk to the UAS. Each subsystem in GUST for which there

is health analysis provides an instantaneous health status of good, warning, or failure to

the health subsystem, which uses those statuses to evaluate the overall status of the system

[23]. A low risk method of testing the health system response while not degrading critical

flight control systems is to inject a test system that reports an instantaneous good, warning,

or failure status into the health subsystem. Test code was added to compute contingency

response time based on the test subsystem injection and to check whether the health sub-

system caused a contingency response without a degradation being injected by the test

subsystem.

As with the network training in Section 5.3, subsystem instantaneous reports of good,

warning, and failure had to be converted into evidence inputs for the DS network. This

conversion is simpler than the training case because these are short term evidential views

that are equal in weight and constantly updating. Thus, the simple mapping in Table 5.3 is

used.

Table 5.3: The mapping of instantaneous subsystem health state to evidence input
into the Dempster-Shafer network used by the health subsystem. Since each of the
instantaneous health states are a form of evidence, a simple mapping is used to add
ambiguity and unknown, allowing the Dempster-Shafer combination algorithms to
work effectively and providing a slower, less stark response to changes in state.

Instantaneous Status
Power Set Good Warn Fail

Low 0.6 0.0 0.0
Low, Medium 0.2 0.2 0.0

Medium 0.0 0.4 0.0
Medium, High 0.0 0.2 0.2

High 0.0 0.0 0.6
Low, Medium, High 0.2 0.2 0.2
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Results are grouped to show the trends in the baseline system, the DS network system, and

comparisons between the two. All test cases did not exhibit any frame overruns, meaning

that both health analysis methods completed all executions within the 100Hz frame update

rate in the simulator. The results of the baseline system is shown in Figure 5.4. The baseline

system is a deterministic system with a one second delay before taking contingency action.

The system is designed to ignore short, intermittent failures, but captures sustained or sig-

nificant system degradations. However, as seen from Figure 5.4, the deterministic system

is barely able to capture a highly degraded system. The inverse of the system would behave

similarly: if the system is biased towards safety, then only slight degradations would result

in the system taking contingency action.

The results from the health subsystem using the DS network are shown in Figure 5.5. The

results act similar to a low pass filter in the sense that the network more slowly catches

failures as sufficient percentages of the instantaneous health reports are “warning” or “fail-

ure” over a window of time. In this case, the update rate is 0.2 seconds, and the window is

10 sets of evidence, resulting in a two second window for determining failure conditions.

For these evaluations, Zhang’s combination rule [18] is used, since this provides nice prop-

erties for eliminating outliers and provides a faster response to substantial degradations.

With these settings, this method captures failures nearly as quickly as the baseline system

for simple failures and can capture most failures down to 25% probability of reporting an

instantaneous warning or failure status, which is well beyond what the baseline system can

capture.

The results in Figures 5.4 and 5.5 are compared directly in Figure 5.6 for the cases in

which both methods can capture failures. While the baseline method responds faster for

simple failures, the DS network clearly captures more failure cases and provides consistent

responses to those failures. These two systems create a Pareto frontier. However, given

that the DS network has a similar response time to the baseline system for simple failures
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Figure 5.4: UAS baseline response to subsystem degradation injection into the health
subsystem. The system is graded on response time. Numbers in parenthesis below
the trials indicate the number of false negatives (uncaptured degradations) in the 50
trials. No false positives were captured. Note that this system is biased away from false
positives to avoid safety maneuvers during flight tests. A safety pilot is assumed to be
present during flight tests since this is an experimental aircraft. Simple failure is the
same as 100% probability of instantaneously reporting failure (i.e. the system simply
fails and continually reports a failure). Percentage failures are the probability that
the subsystem will instantaneously report failure (i.e. the subsystem is degrading, but
not fully failed). Lower percentages than 85% are not shown since no failures were
captured at 80% or below.

and out-performs the baseline system for other failures, overall the DS network clearly

performs better than the baseline system.

As stated in the metrics definition in Section 5.2, further capabilities are provided by the

DS network method that are beyond the scope of the baseline system. These capabilities
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Figure 5.5: UAS Dempster-Shafer network response to subsystem degradation injec-
tion into the health subsystem. The system is graded on response time. Numbers in
parenthesis below the trials indicate the number of false negatives (uncaptured degra-
dations) in the 50 trials. No false positives were captured. In order to have compa-
rable results to the baseline system, this health subsystem was also biased away from
false positives, meaning that significant deviations from the “good” distribution were
required to trigger a contingency action. Two noteworthy points arise from these re-
sults: (1) all contingency response times have a distribution — even the simple failure
case — since the response is no longer deterministic. (2) this method captures down
to 25%failure, albeit with some false negatives and significantly longer times to cap-
ture the failure. Moreover, this system gracefully degrades in the sense that the tail
of the distribution extends consistently as the failure rate lowers. Test case meanings
are the same as in Figure 5.4. The final test case — switching — is a case in which
the subsystem alternates reporting good and failure on every update. This is a case
that is impossible for the deterministic baseline to capture, but the Dempster-Shafer
network captures this quickly.
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Figure 5.6: UAS health subsystem response comparison between the baseline method
and the Dempster-Shafer network method. Only cases in which both methods can
capture failures are shown. The baseline system clearly reacts faster for simple fail-
ures, but the Dempster-Shafer network method has a consistent, albeit slower, re-
action for both the simple failure and lower failure reporting probabilities. The
Dempster-Shafer network model clearly captures significantly more failure cases
while not slowing the response time substantially.

are evaluated separately by determining if the system responds correctly to higher risk in

the operator or safety zone analyses. Three test cases were run with 50 test runs per case.

The first test case increased the medium risk evidence of the operator. The second case

increased the medium risk evidence of the primary safety zone, leaving alone the secondary

safety zone. The final test case increased the medium risk evidence of both safety zones

together. These risk evidence inputs were pseudo-random. Limits were provided for each

of the subsets within the risk evidence, and the evidence was pseudo-randomly chosen up to

those limits. Any remaining mass was placed in the unknown set. This method simulates
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evidence based on observations since these inputs were not driven by actual subsystem

calculations, unlike the previous tests. As seen in Figure 5.7, degradations are captured

successfully for both cases. The response time to the safety zone degradations is longer

than the response to the operator degradation, which aligns with first checking whether the

alternate hypothesis is a better choice. The cases in which only the primary safety zone had

increased risk are not shown since, in these cases, the health subsystem correctly switched

hypotheses and did not take any contingency action.

5.5 Demonstration

This research was grounded in the application of risk analysis for unmanned systems. Fur-

ther, a key assumption was that this research could be applied to the full UAS ecosys-

tem — small systems through large systems. To show that this assumption holds, a flight

demonstration was performed using the vehicle in Figure 5.8 and shown in flight in Fig-

ure 5.9. This vehicle uses a Raspberry Pi 3B embedded computer with an Emlid Navio2

[109] autopilot sensor suite running the GUST [70] flight control system. This vehicle

was previously used to demonstrate the GUST health monitoring architecture [23], provid-

ing a baseline for expanding to the DS network. For this flight demonstration, the trained

network from Section 5.3 was loaded onto the UAS, mimicking the testing performed in

Section 5.4. Once the UAS was airborne, two evidence injections were used from Section

5.4:

• Higher risk at the primary safety zone, which should cause the UAS to move to the

secondary safety zone

• Higher operator risk, which should cause the UAS to land

The primary question of whether the DS network can run efficiently on the embedded flight

control system is answered in Figure 5.10. Computations including the DS network stay
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Figure 5.7: UAS Dempster-Shafer network health subsystem responses to increased
operator and safety zone risks. Only two cases are shown — the operator risk increase
and the dual safety zone risk increase. All risk increases were captured. The dual
safety zone risk increase has a longer response time as the two hypotheses (the dual
safety zones) are first considered to determine whether there is an alternate option
before deciding to take contingency action. The single safety zone risk increase test is
not shown since the UAS never took contingency action in this case. Instead, the UAS
chose the secondary safety zone for landing when necessary.

within the time allotted for the 100Hz fixed frame update rate, demonstrating the DS-based

system can run on small embedded computers.

