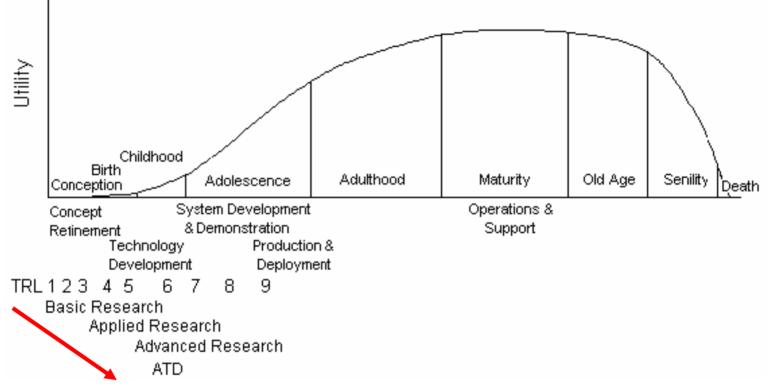
Systems Engineering Principles Applied to Basic Research and Development

Georgia Tech Space Systems Engineering Conference – November 8 - 10, 2005

William Nolte

Electronics Engineer


Col Norman Anderson

Chief Engineer, Space Vehicles

Air Force Research Laboratory

Technology Life Cycle The Whale Chart

•The Whale Chart maps the Life Cycle to the Readiness Levels and R&D Stages

•A technology's usefulness changes over time

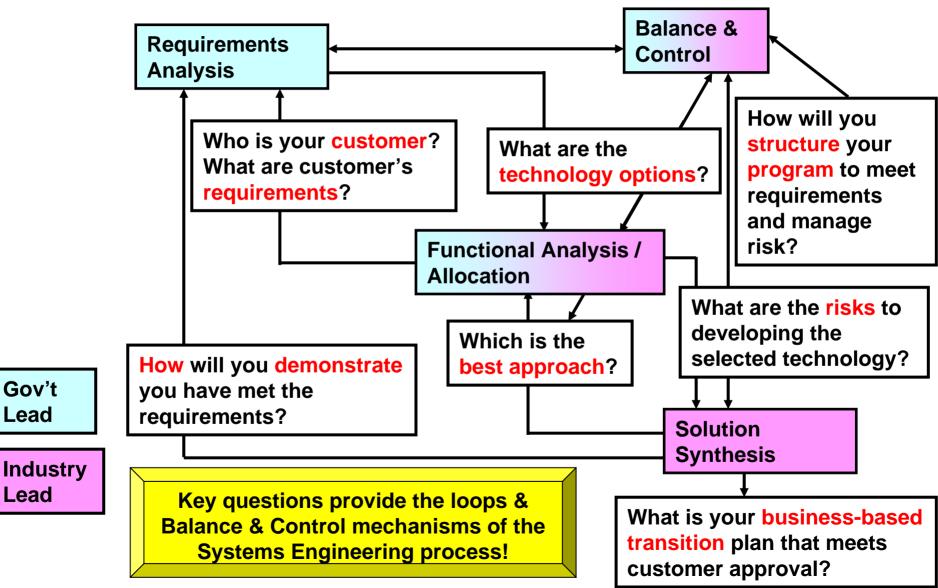
Utility increases as a technology matures

Utility decreases as a technology becomes obsolete

Georgia Tech Space Systems Engineering Conference November 8-10, 2005

Knowledge Growth

Key Question	<u>Basic</u> Research	<u>Applied</u> Research	Advanced Research	ATD
Who is your customer?	Partial	Nearly Complete	Complete	Complete
What are customer's requirements?	Partial	Partial	Nearly Complete	Complete
How will you demonstrate you have met the requirements?	Partial	Partial	Nearly Complete	Complete
What are the technology options?	Extremely Limited	Nearly Complete	Complete	Complete
Which is the best approach?	Extremely Limited	Nearly Complete	Complete	Complete
What are the risks to developing the selected technology?	Partial	Partial	Nearly Complete	Complete
How will you structure your program to meet requirements and mitigate risk?	Partial	Nearly Complete	Complete	Complete
What is your business-based transition plan that meets customer approval?	Extremely Limited	Partial	Nearly Complete	Complete


Georgia Tech Space Systems Engineering Conference

November 8-10, 2005

Key Questions and Systems Engineering

Georgia Tech Space Systems Engineering Conference

November 8-10, 2005

Two of the Key Questions Focus on Risk in R&D:

• What are the risks to developing the selected technology?