The injected risk evidence and contingency responses for the two flight demonstrations are

shown in Figures 5.11 and 5.12. Recall that the injected evidence is the same as in Section

5.4. As such, only the low risk belief value is shown in the figures, as this provides a surro-

gate for when the updated evidence is injected. In both demonstrations, the recorded data
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Figure 5.8: UAS research platform used for the flight demonstration. Flight control
and onboard computing is provided by a Raspberry Pi 3B embedded computer with
an Emlid Navio autopilot sensor suite. UAS frame size is 400mm. A small platform
and basic embedded flight computer was chosen to demonstrate applicability to the
full range of UAS sizes, as larger platforms can carry more powerful computers.

starts with the UAS hovering over the primary safety zone. When updated evidence for the

primary safety zone (SZ1) is injected, the operation risk shows a momentary change in risk

analysis, but recovers quickly as the secondary safety zone hypothesis takes over. Concur-

rently, the UAS exits the hovering state and flies to the secondary safety zone, proceeding

to hover there. When the higher risk operator evidence is injected, the overall operation risk

increases, triggering the second flight plan, which is an immediate landing. Upon landing,

the UAS returns to waiting for the next command. Both flight demonstrations show a con-

sistent response to the inputs, and both flight demonstrations are consistent with the testing

results seen in Section 5.4.
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Figure 5.9: UAS research platform in flight during the flight demonstration. The
flight demonstration was kept to a constrained area for personnel safety. All onboard
health decisions were performed through the Dempster-Shafer risk analysis network.

5.6 Conclusions

The DS network significantly improved performance over the baseline system for health

monitoring. Contingency response to full failures were similar to the baseline system, and

the DS network detected intermittent failures far beyond what the baseline system could

detect, with a graceful degradation in response time. Much of this improvement was re-

alized by using a stochastic system, which would only require a single DS node (i.e. not

require the extensions developed in Chapter 3). The network added capabilities by en-

abling the health subsystem to include operator and safe zone risk analysis. These values

can either be updated in real-time or can use pre-determined values (e.g. a risk level for the

operator given current skill level). Further, multiple hypotheses were demonstrated for the

safety zone analysis, enabling the UAS to choose the lower risk zone in a manner consistent
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Figure 5.10: Analysis of frame overruns for the two flight demonstrations. Frame
overruns are defined as each time the computing cycle takes longer than the time
allotted in the 100Hz fixed frame update. As seen in the plot, there were zero frame
overruns during both flight demonstrations.

with the rest of the risk analysis. This analysis was underpinned by the network training

based on the extension developed in Chapter 3, which allows the network to be adapted

as new information becomes available. This mechanism is critical for a UAS ecosystem

which provides the necessary information to understand the risk relationships. Finally, the

full network can run on a flight computer that powers small UAS, as demonstrated in this

chapter, thereby applying to the full UAS ecosystem. This application of this research

demonstrates the capability to provide a quantitative risk analysis that supports risk anal-

ysis frameworks like SORA [2] currently being pursued by regulatory agencies. Further,

since the risk analysis network is easily expandable to greater details, the network has the

capability to utilize data from algorithms previously developed, in development, and under

future development as detailed in Chapter 2. This capability provides a new baseline, and

Section 5.7 discusses the extensions to the full ecosystem.
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Figure 5.11: Flight demonstration one of Dempster-Shafer network risk evaluation
with real-time decision-making onboard a small UAS. The reduction in low risk for
the primary safety zone (SZ1), which signifies an increase in medium/high risk for
that safety zone, results in the UAS deciding to switch safety zones to the secondary
safety zone. During this maneuver, the UAS continues the mission since the resulting
operation risk is sufficiently low. The reduction in low risk for the operator, which
signifies an increase in medium/high risk for the operator, results in the UAS deciding
to land since the operation risk is too high to continue the mission.

5.7 Extensions

5.7.1 Application to UAS Ecosystem

The real-time decision application in this chapter assumes sufficient evidence through op-

eration results to learn the transitions between nodes in the network. Per the discussion in

Chapter 2, risk analysis needs to be applied to UAS operations before hundreds or thou-

sands of flight hour results are available. Through the environment discussed in Chapter 2,

this data is available. Figure 5.13 provides a more complex risk analysis DS network which

can leverage common data across various systems and environments. One important point

to note here is how the network scales with respect to increasing complexity. While this
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Figure 5.12: Flight demonstration two of Dempster-Shafer network risk evaluation
with real-time decision-making onboard a small UAS. The UAS responses in this
demonstration are consistent with demonstration one in Figure 5.11, showing that
the overall system is repeatable in its responses.

topic is discussed in terms of computation time in Section 3.6.5, a more pressing concern

is with respect to interactions between θs. Structure is used to increase explainability and

decrease computation time, but at the expense of removing the possibility of interactions

between specific θs. For example, including θs (a, b, c, and d) in a node allows unlimited

interactions of the probability distribution between those θs. If it is assumed that (c and d)

are conditioned on (a and b), then the two sets of θs can be separated into two nodes with a

joint conditional belief matrix relating them. However, that removes the possibility that (a

and b) can also be conditioned on (c and d) in a directed, acyclic graph. For a higher com-

plexity network, unknown relationships between θs may drive the need to include more θs

in the same node, resulting in slower computation times. These consequences result in a de-

sign cycle — including more θs initially in the same node and observing the belief marginal

distribution in that node over time may lead to breaking that node into multiple nodes with
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conditional relationships due to certain interactions between θs being effectively zero in all

pertinent situations.

However, data flows and evidence data retention operate differently in a multi-vehicle con-

text with multiple simultaneous operations compared to a single-vehicle context. Previous

data retention methods discussed for training in Sections 4.3.2 and 5.3 use Murphy’s rule

[19] and the weighting from Section 3.5 to capture episodic data, maintaining information

across extended periods. This method assumes, across similar episodes, all previous data

is captured in a single, consistent network, allowing nodes such as the Operation Risk node

to retain information. For example, the combined data retained in the Operation Risk node

is still equal to the combined data in all other nodes, such as the Navigation Risk node,

multiplied by the transition matrices and combined as evidence into the Operation Risk

node. The environment discussed in Chapter 2 breaks this model. Figure 5.14 shows one

potential model of the UAS environment. Compiled data can be stored in many datastores

within this environment. For example, insurance agencies would likely compile data within

their risk models of flight and/or pilot/operator behaviors. Regardless of where the data is

stored, data is compiled at different rates as operation hours are built up for UAS, operators,

and various environments.

In order to evaluate the risk for a particular operation, the appropriate data must be pulled

from each of the datastores, entered into the risk network, such as in Figure 5.13, and cal-

culated to determine the overall risk of the operation. Decisions are then made regarding

risk transference and maximum allowable risk. Once the operation is complete, the data is

used to improve the relationships in the network. Herein lies the difference from the single

system model previously used. The operation risk is no longer a history of data captured

in Murphy’s Rule [19]. Instead, it is a combined set of data calculated through the network

based on multiple datastores with difference amounts of retained evidence, making Mur-
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phy’s Rule [19] unusable. In order to get past this issue, the Evidential Reasoning Rule

[89] is used, which, like Dempster’s Rule [1], does not require the evidence history to add

new evidence, but still enables weighting the new evidence based on the hours of operation

associated with the new evidence. The evidence combination result will not be retained

directly, but will be used to update the appropriate episodes to improve the relationships

learned in the Figure 5.13 network. As such, the results will be retained through the tran-

sition relationships and the datastores for retained data such as the various environment

datasets, UAS datasets, etc.

Figure 5.13: Dempster-Shafer network for the UAS ecosystem risk analysis. This
network is similar to the network in Figure 5.2, but it is more complex to include
various features which could be considered common across operations. For example,
the risk of hitting the ground (Ground Risk) in a given area of operations is likely
to be common across operations in that area and could leverage previous research
to estimate the effects of ground impact [14]. Likewise, the same DJI [7] platform
models could leverage common data in the Internal Risk node while common autopilot
navigation systems could leverage common Navigation Risk information. Decisions
for operations are shown in orange as the acceptable risk transference (a question of
insurance) and the acceptable risk level (a question for the regulatory agency).

5.7.2 Distributed Analysis

As a result of these interactions and independent datastores, platforms and stakeholders will

be performing distributed analyses, which may result in different outcomes. A contempo-

rary example is getting quotes from multiple insurance agencies for driver’s insurance. Dif-
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Figure 5.14: A model of the UAS environment, including many of the factors that
would impact risk evaluation of operations and the relationships among the various
systems in the environment. This model incorporates five major systems: the UAS
which perform operations, operators which execute operations with the UAS, insur-
ance agencies which insure the UAS operations, a regulatory agency which ensures
safe UAS operations, and the environment in which the UAS operate. Each of these
systems interact in multiple ways, and the data flows depicted in the model enable the
risk analysis, which each of the systems — other than the environment model — per-
form. The insurance agencies use models of the operator and flight risk and reward
to determine operation premiums. The regulatory agency uses models of the opera-
tor and flight risk to determine whether the risk is within maximum acceptable risks.
Operators use risk and reward models to determine whether they are willing to pay
the insurance premiums required to operate. The UAS uses operation risk models to
determine real-time risks of various operation profiles to inform the operator or make
automatic decisions.

fering information and risk assessments may result in different premium quotes. Persons

seeking the lowest premium for the same risk profile tends to balance these quotes, driving

the premiums to similar values for similar risk profiles. In the same way, interactions in the

UAS ecosystem will tend to drive distributed analyses towards the same results for similar

information, whether through direct communication or “indirect communication” (i.e. dy-

namic effects within the UAS ecosystem). Analyses can also be purposefully distributed

to reduce computation or required information sharing. For example, as marginals perco-
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late as evidence through the risk-analysis network, those marginals encapsulate the entirety

of the evidence upstream in the directed, acyclic graph. In Figure 5.13, the marginals for

the “Internal Risk” node can be seen to encompass the risk assessments for the navigation

risk, control risk, power risk, and dynamics risk. Consequently, purposefully distributed

computations can be performed with the UAS risk analysis passing the internal risk to the

agency assessing the risk, which combines that data with another system’s assessment of

the environment risk. Thus, the design of the network not only facilitates information shar-

ing between operations, but also facilitates how the computations are distributed based on

data access and storage capabilities.
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CHAPTER 6

CONCLUSION

Regulatory agencies are moving towards risk-based approval frameworks for UAS access

to air space [11]. Governments have mandated that these agencies find a way to safely in-

tegrate UAS into the air space [26]. How that integration is done is still a work in progress

as the necessary infrastructure, such as remote ID [11], is being developed, per the UAS

Safety Symposium notes in Appendix F. The safety symposium held in August 2018 as part

of this research provided a strong basis of understanding for this environment. While risk

assessment is currently qualitative, this model is unsustainable as the proliferation of UAS

means there will be too many approval requests to evaluate qualitatively. Thus, a quantita-

tive mechanism is required which supports and integrates with a risk analysis framework.

Much effort has been put into research for these quantitative mechanisms (Section 2.6),

yet most suffer from either a limited operational focus or a mechanism that requires too

much a-priori data, such as with the Bayesian Belief Networks. Dempster-Shafer Theory

[1] [3] is commonly applied to risk analysis yet suffers from high computational require-

ments, often exceeding what is available on small UAS. Valuation networks [16], of which

Dempster-Shafter networks are a subset, offer an option which could be computationally

feasible for small UAS but require a-priori information for the joint mass distributions.

This research pulls together those various threads by developing extensions to Dempster-

Shafer networks that enable training the network from evidence inputs. These evidence

inputs take the form of operational results that are fed back into the network to improve

the understanding of the relationships between nodes. Chapter 3 develops these extensions

and experimentally shows that the training algorithm is capable of learning the joint mass

143



distributions (the transition potentials in the Shafer and Shenoy terminology [17]) to a level

that provides more understanding of the system than joint mass distributions as typically

entered by experts. These extensions were applied to an autonomous car scenario in Chap-

ter 4 and demonstrated to perform better overall than baseline deceleration profiles and a

Bayesian Belief Network approaches. Finally, these extensions were applied to the UAS

risk analysis problem in Chapter 5. Simulation testing demonstrated that this risk anal-

ysis method outperformed the baseline system and enabled additional capabilities for the

UAS to respond to changing external conditions in real-time. Further, flight demonstration

showed that this system is capable of running on small UAS in real-time. Extensions were

then discussed to apply this research to the full UAS ecosystem. In summary, a quantitative

risk analysis framework capable of capturing long-term data for understanding risk rela-

tionships and applying that to real-time decision making on small to large UAS has been

developed and demonstrated through this work. This quantitative risk analysis framework

could serve as the numerical mechanization of the risk-based approval frameworks being

developed for regulatory agencies to integrate UAS into air space.

6.1 Recommendations

The following research trajectories are suggested to extend this work:

• Test the UAS risk decision criteria at various points on the ROC [106] curve to eval-

uate the trade-offs between false alarms and missed detections.

• Use the UAS ecosystem to train the Dempster-Shafer network, as described in Sec-

tion 5.7.

• Test the UAS ecosystem with real-world data.

• Increase the complexity of the UAS ecosystem to understand the interactions be-

tween multiple regulatory and insurance agencies
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• Test various UAS risk analysis networks including the one proposed in Figure 5.13

to understand the implications of granularity of the network and how information can

be combined at various levels.

• Improve the episodic learning by adding statistical triggers for the episodes, as men-

tioned in Section 3.4.3. Statistical tests should be added to determine when episodes

are sufficiently different to warrant new episodes, and the same tests should be used

to allocate updated data to existing episodes when episodes already exist for the cur-

rent data. This addition enables the training to progress with no direct human input;

only human oversight would likely be necessary to ensure appropriate training pro-

gression.

• Implement and compare other optimization techniques, as described in Appendix C,

for the DS network training.

• Integrate current research and algorithms cited in Section 2.6 into this risk analy-

sis model. This step includes taking work such as the ground collision models that

provide impact estimates and integrating these risk models into the quantitative risk

model developed in this research to have a fully modeled and data-driven risk analy-

sis.

The addition of these research trajectories would result in a system capable of updating

on its own with human supervision, but no human interaction required during the up-

dates. Furthermore, the resulting system would use cutting edge, data-driven models to

feed the evidence inputs for this risk analysis network, enabling accurate analysis of the

risks, which combine to form the full operation risk analysis. Missing or unproven models

have significantly higher unknown masses, resulting in high possibilities (plausibilities in

Dempster-Shafer terms) for each of the high, medium, and low operational risk estimates,

thus making operation approval significantly less likely. The beauty of this system is that

it gracefully handles refinement of these analysis models while using the same approval

145



criteria. Finally, the UAS ecosystem would enable the risk analysis model to much more

quickly incorporate data from similar or identical UAS platforms, operation scenarios, etc.,

resulting in significantly faster network training.
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APPENDIX A

DEMPSTER-SHAFER MULTI-PARENT REVERSE SOLVER RESTRICTION

VALIDATION

In this appendix, we develop the result necessary to enable restricting the inputs to Demp-

ster’s Rule and ECR that enable calculating a valid solution to the reverse solver for mul-

tiple parents. The following assumption still applies: for a valid solution to be guaranteed,

there must be at least as many evidence inputs as parent marginals for which the algorithm

is solving, not including evidence inputs that contain all mass in the universal set.

Furthermore, the following simplifying assumptions enable easier analysis while still ap-

plying to the general result:

• ECR is only valid for this result when all weights and reliabilities are equal, thus

reducing ECR to Dempster’s Rule.

• The result is only required to be developed for two evidence inputs. This assumption

is because both Dempster’s Rule and ECR add the new evidence into the combined

result of the old evidence. Thus, if the combined result provides a valid reverse

solution method, then combining any new evidence using the same restrictions will

in itself be a combination of two evidences under the same restrictions, resulting in a

recursive proof.