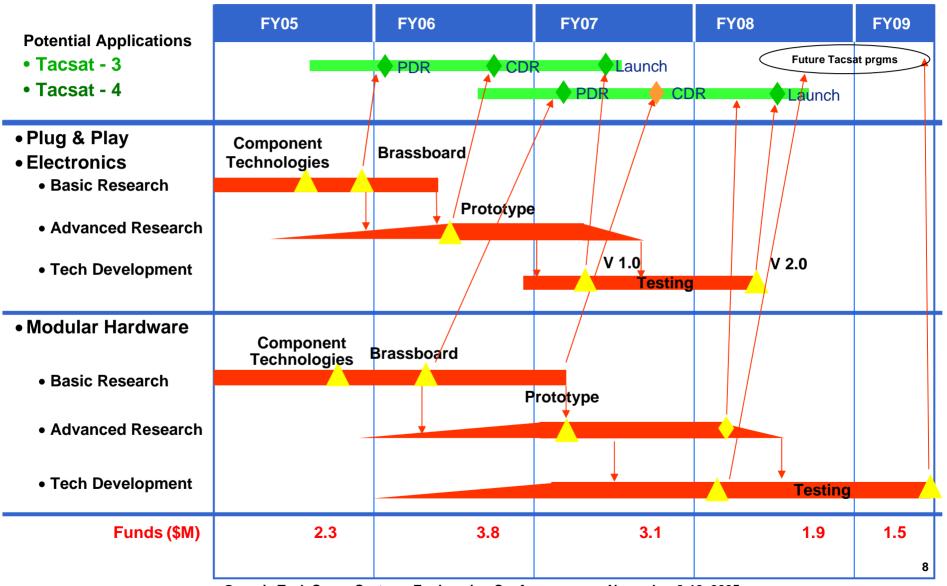
• How will you structure your program to meet requirements and manage risk?

- Three Distinct Levels of Research and Development
 - Basic Research develop a fundamental understanding of selected physical properties
 - Applied Research investigate application of physical properties to selected technical needs
 - Advanced Technology Development explore application of technology to assess military relevance

Philosophy of RM in Basic Research

What Are the Risks?

- Develop cost estimates for advancement of technology to useful level
- Identify development options and relative difficulty of options
- Maintain budget within pre-defined boundaries


How Will You Structure the Program?

- Establish knowledge incremental goals
- Estimate cost/time needed to achieve
- Determine risks associated with maintaining cost/schedule
- Track variances for periodic cost/schedule replan

Primary purpose of RM in Basic Research is to refine development roadmap

Investment Roadmap for Modular Spacecraft Technologies

Georgia Tech Space Systems Engineering Conference November 8-10, 2005

Philosophy of RM in Applied Research

What Are the Risks?

- Develop technology into a repeatable engineering capability
- Identify extent of applicability of technology to military needs
- Determine the cost/benefit parameters of this new caapability

How Will You Structure the Program?

- Explore range of application of technology
- Refine development roadmap for specific applications
- Determine risks associated with achieving required performance at known cost/schedule
- Identify issues of repeatability and define mitigation approaches

Primary purpose of RM in Applied Research is to balance cost & performance

A STOCK ALLOW AND A STOCK

What Are the Risks?

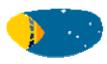
- Apply engineering capability to specific military need
- Identify issues causing uncertainty in application
- Refine cost/performance relationship.

How Will You Structure the Program?

- Manage to cost/schedule
- Provide mitigation options and go/nogo gates
- Determine risks early, maintain constant awareness
- Identify potential of cost/schedule failure early (precursors), manage proactively

Primary purpose of RM in ATD is to balance cost, performance, schedule

- Key Questions (What Are the Risks and How Will You Structure the Program?) provide the basis of the AFRL Risk Management process
- Questions apply to R&D programs at all stages of maturity
- Knowledge available to the program manager changes with program maturity
- Risk Management philosophy changes with program maturity


The AFRL Systems Engineering Initiative is a method of managing risk in Science and Technology

Risk Management is applicable early in the technology life cycle

Discussion / Questions