• This result is only shown for a three option evidence set (a, b, c) and the associated

power set. The reason for this can be seen through the solution method developed

in Section 3.3.3. Each solved mass only depends on the masses of higher ambiguity

which apply to the solution mass. Thus, the shown proof is, again, recursive.
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Recall from Section 3.3.3, the child marginal a in terms of two identical sets of parent

marginals is given by Equation A.1.

ac = a2
p + 2 ∗ ap

[
(a, b)p + (a, c)p + (a, b, c)p

]
+ 2 ∗ (a, b)p (a, c)p (A.1)

To solve for ap, the quadratic formula is used to give Equation A.2.

ap = −
[
(a, b)p + (a, c)p + (a, b, c)p

]
+√[

(a, b)p + (a, c)p + (a, b, c)p

]2

−
(

2 ∗ (a, b)p (a, c)p − ac
) (A.2)

From Equation A.2, it is quite clear that a valid, positive solution will be obtained provided

that Equation A.3 holds.

ac ≥ 2 ∗ (a, b)p (a, c)p (A.3)

However, this solution specifically applies to the cases in which the two parent evidence

sets are not identical. Thus, from Table 3.4, ac can be calculated through Equation A.4

where ()1 denotes the first evidence set and ()2 denotes the second evidence set.

ac = a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1

(A.4)

Likewise for the left side of the inequality, the following relationships hold:

(a, b, c)p =
√

(a, b, c)c (A.5)
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(a, b)p = − (a, b, c)p +
√

(a, b, c)2
p + (a, b)c (A.6)

Recalling further from Table 3.4 the following two relationships:

(a, b)c = (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2 (A.7)

(a, b, c)c = (a, b, c)1 (a, b, c)2 (A.8)

With substitution, Equations A.4 - A.8 result in Equation A.9.

2

(
−
√

(a, b, c)1 (a, b, c)2

+
√

(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(
−
√

(a, b, c)1 (a, b, c)2

+
√

(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1

(A.9)

Next, we simplify the left side of Equation A.9 slightly. Note that
√
a+ b ≤

√
a +
√
b.

Therefore, Equation A.10 holds, and Equation A.11 can be used to constrain the left side
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of Equation A.9.

√
(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2 ≤√

(a, b, c)1 (a, b, c)2+√
(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

(A.10)

2

(
−
√

(a, b, c)1 (a, b, c)2

+
√

(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(
−
√

(a, b, c)1 (a, b, c)2

+
√

(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

2

(√
(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(√

(a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)

(A.11)

Thus, if we show that the right side of Equation A.11 is less than or equal to the left side

of Equation A.9, then Equation A.9 holds, and the restrictions will satisfy the constraint

necessary to ensure a solution to the reverse solver. To do this, we introduce the restrictions

from Equations 3.9 and 3.10. Further, without loss of generality, we assume that (a, b)1 ≥

(a, b)2, (a, c)1 ≥ (a, c)2, (a, b)1 ≥ (a, c)1, and (a, b)2 ≥ (a, c)2.

Using Equation 3.9 for a1 and a2 the least constraining choices of (a, b)1, (a, b)2, (a, c)1,

and (a, c)2, the right side of Equation A.9 can be constrained via Equation A.12, which

also includes a square and square root to end up with the same form as the right side of
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Equation A.11.

((3 (a, b)1 (a, b)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1

+2 (a, c)1 (a, b)2 + 2 (a, c)2 (a, b)1)2) 1
2 ≤

a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1

(A.12)

Using the restrictions from Equation 3.10, we cancel terms and end up with Equation

A.13.

2

(√
(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(√

(a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

((3 (a, b)1 (a, b)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1

+2 (a, c)1 (a, b)2 + 2 (a, c)2 (a, b)1)2) 1
2

(A.13)

Therefore, the original inequality in Equation A.3 is true, and the restricted set is shown to

have a valid reverse solution via the method developed in Section 3.3.3.
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APPENDIX B

DEMPSTER-SHAFER ALGORITHM WEIGHTING MODIFICATIONS

Other than the ECR method [89], Dempster’s Rule and rules created to replace/improve

Dempster’s Rule consider all evidence equally, without weight. Due to the modifications in

Section 3.8, it was necessary to introduce weights to algorithms which could be used in the

Dempster-Shafer network. Murphy’s Rule [19] and the two Rayleigh methods [20] were

easily modified to include weight by weighing the evidential inputs. For Murphy’s Rule,

this equates to a weighted average. For the Rayleigh methods, this means that evidential

masses are multiplied by the associated weights when combined with the other evidential

masses, whether they are supportive or in conflict. Zhang’s Rule [18] had to be handled

differently since multiplying the input evidence masses by the weights do not effect the

result because the first use of the evidence masses is to calculate conflict. The conflict

calculation uses a dot product, which is normalized, thus removing the weighting. Instead,

the weighted average credibility of the original reliability was modified to use both the

weighting developed through Zhang’s support calculations and the input evidence weights,

thus affecting the final result through the evidence input weights.
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APPENDIX C

DEMPSTER-SHAFER TRANSITION SOLUTION ALTERNATE METHODS

The solution to solve the transitions in a Dempster-Shafer network, as detailed in Section

3.3.2, was chosen to be least squares with modifications to the solution when the non-

negative constraint on all transition values was violated. Alternate solution methods are

available that could satisfy the design requirements of low computation requirements and

fast solutions. In particular, two options were discussed and are recommended for future

evaluation.

• Moore-Penrose Pseudo-Inverse [110]. The definition of the transition in the Dempster-

Shafer hypertree, as given in [17], provides the child-to-parent transition values us-

ing the transpose of the parent-to-child transition values. This is potentially not the

only available definition. An inverse is impossible, given that many cases result

in a non-invertible matrix. Figure 3.5 is a simple example of this case. However,

the generalized inverse, using the Moore-Penrose definition, is not restricted in the

same manner. This method was not chosen for current development in order to use

the hypertree definition given in [17]. It is recommended in future analysis to com-

pare the Moore-Penrose pseudo-inverse definition with the transpose definition in the

Dempster-Shafer hypertree and evaluate which method performs better and provides

more intuitive and explainable results.

• Iteration using the separation principle [102]. The separation principle is a well-

known concept in control theory that allows the system observer to be designed sep-

arately from the system controller because the observer dynamics are sufficiently

faster than the controller dynamics that the two parts of the system are effectively
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decoupled. Similarly, the Dempster-Shafer network is typically updated at a slow

rate relative to the update rate of a real-time system. For example, the network is of-

ten updated on the order of 1Hz to 10Hz, while real-time controllers usually update

significantly faster. Given the relatively slow update rate, it should be possible to

design a dynamic transition solution method which has significantly faster dynamics

than the network update. Again, it is recommended in future analysis to compare this

solution method with the least squares solution method developed in this paper.
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APPENDIX D

TRAFFIC LIGHT SCENARIO INITIAL CONDITIONS

The initial conditions for the traffic light scenario are listed in this appendix for repeatability

of tests.

Table D.1: Traffic light scenario initial conditions. This table lists the initial conditions
for the traffic light scenario.

Initial Condition Value Initial Condition Value
Driver Speed Mean (m/s) 15.0 DS Observation Rate (s) 0.2
Driver Speed StDev (m/s) 4.0 DS Observation Window 5

Cross Traffic Speed Mean (m/s) 16.0 Cross Traffic Expected Speed Mean (m/s) 16.0
Cross Traffic Speed StDev (m/s) 6.0 Cross Traffic Expected Speed StDev (m/s) 2.0

Cross Traffic Density Mean (veh/m) 20.0 Cross Traffic Expected Density Mean (veh/m) 30.0
Cross Traffic Density StDev (veh/m) 8.0 Cross Traffic Expected Density StDev (veh/m) 5.0
Cross Traffic % Speed up at Yellow 5 Cross Traffic % Continue at Yellow 20

Cross Traffic % Slow down at Yellow 75
Visibility Range (m) 0.0 Visibility 1.0
Visibility Range (m) 20.0 Visibility 0.6
Visibility Range (m) 200.0 Visibility 0.5

Yellow after Sim Start Mean (s) 9.0 Yellow after Sim Start StDev (s) 6.0
Red after Yellow Mean (s) 6.0 Red After Yellow StDev (s) 1.0

Green after Yellow Mean (s) 2.0 Green after Yellow StDev (s) 0.5
Cross-Walk Activated Probability 0.8

Cross-Walk Blinking before Yellow Mean (s) 5.0 Cross-Walk Blinking before Yellow StDev (s) 0.5
Cross-Walk Visibility Mean (m) 20.0 Cross-Walk Visibility StDev (m) 5.0
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APPENDIX E

DEMPSTER-SHAFER NETWORK TRAINING RESULTS

Detailed results of training are provided in this appendix to show comparisons between

various methods. Multiple methods were evaluated with the general trend that the more

precise application of training episodes to transitions resulted in the transitions capturing

the nuances of relationships between the Dempster-Shafer combined evidence distributions

in the parent and child nodes. In controls terminology, this phenomenon can be character-

ized through observability. All transition potentials are being calculated through modified

least squares optimization based on the combined distribution at the parent and child nodes.

A single distribution for each of the parent and child nodes is effectively a single basis vec-

tor with the transition potentials being the function that spans the space between those

vectors, as show in Equation 3.1.

The move to episodic learning in Section 3.4 results in the parent and child node com-

bined distributions being represented by multiple statistically different distributions or ba-

sis vectors. The addition of the weights in learning the potentials in Section 3.4.1 forces

the transition potential matrix to learn based on each basis function, capturing the improved

observability. In Section 5.3 this method is further refined by only applying the episodes to

nodes and transitions that are significantly affected by the episodes, the two steps of which

are shown in Figures E.4 and E.6. As described in Section 3.4.3, the logical extension to

this method is to calculate statistical significant differences in combined evidence distribu-

tions at each node to determine which nodes and transitions are affected by each episode.

Differences in captured information through the transitions potentials are shown in Figures

E.1 through E.6. Note that both of these methods have room for improvement. Some in-
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formation can be captured early, as shown in Figure E.2, while later changes should be

minimized, as shown in Figure E.6.
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Figure E.1: Training episodes for the UAS scenario in Chapter 5 applying all episodes
to all nodes. The x-axis represents each episode update. This figure focuses on com-
bined evidence distributions for the nodes affected by vehicle failure and failsafe rates.
In each of the three rows of plots, multiple updates can be seen with the same dis-
tributions suggesting that those data points aren’t adding new information or basis
functions to the transition potential learning algorithm.
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Figure E.2: Training episodes for the UAS scenario in Chapter 5 applying all episodes
to all nodes. The x-axis represents each episode update. This figure focuses on the
transition potentials updates between the two vehicle systems nodes and the overall
vehicle systems node (the Internal Risk node). Of interest in comparing this figure
with Figure E.1 is that initial updates to all the potentials are occurring as early as the
first update, even though Figure E.1 shows that information available in update one
only applies to a small subset of the transition potentials (a single basis function).
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Figure E.3: Training episodes for the UAS scenario in Chapter 5 applying each
episode to distributions that are affected by that episode. The x-axis represents each
episode update. This figure focuses on combined evidence distributions for the nodes
affected by vehicle failure and failsafe rates. For each distribution, changes in the
distribution can be clearly seen in the episodes which directly affect that distribution,
while subsequent episodes retain enough information to minimize loss of data in the
transition potentials.
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Figure E.4: Training episodes for the UAS scenario in Chapter 5 applying each
episode to distributions that are affected by that episode. The x-axis represents each
episode update. This figure focuses on the transition potentials updates between the
two vehicle systems nodes and the overall vehicle systems node (the Internal Risk
node). Comparing this figure to Figure E.2 shows a significant difference in learning
behaviors. The transition potentials in this figure only start updating once informa-
tion is available that directly affects these potentials, and changes to the transition
potentials after episodes directly affecting these potentials are minimized.
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Figure E.5: Training episodes for the UAS scenario in Chapter 5 applying each
episode to distributions that are affected by that episode and only training the tran-
sitions of multi-parent nodes that are affected by each episode. The x-axis represents
each episode update. This figure focuses on combined evidence distributions for the
nodes affected by vehicle failure and failsafe rates. For each distribution, changes in
the distribution can be clearly seen in the episodes which directly affect that distribu-
tion, while subsequent episodes retain enough information to minimize loss of data in
the transition potentials.
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Figure E.6: Training episodes for the UAS scenario in Chapter 5 applying each
episode to distributions that are affected by that episode and only training the tran-
sitions of multi-parent nodes that are affected by each episode. The x-axis represents
each episode update. This figure focuses on the transition potentials updates between
the two vehicle systems nodes and the overall vehicle systems node (the Internal Risk
node). Comparing this figure to Figure E.4 shows a noticeable difference in learning
behaviors. The transition potentials in this figure update in the same pattern between
the Flight Systems Risk to Internal Risk transition and the Power Risk to Internal
Risk transition. Figure E.4 shows a different behavior between the two, even though
the training inputs in this scenario were identical.
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APPENDIX F

SAFETY SYMPOSIUM RAW NOTES

Date: 7/23/2018

F.1 Summary/Major Takeaways

• There is a decided lack of information in this space, but there are several areas and

methods of information outreach available by a variety of different enterprises.

– www.faa.gov/uas

– www.faa.gov/go/waiver

– https://faadronezone.faa.gov portal

– 14 CFR Part 1.1 and 107

– 49 USC 40102

– FAA Advisory Circular 107-2 Small Unmanned Aircraft Systems

– Social media platforms (Facebook, Instagram, YouTube, Twitter, and others)

– AMA

– UAST (Unmanned Aircraft Safety Team)

– Drone Advisory Committee

– Commercial Drone Alliance

– AUVSI
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– Waiver Safety Educational Guidelines

– Public Law 112-95 and subsequent reauthorization bills for FAA

– Pathfinder, Public Safety Partnership, Integrated Pilot Project and other industry-

FAA coordinated agreements

– FAASafetyTeam: FAASafety.gov

– uashelpdesk

– FAA AFS-800 Policy Branch

– Variety of conferences, shows, symposiums, conventions and meetings

• Much of the industry, especially on the regulations and law side, are in a wait-and-see

mode for the precedents to be set, usually when forced by a major incident

– Out of a million registered users, there are 100,000 commercial operators with

a sUAS Remote Pilot Certificate registered to operate for compensation or hire,

as well as Public Aircraft Operations (government function)

• The biggest issue with enforcing regulations and prosecuting offenders is identifica-

tion of the UAS and operator: agree, but working on a rule that will provide policy.

• Operator education is essential and is currently severely lacking: agree

F.2 Notes from Presentation 1 — The Rise of Drones and

Insurance

• Reinsurance handles 65% of recoverables from non-US companies – a method of

spreading risk

• Farm mutuals rent drones to operators for surveying land, soil, blight, etc. – typically
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fixed wing craft are used.

• Real Estate is another application

• Legal issues could be faced / how insure UAS operations for those?

• Everything is new with drone – drones, operators, and the law

• Law is always behind tech, but is catching up: My comment at all my presentations

is that lawyers and the insurance companies will drive the industry more than the

FAA, unless there is blood spilled, in which case Congress will get involved.

• FAA – finalized the current drone rules as of 8/29/16

• True, and have added Remote Pilot certificate testing and recurrent testing, as well

as an Advisory Circular, Inspector Guidance, Test Sites, academic coordination with

Center of Excellence (ASSURE), and a variety of pilot programs for evaluating op-

erations of drones and risk analysis

• Drones are a federal affair, because the feds are the primary regulators of national

airspace

• There have been drone incidents, often involving manned aircraft

• The rules from the FAA lowered the barriers to entry for operators

– Previous rules: required a pilot’s license: a certificate is required for all pilots

of all aircraft

– Current rules: 14 CFR Part 107 requires a “license” and applies to operators

flying for compensation or hire. (FAA still does require one for drones: the

Remote Pilot Certificate, for those who want to operate for compensation or hire

under Part 107. Recreational pilots who do not subscribe to a community based

set of guidelines fall under jurisdiction and enforcement of 107, although – no

pilot’s license (“certificate”) is necessary if the drone meets the requirements
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of:

∗ Must fly for hobby/recreational use only

∗ Operate under a community based set of safety guidelines

∗ ≥.55lbs and ≤ 55lbs

∗ Class G airspace only (≤ 400’ AGL typically)

∗ Maintains Visual Line of sight

∗ Avoids manned aircraft

∗ Does not endanger the National Airspace

∗ Notifies airports and ATC when within 5 miles

∗ Per NDAA 2018, must register as operator, using registration number for

all owned aircraft over .55lbs and ≤55lbs as recreational user or for each

aircraft. If a Remote Pilot operating under 107, then single aircraft per

registration number.

∗ Request permission to operate in controlled airspace

∗ Don’t fly impaired

∗ Also regulates recreational use of drones per Part 1.1 and 101.

– Under Part 107 as a model aircraft operator:

∗ Maximum airspeed of 100mph

∗ Cannot operate over people or moving vehicles or emergency response

∗ Minimum weather visibility of 3 miles

∗ No carriage of hazardous materials

∗ Preflight inspection required
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∗ Daylight hours only unless waived, similar to other conditions requiring

waiver

• Most common drone use is renting the drone and operator

• Waivers can be obtained to Part 107: under 14 CFR 107.200 and .205

• Other countries have drone regulations also. Canada and the US are fairly closely

synced, but some other countries are more progressive in their regulations

• Drone insurance is a legal issue – Insurability brings in a host of issues:

– Violation of FAA Rules

– Physical Damage and Bodily Injury

– Nuisance laws

– Trespass laws (One of the primary reasons for drone violations)

– Invasion of Privacy (The other major reason for drone violations)

∗ Private individuals

∗ Government use/searches

– Stalking and harassment

– Wiretap laws

• Boggs vs Meredith – 2015 – where does private property end and public airspace

begin?

– With drones, FAA can regulate down to the blades of grass, if exposed to out-

side.

– If indoors, it’s not airspace, and the FAA doesn’t regulate it

• ISO drone endorsements
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• CGL (Commercial General Liability = A standard insurance policy issued to busi-

ness organizations to protect them against liability claims for bodily injury (BI) and

property damage (PD) arising out of premises, operations, products, and completed

operations; and advertising and personal injury (PI) liability.) policy – look to if

there’s a loss

• Drones as a service – drone highways

• Insurers have reasonable pricing models, but these are dependent on information

from the operators.

• Some insurers use exclusions to keep operators within the bounds they specify

• Global Aerospace removed exclusions because crashes invariably break at least one

exclusion regardless of the operation.

• The current model is supposed to be on a per flight basis (based on the forms). Often,

it is not executed this way

• Insurance tends to be evaluated in one of two ways:

– It falls into a “normal” bucket. In this case, it is often passed along to the

re-insurers who insure/price it based on standard rates. Typically, this is fully

automated/computerized with human oversight.

– Some parameters of the insurance request are outside the norm. In this case,

it is typically evaluated by a human in the primary insurance companies who

helps to determine the risk model and pricing
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F.3 Notes from Discussion One

F.3.1 Group 1

(Bullet points are statements made during a dialogue)

• What is there for regulation and insurance of re-certification?

• Probably if within the scope of work, covered under underwriting questions with

input of engineer, probably coverage issued based on underwriting risk audit

• No standards of safety versus known vulnerabilities, but a risk management profile

could be developed

• Too new – law hasn’t caught up with tech. Drone may need certain characteristics.

Geo fencing = no access for drones that are equipped with this feature

• DJI implements altitude restrictions, but can be bypassed

• Authorized first demo at airport – DJI “bricked” because the system shut down. It

recognized that it was in restricted space, and there was no way to bypass that re-

striction. DJI has since updated its software.

• Risk mitigation – there are workarounds

• Business friend in Korea – when too close to the DMZ, the internal GPS will not start

• How can you run self-diagnostics before traveling to an authorized place to fly if the

system won’t start up outside of the authorized location?

• the definition of “safe” catches up to tech

• safety is piecemeal, developed based on experience and reaction/over reaction

• The UCF team has analyzed data on how people are using UAVs. FAA said not going

to fund that work.
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• Court case – FAA does not have the right to regulate hobbyists

• Parker – Pre 107, since superseded

• Hobbyists were “refunded” for UAS registration fees, although the money wasn’t

returned, and 107 was fixed

• FAA on 107 commercial side have authority to regulate, no ability to regulate “hob-

byists” guidelines: this isn’t true re: hobbyists (model aircraft operators). We regu-

late through Part 1.1 and Part 101 directly, and through Part 107 if modeler doesn’t

comply with a community-based set of guidelines

• There are flight restrictions that apply to UAS as well

• Helicopters and UAS operate in similar airspace, which creates potentials for issues

• Regulations are for safety. Pathfinder program – fly drones out of LOS and at night

• The airport had a 2 day safety risk assessment with airlines. Identify risks with

operations

• Beyond LOS analysis: higher concern is UAS and helicopters because the occupy

the same airspace. UCF analysis estimated the well-clear distance, which went into

the FAA guidance. They got a 333 exemption for their flying.

• How can you stay “well-clear” when you don’t know what’s out there? How do you

prove you know what’s out there? Definition of “well-clear” is key.

• Assume worst case – they have a few years of helicopter data from Boston, built

simulations. There are no flight plans for helicopters.

• Put transponders on UAS?

• It’s going that way

• Look at new technology on cars

172



• Look at the UTM Systems

• Application information on FAA website. Regulation data there also.

• Blocked finding info about the impact of an impact. What happens in a drone strike?

Likelihood of damage, shutdown, how shut down. Wind turbulence of wing hit an-

other plane?

• 1st UAV strike this past year was into a helicopter

• NTSB investigated. The drone pilot had no idea the helicopter was there because

drone was BVLOS at the time and operator walked away

• White house lawn drone. Operator had no idea where the drone went down – lost

contact with it.

• Regulations cannot rely on operators having full control: not sure what this means,

but disagree. We want operators to have control. That is a main focus. Note: Joel

Dunham discussed this with the FAA representative after his comments. The point

was made with respect to degraded situations in which the UAS may have to take over

some level of control and respond appropriately, given that many UAS now have a

large disconnect between the operator and the low-level controls that fly the UAS.

The FAA representative’s response was that the FAA would likely mandate a level

of training and understanding by the operator such that even in a degraded situation

the operator would know how the UAS would likely respond (such as standardized

return-to-home in the future) and be able to predict and plan for the UAS responses.

In that way, the operator still has a level of control over what the UAS will do for the

operation.

• Strike tests/simulations have been done. There is a fair amount of data. Ask Hartfield-

Jackson International Airport representative: how do they enforce the law?

• Depends on who within the Atlanta Police Department answers. They rely more
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on peeping tom laws. No local ordinances/restrictions. “Master’s” got restrictions.

Most rely on nuisance laws. Video: consent needed from both people. Example:

drone outside a high rise videoing – drone collected as evidence due to video

• Trespass suit? Violate federal law?

• Law cannot chase technology. It chases underlying issues. Cobb county wanted to

protect Suntrust Park and sent a letter to the FAA. FAA said “stay in your lane. The

air is not your lane”.

• Devices interfere with drones

• Video and video collection – when does this violate laws? When is this useful for

demonstrating regulation compliance?

• Depends on use. There is an expectation of privacy

• On UCF campus, cannot lift off drone from campus, but can take off from across the

street and fly over campus

• The airport is the same. May get waiver, but not through airport screening. How do

they enforce hobbyists? How do you control trespass in a restricted area?

F.3.2 Group 2: Subject: Safety

• There are two types of “Safety”. Actual safety [which seemed to be understood as

safety from physical harm] and perceived safety. Perceived safety has been shown to

vary depending on the velocity/size/distance of the drone. The primary determinant

is velocity.

• The research into perceived safety has been done by interdisciplinary teams and has

been determined using measures of changes in skin conductivity, head tilt and heart

rate. [this seems to equate perceptions of safety to a physical fear/flight response]
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• The measures are specific to the individual as each person has differing physiological

responses based on their life experiences.

• Other measures discussed for perceived safety included possible violations of pre-

sumed privacy and fear of unknown factors having to do with the drone operations

(e.g. who is the operator and what is their intent)

• Perceived safety violations are more of a driver of reports to law enforcement and

complaints to regulators than actual safety violations.

• Actual safety can be impacted by being designed into the product, perceived safety

can also be designed into the product, the team discussed above used assistance from

a product design and art team to make drones look more “friendly”.

• Actual safety would include improvements in system redundancy. This can be lim-

ited in application due to the payload and weight requirements.

F.3.3 Subject: Safety Regulatory Structure

• Current structure based on weight seems to be the most logical way to divide classes

of drones. This makes the model similar to other regulatory classes (autos, aircraft).

• Perhaps additional divisions of the regulatory structure into more weight classes of

drones could be useful as the categories are pretty broad right now with each weight

class required to be manufactured with additional redundancy and safety character-

istics to mitigate the risk.

• Additional segmentation for operators could influence regulation and insurance based

on skill level and experience of the pilot, also composition and design of the drone

(e.g. a frangible airframe)

• Question for further discussion, should drone operators be “type rated” as pilots are

for large commercial aircraft? Do different drones and the control software have
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vastly different flight and operational characteristics?

• Belief of the panel: Commercial use will drive regulations. Regrettably, losses will

come first and drive public opinion which will influence/prioritize new regulations.

The industry is a wait and see mode until a loss experience occurs. Agree.

• Other comments:

– There are a lot of different redundancy issues for the vehicles and software that

need to be addressed in the safety arena.

– It may require regulation at the manufacturer level to regulate some safety is-

sues. [product liability?]

– Is it possible to regulate drone operations through the software?

F.3.4 Some Assumptions

• An underlying assumption for panel discussions was that this applied to UAS opera-

tors who want to follow the law/do the right thing.

• The balance on regulating through software is between education/testing/restrictions

and convenience. Because we assumed that operators want to do the right thing, reg-

ulating through software could be effective. However, as with many of the checklists

in software, too much results in lack of convenience and good actors sidestepping the

rules.

• This is perhaps where operator certification could apply, as a certification number

validated through the system could bypass training and tests.

• One of the big reliability issues with software is the cost – as manufacturing processes

become more rigorous, cost increases quickly, building barriers to entry.

• Law expert’s inputs and discussions included the assumption of malicious actors (as
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he has experience with South Carolina Corrections and the use of drone by prisoners).

In this case, how to deal prevent and deal with incidents is significantly different.

F.3.5 Pathway for Operations beyond Part 107

Currently waivers applications are online. Responses to waiver requests usually take about

90 days. Once a critical mass of waivers is reached in a specific area (e.g. night flights)

the FAA may change the rules or there may be some standardization of responses. Also

airspace authorizations are key, with LAANC coming on line will help a lot.

F.4 Notes from Discussion 2

F.4.1 Cases

1 A UAS videoing a major foot race crashes, causing the death of some runners

2 UAS down a passenger jet by destroying engines, causing loss of the jet and loss of

life

3 A UAS flying without authorization prevents a fire fighting tanker from entering the

fire zone, causing millions of dollars of property damage in a California urban area

F.4.2 Group 1 discussion on Scenario 2

(Bullet points are statements made during a dialogue)

• There is a loss of communication. Should have been geofenced.

• Everyone gets sued – the airline, manufacturer, UAS operator

• Statutory liability for passengers. Everyone gets sued. Point of proximate cause.

Tender defense to insurance companies – probably settle.
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• Airport contractors require additional drone coverage.

• All drone operations should have liability coverage

• Heightened training requirements if near an airport, additional hours, contractual

requirements. Experience requirements for hobbyists. There are waiver applications.

This goes back to risk management – was the UAS pilot properly experienced?

• How would they know the experience?

• Ask at training (the software asks for the certification level of the operator, number

of hours, etc)

• DJI UAS log flight hours

• City keep log of drone close calls

• FAA has sightings database – most entries are bogus. Sightings are reported to police

and perhaps to the FAA. Study of UAV pilots focused on weather. If not a pilot, don’t

focus on weather.

• Small UAS are too cheap to worry about crashing, so they don’t care.

• Behaviors better, but not trained

• Congress said cannot regulate hobbyists and probably most drones out there.

• As UAS get cheaper, more are buying them

• More manufacturers also (like GoPro)

• GoPro failed due to power loss issues – they had to work out the kinks on the first

aircraft

• More manufacturers mean cheaper UAS

• What about the use of collision avoidance systems
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• Must be bigger and heavier

• Put transponder in UAS for ADSB to alert planes/helicopters? Add collision avoid-

ance? Technology will advance and likely become smaller

• Sensor array to ID the pilot must be within the infrastructurer

• Question to Hur about avionics devices running

• The LiPo batter was a big development for avionics

• The money going into technology is enormous. Leads to breakthroughs in smaller

and more powerful batteries.

• Fuel cells demonstrated with fixed wing. Proof of concept shown years ago.

• Syria: small UAS being used to drop grenades

• Most legal issues with companies will settle due to reputational issues

• Peachtree road race scenario – who carries insurance coverage that is enough?

• Anyone involved in the race would be sued – City, PRR, UAS

• Aerial Photography – Additional coverage for UAS?

• Human risk managers review to ensure appropriate coverage for applications

• Often churches, etc are running races. Are they permitting UAS? Checking cover-

age?

• Probably not covered

• Large loss with power transformers?

• Frequency and severity issues – people don’t follow the laws
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F.4.3 Moving Cases through the Court System

• The hardest part of the process right now would be (for case #2) finding enough parts

of the drone equipment to identify the operator.

• For cases #1 and #3, many of the unsafe operations are being traced by postings to

social media.

• A third issue is finding the “proof” and being sure that the evidence follows proper

chain of custody procedure. E.g. destroying the SIM card where flight data is stored,

worries that the logged track could have been changed if not in safe custody.

• Often a drone “violation” (trespassing, unsafe operations) are called in to local law

enforcement as first responders. As drone operations are federally regulated, this

is usually a dead end. Due to law enforcement response times, the drone and the

operator are long gone by the time they arrive.

• Other issues with pursuing a case into the court system, in addition to finding the

drone, tracing the operator, and getting the correct authorities involved, once those

parties are in place, if there are damages, often the recovery of damages must be

allocated between the operator, the manufacturer and the victim. The victim may

need to pursue recovery from their own insurance company for damages similar to

being hit by an uninsured motorist.

• On the state level, depending on the state law, the percentages of responsibility will

be allocated by a jury. (Negligence theory). Some states have a system that if the

majority of the fault does not lie with the perpetrator then the victim does not recover.

• Can this be changed with regulations? Another issue raised was enforcement of the

regulations.

• Question: Is insurance a driver or reactor to the drone operations environment? Yes,

both.
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• There are still many gaps in the regulations that will get decided on a case by case

basis.

• Disconnection of direct physical control of the drone as an object impacts perceived

safety.

F.4.4 Pathway beyond 107

(Bullet points are statements made during a dialogue)

• Folks working on beyond visual LOS. 1st person goggles (FPV = First person view)

or spotter. They mapped UCF campus using 4-5 spotters. That’s no longer allowed.

Could ADSB be put in? Not possible for many systems.

• Hobby associations will push back on an ADSB requirement

• Hobby stay in G airspace. Limit them to 400ft.

• Risks of wind gusts, GPS failures, must harden systems against inappropriate misuse.

Too easy to leave/stray out of approved airspace

• US done over Iranian airspace was taken over electronically.

• Hacker controls it.

• Hijack collision avoid systems. Spoof system by transmitting fake vehicle reports

F.5 Presentation 2 by Dr. Vela – UAS Statistics

• Most flight data is acquired from flight tracking websites to which the operators post

their flights.

• The websites are usually shut down soon after discovering that their data is being

scraped.
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• Amazon Web Services (AWS) generally has pretty unsecured data.

• The data presented covers probably 25-30% of all drone flights – which shows thou-

sands of flights per day.

• Americans are, in general, pretty good about following regulations. Usually around

1%-1.5% of drone flights (max) fall outside the regulations. These calculations are

based on out of visual range, too close to airports, too high of altitude, etc.

• Note that more of the flights are likely out of visual range due to obstructions in view

(trees and such), but this can’t be calculated effectively in this data set (yet).

• Altitude tests (how high can I go) are usually the first test attempted by new UAS

operators, and usually go over 400ft in open areas, which is illegal.

• 5% of flights are 500+ feet and within 5nm of an airport

F.6 Presentation 3 - Malicious use of UAS

• There are not currently any good ways to stop malicious actors from using UAS. The

biggest problem is still identification.

• A drone can be flown to a prison carrying many cell phones in a small container,

grabbed by a prisoner from a window, and be gone before the guards arrive. The cell

phones will already be distributed, and if the guards find the operator, it is typically

a kid who was paid to fly it and has no idea where the money came from.

• There are desires to block cell phone and UAS control signals around prisons.

• Blocking UAS signals has been discussed around airports/non-prison settings as well.

However, if the blocked signal forces a lost-comms scenario, there is no guarantees

of what the UAS will do. Will it land (is it in a safe place to land)? Will it return to

base?
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• Taking control of a UAS by regulating authorities through a signal has also been

discussed. This is similar to the flight baggage model in which all locks have a

master lock that TSA can use to open and check. In the case of UAS, this has the

potential issue of malicious actors gaining access to these “backdoors”.

F.7 Discussion 3

F.7.1 Goals of the Parties

• Desired advancements? Improved software, awareness of other air traffic for avoid-

ance, issues with “line of sight” operations due to the environment.

• Big/difficult current issue is: What are the rules?

• Operators (recreational, light or entry-level commercial) may not know where to find

out. Some education by manufacturers is in place, unknown how much should be

their responsibility.

• Controllers (FAA towers, airspace controllers) may not communicate with operators,

may not know their responsibility.

• Law enforcement (local police, sheriff, etc) may not know rules.

• Much more education in this space is needed.

• Updates to flight management software in this area might help.

• Huge need for uniformity of access and review of accident reports, incident reports.

• Need for uniformity and standardization in NOTAMS and TFRs to speed dissemina-

tion and comprehension by non-professionals.

• Question, should the minimum requirements for operator certification be increased?

Will that lead to less compliance?
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• Desired advancement in software and hardware: Lost signal guidance (what happens

if. . . )

• Additional safety enhancement / damage mitigation planning for commercial opera-

tions.

• Ideas

– “safe zones” for drones to pilot to in case of problems

– trouble broadcast frequencies and codes similar to aviation’s “guard” frequency

and emergency codes used in both aviation and marine

• Idea: Regulators maintaining a listing of authorized or certificated pilots, perhaps for

only commercial operators. We already do.

• Much advancement is waiting for commercial operators to take up. Many improve-

ments are not yet required but may come as there is consolidation. Much is waiting

for industry maturity.

• Issue: General Aviation and helicopters are not tracked for common flight tracking

when flying VFR if not requested. Flight following is available, but there is tracking

if filed IFR.

F.7.2 Operators

• Other traffic data desired – currently can get ADSB from a website, but not immedi-

ately

• Must be careful where point their camera

• Educational issue for operators training – they don’t know what is illegal in many

cases: Very true.

• Do operators understand privacy? Cognitive develop process and how it applies here?
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Do they just not know? Can educational videos help?

• Fun education training exercises for users – when power up a system the first time.

• But purchasers may not be the users

• Similar to the issues for lasers and planes

• Notifications need to be provide to users about warnings – real time versus delayed

and GPS accuracy are issues

• What do commercial users need?

– Single source for rules/laws: FAA provides regulations; lawmakers provide

statutes/law.

– Where are no fly zones, etc: Available on FAA App

– Can they takeoff/land in national parks? No, due to Department of Interior

jurisdiction

• Getting airspace authorization from towers – only have to alert, not get authorization

now

• Language is not standardized and is not user friendly. Aviation language is standard-

ized for air traffic and pilots, but new additions are part of the new world of UAS.

• Commercial users and/versus hobby users – what do they need to know?

• Database of operator history and experience – there are companies that are set up/looking

into developing databases, but they are struggling in this. Due to privacy issues, but

will become more transparent with FOIA

• The industry needs to mature.
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F.8 Discussion Notes 4

F.8.1 Insurance and Lawyers

• Desired future of UAS.

• Primary: How to explain the issues, operations, etc to a jury.

• Methods for identification of the parties (operators, equipment).

• Protection from the destruction of data.

• Pilots providing data for research, possible economic incentives?

• Underwriting and claims are the two main touch points when insurance companies

will get the best data to price their products.

• Unintended consequences of providing and receiving data and loss history, same for

regulation. The need for a feedback loop to correct the unintended consequences.

• Impact of the hacking and mods culture getting around limitations. Encryption lim-

iting the ability.

• Current regulations allow pilots to self-report to NASA/NTSB for accidents and in-

cidents. Are drone pilots aware of this? What information is important to gather?

• Membership organizations: AOPA, AMA, UAS coalition, current major influencers

of policy, lobbyists, RC clubs all influencing the space and might be avenues for

dissemination of education.

• There might be resistance as some answers the organization’s members don’t want

to receive.

• There is a high level of trust in the manned aviation community for accident reports

leading to improvements in aviation instead of punishment. Could this work in the

drone community?
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• What problem are we trying to solve for: Human deaths seem to be the measure and

driver of change, but more due to shock of “mass” casualties (aviation accidents)

versus one-by-one casualties (auto).

• Mental separation between the action and results of the action the farther away from

the event in space.

• CNN, research on frangible drones.

• Are innovations better driven from the commercial or manufacturer side?

• Will additional regulations (on manufacturers) drive up the cost of production and

kill the market?

• Regulatory certainty allows more progress in the field.

• Uber model: Disregard the law and allow it to catch up to the “new reality”. Change

management by building a critical mass of change.

• Does safety “sell”? Like in the auto market? Did it always, or is this a recent devel-

opment? It is always assumed safety is the responsibility of the FAA, so it doesn’t

sell. No air carrier advertises that they are safer than brand X, because of “minimum

requirements” being met to be certified.

• Are the incentives different in the drone market?

• What uses are drones being put to and does this matter for regulations? Yes, due to

the construct of the rules, i.e. agriculture, spraying, dropping of stores, carriage of

external goods and property of another across state lines, urban taxis, etc.

• Data safety issues? Is someone stealing/hacking the data produced? Can that cause

operator harm?

• Can the software be hacked in a major way to cause harm? (e.g. Were airline reserva-

tions systems hacked last year when each of the major airlines had “system crashes”
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that stranded large numbers of passengers all over the world?) What are the weak

points (AWS)?

F.8.2 Insurance and Law

• Drone legal services – AOPA

• UAS Coalition

• Discussion is analogous to firearms, boats, and motorcycles/dirtbikes

F.9 Discussion Notes 5 – Where from Here?

• Issues for research: Remote ID (craft and operator), Key as it is the starting point for

much of the enforcement environment.

• New licensing models: Equipment size and function.

• Education of operators on existing regulation now that drones are defined as aircraft.

Drones have been defined as aircraft since 2005, not just since Part 107.

• Current education providers with classes for Part 107 licenses.

• Integration with STEM in current school curricula. Design and deployment of new

courses.

• Atlanta airport developing systems for use and improvement of waivers for 107 ops

at airport.
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